HO 5 due $2 / 18$
3.4: ${ }^{2}, 4,20,26,44$

HF 6 due $2 / 25$
4.1: 47,48

Linear spaces
Eq a) Consider equation $f^{\prime \prime}(x)=-f(x)$.
Sore solutions: $f(x)=\sin (x), f(x)=-\cos (x)$
General solution: $c_{1} \sin (x)+c_{2} \cos (x) \quad c_{1}, c_{2}$ are constants
Looks like "span $\{\sin (x), \cos (x)\} "$
"all linear combinations of $\sin (x)$ and $\cos (x)$ "
6) Consider degree ≤ 2 polynomials: $a x^{2}+b x+c$ $a, b, c-$ scalars "linear combinations of $\left\{x^{2}, x, 1\right\} "$
Make this precise!
Def A linear space V is a set with "t" and scalar multiplication such that for $911 f, g, h \in V$ and Scalars c, k :

1) $(f+g)+h=f+(g+h)$
2) $f+g=g+f$
3) There is an element $0 \in V$ such that $f+0=f$ for all f.
4) For every $f \in V$, there is a $g \in V$ such that $f+g=0$

$$
(\text { soy } g=-f)
$$

5) $k(f+g)=k f+k g$
6) $(k+c) f=k f+c f$
7) $c(k f)=(c k) f$
8) $1 f=f$

Eg a) All these rules work for \mathbb{R}^{n}. Take $f=\vec{u}, g=\vec{v}, h=\vec{w}$
and al these rules are satisfied.
b) Solutions to $f^{\prime \prime}(x)=-f(x)$:

Addition of functions satisfies $1 \$ 2$
3) ${ }^{5 \times x}=0$ is a solution
4) If f is a solution, $-f$ is a solution and

$$
f+(-f)=0
$$

5-8) Standard rues for scales multiplication on functions and if f is a solution, so is kf .
c) Functions $\{f: \mathbb{R} \rightarrow \mathbb{R}\}$

If f, g, h are functions, then rules apply.
d) $M_{2 \times 2}=\{2 \times 2$-atrices $\}$

If $f=A, g=B, h=C$ are 2×2 matrices,
these rules apply.
voshot Use language of linear agebra in many settings.'
Def A subset W is a subspace of linear space V if
a) $D \in W$
b) $f, g \in W \Rightarrow f+g \in W$
c) $f \in W \Rightarrow c f \in W$ for all sealers c.

Eg $V=$ All functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$W=\operatorname{leg} \leqslant 2$ polynomials $a x^{2}+b x+c$
a) $0 \in W \quad(a=b=c=0)$
b) $a x^{2}+b x+c+p x^{2}+q x+r=(a+p) x^{2}+(b+q) x+(c+r)$
c) $k\left(a x^{2}+b x+c\right)=(k a) x^{2}+(k b) x+k c \in W$
so, W is a subspace of V.

More examples in $\$ 4.1$ ppl68-169.
Def $f_{1}, \ldots, f_{n} \in V$-liner space
a) $\operatorname{span}\left\{f_{1}, \ldots, f_{n}\right\}=\left\{c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}:\right.$ scalars $\left.c_{1}, \ldots, c_{n}\right\}$
b) f_{i} is redundant if it is a linear combination of f_{1}, \ldots, f_{i-1} and f_{1}, \ldots, f_{n} are lineally intepentut if none are redundat.
c) $\left\{f_{1}, \ldots, f_{n}\right\}$ for ns a basis of V if $\operatorname{span}\left\{f_{1}, \ldots, f_{v}\right\}=V$ and f_{1}, \ldots, f_{n} are linearly independent
\Rightarrow Every $g \in v$ has unique c_{1}, \ldots, c_{n} such that

$$
\begin{aligned}
& g=c_{1} f_{1}+\cdots+c_{n} f_{n} \\
& \text { so } B=\left\{f_{1}, \ldots, f_{n}\right\} \Rightarrow[g]_{B}=\left(\begin{array}{c}
c_{1} \\
c_{n} \\
c_{n}
\end{array}\right) \in \mathbb{R}^{n}
\end{aligned}
$$

The $\operatorname{map} L_{B}: V \rightarrow \mathbb{R}^{n}$ given by $L_{B}(g)=[g]_{B}$ is the B-coordinate transformation.
Eg a)

$$
\begin{aligned}
W=P_{2} & =\operatorname{teg} \leq 2 \text { polynomials } \\
& =\left\{a x^{2}+b x+1: a, b, c-\text { scalars }\right\} \\
& =\operatorname{span}\left\{x^{2}, x, 1\right\}
\end{aligned}
$$

and $x^{2}, x, 1$ we linearly independent so
$B=\left\{x^{2}, x_{1}\right\}$ is a basis,

$$
\left[a x^{2}+6 x+c\right]_{B}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

and $\lim W=3$.
6) Linear space $M_{2 x 2}$ has a buss

$$
\begin{aligned}
& B=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \text { is a basis } \\
& \sim \operatorname{dim} M_{2 \times 2}=4 \text { and }\left[\left(\begin{array}{ll}
a & b \\
c & \alpha
\end{array}\right)\right]_{B}=\left(\begin{array}{l}
a \\
b \\
c \\
\alpha
\end{array}\right)
\end{aligned}
$$

Aside $B^{\prime}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$ is also a basis is
c) Solutions to $f^{\prime \prime}(x)=-f(x)$
has $B=\{\sin (x), \cos (x)\}$ as a basis
\Rightarrow solutions form a 2 -dirensimal subspace of +he linear space of differentiable functions. (trice)
The The solutions to

$$
f^{(n)}(x)+a_{n-1} f^{(n-1)}(x)+\cdots+a_{1} f^{\prime}(x)+a_{0} f(x)=0
$$

for an n-dimensional subspace of n-fold differentiglle functions. Lines spaces can be infinite dimensional!

Eg Consider $V=P=\{$ all polynomials\}
Cannot have a finite basis because $\begin{aligned} & \operatorname{deg} f=m \\ & \operatorname{deg} g=n\end{aligned}$
then $\operatorname{deg}(f+g) \leq \max (M, n)$.
Def A linear space V is finite-dirassimal if it has a
finite basis $\left\{f_{1}, \ldots, f_{n}\right\} \Rightarrow \operatorname{dim}(V)=n$
Otherwise, V is infinite-dirensional.
Rok We to not have a definition for an "infinite basis."
(Different Course! 'Functional analysis")

