Qllelic documentation Gimelbrant lab v 0.3.2

Mendelevich Asia: a.mendelevich@skoltech.ru

February 24, 2020

Qllelic is a set of R tools for quantification of allele-specific expression. It relies on two or more technical replicate RNA-seq libraries to calculate *Quality Correction Constant (QCC)* and use it to correct for allelic imbalance overdipserion.

Qllelic analysis starts with a table of allelic counts per gene, calculated from RNA-seq data using any analysis pipeline such as ASEReadCounter* (https://github.com/gimelbrantlab/ASEReadCounter_star).

Paper

Mendelevich A.*, Vinogradova S.*, Gupta S., Mironov A., Sunyaev S., Gimelbrant A. "Unexpected variability of allelic imbalance estimates from RNA sequencing"

Source GitHub repository: https://github.com/gimelbrantlab/Qllelic

Installation To install current version of this package in R:

devtools::install_github("gimelbrantlab/Qllelic")

Contents

Functions	2
BuildDesign	2
ComputeAICIs	2
ComputeCorrConstantFor2Reps	3
ComputeCorrConstantsForAllPairsReps	3
CountsToAI	4
GetGatkPipelineTabs	5
MeanCoverage	5
MergeSumCounts	6
MixBetaBinomialFit	6
MixBetaBinomialFitStep	7
NameColumns	7
PerformBinTestAIAnalysisForConditionNPoint_knownCC	7
PerformBinTestAIAnalysisForConditionNPoint	8
PerformBinTestAIAnalysisForConditionNPointVect_knownCC	9
PerformBinTestAIAnalysisForConditionNPointVect	10
PerformBinTestAIAnalysisForTwoConditions_knownCC	11
PerformBinTestAIAnalysisForTwoConditions	12
ThresholdingCounts	12
Input requirements	14

Output format

 $\mathbf{14}$

Functions

BUILDDESIGN

Creates a design matrix for the experiment

Usage

BuildDesign(experimentNames, techReps, corrConst = NA)

Arguments

experimentNames Vector with names of the experiments
 techReps Vector with number of technical replicates in each experiment
 corrConst Optional, a vector with correction constants for each experiment

Value

Dataframe with experiments numbered and numbers of columns

Examples

```
BuildDesign(c("clone1", "clone2", "clone3"), c(2, 2, 3), c(1.7, 1.8, mean(1.55, 1.6, 1.57)))
```

COMPUTEAICIS

Calculates Binomial and QCC-corrected binomial CIs for a given vector of AI estimates, and calculates test statistics for comparison with a point or vector of points, for given QCC.

Usage

```
ComputeAICIs(
    inDF,
    vectReps,
    vectRepsCombsCC,
    pt = 0.5,
    Q = 0.95,
    BF = T,
    thr = NA,
    thrUP = NA,
    thrType = "each"
)
```

inDF	Allele counts dataframe: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vectReps	A vector of replicate numbers for which the analysis should be applied
vectRepsCombsCC	A vector of pairwise-computed correction constants for given replicates (QCC=1 is no correction) $% \left(\left(\mathbf{QCC} \right) \right) = \left(\left(\mathbf{QCC} \right) \right) \right)$
pt	Optional (default=0.5), a value or a vector of values to compare with (if second, should be compatible with the order and size of genes vector in table of allelic counts)
Q	Optional (default= 0.95), confidence level, quantile
BF	Optional (default=True), Bonferroni correction for multiple testing, set False ONLY IF Q is alredy corrected
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis

thrUP Optional (default=NA), threshold for max gene coverage (default = NA)

thrType Optional (default = "each", also can be "average" for average coverage on replicates), threshold type

Value

A table with IDs, AI estimates, coverage, test p-value, and Confidence Intervals

COMPUTECORRCONSTANTFOR2REPS

Computes QCC for one pair of replicates.

Usage

```
ComputeCorrConstantFor2Reps(
    inDF,
    reps,
    binNObs = 40,
    fitCovThr = 50,
    EPS = 1.05,
    thr = NA,
    thrUP = NA,
    thrType = "each"
)
```

Arguments

inDF	Allele counts data frame: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
reps	A vector of 2 replicate numbers for which the analysis should be applied
binNObs	Optional (default=40), threshold on number of observations per bin
fitCovThr	Optional (default=50), threshold on coverage for genes that will be included in Beta-Bin fitting
EPS	Optional (default=1.05), base of exponent for the coverage binning, setting greater base (1.1 or 1.2 or 1.3) would result in fewer number of coverage bins in fitting process, thus will increase the computational speed, but may potentially reduce accuracy
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type

Value

List with (1) fitted QCC (\$fittedCC) and (2) a table with proportions of observed to expected quantiles per coverage bin (\$QObsExpPropsTable).

COMPUTECORRCONSTANTSFORALLPAIRSREPS

Computes QCC for all possible pairs of given replicates.

Usage

```
ComputeCorrConstantsForAllPairsReps(
    inDF,
    vectReps,
    binNObs = 40,
    fitCovThr = 50,
    EPS = 1.05,
    thr = NA,
    thrUP = NA,
    thrType = "each"
)
```

Arguments

inDF	Allele counts data frame: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vectReps	A vector of ≥ 2 replicate numbers for which the analysis should be applied
binNObs	Optional (default=40), threshold on number of observations per bin
fitCovThr	Optional (default=50), threshold on coverage for genes that will be included in Beta-Bin fitting
EPS	Optional (default=1.05), base of exponent for the coverage binning, setting greater base (1.1 or 1.2 or 1.3) would result in fewer number of coverage bins in fitting process, thus will increase the computational speed, but may potentially reduce accuracy
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type

Value

List of fitting outputs of ComputeCorrConstantFor2Reps() for each combinatorial pair of replicates (in order 1-2,1-3,..,1-N,2-3,..,2-N,..,(N-1)-N): list with (1) fitted QCC (\$fittedCC) and (2) a table with proportions of observed to expected quantiles per coverage bin (\$QObsExpPropsTable).

CountsToAI

Calculates allelic imbalances from merged counts over given replicates (ai(sum_reps(gene))).

Usage

```
CountsToAI(
   df,
   reps = NA,
   meth = "mergedToProportion",
   thr = NA,
   thrUP = NA,
   thrType = "each"
)
```

- df Allele counts dataframe: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt, ...)
- **reps** Optional (default=NA, all replicates), a vector of replicate numbers for which the analysis should be applied

- meth Optional (default="mergedToProportion", also can be "meanOfProportions"), method to use, either sum(m)/sum(p) (default), or sum(m/p)
- thr Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
- thrUP Optional (default=NA), threshold for max gene coverage (default = NA)
- thrType Optional (default = "each", also can be "average" for average coverage on replicates), threshold type

A table with IDs and calculated AI estimate for given set of replicates

Examples

CountsToAI(allelicCountsTable, reps=c(1,2), thr=10, thrUP=1000)

GetGatkPipelineTabs

Loads the working parts of tables ("ID", allele count 2x columns, "contig" if specified); concatenates (uniting merge) tables from all provided files.

Usage

GetGatkPipelineTabs(inFiles, nReps, contigs = vector())

Arguments

inFiles	A vector of full pathes to files with alelleic counts tables; necessary columns: "ID", pairs of ref and alt allelic counts; optionally, for filtering, "contig"
nReps	A vector of numbers, either: (1) each entry is a number of replicates in the corresponding file; (2) for one file only, each entry is a number of replicates corresponding to particular experiment
contigs	Optional (default=vector()), parameter defining if the resulting table should be filtered by contig column (preserving only rows corresponding to a given vector), default set to empty vector() and no filtering applied

Value

A concatenated table with allele counts for all replicates, each row corresponds to a feature ("ID")

MEANCOVERAGE

Calculates mean allelic coverage (mat+pat) among given replicates.

Usage

MeanCoverage(df, reps = NA, thr = NA, thrUP = NA, thrType = "each")

- df Allele counts dataframe: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt, ...)
- **reps** Optional (default=NA, all replicates), a vector of replicate numbers for which the analysis should be applied
- thr Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis

thrUP Optional (default=NA), threshold for max gene coverage (default = NA)

thrType Optional (default = "each", also can be "average" for average coverage on replicates), threshold type

Value

A table with IDs and calculated mean allelic coverage for given set of replicates

Examples

MeanCoverage(allelicCountsTable, reps=c(3,4), thr=8)

MERGESUMCOUNTS

Creates a table of sums of maternal and paternal alellic counts for given replicates.

Usage

```
MergeSumCounts(df, reps = NA, thr = NA, thrUP = NA, thrType = "each")
```

Arguments

- df Allele counts dataframe: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt, ...)
- **reps** Optional (default=NA, all replicates), a vector of replicate numbers for which the analysis should be applied
- thr Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
- thrUP Optional (default=NA), threshold for max gene coverage (default = NA)
- thrType Optional (default = "each", also can be "average" for average coverage on replicates), threshold type

Value

A table with IDs and calculated allelic counts for each of the given replicates

Examples

```
MeanCoverage(allelicCountsTable, reps=c(1,2))
```

MIXBETABINOMIALFIT

Fitting beta-binomial mixture distribution of AI in particular bin.

Usage

MixBetaBinomialFit(initials, coverage, observations)

initials	Initials for EM algm: initials = $c(w1, alpha1, alpha2)$, weight of first component and alphas for both beta-binomial distributions in a mixture
coverage	A number, that represents the coverage bin
observations	A vector of "maternal counts" in the bin

Fitted weight of first component and alphas for both beta-binomial distributions in a mixture, plus number of steps.

MIXBETABINOMIALFITSTEP

One step of fitting beta-binomial mixture distribution of AI in particular bin.

Usage

MixBetaBinomialFitStep(initials_old, coverage, observations)

Arguments

Value

Re-fitted initials for next EM step.

NAMECOLUMNS

Helper function to quickly rename columns in geneCountTab dataframe

Usage

NameColumns(exp_n, rep_n)

Arguments

exp_n Experiment number

rep_n Number of replicates for the experiment

Value

Vector with names

Examples

colnames(allelicCountsTable)[2:9] <- c(NameColumns(1,2), NameColumns(2,2))</pre>

PerformBinTestAIAnalysisForConditionNPoint_knownCC

Performs Binomial and QCC-corrected binomial tests (with Bonferroni correction) with a given point estimate, for given QCC.

Usage

```
PerformBinTestAIAnalysisForConditionNPoint_knownCC(
    inDF,
    vectReps,
    vectRepsCombsCC,
    pt = 0.5,
    Q = 0.95,
    thr = NA,
    thrUP = NA,
    thrUP = NA,
    thrType = "each",
    minDifference = NA
)
```

Arguments

inDF	Allele counts data frame: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vectReps	A vector (≥ 2) of replicate numbers for which the analysis should be applied
vectRepsCombsCC	A vector of pairwise-computed correction constants for given replicates (QCC=1 is no correction) $% \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$
pt	Optional (default= 0.5), a value to compare with
Q	Optional (default=0.95), confidence level, quantile
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type
minDifference	Optional (default=NA), if specified, one additional column is added to the output (T/F depending if the gene changed AI expression more than minDifference in addition to passing the test)

Value

A table of gene names, AIs + CIs, p-values for both non-corrected and (BT..) and QCC corrected (BT_CC..) tests, classification into genes demonstrating significant difference (TRUE) from point estimate AI and those that don't (FALSE).

PERFORMBINTESTAIANALYSISFORCONDITIONNPOINT

Calculates QCC. Performs Binomial and QCC-corrected binomial tests (with Bonferroni correction) with a given point estimate.

Usage

```
PerformBinTestAIAnalysisForConditionNPoint(
    inDF,
    vectReps,
    pt = 0.5,
    binNObs = 40,
    Q = 0.95,
    fitCovThr = 50,
    EPS = 1.05,
    thr = NA,
    thrUP = NA,
    thrType = "each",
    minDifference = NA
)
```

Arguments

inDF	Allele counts data frame: with $2n+1$ columns, "ID" and $2n$ columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vectReps	A vector (≥ 2) of replicate numbers for which the analysis should be applied
pt	Optional (default= 0.5), a value to compare with
binNObs	Optional (default=40), threshold on number of observations per bin
Q	Optional (default=0.95), confidence level, quantile
fitCovThr	Optional (default=50), threshold on coverage for genes that will be included in Beta-Bin fitting
EPS	Optional (default=1.05), base of exponent for the coverage binning, setting greater base (1.1 or 1.2 or 1.3) would result in fewer number of coverage bins in fitting process, thus will increase the computational speed, but may potentially reduce accuracy
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type
minDifference	Optional (default=NA), if specified, one additional column is added to the output (T/F depending if the gene changed AI expression more than minDifference in addition to passing the test)

Value

List of (1) fitted QCC for all combanatorial pairs of replicates (\$CC), (2) ComputeCorrConstantsForAllPairsReps() output (\$FitDATA), and (3) PerformBinTestAIAnalysisForConditionNPoint_knownCC() output (\$Output).

$PerformBinTestAIA nalysisForConditionNPointVect_knownCC$

Performs Binomial and QCC-corrected binomial tests (with Bonferroni correction) with a given vector of point estimates, for given QCC.

Usage

```
PerformBinTestAIAnalysisForConditionNPointVect_knownCC(
    inDF,
    vectReps,
    vectRepsCombsCC,
    ptVect,
    Q = 0.95,
    thr = NA,
    thrUP = NA,
    thrType = "each",
    minDifference = NA
)
```

inDF	Allele counts data frame: with $2n+1$ columns, "ID" and $2n$ columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vectReps	A vector (≥ 2) of replicate numbers for which the analysis should be applied
vectRepsCombsCC	A vector of pairwise-computed correction constants for given replicates (QCC=1 is no correction) $% \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$
ptVect	A vector of values to compare with, should be compatible with the order and size of genes vector in table of allelic counts

Q	Optional (default=0.95), confidence level, quantile
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type
minDifference	Optional (default=NA), if specified, one additional column is added to the output (T/F depending if the gene changed AI expression more than minDifference in addition to passing the test)

A table of gene names, AIs + CIs, p-values for both non-corrected and (BT..) and QCC corrected (BT_CC..) tests, classification into genes demonstrating significant difference (TRUE) from corresponding point estimate AI and those that don't (FALSE).

PerformBinTestAIA nalysisForConditionNPointVect

Calculates QCC. Performs Binomial and QCC-corrected binomial tests (with Bonferroni correction) with a given vector of point estimates.

Usage

```
PerformBinTestAIAnalysisForConditionNPointVect(
```

```
inDF,
vectReps,
ptVect,
binNObs = 40,
Q = 0.95,
fitCovThr = 50,
EPS = 1.05,
thr = NA,
thrUP = NA,
thrType = "each",
minDifference = NA
```

inDF	Allele counts dataframe: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vectReps	A vector (≥ 2) of replicate numbers for which the analysis should be applied
ptVect	A vector of values to compare with, should be compatible with the order and size of genes vector in table of allelic counts
binNObs	Optional (default=40), threshold on number of observations per bin
Q	Optional (default=0.95), confidence level, quantile
fitCovThr	Optional (default=50), threshold on coverage for genes that will be included in Beta-Bin fitting
EPS	Optional (default=1.05), base of exponent for the coverage binning, setting greater base (1.1 or 1.2 or 1.3) would result in fewer number of coverage bins in fitting process, thus will increase the computational speed, but may potentially reduce accuracy
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)

thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type
minDifference	Optional (default=NA), if specified, one additional column is added to the output (T/F depending if the gene changed AI expression more than minDifference in addition to passing the test)

List of (1) fitted QCC for all combanatorial pairs of replicates (\$CC), (2) ComputeCorrConstantsForAllPairsReps() output (\$FitDATA), and (3) PerformBinTestAIAnalysisForConditionNPointVect_knownCC() output (\$Output).

$PerformBinTestAIA nalysisForTwoConditions_knownCC$

Performs differential tests (with Bonferroni correction) for AI values for two conditions, for given QCC.

Usage

```
PerformBinTestAIAnalysisForTwoConditions_knownCC(
```

```
inDF,
vect1CondReps,
vect2CondReps,
vect1CondRepsCombsCC,
vect2CondRepsCombsCC,
Q = 0.95,
thr = NA,
thrUP = NA,
thrUP = NA,
thrType = "each",
minDifference = NA
```

inDF	Allele counts data frame: with $2n+1$ columns, "ID" and $2n$ columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vect1CondReps	A vector (≥ 2) of replicate numbers that should be considered as first condition's tech reps
vect2CondReps	A vector (≥ 2) of replicate numbers that should be considered as second condition's tech reps
vect1CondRepsCombsCC	A vector of pairwise-computed correction constants for first condition's tech reps (QCC=1 is no correction)
vect2CondRepsCombsCC	A vector of pairwise-computed correction constants for second condition's tech reps (QCC=1 is no correction)
Q	Optional (default=0.95), confidence level, quantile
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type
minDifference	Optional (default=NA), if specified, one additional column is added to the output (T/F depending if the gene changed AI expression more than minDifference in addition to passing the test)

A table of gene names, AIs + CIs for both conditions, p-values for both non-corrected (BT..) and QCC corrected (BT_CC..) differential tests, classification into genes demonstrating significant difference (TRUE) of AI estimates in two conditions, and those that don't (FALSE).

PerformBinTestAIAnalysisForTwoConditions

Calculates QCC. Performs differential tests (with Bonferroni correction) for AI values for two conditions.

Usage

```
PerformBinTestAIAnalysisForTwoConditions(
    inDF,
    vect1CondReps,
    vect2CondReps,
    binNObs = 40,
    fitCovThr = 50,
    Q = 0.95,
    EPS = 1.05,
    thr = NA,
    thrUP = NA,
    thrType = "each",
    minDifference = NA
)
```

Arguments

inDF	Allele counts data frame: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
vect1CondReps	A vector ($\geq 2)$ of replicate numbers that should be considered as first condition's tech reps
vect2CondReps	A vector ($\geq 2)$ of replicate numbers that should be considered as second condition's tech reps
binNObs	Optional (default=40), threshold on number of observations per bin
fitCovThr	Optional (default=50), threshold on coverage for genes that will be included in Beta-Bin fitting
Q	Optional (default=0.95), confidence level, quantile
EPS	Optional (default=1.05), base of exponent for the coverage binning, setting greater base (1.1 or 1.2 or 1.3) would result in fewer number of coverage bins in fitting process, thus will increase the computational speed, but may potentially reduce accuracy
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type
minDifference	Optional (default=NA), if specified, one additional column is added to the output (T/F depending if the gene changed AI expression more than minDifference in addition to passing the test)

Value

List of (1) fitted QCC for all combanatorial pairs of replicates for both conditions (\$CC), (2) ComputeCorrConstantsForAllPairsReps() output for both conditions (\$FitDATA), and (3) PerformBinTestAIAnalysisForTwoConditions_knownCC() output (\$Output).

THRESHOLDINGCOUNTS

Takes allelic counts table and returns table, where all genes that don't pass a given coverage threshold have NA coverage. Can be restricted to particular replicates.

Usage

ThresholdingCounts(df, reps = NA, thr = NA, thrUP = NA, thrType = "each")

Arguments

df	Allele counts dataframe: with 2n+1 columns, "ID" and 2n columns with ref & alt counts (rep1_ref, rep1_alt, rep2_ref, rep2_alt,)
reps	Optional (default=NA, all replicates), a vector of replicate numbers for which the analysis should be applied
thr	Optional (default=NA), threshold on the overall number of counts for a gene to be considered in the analysis
thrUP	Optional (default=NA), threshold for max gene coverage (default = NA)
thrType	Optional (default = "each", also can be "average" for average coverage on replicates), threshold type

Value

Allelic counts table with masked with NA undercovered genes, for selected replicates

Examples

ThresholdingCounts(df = allelicCountsTable, reps = c(1,2), thr = 10)

Input requirements

Allelic Counts Tables (GetGatkPipelineTabs input)

• Structure:

A tab-segmented table with present column names, each line corresponds to a genomic feature (for example, gene). The first column is genomic feature ID, next $2 \times N$ columns stores alellelic counts for reference and alternative alleles for each of N replicates (in order rep1_ref, rep1_alt, rep2_ref, rep2_alt, ... repN_ref, repN_alt). The additional column contig should be present in the table at any position $\geq 2N + 1$ if filtering by contig is needed.

• Column names:

If contig parameter is set non-empty, a table must have corresponding column named contig. The other columns may have any names.

Output formats

AI CI tables

ID	Genomic feature ID
sumCOV	Total allelic counts
matCOV	Maternal/reference allelic counts
AI	Allelic Imbalance point estimate
BT_CIleft	Left boundary of CI [*] for non-corrected test
$BT_CIright$	Right boundary of CI [*] for non-corrected test
$BT_CIleft_CC_1$	Left boundary of CI^* for QCC-corrected test (condition 1)
$BT_CIright_CC_1$	Right boundary of CI* for QCC-corrected test (condition 1)
BT_pval	Non-corrected test statistics (p-value)
BT_pval_CC	QCC-corrected test statistics (p-value)
BT	Non-corrected test decision
BT_CC	QCC-corrected test decision
BT_CC_thrDiff	If minDifference was set, QCC-corrected test decision AND passed minDifference threshold

Differential AI tables

ID	Genomic feature ID
sumCOV_1	Total allelic counts (condition 1)
$matCOV_1$	Maternal/reference allelic counts (condition 1)
AI_1	Allelic Imbalance point estimate (condition 1)
BT_CIleft_1	Left boundary of CI^* for non-corrected test (condition 1)
BT_CIright_1	Right boundary of CI [*] for non-corrected test (condition 1)
$BT_CIleft_CC_2$	Left boundary of CI^* for QCC-corrected test (condition 1)
$BT_CIright_CC_2$	Right boundary of CI^* for QCC-corrected test (condition 1)
sumCOV_2	Total allelic counts (condition 2)
matCOV_2	Maternal/reference allelic counts (condition 2)
AI_2	Allelic Imbalance point estimate (condition 2)
BT_CIleft_2	Left boundary of CI^* for non-corrected test (condition 2)
BT_CIright_2	Right boundary of CI^* for non-corrected test (condition 2)
$BT_CIleft_CC_2$	Left boundary of CI^* for QCC-corrected test (condition 2)
BT_CIright_CC_2	Right boundary of CI^* for QCC-corrected test (condition 2)
BT_pval	Non-corrected test statistics (p-value)
BT_pval_CC	QCC-corrected test statistics (p-value)
BT	Non-corrected test decision
BT_CC	QCC-corrected test decision
BT_CC_thrDiff	If minDifference was set, QCC-corrected test decision AND passed minDifference threshold

* - for quantile Q corrected on multiple testing using Bonferroni approach $(1 - \frac{1-Q}{\#genes})$, where only considered genes in the analysis were counted.