$$
\begin{aligned}
& \text { MW } 5 \text { due } 2 / 18 \\
& 3.4:=4,4,20,26,44 \\
& \text { Quiz on } 2123 \\
& \text { 3.4, } 4.1,4.2 \\
& \text { AW } 6.1 \text { due } 2125 \\
& 4.1: 47,48 \\
& 4.2: 10,14,22,54 \\
& 4.3: 23,24,46
\end{aligned}
$$

Matrix of a linear transformation between linear spaces
Eg $D: P_{2} \rightarrow P_{2}$ given by $D(f)=f^{\prime}$

$$
B=\left\{x^{2}, x, 1\right\}
$$

Can you find a ratrix B such that $B[f]_{B}=\left[f^{\prime}\right]_{B}$?
Picture

$$
D\left(a x^{2}+b x+c\right)=2 a x+b
$$

\rightarrow Matrix B such that $B\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}0 \\ 2 a \\ b\end{array}\right)$

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Def If $T: V \rightarrow V$ is a linear transformation and $\operatorname{dim}(V)=n$, let B be a basis of V. Then $L_{B} \circ T_{0} L_{B}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation represented by a matrix, say B. We say B is the B-matrix of terasformation $工$. So, for all $f \in V$

$$
[T(f)]_{B}=B[f]_{B} \Leftrightarrow L_{B}(T(f))=B L_{B}(f)
$$

Diagram

The For $B=\left\{f_{1}, \ldots, f_{n}\right\}$ a basis of V

$$
B=\left(\begin{array}{ccc}
{\left[T\left(f_{1}\right)\right]_{B}} & \cdots & {\left[T\left(f_{n}\right)\right]_{B}}
\end{array}\right)
$$

Eg $V=\operatorname{span} \underbrace{\{\cos (x), \sin (x)\}}_{B}$
$T: V \rightarrow V$ given by $T(f)=3 f+2 f^{\prime}-f^{\prime \prime}$

Is T invertible? $\operatorname{let}\left(\begin{array}{c}4 \\ 4 \\ -24\end{array}\right)=16-(-4)=20 \neq 0$
Yes!
Question How are $[f]_{B}$ and $[f]_{B^{\prime}} \begin{gathered}\text { related for two different } \\ \text { bases } B, B^{\prime} \text { of } V \text { ? }\end{gathered}$ bases B, B^{\prime} of V ?

$$
\left(L_{B^{\prime}} L_{B}^{-1}\right)\left([f]_{B}\right)
$$

$$
:=L_{B^{\prime}}\left(L_{B}^{-1}\left([f]_{B}\right)\right)
$$

$$
\begin{aligned}
& T(\cos (x))=3 \cos (x)-2 \sin (x)+\cos (x) \\
& =4 \cos (x)-2 \sin (x) \\
& {[T(\cos (x))]_{B}=[4 \cos (x)-2 \sin (x)]_{B}=\binom{4}{-2}} \\
& \begin{aligned}
T(\sin (x)) & =3 \sin (x)+2 \cos (x)+\sin (x) \\
& =2 \cos (x)+4 \sin (x)
\end{aligned} \\
& =2 \cos (x)+4 \sin (x) \\
& {[T(\sin (x))]_{B}=\binom{2}{4}} \\
& B=\left(\begin{array}{cc}
1 \\
{[T(\cos (x))]_{B}} & {[T(\sin (x))]_{B}} \\
1
\end{array}\right)=\left(\begin{array}{ll}
4 & 2 \\
-2 & 4
\end{array}\right)
\end{aligned}
$$

Def The atrix S representing $L_{B^{\prime}} \circ L_{B}^{-1}$ is called
the Change of basis ratrix from B to B^{\prime}
(Sometimes denoted $S_{B \rightarrow B^{\prime}}$)
so, $[f]_{\beta^{\prime}}=S[f]_{B}$
Furthermore, if $B=\left(b_{1}, \ldots, b_{n}\right)$, then

$$
\left[b_{i}\right]_{\mathcal{B}^{\prime}}=S\left[b_{i}\right]_{B}=S \vec{e}_{i}=i^{\text {th }} \text { column of } S
$$

So, $S=\left(\begin{array}{ccc}1 & 1 \\ {\left[b_{1}\right]_{B^{\prime}}} & \cdots & {\left[\begin{array}{l}6 b_{n}\end{array}\right]_{B^{\prime}}} \\ 1 & & 1\end{array}\right)$

Rum S is always invertible.
$E \mathrm{Eq}$ a) $P_{2} \operatorname{deg} \leq 2$ polynomials

$$
\begin{aligned}
& B^{\prime}=\left\{x^{2}, x, 1\right\} \\
& B=\left\{(x-1)^{2}, x+1,1\right\} \\
& {\left[(x-1)^{2}\right]_{B^{\prime}}=\left[x^{2}-2 x+1\right]_{B^{\prime}}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)} \\
& {[x+1]_{B^{\prime}}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad[1]_{\mathcal{B}^{\prime}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \Rightarrow S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)} \\
& \rightarrow \text { Write } a(x-1)^{2}+b(x+1)+c \\
& \text { as } a^{\prime} x^{2}+b^{\prime} x+c^{\prime} \\
& \Rightarrow\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}
$$

b) Charge of coordinates of \mathbb{R}^{n} with $B^{\prime}=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$

$$
B=\left\{\vec{v}_{1}, \ldots, \dot{v}_{n}\right\}
$$

Then, if $\vec{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right),[\vec{x}]_{B^{\prime}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ So $L_{B^{\prime}}$ is $I d_{n}$
and $S=\left(\begin{array}{ccc}1 & & 1 \\ \left.\vec{v}_{1}\right]_{B^{\prime}} & \cdots & {\left[\begin{array}{c}v_{v}\end{array}\right]_{B^{\prime}}} \\ 1 & & 1\end{array}\right)=\left(\begin{array}{cc}1 & \\ \overrightarrow{v_{1}}, & \cdots \\ 1 & \\ v_{n}\end{array}\right)$ is the transformation $\vec{x}=S[\vec{x}]_{B}$ from $\$ 3.4$.
The For subspace V of \mathbb{R}^{n} with bases $B^{\prime}=\left\{\vec{a}_{1}, \ldots, \vec{a}_{m}\right\}$

$$
B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{m}\right\}
$$

we hare $\left(\begin{array}{ccc}1 & & 1 \\ b_{1} & \cdots & b_{m} \\ 1 & & 1\end{array}\right)=\left(\begin{array}{ccc}1 & & 1 \\ \vec{a}_{1} & \cdots & a_{a_{m}} \\ 1 & & 1\end{array}\right) S_{B \rightarrow B^{\prime}}$.
Picture

The If V a linear space with bases B and B^{\prime}

$$
T: V \rightarrow V \text { with } B^{\prime} \text {-matrix } A \quad\left(A[f]_{B^{\prime}}=[T(\delta)]_{Q_{B}}\right)
$$

$$
B \text {-matrix } B \quad\left(B[f]_{B}^{0}=[T(f)]_{B}^{\infty}\right)
$$

then, A is similar to B and, for $S=S_{B \rightarrow B^{\prime}}$, we have $A S=S B$.
Eg P_{2} leg ≤ 2 polynomials

$$
\begin{aligned}
& B^{\prime}=\left\{x^{2}, x, 1\right\} \\
& B=\left\{(x-1)^{2}, x+1,1\right\} \\
& D: P_{2} \rightarrow P_{2} \text { with } D(f)=\rho^{\prime}
\end{aligned}
$$

Then,

$$
\begin{gathered}
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
{[2(x-1)]_{B}} & {[1} & 1 \\
1 & 1 & 1 \\
0 & 1
\end{array}\right) \\
2 x-2=2(x+1)-4 \cdot 1
\end{gathered}
$$

