HW9 due 3/23 (wad)

$$
\begin{aligned}
& 6.2: 2,12,14,38,42 \\
& 6 \cdot 3: 2,18(x)
\end{aligned}
$$

$$
\text { Midterm } 3 / 25
$$

$$
3.9-6.3
$$

Sone practice on Canvas
Also look at old HW
Text rook TIF

Diagenalization
Diagonal matrices are great.'

Given a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we can find a matrix for T relative to $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$:

$$
\left(\begin{array}{ccc}
1^{\prime} & & 1 \\
\left.\left[\pi \vec{v}_{1}\right)\right]_{\mathbb{B B}} & \cdots & {\left[\pi\left(\vec{v}_{n}\right)\right]_{B B}} \\
1 & & 1
\end{array}\right)
$$

Lan we find a basis so this $B B$-matrix is diagonal?
Eg $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by reflecting aver line $y=-x$.

$$
\frac{\left.r^{(-1}\right)}{a}
$$

$$
\begin{aligned}
\mathcal{B}=\left\{\binom{-1}{1},\binom{1}{1}\right\} \leadsto\left(\left[T\binom{-1}{1}\right]_{B}\left[T\binom{1}{1}\right]_{B B}\right) & =\left(\left[\begin{array}{c}
(-1 \\
1
\end{array}\right)\right]_{B B}\left[\begin{array}{c}
\left.\left.\binom{-1}{-1}\right]_{B}\right) \\
\\
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{-1}{1}=\binom{-1}{1}+\binom{1}{1}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) \quad \text { What is } A^{3}=\left(\begin{array}{cccc}
3^{3} & 0 & 0 & 0 \\
& 0^{3} & 0 & 0 \\
& & 1^{3} & 0 \\
& & 3^{3}
\end{array}\right) \\
& \operatorname{rank}(A)=3 \\
& \operatorname{det}(A)=2 \cdot 0 \cdot 1 \cdot 3=0 \\
& \begin{array}{l}
\text { Basis for } \operatorname{ker}(A) \\
\text { Since }
\end{array}=\left\{\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
\vec{e}_{2}^{\prime \prime}
\end{array}\right\} \\
& A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
2 x_{1} \\
0 \\
1 x_{3} \\
3 x_{4}
\end{array}\right)
\end{aligned}
$$

$$
\binom{-1}{-1}=0\binom{-1}{1}+(-1)\binom{1}{1}
$$

Def Linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(\vec{x})=A \vec{x}$ is diagonalizable if the matrix B of T with respect to sore basis B is diagonal. A is also called diagnalizable.
Prop A matrix A is diagonalizable if and on icy if it is similar fo a diagonal matrix. IRe., there exists invertible matrix S and diagonal matrix B such that $S^{-1} A S=B$.
Eg $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by reflecting veer $y=-x$ is given by $T(\vec{x})=A \vec{x}$ for $A=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$. Take $S=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$. $S^{-1}=\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$. Then

$$
\begin{aligned}
S^{-1} A S & =\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=B
\end{aligned}
$$

So $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{-1}=1 \cdot\binom{1}{-1} m \alpha\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{1}=-1 \cdot\binom{1}{1}$.
Def For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(\vec{x})=A \vec{x}$, $\vec{v} \in \mathbb{R}^{n}$ for $\vec{v} \neq \overrightarrow{0}$ is called an eigenvector of A or T if

$$
A \vec{v}=\lambda \vec{v} \text { for sore scalar } \lambda \text {. }
$$

λ is the eigenvalue associated to \vec{v}.
A basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is called an eigen basis of A or T if every \vec{V}_{i} is an eigenvector of A or T.
Eg $A=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ has eigenvectors $\quad \vec{v}_{1}=\binom{1}{-1}$ with eigavalue $\lambda_{1}=1$
Together $\left\{\vec{v}_{1} \vec{v}_{2}\right\}$ is an eigenbesis of A. $\vec{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ with eigenvalue $\lambda_{2}=-1$

Than a) A diagonalizable \leftrightarrows A has an eigenbasis.
6) Furthermore, if $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is a eigenbasis for A with

$$
\begin{aligned}
& \quad A \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \text {, then } \\
& S=\left(\begin{array}{ccc}
1 & 1 \\
\vec{v}_{1} & \cdots & \vec{v}_{n} \\
1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
i & 0 & i \\
1
\end{array}\right) \text { Satisfy } \\
& S^{-1} A S=B \quad\left(" S \text { and } B \text { diagonalize } A^{\prime \prime}\right)
\end{aligned}
$$

c) Conversely, if S and B diagonalize A, then
i) Lalumn vectors of S give an eigenbasis for A
ii) diagonal entries of B are the associated eigavaines.

Eg a) Above, we see this with reflection over $y=-x$

$$
\begin{array}{ccc}
A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right), & S=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) & B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
\vec{r}_{1} & \vec{v}_{\vec{v}_{2}} & \left(S^{-1} A S=B\right)
\end{array}
$$

Also works with $S=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \lambda_{1}\end{array}\right)$

$$
\vec{v}_{2}^{\prime} c_{\vec{v}_{1}}
$$

Note All reflections are diagonalizable.
b) Consider rotation $C C W$ by 45° in \mathbb{R}^{2}. $A=\binom{\sqrt{7} / 2-\sqrt{3} / 2}{\sqrt{2} / 2 / 2}$

Diagonalizalle? No!

Because no vector is sent to a scalar multiple of itself
Ie., $n o$ vector is sent to a parallel vector.
c) For A an orthogonal matrix, $\|A \vec{x}\|=\|\vec{x}\|$

If \vec{v} is an eigenvector $\|\vec{v}\|=\|A \vec{v}\|=\|\lambda \vec{v}\|=\mid \lambda\|\vec{v}\|$,
A is orthogonal
So the only possible (ell) eigenvalues are ± 1.
2) If A satisfies $A \vec{v}=\overrightarrow{0}$, then \vec{v} is an eigenvector with eigevaluevero.

$$
=0 \cdot \vec{v} .
$$

$$
(\vec{v} \neq 0)
$$

\vec{v} is an eigenvector with eigenvalue $0 \Longleftrightarrow \vec{v} \in k e r A$
$\Leftrightarrow A$ is not invertible.
Finding eigenvalues.

$$
\begin{aligned}
A \vec{v}=\lambda \vec{v} & \Leftrightarrow A \vec{v}-\lambda \vec{v}=\overrightarrow{0} \\
& \Leftrightarrow\left(A-\lambda I_{n}\right) \vec{v}=\overrightarrow{0} \\
& \Leftrightarrow \vec{v} \in \operatorname{ker}\left(A-\lambda I_{n}\right)
\end{aligned}
$$

If $\vec{v} \neq \overrightarrow{0}$, this can sing happen if $A-\lambda I_{1}$ is nat invertible. $\sqrt{\pi}$

$$
\underbrace{\operatorname{det}\left(A-\lambda I_{n}\right)=0 .}_{\text {"Characteristic equation" }}
$$

