

In general, phase portraits for 2 dirensimal dynamical systems

$$
\lambda_{1}>\lambda_{2}>1
$$

$$
\lambda_{1}>1>\lambda_{2}>0
$$

$$
1>\lambda_{1}>\lambda_{2}>0
$$

The Dynamical System $\vec{x}(t+1)=A \vec{x}(t)$ and $\vec{x}(0)=\vec{x}_{0}$
a) $\bar{x}(t)=A^{t} \vec{x}_{0}$
b) If A has an eigerbasis $\vec{v}_{1}, \ldots, \vec{v}_{n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then for $\vec{x}_{0}=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}, \vec{x}(t)=C_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\cdots+c_{n} t \vec{v}_{n}$.
Eg Mini-veb ($\$ 7.4$ ex 1)

$$
A=\left(\begin{array}{l}
0.70 .10 .2 \\
0.20 .40 .2 \\
0.10 .50 .6
\end{array}\right) \quad A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0.7 x_{1}+0.1 x_{2}+0.2 x_{3} \\
0.2 x_{1}+0.4 x_{2}+0.2 x_{3} \\
0.1 x_{1}+0.5 x_{2}+0.6 x_{3}
\end{array}\right) \quad \text { For instance, if } \vec{x}_{0}=\left(\begin{array}{c}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) \text {, } \vec{x}_{0}=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
4 / 5
\end{array}\right)
$$

Def a) $\vec{x} \in \mathbb{R}^{n}$ is a distribution vector if i) components sum to 1 ($\left(x_{i}=1\right)$
ii) all comments $\geq 0 \quad\left(x_{i} \geq 0\right)$
b) A square matrix A is a transition matrix if every column is a distribution vector.
Note \vec{x} a distribution vector, A a transition matrix $\Rightarrow A \bar{x}$ is a distribution vector.

1) Formula for $A^{t} \vec{x}_{0}$?
2) For various choices of initial distribution vectors, What is the long term behavior of dynomied system modeled by a tímsition matrix?
Eg What happens for $\vec{x}_{0}=\left(\begin{array}{c}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right)$?

$$
A^{5} \vec{x}_{0} \approx\left(\begin{array}{c}
0.348 \\
0.25 \\
0.401
\end{array}\right) \quad A^{100} \vec{x}_{0} \approx\left(\begin{array}{c}
0.35 \\
0.25 \\
0.4
\end{array}\right), A^{101} \vec{x}_{0} \approx\left(\begin{array}{c}
0.35 \\
0.25 \\
0.4
\end{array}\right)
$$

Def A_{n} equilibrivm distribution is a distribution vector $\vec{x}_{\text {such that }}$

$$
A \vec{x}=\vec{x} .
$$

In other words, equilibrium distribution is "distribution vector that is also on eigenvector with eigenvalue 1.
Approach from last tire on our mini-web:

1) Compute eigenvalues of $A: \longrightarrow \lambda_{1}=1, \lambda_{2}=0.5, \lambda_{3}=0.2$
$\Rightarrow A$ is diagomalizable.
2) Compute eigarbasis

$$
\begin{aligned}
& E_{1}=\operatorname{ker}\left(\begin{array}{ccc}
-0.3 & 0.1 & 0.2 \\
0.2 & -0.6 & 0.2 \\
0.1 & 0.5 & -0.4
\end{array}\right) \rightarrow \operatorname{rref}\left(\begin{array}{cccc}
-0.3 & 0.1 & 0.2 & 0 \\
0.2 & -0.6 & 0.2 & 0 \\
0.1 & 0.5 & -0.4 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -7 / 8 \\
0 & 1 & -5 \\
0 & 0 \\
0 & 0 & 0
\end{array} 0\right) \\
& =\left\{\left(\begin{array}{l}
7 / 8 t \\
s / 9, t \\
t
\end{array}\right): t \in \mathbb{R}\right\}=\operatorname{span}\left\{\binom{7 / 8 / 8}{5 / 8}\right\}=\operatorname{span}\left\{\left(\begin{array}{l}
7 \\
5 \\
8
\end{array}\right)\right\} \\
& \vec{v}_{1}^{\prime \prime} \quad A \vec{v}_{1}=\vec{v}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similarly, } E_{0.5}==\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\} \quad E_{0.2}=\operatorname{span} \\
&\left.\left\{\begin{array}{c}
-1 \\
- \\
- \\
4
\end{array}\right)\right\} \\
& 1 /
\end{aligned} \quad A \vec{v}_{2}=0.5 \vec{v}_{2} \quad \vec{v}_{3} \quad A \vec{v}_{3}=0.2 \vec{v}_{3}
$$

Thus, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ form an eigerbasis for A.
For any distribution vector $\vec{x}_{0}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}$

$$
\begin{aligned}
A^{t} \vec{x}_{0} & =c_{1} A^{t} \vec{v}_{1}+c_{2} A^{t} \vec{v}_{2}+c_{3} A^{t} \vec{v}_{3} \\
& =c_{1} \vec{v}_{1}+c_{2}(0.5)^{t} \vec{v}_{2}+c_{3}(0.2)^{t} \vec{v}_{3}
\end{aligned}
$$

$$
\text { as } t \rightarrow \infty
$$

However, A is a tiomsition matrix and \vec{x}_{0} is a distribution vector

$$
\begin{aligned}
& \Rightarrow c_{1} \vec{v}_{1} \text { is a distribution vector } \\
&\left(\begin{array}{l}
c_{1} 7 \\
c_{1}, 5 \\
c_{1}
\end{array}\right) \\
& \Rightarrow 7 c_{1}+5 c_{1}+8 c_{1}=1 \Rightarrow 20 c_{1}=1=c_{1}=\frac{1}{20}
\end{aligned}
$$

Thus $\lim _{t \rightarrow \infty}\left(A^{t} \vec{x}_{0}\right)=\frac{1}{20}\left(\begin{array}{l}7 \\ 5 \\ 8\end{array}\right)$ for any distribution vector \vec{x}_{0} for
Def a) A transition matrix is positive if it has no zero entries
6) A treasitionatrix A is regular if A^{m} is positive for some m.

Eg $A=\left(\begin{array}{llll}0.7 & 0.1 & 0.2 \\ 0.2 & 0.4 & 0 \\ 0.1 & 0.5 & 0.6\end{array}\right)$ is positive. $\quad A=\left(\begin{array}{ll}0.51 \\ 0.5 & 0\end{array}\right)$ is regular because $A^{2}=\left(\begin{array}{ll}0.75 & 0.5 \\ 0.25 & 0.5\end{array}\right)$ is positive.
The For diagonalizable regular transition matrix A of size nan
a) A has excutly one equilibrium distribution vector $\vec{x}_{\text {eau. }}$. Note, $\vec{x}_{\text {equ }}{ }^{\text {is }}$ in eigenvector wo eigenvaine 1.
b) For any distribution vector $\vec{x}_{0} \in \mathbb{R}^{n}, \lim _{t \rightarrow \infty}\left(A^{t} \vec{x}_{0}\right)=\vec{x}_{\text {eqn }}$
c) $\lim _{t \rightarrow \infty} A^{t}=\left(\begin{array}{cccc}1 & 1 & & 1 \\ \vec{x}_{\text {equ }} & \vec{e}_{\text {equ }} & \cdots & \vec{x}_{\text {equ }} \\ 1 & 1 & & 1\end{array}\right)$

Why? A a regucur timsition mattix \Longrightarrow i) $\lambda_{1}=1$ is eigenvanve with yem mult 1 .
ii) A" other eigavalues staiscy

