This repository has been archived by the owner. It is now read-only.
Permalink
Fetching contributors…
Cannot retrieve contributors at this time
101 lines (86 sloc) 3.36 KB
# Description:
# With the Yelp API v2.0, search for nearby restaurants.
#
# Dependencies:
# "yelp": "0.1.1"
#
# Configuration:
# HUBOT_YELP_CONSUMER_KEY
# HUBOT_YELP_CONSUMER_SECRET
# HUBOT_YELP_TOKEN
# HUBOT_YELP_TOKEN_SECRET
# HUBOT_YELP_SEARCH_ADDRESS
# HUBOT_YELP_SEARCH_RADIUS
# HUBOT_YELP_SORT
# HUBOT_YELP_DEFAULT_SUGGESTION
#
# Get your Yelp tokens at http://www.yelp.com/developers/getting_started/api_access
# The search address can be a full address, city, or zipcode
# The search radius should be specified in meters, it defaults to 600.
# The sort parameter can be best matched (0 - default), distance (1) or highest rated (2).
# See http://www.yelp.com/developers/documentation/v2/search_api#searchGP for
# more information about the search radius and sort.
#
# Commands:
# hubot what's (to eat)? for <query> near <place>?
# hubot what's (to eat)? for <query>?
# hubot where should (I|we|<person>) (eat|go for) <query> near <place>?
# hubot where should (I|we|<person>) (eat|go for) <query>?
# hubot yelp me <query> (near <place>)?
#
# Examples:
# hubot what's for lunch near Palo Alto
# hubot what's to eat for lunch
# hubot where should chris eat steak?
# hubot where should I go for thai near Palo Alto?
# hubot where should we eat
# hubot yelp me thai near Palo Alto
#
#
# Author:
# Chris Streeter (streeter)
#
consumer_key = process.env.HUBOT_YELP_CONSUMER_KEY
consumer_secret = process.env.HUBOT_YELP_CONSUMER_SECRET
token = process.env.HUBOT_YELP_TOKEN
token_secret = process.env.HUBOT_YELP_TOKEN_SECRET
# Default search parameters
start_address = process.env.HUBOT_YELP_SEARCH_ADDRESS or "Palo Alto"
radius = process.env.HUBOT_YELP_SEARCH_RADIUS or 600
sort = process.env.HUBOT_YELP_SORT or 0
default_suggestion = process.env.HUBOT_YELP_DEFAULT_SUGGESTION or "Chipotle"
trim_re = /^\s+|\s+$|[\.!\?]+$/g
# Create the API client
yelp = require("yelp").createClient consumer_key: consumer_key, consumer_secret: consumer_secret, token: token, token_secret: token_secret
lunchMe = (msg, query, random = true) ->
# Clean up the query
query = "food" if typeof query == "undefined"
query = query.replace(trim_re, '')
query = "food" if query == ""
# Extract a location from the query
split = query.split(/\snear\s/i)
query = split[0]
location = split[1]
location = start_address if (typeof location == "undefined" || location == "")
# Perform the search
#msg.send("Looking for #{query} around #{location}...")
yelp.search category_filter: "restaurants", term: query, radius_filter: radius, sort: sort, limit: 20, location: location, (error, data) ->
if error != null
return msg.send "There was an error searching for #{query}. Maybe try #{default_suggestion}?"
if data.total == 0
return msg.send "I couldn't find any #{query} for you. Maybe try #{default_suggestion}?"
if random
business = data.businesses[Math.floor(Math.random() * data.businesses.length)]
else
business = data.businesses[0]
msg.send("How about " + business.name + "? " + business.url)
module.exports = (robot) ->
robot.respond /where should \w+ (eat|go for)(.*)/i, (msg) ->
query = msg.match[2]
lunchMe msg, query
robot.respond /what\'?s( to eat)? for(.*)/i, (msg) ->
query = msg.match[2]
lunchMe msg, query
robot.respond /yelp me(.*)/i, (msg) ->
query = msg.match[1]
lunchMe msg, query, false