http://timbaumann.info/svd-image-compression-demo/

Written HW 11 due 4/15
7.5: 14, 20
7.1:68,70
$7.4: 4,34$
Reflection 3 due 4/15 Canvas

Course Evaluations! (52\%) Close $4 / 20$

Optional Suggested Probiens

$$
8.1: 4,14,16
$$

$$
8 \cdot 3: 4,6
$$

Final 4/26 1:30p-3:30p
Here (EH 1068)
Eg $T(\vec{x})=A \vec{x} \quad A=\left(\begin{array}{ccc}4 & 11 & 14 \\ 4 & 7 & -2\end{array}\right)$
(Last time)

$$
A^{\top} A=\left(\begin{array}{ccc}
80 & 100 & 40 \\
100 & 170 & 140 \\
40 & 140 & 20
\end{array}\right)
$$

\longrightarrow Eigenvalues $\lambda_{1}=360, \lambda_{2}=90$, and $\lambda_{3}=0$.
$\sigma_{1} \vec{u}_{1}=T\left(\vec{v}_{1}\right)=\binom{18}{6}, \sigma_{2} \vec{u}_{2} T\left(\vec{v}_{2}\right)=\binom{3}{-9}, T\left(\vec{v}_{3}\right)=\binom{0}{0}$ are orthogonal.

Find SVD of A $(n=2, m=3)$:

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
2 \times 2 & 2 \times 3 \\
1 & 1 \\
\vec{u}_{1} & \vec{u}_{2} \\
1 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0
\end{array}\right)\left(\begin{array}{c}
3 \times 3 \\
-\vec{v}_{1}^{\top} \\
-\vec{v}_{2}^{\top}- \\
-\vec{v}_{3}^{\top}-
\end{array}\right) \\
& \Sigma=\left(\begin{array}{ccc}
\sqrt{360} & 0 & 0 \\
0 & -\sqrt{90} & 0
\end{array}\right)
\end{aligned}
$$

Why? For large matrices with high rank, mary oi will be close to 0 nam relative $n+m+1 \sigma_{1}$. Set those to O to approximate A :

$$
\begin{aligned}
A & =\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\top}+\cdots+\sigma_{r} \vec{u}_{m} \vec{v}_{2}^{\top} \quad \sim r(n+m+1) \\
& \approx \sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\top}+\cdots+\sigma_{s} \vec{u}_{s} \vec{v}_{s} \quad \text { if } \sigma_{s+1}, \ldots, \sigma_{r} \ll \sigma_{1} \\
& \rightarrow s(n+m+1)
\end{aligned}
$$

Works well if $s(n+m+1)<n \cdot m$
8. Let $A=\left(\begin{array}{cc}1 & 2 \\ 2 & -1 \\ -2 & 1\end{array}\right)$.
(a) (4 pts) Find the eigenvalues and corresponding eigenvectors of the matrix $A^{T} A$.

$$
\begin{aligned}
A^{\top} A & =\left(\begin{array}{ccc}
1 & 2 & -2 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & -1 \\
-2 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
9 & -2 \\
-2 & 6
\end{array}\right)
\end{aligned}
$$

Char poly: $\lambda^{2}-\operatorname{tr}\left(A^{\top} A\right) \lambda+\operatorname{det}\left(A^{\top} A\right)$

$$
\begin{aligned}
\text { of } A^{\top} A & =\lambda^{2}-15 \lambda+(54-4) \\
& =\lambda^{2}-15 \lambda+50 \\
& =(\lambda-10)(\lambda-5)
\end{aligned}
$$

$$
\begin{aligned}
E_{10} & =\operatorname{ker}\left(A^{\top} A-10 I_{2}\right) \\
& =\operatorname{ker}\left(\begin{array}{ll}
-1 & -2 \\
-2 & -4
\end{array}\right)=\operatorname{span}\left\{\binom{2}{-1}\right\} \\
E_{5} & =\operatorname{ker}\left(A^{\top} A-S I_{2}\right) \\
& =\operatorname{lier}\left(\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right)=\operatorname{span}\left\{\binom{1}{2}\right\}
\end{aligned}
$$

Eigenvectors are

$$
\vec{w}_{1}=\binom{2}{-1} \quad \text { and } \vec{w}_{2}=\binom{1}{2}
$$

Eigenvalues of $A^{\top} A$ are $\lambda=5,10$
(b) (6 pts) Find the singular value decomposition $A=U \Sigma V^{T}$. Explicitly compute all three matrices U, Σ, and V.
$\begin{aligned} & \text { orthonormal } \\ & \begin{array}{l}\text { basis of } \\ \text { domain }\end{array}\end{aligned} \vec{v}_{1}=\frac{1}{\sqrt{5}}\binom{2}{-1} \quad \vec{v}_{2}=\frac{1}{\sqrt{5}}\binom{1}{2}$
$\left(\begin{array}{l}n \times m) \\ \text { composition } A=U \Sigma V^{T}\end{array}(n \times m)(r d 6 m\right.$

$$
=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\text { domain } A & \sigma_{1}=\sqrt{10} & \sigma_{2}=\sqrt{5}
\end{array} \\
& \xrightarrow{\sim}=\left(\begin{array}{cc}
-\sqrt{10} & 0 \\
0 & \sqrt{5} \\
0 & 0
\end{array}\right) \\
& A \vec{V}_{2}=\left(\begin{array}{cc}
1 & 2 \\
2 & -1 \\
-2 & 1
\end{array}\right) \frac{1}{\sqrt{9}}\binom{1}{2}=\frac{1}{\sqrt{5}}\left(\begin{array}{l}
5 \\
0 \\
0
\end{array}\right) \\
& 11 \\
& \sigma_{2} \vec{u}_{2} \\
& \text { (be }\left\|A \vec{v}_{1}\right\|=\sigma_{1},\left\|A \vec{v}_{2}\right\|=\sigma_{2} \text {) } \\
& U=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\vec{u}_{1} & \overline{u_{2}} & \frac{1}{u_{3}} \\
1 & 1 & 1
\end{array}\right) \\
& \text { orthogonal } \\
& \left\{\begin{array} { l }
{ \vec { u } _ { 3 } - \vec { u } _ { 1 } = 0 } \\
{ \vec { u } _ { 3 } \cdot \vec { u } _ { 2 } = 0 }
\end{array} \leadsto \left\{\begin{array}{l}
0 \cdot x_{1}+\frac{1}{\sqrt{2}} \cdot x_{2}+1 \cdot x_{3}=0 \\
1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=0
\end{array} \Rightarrow\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\right.\right. \\
& \vec{u}_{3}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& \Rightarrow\left\{\begin{array}{l}
x_{1}=0 \sum_{3}^{\overrightarrow{u_{3}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)} \\
x_{2}=-x_{3}
\end{array}\right.
\end{aligned}
$$

1. (20 pts) For the following statements, circle True if the statement is always true, and circle False otherwise. Make sure it is completely clear which is your final answer. No explanations are required for this question, and no partial credit. Read the questions very carefully!

All matrices/eigenvalues/eigenvectors are assumed to have coefficients in \mathbb{R} unless otherwise specified, and similarly for the property of diagonalizability.
(a) If the reduced row echelon form of a square matrix A is the identity, then A is invertible.
$3\left({ }^{4}\right)$

False
(b) If $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is a linear transformation whose image is a plane, then the kernel of T is also a plane. $\quad \operatorname{dim}=2$

$\operatorname{rank}(T)+$ nullity $(T)=4$

False
$2+$ aullity $(T)=4 \Rightarrow$ nullity $(T)=2$
(c) If \vec{x} is a vector in \mathbb{R}^{n} and V is a subspace of \mathbb{R}^{n}, then $\left\|\operatorname{proj}_{V}(\vec{x})\right\| \leq\|\vec{x}\|$.

$$
\text { True } \quad \text { False }
$$

(d) If \vec{v} and \vec{w} are linearly independent vectors in \mathbb{R}^{4}, then $\vec{v} \cdot \vec{w}=0$.

True False
(e) If A is a 100×100 matrix and $A A^{T}=\operatorname{Id}_{100}$ (the identity matrix), then $\operatorname{det} A=1$.

True False
(f) All symmetric $n \times n$ matrices are diagonalizable.

True False
(g) All diagonalizable $n \times n$ matrices are symmetric.

True
False
(h) If an $n \times n$ matrix A is diagonalizable, then every vector $v \in \mathbb{R}^{n}$ may be written as a linear combination of the eigenvectors of A.

True
False
(i) If \vec{v} is an eigenvector of a matrix A, then \vec{v} is an eigenvector of A^{1000}.

True False
(j) The following matrix has negative determinant: $\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & 99999 \\ 99999 & 0 & 0 & 0 & 0 \\ 2 & 99999 & 1 & 1 & 2 \\ 1 & -2 & 99999 & 1 & 0 \\ 1 & 0 & 0 & 99999 & 2\end{array}\right)$

True
False

