$$
\begin{aligned}
& \text { Quiz on 7.1-7.3 4/11 } \\
& \text { Written Hi 11 due 4/15 } \\
& 7.5: 14,20 \\
& 7.1: 68,70 \\
& 7.4: 4,34 \\
& \text { Reflection } 3 \text { due } 4 / 15 \\
& \text { Capias } \\
& \text { Optional Suggested Problems } \\
& 8.1: 4,14,16
\end{aligned}
$$

Concluding Rencrh on Dynamical Systems
Note General dynamical systems (not modeled by transition matrix) can have other behaviors.
Eg a) $A=$ rotation matrix (complex eigenvalues)
6) $A=\left(\begin{array}{ll}1.1 & -0.1 \\ 0.1 & 1.1\end{array}\right)^{\lambda=\frac{10}{10} \pm \frac{i}{1}}$

For eigenvalues $p \pm q i$, set $r=p^{2}+q^{2}$, the following can happen

$$
r=1
$$

$$
r>1
$$

Symetric Matrices
Recall A diagonalizable $\Leftrightarrow A$ has an eigerbacis.
When does A have an orthonormal eigenbasis?

Eg
(Eron Hws)

$$
\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \text { because } \vec{v}_{1} \cdot \vec{v}_{2}=0 \text {. }
$$

$\begin{aligned} \Rightarrow A & \text { is diagralized by } S= \\ & \left(B=S^{-1} A S\right)\end{aligned}$
Def nxan matrix A is arthogonally disgondizatle if there exists ofthognal ratrix S s-ebl that $S^{-1} A S$ is diagnal.
Nore $D=S^{-1} A S \Longleftrightarrow A=S D S^{-1}=S D S^{\top}$

$$
\text { digyam1 } \quad \begin{aligned}
\text { ortlgana } \Leftrightarrow \quad A^{\top}=\left(S D S^{\top}\right)^{\top} & =\left(S^{\top}\right)^{\top} D^{\top} S^{\top} \\
& =S D S^{\top} \\
& =A
\end{aligned}
$$

Thus, A orthognally dingmalizable $\Longrightarrow A$ is symetric $\left(A^{T}=A\right)$.
Spectral Thm A orthogonally dicgonalizable $\Leftrightarrow A$ is Symmetric.
special (ase 1) For sy-atric actrix A if $\overrightarrow{v_{2}}$ and \vec{v}_{2} are eigenvectors
with distinct eigenaives $\lambda_{1} \neq \lambda_{2}$ with distinct eigervalues $\lambda_{1} \neq \lambda_{2}$ r
2) A symetric non matrix it, has an real eigenvoles when canted with algebraic multiplicity.

Eg For $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ find orthognal matrix S sch that $S^{-1} A S$ is diagonal.
\longrightarrow Eigenvalues 0,3

$$
\begin{aligned}
& \left.E_{0}=\operatorname{ker}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{c}
\vec{v}_{1} \\
1 \\
1 \\
0
\end{array}\right), \begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right)\right\} \\
& E_{3}=\operatorname{ker}\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} \rightarrow \vec{v}_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

$\leadsto \vec{v}_{3}$ is orthogonal to \vec{v}_{1} and \vec{v}_{2}, but \vec{v}_{1}, \vec{v}_{2} are not orthogma) $\left(\vec{v}_{1} \cdot \vec{v}_{2}=1\right)$.
Perform Gram- Schmidt on E_{0} :

$$
\begin{aligned}
\vec{u}_{1} & =\frac{1}{\left\|\vec{v}_{1}\right\|} \vec{v}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \\
\vec{v}_{2}^{\prime} & =\vec{v}_{2}-\left(\vec{v}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1} \\
& =\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-\frac{1}{\sqrt{2}}(1) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right) \\
\vec{u}_{2} & =\frac{1}{\sqrt{1 / 4+1 / 4+1}}\left(\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1
\end{array}\right)=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)
\end{aligned}
$$

So, $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{v}_{3}\right\}$ forms an sithonornal eigenbasis

$$
\Rightarrow S=\left(\begin{array}{ccc}
-1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right) \text { gives } S^{-1} A S=\left(\begin{array}{ll}
0 & \\
0 & \\
& 3
\end{array}\right) \text {. }
$$

Summary of orthogonal dicgonalitation far symetric matrix A

1) Find eigavalues and basis for each eigen space.
2) Use Grom-Schmidt on each eigenspace to find an orthonormal
3) Forn an eigenbasis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ by concutenating orthonornal

