Quiz on 2/23
$3.4,4.1,4.2$
AW 6 due 2/25

$$
\begin{aligned}
& 4.1: 47,48 \\
& 4.2: 10,14,22,54 \\
& 4.3: 23,24,46
\end{aligned}
$$

Reflection 2 due 2/25 (Canvas)

$$
H W_{5.1:} \text { due } 16,26,28
$$

Orthogonal Projections ad Orthonornal Bares
Def a) $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ are orthogonal if $\vec{v} \cdot \vec{w}=0$
b) $\begin{aligned} \vec{v} \in \mathbb{R}^{n} \text { has length }\|\vec{v}\| & =\sqrt{\vec{v} \cdot \vec{v}} \imath_{v, v_{1}+v_{2}+u_{2}+\cdots+k_{n} v_{n}} \\ & =\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}\end{aligned}$
c) \vec{u} is a unit vector if $\|\vec{u}\|=1$
d) $\begin{aligned} & \vec{x} \in \mathbb{R}^{n} \text { is orthognal to a subspace } V \text { of } \mathbb{R}^{n} \\ & \text { if } \vec{x} \cdot \vec{v}=0 \text { for all } \vec{v} \in V \text {. }\end{aligned}$

Consequence If subspace V has basis $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$, then \vec{x} is orthogmal to $V \Leftrightarrow \vec{x} \cdot \vec{v}_{i}=0$ for all
Recall $\vec{v} \in \mathbb{R}^{n} \longrightarrow \vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}$ is a unit vector.
Def Vectors $\vec{v}_{1}, \ldots, \vec{u}_{n}$ in \mathbb{R}^{n} are orthonornsl if

$$
\vec{u}_{i} \cdot \vec{u}_{j}=\left\{\begin{array}{lll}
1 & \text { if } i=j & \left(\left\|\vec{u}_{i}\right\|=1\right) \\
0 & \text { if } i \neq j & \left(\vec{u}_{i} \text { and } \vec{u}_{j} \text { ire orth gond } i \neq j\right.
\end{array}\right)
$$

Eg a) $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are orthonormal since

$$
\begin{aligned}
& \vec{e}_{i} \cdot \vec{e}_{i}=\sqrt{0^{2}+0^{2}+\cdots+1^{2}+0^{2}+\cdots+0^{2}}=1 \\
& \vec{e}_{i} \cdot \vec{e}_{j}=0 \quad \text { if } i \neq j
\end{aligned}
$$

b)

$$
\underbrace{\vec{u}_{2}=\binom{-1 / 2}{\sqrt{3} / 2}} \vec{u}_{1}=\binom{\sqrt{3 / 2} / 2}{1 / 2}
$$

are orthonorral since

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{1}=\sqrt{\sqrt{3}} \cdot \sqrt{3} / 2+\frac{1}{2} \cdot 2=\frac{3}{4}+\frac{1}{4}=1 \\
& \vec{u}_{2} \cdot \vec{u}_{2}=\left(-\frac{1}{2}\right) \cdot\left(-\frac{2}{2}\right)+\left(\frac{2 \pi}{2}\right)^{2}=\frac{1}{4}+\frac{3}{4}=1 \\
& \vec{u}_{1} \cdot \vec{u}_{2}=\sqrt{3} /\left(-\frac{1}{2}\right)+\frac{1}{2}\left(\frac{(\sqrt[3]{2}}{2}\right)=0
\end{aligned}
$$

In fact, $\vec{u}_{1}=\binom{\cos \theta}{\sin \theta}+\vec{u}_{2}=\binom{-\sin \theta}{\cos \theta}$ are orthomenct
Then af Orthonormal vectors are linearly independent.
b) If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ are orthonormal vectors in \mathbb{R}^{n}, then they form a basis of \mathbb{R}^{n}.
Orthogonal Projections
For $\vec{x} \in \mathbb{R}^{n}$ and a subs pace V of \mathbb{R}^{n}, then we can write $\vec{x}=\vec{x}^{\prime \prime}+\vec{x}^{\perp}$ such that

$$
\begin{aligned}
& \vec{x}^{\prime \prime} \in V \text { ard } \\
& \vec{x}^{-1} \text { is orthogonal to } V .
\end{aligned}
$$

Such a decomposition is unique.
We call $\vec{x}^{\prime \prime}$ the orthogonal projection of \vec{x} ant V.
Denote this as prov \vec{x}. Note prod $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a a
Then If V has an orthonormal basis $\left\{\bar{u}_{1},-, \bar{v}_{m}\right\}$, then

$$
\vec{x}^{\prime \prime}=\operatorname{proj}_{j}(\vec{x})=\left(\vec{u}_{i} \vec{x}\right) \vec{u}_{1}+\left(\vec{u}_{2} \cdot \vec{x}\right) \vec{u}_{2}+\cdots+\left(\vec{u}_{m} \cdot \vec{x}\right) \vec{u}_{n}
$$

for all $\vec{x} \in \mathbb{R}^{n}$.
Eg a) Project $\vec{x}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ into $V=x y p$ pane

$$
=\operatorname{span}\{\underbrace{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)}_{\text {Orthonormal Lass }}\}
$$

then,

$$
\begin{aligned}
\operatorname{proj}_{v}(\vec{x}) & =\left(\vec{e}_{1} \cdot \vec{x}\right) \vec{e}_{1}+\left(\vec{e}_{2} \cdot \vec{x}\right) \vec{e}_{2} \\
& =3 \vec{e}_{1}+2 \vec{e}_{2} \\
& =\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
& V=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1 \\
0 \\
1
\end{array}\right)\right\} \text {. Find projv}\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{1} \cdot \vec{v}_{2}=1.1+1 \cdot(\cdot-1)+0.1+-1.0 \\
& =1-1=0 \\
& \vec{v}_{1} \cdot \vec{v}_{1}=1.1+1.1+0.0+1.1 \\
& \begin{aligned}
\vec{v}_{2} \cdot \vec{v}_{2} & =3
\end{aligned} \\
& \vec{u}_{1}=\frac{1}{\sqrt{3}} \vec{v}_{1}, \vec{u}_{2}=\frac{1}{\sqrt{3}} \vec{v}_{2} \text { are wit vectors and } \\
& ' \vec{u}_{1}, \vec{u}_{2}=0 \text { so }\left\{\vec{u}_{1}, \vec{v}_{2}\right\} \text { is an orthonomed of } v \text {. } v_{\text {sis }} \\
& \begin{aligned}
& \text { projoj } \\
& \vec{x}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)=\left(\vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\left(\vec{x} \cdot \vec{u}_{2}\right) \vec{u}_{2}= \frac{1}{\sqrt{3}}(1 \cdot 1+2 \cdot 1+3 \cdot 0+4 \cdot-1) \overrightarrow{\vec{r}}_{1} \\
&+\frac{1}{\sqrt{3}}(1 \cdot 1+2 \cdot(-1)+3 \cdot 1+4 \cdot 0) \vec{u}_{2}
\end{aligned} \\
& =-\frac{1}{\sqrt{3}} \vec{u}_{1}+\frac{2}{\sqrt{3}} \vec{u}_{2} \\
& =\left(\begin{array}{c}
-1 / 3 \\
-1 / 3 \\
0 \\
1 / 3
\end{array}\right)+\left(\begin{array}{c}
2 / 3 \\
--2 / 3 \\
2 / 3 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
-1 \\
-1 \\
2 / 3 \\
1 / 3
\end{array}\right) .
\end{aligned}
$$

Consequence For $\mathcal{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ an orthonornal basis of \mathbb{R}^{n}, then

$$
\vec{x}=\left(\vec{u}_{1} \cdot \vec{x}\right) \vec{u}_{1}+\cdots+\left(\vec{u}_{n} \cdot \vec{x}\right) \vec{u}_{n} \text { for all } \vec{x} \in \mathbb{R}^{n} \text {. }
$$

Upshot Easy to find coordinates for $\vec{x} \in \mathbb{R}^{\prime}$ with respect to orthonorad basis $\mathcal{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$. Ie, for of orthonormal

For \quad projv: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad \operatorname{im}\left(\right.$ proju $\left._{v}\right)=V$
What is ker (proju)?
Def For subspace V of \mathbb{R}^{n}, the orthogenal complement of V is $V^{\perp}=\left\{\vec{x}\right.$ in \mathbb{R}^{n} such that $\vec{x} \cdot \vec{v}=0$ ar $\| \vec{V}$ in $\left.V\right\}$.
Thus, $\operatorname{ker}\left(\operatorname{proj}_{v}\right)=V^{\perp}$

Tha a) V^{\perp} is a subspice of \mathbb{R}^{n} since $\operatorname{ker}(p$ rojv $)=V^{\perp}$.
b) $\operatorname{V\cap V^{\perp }}=\{\overrightarrow{0}\}$ (be $\overrightarrow{0}$ is the oniy vector orthogmal to itare)
c) By rank-nullity on $T=$ projiv: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
\operatorname{dim}(v)+\operatorname{dim}\left(v^{-1}\right)=n
$$

1) $\left(v^{\perp}\right)^{\perp}=v$.

Question Har to constinct m orthonorial basis?

