Written HW 11 due 4/15

$$
7.5: 14,20
$$

$7.1: 68,70$
7.4:4,34

Reflection 3 due 4/15
Canvas
Course Evaluations!
Optional Suggested Problems

$$
\begin{aligned}
& 8.1: 4,14,16 \\
& 8.3: 4,6
\end{aligned}
$$

Singular Values
For 2×2 ~utriy A, con we find orthogonal vectors \vec{v}_{1}, \vec{v}_{2} Such that $A \vec{v}_{1}$ and $A \vec{v}_{2}$ are also orthogonal?

$$
\left(\vec{v}_{1} \cdot \vec{v}_{2}=0 \Rightarrow\left(A \vec{v}_{1}\right) \cdot\left(A \vec{v}_{2}\right)=0 \quad \begin{array}{ll}
0
\end{array}\right)
$$

a) If A is orthogonal, then A preserves angles so if $\vec{v}_{1} \cdot \vec{v}_{2}=0 \Longrightarrow A \vec{v}_{1} \cdot A \vec{v}_{2}=0$ in this case
6) If A is symmetric, choose two orthogonal eigenvectors \vec{v}_{1}, \vec{v}_{2} then $\vec{v}_{1} \cdot \vec{v}_{2}=0$ and $\left(A \vec{v}_{1}\right) \cdot\left(A \vec{v}_{2}\right)=\lambda_{1} \vec{v}_{1} \cdot \lambda_{2} \vec{v}_{2}=0$.
In general?
Consider: For any 2×2 matrix A, then $A^{\top} A$ is always symmetric.
$\Longrightarrow A^{\top} A$ has an orthonormal eigenbasis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$

$$
\begin{aligned}
\left(A \vec{v}_{1}\right) \cdot\left(A \vec{v}_{2}\right)=\left(A \vec{v}_{1}\right)^{\top}\left(A \vec{v}_{2}\right)=v_{1}^{\top} A^{\top} A \vec{v}_{2} & =v_{1}^{\top} \lambda_{2} \vec{v}_{2} \\
& =\lambda_{2}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right) \\
& =0
\end{aligned}
$$

Eg $A=\left(\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right) \quad A^{\top} A=\left(\begin{array}{ll}4 & 6 \\ 6 & B\end{array}\right)$

$$
\begin{aligned}
& \lambda^{2}-17 \lambda+16=(\lambda-16)(\lambda-1) \\
& \lambda=1,16 \\
& E_{1}=\operatorname{l2er}\left(\begin{array}{cc}
3 & 6 \\
6 & 12
\end{array}\right)=\operatorname{span}\left\{\binom{2}{-1}\right\} \longrightarrow \vec{v}_{1}=\frac{1}{\sqrt{5}}\binom{2}{-1} \\
& E_{16}=\operatorname{ker}\left(\begin{array}{cc}
-12 & 6 \\
6 & -3
\end{array}\right)=\operatorname{span}\left\{\binom{1}{2}\right\} \leadsto \vec{v}_{2}=\frac{1}{\sqrt{5}}\binom{1}{2}
\end{aligned}
$$

$\rightarrow A \vec{v}_{1}=\frac{1}{\sqrt{5}}\binom{1}{-2} \& A \vec{v}_{2}=\frac{1}{\sqrt{5}}\binom{8}{4}$ are also orthogonal

Revenber $\vec{v}_{1}, \overrightarrow{v_{2}}$ are eigenvectors of $A^{\top} A$

$$
\begin{aligned}
& \left\|A \vec{v}_{1}\right\|=\sqrt{\frac{1}{5}+\frac{4}{5}}=\sqrt{1}=1=\sigma_{2} \\
& \left\|A \vec{v}_{2}\right\|=\sqrt{\frac{64}{5}+\frac{16}{5}}=\sqrt{16}=4=\sigma_{1}^{1}
\end{aligned}
$$

Def The not of A. $\sqrt{\lambda_{2}}$
Def The singular valves of man matrix A are the squire roots of the eigenvalues of $A^{\top} A$, listed with algebraic multiplicity.
Denote Singular valves as $\sigma_{1}, \ldots, \sigma_{m}$ such $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m} \geq 0$.
Note All eigenvalues of $A^{\top} A$ are 20 .
The a) For invertible $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the image of unit circle is an ellipse with length of semimajur axis $\begin{aligned} & =\sigma_{1}^{\prime} \\ \text { semiminor axis } & =\sigma_{2}^{\prime}\end{aligned}$
6) More generally, for $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, T(\vec{x})=A \vec{x}$, there exists an orthonerenal basis $\vec{v}_{1}, \ldots, \vec{v}_{m}$ of ' \mathbb{R}^{m} such that
i) $T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right)$ are orthogonal
ii) $\left\|T\left(\vec{v}_{i}\right)\right\|=\sigma_{i}$ for all $1 \leq i \leq m$ were $\sigma_{1}, \ldots, \sigma_{n}$ are singular valuer A

In. fact, $\vec{v}_{1}, \ldots, \vec{v}_{m}$ is an orthonarrel eigabasis of $A^{\top} A$.
Eg $T(\vec{x})=A \vec{x} \quad A=\left(\begin{array}{ccc}4 & 11 & 14 \\ 4 & 7 & -2\end{array}\right)$

$$
2 \times 3
$$

$$
A^{\top} A=\left(\begin{array}{ccc}
80 & 100 & 40 \\
100 & 170 & 140 \\
40 & 140 & 200
\end{array}\right) \longrightarrow \text { Eigenvalues } \lambda_{1}=360, \lambda_{2}=90, \cos \alpha \lambda_{3}=0 .
$$

$T\left(\vec{v}_{1}\right)=\binom{18}{6}, T\left(\vec{v}_{2}\right)=\binom{3}{-9}, T\left(\vec{v}_{3}\right)=\binom{0}{0}$ are orthogonal.

Them If 4 is an $n \times m$ matrix of rank r, then Singular values $\sigma_{1}, \ldots, \sigma_{r}$ are non-zere $\sigma_{r+1}, \ldots, \sigma_{r}$ are zero.
Setup in terns of matrices
For axm matrix A of rash r, pick $\vec{v}_{1}, \ldots, \vec{v}_{m}$ as above Set $\vec{u}_{1}=\frac{1}{\sigma_{1}} A \vec{v}_{1}, \ldots, \vec{u}_{r}=\frac{1}{\sigma_{r}} A \vec{v}_{n}$ and $\vec{u}_{r+1}, \ldots, \vec{u}_{n}$ so that

So $A \vec{v}_{1}=\sigma_{1} \vec{u}_{1}, \ldots, A \vec{v}_{r}=\sigma_{r} \vec{u}_{r}$ $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthomanal basis of \mathbb{R}^{1}.

$$
=\underbrace{\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
u_{1} & \ldots & 1 & u_{r} \\
1 & u_{r+1} & \cdots & \frac{u_{n}}{u_{n}} \\
& 1 & 1 & 1
\end{array}\right)}_{\text {orthogonal }^{n \times n}} \underbrace{\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& \sigma_{0} & \\
& & \ddots
\end{array}\right)}_{\sum_{n \times m}}
$$

$$
\Rightarrow A V=U \Sigma \Rightarrow A=U \Sigma V^{\top}
$$

The (Singular Value Decomposition) For A an nam matrix of rack e r, A can be written \& $A=U \sum V^{\top}$ far

- U orthogmal non matrix
- V is orthogonal mim matrix
- Σ is an n um matrix satisfying $\sum_{i i}=\sigma_{i}$ for $1 \leq i \leq r$ and all other entries 0 .
In otter words $A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\top}+\cdots+\sigma_{r} \vec{u}_{r} \vec{v}_{n}^{\top}$

