Written HW 10 (due 4/8)

$$
7.1: 4,6,12,16,18
$$

$$
7.2: 8,12,18,38
$$

$$
7 \cdot 3: 8,10,24
$$

$$
A \vec{v}=\lambda \vec{v} \quad \begin{array}{ll}
\vec{v} \text { an eigenvector } \\
& \lambda \text { its corresponding eigenvalue }
\end{array}
$$

$$
E_{\lambda}=\{\text { all eigenvectors of } A \text { with eigenvalue } \lambda\} \cup\{\overrightarrow{0}\}
$$

$$
=\operatorname{ker}\left(A-\lambda I_{n}\right)
$$

$\operatorname{dim} E_{\lambda}=$ geometric multiplicity of λ
Last time $n \times n$ matrix A is diagonalizable
$\Leftrightarrow A$ has n eigenvalues when counted cit georefric multiplicity
Eg $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ has $\begin{array}{lll}\lambda=2 & \text { geometric malt } 1 \\ \lambda=-1 & \text { geometric mull } 2\end{array}$
so $\operatorname{dim} E_{2}+\operatorname{din} E_{-1}=1+2=3$
So A is dingonalizable.
Thy If $n \times n$ matrix A has n distinct eigenvalues, then
A is diagonalizable because $\operatorname{dim} E_{\lambda_{1}}+\operatorname{dim} E_{\lambda_{2}}+\cdots+\operatorname{dim} E_{\lambda_{n}}=\mid+1+\cdots+1$ $=n$ 。

Eigenvalues and Similarity
The For similar non ratrices A and B
a) A and B have the sore Characteristic polynomial.
so, $\operatorname{det} A=\operatorname{det} B$ and $\operatorname{tr} A=\operatorname{tr} B$.
Why? Because Let distributes ~ultiplicatively

$$
\begin{aligned}
\operatorname{det}\left(B-\lambda I_{n}\right) & =\operatorname{det}\left(S^{-1} A S-\lambda I_{n}\right) \\
& =\operatorname{det}\left(S^{-1}\left(A-\lambda I_{n}\right) S\right) \\
& =\operatorname{det}\left(S^{-1}\right) \operatorname{det}\left(A-\lambda I_{n}\right) \operatorname{det}(S)-\operatorname{det}\left(A-\lambda I_{n}\right) .
\end{aligned}
$$

b) $\operatorname{ranh} A=\operatorname{rank} B$ and nullity $A=$ nullity B

Why? $B=S^{-1} A S$
$\left\{\vec{v}_{1}, \ldots, \vec{v}_{r}\right\}$ basis for $\operatorname{ker} B \Longrightarrow\left\{S \vec{v}_{1}, \ldots, s \vec{v}_{r}\right\}$ is in $\operatorname{ker} A$

$$
\begin{aligned}
B \vec{v}_{i}=\overrightarrow{0} & \Leftrightarrow S^{\prime} A S \vec{v}_{i}
\end{aligned}=\overrightarrow{0}
$$

$$
\left\{\vec{w}_{1}, \ldots, \vec{w}_{s}\right\} \text { basis for ker } A \Rightarrow\left\{S^{-1} \vec{w}_{1}, \ldots, S^{-1} \vec{w}_{s}\right\} \text { is in ked } B
$$ and linearly ides.

$\Rightarrow \operatorname{dim}($ her $A)=\operatorname{dia}($ her $B)$ and raik-nullity.
c) A and B have sore eigenvalues with save alg mut and $\begin{array}{r}\text { save geom mut. }\end{array}$ save geom mull.
(1) But may not have the sarre eigenvectors!)

Why? Sue Alg ult EA and B have same characteristic poly

$$
\begin{aligned}
(b) & \Rightarrow \text { nullity }\left(A-\lambda I_{n}\right)=\text { nullity }\left(B-\lambda I_{n}\right) \\
& \Rightarrow \text { sane geometric multiplicity. }
\end{aligned}
$$

Eg Is $\left(\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right)$ similar to $\left(\begin{array}{ll}4 & 6 \\ 2 & 1\end{array}\right)$?
No. trace $_{\downarrow}^{2}=4 \quad$ trace $=5$
The For any eigenvalue λ_{0} of $n \times n$ matrix A, georetric multiplicity of $\lambda_{0} \leq$ algebraic multiplicity of λ_{0}.
Ikea If λ_{0} has geometric multiplicity m, then

$$
A \text { is similar } t_{0}\left\{\left(\begin{array}{ccc}
\lambda_{0} & 0 & \cdots \\
0 & \ddots & 0 \\
\vdots & \ddots & 0 \\
0 \cdots & \cdots & \lambda_{0} \\
\hline \vdots \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & \cdots & 0
\end{array}\right) \star\right. \text { has characteristic }
$$

$\operatorname{dim}\left(\operatorname{lier}\left(A-\lambda_{0} I_{n}\right)\right)=m \Rightarrow E_{\lambda_{0}}$ has basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$
Pick S such that $S \vec{e}_{i}=\vec{v}_{i} \quad 1 \leq i \leq m \Leftrightarrow \vec{e}_{i}=S^{-1} \vec{v}_{i}$

$$
\left(\begin{array}{c}
\text { Eg } S \\
S
\end{array}=\left(\begin{array}{cccc}
k_{n} \alpha & S & \text { invertible } \\
\vec{v}_{1} & 1 & 1 & \vec{v}_{m} \\
1 & \vec{w}_{1} & 1 & \vec{w}_{n-m} \\
1 & 1 & 1 & 1
\end{array}\right) \text { for }\left\{\vec{w}_{1}, \ldots, \vec{w}_{n-m}\right\} \text { basis) of } E \frac{1}{\lambda_{0}}\right)
$$

Thus, ($1 \leq i \leq m) S^{-1} A S \vec{e}_{i}=S^{-1} A \vec{v}_{i}=S^{-1} \lambda_{0} \vec{v}_{i}=\lambda_{0}\left(S^{-1} \vec{v}_{i}\right)=\lambda_{0} \vec{e}_{i}$
\Rightarrow A has characteristic poly $\left(\lambda_{0}-\lambda\right)^{\wedge} g(\lambda)$ $\Rightarrow \lambda_{0}$ has alg mult at least m.
Summary How to determine if matrix is dingonalizable.

1) Find eigenvalues by solving

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right)
$$

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & 0 \\
-1 & 2-\lambda & 0 \\
-1 & 0 & 1-\lambda
\end{array}\right)=(2-\lambda)^{2}(1-\lambda)
$$

\longrightarrow Eigenvalues $\begin{aligned} \lambda & =1 \\ \lambda & \text { w/ algmult 1. } \\ \lambda & =2\end{aligned}$ wI algmalt 2.
2) For cath eigenvalue λ, find a basis of eigenspare $E_{\lambda}=\operatorname{ker}\left(A-\lambda I_{1}\right)$

$$
\begin{aligned}
& \frac{\lambda=1}{} \operatorname{ker}\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
-1 & 0 & 0
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)\right\} \\
& \underline{\lambda e r}\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 1 \\
-1 & 0 & -1
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
\end{aligned}
$$

See $1+2=3$
3) A diagoalizable \Leftrightarrow dims of eigesspares add upton n
\Leftrightarrow (n eigenvaides then cooled with gear milt)
In this lase, eigenbasis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is given by
Concatenating the buses for eigenspaes, in step
and A is diagonalized by

$$
S=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Why diagonalization?

$$
\begin{aligned}
& A \text { is diagonalizable with } B=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots \\
\vdots & \ddots & 0 \\
\vdots & \cdots & 0 \\
0 & \cdots & \lambda_{n}
\end{array}\right) \\
& \operatorname{det} A=\lambda_{1} \cdots \lambda_{n} \quad<\quad \operatorname{Let} B=\lambda_{1} \cdots \lambda_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \operatorname{ranh} A \\
& \text { nullity } A \\
& B=S^{-1} A S \\
& \Rightarrow S B S^{-1}=A \\
& A^{100}=\left(S B S^{-1}\right)^{100} \\
& =\left(S B S^{-1}\right)\left(S B S^{-1}\right) \cdots\left(S B S^{-1}\right) \\
& =S B^{100} S^{-1}
\end{aligned}
$$

