Skip to content
Spatial error estimation and variable importance
R
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github/workflows
R
data
inst
man
pkgdown
tests
vignettes
.Rbuildignore
.gitignore
.lintr
.pre-commit-config.yaml
DESCRIPTION
LICENSE
NAMESPACE
NEWS.md
README.md
codemeta.json
cran-comments.md
sperrorest.Rproj
tic.R

README.md

sperrorest

R CMD Check via {tic} CRAN lifecycle codecov

{sperrorest} is not actively developed. Alternatives for spatial cross-validation in R:

Description

Spatial Error Estimation and Variable Importance

This package implements spatial error estimation and permutation-based spatial variable importance using different spatial cross-validation and spatial block bootstrap methods. To cite {sperrorest} in publications, reference the paper by @Brenning2012. To see the package in action, please check the vignette "Spatial Modeling Use Case".

Installation

CRAN release version

install.packages("sperrorest")

Development version

remotes::install_github("giscience-fsu/sperrorest")

References

Brenning, A. 2005. “Spatial Prediction Models for Landslide Hazards: Review, Comparison and Evaluation.” Natural Hazards and Earth System Science 5 (6). Copernicus GmbH:853–62. https://doi.org/10.5194/nhess-5-853-2005.

Brenning, A. 2012. “Spatial Cross-Validation and Bootstrap for the Assessment of Prediction Rules in Remote Sensing: The R Package Sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium, 5372–5. https://doi.org/10.1109/IGARSS.2012.6352393.

Russ, Georg, and Alexander Brenning. 2010a. “Data Mining in Precision Agriculture: Management of Spatial Information.” In Computational Intelligence for Knowledge-Based Systems Design: 13th International Conference on Information Processingand Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 - July 2, 2010. Proceedings, edited by Eyke Hüllermeier, Rudolf Kruse, and Frank Hoffmann, 350–59. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_36.

Russ, Georg, and Alexander Brenning. 2010b. “Spatial Variable Importance Assessment for Yield Prediction in Precision Agriculture.” In Lecture Notes in Computer Science, 184–95. Springer Science + Business Media. https://doi.org/10.1007/978-3-642-13062-5_18.

You can’t perform that action at this time.