Written HW 10 (due 4/8)

$$
7.1: 4,6,12,16,18
$$

Diagonal matrices are great.'

$$
A=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Def For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given $\operatorname{by} T(\vec{x})=A \vec{x}$, $\vec{v} \in \mathbb{R}^{n}$ for $\vec{v} \neq \overrightarrow{0}$ is called on eigenvector of A or T if

$$
A \vec{v}=\lambda \vec{v} \text { for some scalar } \lambda \text {. }
$$

λ is the eigenvalue associated to \vec{v}.
A basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is called an exigent basis s of A or T if every \vec{V}_{i} is an eigenvector of $A \propto T$.
Eg) $A=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ has eigenvectors $\quad \vec{v}_{1}=\binom{1}{-1}$ with eigavalue $\lambda_{1}=1$
Together $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is an eigentesis of A. $\vec{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ with eigenvalue $\lambda_{2}=-1$

$$
\Longrightarrow \quad A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right), \quad S=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
n & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

$p_{r_{1}} C_{\vec{v}_{2}}$ satisfies $S^{-1} A S=B$

$$
\begin{aligned}
& \text { b) } A=\left(\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right): \\
& \text { (Wikipedia) } \\
& x \text {-axis is not (stated } \\
& \vec{v}=\binom{1}{0} \text { is in elgon vector }
\end{aligned}
$$

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

\vec{v}_{1} is an eigenvector with eigenvalue $\vec{v}_{2} 4$.
\vec{v}_{2} is an eigenvector with eigen value 2 .
Finding Eigenvalues

$$
\begin{aligned}
A \vec{v}=\lambda \vec{v} & \Leftrightarrow A \vec{v}-\lambda \vec{v}=\overrightarrow{0} \\
& \Leftrightarrow A \vec{v}-\lambda I_{n} \vec{v}=\overrightarrow{0} \\
& \Leftrightarrow\left(A-\lambda I_{n}\right) \vec{v}=\overrightarrow{0} \\
& \Leftrightarrow \vec{v} \in \operatorname{ker}\left(A-\lambda I_{n}\right)
\end{aligned}
$$

Polynomial in λ called "Characteristic polynomial"
If $\vec{v} \neq \overrightarrow{0}$, this can only happen if $\underbrace{\substack{\operatorname{det}\left(A-\lambda I_{n}\right)}}_{\text {"Characteristic equation"" }}$.

$$
\begin{aligned}
\text { Eg a) } A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \operatorname{det}\left(A-\lambda I_{2}\right) & =\operatorname{det}\left(\begin{array}{ll}
-\lambda & -1 \\
-1 & -\lambda
\end{array}\right) \\
A-\lambda I_{2} & =\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right) \quad
\end{aligned}
$$

Solve $\lambda^{2}-1=0 \Rightarrow(\lambda-1)(\lambda+1)=0$

$$
\Rightarrow \lambda=1,-1 .
$$

So, 1 and -1 are the eigenvalues of A.
b)

$$
\begin{aligned}
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right) \quad \operatorname{det}\left(A-\lambda I_{3}\right) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 2 & 3 \\
0 & 4 & \lambda \\
0 \\
0 & 0 & 6-\lambda
\end{array}\right) \\
& =(1-\lambda)(4-\lambda)(6-\lambda)
\end{aligned}
$$

Solve $(1-\lambda)(4-\lambda)(6-\lambda)=0 \Rightarrow \lambda=1,4,6$ are the eigenvalues of A.

Than The eigenvalues of a triangular matrix are its diagonal entries.
For any 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$,

$$
\begin{aligned}
& \operatorname{Let}\left(A-\lambda I_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & \alpha-\lambda
\end{array}\right) \\
& =(a-\lambda)(\alpha-\lambda)-b c \\
& =a \alpha-\lambda(a+d)+\lambda^{2}-b c \\
& =\underbrace{a d-l c}-\lambda(a+\alpha)+\lambda^{2} \\
& \operatorname{det}(A) \quad \begin{array}{l}
\text { sum of the } \\
\text { diagonal entries }
\end{array} \\
& \text { "peace of } A, \operatorname{tr}(A) \text { " }
\end{aligned}
$$

Def For an $n \times n$ matrix $A, \operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}$, sum of diagonal entries
Eg a) $\operatorname{tr}\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)=1+4=5$
6) $\operatorname{tr}\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right)=1+4+6=11$

Thy a) For 2×2 ~aticix A,

$$
\operatorname{Let}\left(A-\lambda I_{2}\right)=\lambda^{2}-(\operatorname{tr}(A)) \lambda+\operatorname{det}(A)
$$

6) For $n \times n$ matrix A, $\operatorname{set}\left(A-\lambda I_{n}\right)$ is a degree n polynomial of the form $(-\lambda)^{n}+\operatorname{tr}(A)(-\lambda)^{n-1}+\cdots+\operatorname{det}(A)$

$$
=(-1)^{n} \lambda^{n}+(-1)^{n-1} \operatorname{tr}(A) \lambda^{n-1}+\cdots+\operatorname{tet}(A)
$$

Eg $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right) \quad \operatorname{tet} A=0+1+1-0-0-0$
The $(b) \Longrightarrow$ Characteristic poly: $-\lambda^{3}+\frac{0}{0} \cdot \lambda^{2}+? ? \lambda+\frac{1}{2}$

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 1 \\
1 & -\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right) & =(-\lambda)^{3}+1+1-(-\lambda)-(-\lambda)-(-\lambda) \\
& =-\lambda^{3}+3 \lambda+2 \\
& =(\lambda+1)\left(-\lambda^{2}+\lambda+2\right) \quad(\text { Patches the }) \\
& =-(\lambda+1)^{2}(\lambda-2)
\end{aligned}
$$

So, eigenvalues are -1 and 2 .
Notice - 1 is a root of characteristic prignomial twice.
Def A_{n} eigervale λ_{0} of $n \times n$ rateix A has algebraic multiplicity k if characteristic polynomial $f_{A}(\lambda)=\left(\lambda_{0}-\lambda\right)^{k} g(\lambda)$ for sone polgmaninl $g(\lambda)$ such that $\begin{aligned} & g\left(\lambda_{0}\right) \neq 0 .\end{aligned}$

Eg -1 is an eigenvalue of $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ with alg malt 2.

$$
\begin{aligned}
E_{g_{A}}=\left(\begin{array}{lll}
4 & 0 & -1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{array}\right) \longrightarrow \operatorname{Let}\left(A-\lambda I_{3}\right)=\operatorname{set}\left(\begin{array}{ccc}
4-\lambda & 0 & -1 \\
0 & 3-\lambda & 0 \\
1 & 0 & 2-\lambda
\end{array}\right)= & (4-\lambda)(3-\lambda)(2-\lambda)+0+0 \\
& -(-1)(3-\lambda)(1)-0-0 \\
& =24-(8+6+12) \lambda+9 \lambda^{2}-\lambda^{3}+3-\lambda \\
& =27-27 \lambda+9 \lambda^{2}-\lambda^{3} \\
& =(\lambda-3)\left(-\lambda^{2}+6 \lambda-9\right) \\
& =(\lambda-3)^{3}
\end{aligned}
$$

So eigenvalue 3 oeques with alg mult 3 .

$$
\begin{aligned}
& \text { Eg } A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \leadsto \operatorname{det}\left(\begin{array}{ccc}
-\lambda & -1 & 0 \\
1 & -\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right)=\lambda^{2}(1-\lambda)+0+0-0-0-(1-\lambda)(-1)(1) \\
&=\lambda^{2}(1-\lambda)+1-\lambda \\
&=\left(\lambda^{2}+1\right)(1-\lambda) \\
& \underbrace{\left(\lambda^{2}+1\right)}_{\text {no }_{0} \text { real solutions }}(1-\lambda)=0 \quad \lambda=1 \text { is a solution. }
\end{aligned}
$$

So, only eigenvalue is $\lambda=1$ with alg molt 1.
The a) An $n \times n$ matrix A has at most n real eigenvalues (counted with multiplicity)
b) If n is od α, on $n x_{n}$ Matrix has at least one real eigenvalue. Why? Zeroes of Leg n polynomials.

