

Def a) x eR'	is a distribution l	rector if i) co	Proponents sum to $1 (2x_i=1)$ components $\geq 0 (x_i \geq 0)$
b) A squa	re matrix A is a	transition metri	x if every column
is a	distribution vector	-	
Note X a dis	tribution vector. A a s x is a listribution b	transition ratrix	
	Formula for At X.		
	For various Choices what is the long modeled by a		ntion vectors, of dynamical system
Eg What happe	ens for $\vec{x}_0 = \begin{pmatrix} x_3 \\ x_3 \\ x_3 \end{pmatrix}$		
	(0,35 0.25 0.4		25 2-5 2-5
			n vector such that
AX	$=\ddot{\chi}$		
In ofter word	15, equilibrium dis	to: bution is a d	istribution vector that h eigenvalue 1.
	last time on our		of Ogona, and I.
	eigenvalues of A:		=0.5, _3=0.2
=>	A is diagonalizab	le,	
2) Compute	eigen basis		
	(-0.3 0.1 0.2 0.2 -0.6 0.2 0.1 0.5 -0.4)	-0.3 O.1	$\begin{pmatrix} 0.2 & 0 \\ 0.2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\frac{7}{8} & 0 \\ 0.1 & \frac{7}{8} & 0 \end{pmatrix}$
= } [$\begin{cases} \frac{3}{4} & \text{if } t \\ \frac{3}{4} & \text{if } t \end{cases}$: $t \in \mathbb{R}$	Span { 5/8 } = span	(7) n { 5 }
			$ \begin{array}{ccc} ((8/)) \\ \vec{v_i} & A \vec{v_j} = \vec{v_j} \end{array} $

Similarly, $E_{0.5} = span \begin{cases} 1 \\ 0 \end{cases}$ $\begin{cases} E_{0.2} = span \begin{cases} -1 \\ -3 \end{cases} \end{cases}$ $\begin{cases} A\vec{v}_1 = 0.5 \vec{v}_2 \end{cases}$ $\vec{v}_3 \qquad A\vec{v}_3 = 0.2 \vec{v}_3$ Thus, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ form on eigenbosis for A. For any distribution vector $\vec{\chi} = c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3$ $A^{t}\vec{x}_{s} = C_{s}A^{t}\vec{v}_{1} + C_{2}A^{t}\vec{v}_{2} + C_{3}A^{t}\vec{v}_{3}$ $= c_1 \vec{v}_1 + c_2 (0.5)^t \vec{v}_2 + c_3 (0.2)^t \vec{v}_3$ However, A is a transition matrix and \$ 15 a distribution rector => C, V, is a distribution vector

(c,7)
(c,5)
(c,8) =) $7c_1 + 5c_1 + 8c_1 = 1 = > 20c_1 = 1 = c_1 = 20$ Thus $\lim_{t\to\infty} (A^{t}\vec{x}_{o}) = \frac{1}{20} \begin{pmatrix} 7 \\ 5 \\ 8 \end{pmatrix}$ for any distribution vector \vec{x}_{o} for this mini-web. Def a) A fransition matrix is positive if it has no zero entries 6) A transitionatrix A is require if A is positive for some m.

Eq. A = $\begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.2 & 0.4 & 0.2 \end{bmatrix}$ is positive. $A = \begin{bmatrix} 0.5 & 1 \\ 0.5 & 0 \end{bmatrix}$ is regular $\begin{bmatrix} 0.2 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.6 \end{bmatrix}$ because A2 = (0.75 0.5) is possitive. The For Lingonalizable regular transition matrix A of site nown a) A has exactly one equilibrium distribution vector Required Note, Requires an eigenvector we eigenvalue 1.

b) For any distribution vector $\vec{x}_0 \in \mathbb{R}^n$, $\lim_{t \to \infty} (A^t \vec{x}_0) = \vec{x}_{eqn}$ c) $\lim_{t \to \infty} A^t = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ Why? A a regular frastition refer $\vec{x}_0 = \vec{x}_0$ i) $\lambda_1 = 1$ is eigenvalue with year nulty 1.

ii) A k other eigenvalues swiscy $|\lambda_1| < 1$ $(j \ge 2)$.