HW 5 dag 2/18
HW 5 due 2/18 3.4: 2, 4, 20, 26, 44
Quiz on 2/23 3,4,4.1,4.2
6.9, 4.1, 4.2
Uhr 6 Jun 7/25
HW 6 Jue 2/25 4.1: 47, 48 4.2: 10, 14, 22, 54 4.3: 23, 24, 46
4.2:10, 14, 22, 54
4.3: 23,24,46
Reflection 2 due 2/25 (Canvas)
Matrix of a linear transformation between linear spaces
Eg D: P2 -> P2 given by D(J) = f'
$\mathcal{B} = \{x^{\dagger}, x, 1\}$
Co Cial a sale & R such Hay RFF1 - FF'7 ?
Can you find a rateix B such that B[f] = [f']B?
Picture P. P.
4012
\mathbb{R}^3 > \mathbb{R}^3
$D(ax^2 + bx + c) = 2ax + b$
\sim Matrix B such that $B(a) = (a)$
~> Matrix B such that B 1 = 2a
(c) (b)
$B = \begin{pmatrix} \circ & \circ & \circ \\ 2 & \circ & \circ \\ \circ & (& \circ) \end{pmatrix}$
Def If T: V -> V is a linear transformation and lim(V) = n,
let B be a basis of V. Then LBOTOLB': IR" -> R"
is a linear transformation represented by a matrix. Say B. We say B is the B-matrix of transformation T . So, for all $f \in V$ $[T(f)]_{B} = B[f]_{B}. \iff L_{B}(T(f)) = BL_{B}(f)$
Say B. We say B is the R-matrix of transformation T.
So, for 911 f E V
$L(\mathcal{J}_{\mathcal{A}}) = B(\mathcal{J}_{\mathcal{A}}) = B(\mathcal{J}_{\mathcal{A}})$

Diagram
$$V \xrightarrow{T} V$$

LB

LB

 $V = SPN$
 $V =$

```
Def The natrix S representing LB, o LB is called
the Change of Gasis natrix from B to B'

(Sometimes denoted SB-B')
                                  so, [J]<sub>B'</sub> = 5[J]<sub>B</sub>
                                Furthernore, if B = (b_1, ..., b_n), then
                                                                             [b;] R = S[b;] = Se; = ith column of S
                                 S = \left(\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & \cdots & 
Eq a) P_2 deg \leq 2 polynomials B' = \{x^2, x, 1\}
                                               B = {(x-1)2, x+1, 13
                                              \begin{bmatrix} (x-1)^2 \end{bmatrix} \mathcal{B}_1 = \begin{bmatrix} x^2 - 2x + 1 \end{bmatrix} \mathcal{B}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}
\begin{bmatrix} x+1 \end{bmatrix} \mathcal{B}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
                                                                                                                                                                                                                                        ~> Write a(x-1)2+ b(x+1)+c
45 a(x2+6x+c'
                                                                                                                                                                                                                                    = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}
                             b) Change of coordinates of Rn with B'={e,..., en}
                                                                                                                                                                                                                                                                                                                                 B = {v, ..., v, s
```

Then, if
$$\vec{x} = \begin{pmatrix} \vec{k} \\ \vec{k} \end{pmatrix}$$
, $|\vec{k}| = \begin{pmatrix} \vec{k} \\ \vec{k} \end{pmatrix}| = \begin{pmatrix} \vec{k} \\ \vec{k} \end{pmatrix}$ So \vec{k} is \vec{k} .

and $\vec{k} = \vec{k} = \vec{k}$ from $\vec{k} = \vec{k}$.

The for subspace $\vec{k} = \vec{k}$ with bases $\vec{k}' = \vec{k}$, ..., \vec{k} .

The for subspace $\vec{k} = \vec{k}$ with bases $\vec{k}' = \vec{k}$, ..., \vec{k} .

The for subspace $\vec{k} = \vec{k}$ with bases $\vec{k}' = \vec{k}$, ..., \vec{k} .

Picture $\vec{k} = \vec{k}$ with $\vec{k} = \vec{k}$ and $\vec{k}' = \vec{k}$.

Picture $\vec{k} = \vec{k}$ with bases $\vec{k} = \vec{k}$ and $\vec{k}' = \vec{k}$.

Then $\vec{k} = \vec{k}$ with $\vec{k} = \vec{k}$ and $\vec{k}' = \vec{k}$ with $\vec{k} = \vec{k}$ and $\vec{k}' = \vec{k}$.

Then $\vec{k} = \vec{k}$ is similar to $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Then, $\vec{k} = \vec{k}$ is similar to $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Ea $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Ea $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Ea $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Then, $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Then, $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Then, $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Then, $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Then, $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

Then, $\vec{k} = \vec{k}$ and $\vec{k} = \vec{k}$.

	=	(0 0 0 0) (2 0 0) (-4 0)
$an f S = \begin{pmatrix} 1 & 0 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$	0 60 Chech	(-4 0/
200 (-L I		
$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ -2 & 1 & 9 \end{pmatrix}$	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	