
UNIT	1	
AN	 INTRODUCTION	TO	OPERATING	SYSTEMS	

Application	software	performs	specific	task	for	the	user.	
System	software	operates	and	controls	the	computer	system	and	provides	a	platform	to	run	
application	software.	

An	operating	 system	 is	 a	 piece	 of	 software	 that	manages	 all	 the	 resources	 of	 a	 computer	
system,	both	 hardware	 and	 software,	 and	 provides	 an	 environment	 in	 which	 the	 user	 can	
execute	 his/her	 programs	 in	 a	 convenient	 and	 efficient	manner	 by	 hiding	 underlying	
complexity	of	the	hardware	and	acting	as	a	resource	manager.	

Why	OS?	
1. What	if	there	is	no	OS?

a. Bulky	 and	 complex	 app.	 (Hardware	 interaction	 code	must	 be	 in	 app’s
code	base)

b. Resource	exploitation	by	1	App.
c. No	memory	protection.

2. What	is	an	OS	made	up	of?
a. Collection	of	system	software.

An	operating	system	function	-	
- Access	to	the	computer	hardware.	
- interface	between	the	user	and	the	computer	hardware
- Resource	management	(Aka,	Arbitration)	(memory,	device,	file,	security,	process	etc)
- Hides	the	underlying	complexity	of	the	hardware.	(Aka,	Abstraction)
- facilitates	execution	of	application	programs	by	providing	isolation	and	protection.

User	
Application	programs	
Operating	system	
Computer	hardware	

The	operating	system	provides	the	means	for	proper	use	of	the	resources	in	the	operation	of	
the	computer	system.	

OS	goals	–	

• Maximum	CPU	utilization

• Less	process	starvation

• Higher	priority	job	execution

Types	of	operating	systems	–	
[MS	DOS,	1981]	
[ATLAS,	Manchester	Univ.,	late	1950s	–	early	1960s]	

- Multiprogramming	operating	system	 [THE,	Dijkstra,	early	1960s]

- Single	process	operating	system
- Batch-processing	operating	system

- Multitasking	operating	system
- Multi-processing	operating	system
- Distributed	system
- Real	time	OS

[CTSS,	MIT,	early	1960s]	
[Windows	NT]	
[LOCUS]	
[ATCS]	

LEC-2: Types of OS

Cod
eH

elp

Single	process	OS,	only	1	process	executes	at	a	time	from	the	ready	queue.	[Oldest]	

Batch-processing	OS,		
1. Firstly,	user	prepares	his	job	using	punch	cards.
2. Then,	he	submits	the	job	to	the	computer	operator.
3. Operator	collects	the	jobs	from	different	users	and	sort	the	jobs	into	batches	with

similar	needs.
4. Then,	operator	submits	the	batches	to	the	processor	one	by	one.
5. All	the	jobs	of	one	batch	are	executed	together.

- Priorities	cannot	be	set,	if	a	job	comes	with	some	higher	priority.
- May	lead	to	starvation.	(A	batch	may	take	more	time	to	complete)
- CPU	may	become	idle	in	case	of	I/O	operations.

Multiprogramming	 increases	 CPU	 utilization	 by	 keeping	multiple	 jobs	 (code	 and	 data)	
in	 the	memory	so	that	the	CPU	always	has	one	to	execute	in	case	some	job	gets	busy	with	
I/O.	

- Single	CPU
- Context	switching	for	processes.
- Switch	happens	when	current	process	goes	to	wait	state.
- CPU	idle	time	reduced.

Multitasking	is	a	logical	extension	of	
multiprogramming.		

- Single	CPU
- Able	to	run	more	than	one	task

simultaneously.
- Context	switching	and	time	sharing	used.
- Increases	responsiveness.
- CPU	idle	time	is	further	reduced.

Multi-processing	OS,	more	than	1	CPU	in	a	 single	computer.	

- Increases	reliability,	1	CPU	fails,	other
can	work

- Better	throughput.
- Lesser	process	starvation,	(if	1	CPU	is

working	on	some	process,	other	can	be
executed	on	other	CPU.

Cod
eH

elp

Distributed	OS,	

RTOS	

- OS	manages	many	bunches	of	resources,
>=1	CPUs,	>=1	memory,	>=1	GPUs,	etc

- Loosely	connected	autonomous,
interconnected	computer nodes.

- collection	of	independent,	networked,
communicating,	and	physically	separate
computational	nodes.

- Real	time	error	free,	computations
within	tight-time	boundaries.

- Air	Traffic	control	system,	ROBOTS	etc.

Cod
eH

elp

LEC-3: Multi-Tasking vs Multi-Threading

Program: A Program is an executable file which contains a certain set of instructions written
to complete the specific job or operation on your computer.

• It’s a compiled code. Ready to be executed.
• Stored in Disk

Process: Program under execution. Resides in Computer’s primary memory (RAM).

Thread:
• Single sequence stream within a process.
• An independent path of execution in a process.
• Light-weight process.
• Used to achieve parallelism by dividing a process’s tasks which are independent path

of execution.
• E.g., Multiple tabs in a browser, text editor (When you are typing in an editor, spell-

checking, formatting of text and saving the text are done concurrently by multiple
threads.)

Multi-Tasking Multi-Threading
The execution of more than one task
simultaneously is called as multitasking.

A process is divided into several different
sub-tasks called as threads, which has its
own path of execution. This concept is
called as multithreading.

Concept of more than 1 processes being
context switched.

Concept of more than 1 thread. Threads are
context switched.

No. of CPU 1. No. of CPU >= 1. (Better to have more than
1)

Isolation and memory protection exists.
OS must allocate separate memory and
resources to each program that CPU is
executing.

No isolation and memory protection,
resources are shared among threads of that
process.
OS allocates memory to a process; multiple
threads of that process share the same
memory and resources allocated to the
process.

Thread Scheduling:
Threads are scheduled for execution based on their priority. Even though threads are
executing within the runtime, all threads are assigned processor time slices by the operating
system.

Difference between Thread Context Switching and Process Context Switching:
Thread Context switching Process context switching
OS saves current state of thread & switches
to another thread of same process.

OS saves current state of process &
switches to another process by restoring its
state.

Cod
eH

elp

Doesn’t includes switching of memory
address space.
(But Program counter, registers & stack are
included.)

Includes switching of memory address
space.

Fast switching. Slow switching.
CPU’s cache state is preserved. CPU’s cache state is flushed.

Cod
eH

elp

LEC-4: Components	of	OS

1. Kernel:	A	kernel	is	that	part	of	the operating	system	which	interacts	directly with	
the	hardware	and																																										performs	the	most crucial	tasks.

a. Heart	of	OS/Core	component
b. Very	first	part	of	OS	to	load	on start-up.

2. User	space:	Where	application	software runs,	apps	don’t	have	privileged	access	to the	
underlying	hardware.	It	interacts	with kernel.

a. GUI
b. CLI

A	shell,	also	known	as	a	command	interpreter,	is	that	part	of	the	operating	system	that	receives	
commands	from	the	users	and	gets	them	executed.	

Functions	of	Kernel:	

1. Process	management:
a. Scheduling	processes	and	threads	on	the	CPUs.
b. Creating	&	deleting	both	user	and	system	process.
c. Suspending	and	resuming	processes
d. Providing	mechanisms	for	process	synchronization	or	process

communication.
2. Memory	management:

a. Allocating	and	deallocating	memory	space	as	per	need.
b. Keeping	track	of	which	part	of	memory	are	currently	being	used	and	by

which	process.
3. File	management:

a. Creating	and	deleting	files.
b. Creating	and	deleting	directories	to	organize	files.
c. Mapping	files	into	secondary	storage.
d. Backup	support	onto	a	stable	storage	media.

4. I/O	management:	to	manage	and	control	I/O	operations	and	I/O	devices
a. Buffering	(data	copy	between	two	devices),	caching	and	spooling.

i. Spooling

1. Within	differing	speed	two	jobs.
2. Eg.	Print	spooling	and	mail	spooling.

ii. Buffering
1. Within	one	job.
2. Eg.	Youtube	video	buffering

iii. Caching
1. Memory	caching,	Web	caching	etc.

a. All	functions	are	in	kernel	itself.
b. Bulky	in	size.
c. Memory	required	to	run	is	high.
d. Less	reliable,	one	module	crashes	->	whole	kernel	is	down.
e. High	performance	as	communication	is	fast.	(Less	user	mode,	kernel

mode	overheads)
f. Eg.	Linux,	Unix,	MS-DOS.

Types	of	Kernels:	
1. Monolithic	kernel

Co
de
He
lp

2. Micro	Kernel
a. Only	major	functions	are	in	kernel.

i. Memory	mgmt.
ii. Process	mgmt.

b. File	mgmt.	and	IO	mgmt.	are	in	User-space.
c. smaller	in	size.
d. More	Reliable
e. More	stable
f. Performance	is	slow.
g. Overhead	switching	b/w	user	mode	and	kernel	mode.
h. Eg.	L4	Linux,	Symbian	OS,	MINIX	etc.

3. Hybrid	Kernel:
a. Advantages	of	both	worlds.	(File	mgmt.	in	User	space	and	rest	in	Kernel

space.)
b. Combined	approach.
c. Speed	and	design	of	mono.
d. Modularity	and	stability	of	micro.
e. Eg.	MacOS,	Windows	NT/7/10
f. IPC	also	happens	but	lesser	overheads

4. Nano/Exo	kernels…

Q. How	will	communication	happen	between	user	mode	and	kernel	mode?
Ans.	Inter	process	communication	(IPC).

1. Two	processes	executing	independently,	having	independent	memory	space (Memory	
protection),	But	some	may	need	to	communicate	to	work.

2. Done	by	shared	memory	and	message	passing.

Co
de
He
lp

The nano-kernel is a single, modular subsystem that encapsulates the hardware and presents an idealized machine architecture to the rest of the system. Nano-kernelis a very small amount of kernel code executing in hardware. Exokernel variant on microkernel.

LEC-5: System Calls

How do apps interact with Kernel? -> using system calls.

Eg. Mkdir laks
- Mkdir indirectly calls kernel and asked the file mgmt. module to create a new

directory.
- Mkdir is just a wrapper of actual system calls.
- Mkdir interacts with kernel using system calls.

Eg. Creating a process.

- User executes a process. (User space)
- Gets system call. (US)
- Exec system call to create a process. (KS)
- Return to US.

Transitions from US to KS done by software interrupts.

System calls are implemented in C.

A system call is a mechanism using which a user program can request a service from the kernel for
which it does not have the permission to perform.
User programs typically do not have permission to perform operations like accessing I/O devices and
communicating other programs.

System Calls are the only way through which a process can go into kernel mode from user mode.

Types of System Calls:
1) Process Control

a. end, abort
b. load, execute
c. create process, terminate process
d. get process attributes, set process attributes
e. wait for time
f. wait event, signal event
g. allocate and free memory

2) File Management

a. create file, delete file
b. open, close
c. read, write, reposition
d. get file attributes, set file attributes

3) Device Management

a. request device, release device
b. read, write, reposition
c. get device attributes, set device attributes
d. logically attach or detach devices

4) Information maintenance

a. get time or date, set time or date
b. get system data, set system data
c. get process, file, or device attributes
d. set process, file, or device attributes

5) Communication Management

a. create, delete communication connection
b. send, receive messages
c. transfer status information
d. attach or detach remote devices

Examples of Windows & Unix System calls:
Category Windows Unix

Process Control CreateProcess()

ExitProcess()
WaitForSingleObject()

fork()
exit()
wait()

File Management CreateFile()

ReadFile()
WriteFile()
CloseHandle()
SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

open ()
read ()
write ()
close ()
chmod()
umask(
chown()

Device Management SetConsoleMode()

ReadConsole()
WriteConsole()

ioctI()
read()
write()

Information Management GetCurrentProcessID()

SetTimer()
Sleep()

getpid ()
alarm ()
sleep ()

Communication CreatePipe()

CreateFileMapping()
MapViewOfFile()

pipe ()
shmget ()
mmap()

i. PC	On
ii. CPU	initializes	itself	and	looks	for	a	firmware	program	(BIOS)	stored	in

BIOS	Chip	(Basic	input-output	system	chip	is	a	ROM	chip	found	on
mother	board	that	allows	to	access	&	setup	computer	system	at	most
basic	level.)

1. In	modern	PCs,	CPU	loads	UEFI	(Unified	extensible	firmware
interface)

iii. CPU	runs	the	BIOS	which	tests	and	initializes	system	hardware. Bios
loads configuration settings.	If something	is	not	appropriate	(like	missing	
RAM)	error	is	thrown	and boot	process	is	stopped.
This	is	called	POST	(Power	on	self-test)	process.
(UEFI	can	do	a	lot	more	than	just	initialize	hardware;	it’s	really	a	tiny
operating	system.	For	example,	Intel	CPUs	have	the	Intel	Management
Engine.	This	provides	a	variety	of	features,	including	powering	Intel’s
Active	Management	Technology,	which	allows	for	remote	management
of	business	PCs.)

iv. BIOS	will	handoff	responsibility	for	booting	your	PC	to	your	OS’s
bootloader.

1. BIOS	looked	at	the	MBR	(master	boot	record),	a	special	boot
sector	at	the	beginning	of	a	disk.	The	MBR	contains	code	that
loads	the	rest	of	the	operating	system,	known	as	a	“bootloader.”
The	BIOS	executes	the	bootloader,	which	takes	it	from	there	and
begins	booting	the	actual	operating	system—Windows	or	Linux,
for	example.
In	other	words,
the	BIOS	or	UEFI	examines	a	storage	device	on	your	system	to
look	for	a	small	program,	either	in	the	MBR	or	on	an	EFI	system
partition,	and	runs	it.

v. The	bootloader	is	a	small	program	that	has	the	large	task	of	booting	the
rest	of	the	operating	system (Boots Kernel then, User Space).	Windows	
uses	a	bootloader	named Windows	Boot	Manager	(Bootmgr.exe),	most	
Linux	systems	use	GRUB, and	Macs	use	something	called	boot.efi

LEC-6: What happens when you turn on your computer?

Cod
eH

elp

Lec-7: 32-Bit vs 64-Bit OS

1. A 32-bit OS has 32-bit registers, and it can access 2^32 unique memory addresses. i.e., 4GB of
physical memory.

2. A 64-bit OS has 64-bit registers, and it can access 2^64 unique memory addresses. i.e.,
17,179,869,184 GB of physical memory.

3. 32-bit CPU architecture can process 32 bits of data & information.
4. 64-bit CPU architecture can process 64 bits of data & information.
5. Advantages of 64-bit over the 32-bit operating system:

a. Addressable Memory: 32-bit CPU -> 2^32 memory addresses, 64-bit CPU -> 2^64
memory addresses.

b. Resource usage: Installing more RAM on a system with a 32-bit OS doesn't impact
performance. However, upgrade that system with excess RAM to the 64-bit version of
Windows, and you'll notice a difference.

c. Performance: All calculations take place in the registers. When you’re performing math in
your code, operands are loaded from memory into registers. So, having larger registers
allow you to perform larger calculations at the same time.
32-bit processor can execute 4 bytes of data in 1 instruction cycle while 64-bit means that
processor can execute 8 bytes of data in 1 instruction cycle.
(In 1 sec, there could be thousands to billons of instruction cycles depending upon a
processor design)

d. Compatibility: 64-bit CPU can run both 32-bit and 64-bit OS. While 32-bit CPU can only
run 32-bit OS.

e. Better Graphics performance: 8-bytes graphics calculations make graphics-intensive apps
run faster.

Cod
eH

elp

Lec-8: Storage Devices Basics

What are the different memory present in the computer system?

1. Register: Smallest unit of storage. It is a part of CPU itself.
A register may hold an instruction, a storage address, or any data (such as bit sequence or individual
characters).
Registers are a type of computer memory used to quickly accept, store, and transfer data and
instructions that are being used immediately by the CPU.

2. Cache: Additional memory system that temporarily stores frequently used instructions and data for
quicker processing by the CPU.

3. Main Memory: RAM.
4. Secondary Memory: Storage media, on which computer can store data & programs.

Comparison
1. Cost:

a. Primary storages are costly.
b. Registers are most expensive due to expensive semiconductors & labour.
c. Secondary storages are cheaper than primary.

2. Access Speed:
a. Primary has higher access speed than secondary memory.
b. Registers has highest access speed, then comes cache, then main memory.

3. Storage size:
a. Secondary has more space.

4. Volatility:
a. Primary memory is volatile.
b. Secondary is non-volatile.

Cod
eH

elp

Cache memory is inserted between the CPU and the main memory.

Lec-9: Introduction to Process

1. What is a program? Compiled code, that is ready to execute.
2. What is a process? Program under execution.
3. How OS creates a process? Converting program into a process.

STEPS:
a. Load the program & static data into memory.
b. Allocate runtime stack.
c. Heap memory allocation.
d. IO tasks.
e. OS handoffs control to main ().

4. Architecture of process:

5. Attributes of process:
a. Feature that allows identifying a process uniquely.
b. Process table

i. All processes are being tracked by OS using a table like data structure.
ii. Each entry in that table is process control block (PCB).

c. PCB: Stores info/attributes of a process.
i. Data structure used for each process, that stores information of a process such as

process id, program counter, process state, priority etc.
6. PCB structure:

Registers in the PCB, it is a data structure. When a processes is running and it's time slice expires, the
current value of process specific registers would be stored in the PCB and the process would be swapped
out. When the process is scheduled to be run, the register values is read from the PCB and written to the
CPU registers. This is the main purpose of the registers in the PCB.

Cod
eH

elp

Lec-10: Process States | Process Queues

1. Process States: As process executes, it changes state. Each process may be in one of the following
states.

a. New: OS is about to pick the program & convert it into process. OR the process is being
created.

b. Run: Instructions are being executed; CPU is allocated.
c. Waiting: Waiting for IO.
d. Ready: The process is in memory, waiting to be assigned to a processor.
e. Terminated: The process has finished execution. PCB entry removed from process table.

2. Process Queues:
a. Job Queue:

i. Processes in new state.
ii. Present in secondary memory.

iii. Job Schedular (Long term schedular (LTS)) picks process from the pool and
loads them into memory for execution.

b. Ready Queue:
i. Processes in Ready state.

ii. Present in main memory.
iii. CPU Schedular (Short-term schedular) picks process from ready queue and

dispatch it to CPU.
c. Waiting Queue:

i. Processes in Wait state.
3. Degree of multi-programming: The number of processes in the memory.

a. LTS controls degree of multi-programming.
4. Dispatcher: The module of OS that gives control of CPU to a process selected by STS.Cod

eH
elp

LEC-11: Swapping | Context-Switching | Orphan process | Zombie process

1. Swapping
a. Time-sharing system may have medium term schedular (MTS).
b. Remove processes from memory to reduce degree of multi-programming.
c. These removed processes can be reintroduced into memory, and its execution can be continued

where it left off. This is called Swapping.
d. Swap-out and swap-in is done by MTS.
e. Swapping is necessary to improve process mix or because a change in memory requirements has

overcommitted available memory, requiring memory to be freed up.
f. Swapping is a mechanism in which a process can be swapped temporarily out of main memory (or

move) to secondary storage (disk) and make that memory available to other processes. At some
later time, the system swaps back the process from the secondary storage to main memory.

2. Context-Switching
a. Switching the CPU to another process requires performing a state save of the current process and a

state restore of a different process.
b. When this occurs, the kernel saves the context of the old process in its PCB and loads the saved

context of the new process scheduled to run.
c. It is pure overhead, because the system does no useful work while switching.
d. Speed varies from machine to machine, depending on the memory speed, the number of registers

that must be copied etc.
3. Orphan process

a. The process whose parent process has been terminated and it is still running.
b. Orphan processes are adopted by init process.
c. Init is the first process of OS.

4. Zombie process / Defunct process
a. A zombie process is a process whose execution is completed but it still has an entry in the process

table.
b. Zombie processes usually occur for child processes, as the parent process still needs to read its

child’s exit status. Once this is done using the wait system call, the zombie process is eliminated
from the process table. This is known as reaping the zombie process.

c. It is because parent process may call wait () on child process for a longer time duration and child
process got terminated much earlier.

d. As entry in the process table can only be removed, after the parent process reads the exit status of
child process. Hence, the child process remains a zombie till it is removed from the process table.

Cod
eH

elp

LEC-12: Intro to Process Scheduling | FCFS | Convoy Effect

1. Process Scheduling
a. Basis of Multi-programming OS.
b. By switching the CPU among processes, the OS can make the computer more productive.
c. Many processes are kept in memory at a time, when a process must wait or time quantum expires,

the OS takes the CPU away from that process & gives the CPU to another process & this pattern
continues.

2. CPU Scheduler
a. Whenever the CPU become ideal, OS must select one process from the ready queue to be executed.
b. Done by STS.

3. Non-Preemptive scheduling
a. Once CPU has been allocated to a process, the process keeps the CPU until it releases CPU either by

terminating or by switching to wait-state.
b. Starvation, as a process with long burst time may starve less burst time process.
c. Low CPU utilization.

4. Preemptive scheduling
a. CPU is taken away from a process after time quantum expires along with terminating or switching

to wait-state.
b. Less Starvation
c. High CPU utilization.

5. Goals of CPU scheduling
a. Maximum CPU utilization
b. Minimum Turnaround time (TAT).
c. Min. Wait-time
d. Min. response time.
e. Max. throughput of system.

6. Throughput: No. of processes completed per unit time.
7. Arrival time (AT): Time when process is arrived at the ready queue.
8. Burst time (BT): The time required by the process for its execution.
9. Turnaround time (TAT): Time taken from first time process enters ready state till it terminates. (CT - AT)
10. Wait time (WT): Time process spends waiting for CPU. (WT = TAT – BT)
11. Response time: Time duration between process getting into ready queue and process getting CPU for the

first time.
12. Completion Time (CT): Time taken till process gets terminated.
13. FCFS (First come-first serve):

a. Whichever process comes first in the ready queue will be given CPU first.
b. In this, if one process has longer BT. It will have major effect on average WT of diff processes, called

Convoy effect.
c. Convoy Effect is a situation where many processes, who need to use a resource for a short time, are

blocked by one process holding that resource for a long time.
i. This cause poor resource management.

Cod
eH

elp

LEC-13: CPU Scheduling | SJF | Priority | RR
1. Shortest Job First (SJF) [Non-preemptive]

a. Process with least BT will be dispatched to CPU first.
b. Must do estimation for BT for each process in ready queue beforehand, Correct estimation of BT is

an impossible task (ideally.)
c. Run lowest time process for all time then, choose job having lowest BT at that instance.
d. This will suffer from convoy effect as if the very first process which came is Ready state is having a

large BT.
e. Process starvation might happen.
f. Criteria for SJF algos, AT + BT.

2. SJF [Preemptive]
a. Less starvation.
b. No convoy effect.
c. Gives average WT less for a given set of processes as scheduling short job before a long one

decreases the WT of short job more than it increases the WT of the long process.
3. Priority Scheduling [Non-preemptive]

a. Priority is assigned to a process when it is created.
b. SJF is a special case of general priority scheduling with priority inversely proportional to BT.

4. Priority Scheduling [Preemptive]
a. Current RUN state job will be preempted if next job has higher priority.
b. May cause indefinite waiting (Starvation) for lower priority jobs. (Possibility is they won’t get

executed ever). (True for both preemptive and non-preemptive version)
i. Solution: Ageing is the solution.

ii. Gradually increase priority of process that wait so long. E.g., increase priority by 1 every 15
minutes.

5. Round robin scheduling (RR)
a. Most popular
b. Like FCFS but preemptive.
c. Designed for time sharing systems.
d. Criteria: AT + time quantum (TQ), Doesn’t depend on BT.
e. No process is going to wait forever, hence very low starvation. [No convoy effect]
f. Easy to implement.
g. If TQ is small, more will be the context switch (more overhead).

Cod
eH

elp

LEC-14: MLQ | MLFQ

1. Multi-level queue scheduling (MLQ)
a. Ready queue is divided into multiple queues depending upon priority.
b. A process is permanently assigned to one of the queues (inflexible) based on some property of

process, memory, size, process priority or process type.
c. Each queue has its own scheduling algorithm. E.g., SP -> RR, IP -> RR & BP -> FCFS.

d. System process: Created by OS (Highest priority)
Interactive process (Foreground process): Needs user input (I/O).
Batch process (Background process): Runs silently, no user input required.
e. Scheduling among different sub-queues is implemented as fixed priority preemptive

scheduling. E.g., foreground queue has absolute priority over background queue.
f. If an interactive process comes & batch process is currently executing. Then, batch process will

be preempted.
g. Problem: Only after completion of all the processes from the top-level ready queue, the

further level ready queues will be scheduled.
This came starvation for lower priority process.

h. Convoy effect is present.

2. Multi-level feedback queue scheduling (MLFQ)
a. Multiple sub-queues are present.
b. Allows the process to move between queues. The idea is to separate processes according to

the characteristics of their BT. If a process uses too much CPU time, it will be moved to lower
priority queue. This scheme leaves I/O bound and interactive processes in the higher-priority
queue.

In addition, a process that waits too much in a lower-priority queue may be moved to a higher
priority queue. This form of ageing prevents starvation.
c. Less starvation then MLQ.
d. It is flexible.
e. Can be configured to match a specific system design requirement.
Sample MLFQ design:
Co
de
He
lp

B

3. Comparison:
FCFS SJF PSJF Priority P-

Priority
RR MLQ MLFQ

Design Simple Complex Complex Complex Complex Simple Complex Complex
Preemption No No Yes No Yes Yes Yes Yes
Convoy
effect

Yes Yes No Yes Yes No Yes Yes

Overhead No No Yes No Yes Yes Yes Yes

Co
de
He
lp

µ

⑧

FCFS: First Come, First Served
SJF: Shortest Job First
PSJF: Priority Shortest Job First
RR: Round Robin
MLQ: Multi-level queue scheduling
MLFQ: Multi-level feedback queue scheduling

LEC-15: Introduction to Concurrency

1. Concurrency is the execution of the multiple instruction sequences at the same time. It happens in
the operating system when there are several process threads running in parallel.

2. Thread:
• Single sequence stream within a process.
• An independent path of execution in a process.
• Light-weight process.
• Used to achieve parallelism by dividing a process’s tasks which are independent path of

execution.
• E.g., Multiple tabs in a browser, text editor (When you are typing in an editor, spell

checking, formatting of text and saving the text are done concurrently by multiple threads.)
3. Thread Scheduling: Threads are scheduled for execution based on their priority. Even though

threads are executing within the runtime, all threads are assigned processor time slices by the
operating system.

4. Threads context switching
• OS saves current state of thread & switches to another thread of same process.
• Doesn’t includes switching of memory address space. (But Program counter, registers &

stack are included.)
• Fast switching as compared to process switching
• CPU’s cache state is preserved.

5. How each thread get access to the CPU?
• Each thread has its own program counter.
• Depending upon the thread scheduling algorithm, OS schedule these threads.
• OS will fetch instructions corresponding to PC of that thread and execute instruction.

6. I/O or TQ, based context switching is done here as well
• We have TCB (Thread control block) like PCB for state storage management while

performing context switching.
7. Will single CPU system would gain by multi-threading technique?

• Never.
• As two threads have to context switch for that single CPU.
• This won’t give any gain.

8. Benefits of Multi-threading.
• Responsiveness
• Resource sharing: Efficient resource sharing.
• Economy: It is more economical to create and context switch threads.

1. Also, allocating memory and resources for process creation is costly, so better to
divide tasks into threads of same process.

• Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

Cod
eH

elp

LEC-16: Critical Section Problem and How to address it

1. Process synchronization techniques play a key role in maintaining
the consistency of shared data

2. Critical Section (C.S)
a. The critical section refers to the segment of code where processes/threads

access shared resources, such as common variables and files, and perform
write operations on them. Since processes/threads execute concurrently, any
process can be interrupted mid-execution.

3. Major Thread scheduling issue
a. Race Condition

i. A race condition occurs when two or more threads can access shared
data and they try to change it at the same time. Because the thread
scheduling algorithm can swap between threads at any time, you
don't know the order in which the threads will attempt to access the
shared data. Therefore, the result of the change in data is dependent
on the thread scheduling algorithm, i.e., both threads are "racing" to
access/change the data.

4. Solution to Race Condition
a. Atomic operations: Make Critical code section an atomic operation, i.e.,

Executed in one CPU cycle.
b. Mutual Exclusion using locks.
c. Semaphores

5. Can we use a simple flag variable to solve the problem of race condition?
a. No.

6. Peterson’s solution can be used to avoid race condition but holds good for only 2
process/threads.

7. Mutex/Locks
a. Locks can be used to implement mutual exclusion and avoid race condition

by allowing only one thread/process to access critical section.
b. Disadvantages:

i. Contention: one thread has acquired the lock, other threads will be
busy waiting, what if thread that had acquired the lock dies, then all
other threads will be in infinite waiting.

ii. Deadlocks
iii. Debugging
iv. Starvation of high priority threads.Cod

eH
elp

LEC-17: Conditional Variable and Semaphores for Threads synchronization

1. Conditional variable
a. The condition variable is a synchronization primitive that lets the thread wait

until a certain condition occurs.
b. Works with a lock
c. Thread can enter a wait state only when it has acquired a lock. When a

thread enters the wait state, it will release the lock and wait until another
thread notifies that the event has occurred. Once the waiting thread enters
the running state, it again acquires the lock immediately and starts executing.

d. Why to use conditional variable?
i. To avoid busy waiting.

e. Contention is not here.
2. Semaphores

a. Synchronization method.
b. An integer that is equal to number of resources
c. Multiple threads can go and execute C.S concurrently.
d. Allows multiple program threads to access the finite instance of resources

whereas mutex allows multiple threads to access a single shared resource
one at a time.

e. Binary semaphore: value can be 0 or 1.
i. Aka, mutex locks

f. Counting semaphore
i. Can range over an unrestricted domain.

ii. Can be used to control access to a given resource consisting of a finite
number of instances.

g. To overcome the need for busy waiting, we can modify the definition of
the wait () and signal () semaphore operations. When a process executes the
wait () operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process car block
itself. The block- operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the Waiting
state. Then control is transferred to the CPU scheduler, which selects another
process to execute.

h. A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal () operation. The process is
restarted by a wakeup () operation, which changes the process from the
waiting state to the ready state. The process is then placed in the ready
queue.
Cod

eH
elp

Lec-20: The Dining Philosophers problem

1. We have 5 philosophers.
2. They spend their life just being in two states:

a. Thinking
b. Eating

3. They sit on a circular table surrounded by 5 chairs (1 each), in the center of table is a bowl of
noodles, and the table is laid with 5 single forks.

4. Thinking state: When a ph. Thinks, he doesn’t interact with others.
5. Eating state: When a ph. Gets hungry, he tries to pick up the 2 forks adjacent to him (Left and

Right). He can pick one fork at a time.
6. One can’t pick up a fork if it is already taken.
7. When ph. Has both forks at the same time, he eats without releasing forks.
8. Solution can be given using semaphores.

a. Each fork is a binary semaphore.
b. A ph. Calls wait() operation to acquire a fork.
c. Release fork by calling signal().
d. Semaphore fork[5]{1};

9. Although the semaphore solution makes sure that no two neighbors are eating simultaneously
but it could still create Deadlock.

10. Suppose that all 5 ph. Become hungry at the same time and each picks up their left fork, then
All fork semaphores would be 0.

11. When each ph. Tries to grab his right fork, he will be waiting for ever (Deadlock)
12. We must use some methods to avoid Deadlock and make the solution work

a. Allow at most 4 ph. To be sitting simultaneously.
b. Allow a ph. To pick up his fork only if both forks are available and to do this, he must

pick them up in a critical section (atomically).

Cod
eH

elp

c. Odd-even rule.
an odd ph. Picks up first his left fork and then his right fork, whereas an even ph. Picks
up his right fork then his left fork.

13. Hence, only semaphores are not enough to solve this problem.
We must add some enhancement rules to make deadlock free solution.

Cod
eH

elp

LEC-21: Deadlock Part-1

1. In Multi-programming environment, we have several processes competing for finite number of
resources

2. Process requests a resource (R), if R is not available (taken by other process), process enters in a
waiting state. Sometimes that waiting process is never able to change its state because the resource,
it has requested is busy (forever), called DEADLOCK (DL)

3. Two or more processes are waiting on some resource’s availability, which will never be available as
it is also busy with some other process. The Processes are said to be in Deadlock.

4. DL is a bug present in the process/thread synchronization method.
5. In DL, processes never finish executing, and the system resources are tied up, preventing other jobs

from starting.
6. Example of resources: Memory space, CPU cycles, files, locks, sockets, IO devices etc.
7. Single resource can have multiple instances of that. E.g., CPU is a resource, and a system can have 2

CPUs.
8. How a process/thread utilize a resource?

a. Request: Request the R, if R is free Lock it, else wait till it is available.
b. Use
c. Release: Release resource instance and make it available for other processes

9. Deadlock Necessary Condition: 4 Condition should hold simultaneously.
a. Mutual Exclusion

i. Only 1 process at a time can use the resource, if another process requests that
resource, the requesting process must wait until the resource has been released.

b. Hold & Wait
i. A process must be holding at least one resource & waiting to acquire additional

resources that are currently being held by other processes.
c. No-preemption

i. Resource must be voluntarily released by the process after completion of
execution. (No resource preemption)

d. Circular wait
i. A set {P0, P1, … ,Pn} of waiting processes must exist such that P0 is waiting for a

resource held by P1, P1 is waiting for a resource held by P2, and so on.
10. Methods for handling Deadlocks:

a. Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter a
deadlocked state.

b. Allow the system to enter a deadlocked state, detect it, and recover.

Cod
eH

elp

c. Ignore the problem altogether and pretend that deadlocks never occur in system. (Ostrich
algorithm) aka, Deadlock ignorance.

11. To ensure that deadlocks never occur, the system can use either a deadlock prevention or
deadlock avoidance scheme.

12. Deadlock Prevention: by ensuring at least one of the necessary conditions cannot hold.
a. Mutual exclusion

i. Use locks (mutual exclusion) only for non-sharable resource.
ii. Sharable resources like Read-Only files can be accessed by multiple

processes/threads.
iii. However, we can’t prevent DLs by denying the mutual-exclusion condition,

because some resources are intrinsically non-sharable.
b. Hold & Wait

i. To ensure H&W condition never occurs in the system, we must guarantee that,
whenever a process requests a resource, it doesn’t hold any other resource.

ii. Protocol (A) can be, each process has to request and be allocated all its resources
before its execution.

iii. Protocol (B) can be, allow a process to request resources only when it has none. It
can request any additional resources after it must have released all the resources
that it is currently allocated.

c. No preemption
i. If a process is holding some resources and request another resource that cannot

be immediately allocated to it, then all the resources the process is currently
holding are preempted. The process will restart only when it can regain its old
resources, as well as the new one that it is requesting. (Live Lock may occur).

ii. If a process requests some resources, we first check whether they are available. If
yes, we allocate them. If not, we check whether they are allocated to some other
process that is waiting for additional resources. If so, preempt the desired resource
from waiting process and allocate them to the requesting process.

d. Circular wait
i. To ensure that this condition never holds is to impose a proper ordering of

resource allocation.
ii. P1 and P2 both require R1 and R1, locking on these resources should be like, both

try to lock R1 then R2. By this way which ever process first locks R1 will get R2.Cod
eH

elp

A process with two or more threads can deadlock when the following conditions hold: Threads that are already holding locks request new locks. The requests for new locks are made concurrently. Two or more threads form a circular chain in which each thread waits for a lock which is held by the next thread in the chain.

LEC-22: Deadlock Part-2

1. Deadlock Avoidance: Idea is, the kernel be given in advance info concerning which resources will
use in its lifetime.
By this, system can decide for each request whether the process should wait.
To decide whether the current request can be satisfied or delayed, the system must consider the
resources currently available, resources currently allocated to each process in the system and the
future requests and releases of each process.

a. Schedule process and its resources allocation in such a way that the DL never occur.
b. Safe state: A state is safe if the system can allocate resources to each process (up to its

max.) in some order and still avoid DL.
A system is in safe state only if there exists a safe sequence.

c. In an Unsafe state, the operating system cannot prevent processes from requesting
resources in such a way that any deadlock occurs. It is not necessary that all unsafe states
are deadlocks; an unsafe state may lead to a deadlock.

d. The main key of the deadlock avoidance method is whenever the request is made for
resources then the request must only be approved only in the case if the resulting state is a
safe state.

e. In a case, if the system is unable to fulfill the request of all processes, then the state of the
system is called unsafe.

f. Scheduling algorithm using which DL can be avoided by finding safe state. (Banker
Algorithm)

2. Banker Algorithm
a. When a process requests a set of resources, the system must determine whether allocating

these resources will leave the system in a safe state. If yes, then the resources may be
allocated to the process. If not, then the process must wait till other processes release
enough resources.

3. Deadlock Detection: Systems haven’t implemented deadlock-prevention or a deadlock avoidance
technique, then they may employ DL detection then, recovery technique.

a. Single Instance of Each resource type (wait-for graph method)
i. A deadlock exists in the system if and only if there is a cycle in the wait-for graph.

In order to detect the deadlock, the system needs to maintain the wait-for graph
and periodically system invokes an algorithm that searches for the cycle in the
wait-for graph.

b. Multiple instances for each resource type
i. Banker Algorithm

4. Recovery from Deadlock
a. Process termination

i. Abort all DL processes
ii. Abort one process at a time until DL cycle is eliminated.

b. Resource preemption
i. To eliminate DL, we successively preempt some resources from processes and

give these resources to other processes until DL cycle is broken.

Cod
eH

elp

LEC-24: Memory Management Techniques | Contiguous Memory Allocation

1. In Multi-programming environment, we have multiple processes in the main memory (Ready Queue) to
keep the CPU utilization high and to make computer responsive to the users.

2. To realize this increase in performance, however, we must keep several processes in the memory; that is, we
must share the main memory. As a result, we must manage main memory for all the different processes.

3. Logical versus Physical Address Space
a. Logical Address

i. An address generated by the CPU.
ii. The logical address is basically the address of an instruction or data used by a process.

iii. User can access logical address of the process.
iv. User has indirect access to the physical address through logical address.
v. Logical address does not exist physically. Hence, aka, Virtual address.
vi. The set of all logical addresses that are generated by any program is referred to as Logical

Address Space.
vii. Range: 0 to max.

b. Physical Address
i. An address loaded into the memory-address register of the physical memory.
ii. User can never access the physical address of the Program.

iii. The physical address is in the memory unit. It’s a location in the main memory physically.
iv. A physical address can be accessed by a user indirectly but not directly.
v. The set of all physical addresses corresponding to the Logical addresses is commonly

known as Physical Address Space.
vi. It is computed by the Memory Management Unit (MMU).

vii. Range: (R + 0) to (R + max), for a base value R.
c. The runtime mapping from virtual to physical address is done by a hardware device called the

memory-management unit (MMU).
d. The user's program mainly generates the logical address, and the user thinks that the program is

running in this logical address, but the program mainly needs physical memory in order to
complete its execution.

e.

4. How OS manages the isolation and protect? (Memory Mapping and Protection)
a. OS provides this Virtual Address Space (VAS) concept.
b. To separate memory space, we need the ability to determine the range of legal addresses that the

process may access and to ensure that the process can access only these legal addresses.
c. The relocation register contains value of smallest physical address (Base address [R]); the limit

register contains the range of logical addresses (e.g., relocation = 100040 & limit = 74600).
d. Each logical address must be less than the limit register.

Cod
eH

elp

e. MMU maps the logical address dynamically by adding the value in the relocation register.
f. When CPU scheduler selects a process for execution, the dispatcher loads the relocation and limit

registers with the correct values as part of the context switch. Since every address generated by the
CPU (Logical address) is checked against these registers, we can protect both OS and other users’
programs and data from being modified by running process.

g. Any attempt by a program executing in user mode to access the OS memory or other uses’
memory results in a trap in the OS, which treat the attempt as a fatal error.

h. Address Translation

5. Allocation Method on Physical Memory
a. Contiguous Allocation
b. Non-contiguous Allocation

6. Contiguous Memory Allocation
a. In this scheme, each process is contained in a single contiguous block of memory.
b. Fixed Partitioning

i. The main memory is divided into partitions of equal or different sizes.

ii.
iii. Limitations:

1. Internal Fragmentation: if the size of the process is lesser then the total size of
the partition then some size of the partition gets wasted and remain unused.
This is wastage of the memory and called internal fragmentation.

2. External Fragmentation: The total unused space of various partitions cannot be
used to load the processes even though there is space available but not in the
contiguous form.

3. Limitation on process size: If the process size is larger than the size of maximum
sized partition then that process cannot be loaded into the memory. Therefore, a
limitation can be imposed on the process size that is it cannot be larger than the
size of the largest partition.

Cod
eH

elp

4. Low degree of multi-programming: In fixed partitioning, the degree of
multiprogramming is fixed and very less because the size of the partition cannot
be varied according to the size of processes.

c. Dynamic Partitioning
i. In this technique, the partition size is not declared initially. It is declared at the time of

process loading.

ii.
iii. Advantages over fixed partitioning

1. No internal fragmentation
2. No limit on size of process
3. Better degree of multi-programming

iv. Limitation
1. External fragmentation

 Cod
eH

elp

LEC-25: Free Space Management

1. Defragmentation/Compaction
a. Dynamic partitioning suffers from external fragmentation.
b. Compaction to minimize the probability of external fragmentation.
c. All the free partitions are made contiguous, and all the loaded partitions are brought together.
d. By applying this technique, we can store the bigger processes in the memory. The free partitions

are merged which can now be allocated according to the needs of new processes. This technique is
also called defragmentation.

e. The efficiency of the system is decreased in the case of compaction since all the free spaces will be
transferred from several places to a single place.

2. How free space is stored/represented in OS?
a. Free holes in the memory are represented by a free list (Linked-List data structure).

3. How to satisfy a request of a of n size from a list of free holes?
a. Various algorithms which are implemented by the Operating System in order to find out the holes

in the linked list and allocate them to the processes.
b. First Fit

i. Allocate the first hole that is big enough.
ii. Simple and easy to implement.
iii. Fast/Less time complexity

c. Next Fit
i. Enhancement on First fit but starts search always from last allocated hole.

ii. Same advantages of First Fit.
d. Best Fit

i. Allocate smallest hole that is big enough.
ii. Lesser internal fragmentation.
iii. May create many small holes and cause major external fragmentation.
iv. Slow, as required to iterate whole free holes list.

e. Worst Fit
i. Allocate the largest hole that is big enough.

ii. Slow, as required to iterate whole free holes list.
iii. Leaves larger holes that may accommodate other processes.

Cod
eH

elp

LEC-26: Paging | Non-Contiguous Memory Allocation

1. The main disadvantage of Dynamic partitioning is External Fragmentation.
a. Can be removed by Compaction, but with overhead.
b. We need more dynamic/flexible/optimal mechanism, to load processes in the partitions.

2. Idea behind Paging
a. If we have only two small non-contiguous free holes in the memory, say 1KB each.
b. If OS wants to allocate RAM to a process of 2KB, in contiguous allocation, it is not possible, as we

must have contiguous memory space available of 2KB. (External Fragmentation)
c. What if we divide the process into 1KB-1KB blocks?

3. Paging
a. Paging is a memory-management scheme that permits the physical address space of a

process to be non-contiguous.
b. It avoids external fragmentation and the need of compaction.
c. Idea is to divide the physical memory into fixed-sized blocks called Frames, along with divide

logical memory into blocks of same size called Pages. (# Page size = Frame size)
d. Page size is usually determined by the processor architecture. Traditionally, pages in a system had

uniform size, such as 4,096 bytes. However, processor designs often allow two or more, sometimes
simultaneous, page sizes due to its benefits.

e. Page Table
i. A Data structure stores which page is mapped to which frame.

ii. The page table contains the base address of each page in the physical memory.
f. Every address generated by CPU (logical address) is divided into two parts: a page number (p) and

a page offset (d). The p is used as an index into a page table to get base address the corresponding
frame in physical memory.

g. Page table is stored in main memory at the time of process creation and its base address is stored
in process control block (PCB).

h. A page table base register (PTBR) is present in the system that points to the current page table.
Changing page tables requires only this one register, at the time of context-switching.

4. How Paging avoids external fragmentation?
a. Non-contiguous allocation of the pages of the process is allowed in the random free frames of the

physical memory.
5. Why paging is slow and how do we make it fast?

a. There are too many memory references to access the desired location in physical memory.
6. Translation Look-aside buffer (TLB)

a. A Hardware support to speed-up paging process.
b. It’s a hardware cache, high speed memory.
c. TBL has key and value.

Cod
eH

elp

TLB

d. Page table is stores in main memory & because of this when the memory references is made the
translation is slow.

e. When we are retrieving physical address using page table, after getting frame address
corresponding to the page number, we put an entry of the into the TLB. So that next time, we can
get the values from TLB directly without referencing actual page table. Hence, make paging process
faster.

f. TLB hit, TLB contains the mapping for the requested logical address.
g. Address space identifier (ASIDs) is stored in each entry of TLB. ASID uniquely identifies each

process and is used to provide address space protection and allow to TLB to contain entries for
several different processes. When TLB attempts to resolve virtual page numbers, it ensures that
the ASID for the currently executing process matches the ASID associated with virtual page. If it
doesn’t match, the attempt is treated as TLB miss.

Cod
eH

elp

LEC-27: Segmentation | Non-Contiguous Memory Allocation

1. An important aspect of memory management that become unavoidable with paging is separation of user’s
view of memory from the actual physical memory.

2. Segmentation is memory management technique that supports the user view of memory.
3. A logical address space is a collection of segments, these segments are based on user view of logical

memory.
4. Each segment has segment number and offset, defining a segment.

<segment-number, offset> {s,d}
5. Process is divided into variable segments based on user view.
6. Paging is closer to the Operating system rather than the User. It divides all the processes into the form of

pages although a process can have some relative parts of functions which need to be loaded in the same
page.

7. Operating system doesn't care about the User's view of the process. It may divide the same function into
different pages and those pages may or may not be loaded at the same time into the memory. It
decreases the efficiency of the system.

8. It is better to have segmentation which divides the process into the segments. Each segment contains the
same type of functions such as the main function can be included in one segment and the library functions
can be included in the other segment.

9.
10. Advantages:

a. No internal fragmentation.
b. One segment has a contiguous allocation, hence efficient working within segment.
c. The size of segment table is generally less than the size of page table.
d. It results in a more efficient system because the compiler keeps the same type of functions in one

segment.
11. Disadvantages:

a. External fragmentation.
b. The different size of segment is not good that the time of swapping.

12. Modern System architecture provides both segmentation and paging implemented in some hybrid
approach.

Cod
eH

elp

LEC-28: What is Virtual Memory? || Demand Paging || Page Faults

1. Virtual memory is a technique that allows the execution of processes that are not completely in the
memory. It provides user an illusion of having a very big main memory. This is done by treating a part of
secondary memory as the main memory. (Swap-space)

2. Advantage of this is, programs can be larger than physical memory.
3. It is required that instructions must be in physical memory to be executed. But it limits the size of a

program to the size of physical memory. In fact, in many cases, the entire program is not needed at the
same time. So, we want an ability to execute a program that is only partially in memory would give
many benefits:

a. A program would no longer be constrained by the amount of physical memory that is
available.

b. Because each user program could take less physical memory, more programs could be run at
the same time, with a corresponding increase in CPU utilization and throughput.

c. Running a program that is not entirely in memory would benefit both the system and the
user.

4. Programmer is provided very large virtual memory when only a smaller physical memory is available.
5. Demand Paging is a popular method of virtual memory management.
6. In demand paging, the pages of a process which are least used, get stored in the secondary memory.
7. A page is copied to the main memory when its demand is made, or page fault occurs. There are various

page replacement algorithms which are used to determine the pages which will be replaced.
8. Rather than swapping the entire process into memory, we use Lazy Swapper. A lazy swapper never

swaps a page into memory unless that page will be needed.
9. We are viewing a process as a sequence of pages, rather than one large contiguous address space, using

the term Swapper is technically incorrect. A swapper manipulates entire processes, whereas a Pager is
concerned with individual pages of a process.

10. How Demand Paging works?
a. When a process is to be swapped-in, the pager guesses which pages will be used.
b. Instead of swapping in a whole process, the pager brings only those pages into memory. This,

it avoids reading into memory pages that will not be used anyway.
c. Above way, OS decreases the swap time and the amount of physical memory needed.
d. The valid-invalid bit scheme in the page table is used to distinguish between pages that are

in memory and that are on the disk.
i. Valid-invalid bit 1 means, the associated page is both legal and in memory.

ii. Valid-invalid bit 0 means, the page either is not valid (not in the LAS of the process)
or is valid but is currently on the disk.Cod

eH
elp

e.
f. If a process never attempts to access some invalid bit page, the process will be executed

successfully without even the need pages present in the swap space.
g. What happens if the process tries to access a page that was not brought into memory, access

to a page marked invalid causes page fault. Paging hardware noticing invalid bit for a
demanded page will cause a trap to the OS.

h. The procedure to handle the page fault:
i. Check an internal table (in PCB of the process) to determine whether the reference

was valid or an invalid memory access.
ii. If ref. was invalid process throws exception.

If ref. is valid, pager will swap-in the page.
iii. We find a free frame (from free-frame list)
iv. Schedule a disk operation to read the desired page into the newly allocated frame.
v. When disk read is complete, we modify the page table that, the page is now in

memory.
vi. Restart the instruction that was interrupted by the trap. The process can now access

the page as through it had always been in memory.

Cod
eH

elp

i.
j. Pure Demand Paging

i. In extreme case, we can start executing a process with no pages in memory. When
OS sets the instruction pointer to the first instruction of the process, which is not in
the memory. The process immediately faults for the page and page is brought in the
memory.

ii. Never bring a page into memory until it is required.
k. We use locality of reference to bring out reasonable performance from demand paging.

11. Advantages of Virtual memory
a. The degree of multi-programming will be increased.
b. User can run large apps with less real physical memory.

12. Disadvantages of Virtual Memory
a. The system can become slower as swapping takes time.
b. Thrashing may occur.

Cod
eH

elp

LEC-29: Page Replacement Algorithms

1. Whenever Page Fault occurs, that is, a process tries to access a page which is not currently present in a
frame and OS must bring the page from swap-space to a frame.

2. OS must do page replacement to accommodate new page into a free frame, but there might be a possibility
the system is working in high utilization and all the frames are busy, in that case OS must replace one of the
pages allocated into some frame with the new page.

3. The page replacement algorithm decides which memory page is to be replaced. Some allocated page is
swapped out from the frame and new page is swapped into the freed frame.

4. Types of Page Replacement Algorithm: (AIM is to have minimum page faults)
a. FIFO

i. Allocate frame to the page as it comes into the memory by replacing the oldest page.
ii. Easy to implement.

iii. Performance is not always good
1. The page replaced may be an initialization module that was used long time ago

(Good replacement candidate)
2. The page may contain a heavily used variable that was initialized early and is in

content use. (Will again cause page fault)
iv. Belady’s anomaly is present.

1. In the case of LRU and optimal page replacement algorithms, it is seen that
the number of page faults will be reduced if we increase the number of
frames. However, Balady found that, In FIFO page replacement algorithm, the
number of page faults will get increased with the increment in number of
frames.

2. This is the strange behavior shown by FIFO algorithm in some of the cases.
b. Optimal page replacement

i. Find if a page that is never referenced in future. If such a page exists, replace this page
with new page.
If no such page exists, find a page that is referenced farthest in future. Replace this page
with new page.

ii. Lowest page fault rate among any algorithm.
iii. Difficult to implement as OS requires future knowledge of reference string which is

kind of impossible. (Similar to SJF scheduling)
c. Least-recently used (LRU)

i. We can use recent past as an approximation of the near future then we can replace the
page that has not been used for the longest period.

ii. Can be implemented by two ways
1. Counters

a. Associate time field with each page table entry.
b. Replace the page with smallest time value.

2. Stack
a. Keep a stack of page number.
b. Whenever page is referenced, it is removed from the stack & put on

the top.
c. By this, most recently used is always on the top, & least recently used

is always on the bottom.
d. As entries might be removed from the middle of the stack, so Doubly

linked list can be used.
d. Counting-based page replacement – Keep a counter of the number of references that have been

made to each page. (Reference counting)

Cod
eH

elp

i. Least frequently used (LFU)
1. Actively used pages should have a large reference count.
2. Replace page with the smallest count.

ii. Most frequently used (MFU)
1. Based on the argument that the page with the smallest count was probably just

brought in and has yet to be used.
iii. Neither MFU nor LFU replacement is common.

Cod
eH

elp

LEC-30: Thrashing

1. Thrashing
a. If the process doesn’t have the number of frames it needs to support pages in active use, it will

quickly page-fault. At this point, it must replace some page. However, since all its pages are in active
use, it must replace a page that will be needed again right away. Consequently, it quickly faults
again, and again, and again, replacing pages that it must bring back in immediately.

b. This high paging activity is called Thrashing.
c. A system is Thrashing when it spends more time servicing the page faults than executing

processes.

d. Technique to Handle Thrashing
i. Working set model

1. This model is based on the concept of the Locality Model.
2. The basic principle states that if we allocate enough frames to a process to

accommodate its current locality, it will only fault whenever it moves to some
new locality. But if the allocated frames are lesser than the size of the current
locality, the process is bound to thrash.

ii. Page Fault frequency
1. Thrashing has a high page-fault rate.
2. We want to control the page-fault rate.
3. When it is too high, the process needs more frames. Conversely, if the page-fault

rate is too low, then the process may have too many frames.
4. We establish upper and lower bounds on the desired page fault rate.
5. If pf-rate exceeds the upper limit, allocate the process another frame, if pf-rate

fails falls below the lower limit, remove a frame from the process.
6. By controlling pf-rate, thrashing can be prevented.

Cod
eH

elp

	Methods for handling Deadlocks:

