MW 4 due today, 5pm
3.1: 6, 24, 32, 34, 37, 38

3,2: $\quad 26,34$
3.3: $\quad 30 \quad 38$

Cool exercise but not collected:

$$
33: 90
$$

LW 5 due $2 / 18$

$$
3.4: 2,4,20,26,44
$$

Coordinates
Highly correlated data \mathbb{R}^{N}
 Wart to describe using feme dimensions

$$
\vec{v}=\left(\begin{array}{c}
\text { Data in } \\
\vdots \\
\underset{\substack{\text { subspace } \\
\text { with basis }}}{ } \rightarrow \text { coordinates in } B \\
\\
\text { " }[\vec{v}]_{B}=(i)
\end{array}\right.
$$

Eg Data in \mathbb{R}^{3} on left has little variation in \vec{V}_{3} direction: describe data points only using $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$

V

Lots of eximples in $\xi 3.4$.

Eg Consider a subspace $V=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)\right\}$

$$
\text { Is } \vec{u}=\left(\begin{array}{l}
2 \\
5 \\
4 \\
3
\end{array}\right) \text { in } v \text { ? }
$$

So, $\vec{u}=2 \vec{v}_{1}+\vec{v}_{2}$
Since $\operatorname{dim} V=2, \vec{u}$ zen actually be described by just two
Def For basis $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ of subspace V in \mathbb{R}^{n}, for $\vec{x} \in V$, lat $c_{1}, \ldots,<m$ be the unique seaiars such that $\vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m}$.
Then, C_{1}, \ldots, C_{m} are the \mathcal{B}-coordinates of \vec{x} and $[\vec{x}]_{B}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{m}\end{array}\right)$ is the B-coordinate vector of \vec{x}.
Eg $\beta=\left\{\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)\right\}, \vec{u}=\left(\begin{array}{l}2 \\ 5 \\ 4 \\ 3\end{array}\right)$ then $[\vec{u}]_{\beta B}=\binom{2}{1}$
Note $\vec{x}=\left(\begin{array}{cc}1 & 1 \\ \vec{v}_{1} & \cdots \\ 1 & 1\end{array}\right)\left[\vec{v}_{m}\right]_{B}=\left(\begin{array}{cc}1 & 1 \\ \vec{v}_{1} & \cdots \\ 1 & 1\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{m}\end{array}\right)=c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}$
Eg $\left.B=\left\{\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right), \begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$ is a basis of \mathbb{R}^{3}
For $\vec{u}=\left(\begin{array}{l}6 \\ 1 \\ 2\end{array}\right)$, what is $[\vec{u}]_{B}$?

Rar-reluce $\left(\begin{array}{ccc:c}2 & 3 & 16 \\ -1 & 0 & 2 & 1 \\ 0 & -1 & 3 & 2\end{array}\right) \xrightarrow{\cdots .}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array} 1\right)$ so $[\vec{u}]_{B}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
The B a basis of subspace V of \mathbb{R}^{n}, then
a) $[\vec{x}+\vec{y}]_{B}=[\vec{x}]_{B}+[\vec{y}]_{B}$ for all \vec{x}, \vec{y} in V
b) $[k \vec{x}]_{\beta}=k[\vec{x}]_{B}$
for all \vec{x} in V and sealers k
Eg $\vec{v}=\left(\begin{array}{c}5 \\ -1 \\ -1\end{array}\right)$ in \mathbb{R}^{3} with basis $B=\left\{\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\left(\begin{array}{l}3 \\ 0 \\ -1\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$
$[\vec{v}]_{B}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and

$$
\left[\begin{array}{ll}
\vec{v}+\vec{u}]_{B} & {\left[\left(\begin{array}{c}
5 \\
-1 \\
-1
\end{array}\right)+\left(\begin{array}{l}
6 \\
1 \\
2
\end{array}\right)\right]_{B}=\left[\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right]_{B}} \\
=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=[\vec{v}]_{B}+[\vec{u}]_{B},
\end{array}\right.
$$

$$
\text { check } 2\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)+2\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)+1\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
11 \\
0 \\
1
\end{array}\right)
$$

Question If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear temosfornation

$$
\text { and } \mathbb{B}=\left\{\overrightarrow{v_{1}}, \ldots, \vec{v}_{n}\right\} \text { a basis of } \mathbb{R}^{n} \text {, }
$$

What is a matrix B such that $B[\vec{x}]_{B}=[T(\vec{x})]_{B}$?
Then In this situation,
$B=\left(\begin{array}{ccc}{\left[\frac{1}{T\left(\vec{v}_{1}\right)}\right]_{B}} & \cdots & {\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right.} \\ 1 & 1 \\ 1\end{array}\right)$ is the mique matrix such that

$$
[T(\vec{x})]_{B}=B[\vec{x}]_{B}
$$

"Changing Coordinates of linear teimsfor-ation"

Check

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{proj}_{j_{j}}\left(\vec{v}_{1}\right)=\vec{v}_{1} \Rightarrow\left[\operatorname{pr} \dot{v i v}_{L}\left(\vec{v}_{1}\right)\right]_{B}=\binom{1}{0} \quad \text { so this gives cairns }
\end{array} \\
& {\left[\operatorname{proj}\left(\vec{v}_{2}\right)\right]_{B}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { of } B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text {. }}
\end{aligned}
$$

Diagram For basis $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of \mathbb{R}^{n}

$$
\begin{aligned}
& S=\left(\begin{array}{cc}
1 & 1 \\
\vec{v}_{1} & \cdots \\
1 & \vec{v}_{n} \\
1 & 1
\end{array}\right) \\
& \vec{x} \xrightarrow{A} T(\vec{x}) \\
& \text { is } \\
& {[\dot{x}]_{B} \rightarrow[T(\hat{x})]_{B}} \\
& \Rightarrow \quad A S=S B \Leftrightarrow B-S^{-1} A S \& A=S B S^{-1}
\end{aligned}
$$

Def Tun non matrices are Similar if there exists a invertible matrix S such that $A S=S B \Leftrightarrow B=S^{-1} A S$
Eg Is $\underbrace{\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)}_{A}$ similar to $\underbrace{\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)}_{B}$?
Does $\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right) \underbrace{\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)}_{S}=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ for same x, y, z, t ?

$$
\begin{aligned}
& \left(\begin{array}{cc}
x+4 z & y+4 t \\
z & t
\end{array}\right)=\left(\begin{array}{cc}
x+2 y & y \\
z+2 t & t
\end{array}\right) \\
& \left\{\begin{array} { l }
{ x + 4 z = x + 2 y } \\
{ y + 4 t = y } \\
{ z = z + 2 t } \\
{ t = t }
\end{array} \Rightarrow \left\{\begin{array}{l}
4 z=2 y \\
4 t=0 \\
0=2 t \quad t=0, y=2 z \\
t=t \\
4 \text { but! } \\
x, y, z \text { arefiee } \\
x, y z \neq 0
\end{array}\right.\right. \\
& \Rightarrow y z \neq 0
\end{aligned}
$$

So, $\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ woiks and A is therefore similar,
The A n xn matrix
a) A is similar to itself $(S=I \alpha)$
b) A is similar to $B \Longleftrightarrow B$ is similar to $A\left(s+t s+0 s^{-1}\right)$
c) A is similes to B and B is similes to $C \Rightarrow A$ is similar to C.

