lW 5 due 2/18

$$
3.4: 2,4,20,26,44
$$

AW 6 due $2 / 25$
4.1: 47,48
4.2:10,14,22,54

Quiz $\begin{aligned} & \text { on } \\ & 3.9,4.1,4.2\end{aligned}$
Linear Transformations between linear spaces
Def For V, W linear spaces, a function $T: V \rightarrow W$ is a linear trensformatiz.
if a) $T(f+g)=T(f)+T(g)$ for all $f, g \in V$
b) $T(k f)=k T(f)$ for all $f \in V$ and scalars k.

Eg $P_{2}=\left\{a x^{2}+b x+c: a, b, c\right.$ scalars $\}$
Basis $B=\left\{x^{2}, x, 1\right\}$

$$
L_{\mathbb{B}^{\prime}}: P_{2} \rightarrow \mathbb{R}^{3} \quad L_{B}\left(a x^{2}+l x+c\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

is a linear transformation.

$$
\text { Check a) } \begin{aligned}
L_{B}\left(\left(a x^{2}+b x+c\right)+\left(p x^{2}+q x+r\right)\right) & =\left[(a+p) x^{2}+(b+q) x+(c+r)\right] \\
& =\left(\begin{array}{l}
a+p \\
b+1 \\
c+r
\end{array}\right) \\
& =\left(\begin{array}{l}
a \\
1 \\
c
\end{array}\right)+\left(\begin{array}{l}
p \\
9 \\
r
\end{array}\right) \\
& =L_{B}\left(a x^{2}+b x+c\right)+L_{B}\left(p x^{2}+q x+r\right) \zeta
\end{aligned}
$$

b) Similar because

$$
\left(\begin{array}{l}
k a \\
k b \\
k c
\end{array}\right)=k\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

$\Rightarrow L_{B}: P_{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation.
Tout For my $\operatorname{limear}_{\text {is a }}$ a pincer V with $\operatorname{dim}(V)=n$ and basis $B, L_{B}: V \rightarrow \mathbb{R}^{n}$

Def $T: V \rightarrow$ W a linear transformation
in $(T)=\{T(f): f$ in $V\}$ is a linear subspace of W an α $\operatorname{ker}(T)=\{f$ in $V: T(f)=0\}$ is a liner subspace of V.
If $\operatorname{dim}(\operatorname{in}(T))<\infty$, then $\operatorname{rank}(T):=\operatorname{dim}(\operatorname{im}(T))$

$$
\operatorname{dim}(\mid \operatorname{ker}(T))<\infty \text {, then nullity }(T):=\operatorname{dim}(\operatorname{ker}(T))
$$

Note If $\operatorname{dim}(V)<\infty$, then $\operatorname{dim}(V)=\operatorname{rank}(T)+$ nullity (T).
Eg Infinitely differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$
"Sooth functions" denoted as C^{∞}
$V=C^{\infty}$ and consider $D(f)=f^{\prime}$
Is D a linear transformation?
a) $D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)$
b) $D(k f)=(k f)^{\prime}=k \cdot f^{\prime}=k D(f)$
$\operatorname{ker}(D) ? \Leftrightarrow$ What are all $f \in C^{\infty}$ satisfy $D(f)=0$?
$\operatorname{ker}(D)=$ all constant functions

$$
=\operatorname{span}\{1\} \quad \text { so } \operatorname{dim}(\operatorname{ker}(D))=1 .
$$

$\operatorname{im}(D) ? \Leftrightarrow$ What are all $g \in C^{\infty}$ such that there exists an f Satisfying $D(\nu)=g$?
Fund Then cal \Rightarrow All C^{∞} functions have on antiderivative, So $\operatorname{im}(D)=c^{\infty}$
So, $D: C^{\infty} \longrightarrow C^{\infty}$ is surjective but not infective $\left(\begin{array}{l}D(f+C) \\ =D(f) \\ \text { fan alcossmns }\end{array}\right)$
Def An invertible linear transformation is called an isomorphism (op liner jones)
If $T: V \rightarrow W$ is an isomorphism, then V and W are isomorphic.
Eg 1) $D: C^{\infty} \rightarrow C^{\infty}$ is not an isomorphism
b) Id: $C^{\infty} \rightarrow C^{\infty}$ is an isomorphism, so $_{0} C^{\infty}$ is isomorphic to itself $f \longmapsto f$ (Any V is isomaphic to itself)
c) If $B=\left\{f_{1}, \ldots, f_{n}\right\}$ is a basis for V, then $L_{B}: V \rightarrow \mathbb{R}^{n}$ is an isomorphism:

$$
\underset{\substack{v \\
\underline{v}}}{\substack{v \\
c_{1} f_{1}+c_{2} f_{2}+\ldots+c_{n} f_{n}}} \stackrel{L_{B}}{\sim} \underset{L_{B}^{-1}}{\sim}[g]_{B}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

So, V is isomorphic to \mathbb{R}^{n}.
The A linear transformation $T: V \rightarrow W$ is an isomorphism
if and only if $\operatorname{ker} T=\{0\}$ and $\operatorname{im} T=W$
(injective) (surjective)
Eg Is $T: P \rightarrow P$ for $T(f(x))=x f(x)$ an isomorphism?
No! $f(x)=1$ is not in $\operatorname{in}(T)$, so $\operatorname{im}(T) \neq P$
and so, by our the, T is not an isomaxphism.
The For finite dimensional linear spaces V, W
a) $\operatorname{dim}(V)=\operatorname{dim}(w) \Longleftrightarrow V$ is isomorphic to W.
$\ln =\operatorname{din}(v)) \quad(\Leftarrow)$ by rakin-nulity

$$
V \underset{L_{B}}{ } \mathbb{R}^{n} \xrightarrow[L_{B^{\prime}}^{-1}]{ } W \text { gives an isomers }
$$

Babasis for $V \quad$ gives an isomorphism
B^{\prime} a basis for W
b) If $T: V \longrightarrow W$ is a linear frosformation with her $T=\{0\}$ and $\operatorname{dim}(v)=\operatorname{dim}(w)$, then T is an isomorphism.
C) If $T: V \rightarrow W$ is a linear frensformation with in $T=W$ and $\operatorname{dim}(v)=\operatorname{dim}(w)$, then T is an isomorphism.

Eg $D: P_{2} \rightarrow P_{2}$ given by $D(f)=f^{\prime}$

$$
B=\left\{x^{2}, x, 1\right\}
$$

Can you find a matrix B such that $B[f]_{B}=\left[f^{\prime}\right]_{B}$?
Picture

$$
D\left(a x^{2}+b x+c\right)=2 a x+b
$$

\rightarrow Matrix B such that $B\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}0 \\ 2 a \\ b\end{array}\right)$

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Next tire Make finding B rove Systematic

