WW 8 due $3 / 18$

$$
\begin{aligned}
& 5.4: 20,36,38 \\
& 6.1: 12,14,24,26,40,44
\end{aligned}
$$

HW9 due $3 / 23$ (wed)

$$
\begin{aligned}
& 6.2: 2,12,14,38,42 \\
& 6.3: 2,18
\end{aligned}
$$

Midterm 2 $3 / 25$
Minors and Cofactor Expansion
Def For an $n \times n$ matrix A, let $A_{i j}$ be matrix obtained by Omitting the th row of A and $j^{\text {th }}$ column of A.
The determinant of $A_{i j}$ is called a minor of A.
Eg

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad A_{12}:\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \rightarrow A_{12}=\left(\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right) \\
& \text { Let } A_{12}=36-42=-6 \text { is a } \\
& \text { mind of } A .
\end{aligned}
$$

For anu matrix, what if we collect all patterns with one fixed position?

$$
\begin{aligned}
\text { Eg }\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) & \left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 8
\end{array}\right) \\
& -1 \cdot 2 \cdot 4 \cdot 9+(-1)^{2} \cdot 2 \cdot 6 \cdot 7=12=-2 \cdot(4 \cdot 9-6 \cdot 7) \\
& =-2 \cdot \operatorname{det} A_{12}
\end{aligned}
$$

The (Cofactor expansion) Let A be an nun matrix.
a) Pick a colvann j. Then, $\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)$.
b) Pick a raw i. Then, $\operatorname{tet} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)$.
$\underset{(-1)^{\prime i j} \rightarrow}{\text { Thing }}\left(\begin{array}{l}+-+-+- \\ -+-+- \\ t-+- \\ -+- \\ +-\end{array}\right.$

$$
\begin{aligned}
& \frac{E g}{\operatorname{det}}\left(\begin{array}{llll}
2 & 2 & 0 & 16 \\
1 & 1 & 1 & 14 \\
0 & 1 & 1 & 10 \\
0 & 1 & 0 & 6
\end{array}\right) \rightarrow\left(\begin{array}{llll}
22 & 2 & 0 & 16 \\
1 & 1 & 1 & 14 \\
0 & 1 & 1 & 10 \\
0 & 1 & 0 & 6
\end{array}\right)\left(\begin{array}{llll}
2 & 2 & 0 & 16 \\
1 & 1 & 1 & 14 \\
0 & 1 & 1 & 10 \\
0 & 1 & 0 & 6
\end{array}\right)\left(\begin{array}{llll}
2 & 2 & 0 & 16 \\
1 & 1 & 1 & 14 \\
0 & 1 & 1 & 10 \\
0 & 1 & 0 & 6
\end{array}\right)\left(\begin{array}{llll}
2 & 2 & 0 & 16 \\
1 & 1 & 1 & 14 \\
0 & 1 & 1 & 10 \\
0 & 1 & 0 & 6
\end{array}\right) \\
& \text {-4 }
\end{aligned}
$$

$$
=2 \cdot(-4)-1 \cdot(-4)=-8+4=-4
$$

Geonefril Interpretations of the Determinant
For a square matrix A, then $A=Q R$

What is set?

$$
\begin{aligned}
Q_{\operatorname{arth} g_{m 1} \in} \in Q Q^{\top}=I_{n} & \Rightarrow(\operatorname{det} Q)\left(\operatorname{det} Q^{\top}\right)=1 \\
& \Rightarrow(\operatorname{det} Q)^{2}=1 \\
& \Rightarrow \operatorname{det} Q= \pm 1
\end{aligned}
$$

The The determinant of an orthogonal matrix is 1 or -1 .
If A is or thogonal with $\operatorname{tet} A=1 \Rightarrow A$ is a rotation matrix.

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{let} A=(\operatorname{det} Q)(\operatorname{det} R) \doteq(\pm 1)| | \overrightarrow{v_{1}}\|\cdot\| \vec{v}_{2}^{\perp}\|\cdots\| \vec{v}_{n}^{1} \| \\
& =\left\|\overrightarrow{v_{1}}\right\| \cdot\left\|\vec{v}_{2}^{\perp}\right\| \cdots\left\|\vec{v}_{n}^{\perp}\right\|
\end{aligned}
$$

Eg $n=2$

$n=3$

has volume $\underbrace{\left\|\vec{v}_{1}\right\|\left\|\vec{v}_{2}^{\perp}\right\|}_{\text {base }} \underbrace{\left\|\vec{v}_{3}^{\perp}\right\|}_{\text {height }}$

Def The m-parallelepiped defined by $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in \mathbb{R}^{n} is the Set of all vectors $c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}$ where $0 \leq c_{i} \leq 1$. The m-volvre $V\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$ of this n-paralielepiped is defined as $\left\|\vec{v}_{1}\right\|\left\|_{\vec{v}_{2}^{2}}^{2}\right\| \cdot \cdots \cdot\left\|\vec{v}_{m}^{\perp}\right\|$.
The For nom matrix $A=\left(\begin{array}{cc}1 & 1 \\ v_{1} \\ 1 & 1 \\ v_{n}\end{array}\right), V\left(\bar{v}_{1}, \ldots, \vec{v}_{n}\right)=\sqrt{\operatorname{det}\left(A^{\top} A\right)}$
If $m=n, V\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)=\operatorname{det} A$.
Eg $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ forns a 2 -parallelepiped (parallelogram) in \mathbb{R}^{3}

$$
\begin{aligned}
\text { with area }=\sqrt{\operatorname{Let}\left[\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1 \\
1 & 2
\end{array}\right]\right.} & =\sqrt{\operatorname{det}\left(\begin{array}{ll}
6 & 5 \\
5 & 6
\end{array}\right)} \\
& =\sqrt{36-25} \\
& =\sqrt{11}
\end{aligned}
$$

The For an $n \times n$ matrix $A, V\left(A \vec{v}_{1}, \ldots, A \vec{v}_{n}\right)=|\operatorname{det} A| V\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ for all vectors $\bar{v}_{1}, \ldots, \bar{v}_{n} \in \mathbb{R}^{n}$.

