
Stack Graphs
Single Scope Stack (current)

Notation

Valid Paths

Scope Context (proposed)

Instead of a single scope stack in a path, we have a scope context , consisting of a stack of symbol stacks. This context
holds all active pops at this point. The elements in a scope stack are scopes with an attached context , which are the
enclosing pops at the point of the push. A drops the top of the scope stack stack, making the directly enclosing pop
active again. A jumps to the top element of the top scope stack in the context, drops the enclosing context, and
restores the enclosing context of the scope that was jumped to.

The scope context represents lexical nesting, while the scope stack represents a call stack. A takes us to the caller,
i.e., the previous element in the current scope stack. At this point the current context is irrelevant, and the context of the
caller is restored. A takes us to the enclosing scope. At that point, the current call stack is irrelevant, and the call
stack of the enclosing scope is restored.

With this semantics, behaves as currently, if the scope stack stack is a singleton, but correctly restores any
earlier pops that were there. Therefore, I think it does not require changes to the existing rules.

Notation

symbol

scope

node

edge

scoped symbol

symbol stack

scope stack

path

x

s

N

e

a

X
Σ
p

:=
:=
:=
:=
:=
:=

s ∣ x ∣ x/s ∣ x ∣ x/∙ ∣ JUMP ∣ DROP↓ ↓ ↑ ↑

N → N

x ∣ x/Σ
() ∣ X⋅a
◊ ∣ Σ⋅s
(, X, Σ)N

Scope
(⋅N , X, Σ) N → sN 1 1

(⋅N ⋅s, X, Σ)N 1

Push Pop
(⋅N , X, Σ) N → xN 1 1 ↓

(⋅N ⋅ x, X⋅x, Σ)N 1 ↓

(⋅N , X⋅x, Σ) N → xN 1 1 ↑

(⋅N ⋅ x, X, Σ)N 1 ↑

PushScoped PopScoped
(⋅N , X, Σ) N → x/sN 1 1 ↓

(⋅N ⋅ x/s, X⋅x/(Σ⋅s), Σ)N 1 ↓

(⋅N , X⋅x/Σ , Σ) N → x/∙N 1
′

1 ↑

(⋅N ⋅ x/∙, X, Σ)N 1 ↑ ′

Jump Drop
(⋅N , X, Σ⋅s) N → JUMPN 1 1

(⋅N ⋅JUMP⋅s, X, Σ)N 1

(⋅N , X, Σ) N → DROPN 1 1

(⋅N ⋅DROP, X, ◊)N 1

Σ Ψ
Σ Ψ

DROP

JUMP

JUMP

DROP

DROP Ψ

symbol stack

scope stack

scope context

path

X
Σ
Ψ
p

:=
:=
:=
:=

() ∣ X⋅a
◊ ∣ Σ⋅s[Ψ]
⧫ ∣ Ψ⋅Σ
(, X, Ψ)N

Valid Paths

Additionally, we should consider a rule that allows dropping empty scope contexts (keeping them empty). This rule ensures
that a reference inside a nested scope can resolve to the definition in the surrounding context, even when it is not part of an
application. The alternative, having a path with a drop node, and one without, to the surrounding context, can cause wrong
results, because even when there is context, the drop could be ignored.

Plan

Introducing these changes would require the following to be done:

• Adapt all parts of the formalism: partial paths, partial path composition.
• Adapt algorithm descriptions (pseudocode).
• Adapt Rust implementation: querying and indexing.
• Adapt Go service to use new Rust implementation for querying by lifting existing data to the new format. Keep Go

indexing implementation for the time being.
• Start using Rust indexing implementation to produces data in new format. The data lifting stays in place until all data

is updated.

PushScoped’ PopScoped’
(⋅N , X, Ψ⋅Σ) N → x/sN 1 1 ↓

(⋅N ⋅ x/s, X⋅x/(Σ⋅s[Ψ]), Ψ⋅Σ)N 1 ↓

(⋅N , X⋅x/Σ, Ψ) N → x/∙N 1 1 ↑

(⋅N ⋅ x/∙, X, Ψ⋅Σ)N 1 ↑

Jump’ Drop’
(⋅N , X, Ψ⋅(Σ⋅s[Ψ])) N → JUMPN 1

′
1

(⋅N ⋅JUMP⋅s, X, Ψ ⋅Σ)N 1
′

(⋅N , X, Ψ⋅Σ) N → DROPN 1 1

(⋅N ⋅DROP, X, Ψ)N 1

DropEmpty’
(⋅N , X, ⧫) N → DROPN 1 1

(⋅N ⋅DROP, X, ⧫)N 1

