

Eq. Consider a subspace
$$V = span \begin{cases} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 1 & 2 \\ 3 & 3 \\ 4 & 3 \\ 3 & 3 & 3 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 3 & 3 & 3 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 3 & 3 & 3 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 2 & 1 & 5 \\ 3 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \\$$

Row-refuse
$$\begin{pmatrix} 1 & 3 & 1 & 6 \\ -1 & 0 & 1 & 1 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$ So $\begin{bmatrix} \overline{u} \\ \overline{u} \end{bmatrix} B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} B$

The $B \in basis$ of subspace V of \mathbb{R}^n , then

a) $\begin{bmatrix} \overline{x} + \overline{y} \end{bmatrix} B = \begin{bmatrix} \overline{x} \end{bmatrix} B + \begin{bmatrix} \overline{y} \end{bmatrix} B$ for all \overline{x} , \overline{y} in V and scalars B

Eq. $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix} B$ for all \overline{x} in V and scalars $B = \begin{bmatrix} \overline{y} \\ 1 \end{bmatrix} B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} B$

Color $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} B = \begin{bmatrix}$

Check
$$proj_{1}(\vec{v}_{1}) = \vec{v}_{1} = proj_{1}(\vec{v}_{1}) = 0$$
 $proj_{1}(\vec{v}_{1}) = \vec{0}$
 $proj_{1}$