From c4ef2f981814542a30928363018d866e97d66bfb Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Tue, 29 Jul 2025 17:45:38 +0200 Subject: [PATCH 01/14] Fix bugs Interesting bugs caused by notebook usage (accidental usage of global variables). --- source-code/ising_model.ipynb | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/source-code/ising_model.ipynb b/source-code/ising_model.ipynb index 7c2d44a..066b685 100644 --- a/source-code/ising_model.ipynb +++ b/source-code/ising_model.ipynb @@ -982,13 +982,15 @@ " '''Class that implements a stepper for the Glauber dynamics.\n", " '''\n", "\n", - " def __init__(self, temperature):\n", + " def __init__(self, temperature, ising):\n", " '''Initializes the stepper.\n", " \n", " Parameters\n", " ----------\n", " temperature: float\n", " temperature to use in the dynamics\n", + " ising: IsingSystem\n", + " Ising system to update\n", " '''\n", " super().__init__(temperature)\n", " self._row_indices = np.arange(0, ising.nr_rows)\n", @@ -1331,7 +1333,7 @@ " self._compute_measures(step_nr)\n", " if self._is_converged():\n", " break\n", - " self._stepper.update(ising)\n", + " self._stepper.update(self._ising)\n", " else:\n", " self._compute_measures(step_nr)" ] From 882fd79f8f5362aca93b9eb5c1aa4a631a4f398e Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Wed, 30 Jul 2025 14:08:57 +0200 Subject: [PATCH 02/14] Fix bugs --- source-code/ising_model.ipynb | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/source-code/ising_model.ipynb b/source-code/ising_model.ipynb index 066b685..94cbb79 100644 --- a/source-code/ising_model.ipynb +++ b/source-code/ising_model.ipynb @@ -444,6 +444,8 @@ " self._name = name\n", " if headers is None:\n", " self._headers = (self._name, )\n", + " else:\n", + " self._headers = tuple(headers)\n", " self._sep = ' '\n", " self._values = []\n", "\n", @@ -936,7 +938,7 @@ " ) + ising.h\n", " )\n", "\n", - " @abc.abstractclassmethod\n", + " @abc.abstractmethod\n", " def update(self, ising, nr_steps=1):\n", " '''Abstract method that updates the Ising system according to the dynamics\n", " specified by the derived classes.\n", @@ -1160,7 +1162,7 @@ "outputs": [], "source": [ "class IsMeasureStable(AbstractIsConverged):\n", - " '''Convergence criterion that will stop the simulation if the meaure is\n", + " '''Convergence criterion that will stop the simulation if the measure is\n", " constant to within an absolute error for a given number of steps.'''\n", "\n", " def __init__(self, *, measure, nr_measurement_steps, delta):\n", From 2b256655e1e6ee9afd6e8e4f700b2c5da96cdd79 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Wed, 30 Jul 2025 14:09:53 +0200 Subject: [PATCH 03/14] Update environment --- environment.yml | 328 +----------- scientific_python_linux64_conda_specs.txt | 593 +++++++++++----------- 2 files changed, 311 insertions(+), 610 deletions(-) diff --git a/environment.yml b/environment.yml index 51cbec4..47e91df 100644 --- a/environment.yml +++ b/environment.yml @@ -3,7 +3,6 @@ channels: - conda-forge dependencies: - bokeh - - hdf5 - ipywidgets - jupyterlab - jupyterlab_widgets @@ -14,334 +13,11 @@ dependencies: - opencv - pandas - pytables - - python - - scikit-image + - h5py - scipy + - scikit-image - sympy - xarray - - debugpy - - nbclassic - - pygments - - ipython - - libllvm11 - - openh264 - - libwebp - - cycler - - lerc - - mock - - pyqt - - blas - - xorg-libxau - - notebook-shim - - stack_data - - backcall - - libgcc-ng - - entrypoints - - jxrlib - - argon2-cffi-bindings - - appdirs - - libtasn1 - - libsodium - - bzip2 - - fonttools - - libbrotlidec - - jupyter_core - - libunistring - - pyqt5-sip - - comm - - tzdata - - mpfr - - partd - - libtiff - - libopencv - - libgomp - - libbrotlienc - - pure_eval - - xorg-fixesproto - - jsonschema - - pyparsing - - brotli - - libopus - - nbformat - - send2trash - - libblas - - glib-tools - - python-fastjsonschema - - fontconfig - - pytz - - openssl - - dask-core - - yaml - - dbus - - idna - - libglu - - matplotlib-base - - pyrsistent - - typing_extensions - - libogg - - xorg-libxext - - gnutls - - charset-normalizer - - contourpy - - pyqt-impl - - xorg-xextproto - - libglib - - notebook - networkx - - freeglut - - tomli - - ffmpeg - - expat - - libopenblas - - libzopfli - - libgfortran-ng - - attrs - - traitlets - - imagecodecs - - sqlite - - openjpeg - - munkres - - libxslt - - giflib - - wheel - - libcurl - - markupsafe - - python_abi - - pooch - - gettext - - krb5 - - requests - - pywavelets - - cairo - - cfitsio - - pillow - - py-opencv - - terminado - - certifi - - xorg-libxfixes - - qt - - alsa-lib - - pickleshare - - libcblas - - websocket-client - - locket - - bleach - - libaec - - nest-asyncio - - jasper - - kiwisolver - - libstdcxx-ng - - libdeflate - - argon2-cffi - - libidn2 - - xorg-kbproto - - pyyaml - - _openmp_mutex - - prometheus_client - - jpeg - - widgetsnbextension - - asttokens - - libxml2 - - six - - packaging - - cffi - - c-ares - - libedit - - libevent - - python-dateutil - - brotli-bin - - pyzmq - - executing - - readline - - libssh2 - - libffi - - platformdirs - - mysql-common - - mpc - - ptyprocess - - libclang - - libpng - - _libgcc_mutex - - jupyterlab_pygments - - mpmath - - jupyterlab_server - - pexpect - - matplotlib-inline - - babel - - graphite2 - - glib - - zeromq - - lame - - xorg-libxi - - tornado - - pysocks - - ca-certificates - - jinja2 - - setuptools - - icu - - libxcb - - blosc - - x264 - - lz4-c - - pyopenssl - - decorator - - harfbuzz - - libuv - - gstreamer - - ld_impl_linux-64 - - soupsieve - - ipykernel - - nss - - libzlib - - fsspec - - zlib - - imageio - - pcre - - cytoolz - - mysql-libs - - brotlipy - - libprotobuf - - cryptography - - cloudpickle - - gst-plugins-base - - xorg-xproto - - xyzservices - - brunsli - - tifffile - - jupyter_client - - lxml - - lcms2 - - pandocfilters - - libuuid - - psutil - - libxkbcommon - - beautifulsoup4 - - defusedxml - - flit-core - - libiconv - - prompt-toolkit - - gmp - - jedi - - wcwidth - - snappy - - libbrotlicommon - - nettle - - charls - - pixman - - pyqtwebengine - - tk - - mistune - - ipython_genutils - - nspr - nbconvert - - xz - - webencodings - - zfp - - sniffio - - anyio - - lzo - - liblapacke - - libgfortran5 - - pyqtchart - - ncurses - - liblapack - - libwebp-base - - parso - - bottleneck - - libvorbis - - pycparser - - pip - - freetype - - gmpy2 - - json5 - - zstd - - jupyter_server - - libpq - - nbclient - - libnghttp2 - - libev - - toolz - - urllib3 - - tinycss2 - - numpy-base - - xorg-inputproto - - xorg-libx11 - - typing-extensions - - jupyter_events - - python-tzdata - - exceptiongroup - - pcre2 - - rfc3986-validator - - nbconvert-core - - libexpat - - c-blosc2 - - overrides - - backports.functools_lru_cache - - prompt_toolkit - - zipp - - nomkl - - libavif - - typing_utils - - unicodedata2 - - async-lru - - pandoc - - rfc3339-validator - - lazy_loader - - libsqlite - - aom - - nbconvert-pandoc - - importlib-metadata - - zlib-ng - - importlib_resources - - jupyter_server_terminals - - backports - - jupyter-lsp - - importlib_metadata - - click - - python-json-logger - - dav1d - - h2 - - arrow - - cached_property - - isoduration - - rpds-py - - httpcore - - types-python-dateutil - - webcolors - - referencing - - pkgutil-resolve-name - - jsonschema-specifications - - hyperframe - - libasprintf - - jsonschema-with-format-nongpl - - libgettextpo - - gettext-tools - - libasprintf-devel - - cached-property - - fqdn - - jsonpointer - - httpx - - uri-template - - h11 - - hpack - - brotli-python - - libgettextpo-devel - - h5py - - libgfortran - - zstandard - - pthread-stubs - - libdrm - - libstdcxx - - lazy-loader - - xorg-libxxf86vm - - libglvnd - - libgl - - libpciaccess - - xorg-libxdamage - - xorg-xorgproto - - libegl - - xorg-libxdmcp - - libglx - - libgcc - - qhull prefix: /home/gjb/mambaforge/envs/scientific_python diff --git a/scientific_python_linux64_conda_specs.txt b/scientific_python_linux64_conda_specs.txt index 9e9098c..b8605b6 100644 --- a/scientific_python_linux64_conda_specs.txt +++ b/scientific_python_linux64_conda_specs.txt @@ -3,344 +3,369 @@ # platform: linux-64 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/blas-1.0-openblas.conda -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda -https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda +https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda +https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda +https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1423503_1.conda https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda +https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.1.0-h767d61c_3.conda https://conda.anaconda.org/conda-forge/noarch/nomkl-1.0-h5ca1d4c_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.5-ha770c72_0.conda -https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda -https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda +https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.7.0.2-ha770c72_0.conda +https://conda.anaconda.org/conda-forge/noarch/python_abi-3.13-8_cp313.conda +https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda +https://conda.anaconda.org/conda-forge/noarch/wayland-protocols-1.45-hd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda +https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda +https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda +https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.1.0-h767d61c_3.conda +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.14-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.5-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.24-h86f0d12_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.6-h2dba641_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.1.0-h69a702a_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-15.1.0-hcea5267_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.18-h4ce23a2_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.1.0-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda +https://conda.anaconda.org/conda-forge/linux-64/libmpdec-4.0.0-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-hd0c01bc_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopus-1.5.2-hd0c01bc_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.1.0-h8f9b012_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libuv-1.51.0-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.6.0-hd42ef1d_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.1-h7b32b05_0.conda https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-inputproto-2.3.2-hb9d3cd8_1003.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-hb9d3cd8_1003.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda +https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.7.1-h8fae777_3.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-hb9d3cd8_1004.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-hb9d3cd8_1008.conda -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.3.2-h166bdaf_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda +https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda -https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda +https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.1-h5888daf_0.conda +https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.25.1-h3f43e3d_1.conda https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda -https://conda.anaconda.org/conda-forge/linux-64/jpeg-9e-h0b41bf4_3.conda +https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.14-h5888daf_0.conda +https://conda.anaconda.org/conda-forge/linux-64/imath-3.1.12-h7955e40_0.conda https://conda.anaconda.org/conda-forge/linux-64/jxrlib-1.1-hd590300_3.conda +https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.0.9-h166bdaf_9.conda -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.14-h166bdaf_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h0aef613_1.conda +https://conda.anaconda.org/conda-forge/linux-64/level-zero-1.24.0-hb700be7_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libabseil-20250512.1-cxx17_hba17884_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.4-h3f801dc_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.25.1-h3f43e3d_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.125-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda -https://repo.anaconda.com/pkgs/main/linux-64/libogg-1.3.5-h27cfd23_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.18-h36c2ea0_1.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libtasn1-4.19.0-h166bdaf_0.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/libunistring-0.9.10-h27cfd23_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/libuuid-1.41.5-h5eee18b_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/libuv-1.40.0-h7b6447c_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/libwebp-base-1.2.4-h5eee18b_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.25.1-h3f43e3d_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-15.1.0-h69a702a_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.3-h5888daf_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.55-h3f2d84a_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.2.0-hf40a0c7_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.50-h943b412_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hcf80075_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.1.0-h4852527_3.conda +https://conda.anaconda.org/conda-forge/linux-64/libunwind-1.8.2-h1441ba7_0.conda +https://conda.anaconda.org/conda-forge/linux-64/liburing-2.11-h84d6215_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-h4ab18f5_6.conda -https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda -https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda -https://conda.anaconda.org/conda-forge/linux-64/openssl-1.1.1w-hd590300_0.conda -https://conda.anaconda.org/conda-forge/linux-64/x264-1!161.3030-h7f98852_1.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-hb9d3cd8_1003.conda -https://repo.anaconda.com/pkgs/main/linux-64/xz-5.2.10-h5eee18b_1.conda -https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda +https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda +https://conda.anaconda.org/conda-forge/linux-64/opencl-headers-2025.06.13-h5888daf_0.conda +https://conda.anaconda.org/conda-forge/linux-64/openh264-2.6.0-hc22cd8d_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.46.4-h537e5f6_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pugixml-1.15-h3f63f65_0.conda +https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda +https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.2-h03e3b7b_0.conda +https://conda.anaconda.org/conda-forge/linux-64/svt-av1-3.0.2-h5888daf_0.conda +https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda +https://conda.anaconda.org/conda-forge/linux-64/wayland-1.24.0-h3e06ad9_0.conda +https://conda.anaconda.org/conda-forge/linux-64/x264-1!164.3095-h166bdaf_2.tar.bz2 https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda -https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda -https://conda.anaconda.org/conda-forge/linux-64/aom-3.5.0-h27087fc_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/charls-2.3.4-h9c3ff4c_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.4-h7955e40_0.conda +https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb8e6e7a_2.conda +https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda +https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-he440d0b_1.conda +https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_3.conda +https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.19.1-h4cfbee9_0.conda +https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-hac33072_2.conda -https://repo.anaconda.com/pkgs/main/linux-64/graphite2-1.3.14-h295c915_1.conda -https://conda.anaconda.org/conda-forge/linux-64/icu-68.2-h9c3ff4c_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda -https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.0.9-h166bdaf_9.conda -https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.0.9-h166bdaf_9.conda -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/libedit-3.1.20221030-h5eee18b_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.10-h9b69904_4.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/libffi-3.4.2-h6a678d5_6.conda -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.51.0-hdcd2b5c_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.10.0-haa6b8db_3.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/libvorbis-1.3.7-h7b6447c_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/libzopfli-1.0.3-he6710b0_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/lz4-c-1.9.4-h6a678d5_0.conda -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.0.32-h14678bc_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/openh264-2.1.1-h4ff587b_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/pcre-8.45-h295c915_0.conda -https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.43-hcad00b1_0.conda -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda +https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda +https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.25.1-h3f43e3d_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libcap-2.75-h39aace5_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libfreetype6-2.13.3-h48d6fc4_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.1-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.25.1-h3f43e3d_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-h7b0646d_2.conda +https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.30-pthreads_h94d23a6_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-6.31.1-h9ef548d_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hf01ce69_5.conda +https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/libvpx-1.14.1-hac33072_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.3-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/openexr-3.3.5-h09fa569_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.45-hc749103_0.conda https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda -https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda -https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda -https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda -https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h59595ed_1.conda -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.2.13-h4ab18f5_6.conda -https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda -https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.5-hc2324a3_1.conda -https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.0.9-h166bdaf_9.conda -https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h68e2383_0.conda -https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda -https://repo.anaconda.com/pkgs/main/linux-64/krb5-1.19.4-h568e23c_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda -https://conda.anaconda.org/conda-forge/linux-64/libavif-0.11.1-h8182462_2.conda -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda +https://conda.anaconda.org/conda-forge/linux-64/x265-3.5-h924138e_3.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-h4f16b4b_2.conda +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.6-he73a12e_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.12-h4f16b4b_0.conda +https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_3.conda +https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.28-hd9c7081_0.conda +https://conda.anaconda.org/conda-forge/linux-64/gettext-0.25.1-h3f43e3d_1.conda +https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.17-h717163a_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.3.0-h766b0b6_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-32_h59b9bed_openblas.conda +https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-hb8b1518_5.conda +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.14.1-h332b0f4_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libfreetype-2.13.3-ha770c72_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.84.2-h3618099_0.conda https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda -https://repo.anaconda.com/pkgs/main/linux-64/libllvm11-11.1.0-h9e868ea_6.conda -https://repo.anaconda.com/pkgs/main/linux-64/libprotobuf-3.19.6-he621ea3_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.4.0-h82bc61c_5.conda -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.9.12-h72842e0_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.50.3-hee844dc_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-257.7-h4e0b6ca_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libudev1-257.7-hbe16f8c_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.8-h4bc477f_0.conda https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.0.32-h54cf53e_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/nettle-3.7.3-hbbd107a_1.conda -https://repo.anaconda.com/pkgs/main/linux-64/nodejs-16.13.1-hb931c9a_0.conda -https://conda.anaconda.org/conda-forge/linux-64/nss-3.100-hca3bf56_0.conda -https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.46.0-h6d4b2fc_0.conda +https://conda.anaconda.org/conda-forge/linux-64/nodejs-24.4.1-heeeca48_0.conda +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda +https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.45-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda -https://conda.anaconda.org/conda-forge/linux-64/brotli-1.0.9-h166bdaf_9.conda -https://repo.anaconda.com/pkgs/main/linux-64/fontconfig-2.13.1-h6c09931_0.conda -https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda -https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.2-hb6ce0ca_0.conda -https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.14-h6ed2654_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda -https://conda.anaconda.org/conda-forge/linux-64/libclang-11.1.0-default_ha53f305_1.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/libcurl-7.88.1-h91b91d3_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda +https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/dbus-1.16.2-h3c4dab8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/freetype-2.13.3-ha770c72_1.conda +https://conda.anaconda.org/conda-forge/linux-64/gdk-pixbuf-2.42.12-h7b179bb_1.conda +https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.6-nompi_h6e4c0c1_103.conda +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-32_he106b2a_openblas.conda +https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda -https://conda.anaconda.org/conda-forge/linux-64/libpq-13.8-hd77ab85_0.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/libwebp-1.2.4-h11a3e52_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.0.3-he3ba5ed_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.33-h15afd5d_2.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.12.1-default_h3d81e11_1000.conda +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-32_h7ac8fdf_openblas.conda +https://conda.anaconda.org/conda-forge/linux-64/libllvm20-20.1.8-hecd9e04_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libusb-1.0.29-h73b1eb8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.10.0-h65c71a3_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.43-h7a3aeb2_0.conda https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-h7d73246_1.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/python-3.10.9-h7a1cb2a_2.conda +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.10-he970967_0.conda +https://conda.anaconda.org/conda-forge/linux-64/python-3.13.5-hec9711d_102_cp313.conda +https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda -https://repo.anaconda.com/pkgs/main/noarch/appdirs-1.4.4-pyhd3eb1b0_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxscrnsaver-1.2.4-hb9d3cd8_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda -https://repo.anaconda.com/pkgs/main/noarch/backcall-0.2.0-pyhd3eb1b0_0.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/backports-1.0-pyhd8ed1ab_5.conda -https://repo.anaconda.com/pkgs/main/linux-64/brunsli-0.1-h2531618_0.conda +https://conda.anaconda.org/conda-forge/noarch/attrs-25.3.0-pyh71513ae_0.conda +https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py313h46c70d0_3.conda https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.2.0-hd9d235c_0.conda -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda -https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda +https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.5-py313hd8ed1ab_102.conda https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_1.conda -https://repo.anaconda.com/pkgs/main/noarch/defusedxml-0.7.1-pyhd3eb1b0_0.conda -https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/flit-core-3.10.1-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.15-py313h5d5ffb9_0.conda +https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 +https://conda.anaconda.org/conda-forge/noarch/executing-2.2.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-ha6d2627_3.conda -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda -https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.2-hf974151_0.conda -https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.18.5-h9f60fe5_3.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.12.1-nompi_h2386368_104.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.2.1-py313h11186cd_0.conda +https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/ipython_genutils-0.2.0-pyhd8ed1ab_2.conda -https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/jupyterlab_widgets-3.0.13-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.3-h03adeef_0.conda -https://conda.anaconda.org/conda-forge/linux-64/libidn2-2.3.7-hd590300_0.conda -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda -https://repo.anaconda.com/pkgs/main/linux-64/locket-1.0.0-py310h06a4308_0.conda -https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/mock-5.1.0-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/json5-0.12.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py313h78bf25f_1.conda +https://conda.anaconda.org/conda-forge/noarch/jupyterlab_widgets-3.0.15-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.8-py313h33d0bda_1.conda +https://conda.anaconda.org/conda-forge/noarch/lark-1.2.2-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp20.1-20.1.8-default_hddf928d_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libclang13-20.1.8-default_ha444ac7_0.conda +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-32_he2f377e_openblas.conda +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.5-h27ae623_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libva-2.22.0-h4f16b4b_2.conda +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py313h8060acc_1.conda https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_1.conda -https://repo.anaconda.com/pkgs/main/noarch/munkres-1.1.4-py_0.conda +https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/narwhals-2.0.1-pyhe01879c_0.conda https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/networkx-3.4-pyhd8ed1ab_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/numpy-base-1.23.5-py310h375b286_0.conda -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda -https://repo.anaconda.com/pkgs/main/noarch/pandocfilters-1.5.0-pyhd3eb1b0_0.conda +https://conda.anaconda.org/conda-forge/noarch/networkx-3.5-pyhe01879c_0.conda +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.3.2-py313hf6604e3_0.conda +https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda +https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda -https://repo.anaconda.com/pkgs/main/linux-64/pillow-9.4.0-py310h6a678d5_0.conda -https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_2.conda -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda -https://repo.anaconda.com/pkgs/main/noarch/ptyprocess-0.7.0-pyhd3eb1b0_2.conda -https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.3.0-py313h8db990d_0.conda +https://conda.anaconda.org/conda-forge/noarch/pip-25.1.1-pyh145f28c_0.conda +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda +https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.22.1-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/psutil-7.0.0-py313h536fd9c_0.conda +https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/py-cpuinfo-9.0.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda -https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda +https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.3-pyhe01879c_2.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.10-2_cp310.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py313h8060acc_2.conda +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-27.0.0-py313h8e95178_0.conda https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.26.0-py313h4b2b08d_0.conda https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_1.conda -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda -https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.7-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/tbb-2022.2.0-hb60516a_0.conda +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.5.1-py313h536fd9c_0.conda https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241003-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda +https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20250708-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.14.1-pyhe01879c_0.conda https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/webcolors-24.11.1-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_3.conda https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.8.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/widgetsnbextension-4.0.13-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.9.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/backports.functools_lru_cache-2.0.0-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda -https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.0.9-py310hd8f1fbe_9.conda +https://conda.anaconda.org/conda-forge/noarch/widgetsnbextension-4.0.14-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda +https://conda.anaconda.org/conda-forge/noarch/xyzservices-2025.4.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.5-pyh29332c3_0.conda +https://conda.anaconda.org/conda-forge/noarch/babel-2.17.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyh29332c3_4.conda https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/cairo-1.16.0-h19f5f5c_2.conda -https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py310h8deb56e_0.conda -https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.0-py310ha75aee5_1.conda -https://repo.anaconda.com/pkgs/main/linux-64/dbus-1.13.18-hb2f20db_0.conda -https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py310hf71b8c6_0.conda -https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py310he8512ff_3.conda -https://repo.anaconda.com/pkgs/main/linux-64/gnutls-3.6.15-he1e5248_0.conda -https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.18.5-hf529b03_2.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/jasper-2.0.33-h0ff4b12_1.conda +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.4-h3394656_0.conda +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py313hfab6e84_0.conda +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.3-py313h7037e92_0.conda +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.59.0-py313h3dea7bd_0.conda +https://conda.anaconda.org/conda-forge/noarch/h11-0.16.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2025.3.30-py313h8b391ee_2.conda +https://conda.anaconda.org/conda-forge/noarch/imageio-2.37.0-pyhfb79c49_0.conda +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda +https://conda.anaconda.org/conda-forge/noarch/ipython_pygments_lexers-1.1.1-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/jasper-4.2.5-h1920b20_0.conda https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py310hff52083_1.conda -https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.6-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.8.1-pyh31011fe_0.conda https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda -https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py310h3788b33_0.conda -https://conda.anaconda.org/conda-forge/linux-64/lxml-4.8.0-py310h5764c6d_2.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py310h89163eb_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-2025.2.0-hb617929_1.conda https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda -https://repo.anaconda.com/pkgs/main/linux-64/numpy-1.23.5-py310hac523dd_0.conda -https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/mistune-3.1.3-pyh29332c3_0.conda +https://conda.anaconda.org/conda-forge/linux-64/numexpr-2.10.2-py313h5f97788_100.conda +https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda -https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_1.conda -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py310ha75aee5_0.conda -https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-4.19.18-py310h122e73d_8.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/pyrsistent-0.20.0-py310ha75aee5_1.conda -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py310ha75aee5_1.conda -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py310h71f11fc_1.conda -https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.22.3-py310h505e2c1_0.conda -https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh04b8f61_4.conda +https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hac146a9_1.conda +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda +https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.8.0-py313ha014f3b_0.conda +https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda +https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/rfc3987-syntax-1.1.0-pyhe01879c_1.conda +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.16.0-py313h86fcf2b_0.conda +https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/sympy-1.14.0-pyh2585a3b_105.conda +https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh0d859eb_0.conda https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py310ha75aee5_0.conda -https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py310ha75aee5_1.conda -https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py310ha75aee5_5.conda -https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/linux-64/bottleneck-1.4.2-py310hf462985_0.conda -https://conda.anaconda.org/conda-forge/linux-64/brotlipy-0.7.0-py310ha75aee5_1007.conda -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py310h3788b33_0.conda -https://repo.anaconda.com/pkgs/main/linux-64/cryptography-39.0.1-py310h9ce1e76_0.conda -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.12.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/ffmpeg-4.3.2-h37c90e5_3.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.1-py310h89163eb_0.conda +https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.14.1-h4440ef1_0.conda +https://conda.anaconda.org/conda-forge/noarch/anyio-4.9.0-pyh29332c3_0.conda +https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py313h536fd9c_5.conda +https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.13.4-pyha770c72_0.conda +https://conda.anaconda.org/conda-forge/noarch/bleach-with-css-6.2.0-h82add2a_4.conda https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/h5py-3.7.0-nompi_py310h06dffec_100.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-3.1.1-h83ec7ef_0.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2022.9.26-py310h543e91f_4.conda -https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda -https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/ipython-8.30.0-pyh707e725_0.conda -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/linux-64/h5py-3.14.0-nompi_py313hfaf8fd4_100.conda +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-11.3.3-hbb57e21_0.conda +https://conda.anaconda.org/conda-forge/noarch/ipython-9.4.0-pyhfa0c392_0.conda +https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2025.4.1-pyh29332c3_0.conda https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/numexpr-2.10.2-py310hdb6e06b_100.conda -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py310h5eaa309_1.conda -https://conda.anaconda.org/conda-forge/noarch/prompt_toolkit-3.0.48-hd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.8.0-py310hf462985_0.conda -https://conda.anaconda.org/conda-forge/linux-64/qt-5.12.9-hda022c4_4.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py310hfcf56fc_1.conda -https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh0d859eb_0.conda -https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py310ha39cb0e_1.conda -https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/bokeh-3.6.2-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda -https://conda.anaconda.org/conda-forge/noarch/ipywidgets-8.1.5-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/libopencv-4.5.5-py31he7a5e20_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.1-py310hf02ac8c_2.conda -https://conda.anaconda.org/conda-forge/noarch/pyopenssl-23.2.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/pyqt-impl-5.12.3-py310h1f8e252_8.tar.bz2 -https://repo.anaconda.com/pkgs/main/linux-64/pytables-3.7.0-py310h9da3b7f_0.conda -https://conda.anaconda.org/conda-forge/noarch/tifffile-2022.10.10-pyhd8ed1ab_0.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/xarray-2024.3.0-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/py-opencv-4.5.5-py31hfdc917e_0.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/pyqtchart-5.12-py310hfcd6d55_8.tar.bz2 -https://conda.anaconda.org/conda-forge/linux-64/pyqtwebengine-5.12.1-py310hfcd6d55_8.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py310h5eaa309_3.conda -https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_2.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-auto-batch-plugin-2025.2.0-hed573e4_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-auto-plugin-2025.2.0-hed573e4_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-hetero-plugin-2025.2.0-hd41364c_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-intel-cpu-plugin-2025.2.0-hb617929_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-intel-gpu-plugin-2025.2.0-hb617929_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-intel-npu-plugin-2025.2.0-hb617929_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-ir-frontend-2025.2.0-hd41364c_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-onnx-frontend-2025.2.0-h1862bb8_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-paddle-frontend-2025.2.0-h1862bb8_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-pytorch-frontend-2025.2.0-hecca717_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-tensorflow-frontend-2025.2.0-h0767aad_1.conda +https://conda.anaconda.org/conda-forge/linux-64/libopenvino-tensorflow-lite-frontend-2025.2.0-hecca717_1.conda +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.10.3-py313h129903b_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.3.1-py313h08cd8bf_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pytables-3.10.2-py313h49b9dc6_6.conda +https://conda.anaconda.org/conda-forge/linux-64/sdl3-3.2.18-h68140b3_0.conda +https://conda.anaconda.org/conda-forge/noarch/tifffile-2025.6.11-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py313h536fd9c_2.conda +https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-25.1.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/bokeh-3.7.3-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.9-pyh29332c3_0.conda +https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh82676e8_0.conda +https://conda.anaconda.org/conda-forge/noarch/ipywidgets-8.1.7-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libass-0.17.4-h96ad9f0_0.conda +https://conda.anaconda.org/conda-forge/linux-64/pango-1.56.4-hadf4263_0.conda +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.9.1-h6ac528c_2.conda +https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.25.2-py313ha87cce1_1.conda +https://conda.anaconda.org/conda-forge/linux-64/sdl2-2.32.54-h3f2d84a_0.conda +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.5.0-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/xarray-2025.7.1-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.25.0-he01879c_0.conda +https://conda.anaconda.org/conda-forge/linux-64/librsvg-2.58.4-he92a37e_3.conda https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/opencv-4.5.5-py31hff52083_0.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.12.3-py310hff52083_8.tar.bz2 -https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.1-py310hff52083_1.conda -https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.1-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhff2d567_2.conda -https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_2.conda -https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.4-hd8ed1ab_2.conda +https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.9.1-py313h7dabd7a_0.conda +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/ffmpeg-7.1.1-gpl_h0cf71c1_707.conda +https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.12.0-pyh29332c3_0.conda +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.10.3-py313h78bf25f_0.conda +https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/libopencv-4.12.0-qt6_py313hae1d0ca_601.conda +https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.6-pyh29332c3_0.conda +https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.16.0-pyhe01879c_0.conda +https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.6-hed9df3c_0.conda +https://conda.anaconda.org/conda-forge/linux-64/py-opencv-4.12.0-qt6_py313hc0a75a6_601.conda +https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.6-pyhe01879c_0.conda +https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.6-hb482800_0.conda https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.2-pyhd8ed1ab_0.conda -https://conda.anaconda.org/conda-forge/noarch/nbclassic-1.1.0-pyhd8ed1ab_1.conda -https://conda.anaconda.org/conda-forge/noarch/notebook-7.3.1-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/linux-64/opencv-4.12.0-qt6_py313h6537eeb_601.conda +https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.4.5-pyhd8ed1ab_0.conda From dcc1afe65bf538a22246bf960a3c8ab04fdef9a3 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Wed, 30 Jul 2025 15:57:48 +0200 Subject: [PATCH 04/14] Fix bug --- source-code/ising_model.ipynb | 291 ++++++++++++++++++++++++---------- 1 file changed, 207 insertions(+), 84 deletions(-) diff --git a/source-code/ising_model.ipynb b/source-code/ising_model.ipynb index 94cbb79..fcee435 100644 --- a/source-code/ising_model.ipynb +++ b/source-code/ising_model.ipynb @@ -322,7 +322,7 @@ { "data": { "text/plain": [ - "1" + "np.int64(1)" ] }, "execution_count": 6, @@ -371,6 +371,16 @@ "print(ising)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "a59dfea9-4910-4499-99b4-cb8f751815ee", + "metadata": {}, + "outputs": [], + "source": [ + "del ising" + ] + }, { "cell_type": "markdown", "id": "bae6eb9d-858e-47d4-8aff-322e6d8800b8", @@ -390,25 +400,6 @@ " * the energy." ] }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "50de9177-b032-4727-a9dd-4f9b00c7883f", - "metadata": {}, - "source": [ - "To test the measures you define, it is a good idea to use a very small Ising system, so that it is easy to check the results by hand." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "5355cecb-a38b-4fc1-b42a-41c7b07784fb", - "metadata": {}, - "outputs": [], - "source": [ - "mini_ising = IsingSystem(nr_rows=4, nr_cols=4, J=0.5, h=2.0, seed=1234)" - ] - }, { "cell_type": "markdown", "id": "0e990376-7c28-4f1e-b6ed-cba7cce33bef", @@ -629,6 +620,25 @@ " return magnetization/ising.N" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "44353a9a-56f2-4653-b6cd-100df9a3fe05", + "metadata": {}, + "source": [ + "To test the measures you define, it is a good idea to use a very small Ising system, so that it is easy to check the results by hand." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "5355cecb-a38b-4fc1-b42a-41c7b07784fb", + "metadata": {}, + "outputs": [], + "source": [ + "mini_ising = IsingSystem(nr_rows=4, nr_cols=4, J=0.5, h=2.0, seed=1234)" + ] + }, { "cell_type": "markdown", "id": "676e6fcb-9eae-4b8d-8637-04c9caa08e23", @@ -639,7 +649,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 29, "id": "e8ef6d91-071a-47ef-b392-f296b6cde930", "metadata": {}, "outputs": [], @@ -649,7 +659,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 30, "id": "3247c2eb-03cc-4d03-949e-f022a30e950c", "metadata": { "scrolled": true @@ -658,10 +668,10 @@ { "data": { "text/plain": [ - "0.125" + "np.float64(0.125)" ] }, - "execution_count": 13, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -672,7 +682,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 31, "id": "8d88729d-dbd4-48a5-abf0-f1ddc542886e", "metadata": {}, "outputs": [ @@ -699,6 +709,16 @@ "The system has 9 spins up ($s_i = 1$) and 7 spins down ($s_i = -1$) while $N = 16$, so the magnetization should be $(9 - 7)/16 = 1/8 = 0.125$ as computed." ] }, + { + "cell_type": "code", + "execution_count": 32, + "id": "ab636c0d-cf08-4c7e-b4ee-22b114194b5e", + "metadata": {}, + "outputs": [], + "source": [ + "del mini_ising, M" + ] + }, { "cell_type": "markdown", "id": "d2114304-d63b-49d5-beb1-b6b58dec632e", @@ -762,9 +782,28 @@ " return energy/ising.N" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b023beb7-4de2-4de3-83a9-d2165705868e", + "metadata": {}, + "source": [ + "To test the measures you define, it is a good idea to use a very small Ising system, so that it is easy to check the results by hand." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "9abd4c5b-545e-497d-ae24-9a773f078dbf", + "metadata": {}, + "outputs": [], + "source": [ + "mini_ising = IsingSystem(nr_rows=4, nr_cols=4, J=0.5, h=2.0, seed=1234)" + ] + }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 34, "id": "98473b4d-74a2-4808-83b9-bdc67d436c94", "metadata": {}, "outputs": [], @@ -774,17 +813,17 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 35, "id": "7c3374cd-13f2-4791-bcca-4c89eec59b05", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-0.125" + "np.float64(-0.125)" ] }, - "execution_count": 17, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -795,7 +834,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 36, "id": "37169d46-f5c4-44c6-ac64-df8023310bce", "metadata": { "scrolled": true @@ -818,7 +857,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 37, "id": "a59b0432-7a6d-4744-b038-c0e9811c6769", "metadata": {}, "outputs": [ @@ -828,7 +867,7 @@ "\"{\\n 'nr_rows': 4,\\n 'nr_cols': 4,\\n 'J': 0.5,\\n 'h': 2.0,\\n 'seed': 1234,\\n}\"" ] }, - "execution_count": 19, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -845,6 +884,16 @@ "Again, this checks out, so the implementation could be correct." ] }, + { + "cell_type": "code", + "execution_count": 38, + "id": "bbec6169-6ffc-4e29-a0fc-b13124343baf", + "metadata": {}, + "outputs": [], + "source": [ + "del mini_ising, E" + ] + }, { "cell_type": "markdown", "id": "775d8ad5-4828-4b77-b76a-2f53e43c3f68", @@ -1106,7 +1155,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 23, "id": "2ee63b6b-567d-4e93-b3a5-490727f539fa", "metadata": {}, "outputs": [], @@ -1156,7 +1205,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 24, "id": "e33e760c-e55f-4943-b3e7-a6b186588de9", "metadata": {}, "outputs": [], @@ -1233,7 +1282,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 25, "id": "990696f0-1970-40ac-b917-82af57398c94", "metadata": {}, "outputs": [], @@ -1390,7 +1439,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 26, "id": "c2fd28f7-f2da-456e-bbac-880cd034ee6c", "metadata": {}, "outputs": [], @@ -1408,12 +1457,12 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 39, "id": "c19a4dcc-32f6-4c89-b03e-6ebf71259bf4", "metadata": {}, "outputs": [], "source": [ - "stepper = GlauberStepper(temperature=2.0)" + "stepper = GlauberStepper(temperature=2.0, ising=ising)" ] }, { @@ -1426,7 +1475,7 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 40, "id": "5b951fc1-29fb-43d0-81ac-c2df9ce34667", "metadata": {}, "outputs": [], @@ -1448,7 +1497,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "id": "e51bb5c2-86b9-435f-9d93-90ee10f0fbb6", "metadata": {}, "outputs": [], @@ -1471,7 +1520,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 42, "id": "44f889be-034c-43d4-a635-5eee0ac95bb6", "metadata": { "scrolled": true @@ -1483,27 +1532,57 @@ "text": [ "step magnetization energy\n", "0 0.0114 -0.0226\n", - "10 0.9828 -2.9164\n", - "20 0.9802 -2.905\n", - "30 0.9844 -2.9252\n", - "40 0.9848 -2.9284\n", - "50 0.9838 -2.9226\n", - "60 0.9854 -2.929\n", - "70 0.987 -2.937\n", - "80 0.9856 -2.9312\n", - "90 0.9834 -2.9206\n", - "100 0.983 -2.9194\n", - "110 0.986 -2.932\n", - "120 0.9854 -2.931\n", - "130 0.9842 -2.9262\n", - "140 0.9824 -2.9164\n", - "150 0.9854 -2.9294\n", - "160 0.9812 -2.9088\n", - "170 0.9834 -2.9202\n", - "180 0.9848 -2.9264\n", - "190 0.984 -2.9224\n", - "200 0.9846 -2.9246\n", - "210 0.9846 -2.9266\n" + "10 0.9804 -2.9092\n", + "20 0.978 -2.8956\n", + "30 0.9836 -2.9212\n", + "40 0.9824 -2.9176\n", + "50 0.9834 -2.921\n", + "60 0.9852 -2.9288\n", + "70 0.987 -2.9366\n", + "80 0.9854 -2.929\n", + "90 0.9844 -2.9248\n", + "100 0.9826 -2.919\n", + "110 0.9856 -2.9296\n", + "120 0.9824 -2.9176\n", + "130 0.983 -2.9218\n", + "140 0.9818 -2.9134\n", + "150 0.9838 -2.923\n", + "160 0.9826 -2.9154\n", + "170 0.985 -2.9262\n", + "180 0.9824 -2.9144\n", + "190 0.9832 -2.9192\n", + "200 0.9838 -2.9222\n", + "210 0.9868 -2.936\n", + "220 0.9862 -2.9338\n", + "230 0.9814 -2.9106\n", + "240 0.982 -2.914\n", + "250 0.9822 -2.9142\n", + "260 0.9794 -2.9026\n", + "270 0.986 -2.9348\n", + "280 0.9816 -2.9116\n", + "290 0.9834 -2.9214\n", + "300 0.9854 -2.929\n", + "310 0.9834 -2.9198\n", + "320 0.9872 -2.938\n", + "330 0.9824 -2.9168\n", + "340 0.9844 -2.9256\n", + "350 0.9836 -2.9228\n", + "360 0.9848 -2.9292\n", + "370 0.9852 -2.9284\n", + "380 0.983 -2.9178\n", + "390 0.9826 -2.9178\n", + "400 0.9856 -2.9324\n", + "410 0.9846 -2.9266\n", + "420 0.9838 -2.923\n", + "430 0.9838 -2.9222\n", + "440 0.9838 -2.925\n", + "450 0.981 -2.9086\n", + "460 0.9856 -2.9304\n", + "470 0.9858 -2.9314\n", + "480 0.9846 -2.9258\n", + "490 0.983 -2.9198\n", + "500 0.9882 -2.9434\n", + "500 0.9858 -2.9302\n" ] } ], @@ -1519,6 +1598,16 @@ "Since the temperature $T < T_{\\mathrm{crit.}}$, the system is in the ferromagnetic phase." ] }, + { + "cell_type": "code", + "execution_count": 43, + "id": "e2ded424-301f-4743-904f-64af37119b25", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, { "cell_type": "markdown", "id": "38958218-7614-45fc-9360-ba746040e2f1", @@ -1545,7 +1634,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 45, "id": "e20922e8-41e8-4a5c-8c7d-5e62f6527f91", "metadata": {}, "outputs": [], @@ -1563,12 +1652,12 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 47, "id": "98db23eb-3305-4934-9138-955eb29891a7", "metadata": {}, "outputs": [], "source": [ - "stepper = GlauberStepper(temperature=5.0)" + "stepper = GlauberStepper(temperature=5.0, ising=ising)" ] }, { @@ -1581,7 +1670,7 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 48, "id": "346f89ef-4f88-4509-a0a9-d7b38b7e0f40", "metadata": {}, "outputs": [], @@ -1603,7 +1692,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 49, "id": "3d67235c-f72c-4789-a273-667a81c90df9", "metadata": {}, "outputs": [], @@ -1626,7 +1715,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 50, "id": "2c1ed2d8-3394-4e02-861a-6f45f6d79a58", "metadata": { "scrolled": true @@ -1699,15 +1788,21 @@ { "cell_type": "markdown", "id": "be9a1115-ca45-4694-9dea-6b94fffd2b4f", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, + "metadata": {}, "source": [ "Note that the for this temperature, variations in the magnetization are higher, and don't converge to within $\\delta = 0.001$. However, it is clear that $M \\approx 0.48 < 1$." ] }, + { + "cell_type": "code", + "execution_count": 51, + "id": "67de5ce1-de2c-42f7-aea6-502a35298591", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, { "cell_type": "markdown", "id": "a7f7f7c8-4c98-471a-9207-ce0b7f05426d", @@ -1750,7 +1845,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 53, "id": "af5d8dac-6735-4b78-ac81-dd723064757b", "metadata": {}, "outputs": [], @@ -1768,7 +1863,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 54, "id": "9428a125-4892-43c3-bd53-c05f4d46980e", "metadata": {}, "outputs": [], @@ -1786,7 +1881,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 55, "id": "fe7b79a1-152d-48e2-8991-072f54b9674f", "metadata": {}, "outputs": [], @@ -1808,7 +1903,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 56, "id": "30d1b553-35cc-4ac3-aa56-f95a8e174296", "metadata": {}, "outputs": [], @@ -1831,7 +1926,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 57, "id": "efaaf211-451d-41fd-8639-0e6a985464f4", "metadata": { "scrolled": true @@ -1911,6 +2006,16 @@ "Although the failure to converge seems to be a drawback at first glance, it will also help to escape local minima, so for large spin systems, the accuracy should be better when compared to analytic results." ] }, + { + "cell_type": "code", + "execution_count": 58, + "id": "f4484bb4-cef0-4ccb-bbae-873bdf22299d", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, { "cell_type": "markdown", "id": "de8c57ba-4efb-4c4f-b247-2b1d1c45616a", @@ -1937,7 +2042,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 59, "id": "f6e66add-ce3c-4fcf-9d3e-ad92a5ea4167", "metadata": {}, "outputs": [], @@ -1955,7 +2060,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 60, "id": "93e0662e-e212-477d-a89a-ab6077f4facf", "metadata": {}, "outputs": [], @@ -1973,7 +2078,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 61, "id": "89e28e3e-13b3-44db-a15e-70e241fa2bd0", "metadata": {}, "outputs": [], @@ -1995,7 +2100,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 62, "id": "f115d837-8a23-48dc-a3e3-7d27a805f3b5", "metadata": {}, "outputs": [], @@ -2018,7 +2123,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 63, "id": "e9761af8-0618-4310-98c7-a76d5f8e5e95", "metadata": { "scrolled": true @@ -2095,6 +2200,24 @@ "source": [ "As for the ferromagnetic phase, the variation is higher for the Metropolis-Hastings dynamics than for the Glauber dynamics." ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "0ead386d-faa0-4a22-b40a-21990664eebe", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "323782dd-e9d0-48d1-a0b4-8ba778e1e3ad", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -2113,7 +2236,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.13.5" } }, "nbformat": 4, From 29e856862bba1189a7b311dc541c50336da9f84d Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Thu, 31 Jul 2025 17:15:16 +0200 Subject: [PATCH 05/14] Add seaborn package --- environment.yml | 1 + scientific_python_linux64_conda_specs.txt | 4 ++++ 2 files changed, 5 insertions(+) diff --git a/environment.yml b/environment.yml index 47e91df..47dc742 100644 --- a/environment.yml +++ b/environment.yml @@ -20,4 +20,5 @@ dependencies: - xarray - networkx - nbconvert + - seaborn prefix: /home/gjb/mambaforge/envs/scientific_python diff --git a/scientific_python_linux64_conda_specs.txt b/scientific_python_linux64_conda_specs.txt index b8605b6..decf487 100644 --- a/scientific_python_linux64_conda_specs.txt +++ b/scientific_python_linux64_conda_specs.txt @@ -289,6 +289,7 @@ https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab https://conda.anaconda.org/conda-forge/noarch/mistune-3.1.3-pyh29332c3_0.conda https://conda.anaconda.org/conda-forge/linux-64/numexpr-2.10.2-py313h5f97788_100.conda https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hac146a9_1.conda @@ -346,6 +347,8 @@ https://conda.anaconda.org/conda-forge/linux-64/pango-1.56.4-hadf4263_0.conda https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.9.1-h6ac528c_2.conda https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.25.2-py313ha87cce1_1.conda https://conda.anaconda.org/conda-forge/linux-64/sdl2-2.32.54-h3f2d84a_0.conda +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_3.conda +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.5-py313ha014f3b_0.conda https://conda.anaconda.org/conda-forge/noarch/urllib3-2.5.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/xarray-2025.7.1-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda @@ -354,6 +357,7 @@ https://conda.anaconda.org/conda-forge/linux-64/librsvg-2.58.4-he92a37e_3.conda https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.9.1-py313h7dabd7a_0.conda https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_3.conda https://conda.anaconda.org/conda-forge/linux-64/ffmpeg-7.1.1-gpl_h0cf71c1_707.conda https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.12.0-pyh29332c3_0.conda https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.10.3-py313h78bf25f_0.conda From 2c1a2db42d76aa210cfde35df2476271ebee5320 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Thu, 31 Jul 2025 17:32:06 +0200 Subject: [PATCH 06/14] Update for newer versions of numpy and Python Benchmark results depend on the versions of the software tested. --- .../numpy/to_numpy_or_not_to_numpy.ipynb | 89 +++++++++++++++---- 1 file changed, 70 insertions(+), 19 deletions(-) diff --git a/source-code/numpy/to_numpy_or_not_to_numpy.ipynb b/source-code/numpy/to_numpy_or_not_to_numpy.ipynb index 90f3d05..d280124 100644 --- a/source-code/numpy/to_numpy_or_not_to_numpy.ipynb +++ b/source-code/numpy/to_numpy_or_not_to_numpy.ipynb @@ -12,7 +12,9 @@ "cell_type": "code", "execution_count": 1, "id": "25528046-848b-44d4-9df3-eb66af4d6e4a", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [ "import functools\n", @@ -165,7 +167,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzNUlEQVR4nOy9eYxr53ke/hzycN/J4ZAzd5a7L5KuFsuyKsWx3diWEdQ1gv5hAw6CFDWKtE6MCrbh1M0/TtFKcILGbWH8AqQI6iBB6hZI3TiAm1jNchVbXq6uJEu668ydfeFwuO87f39M3lcfzxxySA5nhhx+DzCYGfIs33eW9/neXWk2m01ISEhISEiMCAwnPQAJCQkJCYleIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkcKLE9f/9f/8fzp07B6vViqeffhp///d/f5LDkZCQkJAYAZwYcf3P//k/8eKLL+K3fuu38Oabb+Lnf/7n8Yu/+ItYW1s7qSFJSEhISIwAlJMqsvvss8/ife97H37/93+fP7t27Rp+6Zd+CS+//PJJDElCQkJCYgSgnsRJK5UKbt26hX/7b/9ty+cvvPACXnvttX3bl8tllMtl/r/RaCCRSCAQCEBRlCMfr4SEhITEYNFsNpHNZjE9PQ2DoTfj34kQVywWQ71eRygUavk8FAohEons2/7ll1/Gb//2bx/X8CQkJCQkjgnr6+uYmZnpaZ8TDc7QakvNZlNXg/rqV7+KdDrNP9IPJiEhIXE64HK5et7nRDSuiYkJGI3GfdpVNBrdp4UBgMVigcViOa7hSfwDpBlWYpwhe+weD/qRMyeicZnNZjz99NN45ZVXWj5/5ZVX8Pzzz5/EkCQ0kKQlMe6Q78Dw4kQ0LgD44he/iF/5lV/B+9//fjz33HP4gz/4A6ytreFf/at/dVJDkoB8WSUkRND7ILWv4cKJEddnPvMZxONx/Pt//++xvb2Nxx57DN/73vcwPz9/UkMaa0jCkpBoD0lgw4UTy+M6DDKZDDwez0kP41RAEpaERO8YQbE5tEin03C73T3tI2sVjjEkaUlI9Af57pwsTsxUKHFykC+dhMThIc2HJwdJXGMESVgSEoOHJLDjhzQVjgkkaUlIHC3kO3Z8kBrXKYd8mSQkjg9S+zoeSOI6pZCEJSFxcpAEdrSQpsJTCElaEhLDAfkuHg0kcZ0yyBdFQmK4IN/JwUOaCk8J5MshITG8kKbDwUJqXKcAkrQkJEYD8l0dDKTGNcKQL4GExOhBal+Hh9S4RhSStCQkRhvyHe4fUuMaMciHXULi9EBqX/1BalwjBElaEhKnE/Ld7g2SuEYE8sGWkDjdkO9495DENQKQD7SExHhAvuvdQRLXkEM+yBIS4wX5zh8MGZwxpJAPr4TE+EIGbXSG1LiGEJK0JCQkACkL2kES15BBPqgSEhIipEzYD2kqHBLIh1NCQqIdpOmwFVLjGgJI0pKQkOgGUlbsQRLXCUM+iBISEr1AygxJXCcK+QBKSEj0g3GXHZK4Tgjj/uBJSEgcDuMsQ2RwxjFjnB82CQmJwWJcgzakxnWMkKQlISFxFBg32SKJ65gwbg+WhITE8WKcZIwkrmPAOD1QEhISJ4dxkTWSuI4Y4/IgSUhIDAfGQeZI4jpCjMMDJCEhMXw47bJHEtcR4bQ/OBISEsON0yyDJHEdAU7zAyMhITE6OK2ySBLXgHFaHxQJCYnRxGmUSZK4BojT+IBISEiMPk6bbJLENSCctgdDQkLidOE0yShJXAPAaXogJCQkTi9Oi6ySxHVInJYHQUJCYjxwGmSWJK5D4DQ8ABISEuOHUZddkrgkJCQkJEYKkrj6xKivWCQkJMYboyzDJHH1gVG+4RISEhKEUZVlkrh6xKjeaAkJCQk9jKJMk8TVA0bxBktISEgchFGTbZK4usSo3VgJCQmJXjBKMk4Sl4SEhITESEESVxcYpZWIhISERL8YFVkniesAjMqNlJCQkBgERkHmSeLqgFG4gRISEhKDxrDLPklcEhISEhIjBUlcbTDsKw4JCQmJo8Qwy0BJXDoY5hsmISEhcVwYVlkoiUuDYb1REhISEieBYZSJkrgEDOMNkpCQkDhpDJtslMT1Dxi2GyMhISExTBgmGSmJS0JCQkJipKCe9ACGAcO0kpDYj6O+P81m80iPLyFxWqAoylC8L2NPXJK0jhd61/uk70E352/3sg7DSywhcZwYBvIae+KSODoMI0n1i3bjbvcSn/SLLSFxmjHWxDWqQnSYYTCMn9u0G4JuNpuSzCRODU5a6xpb4pKkdTiI109ey4OhKIoumXX6X0JimHGS5NXz8vjVV1/FP/2n/xTT09NQFAX/5//8n5bvm80mvva1r2F6eho2mw0f+chHcPv27ZZtyuUyvvCFL2BiYgIOhwOf+tSnsLGxcaiJSBw9SPhqfyT6Q7vrKa+rhERn9Exc+XweTzzxBL75zW/qfv87v/M7+L3f+z1885vfxM2bNxEOh/Hxj38c2WyWt3nxxRfxne98B9/+9rfxgx/8ALlcDp/85CdRr9f7n0kPkEKhO5AANRgMMBgMUqgeMbTERdddXnuJYcVJPY9K8xC6nqIo+M53voNf+qVfArCnbU1PT+PFF1/Eb/7mbwLY065CoRC+/vWv49d+7deQTqcRDAbxx3/8x/jMZz4DANja2sLs7Cy+973v4ROf+MSB581kMvB4PH2PWaIzpIAcbkgTo8Sw4TDPYDqdhtvt7mmfgXrSl5eXEYlE8MILL/BnFosFH/7wh/Haa68BAG7duoVqtdqyzfT0NB577DHeRotyuYxMJtPy0w+kMG4PcZUvr9NwQ08zk4sNiZPEcT97AyWuSCQCAAiFQi2fh0Ih/i4SicBsNsPn87XdRouXX34ZHo+Hf2ZnZwc57LGFFHynB9K8KDFOOJLYZb3oqYNenk7bfPWrX0U6neaf9fX1Q49pnCGDAMYD7bQyec8ljgLH+VwNlLjC4TAA7NOcotEoa2HhcBiVSgXJZLLtNlpYLBa43e6WH4neIbWr8YZe4Id8DiRGEQMlrnPnziEcDuOVV17hzyqVCm7cuIHnn38eAPD000/DZDK1bLO9vY13332Xtxk0xvnllL4riU6QUaMSg8RxPTs9JyDncjksLi7y/8vLy3jrrbfg9/sxNzeHF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+HR/72McGN7N/wLi+hFIASfSKds+LjFqU6AXHkZjcM3G9/vrr+Mf/+B/z/1/84hcBAL/6q7+Kb33rW/jKV76CYrGIz3/+80gmk3j22Wfx/e9/Hy6Xi/f5xje+AVVV8elPfxrFYhEf/ehH8a1vfQtGo3EAUxpvSMKSGAT0KqOIwkiSmcRJ4lB5XCeFbvO4xkmAS8KSOE5IEpM4CN0+F/3kcY1trcLTBElaEscNPY2s0Wic1HAkxgynlrhOuyCn+Z32eUqMDqgzgNTGJICj9XWdSuI67cJcalgSwwwZ5CFBOCryOpXEdZoxjv2uJEYXWpOi7EsmMQicOuI6rZqI1LKOFwdd627uRTcCetyEuPgcS5PieOAotK5TR1ynEZK0jhZ613YQ17ufY4yTANe7PuM0f4n+caqI67QJd0lYR4Nhuq7acYj/j5NZTRtsRPMel/mfdgxa6zpVxHVaICMGBwe9sO1RwTib1fQKdUtIEE4NcY2aUOqE0zSXk8Aok1U7jGuknriIGycN9DRikFrXqSCu0yScTstcjhPjpqHqReoRTrNg19NAT/N8TyMGRV6ngrhOAyRp9Y5hJ6xux3XYF3kczWrjOGeJ9zDyxDWsQqsXSNLqHsN8rXoJoRcFbbvP+x2DqJWcdoGuNSUCksSGHYPQukaeuEYdwyyIhwWjrlmJ49er66dHYoMQvnS+cRHoUgsbH8gyDCcISVqdITY2HMbrdNC4xAaeBoMBRqMR58+fh9FobGncqFcNZZBzHvbrOGiI13Uc5juOkMR1ApAvVWeI12cYr1E34xK3ob/NZjNsNhscDgfMZnMLYbV7Ho6CwMbp2aP5jtOcRwGHvRfSVHjMGFZhfNIY9uvSy9j05qIoCi5duoRgMIhGowG/34/XX38d5XKZTVqdbP+DNCGKxxvkMYcd4zjn0wpJXMeIYRfOJ4FRuCaHIS3RTLi6uopMJoMzZ85gcXERzWYTBoMBzWaTfV4Gg6FjX6tB5sKMo09I5oWdDkhT4TFhFAT0cWGUzDeHJS2j0QiLxYLp6Wkmqnw+j3w+33L8XpKmB/0sjaMJERh+k7REe0jiOgbIF2MPoxQg0Os49UiLfiYnJ6GqKiwWC8xmM4rFIhwOB37hF34BqqruE54neY1G6R4NCuMWvHIaIE2FRwz5MozWNehnnO1IC9gzv0WjUdhsNthsNkxOTiKdTmNychIPHz7EI488gp2dHUSjUTQaDTYbduPTGrTfS3vcozj2MGMcTaejCqlxHSFGSWAPGqNofho0adHfNpsNExMTUFUV6XQas7OzcDgcmJycRDweR7VahclkgsvlwszMDMxmc0/jOarrO2r3b1CQGtjwQxLXEWFcH/pRfOn7HetBpEWw2Wy4dOkSVFXFtWvXEI/HkUqlUKvVcO7cOTQaDTzyyCO4evUq6vU6mw+1xzloLEeFUbqXg4S4+JIYLsg7IjEQjCJhAf0LfC1JiZqJVuOKx+N47bXXUCqVcPPmTcTjcQSDQUQiEWxtbcFqtaJQKODixYuo1WqoVCot+w8LeY1zIMM4ap7DDOnjOgKM08utp2GMCgZFWu2CMsRzTE5OwmKxYHd3FwaDAXfu3IHRaEQ8Hufow5/+9KdMWnrjHAafy7j6v4DxnvuwQRLXgDEupDXK8zzMuEWzkVbLVBQFHo8H9Xod5XIZ9XqdP9/e3obRaITRaITdbkc4HEaj0YDRaEQkEkG1WsUzzzyDdDrdccwHCUxFGWyn2U7nURSlY87ZaYS4IJF5YCcHSVwDxCgL824wytoVcLhx62lWBoMBZrOZBZjBYMDMzAwqlQp2dnZQLBZZsNXrdQDgZOR0Oo1IJIJKpcLfbW9vI5fL7RuvWFlD/L/TWI9LoFIC9TgKcKmBnRwkcQ0Ip5m0Rp2wgMGYBbWfWywWTE5OIpPJIBgMolwuI5FIoFgsolarcRUM8RgGgwGlUgnpdBrVahX1ep1D4BcWFvaRgJaEhpG8hsmUedyQ5HUykMEZA8BpJa3T4JA/TMSgnkNe/LxWqyGVSsFms8Hv98Pr9cJsNuORRx6ByWRi7YpyuGw2G65fv456vY5ardax3YhWu9Ob0zDdk3ENnSechndllCA1rkPitD2o46xd0b7t9tczF6qqCpfLBZPJhHK5jKmpKQSDQaiqimq1CoPBAI/Hg2AwiFQqBZ/PB4fD0RI5CLxnStSer9ls6mpP3az0j1PrEs9JGEcNZJy1z+OEJK5DYpQFvIjTQFjAYJKIuz12o9Fgs+DOzg4sFgu2traQyWTYVEircFVV4XA48Oabb6JUKsFoNMLtdmN6ehqrq6tIJBL7HP/ac3fSzCR5DRfG2fd3HJDEdQicFiF/WubR7z4H7d+J2Ii0XC4XFEVBOp2Goijw+/1IJpNQFAWlUgnRaBR2ux21Wo2jCX0+HwwGA1RVhdFobBF0VP6pG+IZRvKi8wLjS16SwI8Okrj6xCibCEedsI7KFNgPms0mqtUqMpkM8vk8DAYDrFYrh7vncjk0Gg3U63WUSiU0m02EQiHU63UUi0UkEglUKhWoqgqr1QpVVRGPx9sKuuPq1zUoDOu4jguSvI4GMjhjjDDqDuRexy0GMfTbRkXvnNooQTouhcRns1lUq1UYjUaoqgq/34/z58/j2Wefhd/vh8lkwtTUFI+LWp/Mzs4iGAzCZrPBaDTysenvg+bfKUDiJO/3uAduAPIaDBpS4+oDoyT4R027GsQ4BzXnTqHwJIjsdjtUVeVgC6PRiImJCVQqFfh8PpTLZXg8HszPz+ONN97g7XZ2dlCr1eB2u6GqKvL5PHZ3d1GtVmE2m1Eul6EoCux2O+r1OoxGI1KpFI/hoKrx7fxhJ7nqH3ftC5DXYFCQxNUHhp0EevHfnCQGObZBE3Qn0qLfBoMBJpMJRqMRjUaD/VLVahWKonDfrXg8jlgshieeeALb29soFotcJT6ZTKJUKkFRFJTLZVSrVdRqNaiqCrvdDrfbjXK5jGQy2dIdmUionQBs10l5WMgLGF/hTc/WuFUdGSQkcfWIYa0UPYya1VGP5SgIuptwePJHeTwe+Hw+FItF+P1+PHz4EAAQjUahqircbjdmZ2exs7ODSCTCGpOqqlwaymKxoFKpoNlsIhwOI5lMIpvNwmAw4PLly3C73dje3uZAD3HFTv+3ywdrF9kmyWs4ICMP+4ckrh4wTKRAOErCGsb5Eg7SiIDehOJB11FLkkajEaFQCEajkcPbrVYrAMDtdiOTycBsNsPv9yOTyUBVVdhsNng8HlSrVeRyOdjtdmxtbcHpdKJQKMDj8XBlDQBIJBKoVqvI5/Ow2+2YmZnBw4cPUavV9hGYiG7mfdLkRWMgnPRYTgrSdNgflOYIXrFMJgOPxwPgeIXrMGlbR2EaG2a0066Ow98oXmvRROh2uznEvVQqwWw2Y35+HnNzc/jJT37CtQypNBQATE9Pw+FwYHl5Gel0Gvl8Hs1mE/l8HlarFc1mEzabDdvb2wAAs9mMUqmEmZkZLC8vI5lMsompU+UNcSXfaVU/LK//uGsene7laQXNNZ1Ow+1297Sv1Li6xLAI9kEK6mGZ00HoFNnncDhQLpfZvwQc/uXv5rrUajUuiFur1VCv11Gv17Gzs4PLly/D6XQCAHw+HwqFAq5cuYKtrS2USiU4HA4+D2ls9XodqVQKiqIgn8+jWCyi0Wggm82i2WxifX2dq82LNRAPgqiRDbNQHIUxHiWk9tkbJHF1iZMW8oPQsE56Dr2im6g+h8PB5ZXI/FUsFg88Zq8rfL2xVKtVpNNpbleiKAoqlQru3bsHAC35WTs7O2g0GojH48hkMigUCmwS9Pv9cDgc2NnZYRKjwrv0O51Oc1komjuNX1VVjmykedFYKWikHTEMg8mQMO7kBchr0C0kcXWBkxL4g9CuRpGsxN9632sj+y5fvozd3V0mA20VCgLlRXm9XmQyGVSr1a4I7KCADafTiXK5DAAolUpYXV2F0WiEyWRCPB5HrVZDNpuF3W5nojCZTGg2myiVSmg0GjAYDKjX6zCbzTCbzchkMkw6ojZJhEU1ENPpNCwWC8LhMBKJBDKZDPvbAoEA4vE4EolEX+HzJwEpuOU16AbD47QZUpxEzhad87DaVTvz2iCOfxQ4aFxa0gKAXC6HnZ0d9j+KNQKpaSMl8FK9QNJQxOThbs6phd1ux8///M8jGAzyOQC0aEpEQJcvX4bf70etVkOxWES1WkWlUmGtrFarwWQywWq1IhgMIhQK8dhpHDRW8rGFQiG4XC4YjUbu/WWz2TAxMYHLly8zGXZzz4fpWRDnOq4Y1nd0WCA1rgNwnA/OUZgDD3r49VZ3x7nS6+Xl1AvQoNYiVqsVjUYDVqsV9Xqd24pcvHgRi4uLyGQycLlcuHjxIhqNBra3t5FKpdg/RZF6er2v2o2lUqlgc3MTlUoF4XAYDocD6+vrAICpqSkUi0UYDAbMz89jcXERVqsVhUKB/WHVahWNRgOxWAwAMDExwbUM/X4/dnd3Wbsi85/D4YDFYkE2m8Xu7i63UVlaWoLFYoHJZIKiKEgkEtjd3UU+n9e9hsOYoKzFuGse0u/VHpK4OuC4SesoCEuMhOy2/5N2+6NAr/PViyS0Wq1sFnS73ajX69wyxGw2I5VKYX19nbWaZrOJnZ0deL1eOJ1O1Go1eL1e7O7uIpVKdTVf0gSMRiPMZjPXJpycnES5XIbb7WY/lcPhgMPhQDQaRaFQQCqV4v5cFBWbTqeRSqXQaDQQiUQQDoeRz+eRzWZbfFp07nA4DJfLheXlZaiqCovFgnQ6DVVVuR9YoVBgk6G4GBqVMHkR/fokTxPGncD1IInrhHGUWhYJ1Q9+8IN49dVXW5oXin6Tg8Y0qAz/fslZbz+j0QiHwwGDwYBqtYpwOIx4PI5Go4GJiQmUSiXYbDbkcjnYbDaUy2UYDAY21ZVKJXi9Xr4m3axuaRFgNptx7do1xGIxTE1Nwe124+HDh0ilUqhUKkxCTqcTLpeLq2GQL4vO4fF4OHqQfiKRCDweD6anp5FIJFoWHoqisKZIY7darS2hxJubm8jlcqjVam3ncpAgHEZBOYxjOk6M+/y1kMTVBkdtXz6qwAvtcRVFwZ07d3D16lVEIhE0m01YrVZsbm625AN1eiFEYSviIIf/QWPtBnrzURQFZrMZjz76KDY2NmAymRCNRnHu3DkUCgXMzc3h/v377M+y2WyIxWLs55qcnMTt27eRyWRgs9ngdrtRKBQ4MvEgE2G9XsfCwgJsNhvW19cRCASgqnuvEhEUABSLRezs7KBYLHLwhtvths1mQzqdxs7ODur1OhqNBvvmLBYLB41MTEwgl8shk8mg2Wxy6H+pVMKHP/xhPHjwgI+pqirW1tb43GSGPAw5Dav2Na6lkiR5vQdJXMeMo9CwxM+1xzeZTADAJYgymQzXxiPBpCes9cyK/Zr2+kU7ElEUBdVqFe+88w6AvVwpk8nEScCUrFupVFCv15HL5WCxWNgkR5oZzY1ajxwkqMVrVqlUMD09jUwmg2AwiEgkwjULycRXLpfZf0XzSKVScDgcnHTcbDZ5+0ajAZPJhFqthocPH7LW7HQ60Wg0MDs7y/lcN27cgMPhgNPpRKVS4Xtqs9lgMpk4JaCbxcUokRcwnGM6Lkjy2oMkrjY4Cm3rqLSsTigUCjAajUgmk7BarahUKmw26xSQoSXAdjXvjgp610r8v16vI5vN4syZM8jn8zCbzUin0zCbzXj11VdRLpfh8/mwtbWFfD7PQRhieLkYji6eo515TWtOJI3p/v37XPVdhNgMkiIYgT2/VqFQ4OPQtsBe1XhxQSH6tSYmJrC7u8tFeL1eL1wuF1KpFNxuN5tB9QJNDoNhI4pxF97jPn9AEpcuRpG09ExqJCjL5TKHYJNANBqNcLlcyGazmJ+fRzQa5UoQBFrtU6CAKMCOO3BDT1NVVRU/93M/h7W1NaytraFcLqNQKHDtv2q1imq1CovF0qLZEGlpybhXbZiiBnO5XEtYvVabFaGqKlwuFxOXdmGgvb7k18rlctjd3UUgEIDVasXu7i42NzeZEOPxOIrFIlwuF1wuFx48eMB+LnF+7RYf3eSydbPdcWHcgzaG7X4cN2Qelw4GTVzHoWnp+YGMRiPnGBWLRbjdbjgcDs4Rmpyc5N9nz56F2+1mQTg9Pc1tNZ577jldwXwcBN/pPM1mE3/913+N27dvI5fLsebl9/uhqipyuRymp6dhs9nw1FNPwePxwG63t+yvPXevEImmHRECYP+Vw+FAtVplf5vP54PZbNY9FmmH1WoVqVSKq8ZPT09z0AdFTJLGlc1msbW1xf28uplfrybgo9S0e8Wwjec4Mc5zlxqXBoN+EA5bmLeb8eidw2QywWazMYF5vV7Mz8+jWCxyZfNsNgubzcY19Gq1Gpcvqtfr8Pv9KJfLePvtt/et1kXtZFDOcu089ASveN5arYZkMglVVREKhaAoCgqFAh48eMA+q2q1CqfTyS1ECoXCocbciUTF76mrsWhCdLlcmJycRLFYRC6Xg9lsxjPPPIO3336b87+0NRdFra1SqSCZTCKdTiOXy6FarUJVVZjNZqytraFYLHKOmHbM3WhUvZbAEud9khhn7WuY7sNxQmpcR4jj8GfpCXcKg/d4PHC73QiHw1zBnAjMZDLB7/dzEVix8oLX60UgEMD09DQHBlBOkN6YuqlA0Wn8olmz07z0/iZhNTc3B5vNxvOkwAwKxEgmkyzYO13Dg8yx4pjF84vjUZS9RGG/3w+j0chVOkqlErLZLAqFAhwOB+x2O+7cuYN8Pg+v17uPsMRjkvZVqVSQy+U4jL5arXJ1DoqY1BJ8N+h39T5MK/5x1UDGcd5S4xIwqAegV6FxmPO0E/D5fJ4rjvv9fly7dg2VSoXNg9VqFclkEuVyGQ6HA16vF9FolAmEBK2iKHC5XKhUKkin012FWGvRznymt32777XCWFxlq6qKxcVFHjMl/6qqikAggFwu1+KrO6hqRC9mWb3vVFXF/Pw8MpkMd0im6hyFQgFTU1Mcrl6tVmE2mzE5OYlYLNbWh0jkFY/HWyJBadzU94vy25xOJzY2NnSJutPY+1m5D9OqX7uoGRcM0z04DkjiGjCOw5/V7X7VahVGoxG5XA737t1jx77X60WpVEIqleLqDwC4Wy/VzqPK5tS512Kx8PE6mdq69a1ot2lnGtRGQIrHVBSFTWii1kfjI83z3r17HFUo7i+SlSi4u4ksbPcZhbP7/X5MTU0hEAhgfX0dJpMJU1NT2N7exmOPPcYRgMVikSthlMvlfWMQx0gRg6Ifk+oWAoDT6YTNZkMkEoHVamUTcLfol7xoX3G8JwVJXqd/zpK4BAyCcI6LtLoJYqAW8bVaraVFfCKRQDweh8Fg4EoPpJ2Qoz8UCqFcLuPhw4dwu90IBAJIJpNIJBJ8vkG8IKIQbmf2FJNy9fYH0EJIBoMBhUIB5XIZ8Xgcfr9/H9Fqz9WNtnXQd+L3BoOBg2FisRhXs6BgivX1dQ7Fz+Vy+3w0ev4avfmLJkQAXPIK2POpUeJztxiE8BsW4hgnQU4YlzlL4hoiDIK0tMKThCWwpwlsb2/DZDK1tIovFArsB6KyQ5VKBYlEggvW7u7uwul0IpPJDEQwieOlSDlK3k0kElzBvdls4vr160gmk7BYLFhcXGzRIPTGQmY1g8GAK1euYHl5ue1YxXGI5KWqKpsV2zn9Oy1Uzpw5A4/HA4/Hg52dHW52mclkYLVaYbFYkEwm4fF4oCgKstksqtUqj7Pb60r7VioV+P1+DvIgTaufIJRBCr+TFqQnff6TwDjMWRLXP+Cw0X/HET1I22lJqp1prlwuo1arYXJykn0qhEqlAofDwblA1WqVBTURHB0rn88jGAxia2tLV3PpJxpNO5dMJoO5uTlsb2/DZrNhamoKLpcLS0tL2NnZQaVSQSwWg8lkautn0/OP/ehHP2JC1I5V738yv50/fx6JRALpdJpLQXWak2jWpJJauVwOs7OzqFQqfP2pezH55K5du8aFeUulkm4uVztQKxUq+BuNRtn0S9rcYaInByn4TlILGxYN8Dgx6Ps3bJDENQAcdRCGeB5tgILe93ovqtfrRS6XQzweh9lsRqVSQTQa5R5RsViMfUDaiDa3280BHeK5ug1m6GZeFC335JNPcrmjbDbbUkeQql+080+JY1EUBdPT01wnkNp76O0LgPOqqNp8rVaD2WyGz+drCZrQGzstWhRlr2L9uXPnOPBlcXERhUKBi/kWCgUu9WQ0GvGTn/wEJpOJfVu9EJff74fT6UQqlYLL5YLZbMbGxgZrWocVXEcl/E6CSCR5nS5I4sLhBO9JaVpak6D2WFpBbjKZWPhT/g/Vxnv22Wdx48YNxOPxFvMYIRqNIhKJ7ItQo6CJfiPRaGxGoxFOpxOlUgnxeBzPPPMMUqkU6vU6lpaWWgSxHlmJ/xOR2O12nDt3Dnfv3mVTqd71Ef8/f/48DAYDtre3WQMqFAqsJWlB5wHA/sN6vY6trS2Ew2FMTk5ia2sLu7u7+8YPgO8F0Jp0fBDoGNSHjMhcW85K71i9CLPjMDkdN6GMgxmNcJrnKonrEDiOQAw9TUIkKvLHUC6VaJIixONxpNNpPsbc3By39gCA1dVVeL1eZLPZlpU/gJ40gF7mrSXher3O0YzBYJDDxiORCFRV5aRdPcKhaEeqFqEoCiYmJlCpVPD444/jpz/9qW4YPP1P2tbu7i7sdjucTifm5+exs7ODZDLJhE/Xi8LRqV6gqqpIpVJsnqP8sWw2i52dnRYy0Wqz4t/dBGOI35XLZWxubrakPXTyyfWD4xR+7QJmjuI82mCY04rTSl6SuPpEJ8d8t/sfBL2kXPJniJpHMBiEy+XC1NQU3njjDeTz+X0rWVqVGwwGpFIpTExMwGazYXNzE++++y6TRjtzVSdTWafv9bbXklaj0eCkXJvNhh//+McwmUxYX1+H2WzG3Nwc1tbW9s2LrhHV/6N8LTIpUjfgmZkZZDIZxGKxllJIosb3wgsv4M6dOyiXy5iZmYHNZsP09DTnXj3++ON4/fXXmTzPnTuHRCLB1UYsFguAvaLGuVwO2WwWRqOxbXsRrdAUtaODriV9T1Uy6Fhakmx3/bs5h3afkxB8Ry10T6tQHwf0ZOd6+eWX8cwzz3Dpml/6pV/C/fv3W7ZpNpv42te+xjXiPvKRj+D27dst25TLZXzhC1/AxMQEHA4HPvWpT2FjY+Pws+kDhyWgfs/Z6TtRqxI/J0c8VQWfmppCMBiEqqrIZDJ48803OXdLz99FyOfzqFarKBaLyGazyOfzSKVSXD3joLF341s7aF89U1+1WsXu7i4ymQw2NzcRi8WQyWSwvb3dEoZP2iWRFvXUun79Oi5cuMBmx8XFRezs7HArEdJEtdqroii4ceMGyuUyrFYrgL2cNo/Hg3PnzsHlcuGNN95gE6vFYkEul+Oox1wuh2vXriEUCrFZkULUtSWcRHMeod3fehAXFtpjif3VBo3jfke05z6q91TvXTttOAkZd9To6Y7duHEDv/7rv44f//jHeOWVV1Cr1fDCCy+w4xsAfud3fge/93u/h29+85u4efMmwuEwPv7xjyObzfI2L774Ir7zne/g29/+Nn7wgx8gl8vhk5/8ZE9Z/ieJwzwI7fYTX852xADsaRjUc+rChQvci4qSWfWOpael5PN5JJNJXrFrBWw/82o3drEklHY+9JtCxWu1Gnw+H4fx+/1+DjzQnoeOa7FY4Pf7udGiqqrcn2tjY4P7cYn7a4sGU5AK+Z0ikQhSqRRSqRSTo6IocLvduHLlCnw+H8LhMHw+HxRFwdbWFpaWltjXpae56l3Xbk2x2nukRS+k1c+zOyzCr9NzPYjjnlactvkpzUMsz3Z3dzE5OYkbN27gQx/6EJrNJqanp/Hiiy/iN3/zNwHsaVehUAhf//rX8Wu/9mtIp9MIBoP44z/+Y3zmM58BAGxtbWF2dhbf+9738IlPfOLA82YyGXg8nr0JDMDP1Osx+l2h6Ql1vc+124jbmUwmeL1ejl6bmJjA8vIyMpkM4vF4i7OfxtpsNllQUykkKo0khslrf4vH0RO8vYZatyNR+o40KI/Hw20/zGYzXC4XarUadwIWzaQOhwMTExNcbJZ6j1FzRTKnUbK1dh52ux0XLlyA0WhEPB6H0WjkvmUulwu7u7tceDgej7NZ8uLFi/D5fLh16xa3hNFqPweRVrfmwYN8MeJx2t2Tg0yVvWDYfEODHMuwzW3QGKbu0XSd0+k03G53T/seSkdOp9MA9sJyAWB5eRmRSAQvvPACb2OxWPDhD38Yr732GgDg1q1bqFarLdtMT0/jscce4220KJfLyGQyLT+DQq+kNYjVajerRlErED+r1+vI5/MoFApIJBIcNUeak6iZWa1W2Gw2Dt6wWCzwer0IhUItnXr7nWMv5kE9jYs+E5ssNptNpNNpDs0n89zZs2d5HuK1K5VKSCaTKBQKKBQKnNR75coV2O12fjn0tFEis5WVFa5uQc9XrVbjfKhisQiv1wuHwwGXywUAWFpaQiqV0q1M0UuQxWGgjRzs1W91GKvBMK3eB6mB6b13pwmnxSza9yyazSa++MUv4oMf/CAee+wxAEAkEgEArptGCIVC/F0kEuH8mHbbaPHyyy9zFQKPx4PZ2dl+h33s6Mcf1M7kRiD/VDqdRjQa5VqCAFoSUt/3vvchHA7D7XbD5XLB6XRypJ6e2akbDbDdXDr9aH1uIqmaTKZ9leX1ou1KpRJUVeXjiWSnKAqbGimROhaLtQRG6C0cCFQaSowepPwo+v7BgwfIZDLI5XJwuVys4VJ7kV78VN1uI87/MMdoh8MI52EjL8KgSOwozJHDgtNAXn3P4Dd+4zfw9ttv43/8j/+x7zvtzdYKDj102uarX/0q0uk0/1BZm8OiH22rH21ET+votE8nsiOB3Ww2kUwmWdBSUAZ9bzQasbm5iStXrnD5IbPZjFwux2ShvQ7ttMKD5t6OsIiggsEgmyjp58yZM+yn8/v9+86lPe4/+kf/CFNTU5iYmIDFYmnRLEulEtcCBPaiBLe3t1kbErfVe2kp6hLYsxA4nU44nU584AMfgMPhAPBeTcBisYjV1VVUKhU23VL0Ih1L/H0YdCKto+qB1guGXTs5LPGcZvIa9Tn1FQ7/hS98Ad/97nfx6quvYmZmhj8Ph8MA9rSqqakp/jwajbIWFg6HuZq3qHVFo1E8//zzuuezWCzsXD9J9EJa4t/dPvx624gkYDQa4ff7YbFYsLu7y4LNYDAgGAwinU4jm82i2WxyUu/y8jIqlQr7d3Z3d2G1WlEsFrmUES0atL8JvQphLQmdOXMG+Xwe29vb3LaeNJd4PM55WKLvikiG+oMtLy/D4/FwPprRaGw5JwnycrnM6QJ0baipZDuNUtTiqOkkaf9Wq5U1OkK9XofRaMTu7i6CwSAURcH9+/ePLbjooCCPXtEuwbpb6GnKw4TDjm/Y59cPRn1OPS23ms0mfuM3fgP/+3//b/zN3/wNzp071/L9uXPnEA6H8corr/BnlUoFN27cYFJ6+umnYTKZWrbZ3t7Gu+++25a4Rgl6pGU2m+F2u7k3EzUXtNlsLDA7aVl2ux3BYBButxtGoxGFQoGDCKjsT6lUYq2GVtHJZLIloq5YLALYWwiIpZNEUx1FLRIx6GldB2mNBDru+vo6crkcAoEA3G43B1NkMhmUSiUkEol9/i6n0wm3281FaCORCDY3N5mAtZodnTcYDGJ3d7dlPHSNqfI9aWx6ZOb3+3nbSCTCEbNiCDqwp9VduHABOzs7WFlZacmBO0q0O8dhNYPDak7Drn0Bg/HrDfP8xgk9aVy//uu/jj/90z/Fn//5n8PlcvGq1OPxcLjwiy++iJdeegmXLl3CpUuX8NJLL8Fut+Ozn/0sb/u5z30OX/rSlxAIBOD3+/HlL38Z169fx8c+9rHBz3BA6FVjEh90m82Ga9eu4c6dO7xaN5vNuHbtGh48eIBEItG2PI/BYEC9XofNZuNIykgkwn2YJicn2QeUTCYBvCeEyuUyvF4v8vk8B3BQcixpIdqxK4qC2dlZZLNZJhQx+rBb0lKUvcoSwWAQlUoFdrsdU1NT8Pl8iEQi2NraYoIgP5TYxJLI6/LlywCAlZWVFsEh+reMRiO3ZiFtUitkqMoFXXvRL2i1WtFoNOByubjlCxER8F6EoBh1abVasbCwgEqlgkKhoOsvFDXIQRHaYbSGbnL0BnEeEcO4ou9X2xiFufWCUda6eiKu3//93wcAfOQjH2n5/L//9/+Of/7P/zkA4Ctf+QqKxSI+//nPI5lM4tlnn8X3v/99jsYCgG984xtQVRWf/vSnUSwW8dGPfhTf+ta39pl/Rgl6pEV/12o1LC4u4vz581zhoNnc64vl8/m4wKwo6LSgcOsrV660tMAIBAJcOFfULoC9UPJarcb+n3bBGMAeEZw5c4YTfVVVhcPhwJkzZ7heoFYYd3M9CoUCLBYLl22iz81mM4LBILLZLGKxGID9hW8tFguy2SxKpRK8Xi/OnDmDd955p+X6qqoKp9PJ5tGJiQkOf0+n03zM2dlZmEwm+P1+RKNRNJtNFItFGAwG+Hw+JvVGo8GVN2hMWhNgs9lENptFJpPpqphtv8R1EgJlEML5JAW8+GwcpAEPgsBGUeifBhwqj+ukMIg8rl7U/l7MY3qmNZfLBZ/Ph8uXL3PpISIUu92OQqHAWpD2uGKwhdlshslk4uoO1WoVJpMJqqrCbrdzNYdAIMACeXFxEcVikcPl9YroUqFY2tdmsyEWi3Hlh0aj0VIoFji4BBRpfSaTiZOkqepEqVSCyWRCIBBALpfD6upqy9ypeK3dbuecKmqISdoQnWtychLve9/7kEgkkM/nEY/HOSiDtCqaFzXITCQS2NraQrVaxezsLIrFIjY3N7mtiFjXUC/kXPsDtCYA610j7TXXE6ra/7XPw0GCuJvv+8Egc396jb4E2vt+B3nuw4jBUc/9OqnxHyaPS9YqPCT0fFPi34qicB7Q6uoq6vU6zGYzRwJSs0a9Y2n9PkQi5MtKp9OwWq2wWq2YmZlhXwsJftqONDEaj7YR4+TkJKxWK/L5PHw+H1wuFzweD959990W7a4XjYvgcrlgsVi4gSKw52sjf1uj0WBNW3x5KHmY5kXllbT5YOVyGZFIBIVCAaVSCeVymZsoUsAHJTEbjUakUink83kYDAaYTKaWfDHtGLTo9QXXu15HYT7UO18/37eDmGMn/u4H2vejm2MNwq9Ez3478jqM2WyUTW7AaI5/9AP6TxDdkBZ9RtXDm80mKpUKd8QVBZk24MBsNsNqtSIUCnGDQKfTiUcffRTT09Mwm82YnJzE3Nwca00Wi4UbE/7sZz9DqVSC0WjE3NwcnnrqKa5mTkRGFSGoKkQ+n4fZbEa9XseFCxcwMTHR4tvq1deXz+cRjUbRaDTgdrsRCAS4nYrX6wWwZ+4UiZXIqV6vY2VlBdVqFevr60ilUhyBSNs1Gg3kcjmkUikmKpHgDIa9LtAbGxscbPHkk0+iXC6jUqmwmdVkMnX94h5EDnq+w4O+GxSOMnhAe38GSSidfgZ1fPILi/Not/1hziNx9JAaVxfoxlShJ5SIfIC9yg0keKn9iHY/cX+j0YiZmRn4fD7k83nO1yqXy3jrrbdgtVrhdDrZRBYMBmG1WnH27FmkUilkMhn4fD6uYUgpBeFwmH1e4rnL5TL7xzY2NjjqkJKEKW+J0MlUKG4nhtyTVkTlmLLZLFf0IIGiDcUnvxiRbSgUYq2Jgka2t7fZxydGS9rtdjYbGgwGLh118+ZN1rTy+TwXHdbO47DaFV0n7XftVv6D0MKOSuvSO474m9AuVP84oR0bXXOn0wmv18tmYlrg6GnS/Vwn8XyjZj4cNa1LEtcRgFZ3V65cwfnz5/HDH/4QAGCz2WC32zkAgjQGvTwaRVHg8XgwNzfHlS7IpEjaGpGUw+FAs9mExWJBKpVCNpuF3W7HI488gjt37nDdv0gkAqfTiYsXLyKVSiEWi8FgMMDj8XBUXT6f59YfuVwOV69e5cr9BwmpdhoF+Ymy2SyTCwDW5BwOB/x+P2KxGKxWK3K5HAqFQou/DNjzVU1OTqJarXLfMBFEUkajEcFgEB6Ph82n4XCYSzRRMV0SLnrVNUS0y3MS56dnCtRuqzVN6ZVr0pJcv6arkxJA3WocRzU+vYUgRbZSFCu18KFxtBPah7mOo0YEwMk+N71ibInrMCp9O21L+9IYDAbcuXOHAyouXryIZDLJ0Whms5mDM/SiChcWFtiXlU6nEQgEoCh7Le0fffRRDlqgiujnzp1DNpuF1WplHxr5uGKxGJvVPB4PnE4nstks5zT5fD5Uq1XuefXYY4/h7t27eP3119lv1i6EXu/66JFcqVTad51IEwsGgwgEAkin0/saYU5OTsJsNuORRx4BAG7oSJGPwWCQUwPeeOMNjgqcnJxk0haL7oqBFHpRgaLPTVEUnr/oi9SSEG0rEhI9A+RrzGazrOmaTCaEw2EsLy8PvB3JQULzuAVUNxaLfjUUvWdN+w4Wi0U4HA6YTCbkcrkWrbydD1I81mHIa9S0r1Ehr7ElrkFBtJWLGoLVasX6+jocDgfsdjsqlQoSiQQXCLbb7ZiYmMDExARisRiWl5dbwq5JYN6+fZuTlmu1GqxWK3w+H+7fvw+LxYJQKASv14twOIxQKISdnR1Eo1FUq1Xcu3cPlUqF6/fVajUO8IjH46jX6xwSfu3aNW4DYjAYsLS0hFwuh7m5OWSzWUQikRahD+i/5OJv8XM9wUBCvlQqYXNzEw6Ho0ULpW1SqRR3Ra5UKnC73ax1mkwmuFwuPPvss7hx40ZLWsDKygr3zuqkMYn3TcwHq9VqXCaLxkOVSfSOQZ+LaR2KonBtTbPZjGQyCVVVMTs7i6tXr2J9fZ21v4MK5vYiVLohr07f9ws9czk11OwU3HFY/5De/mJkK/lXySxMi8duNNzDXqtuTOwSvUESV4/QezlIUJG9XFEUhMNh2O12FlRutxuFQoEFIrBnKiuXyy2CUS9Yo9lscjsNm82GTCaDf/kv/yW++93vcnRePp/H5cuXUavVsLOzA4/Hg0qlAp/PB6vViuXlZTSbTdbsiIRIWL755ptMbgaDAeVymev0mc1mOJ3Olp5fRIKdro1WuyKI5hmDwcCNMYG9VAez2YxKpdKyfTabxfr6Oq+WVVXlZG5F2WsESUEgiqJwUd5cLteizWojNIkwaJxUYsrtdrf4vjweDzY3N1u0K737Rfvv7Ozw+B0OB6rVKgKBADKZDJth4/E45ubmsLKywsccpPbVjcAd1Aq73b03m82w2Wx8LUWtfVDnJYuBxWJBMpnk54eeFbPZjEAggHK5jKmpKfaJii19CJ3KXw3CdEgYVgIbFRPn2OZxdVtcVLuduMJWFAVer5dXcgaDgWvvOZ1OAIDP5+PSTiQE6cWYnZ3F/fv3YbfbWdBSe3nS2ohgKIiByjc5nU68733vw+bmJifhnj17Fuvr68hkMtwahExoCwsLLe1CKNFWD6qqYmZmhhsyEhk2Gg0Eg0FUq1UsLy/rJjVrr5t4f8TPRKF25coVjvID9gS9aEKjxQHN3WKxYHZ2lost0xxjsRhCoRA3oaRWJ+KcKUCF+ntRMjg56qkrt9lsht/vRyqVwubmJkeFir4R+k1zNBqNXJ6rWCxy8V/qFSYKUrPZjEQiwRqxqqoIh8M8HrG/lzaQo9dXttsw9n6DEfQ+J21rZmYGExMTSCaTSKVSSCaTLXM4LBGIxHX27FmUy2Xs7OxwfU4AbJKnnMB6vQ6r1Yp4PM75k71c40GIzGE3Hx5H3y6a/7H34xpXiJpEqVTiMPdsNssC1uVysYmI/qa6e7lcDrFYDLdu3UKhUGB/FxGU3W7nNiRi7cF6vY5yuYx6vY5SqYTbt2+z+ZFMgxRaPjU1hVKpxOY1CnbweDwtZEwah/bljUaj/OJPT0/DZrPBbDbj6tWrvB8JJ1FQGY1GuN3ufb2z9BYARMQUQelwOFj4BwIBTgEgkJbXbDZRLpe5Igf1yTKbzchkMlzaiUyJfr+fE6CdTidmZmZw5syZljGKpsB8Ps95YxaLhUtCAfvJV/tjt9sRCoVw6dIlAHuLgCeeeAKBQAAmk4kDbihKkxYHVP6MmoQe9Oz1+7x2u103P+2OQVotpSIoisJlv7Qtbrodm/Yc2jGTpmQ0GhEIBHghQlaQ+fl5jsylAtOiVq93HQ66TodBP/M+TgzruAjSVNgHxBX2xYsXeXXncrmQSqVQq9WQTqfhcrm47YXFYsH09HRL+SOq9ZjP55FKpdBsNnmlT6tDg8GAj3zkI3j99df5nCaTCcBeFB0l+O7u7rIjGgAHAlQqFayvr8NsNrOQ9Hq9KBQKLQ05aQVosVhgt9tx5swZrK2toVKpYGtrC9lsFmazGW+++Sai0SgTj6i5EQk4nU7Y7XYOBiHNTLtKLpfL3OyRfD103UqlEvsGjUYjV7MgwTQ/P4+FhQWUSiVYLBY0m01YrVbOSyMN9uzZszCZTFhZWeFAje3tbR4LlcVqNpvwer1QFIVTF+gYxWIRoVBIt52OVojW63VcvXoVm5ubcDqd3ArlAx/4AH784x9jbm4OS0tLcDqdCIVC2Nra4n3D4TC2tra44kc7s02/JivR9Cze98NCvK+0GLBarexLajabLYsn0RzX7Xj0BKko/DOZDDY2NriUGCWYO51OKIqC1dVV1q4ajQZrunpj6GXeh7l+4pyGWfsaRkhTYY/biZoFJfbOzs4in89jamoKr7/+Ogdk5HI5OBwOFmBkArp+/Tri8Tj7lbTaDpV3stvtMJvNmJqaQq1Wg6qqSCaTbIqkVvNkr6fgBooWrNVqKBaLKJfLsFqtrMlQQi6Fh4vnplYiTqeTc5xofKqqwu/3Ix6PAwCmpqY4iRfYM4sWCgWEw2GOdqS2KtprSD9OpxNWq5W1q0ajwQQzMTHBfiGxMDCRNRFxuVzGzMwMstksTCYTB5wQOVJVfqp7ODExgc3NTT5GJpNBpVLB7OwsV9zIZDIoFAowm81Ip9MwmUzstxJ9g+I9o2eRIjW9Xi/7C6nlD2kely5dwv3797GwsIBLly5hfX0dLpcLOzs7LeW1xB8RhzW1aY/Tz7FEwqLfZBo/e/YsVlZWeGFBwTSiuVVrqu7FhChqWuL7SCZXqqASDodRLBZ5YVcul1EsFlusDJ2ucTfXZFAidNjMh0c9nsOYCqXG1QdI27h06RKHqScSCdy6dYvNhk6nExaLhZOHFUWB1WpFs9nEnTt3UK1WMT8/j6WlpX0RZcCecHzmmWewubnJScZkXiKzU7VaZVOl1+tFvV7nwrI2mw2PPPIIh4eTJuZ2uxGPx1EsFve9sDSObDbLq2MxMbdSqbC2RYRBJaxMJhMuXLjAzS0jkQiy2SwXvG33AtA4KFGZzEsGg4HzzIA9EkulUhzQQhXzKc+tXC7D5/OxP4kSlIvFIpMehcNns1kAwMzMDFZXV1mobmxs4Mknn8TExATu37+PZDLJC4t0Os3aGT0DYmAGgcLmiVTJ7Od0OjkZ3el04v79+6xl/+xnP2PC9vl8XHRYfN7o/mg/037eK7Qa42GOoygK5+rFYjGOzrRYLJiamkIikWBCoe4S9Xqde/dFIpEWv+lB/lPKy6JC1bVaDS6Xi33D1Dpod3eXA6RSqRS/C3r38CQ0L/E4/Y5h3CCJ6wBoc4qAvRdmdnYW6XQa+Xweb731FgCwyZBeTvJ3Ua0+IidqtEnOfwpNF8+pKAoWFha4CKzD4WBNJB6PM0GROcTpdHJ/K1VVUa1W8eDBAy6wSyawTCaD3d3dfSWntATWrikijY0qd/h8PtYWALA/g45Pn9Fx6X/xs3K5zMQl+ptMJhPMZjMeffRR1jQpXJ2EvsvlQqVSgaqqmJiY4OjHYrGIaDQKg8HA0YZEKvSzsLDAGifN9+bNmzh79ixWV1c5EnBiYgLAHskmk0nYbDYWugQykYkLEDJThUIh5PN5WK1WTExMYGlpicdP461Wq0in00zOeuZB8RqKn5Pg7EbgtSMqRdFPiO4GWl8NLXD8fj8Hq9hsNoTDYUQiEdhsNjx48AAmk4mT8ilARdRmD/IzuVwu1mSBPb8s8F7fudnZWc4RpKT2Wq0Gh8PBC5tO5NULkQySvHq5n0eJQc3pKCCJqw80Gg1sbm7yS0CrzHQ6DQDskyHtgSLMKKKJbP+lUgnBYJD9KcB7pkiqglGpVNiURX4iyssyGo2YnJzExYsXsbm5yblepLHQy0nCoF6vc1sPsa291lzSzcN6/fp11hyJyKgqAZWJKpVKHROXxQWBWGyXQCHvVEsxlUrBbDbD6/XC4XAw+VitVjgcDtRqNUxNTeHNN99EKpXiQJVcLgcA8Hq9mJycxI9+9CPUajUmV5EoisUi7t69y+NLp9Ow2+14/vnnsbS0hEqlwrliFMBBmpXFYmlppbK+vs5pDORX3NjY4PtTq9X4Hokm405+nl58QN1sQ/fOZDLty1EDujfZ0d8GgwF+v5816UuXLiEWi+EDH/gAFhYWsLKygt3dXTYf2mw2GAwGPPXUU1xwupPGJT471DyVTH8+n48jcv1+PxRFYRNUMBjE2toap3asrq5yk9Bh07zoWMNAYMNKXtLH1eO22kgo8m3QZTQYDJibm0OhUMDMzAyWlpZ4NUm18lKpFBOPxWLhRoRaJzf5r8TgBzKPiFqP6BciX9i1a9fw8OFDrhhBGgcJXdF3RcJbm0Ok99LQvH0+HxM2Fe6lcVksFly4cAE//vGPeVUr5k7pHY/mJs6TujxTgAuZLc+ePQuj0Yh0Oo1z584hmUxyHy6qvG82mzngo16vw+PxwGg0olQqsTYlkrqelkmBMERKFGgSCAQ4EIDMYU6nkxcgYhI1mTNpAeJ0OlEoFFAsFvmekSmY7kUnX88gBRlddwoa2t7eZkLv5pxaTYvqQU5OTnLn7YmJCbhcLgSDQWxtbbEZlN4Do9HI+YmRSAThcBhLS0t8PbTmUS1JkpnaaDSyT7HRaHB7Hur2XSwWOdWEom3p/pMJud18e73mgxapg/Jn9oujCo2XPq5jhPbhIf8V8N7qpFAo4MqVKygUCjAajSgUCrDZbFyKiVbYFPVH+4rHoJUnaSvkJ6KcMaPRiNnZWVSrVV7FA+8J/Uwmg/n5eVgsFrz++ut8TovFwiWSqNVIvV7nCEM9rUtPeCYSCRYkyWQSbrcbxWIRNpsNuVwOJpOJx0LmHKriTscQV89+v59TA0RQbUGKsDQajey3KJfLWFpaYt8RlXgql8tIpVIcwELlr6i8FgCO9CTBRfdBO+9wOMzdjsl/mcvlOLDE5XJx4AqVdjp//jzW19dRLBY5lD6fz6NYLHIJLwoMEdMO9KBd8Q5qJS6mAdRqNQSDQdZgFhcXW7RQLUG1G6ei7KWHbG1tMeGTP/XKlSt48OAB/H4/tra2eCFXqVRw+fJl3L9/HwDYR6oN/Gh3PvIl0qJFjMZ1uVw4f/48YrEYVlZWYLPZ8OSTT+LWrVuwWCzw+XxIJBJcLaadabtXDNpXNSh/5mHOP2z6jSSuPtHuRjabex2OM5kMB1HU63UkEgkkEglORNWuotqZK7TnCYVCCAQCXNaJElxppX/27Fns7u6y30dMeiZNi3p4EcGur6+z9tRNMiaNlX43Gg1kMhkuXkoChKqEkJAC3qsZqNVSXS4XHn30Udy6dUvXx0FCVlEUPHjwgJtnkgCjxFPSUKlQcLPZbDGfkqCjih0zMzNoNpt49dVXWzRQQj6fRzab5YAQEYlEoqVZ5fz8PAeGAHuV8cUkV1VVOUCBcopsNhump6fx8OHDlsCPTs9Yt9u020+r5ZL2UavVsL6+vq+Ki/Z87fxvwHsRl1Qs2W63Q1VV3LhxA6qqwuv1Yn19nWtSNhoN/P3f/z2TP52j0/xEa8fExAQHKNH7Zbfb2QxLleBtNhvi8TiWlpbg8Xiwvb3NqSGRSIRN3uL59d7Nk4QM3ngPkri6gPgiif+L5CNGztEqnkKqxWoL2nqE9JuOqbe6Fbfb3t5GMplELpfD1NQUzp07hzt37rSE2z/55JO4f/8+tre3OfiBiMtsNuOxxx7D5uYmKpUKtre3Ua1W4XK5Who80jz0roV2zPSZ2+1GtVrFzMwMj5nC0ClcORAIANir1biyssIhzFarlf10tJ94Tfx+PwCwGRAALly4gHK5zKY2AFw8mIoFE4FRwIjBYMDk5CQXJgaA5eVleL1eDkMn1Go1bG5u6ppQAbT4Canc0Ac+8AGsra2xqZdIiuZI86MmoKFQCOl0ui+Tdy8rcfEZcjgc/CyQwKbO0jabjbc1m81cpiwYDLYUiO5EXmS2s9vt2N3dRTweR7PZhN1u56AN0nJF8yiZ9PQWLloNnVI23G43rFYrWw/IZE3bbW1tYXZ2lgOiVldXub3O4uJiy3OmjX7VLq56NZkdBeHR+3AclS3EcwLDRZiSuAYEvRps2kRS8TstxFWkuA+timnlajAYWmrmRaNRJJNJPn80GuUQ8EqlwkJBHNva2hry+TzcbjcUZa++HnU6Fsm3HdrNgYRzLpfjYsCNRoNrwhWLRZw5cwbAXuV7RVFw9uxZJjaz2YxUKgWTyYRQKIRiscilsp544gmUy2WsrKxwbtU777yDy5cvc1QehcxTAAwRMrAXcUZaRSqVgtvtRqVSwcOHDxGLxTg4RpyjqH2JmoZ4bUg7KZfLSKfTuH37Ngce0KJFVVWuZOLxeNi0S2WdqGJ5PzjIpKaFwWDApUuX0Gw22SxoNBq5VxUVAq7VapidneVF0eXLl7G9vY2HDx/yYkRLMPQMU+FjCkAifx+lUJhMJkxMTHBkpnit9RZG2vmJ2jL5MoE98y/lyFHwVLlcxvb2dov/cWJiAoVCATs7Oy0+2GZzLwGfAkuIrA6jeR2VtkbjHSYyOU7I4Iwu0M7G3+nc7TSndtqU0Whs0SqazSb3lQL2QnsXFxdbwuppZSkKEKvVyoV4xRJJRIomkwkOhwM+nw9Xr17F+fPn8ed//ueIx+Nc3aCb1Zw4F/I92e12hMNhXLp0CbVaraViBWl9drudoywBcLNLMuHR/5OTk8jn89w8k66D2+2G2+3G0tISN6IkYUlJ15QLRKWU7HY7V7una00loIrFIgeqkB8QaNWO25GWCAokocLEZBKlaz81NYVwOIy1tTU25dJ+lA6gNVP2G55+0D2jcmIXLlzA5uYmqtUqLBYLj53uV61W40WF2+2G0+mEzWZDoVBg06bWvK2tK0nzpyAKp9OJ+fl5bGxsoFQqsclb9K0eJJDJJ0rBMRSo02w24fF4uAN4sViEz+eDx+PB8vIyAMDv96PZbCIWiyEej7e8S2azmYspG43GfWkdNJ9+7sVRidnjJK9Ba3kyOOOEoDUhar+jVZv2M6DVyS4GZJDwoEhEh8OBRqOBaDQKu93OLygJWtG8KEa4kVAXI/monBOZHMUSVWazGc8++yxeeeWVtqv/dqYbgtPp5NYoV65cwc7ODlRVxfvf/37cuXMHOzs7nNRL14GizChBlKp77OzscNJ1o9HA6uoq7HY73G43+0joGCQo3W43C0L6LJ/Pc9UE8fp7vV4ufkzEBbxnEtK7r51eXEp4FaM4xWNGo1E0m03WCOl4FPUoXuN2fs/DCChxPnRdc7kcnnnmGVQqFcRiMTidTvj9fmxubsJkMmF2dpYrjAB7z+TS0hLm5ubg9XoRi8X2+SFpXpQsT9qM3W6Hx+NBPp/HgwcP+DroPWud5krnSKfTbH4WtTLq/k0LCapGQj5KbasaMl9TInQul4Pb7cbMzAzu3r3L8zjsfTgqzUuUIyOog/QNSVxdQLuq1H7XSfNqt6/2RaAggkcffRT37t1DtVrlqCyxAgeRjda/RtoWdQgmkhKrn1OIMfkEbt26BavVytU0/vIv/7IrE6HWiU1J1ul0GqFQCAC4LQi1dQHe85mIxxJNMrVaDZOTk2xeczgcTFzAns9pe3ub8+UURcHk5CRHM1IABPlJms292o9Ut1GcG2mWiqJw8jb9LybCtrseekIinU63hMLTGBuNvWK/ZDqkc4hVSbSmMa3/8DDQmtkMBgOnUdy+fZvLgYmJ3xSoQeOlljKNRgPLy8tsdtML4NC7Ptlslv2btFjS85Vpr4f2M/H60AKIyFFcdDSbTTzxxBO4f/8+a1aNRoOLJk9MTPCCplAoIBAIwOVycTdxsSiA1gUwbORFxwaO1g91lOPvFZK4BoCDNC9CJ/IC9lbtqVSK/URnzpxh0qHQ7vPnz+POnTvcY0p8aalIrcfjwfz8PBeTFU1Q2WyWSx7RGKiihLaShghxVaudL62oKdS/VCrh3r17XKH9Jz/5Cee3ibX4RJAPhCIGyUQoEg451WmVTcen454/f54rTzQae80yqeSSqA2QOZFqENI1pG0mJiZgtVqxsrLCq3TxenQiM7o2tI3Yqy0YDMLhcGB7exvnzp3jOo7VapUJQktYh13tazUiMqsGg0FeSFCF/kqlgkgkwgWjd3d3kUwm9+W8iYTRCVprwu7ubsvzqDdXunZaTUIkLT3Nn+4hweVy4cyZM3jw4AHPk/yJVP2fuhhQYYB8Ps+m5QcPHrRt+3MYkhhl8pLENYLoRrPqRvMC9FemlET8+uuvQ1VVeDweJBIJhMNhLpWTyWQ4dF18oWdmZtgfQaHIHo+HAyK0dnoRVGroIFODdvyisKEEUgqKAPbMUYVCgcszWSwW/MIv/AJ+8IMf7HN4k0Ck4reUWErBC3qCCQC3aFleXkY2m0UsFmMBKwpp8n+JvZdEE5XL5cLU1BS2trZamnzabDZ4PB7s7Ozs0xS1f2uh1Zzq9To3tbRarbh69SosFgtisRgHjlDJsE7aVi/CQ8+fSlGc9XqdzarXrl3D7u4uRxBS00eqnUjh5mJSsB7J0jm0BEP3jp5NvfdEPI5o1hWPpz2+CCpsTWZCt9uNmzdv8rvw8OFDNhc2m01uaxIOh+Hz+biAMlXn10uUB/orB6U31373Pclj0/GHgbzGth/XUThYuxH+etuIn4svFr1cTz/9NGZnZ+F0OlnTEnOOqDQUVR6Px+PY2tpic4c2Mk78oRV0J7NNuzmStnbx4kXs7u4im80inU6jWq1ibW0NsVgMHo+HSfVP/uRPsLa2pjuOWq2G+/fvc0UJPXOSKAgpRDuRSCCdTnMEGUUwNpt7hYavXr2Kixcvwu/3s8lSrFdIK20ATHIXL15sqXSiqirOnTvX8gy0u1bae9xoNHD+/HlMTU1xKSyr1Yrbt29zWD91APD7/az5aX9EdPO53nc091KpxA1Ha7Ua7t27h0wmA7vdjk984hOcH0hV3i9evIjHHnuMxyueS/ybNH8tYVFgBlVp1/q1tMfRHqubedG1npiYgMlkQjKZhMvlwjPPPAO73Q6v17vvuVeUvf5piUSCq2lQdG03aDembtHvft0c96iOPSyQGtcRQCtou/leFHZkugD2Ah5effVVRCIRRCIRThYVBScVkwXAxUufffZZNkV18tV0Gls3D3+tVsOPf/zjFv8Qhdc3Gg2sr6/D4XBw6xNx3lqzo2g+EoVWo9HgaMJEIgFVVTE9Pc3V50VzFPCeea5UKmFlZQUTExOYmJhgX5fYH4yqiZDQy+VyKBaLeP755xGNRjkf7+HDh/uuUTtzKn1H86AaeUSMVHQ2EAigVCohFArh7t27KBQKHDCgF7jQTgPrBD3zmqiRUrI4AOzu7uJ//a//xU06KZCHknTFe6WnDVksln1+O7EUUyqVaumBpT2OOD9KYM9kMvued9pfJLlarYaZmRnkcjkuNN1sNrG7u8ukJC74gL0UhsXFRV6A0Vwpp02vHY/2PuhZT3rBUWkwR615nTQkcfWAgwhJb/teyYugqirK5TIikUiL9kGmJNpe9KnQ72azyb2QxOCGdhphO99Bu7lqvxMru5O2RdtEIpF9BCX+rT2+qKmIAQ5utxuXL1/G6uoqcrkcstksN4psNpu4e/duS7AF9ScjfwYVc6Vjiz4og2Gv8WGxWEStVsPu7i5Hm+VyOayuriKRSOiOs51gEMdO5ken08nfORwOriBCJtHJyUmkUin2u1CVCSLnTufTg56ZjUDX12Kx4EMf+hAWFhb42hoMBjYVbm9vo1QqIRKJtAQ+aO+bwWBAKBTitAo6H1U4oWsuCmo97clut/P98/l8ALDPlE37iYsbs9mMmZkZDtOnQJ7d3V3WyOndEO9dtVrle6WqKmZmZmCxWBCNRvfdczp3u3eI3r9eIcmrd0jiOmL0QgBa4qJV+c7ODhqNBlwuV0tHYe1x6G+xIkangAu9/fW0wE45b3pmT5HItATViwmj0XivYnw0GuWW7FSXzuVyoVwu86qchEa1WoXb7WafWSaTwdbWFhfgFYULVWtYXFxkAWiz2QDsaSC1Wg1erxcmkwnLy8ttzb3itVAUhevwkV+HTGYUnq0oCo+dqoHU63VMTk5ifn6eSUTURsTr2WkR0u01fuaZZ9Bs7nWfJsKha2O327naOiXSi+fQ/q+qKvL5PLxeL6xWK0e+1ut1bojaaDSws7Oz7/klUArDc889hzfeeIObTpIGKp5XDIO/cOECSqUSlpaWWroBUBmzUCjUkoyvvWf0nNXrdY6YJPOxHjoRTb+JwaNCXsNChpK4ekSvWtdB+2nJgbajQrrULJKEXKeXgoRbs9nkl3dQYzxovnrbtBtnu1W7FrSipvw0k8mEra0tjkA8d+4c53eJkW7ku6GuyGJelail0vnFhGWbzQav14tUKoVUKoXNzU2cP3+ey2dpiUvP/wbsBQtQ/tPly5extbXF2jMAbGxswOPxwG63c14VmRNzuRxisRjfQ5G8ejXlitdcu/0bb7zBcxY7EwN75upsNoupqSnU63Wsra3tGwv9Tzl0VqsVMzMznPhL3bEdDgfS6TQqlQqCweC+qFIy91Ej0KWlJVgsFl5oUJSpuCAKBoOci7ayssL+wdu3b+8zLZIFoJ0fl4I5Go29mpti54R21xI4uArOQQvGXo/bL4aFbAYJSVzHjHYCWxsC3Gg0uHKEuBLu5vgHoZPA65eYad92ZkHxN9BqStOas8g3oigK55nlcjmOfCOfBvXporB5Oq7BYGChSSYikbS0ZkhgT8O4du0a7ty5w2HbdO3v3bvH2kM7jUv8v9FoIJlMciUUClyh3mzU2oR+AHD+GZnprFYrpy3oEf1hhRCZdSmaUbz2FDZeKBTw+OOPY2VlZV+tPpGoqWCwx+OBx+PhsVutVg7WoRw2aqtDmol4nGq1imAwiEajgQ996EOIxWLs06U5U2mwK1euIJvNIpVKYW1tDalUCoqi6AYjiX/rXbd6vY5yucwBTuLzcthrrEW37+cwk9dRaYc9jaF50iPoA4Mo+UT79rv/YfYVj9HpuFrTkBadbl23prmDxkDQmgv1zIDa7cS/SVjR37TKpVYv5O+hWnKkJVH9QVGA0THERGFRCFLrE0ouFUPctQsACgKwWCzwer2YmprCzZs3OeFbq2UR8R0EqupgsVhw/vx55HI5rK+vo9FocPVyKntlNBoxNTUFRVHYx1Qul7mGYTui7GUlr7c40PsR7xX1yhIXT3ph4l6vFy6XiwNmzGYzKpUKR+tpq4PQvEXt12KxYG5uDsViEWazmRPRqXbiysoKms29kk5PP/00bt26xW1hqLSWuDjRms/b3TftNRTn2Inser0Heuc8aN+jEM39jlmLfnx5emMBZMmnY8VhNJNOxxBf5m7MaQcdm9DuOO1MfJ0+GwRpUyFW8o2IxYUbjQZmZ2e5agg1cdQKH9G0pdWgKAH17bff3qctaK+7x+PhSh3UnZfMdHrEpUU7YqHk5Y2NDeRyOa7JJ1b+oLHb7XZuRZNIJPaRsThu2rebVbSeP0o7Tq3pT8Tk5CS3/aCxasdBBEukTEEuTqcTVqsVu7u7LRqrWOGCSNLr9cJisXDDUOoPt729jdnZ2ZZmpaVSibsLaIMu2pHWQQu/Ttu10zD61WJ6Man3c/xxgCSuQ+AwxKI9DtA+wnAQ5EhjbWe+6MevpTe2TucRQeYoMi01m01uE0KmJYvFws582kf8TecnsiOfGLW8IO2F8rfo+OI1KRaLHPlIZNWpsaMWB5FZs9nkfl7iucVrVavVsLCwgFAoxBGG4vUnstBGxYnX4CB0IrB2958S4ePxOC8stEES4pympqaws7ODYrEIi8WC2dlZzM/P48/+7M/2VaHQlsYqFApYXV3lIBav14t6vY5CoYCVlRXuqUX+Ngr+0CMfvbF1Mu122k68XoMkL3Ff8Ri9EGc/GBQZnrS5UBLXITEo8mp3LFEDO+x5OmmJneYhnvugqvoHmSjFY1HkJJnVqAQT+axIWDYaDa4ETj4hEnraOamqik9+8pNYXl7GwsICt+wIhUK4f/8+R1qKII2PSh1dunQJb7/9dtuSP9rrdtD/Yo8zvf1JCIglusTrTdUfqA1HJ/Kiliq9aGHttiFCdTgcsNlsHFhCbT8I5JejLsaqqiIUCiEWi+Hdd99tuY6i4KRnyWAwcBAG5ZQRcdJzAbxHmg6Ho6VEVidTnvi73Tbdmu4OIq9ujnHQ8dvNadDkNepa3NhWzgAGo4IPymYsHq/d59ogg36Pf9CL3g4HmZ3akZaejwXYa2kyPz/Pgs9sNuPs2bOw2+3cFNDr9eLMmTOYm5tjoaanedFxG40G/uZv/obbsbtcLlitVmxvb7ecW2saooTfarXKeXPt/H9616uTiaobUyNVMBGJicxoZHK7cuUKVFXlz0VTG5kbXS4X56Z167/sBLPZjImJCUxPT+PMmTOcPC2en+Ygmu0oh45IW+vjpDGL5AXsRWOGQiGUy2XuQUfXh9rhKMpert5Bi6h2C7Vu352D7r/2c62vsF+0O84gji0ea5QhNa4hRCfNSPye0OtD2KvmJQqdTufTe+HEz8Qq9qFQCPl8nqumUxdgr9eL+fl5butCpifKDRLD3uk8JpOp5XzUXdjv97MGMjMzg62tLRiNxpbq+jRn0t4oGlFvbuL10e4v/n2QYBSvfzsipCRl6jFGtQ7Fe0HkXiwWoSh7NSupoj7V5eumQaVW6IoLkHK5jImJCezs7HBzUu01EUEE/ODBA90oRGqGSpGh2jmXy2WUSiWOajSbzS1mUnpeqLzXYaC9V3qaSLefaecpnqMdOhGjuHjRG+dBxz4IgzIZnhQkcQ0ABxHNYY7b6ZiiiUNPozno2N1sS6YqcpyLfbBE6Ak90dw1PT2NRCKBWq3GhU3tdjv+7u/+jktc2Ww2JJNJpFIpPPnkkwgEAojH41BVlTvaas061FSwUCjA4XCwkJ2bm+P+ZhaLBYuLi0gkElz6RzsHMj06nU48/fTT+Ou//uuW3DrxerVL6u5VE9YTRiLIV0c5VeVyuUW7om0AMLGZzWYOw08kEi2FcfWgjQIVTY7ke3z33XfxyCOPYHd3F8ViEfV6nVvei75FOoaqqjhz5gyWl5eZaCkYw+PxwGKx4OzZs3j77bc5WvHcuXPY2dnhWpsUKSjmLlKKiOgH1EIkFTEop1vzWC/bETqZD3uVCeTjI+2frpveeQ5LPofZ/6SJb+yJa1A+qpMiL+35RRxmLKI5h1qii3X09LYXqxloP6f8nEQigY2NDS5tJApWCpNWVRWLi4u4c+cO7HY7YrEYzGazbnVy4L0KGzRGqnhPYdlWqxXlchlWq5W1ET3SoKi4eDyOUCiEbDbbUqGefDAUNUfjPQz0VvxE+qVSCWfPnkU6nWZNxu12IxAIoNFocCkjSiB2uVxceFhRFO4m3SmiUrxHDocDc3NzWFpawvT0NFfBiEajePvtt/fVIQRayy7R86KqKgKBAC82xG2mp6cB7JmJA4EAzy0YDCKZTPLipp1ZXOuT0tOExWdD77Ne0I2A7vf9FPenH4vFgunpacRisRbSpu/1wtD7ndsoY+yJa5A4SvLq5bjaF/sgk2M7kwWVKCKBT/4KPd+CouzVE/R6vdztl4579epVDrCYn5/H0tISa24iCZL5x2azcTj0o48+yq1c9AizWq1id3cX4XCYQ7EpcZtMj9TaRa9cljh+YK+0FOUvkYZDcw4EApienubV/09+8pOWa9nJd9hJSxW3oc8mJibgdrths9m4SzQl7xYKBe7SG4lEEAwGkc1mkUgkEIvFeNzaau7ib+0YFGWvNJKqqnjmmWfYl0amWkXZaxFDvdvEfVVV5UoWdN2KxSJX5M9kMkyOxWIRLpcL8XgcTqcTtVoNbrcb1WqVFwR0fQ+CSErtrrve9t0cU/uZ3vH09qXflMNHGn67c9N7FgwG2RRsMplgNpvhcDg4CV3UIvWep341oJPWnPrF2BPXoMnmqMiLjt3rcekhb+fI7nRMMr0Fg0EsLi4CeM/8otUUxLDmmZkZbo1Bq8QLFy7gb//2b1vK6YiJnnScRqPBmk08HsePfvSjlsoYWjQae40hqf4f+U4o8i2TycBsNiMQCOj2WaLzErxeLwAgmUxylQ4AbIKbmZnBq6++ymTSDt36urT+LrouRqMRW1tbiMViLNwrlQqmp6dhsVi4xFGzuVcBHdgL4yfBT5qlOD89LVMkz83NTUxOTsLn82FycpKPSwEaNpuNQ9OJvMiUbLVaMTs7yxre7u4ucrkcTCYTmxWpcDFpi2KB20AggFAoxKWltLl3B0HUALXXVW+x0une6JFDJ9OgdlFAVoqpqSmsr69z/p64v3jdKfDEYrFAVVWuaK9NPdDKlk4LsFEjol4x9sR1FBg28gJaS0p1c8xms8lliog4SMgYjcYWYUCEoaoq5ufnMTk5iWQyiY2NDW4PQcmior9CzwykKAprW6QpEfS0BdqPwtmJyMR6dZSr1c7E2WzuOf2vXbuGcDiMfD6PSCTC1Tuo0sX29jZXS6c5i+WI9H53Cy15r6+vw2g0sq+Heq05HA4uCSU2zqSoTOC9PLSDnhXtd36/H/Pz81yd/erVq6jX69je3obBYODFAGlZIshkSS1iKP+uXC63aHWLi4swmUwIBAJwu91YW1tj/x3dd5EAtIsb7di1ZsFAIABVVTn3LBgMYn19nZ89KgcmHqNbAujGb0VEThGytKCi50RbR5E0LvIDh8NhrK+vY2trizVVgt5Y2j1nvZgPR5HsJHEdEYaRvA5aQWqPSe0hUqkUHA4Hms0m3G43fD4flpaW9tW4oyrgVKaJ9i+VSuzT6lSWh36TL0yPTEXNRJxLrVZDOp1uCSkXV+x6fi3tcShy0Wg0cr6YxWLBpz/9abzyyivY3d1lrYaIS6s5dnr5211/ve8BMCkZDAZ4PB64XC7cv38fXq8XNpsN6XSahX0wGOR9FhYW+BwHnVP8zOFw4Pbt2/B6vVAUBQ8fPsTU1BT3uAqFQi2V1AnUKDQej8PlcmFubo6bm5LZTBSOqqrC6XRidXWVnxHKUdOrqkEmZW2ghWiqpH3z+TweeeQRru5eKBRY61NVFY8//jh++MMfdpWjpzXldrO9wWDgQs2JRAJzc3MwGo1YX1/njgGkyQLvVU2Znp7GtWvX8Oijj+LP//zP4Xa7oSh7SfHie9YreXU79lGDJK4jxCiRVztQJ2DKofL5fBwkIRZKVRQFqVQKgUAAP/3pT2EymeDz+djcRbUltWOg//U+02qIej4No9HItQ2pLuFB9ea0q3RgT0t599132exVLBbhdrtRKpXwV3/1VyiVSnC73QgGg7h79y5sNhtcLhei0SgKhULblhnt0K0ZCgATeTab5dD/crmMRx99FH/7t3/LviPRvClGo7U7rlaDWF5eht1u56Rfq9WKhYUFNnU1Go0Wv4sIKnq8u7sLu93eopWSNk4mT4fD0VJjUByfuA9FVDYaDczMzODevXv7CEdRFMzNzeGDH/wgvvvd76JcLiObzWJiYoIbmFIXbqfTyY0jtc9SN/4rcbHTbnuaKzUvTafT2N7ehtlshtls5uAf8fl2Op3IZDJYXV1FpVKByWTitAEi/nY92Q66x+I2nebYi4Z2mH0GBUlcGFxkYbtjA0dHXv0eu529XDyWwWDAlStXMDk5yU31dnZ2YDabWaiL5r9arYbV1VX4/X48//zz+Ku/+is228XjcV1TnSgE6G+tgBDD0vW0MPKVtCOPdqRIx6ZjFotFDkLx+Xzw+XwcYk7COB6Pcyh/uVzmfCmtP6aXF7rd8yeOkzS9arXKiwHKeZqamoLdbm+pJk/o5tkQtymVStjc3ORqJsB7mvfy8jKbwUgL0JZtIjMyCVxgrxbkI488gsXFRYRCIUQiEdYURYiBMLSAINKJRqP8nUjKVEj5zTff5AofABAOh1Gv11nzKhaLKBaL+66R9tp3MklSFRYqwEyfa9+dQqGASCQCAKwJ1ut1RKPRloovRFqzs7NYWlriFi3Antk2lUrh7Nmz8Pl8ePvtt3mBpB1nN+SlHWs/3w8TJHH9A0aVvOj4gyAvEeRczuVycLlcXJqpUqnwCxQMBmEymZDNZpHP5zkwol6vc2FZgkgq4guiJS3xbyIwrX+OCIfC800mEzweDwd+aM+hnS9BzJmhY83NzXFjx2w2C5vNhlAohGQyiWw2i0KhwASml0Srd55u74WeMBXJixYHZDojk+DW1hY8Hk/LwoBIgEx7nfKetOMgrVXbzoS0CafTCUVRuOGiVpgSsSeTSf5ua2sLFosFa2trsNlsLSZE0kwovYCiWVVVxezsLIxGI37yk5/oBhgZDAYkk0mUy2X4fD5cv34dt2/fhtPpRDgc5qRp0ty0iyet5tXuPaLnw+l0otFosLbo8/lY2xfvlaqqWFlZQTgchtvt5oah2me5WCyyVruzs8OdsSl3slwuw+Vy6RYAaEeyet9p5zvqkMT1DzhK4qLjA8NJXnpal6qqbOoDwN2XRVNHLBaDz+fjF9VoNMLn8yEYDOLtt9/e56cgsiHBKwY26L1M7eZEQo9aowB7YfEul0vXN6Z3jmazCb/fj6mpKaytrWFubo7LC5nNZkxPT2NjY6PFTNZsNjE3NweTyYSbN2/qdtUdlFAQhSDNWXuvqJ6jqqrckFLUSOh6UyIx1fzrBhTkAryXq0WFkR0OB5dcEks6eTweKIrCDR9NJhNXyDcYDMjlciiXy6yZKcpeQ0i3281jp3Pn83k4HA4UCgXk83k2nWlrVNK5SQMk7TuXy7F2Va/X4fF4EI1GW0L521kdtDCZTHjhhRfwxhtvwGq14tq1a8jlcnjw4AHX0FSUvTQFOu7u7i6bR6m9C51LW2Mzn89jamoKJpOJtbDNzU0OuLl79y5/d5CJ8zBmwVHyiUniOkZoNYmjOP4gyIuE4sLCAur1OrebJ3MVAK4D6PV60Ww2kUwmAeyZaKgYayAQgNlsRiaT4ZJOpBlQtGEikTjQF6SdE4VV2+12zMzMYHV1lRtKamvokSlPz5dCPrnz58+zjyiTyaBeryORSEBVVVSrVQ7RrlarWFpagtlsxpNPPonFxcUWAXnYF/4grYvmbrFYWAAbjUbuI6YoChfqVRSFzXrAe4WE25WA0tNm6LyktRERUhsTsRAysEc458+fRz6f5wUE+WsymQxHiNK5XC4XZmZmkMlkOLiE2spYrVY4nU5sbGxwbUQqrksVVoC9gBqbzYZCoYBkMolbt27B4XDA5XIhlUrhzJkzKBaLXKtShFaAt3t3Go0Gbty4AYvFApfLhaeeegoPHz7k3DkyHVLYP127ZrPJgS2iyZt+i+bGQqGAixcvYm1tjcm/Xq+39GwTtUKtHNEuzNrle7Wb+6hBEpeAo9a6xPMAwxO0obfypI6wJAwprJmEF/1NIevk86LqCrOzs2g2mzhz5gwWFha4JX29Xsfs7CwqlQo2NjZazq+Fdh7iijOTyXBVB4oaA97rgBwIBOByubC4uLiv7JH4e3NzE/V6HRcvXsS1a9fwgx/8AEajEbOzs1hfXwcA9meRaZASpSnH7e233x64pqX3N5k2SRMBALfbjYmJCUQiEc4DqtVqUFWVq2yUSiW+f2KpJgIJUlEQtjPLmc1m+Hw+JqR0Os1+JIpAbTb3iuzmcjm43W5YLBb4fD4sLCzAarXizJkzePDgAft9KpUKzp8/D6PRyAEo1WqVG4yWSiWcOXMG9XodqVSKtX9VVXH58mW+j9TKptFoYHl5GQC4RBU9nzTPbu+XmMfn9XrhdDrxyiuvoNFooFKpcO4ZaZV0z8isKj6XdA99Ph9HYjabTUxOTiKfz+Pu3bucBydaIyhxXhy7HunqWU70qqaI+4wqeUniOiGQIG2XGHzYY/dDXuKDL5pkSEgSYZGdP5FIwGq1wuFwcHmhqakpbGxssFCjthaVSgXNZhMWiwXpdBqRSKQlGVk7BvEF1a42gT0hGYvFEA6HuYuyaAay2+3IZDJs6tOSFgBOhDUajVhdXWVTWqFQwN27d1nYUz6N1WplErx37x6H2LerXaiHg3wpnWAwGDA5OcktTkqlEhcNrtfrrIWQ6dBqtcJkMuHChQvI5/OoVqu8GNEzlYmkpWcV8Hq9cLvdOHfuHCKRCIrFIjweD5tMAXA6gdfr5fwkt9uN3d1dmEwmDp64fv067t69i2QyiWq1ijt37qDZbLb02VIUhf2PhUKBNbdYLMaLImpSSX4zqtloMBgwNTUFo9GIjY0NjsZsZ0Zud71pH2puSZVdKpUKAoEAJxmLGrHdboei7OWUXbx4Effv38f29jabp69du4ZYLIbt7W04nU72FVKQj15jTL3FrngPxXeHSrRpLQGir3TUIYlLwFH7ofTQKTH4MOiHvMQIMb0HnI5J1Rs2NzcxNTUFg8GA7e1tnDlzhqPcqMI6lf8hM2Oj0eB8KbENhngOApGWy+VCtVrlaDWRvDKZDGZnZ7mfk9lsRiqV4gRe0TTWjlxoJS9WjSfTJl0Pyl/LZrPsjG+Xk9YJ3ZimOu2rqio2NjZ4ASFWx6D5U9FiMjfdvn0bPp8PmUymxY+kbZhJfbQMBkOLP4iILJVK4fHHH2f/Vz6fRzabhc/nQ6PR4AAF6lpNhFKpVGCxWPhab29vc6QiBfNQknuz+V4ZMFFboMRcMbKOQtupE4Db7W4hrmazyX5K0Rcnaix6fh2995GeX7fbjampKdy+fRtms5lrK9L5LBYLLl26xAu+t956CxMTExwgQ9GZTqcT09PTXFuSKrHovXNa4hHHRlqwmOsVDAZhNBp53mLwjLhvO81tFIhNEtcQ4KgIcxCal3ZVR+Ygv9/PEYVPPPEEFhYWOEk1GAyycDeZTBwpRX4yMhl2Evji5yT0JiYmcPnyZfzsZz9jpziNR1VVfPCDH8Srr77KOUDJZJIFRqc+ZgeZKmdnZ7kFi91uZ+HZLlKv2+ssnuOgbcjss7KyArPZjMnJSY46I0L1+Xxwu92IxWJsvnM4HNjZ2eGOxBQ4kclkOMiG7rPFYkEwGESxWGzxXREajQZee+01WK3WlmjDarUKu93OATdEotRRwGq1wufzIRqNssZKvtNgMIg7d+7ophPQZ41GA7du3YLNZtuXo0f+IfLl0TNar9e5xqLL5UKxWITBYNhXuFbvHdFqNaKmks1mcffuXS4rRlGFVN4M2PPdiaki6+vrbMKu1WrcM21tbQ2rq6ushdL5tO9dJ78n5THSYpC0wjNnzuD8+fO4f/8+dnZ2unrPRgmSuDToR9gP6ryEQZ7/MPPRvjikHe7u7nJJHbvdjps3b8JiscDpdCIajXKgRLO5V/GdTEmKovAqW0si2v9Fs4fP50MkEoHNZsODBw/Yz0TmqEQigYmJCcTjcUxOTiKbzSIWi3FbkGg0yv6EducTzysKh3q9juXlZRbEWiI8DEQBqrcS1gPVTKzVajCbzfB4PLBarajVanA4HDAYDHzNS6USmw/J70UFiElLmJmZQTweh8lkgtPp5FJXeloH3T9KcqZUBKoiT8WRVVVFLpfD3NwcyuUybDYb9/VSlL3Cx8vLy/B4PByJp6oq+7bIvwWghagonFxr+m00Gqwx02dGoxFnz57lZ4UWOT6fjzVrt9vdNjhInL94HUibUxSFq/M3m3slw2ic77zzDsxmM86fP4/Nzc2WgseUwE0VMZrNvcAmOh8F35DWLD4jwHt92uhaEBnSPadIzmazibt378LpdPIzS3MRtVrxmRsljHUH5HY4qZvYq9mpl+P2OoZ2oBwWqls3MTHB+9hsNlSrVeTz+ZZgADIhTUxMYGpqCleuXNlnkmxnIsnlcrh79y4qlQouXLjA/q5yuYx8Po98Pg9F2WuieOnSJRSLRUxOTgIAC0Ba5XczRxKE4jYUwh2NRhGLxdqSltYnof3pdM07QRSgdP0dDgdrgHa7HZOTk6jX64hEIiiXy2yWIhOr0WhEPB5HKpVicycJPrfbjcuXL+ODH/wg+8bEQBwiKe14gD3z4szMDJrNJpsiQ6EQLl26hGw2C6fTife9733wer1MRpFIBIqicDQezcXr9eLatWvw+/1cqUV7X8TrJS4gaJ5idfnFxUWoqgq/34/z589jcnISJpMJMzMz8Pv9eOyxx1rmKP500sK09+uRRx7hLtVEJJVKhaNRzWYzwuEwZmdncf36dVgsFg5iIlIyGAxsnQgGg/D5fPB6vS1jURQFDocDly5dwtzcHMLhMFRV5UR0qtihqiqWlpZQLBaxtbXF7+Hk5CT8fj8vdrrpIj2skBqXDk5K6xLPr7cSP+wx+zmWnrmCPisWi1hbW+N6a2S7JxKLxWL8YiSTSRau+XweVquVzTYHnZvCgt966y3ugEs+nHPnzqFYLCKdTuNHP/oRVFXFw4cPAYBt/NoVejdErkek2moPWjLsBu3uQbv7oygK5/AA7624yVRHgpjMgxMTE3C5XGg2m1heXuaVdTKZ3NcRmUpFUVHhdDoNu90Ok8nEXafPnj2L5eVl9qXRwoG0vGq1itdee62lTBG1oAmFQrBardja2uIIO7vdjrm5ObzxxhsolUoc8EH1GCl3UK+7sWiebFcfksjdYDDwfIhMxMWWqqp45513Dnwn9DQv8XxUFUaMtCVTrlh+jJqaPnjwgANYRA0TACYnJzmidW1tjX2ZIrlQJOaFCxews7ODfD6PQCAAYC/lgczH1OyTfttsNm4+mk6nMTU1xe9KN12yhw2SuNrgpMmLxjBIAut2Tnpkpf2fBEShUIDX6+UovmKxiLm5Oayvr7fk2FDZHrPZjGQy2WIuPMjHJGoPVItOVVXYbDbcvn0bNpsNiUSCzUClUgkmkwmTk5OIxWK80u9Hm+2HnDodq9391F5j+ttoNOLcuXNIpVLst6JEcK/Xi8nJSS6H5HA4sL6+zqYkAl0/kbzpN5myyPxHpZZMJhPOnTuHK1euIBAI4Gc/+xmbFy0WC/dVE89B2gq1jykWi3A4HLDb7byIyGazbDar1Wpctd9gMKBcLnPJIzFQyGq1smZFvivxeupdQ5qL2WxmkovFYqhWq1hdXYXRaOQUB1Gbo/1NJtM+k5pIYBQh6fV64fF4uJeYoiiw2Wy4dOkSFhYWOEHcaDQil8txorXNZsPs7CwikQiSySRbF5xOJ3Z3d3Hx4kVsbGy0kDVdl2QyiXg8jmq1iqmpKe4WQMWGqVSWxWJhDZzSKC5evIhbt27B6XRynqYW2nMOIyRxjQD0hNphjjUozYv+LpfLLKwoLF6sDE8rcGpBf1CwhPacZAqivC9gL8qLqnqUSiVYLBZkMhlecSrKXimhXC7HfoR2gq5baEmlX+j58sTPxc9IUFFH5tnZWSwsLMDv9+Py5cu4d+8el6gCwJoRCR6qHUjH1wokIodKpYJwOIxKpcKRgJlMhgMnZmZmsL6+znUqd3d3YTabMTMzg93dXVitVrhcLtaEaWGTTqdRqVS4ssnu7i4XnSWyovY5sVgMLpcLbrcbjUaDNXYKdadISAqy0LuezWaTidVsNiOdTmNzcxPJZJKJ3+VytZT6CgaD3PeMSI9ayORyuX1dpGnhYbfbOWLQZrOh2WxysvGdO3fY/OdyubgaCPVVo2eactwot0tVVW6fozXRis/G2toa3ve+98Hv9+Odd97h5pOUIC4GExkMBjzzzDPY3NzkxHq9gsWjBElcbTBIshgEBql9dUNeevMX91OUvT5CzeZ79fPcbjcXM6Uw+LNnz8LhcLAgPCiEXM9ER+fTmmyovA9tY7fbWXgUCgWu1qDn0O8HB2mG/RxLT/MSPyPT09mzZ/H222/j4cOHMBqNyOfz+Pu//3s0m02cP38ea2treO6559BsNrGysgK3243nnnsOMzMz+O53v9u2iaZYh5BynXw+H/sHo9Eol8KiROZiscg5TKSFUWPIs2fPolqtYn19nRuCUhQp1d+jyvNXr17F4uIiL2yI6JLJJFRVhcPhwJkzZ7C2tgaPx8OCeGlpqaUnnHhfKYCEBD8Fq4jkQ6a9RqMBi8XCRZSJXK1WK7LZLCYnJzmlQEw7oHOUSiVEIhGoqopSqcTVZKiJJ4WlK4rCfklaWGWzWezs7AAAR9oCwNNPP42HDx9yN/FyuYx4PM75d16vF9lsFoqisLY2MzPDDTrj8Tjy+Ty8Xi82NjZQLpdhNBrx9ttvo16v8z0Rg15GEZK4RgztVuv9HKdfgUumEr/fzxUM7HY7zpw5gzt37rSUIyqVSpiYmIDBYMDGxgZHcfWq+Wi310Y6+v1+AODSR9FoVDdBeFDQG89hrqfesUlQAWCTGkXtLS8vw+FwYG5uDktLS8jn8/jJT36CYDDIgrBUKuHu3bv7Vu3t7v3Ozg6mp6fZ1JTL5VCtVrnRI4EEHvmKSKuq1+tYW1vjWoROpxOBQABbW1scJk8RjcVikUt1URQchbEDe0EfRFY+nw9WqxWhUAiJRIJ9e9rkchoblRIjs6Y29YJ8SgbDXvPG69ev40c/+hE8Hg+uXLnC2iS1GRHztEQUCgVUKhV4PB4Ojrhw4QLP1+/3o1KpYG5uDmtrazAajdzd2GKxoFAocFAJldC6ceMGlxqj60/J1NS8kxZj8XgcVquViTUQCLDPzGKxwOv1MpGVy2XY7XbOA9Q2QB01SOLqgGHwc+lhkOTV6RidvqccHaoar6oqVldX2aQD7AmfZDKJiYkJ9jUcxlzXblsK+PD5fOyM7sYceRhTYadj9XJPDroHpOWIvkFgb1FgNptbOkvH43FO7gWAhYUF9jHq1Wuk84r+KTqfzWbjiD/gPWFJ29dqNayvr3MpLwpESCQSHHhAOXZutxs7OzvIZDLs76RwfjF6UUw8rlQqiMfjnFScz+exsbHBoeJEWiK05Y30kqzpOzHogfKyGo0Gtre3OZF7cnKSzdPtFiZi9RW73Q6LxcLa287ODjweDxKJBK5du8YpAFRj89atW8jlcuxvozHUajU2UZLpk+6B1WqF3W7H1atXOWqx2dwroEz3GQDW19c5ArVer8Pr9bZovWTSHFXiUpojOPJMJsONCY+aWAYZ2XcU0Ms1Ocxx9KANmSWNi+z3Tz75JGKxGCwWC5aXl9mfRCvecrkMv9/PnZAH9cJoTWpkXiLhq3eeQZ+33fe93g+9a0zCVfytKArOnj2L+fl5LC8vswZy/vx5vidvv/02H4dasogBKto5UKTi9PQ00ul0S6h9NptFKpVq0bjoWhPh0PEokdbpdHIuF/mRqFyVzWbD5uYmMplMi2/IaDQimUxybUEiFwpsoC4AVNhWLI9E0EYaHnTvaR4AONiHCkNT+S+qfUgdiSkvjvYnUyCR9dmzZ/n5CwaDaDabePTRR3H16lX81V/9FeLxOCdDf/KTn8S3v/1tNrFvbGwwoWhzBekZIBOt2P3a6XSiVqvBYrGwmZ56ya2trbUsWOjYnfK4ejEhHsbcSOdMp9N8f7uF1LgOwLD5urTQvoz9jrOTdilGeBFIuFSrVUQiEe42K7b6oHwWYM/UNegVnnhvGo0G55DpVeUY9Hm70b4GFUwDvNeQUFEUrK2t4YknnmChX6/XEYvFEAgEWhJXAWBzc5OP1S4QhOazvb3NgqhSqUBVVSYSkThJ8ImaGpEQmQhJO6CE3cnJSXzkIx/Bj3/8YzaNNZtNjswzm83sNxKJp1arwW63o1KpIJ/PM5GIc9Le53b3Xk9DEwNJKGTdbDZzmDnluz366KMwm8344Q9/2JLMS9ecFgakhRL5eTwexONxLCwswOFwcApINBrFH/7hH3L3YzKh0lhEkhHnSvliFNAiFlSmqN16vY6VlRUmv14JfRQgieuUYBDmw04CVxTW4kuVy+W4MjnZ17V+Jb0XpZ+XpZ0mI55H1AyOEocxs7bbvtPcgPf8ebVaDW+99RYikQhf71gs1tIwUbzGYrK3nobebO6VMiLtQdR4xHOL2pXeeEnrKJfLOHv2LO7du8fjm5ycxN/8zd9w1CGNMZ1O49y5czw3KiBMUFUVjUYDHo8HXq8Xq6urbBLTzqGdUO7GVExzpnw2r9eL8+fP491330Wz2cT29jZMJhP7kcrlMqanpzkwhbQ30s7OnTvHnQei0SgKhQISiQSy2SwsFgump6dhMplw+/ZtbppJfim3281FnsVxUvoApXxUKhWuWk/+rEKhwL5FsZSWeH1Gkai06Clt+vd///fx+OOPw+12c9TS//2//5e/bzab+NrXvobp6WnYbDZ85CMfwe3bt1uOUS6X8YUvfAETExNwOBz41Kc+1RLmPIwYpRutJY1+j6H3md7KllbYFAxgs9laNB6R5A5bKkl7HG2E4km8lJ3OdxQaJl2DpaUl9l+Q5pBIJFrqQBIOWkRotyNi0SYsA++ZrIg0SGBbrVYYjUZsbW0hGo0iGo1y4m+5XMbt27extraGlZUV1hYAcCL666+/jq2tLa72TveXtLl4PI5arcZVPURTKuULaolUO+9Ozw5tbzKZ8PTTT6NWq2FlZQV2ux1OpxMAWvKtKDJQURSEw2H4/X74/X7WgKm8FiWGkwYkRmDeuXOH0wDi8Tg8Hg8mJia4Cow4B3GhSOZGukeZTAb37t3jYI5r167tS4E4Cm3rJOViTz6uv/iLv4DRaMTFixcBAH/0R3+E3/3d38Wbb76JRx99FF//+tfxH//jf8S3vvUtXL58Gf/hP/wHvPrqq7h//z5cLhcA4F//63+Nv/iLv8C3vvUtBAIBfOlLX0IikcCtW7d0C3vq4Th9XIRh93Xp4bBj1ttXG5ZuMpkwPT3NeTLiy9FOWB412o37OM8nopuyOnr3StxP/E4U3Np9tBqV3n7t/hbJSO9/Iihg756Sz4XGSRGCAFry6VRVRTAYRDKZZFMmBdE4HA7WskQzr7aqv+jvokARIgIKytnd3eX9taTV7hnUXkuz2Yy5uTlu3WM0GtlMSaXLyH9KY7p06RICgQC3KqHCwsViEcFgEF6vFysrK5iYmOD+Y5RiUCwWW9IFfD4fN8qkAAvteOl+GI1GDm2n4A4CXWdtwEo3xNWt3+qwCzPatx8f16GDM/x+P373d38X/+Jf/AtMT0/jxRdfxG/+5m8C2NOuQqEQvv71r+PXfu3XkE6nEQwG8cd//Mf4zGc+AwDY2trC7Owsvve97+ETn/hEV+c8CeKic40aeQGHC+Bot49oNqKXsNPKftgwqKAW7fHafddPQIdewIbe9gcRmDYQo93+WqKi7+h/m82G+fl5DvYwGAz46Ec/irfffps/E30qtB+1HcnlcvB4PIhEIlxhnxKMqaxXs9nkSEWtn4c6XwN7cmdrawuVSgXz8/PIZrMtplMxOOegZ1EbCDMzM4MzZ87AYrHA7XZjbW2tJcWANF3y73m9Xly6dImTq+mdmJychMPh4PD4Rx55hAsf7+zs4MKFC3C5XPjpT3+KbDbLeWAUPaqNnBTHSdfN7XYz0VNwC72HB5F3N5aVTjhJ4uq7wmK9Xse3v/1t5PN5PPfcc1heXkYkEsELL7zA21gsFnz4wx/Ga6+9BgC4desWqtVqyzbT09N47LHHeBs9lMtlZDKZlh+J7nEYM1q7/UTzAyVpDspcp2f+G7Q5UBSKR21iPIpj65lt223X6fzdEjf51qiBotlshtlsxltvvQWn04lwOIyZmRn289C1JWFbq9W4gzAl/5LApSi42dlZmEwmzM/Pt3RqpjlQXUAA3M/NYDAgmUxygd9gMMgh/NrrdNC1JC1yd3cXDx8+hMFgQLVahcPhQK1WQyAQQCAQaNEKKeT/zTffxPr6OmtOTz31FFdzIV9VoVDA2toaa11bW1u4ffs2k3ilUkE0GuVO4nqmcLoXlJiuqiovDijnT+89GaSJcBjQc3DGO++8g+eeew6lUglOpxPf+c538MgjjzDxhEKhlu1DoRBWV1cB7EWWUetv7TaRSKTtOV9++WX89m//dq9DHTjEB2cUcZjx6+2rfTEOc9yDPtPbRquB9AutlthPxeyD5t/v9en2nNr708v5DtII6TsxBL5arXIrFDL1USIyaUgkSC0WC1wuF5dz2tzc3BfGTrloZrMZ8XgcLpcLhUKBzXPiHKldDQAeB9XqI9+T3rXqNDe6Xn6/n4nh4cOHCAQCyOfzSKfT3L9Ma0qjsZP5jhqcUjUMsVo85bFVq1UOuadrKjZW1fMFU1Qh5eZRq5ZgMAiXy4UHDx7AZrPptvDp5lqMEnomritXruCtt95CKpXCn/3Zn+FXf/VXcePGDf5e+wJ08wIdtM1Xv/pVfPGLX+T/qevtSeA0kBdd736JphN5EfSeg0Gj07kPc39IU6BjHQe6OU+/5KglZG2AhZ6ZkT6jMHeDYa85JyUC0zEzmQysViuq1eq+TryNRgNOpxOhUAgLCwtsGtSGtDcaDYTDYeRyOS7BRIEmoumRxkSFaiuVCiYmJmCz2ThUnppaUgDIQc+d9hnKZDI4d+4ctwNJp9NcwHlra6tlLOJ1Et8pVVWxsLDA10I0iTocDvj9frz11ltcoPratWt48OABd5TWkhb9TQRvt9vhcrkQi8WgKHs1E8lXJgZl0O9OJKa9FsdlJjwseiYus9nMwRnvf//7cfPmTfyX//Jf2K8ViUQwNTXF20ejUdbCqIhnMpls0bqi0Sief/75tuekVuASg0Mnkul234OE6ElBb6V6Esc4DPo930HkRqt2r9eLXC7HWgHw3spf67/0eDyoVqtIpVJQFIVNX1Q/j4IqtPUQqTYlVUYn054Y9agoe6H1CwsLsNvtHBq/vb3N89FqXMlkkkuNAYDH40GjsddMsl6vM3F1o2mIxENm74cPH6LRaHAgCpFiu33pb6p5SMnXpEERoVFuG5U9o4ogOzs78Pl8UBSFtcV2PqlcLgeTyYTLly9zR3GqX/noo4/izp07fZHWqOHQXcSazT1H6Llz5xAOh/HKK6/wd5VKBTdu3GBSevrpp2EymVq22d7exrvvvtuRuIYNJ73aGBQO6zca5uswKJ9YL8fo9zyDJMVOgooqZJjNZly6dAmNRoPNf0ajkUPL/X4/wuEwwuEwAoEA/H4/MpkMR9dR4qtoEqM2G9rrbjAYuFtAs/lePUJtYiyw1+16a2sLd+/eZaIQTWe0rWhSSyQSuH//PtbW1vg8u7u7+9rmtEudEO8t+ZnK5TKq1Sp2d3extrbWMmZxH6PRiJmZGe4yTK1DKpUKLBZLy7i9Xi+q1SpisRii0Sgfk5LHafxUrkxLPuI8EokE3njjDS7zRI0kyV+m98we5fN7EuhJ4/p3/+7f4Rd/8RcxOzuLbDaLb3/72/i7v/s7/OVf/iUURcGLL76Il156CZcuXcKlS5fw0ksvwW6347Of/SyAvZXR5z73OXzpS1/iF+LLX/4yrl+/jo997GNHMkGJg3EY7Uvcf1jNp4c1j4rH6Mf/RfsDnc1yRwU6h9FoxPz8PJrNZksDQe2cSCMjv3MikWiZg/i8lMvlffUARTNkIBDA8vIy76c1g5GmMj09DZfLhZ2dHWSzWY6OE7dvNBoIBoMol8twuVzIZDLI5/PcC+7MmTOYnJzE3bt394WBt4N2LOKzQsSiNQlSwV0KzQfA5a7K5TIHoFDV+2aziXw+z1U0qNFjs9mE3W5vaf3TKVhI/Jx6khEosbtf0ho19ERcOzs7+JVf+RVsb2/D4/Hg8ccfx1/+5V/i4x//OADgK1/5CorFIj7/+c8jmUzi2Wefxfe//33O4QKAb3zjG1BVFZ/+9KdRLBbx0Y9+FN/61re6zuEaFgy7sO4Hh53TsF+TQYxPr/xVN2hHUMfpQ2s0GlhbW4PVasX8/Dx34hUrZTSbe7lF73vf+6AoCra2ttjvIkaOisSgDbEnTU5RFNY+aHutBkW5WZlMBtevX8f9+/f3kZYoiKnbQK1Wg8vlwvr6OmtnGxsbcDgch44U1SMzvd/U+iUYDCKdTre0YqEuCTQPMXBFvE5U9b+bJOGD5qO3XbfXYNTITRbZPST6XYEPMwYVmHDS96YTDqvptLvv7Y6pd75Ox+h0nIO2E4mE/qdtbTYbLBYLLly4gLW1NUxNTWF7e5uFKpVt8ng8sFqt2NnZYdMcaSCimU8ELT4VRYHD4UAoFEKjsdcIk4I3SqUSE43ojzObzZifn0cikUA0Gm0JlwewjyiJcClsXLwmB1Vn6eYeiddO+52YAOxwOHD58mUsLy9zk0uPx4NwOIw33niDgyUURWnpc2a329m82imVpBsC7kR23aAfku82Sfmg8wKyyO6JoN8V+DDjsKbDQR/nKDAI7fIwc+qF4Ho9RrttKNjC6XQiGAwilUohm83C6XSiUqlgamqKqzX4fD7EYjFYrVZODPZ6vUin09xJWHsNyYxGTSkDgQASiQS3v6HOv0BrOSYKBac2J9oxi4KVyEw8Vr+aRi+RnNr7TZGZRPy5XI5NpqVSiZOjaT8idUoRAPbyugC07Y11EKG008RGUBfpGZK4BoDTSF7AYHxD4rEIw0JihyGvXvbVXr9+n5VeiUr7Pwlbqghx7tw5PHz4EJlMhisvUBULqrdnt9u54nggEIDP58PDhw9Z6IrHNplM7BMqFAq4f/8+522S+dBqtaJWq7UEEQB713N9fZ1Jjz53uVyc76T1d4noRWvo5d61W6BQMAtV6xCbloqllkTSowCOs2fPctI0NY2k5pbdzGXQhNXrfsNAjKdP2p4QhuFmHhXamTEOc7xhgV7AQC/79gIijk7fd0tOesfRmrrEv41GI86fP89RhHfu3MHGxgb7n8vlMvL5PJdVstlsOHfuHOdmUdi2XuQaXYdz585BVVWYTCbWvMiHFQwG4fF4uBuvuB+ZHuv1OqampjAzMwOj0chV1L1eb8t10WpWenlP3RR17uW+i2ZCg8EAt9sNh8OBYrHIlS9E86Z4fgC8MMjlclhcXORSUaRlimPvFJjRzn93XKQ1LJAa14Aw7IEJh8Wg56d9YU76uvU7v25Mhgf5DLshLD1CancM+pt+aJUfCoUQi8WQTCaZ/DKZDGq1GoxGI4rFIqxWK9xuN5xOJyYmJpBMJqGqKnez1hKWOBaKqJuYmOA2K9SuI5/Pc0Sdno9MURQu7ZbNZmE2m7mcE+WSUZ6WqHHo/a3FYbR98ZqKvi3yV2nLz7Vb5JH2Wq1WUSgUOI2ASmS1m0M3gRmHIS1JXBKnnryA96pKDHqOw2BKPKzfSgs986A2tFq7Xafj6Pl/9EyDZG4jsx1FryUSCW7ySLUDd3d3Odn2qaeewjvvvIPl5WXMzc2xZlUqlWCxWPChD30I3//+93UrjptMJuTzeXi9XoRCITYp5nI5/u10OjnXShtQAYC7+yqKApfLxWZFg8GA7e3tfVpVN6Qlbq93X7q5BxTUYrPZ2BdH4e8Oh4NNmXpjazQasNlsePLJJxGJRJDNZhGLxVoKEYtRhSK6CYA4buIZFrKTUYUDxlEI9WHEcczzJK5jP/PSi0ajvykCLhgMIpFI8IqdElAPOq72HNrP9L43m80Ih8O8ui8UCpxc7PV6UavVOAlWJGuq96eqKvx+P4LBINbX19Fs7uUhFYvFlorlWkKl8lDPPPMMCoUCtre3ef9mswmLxcJFdbVEQn3dKOrx+eefx/b2Nubm5vDqq68iFouhXC6jUCi0jKEfQdpuAdCucj5VbZ+dnYXP58P6+jpKpRK3FVlfX+exiMnKwHv+b5PJxJqmmBxN23QKNNHDYcV2vwR0FC4DGVU4BBgHrQsYbOBGp3OIOI5rOqj7JxIJkcbFixcRi8W4tQdF6/V6PL3xiec6d+4cpqamEI1GUS6XeVVPBV4B7BP+AJjgSMhSG48zZ87A4XBgcXFxn9YjgipPvPPOO7h27RprFiSYqV+bHprNJleBcDqdWFxchKqqiEajXNqJKsYfhrTaga4dJRdrr2ulUkEqlcITTzyBaDQKYK/0VCqVYrKfnJxEKpVCNBptMRlSsIueGfGo5nMQRlBfaYEkriPAuJAXcLxzPS5zYq9z0poYtT4mUSAajUb22Whbs2uhXfXb7XZYrVYuS6St6qAoe/lTqVSKBer09DQePnzIRCWWS9JDo9HgVvJWqxXJZJKrbFBwgN4YCWazGc1mE0tLSxy0oPWLiddXe52IpKjI7cLCAi5cuIBUKsXJunTNDuvbEQNcbDYbLly4gEQigVgstm8fqsX4wx/+kMeoKAqbXo1GI0cG6mlP7fxXvZLWSWlagzr/oCCJ64gwaH/JMOMk/FNHfc7D3j8SxNPT09yzyW63o1wuY3Nzk0nnoGPQb0XZ67l0+fJlOBwOvPbaa9z9lzQVilSbm5vD+vo60uk0UqkUB0S0E6DaeSeTSXg8HjgcjpYEWb2xaUm+VCpxIe12Alw8FwDWWKxWK8xmM1KpFC5cuMCtRLLZLKamplqqz+uNu1uIY6e/qXklNXQUj0dBGUReBoMBV65cQalU4hqEdK2pYog4rnbzPm5Na1j8U4OADIc/QpyWh6QbdCMUR+3c/R6PmvxZrVb+e3JysqWduhjk0u4HaNVKisUi1tbWsLW1BZ/Ph4sXL7KWYjKZYLFYYDKZmLympqa4K7H2GpH2pP1pNvcqpMfjcSwvL7doaJ3MhOTDmp6exnPPPbdvGz2zIv1Uq1WcOXOGW6BUKhXcvXuXfUmqqiIWi3Ho/mHNa9rtxQWGw+HgUPypqSlYLBbWmKkArs1mQy6Xg9lsbjkGsGdu9fv93M2inZbVj6Z1WE3psO/HIKplDApS4zpCjJPJkHDScx7k+fs9ltFo5CAIp9MJn8+HnZ0dnD17FhsbG/ui0NpBJDCz2QyPx8MmrkAgAKvVinK5DLPZzLXyTCYT4vE48vk8tra22s5LT4hpP6/Vam3nrudjA/ai7O7fv88ap9jbTKtp0N/VahV3796FoijY2Nho0RABYHd3t2V8gxDC4v4ej4drDsbjcfZHUpfnRCKB+fl5rjpPASYejwfT09PI5XKcsA2ACU57rk7+rW7HKrEHSVxHjJMW5CeBYZjzoEyJ/cyl0Wggm81yyDT1WKJkXK0pqt25tL/r9Tp8Ph+mp6fZtJZOpzE/P4/t7W1Uq1XOodIGfnRjIuz0vZZ8tJ8D4GaJ1OSxVCpx00faTwxSoGslolOF9EFr1WQqLJVK2NjYQDweh9Fo5KaW5XKZ+2pls1lYrdaWIsF+vx9erxeFQgFms5kbWVLrl05jP07rxKCJfhggiesYMAyC/LhxEn6vdjjs9e/V31Wv17mK+fb2Nnw+X0sbdwAszOnY7XxepHXVajWcP38eOzs72NnZgclkAgBMTExgdXWVIwapkvvExAQuXLiAu3fvtoTd6wmxTiYgUVsQNUDxmpIZbXp6Gpubm3A6naxp0XcOhwP1eh2ZTIZbcnTrA9P+fdD37bRBPTQaDeTzeSjKXidho9GIUqkEt9vNaQu1Wg0bGxuYnJxEtVqFouzVfMzn89wU0uPxIBgMYmFhAclkkvPoOo3/IAyKbIaNdAYBSVzHBEleJz/vw9yDXsmr0Whgc3MTqqrC5XKhXC4jkUiw36vZbLLWRFUp9IIgxPGurq7CYDBwhXHalpoXlkolHmuj0cDq6uqB7eu76VvVad6UN2a326Eoe4m68XgcpVKJK3JYrVa4XC5MTEzgpz/9KRRF0Y021BtDu/8P0h57mQdtn8lkYDab4XK5YDabW4rg1mo17OzswGKxYGJiAoqiIJVKsWnW4/Hg7t27cDqdmJqaQqFQ4CLGR605tpvToM5xnNpht5DBGceIYXwAjgOD8ksMCv2ufrvdT6tBRKNR1Ot1rnFHtfzsdjvcbjeXNxIbMAL7E2FTqRScTiceeeQRFAoFbqJIVSYAsA8mFotx3lS7Yx6k0bSbjxZkIvR6vVBVFYFAgAvKEjEXi0WsrKzsy/vrNAY9zbCf54j2adeOhb6v1+swGo3IZrPY2triPK1SqcT3y263I5FIIJFIoFKpYHV1Fel0Gna7HaqqIhKJIJPJ8H56qQfH4dcalnftqCCJ65gxTAL8ODGM5NWPAOx1G4/HwwJvbm6OezaZTCaEQiFcv34dPp+vhbzE/ln0Px07Go3i5s2bbBosFotcSkgcQ6lUajFVdUoU7/eeKMpe5XODwcC5TLlcDiaTCaqqwuv14vLlyxxEks1mYbFYEAgEoKpqR0LUEtogI9o6+dAee+wxqKqKRCIBo9HIkaBU/eTMmTMoFotwOp28ICmXy1hdXWWtudFocJURvXN3wmHfkUFfKzrmsEGWfDohHGXFiWHHMM692/G0G7teCLvdbsfVq1c5l4pMerTyp4K05XIZyWSSfVSieU97TKPRCKPRyCa6UCiE3d1dXt2LwQNaU5wo1LrN69Kbo/aHxkQaFgA4nU5Uq1XY7Xbkcjn2HZ09exYzMzP4sz/7M+5XdZCp8ChFlDYAxmg0wuVyIZfL7SMAul9ra2twu90tlUZcLhdqtRoymUzLPdar69gOg9CyBn2tjvL603FlyacRwjj6vAj0MgwTgXV7P9ptp+cDq1QqWFlZgaqqcLvdOH/+PNLpNBwOB7LZLHZ2drC2tgZVVfHoo48iFovB6XQiEokwsZBWozWv0f9EdFqI+4n7Uhdio9G4r6dWOyGlF+WozTcjUxsRtN/vZw2Lek4Vi0Xcv38fKysruoELJ+ULot9ikrEeqHI9AKRSKV5AKMpeUeBSqYRyuczEpdUaR4206LjDCElcJ4hxJi9gOOevR0D9gIiDItUoCs3r9SIajTLhVKtVLnq7vr4ORdkrI0SCyGw2cwKueGxgr8mi0+nkiEXRRyYGelAB20ajgfn5eTx8+BAulwurq6sH+q+014SCSyi6TjRver1ezt1KJpNwOp340Ic+hNdff52bLZpMJiSTSbhcrhbSPSrS6nQMvcWHnqbb7nikNSuKgmq1Cp/Px6W4tO1O+h1jt/uOE2kB0sd14hgmv89JYBjnftCYDrpnorBLpVIoFotoNptc0shgMMDj8eDDH/4waynr6+vI5/PI5/NoNBpwOBy4cOEC50SRn0tVVTgcDjgcDo7O83q9bK5zOBwIBoOwWCz8Ge07OTnJ26dSKW5i2M0z2Gw2uQ+VzWaDyWSCyWTC448/Dp/PB4fDgVKpxERN415dXUW5XOYWJSaTCT6fD9evX2/xc/VyfQ8aZ78/esfRqywifk+5XdTXDIBuzcJBz1M713GD1LiGAMOoeRwnjqrH12FwkObV6Z4pisIlf0grcTqdSCQSHFBRKpXw+uuvw2q1olgsIpfLtdj8S6USwuEwTCYT+1JEzSYUCiGdTiOTyaBQKLBW53a74ff7W4IziLhqtRrm5+dht9uRz+dx5swZ3Lt3jwVuO6e+mEuWyWTg9/vhdrtRLBYRjUY5FJ80SGDPH+RyubCysoJ0Oo1YLIZgMIh79+7BZDLh9u3bXPi3F5Nap/vR6356ZAW8d70OOk+z2cTGxgaA96I+f/7nfx4//OEPO45rWDUs7XmGmRAlcQ0Jxp28hnH+B42p3feUz2QymeB2u5koSFAXi0Vu5nj+/HlkMhmsrKy0lEeq1+vY2tqCwWDA1NQUtre3ubdTpVLZVzaKahZaLBY0Gg34fD4mS6vVylrY/fv3Aexpgjs7OweSljhPGp+qqkilUvB6vVw4mFqaNBoNJjWr1cpdfkulEra3t1GpVLhwrzZvrVdheVTCla5FO3OheH4xcbzRaOCv//qv+e+jIK1hJpPjhCSuIcIwCu/jxDAGbQDd+73EYIp6vY5AIIBSqYRMJtPSyHFrawuNRgOlUolNadqmkhR+XSqVUK1WEQ6H2c9FzRRNJhNqtRrsdjucTidX66DgB4pirFQq8Hg8iMfjaDQaMJlMHOZN5rB289H+n06nW0LeXS4XQqEQ+6vsdjtmZmawuLjIZajIdEg+OCLtfoX6cQlwbeAGoP9uarWgUdWy9M45rJDh8EOIg1Z644BhIy+g/f3QRtl5PB6EQiF4vV5sb28jk8mwbyqbzXJ5pKWlJdZ4xPlSJYpAIACn04l4PI5qtQqv1wuTyYRUKgWr1Qqn08maTSAQgM1mw+3btzk0nsoViWHZ09PTCIfD+OlPf4pCoaBLXO2IgcZHBEQVMYrFIorFIhfltVgs3GuMNDSn0wmn04larYZEIoFisajrM2qHYdM2OhHYQZ91i5MgLDrfcS4MZDj8KYH40Ayb8D4uDKP21U7z0t4vg8GAWq2GBw8esDbldrthtVqRSqVQKBQQiUTYdCgm8lJItphgTPlOVDuPqpZTvUJFUZBIJNgX5na7kclkeCxiYEE0GsXi4uI+DU+cSzuhpTUZUkQkBZQQAVKYPd07qpreaDQQCoVQKpU4YKXbcw4TaQHdBfAc9vgnMedhWyC0g9S4hhzDJLhPCsN2DQ5KQBarXYjfmc1mVKvVFh+KuI/WpEZRgVTvLxQKwWKxMEE5nU7Y7XZUKhXuWry1tQWz2YzNzU2YzWY4nU5sbGxw6w36EX0wNJ5ehRaN/6D9bDYbb0f1GWOxWMcSTqMiQEWMonalxXH23JIa1ynGuPu9gOG7BnqalzhGMXmYBDYAroouJu0SSTkcDlgsFq5UTp87nU4mm93dXdjtdthsNlgsFthsNpw9e5ZNiZOTk3j48CE3rwSAq1evIhKJ8DHJN5XL5Vq6CXej9XT7uRbivA0Gw7G2LjlKDGqcwzLnYRhDt5DENQKQpsPhIy89iGPsRggQyVFE4OzsLDY2NmC1WplUJiYmUCwWoSgKdwPWVsqwWq1IJBLIZrNMcBThVywWEQ6HOUiDit4Ce5YLvXp6gxZgojZBHY+10YRHde5BYpBjGxYNS8QwjeUgyATkEQGtykbp4Ro0hukadNJCtIJaO2ZxHqR1+f1+rKyscPt6aoVCJaMoMENVVaiqCr/fj0qlgs3NTa6cQe3kr1+/DpvNhkqlgp/97Gccan/p0iXY7XYEg0HMzMxwW3rtmDvNS5uQ2+lHnGO7JN5+aiYeF7T3aVDH7LfK/VFimMbSDaTGNWIYBc3jKDFM2me7YA297USIpkJK7F1cXITVasXMzAx8Ph9UVcXOzg4ajQaHsZMW5XK5EI/HeV8KtKA+XfF4nHOryJcEgKMMi8UiEomEbh5Vu/H3I9gOirI7amE5TMJ4GDUsEcM6rnaQwRkjjE4Z/uOAYUkbaHf+TvdHDMwg34/NZoPP54PFYuGKGBSVZzKZuLQTlU1KJpPweDyw2WyYmppCPB7HgwcPYDQaAYDLMFHeGPm+qJZeJ18TMFjfy1FoGMMsukbF/Akcb0CGCBmcMaYYxlJJx4lh0b7aaV5EFu32EfejxOB0Os2V26nqOJFVs9mExWJBrVbD+vo6HA4H0uk0dnd3EY1G8f73vx/xeBybm5sIh8NQFIWbVlI0I4Xqa0127cZ32OvS7vj9HmvYMeyalRajMk4tJHGNOMbddAgMxzVoR14HmRNFwZFOp1uIjso7zc/PQ1VVrK2tcdUKq9WKyclJJJNJAMD169fx8OFDpNNp1Go1JJNJhMNhbG1ttVTIoD5TR6VpHUbTGFUhCgxPZGAvGMUxEyRxnQKIq/dxJbBhuAZ6JNXNuEh4iFoQRSZSIVuqIk/5Xs1mE9vb2zAYDEilUvjJT37CxW4bjQbq9TrMZjNcLhcnI2ubG+oJrn6E2WEF4KgKz1HTrk4TJHGdIgyL6ewkMQzalx4OGpf23olklkwmW5KYZ2dnkc/nsb29zSWW7HZ7iykwnU5jdXUVjUYDRqMRoVCIGyFSJY6DxnHQXLrdvp9zDDNOA2GNsrYFyHD4U4dhDS0+Tpzk/Dudt9txacPFxYoX5J+iqEDyfymKgsnJSVitVt4ukUjA4XDA6/Wy9hUKhTiPS4tunPT9hoiP+nMphvWP8jwIoz5+SVynFKfh5ToMTlJQ9ktenfxNYgTW7du3kU6nUa/XYbFY8NRTTyGfzzOpUbSgqqq4cuUKpqamYDKZEA6HYTQauQRTN2MWBba2HX03GPXnsF+iHmachnlIU+EpxribDk9y/p2CMjqNi/brFKkIvBdqn8/nEYvFkEqlEI/H0Wy+1yOqVqshEolge3sbTqcTlUqF24/oHVNvnIMI0hhFnCaiEnFa5iWJ65RDNDuNa/DGMARuaNGOvETC0iMvMfdLVVUYjUbcvn2bE45JK6IQ+Lt378JutyOZTHLnZa/Xi0qlwhqa3tjGkbBOg++qE04LaQGSuMYKUgM73sCNg0LhaRugPXlR8MXZs2exvLwMYK/JpMViQSgUQqFQQCaT4f1E0x51Pjabzbh//z7q9ToMBkNLqxTtWGR04OnEaSItQBLX2EGS1/FqX/2Ql/Z/h8OBUCiE9fV1NJtNTE1Nwe/3w2AwIJvNsvalKAoTUqPRQKFQ4JB56jhMOV1aQXaY6gmjKhBPmzBvh9M4T0lcYwpRgAPjR2LHqX31q3kRKpUK1tfX4fP5kMvlEIvF2E9Vr9dhMpkQDAZRLpexurraEkxBRNaOpMbNLDgO2pWI00hagIwqHHuctoipXjBsc283FovFgg984AOw2+2wWq0IBAKo1+t49NFHYbfbYbfbEY/HEY1GW46jF7o9rqR1GqMDD8JpnqskLgkA7+UMjRu0Qv4oz9PLeGh7s9kMo9GIhYUF2Gw2lEolTE9PIxwOIxqNIhAI4P3vfz+sVit+7ud+DoFAoGV/8fc4ktY4EtY4QJoKJVpAhXsBaT48iuN32waFSjTVajUoioJ79+6hWq3C6XRiZWUFs7OzcDqdMBgMuHv3Lmq1Gh48eMDdhsX5aIV2v0J8lAT/uJkEtTjtRC2JS2IftA/8OBHYUQdv9EpelUoFW1tb3PrEZDLB7/djZ2cHwF5CstfrRTweRzabRbFY3KdxjRNpnXaB3Q3G4RpIU6FEW4yzmeUo593NccVtKNCiXq9jZ2cHd+7cwfnz57GwsIBKpYJoNIpyuYxAIIDJycmW6MTDktYo3PvjMveOAkbhfg0CkrgkDsS4EthJz1lPcyLz4d/+7d8in8/DarWiVCqhVCoxiemNu9d5jMq9Pul7NEwYp+sgiUuia4zryrZdhN4gjtuN5qX9m347HA44HA4AeyWgtra2UC6XOVerl/O0O+ewQXwGx+057IRxIi1AEpdEnzgqYT7MOCrN86BjidGAJLANBgMuXLiAZDKJCxcuYHZ2lovrnnbSGuYxngTG8ZrI4AyJQ0F8YcYliOMo5nxQRKMY1NFsNlEul3Hz5k2u9L60tNS3eXCYhd44CuVeMK7XRxKXxEAgvkDDVMz2KCFGIAKDIbF2BEbnoqrwjUYD1WoVjUaDaw/2mqc1rAJv3EPZu8GoE9Zhxy6JS2LgOAqBPszQvoRHSWBinh1ts7y8vC+Qo5fxDgskYXWHUSetQUASl8SR4SgE+jBDFLyD0jr1CEy8rlotq5tjDRukIO4e8lrtYeSJS1zZSwwntAIdGA8SG6TptJ1frZMQG1YBJzWr/nBaSGsQcxh54pIYLYybFgYMfs6jKrwkYfWP00Jag8KpIC6pdY0etELstAd0aKP9xLmexnnr5Z9J9IfTVPx6UM/CqSAuQJLXqGPcAzoIozxvSVaDxWm7hoOcz6khLonTgXE3JY6aBipNWEcDeV0741QRl9S6Tg/0TIni79MOreDSzvu4roOe8JQC9ehwWglr0HM6VcQlcXqh9+CPC4kB/b343bZPGfR5JfrDaSWto8ChahW+/PLLUBQFL774In/WbDbxta99DdPT07DZbPjIRz6C27dvt+xXLpfxhS98ARMTE3A4HPjUpz6FjY2Nwwyl5fwSpxdivbpxLrQqXod2P3R9Ov0cdAyJ48Fpfo6PYl59E9fNmzfxB3/wB3j88cdbPv+d3/kd/N7v/R6++c1v4ubNmwiHw/j4xz+ObDbL27z44ov4zne+g29/+9v4wQ9+gFwuh09+8pOo1+v9z0RibEFCWgpciVEDPbsSvaEv4srlcvjlX/5l/Lf/9t/g8/n482azif/8n/8zfuu3fgv/7J/9Mzz22GP4oz/6IxQKBfzpn/4pgL2OrX/4h3+I//Sf/hM+9rGP4amnnsKf/Mmf4J133sH/+3//byCTkoJrPCG1BolRwbg8n0c1v76I69d//dfxT/7JP8HHPvaxls+Xl5cRiUTwwgsv8GcWiwUf/vCH8dprrwEAbt26hWq12rLN9PQ0HnvsMd5Gi3K5jEwm0/JzEE77AyHRGXomMwmJk4bWOnCacZTz6zk449vf/jbeeOMN3Lx5c993kUgEABAKhVo+D4VCWF1d5W3MZnOLpkbb0P5avPzyy/jt3/7tXocqIdECIq/TnvwrMZyQi6fBoSeNa319Hf/m3/wb/Mmf/AmsVmvb7fRaMhwkIDpt89WvfhXpdJp/1tfXuxrvaV/RSPQHaVKUOE6Mox/rqN+nnojr1q1biEajePrpp6GqKlRVxY0bN/Bf/+t/haqqrGlpNadoNMrfhcNhVCoVJJPJtttoYbFY4Ha7W34kJAaBdlGKkswkDgvRLCgxWPREXB/96Efxzjvv4K233uKf97///fjlX/5lvPXWWzh//jzC4TBeeeUV3qdSqeDGjRt4/vnnAQBPP/00TCZTyzbb29t49913eZtBQj40Er1CamQS/UJcBI3rM3Mc8+7Jx+VyufDYY4+1fOZwOBAIBPjzF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+fV+wx6AgK2pI9ItRLsckcXyQi5s9HNc1GHjljK985SsoFov4/Oc/j2QyiWeffRbf//734XK5eJtvfOMbUFUVn/70p1EsFvHRj34U3/rWt2A0Ggc9HAmJgUMUUjLQY3yhLUsmcXxQmiN41TOZDDweT8/7ScEicdSQRHb6IQlLH/1ej3Q63XPcgqxVKCExQLRr7TFuRYJPGyRZDRfGirikr0vipCAKvpOq9C7RO6Tvqjsc9zUaK+ICJHlJnDy0L7n4v8FwqLrXEgPAuOVcHRYnQexjR1yAJC+J4YUoNKVmdvRoZ9qV6A4ndc3GkrgkJEYBBwkFSWT9QZLVYHCS125siUtqXRKjhk4mRkDml3WCNP+dLowtcQGSvCROF/QCCfSe79P4zOut/qU2dXQ46Ws71sQlIXHa0U6gtyOvUSA1SVISY09cUuuSGEe0E/TdEMBRvy+ShIYbw3B/xp64AEleEhK9YBgEl8TJYFjuvUwakZCQkJAYKUji+gcMy0pCQkJCYhgxTDJSEpeAYboxEhISEsOCYZONkrg0GLYbJCEhIXGSGEaZKIlLB8N4oyQkJCSOG8MqCyVxtcGw3jAJCQmJ48Awy0BJXBISEhISIwVJXB0wzCsOCQkJiaPCsMs+SVwHYNhvoISEhMQgMQoyTxJXFxiFGykhISFxWIyKrJPEJSEhISExUpDE1SVGZSUiISEh0Q9GScZJ4uoBo3RjJSQkJLrFqMk2SVw9YtRusISEhEQnjKJMk8TVB0bxRktISEhoMaqyTBJXnxjVGy4hISEBjLYMk8QlISEhITFSkMR1CIzyikVCQmJ8MeqySxLXITHqD4CEhMR44TTILElcA8BpeBAkJCROP06LrJLENSCclgdCQkLidOI0yShJXAPEaXowJCQkTg9Om2ySxDVgnLYHREJCYrRxGmWSJK4jwGl8UCQkJEYPp1UWSeI6IpzWB0ZCQmI0cJplkCSuI8RpfnAkJCSGF6dd9kjiOmKc9gdIQkJiuDAOMkcS1zFgHB4kCQmJk8e4yBpJXMeEcXmgJCQkTgbjJGMkcR0jxunBkpCQOB40m82xky2SuI4Z4/iQSUhIHA3GVZZI4johjOsDJyEhMRiMswyRxHWCGOcHT0JCon+Mu+yQxHXCGPcHUEJCojdImSGJayggH0QJCYluIGXFHtSTHoDEHuiBVBTlhEciISExbJCE1QqpcQ0Z5AMqISEhQsqE/ZDENYSQD6qEhAQgZUE7SFPhkEKaDiUkxheSsDpDalxDDvkAS0iMF+Q7fzAkcY0A5IMsITEekO96d5DENSKQD7SExOmGfMe7hySuEYJ8sCUkTifku90bZHDGiEEGbUhInB5IwuoPUuMaUcgHXkJitCHf4f4hNa4RhtS+JCT+//buLqat8o8D+LcdbYcVG5DJ4ezNqqjZYCR2yiBGpihmGVuMJrrpBYneTIVA3GLcvCgXyyBezGh8WTLN3K56wzBLppMat85lWVx4yQpbCAk4YaE2M9AyhXbCzwv/nD8db5ZB29Pz/SRPspznGXnOd3362zk87dEfFqy7xyuuNMCFQJT6+Cy+pcPClSa4KIhSF9fm0mLhSjNcIESphWty6bFwpSEuFKLUwLW4PLg5I01x4wZR8rBgLa+4rrgaGhpgMplimqIoWr+IoKGhAaqqIjMzE1u3bkV3d3fMz4hEIqitrUVubi7sdjt27tyJwcHBpTkbmoG/+yJKHK63xIj7VuHGjRsxNDSkNb/fr/V99NFHOHz4MD777DNcvnwZiqLghRdewOjoqDamvr4eLS0t8Hg8uHDhAm7duoWqqipMTEwszRnRrLiYiJYX11gCSRzcbrcUFxfP2jc5OSmKokhTU5N2bHx8XBwOhxw5ckREREZGRsRisYjH49HG3LhxQ8xms5w5c+Y/zyMUCgkAtkU2k8nExsa2RC3Z61nvLRQKxVOGREQk7iuu3t5eqKoKp9OJXbt2oa+vDwDQ39+PQCCAyspKbazNZkN5eTkuXrwIAGhra8Pt27djxqiqisLCQm3MbCKRCMLhcEyjxRPeziC6a1xHyRNX4SopKcGJEyfwww8/4OjRowgEAigrK8Mff/yBQCAAAMjLy4v5O3l5eVpfIBCA1WpFdnb2nGNm09jYCIfDobW1a9fGM22aAxcd0eJw7SRXXIVr27ZteOWVV1BUVITnn38ep0+fBgAcP35cG2O6YxebiCy4s22hMfv370coFNLawMBAPNOmefB/jUT/HddLarirz3HZ7XYUFRWht7dX211455VTMBjUrsIURUE0GsXw8PCcY2Zjs9lw3333xTRaWlyQRHPj+kgtd1W4IpEIrl27hvz8fDidTiiKAq/Xq/VHo1H4fD6UlZUBAFwuFywWS8yYoaEhdHV1aWMoubhAif6P6yE1xfUB5H379mHHjh1Yt24dgsEgDh48iHA4jOrqaphMJtTX1+PQoUMoKChAQUEBDh06hHvuuQevv/46AMDhcOCtt97C3r17cf/99yMnJwf79u3Tbj1S6vgvt3iJ0hkLVuqKq3ANDg5i9+7duHnzJlatWoUtW7bg0qVLWL9+PQDg/fffx9jYGN555x0MDw+jpKQEra2tyMrK0n7Gxx9/jIyMDLz66qsYGxtDRUUFvvnmG6xYsWJpz4zumvDbN8iAWLBSn0l0+K8UDofhcDiSPQ1DYhGjdKTDt8G0EQqF4t63oMvvKuSLLHmYPREtpcW8p+jy2+Gnf4UUERHp12Lez3V5q3BychI9PT3YsGEDBgYGuD1+FuFwGGvXrmU+c2A+82M+82M+C1soIxHB6OgoVFWF2RzfNZQubxWazWasXr0aAPi5rgUwn/kxn/kxn/kxn4XNl9Fi9yro8lYhEREZFwsXERHpim4Ll81mg9vths1mS/ZUUhLzmR/zmR/zmR/zWdhyZqTLzRlERGRcur3iIiIiY2LhIiIiXWHhIiIiXWHhIiIiXdFl4friiy/gdDqxcuVKuFwu/Pzzz8meUkKcP38eO3bsgKqqMJlM+Pbbb2P6RQQNDQ1QVRWZmZnYunUruru7Y8ZEIhHU1tYiNzcXdrsdO3fuxODgYALPYvk0NjbiySefRFZWFh544AG89NJL6OnpiRlj5Iy+/PJLbNq0SftAaGlpKb7//nut38jZzKaxsVF7XNMUI2fU0NAAk8kU06YeIAwkOBvRGY/HIxaLRY4ePSpXr16Vuro6sdvtcv369WRPbdl999138uGHH0pzc7MAkJaWlpj+pqYmycrKkubmZvH7/fLaa69Jfn6+hMNhbcyePXtk9erV4vV6pb29XZ599lkpLi6Wv//+O8Fns/RefPFFOXbsmHR1dUlnZ6ds375d1q1bJ7du3dLGGDmjU6dOyenTp6Wnp0d6enrkwIEDYrFYpKurS0SMnc2dfvnlF3nwwQdl06ZNUldXpx03ckZut1s2btwoQ0NDWgsGg1p/IrPRXeF66qmnZM+ePTHHHn/8cfnggw+SNKPkuLNwTU5OiqIo0tTUpB0bHx8Xh8MhR44cERGRkZERsVgs4vF4tDE3btwQs9ksZ86cSdjcEyUYDAoA8fl8IsKMZpOdnS1fffUVs5lmdHRUCgoKxOv1Snl5uVa4jJ6R2+2W4uLiWfsSnY2ubhVGo1G0tbWhsrIy5nhlZSUuXryYpFmlhv7+fgQCgZhsbDYbysvLtWza2tpw+/btmDGqqqKwsDAt8wuFQgCAnJwcAMxouomJCXg8Hvz5558oLS1lNtO8++672L59+4ynsjMjoLe3F6qqwul0YteuXejr6wOQ+Gx09SW7N2/exMTEBPLy8mKO5+XlIRAIJGlWqWHq/GfL5vr169oYq9WK7OzsGWPSLT8RwXvvvYenn34ahYWFAJgRAPj9fpSWlmJ8fBz33nsvWlpasGHDBu2Nw8jZAIDH40F7ezsuX748o8/or5+SkhKcOHECjz76KH7//XccPHgQZWVl6O7uTng2uipcU+58Cq+I8Mm8/7OYbNIxv5qaGly5cgUXLlyY0WfkjB577DF0dnZiZGQEzc3NqK6uhs/n0/qNnM3AwADq6urQ2tqKlStXzjnOqBlt27ZN+3NRURFKS0vx8MMP4/jx49iyZQuAxGWjq1uFubm5WLFixYzqHAwGZ1R6o5na3TNfNoqiIBqNYnh4eM4x6aC2thanTp3C2bNnsWbNGu04MwKsViseeeQRbN68GY2NjSguLsYnn3zCbPDvraxgMAiXy4WMjAxkZGTA5/Ph008/RUZGhnaORs5oOrvdjqKiIvT29ib89aOrwmW1WuFyueD1emOOe71elJWVJWlWqcHpdEJRlJhsotEofD6flo3L5YLFYokZMzQ0hK6urrTIT0RQU1ODkydP4qeffoLT6YzpZ0YziQgikQizAVBRUQG/34/Ozk6tbd68GW+88QY6Ozvx0EMPGT6j6SKRCK5du4b8/PzEv37i2sqRAqa2w3/99ddy9epVqa+vF7vdLr/++muyp7bsRkdHpaOjQzo6OgSAHD58WDo6OrSPAjQ1NYnD4ZCTJ0+K3++X3bt3z7oddc2aNfLjjz9Ke3u7PPfcc2mxVVdE5O233xaHwyHnzp2L2bL7119/aWOMnNH+/fvl/Pnz0t/fL1euXJEDBw6I2WyW1tZWETF2NnOZvqtQxNgZ7d27V86dOyd9fX1y6dIlqaqqkqysLO29N5HZ6K5wiYh8/vnnsn79erFarfLEE09o253T3dmzZwXAjFZdXS0i/25JdbvdoiiK2Gw2eeaZZ8Tv98f8jLGxMampqZGcnBzJzMyUqqoq+e2335JwNktvtmwAyLFjx7QxRs7ozTff1NbNqlWrpKKiQitaIsbOZi53Fi4jZzT1uSyLxSKqqsrLL78s3d3dWn8is+FjTYiISFd09TsuIiIiFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItKVfwA7ta5FL6ZI4QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/nFJREFUeJzs/WmsZMl1H4j/bu779va9qquqq6sXks1Wk0PKEuWRSMEYjaAPAwkQYHgwGkAzsgU0JEEajb/Ihk1CNmBhAMEC/MUcCLDpATwa2oAskbDMTZTI3kh2176+fc33XubLfbv/D+9/DiOjIuLGzcxXy+s8QCIz743lxHa2OHHCcV3XxRjGMIYxjGEMzwkEnjYCYxjDGMYwhjH4gTHjGsMYxjCGMTxXMGZcYxjDGMYwhucKxoxrDGMYwxjG8FzBmHGNYQxjGMMYnisYM64xjGEMYxjDcwVjxjWGMYxhDGN4rmDMuMYwhjGMYQzPFYwZ1xjGMIYxjOG5gjHjGsMYxjCGMTxX8FQZ17/+1/8aFy9eRCwWwxtvvIFvf/vbTxOdMYxhDGMYw3MAT41x/Yf/8B/w1ltv4R//43+M999/Hz/1Uz+Fv/f3/h7W1taeFkpjGMMYxjCG5wCcpxVk99Of/jQ++clP4k/+5E/42bVr1/BLv/RL+NKXvvQ0UBrDGMYwhjE8BxB6GpW2Wi28++67+D/+j/+j7/kXvvAFfPe7330sfbPZRLPZ5P+9Xg+Hh4eYmJiA4zhnju8YxjCGMYxhtOC6Lk5OTjA/P49AwJ/x76kwroODA3S7XczMzPQ9n5mZwc7OzmPpv/SlL+Gf/JN/8qTQG8MYxjCGMTwhWF9fx+Lioq88T9U5Q9aWXNdValC///u/j1KpxJ/xPtgYxjCGMZwPSKfTvvM8FY1rcnISwWDwMe1qb2/vMS0MAKLRKKLR6JNCbwwKGLVJViekPKn8Zwm0bUz4Pcu4nneQ+95rLMb36j55GGRtPBWNKxKJ4I033sDXv/71vudf//rX8dnPfvZpoDQGA+gmltciN72XicmocHoWwHGcPvxUlgUTiO9VaXX5R0F0hylj2PrPIr/c96IwQd9iPhq7Z3l+jeEpaVwA8Fu/9Vv4+3//7+MnfuIn8JnPfAb/5t/8G6ytreF/+9/+t6eF0hgE8JJKvRa3Hy1D1kz8SsnDgKouEadByvACr7Rempqub0wCht+x0OU1lWVKZ4OD6r1NPnE+iultcPXqs7EG9mzCU2Ncv/Irv4JisYh/+k//Kba3t/Hqq6/iz//8z7GysvK0UPrIgy3hsCGCgzAaHTGxJVym37Z42jBjudxBGMaghPys0uhwkvtS1X5VGXK6QQUP2/pU+I+i3cNaBsZwNvDUznENA+VyGdls9mmjca7gWTGN2GoHg2phXpqAzR7IMATxacFZ4+KluXppss9SX5ngOSSXzzyUSiVkMhlfecaxCj/iIJr8BlmUo17INtqVTTrb8m01rkHqfR77dVTlq/b5TDg8KaY17FiM97+eDRgzro8oqBbgMOY9HTxpAnwWddrWa8rrF6dnsV8HgWdNQxnVHB8zsKcLY8b1EYQnueD8mNVs4VkjhjYwakb0rBDNUY6F6Ok3inRPAp6VcfiowZhxfcTAyxRmgmHNLLbu8V7leJngzoJZDluOKc0g+zu2/ToI+ClP59BD36b38n9bRw45nW1fnNUcF3EZw5OBMeP6iMAwewx01sWvi7hfLy+/jM22vGEZnFcdw3r2+WG0o+5XEz6DnhczMSA/zje2YNsXZz3Hx8zrycGYcZ1zsLHF2xAJuQz54Kau3mGl91GACnc/YGrrqHDWHYhV1fWk+vUsxkM1Fn6EkkE1oic1x8d7X08GxozrnIKfBWRrmhlkgY5Kqxkkva5uv2dzbNs6DFEVmZKN1nAWxNHWlOanL2y1M1s4KyY86jk+ZmBnC2PGdQ5hWA3DD4xyn0hV1iD7P4O4rFNdOtxGUa/YRlsHhFGArl9lGKUgYqMdDtLfw47RIDBM2WPmdTYwZlznDHSS46jKlhfxoGWryhm1ycivp6KNhjZMnWIbvfZlRknwRj0nRuUB6ee5Sot+Xub4mHmNHsaM65yATPi9NthtQKUFDVKuTrrXeZfZ5vcCP0xvVA4Oo9TgBgWT194ovO5G6bU5jDb7PM3xselwtDBmXOcARuGxpss7Ci3EtgwdwTBJ4H5gGAl4lHnOmoCZ+tVv3Wc1Fqby/Jb7PM7xMQwHY8b1HIMfKW5Y6fEswK+nno1pyFaLGwRs94pGCbZnlMT3g/arH61mEC89PzAKJjuqtMOAThMbM7DhYMy4nlMYtbuwTdl+6xmFR5nffQxbLW4QOOu9KK86vdoi75/ZmgWH6dezglFoYoOW76eeYeb4mHkNDmPG9RyCaa9CZ8oZtVu6DWHx2lOxqUu3Z2RDlMX9C79S7rCecCYvSdsydWDbr7bzxLZ+Vb/KZeny2JZtk/c8zfEx8xoMxozrOQKdV5pNPoIn4drr5THntwwVE5PLVRGcYUwyw+57+PGSPMs9t2GcWFTpiNiOsn5duo/KHB8zL/8wZlzPCYzS5EVgq7X4zTtqGLUHoS0MqgU8yb550jAqTz7Ts4/qHB8zMHsYM65nHOQJrTNN+NnPsPGu85IGvRbZsIt+VERjWI8zr2cm13oVMdZ924Ctc8aTgFET2fEc/3GdYwbmDWPG9QzDKNxxVe9sXZr97NPI7wZZfH4dBmzKeZqgMieJ5jbxuQ1T8hq3s3TYGRRGWfdHaY6PmZcZxozrGQVRarQ5S6NKZyuh6sr0s09j884LBjFD2Wo8qjyDOA6MwjFBpVEMypRGuYelqnsQZxIvvFVm1fEcH2095x3GjOsZBFkaH2TD2OSx5OXN9KQkdJ0nnq20DAxGYIbp11E5JtgQsEE91mw9HE1g6iOv9g9iKRjPcbMQNoZ+GDOuZwxsJqpfaU0leQ5CMG2lXT9SsfhexRQGNcucxYa7ac9qULxUfT0qkymVJfbrWTkkDKKZ+S1Pho/KHB8zr8dhzLieIbCRsGVpzUaaVkn3XtKojaRtu9B0BEbe77HFQ06jcnjQ9eUw+0CmPSvbcvz26yDmTJNzgqnPxecmJq3rV5UZdVBT43iO96cZQz+EnjYCY1ATRK+FJUvSfusZRbpBwJYw2OKhYya2+f3U5QcHG7AhWoOOma2Z0oYw2/arrVlxPMf94aHT0D7KMNa4njIMahobdOH52Vg/K/CSoM8Kh7Nu26D7SE8KvMxpXvsuozIvjuf4cDiMTYdjxvVUwa95g+AsJ/1Z1091DCuFDlqvCKPYl3na0u+ozZSm97aalle/juf48HP8o868xozrKcGg5iVK74dgiTCKzfdhTBfDbIiPGlR7MF77IqoydOU9CSYom9WG7btRjIXffrUpYzzHH4ePMvMaM66nAGdlAjnLur2kR9uFqZP6B/WkG4VkbGsCMxEzP44gJlz8gKrPRiXJ25rzvMrxC+M5/jh4eUd+FGHMuJ4g+N1oVuX3+v20wM+GtE3+s85nU8YgZrQnORajrmtQwjpKGM9x//mGpSvPI4wZ1zMCo9pvscnzJMwufsodxOV7VHU/yXqfdNl+cRiFqdGmHq9nXmWM5/gYxozrCYBKIrI58+LHPGGqR5VOBcMsGrE9NuX4kab9mq28+uxJSMq2ROusHQXOaixsyh7P8Sc7xz9KmteYcT1FUO0nyIRh1OYJv0TUT31nZS4bts1++mBUEq84ll5u5jZlDYrbKMdCno82ZY/nuL9yB03/UWFYBGPGdcZgs39i83tUXkl+JGo/7024+q1jlODXaWKUBGDYvvZb3iB1DMJAbfON5/iTgWEtCs8jjBnXGYGX2j4s0RrExGTz30u69yNle70f9eJ+UsTCph9VJjXZbDZqxqbK50VsbYjxKPCwgfEc9wbb8s672XDMuJ4AnPVGsW7T2y8hEBfbqE1Mqv9+JXhTmXJ58jM/exNeOJn61a+GZ4JBnSX8CEw6JudVnh/znBcOg+YZz/H+Z4PM8ecVxozrDMCvJD3sRFMRERuip5vwo/YusyH0XiYjFY7D4KBb5OJzrw1+HWERpV3C3ZZQjsrsY8JNTOOlGQw6V8dz/NmY4+dV6xozrhGCTj2XF4mczmbDWzY/eeGhK2uUGoFf8FO3rr9sGZAO5HJobGRiYbMPZqN1+DUXj2ofy6+5y1aDMmll4zn+7M7x8wZjxvWEYNjJM8iemc0i0pmKzmKy2yxgSmdbv+3iNC16v/sBgxB1G3PboHAWJq9BiN54jj/bc/w8wZhxjQAG3Qgdla2fcLB5ZkrjR+K1AVvz0zD7ALryR2Vyk8sdpKyn7fTgB4dRE7jxHFfjMIp6/Y7doHTqWYQx43rOwNY0MmjZo1xgJg1EBhum4AefJyFND6sBDIrjIPlsTXzPAozn+HB1fxRgzLiGhGEmzyjMU7pybImq6fmoNAsb8Cs5jyKdF/jd+DfVrdpHs61zVER7VOPsB8Zz3F9dT2KOnweGN2ZcQ4BJArfZUPWzyGwmm5dHnJfUbSIEJu87uU7bzWRVf3nVbUM4RmGaE73WbBiYqf+oLD+Ey8QMB+1XVdkynl4wnuPnY44/78xrzLgGBBUx8bvx68fMMAxutnlMZiO5TJXnkkikxXdeZXoRoVH1qx/w65xgcsAY1rQnE1ybvQxdWlNfe5kNx3P8fM7x5xHGjGsA8JL0hpGWR42X3zp1i9c27yAb6F6agA78SqaDjsWgC3xUZr9hN9VttS56b0PYx3PcDi/5/bM2x59X5jVmXD7haUiKZ7WBrKpjmLr85pXTmwjCoKYlE5z1WKgI/ZMYf3ksbQntMDh6le0F4zn+9Ob488i8xoxrABhEihnGJq2a2MNKabo6Rr3p63fD3Sutat/BL04y+CFofvvHDzOwNWGZ0orp/eAqm7LGc9xchi0uz+Mcfx5gzLh8wDAT39bMIoJJWjPlM5l7bDfhhwE/+zG6DXEdqPYd/OIk/7YtaxBp20+ZgxA5r3LFbz8EdjzHzXDe5vjzpnWNGZcljHJgbcsaVjJUSVnD7pfY1j1IWhtCrwM/UqnfjXA57TB7Yzamo1EAjb/4/SSJ03iOq9M+y3P8eWJeY8ZlAaMYUFtiN4wrrAw6KWtQs4GtJDuotGuSom3yPinwMqmZnqnG4qy0A5l5PUktZNh04zmuznvW8LwwrzHj8gC/Nm0/5fhJdxZEZxANYtSbvcO262na7P3sSXmZvbzK9IuPilGe9biM57ganrc5/jwwrzHjGgBGxcxsytARID/1qcxTg+6t2NZhSqOrW2VGGeXG9KhhEJOUl6lwkLHwYlKmfh2VQ4hfXFXPxnNcDU9jjj/rzGvMuDQgEyWbyaUjBjb/xQlts+D8bM6r2jHqiWnTV4NsENsSMNNGvQk3v//91i/DWUjqJq1Ct6eiGovxHDfDR22OP8vMa8y4PEBcBCYp1eS5Y5L+VBvnNqYUWyltlBK9bRq/pi/btvjZO1LhovtPRFVF5G0Jgi2R9QMmrUdVnl8TpVzmeI7bp/mozPFnFcaMSwG6BWaSprwWy6BSJYE84Uz5RrGQ/MIw5oxh9kZGIRUSUfU7hn6ZwrBgkriHgfEct4PxHH92YMy4JHgWB0pn7tGBTdpRl2eT91nsW7/glxiOss0i4TmP/Tqe488GeO3DPgswZlxPEAaVAP1KnoPU48dEM4p6vdKOsqxRluF3EQ+LG5l3nhcYz3H7tOdljj8NGDMuAYY1TXill/cBBjH9nJU0JOLmV5odxBzm1RfDSMuDOFTY7LkMCrZEUjdn/PTFMIxuPMcfTy/j9FGd488aMws9bQSeFaBJNspF4lWPbvPdhIPtgrNZaH72FGzKsPkt42lTt1+8/Own2G6ai+A1RiYnBtt0qv6zmZ9e78dz/Nmc437B7xz32986J45nRfsfMy48viHt5Xkzqvr8vhtVHXIa08SWPc5M/WLzexBcbQiT+G3KMyjhtpFc5fdyXToiqiKAKuI/CuFqPMcfhycxx004+BFMBoFByvQSSp42jBmXAmwJz3kBWyIzigWgW6Am6dWPpuG1sPyUKxKUQCCgzGfaB/FiDCqtxKu/R0XgxnNc/c5v272Ykfjfq/5R1f2k8j9N+MjvcdlO6FFLGfJehFz+oPsNg+QbNK8KiBDrPpRGxsHPONia9wYxA6ree0ngqvbp2u5Vv+1+w6g2/sdzfDjQjYWqX0fJJEYpvIhlDpLvacBHmnF5Sdty2lGbUkymLb91DSq1mRiKCkwOBDbEWlWOSeL3Igp+TFIy8VIxwWGdCVQMTH5n6hvb8bNluiYYz3E1+GVuNmMxqJAyaJ0q8BL6/PTN02ZevhnXt771LfyP/+P/iPn5eTiOg//v//v/+t67ros/+IM/wPz8POLxOH7mZ34G169f70vTbDbxm7/5m5icnEQymcQv/uIvYmNjY6iGjBr8TrRBCJ6unicBgywax3EQCAR4IQYCgb7/RKRMfeE18eUyVMROx4D8SIxe5auIuhfomLGOcOr6cNA5YdJuVDCe42rwI9Da1K+bm2fRL6Mei0HWwZMA34yrWq3i4x//OP74j/9Y+f5f/It/gX/1r/4V/viP/xhvv/02Zmdn8fnPfx4nJyec5q233sKf/dmf4Stf+Qq+853voFKp4Bd+4RfQ7XYHb4lPGGQA/Ej3w9RzFjDMBDRpEXId8nt50dqY8byINzEXHXMw4aYqR1W+iKMtMVBpiiomrOojuR02jEzGz1YTtWmLn3fnYY7bgleZqrk+ak3WBIOM35Msb1TguEPoq47j4M/+7M/wS7/0SwBOB21+fh5vvfUWfu/3fg/AqXY1MzODP/zDP8Sv//qvo1QqYWpqCn/6p3+KX/mVXwEAbG1tYWlpCX/+53+On//5n/est1wuI5vNDoo24y6DaaNVl0eV3ya9Hxv1MBvosiOBbbu9TCtnubEr9qMX0fZqz5PcgNaNv2n8BsFVZ+K0mSPjOX42c8LULzb1DYPfqNujM9d7rcVBoVQqIZPJ+Moz0j2uhw8fYmdnB1/4whf4WTQaxec+9zl897vfBQC8++67aLfbfWnm5+fx6quvchoZms0myuVy32dQMEk/JgncZmL4kbBszTQmpmICP1K4jLdoujLh79c0pUqr0mp02ohuL0mFm6pOVV1eWpXKLKlLoxt/0/jJxMrG5CmPkfhfV6f4/KM8x23L1tWnGxtTv5gIvtgGW+FBVfewzEMuT/4vzlOv9E8CRsq4dnZ2AAAzMzN9z2dmZvjdzs4OIpEI8vm8No0MX/rSl5DNZvmztLQ0SrT7YNSTwG/dNs8GLUuXTv74ZUIqwqMjUCoTH32rTF8iMdfVYWJEJs1NfG7D1OV0fgiNF0OSy/drphT/ix9dno/SHB8VqPrUJMjYljcow5LL8oJRjPnTYFIqOBOvQtXg+lGVZfj93/99lEol/qyvr48ML5t0tvC0iIHf+mXCJktUNhqPqhz5na5esSzdnoAunwknuSzdnoeOSdiCrZlMp0Wq0um0SS+tV0yvGleV84dXuSZ4Xub4WdShmmumeWYLtpr2sOA1X/2Czfw+Kxgp45qdnQWAxzSnvb091sJmZ2fRarVwdHSkTSNDNBpFJpPp+4wCvBiZ38G0Yc7DlE95Bp3gKgKnM2t4mWFMGpX43sRYdGV6aRs6s4yuLSamYfNeV79XGpPJSNYqbZig3JemfpI1WJuxt4FnfY4PAraMxzTXRkE7/DCWYRnNKPI9Te1rpIzr4sWLmJ2dxde//nV+1mq18M1vfhOf/exnAQBvvPEGwuFwX5rt7W18+OGHnOYswKaTTYRGhGEYh1+cVGXYLCzdO5OZSCZ0OgKi045VC1uuz4bYmpiaCRf5t6l9XmNoW5bXM7E+uX/lPCripOsP2cyk60/6tmFioyBET3OOA95r09RPur40lSn2p1zmqJivar2NWujweudnvTwJ8B3yqVKp4N69e/z/4cOH+MEPfoBCoYDl5WW89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBQBks1n82q/9Gn77t38bExMTKBQK+J3f+R289tpr+Lmf+7nRtUyApyEZ6AjqWddF4LWQVMTThrmpyvZ6pyO8qrplUBERneQr4m3LWHV1eaWV+0pHbE2mVxWYGJUKTP1mwlvG2TRH/QoNZwGqflRpPV7PbIU71XO/DOSs6Y6uz/2MhW1anbVALmOUDNsEvhnXO++8g7/7d/8u//+t3/otAMA/+Af/AF/+8pfxu7/7u6jX6/iN3/gNHB0d4dOf/jS+9rWvIZ1Oc54/+qM/QigUwi//8i+jXq/jZ3/2Z/HlL38ZwWBwBE16HEa9wGzKsl0sOjxNz7zemQi7H/z9TEAVwzD1u0lStf1v034VDn6JjRfRNI2ZSYBQlWOj4drMYZGh6vDQpbfVYp+VOe73mZ96VGV5jYcNvfFDh2xojGmsTXj5mVd+haqzhKHOcT0t8HOO62l06tMCE1H2IkZ++mkQ5q+rx0bj8tsmv3lN+WXcbBe3TR+pJFe5Pi8w9asXnrp8XjiYzJtPGgbps1HWfV7py7Bt8zMvnvo5rmcNnoSq/iyUSQzLS5Owse/LuKjs/n6kWFVdKtzlenT4yHl1xF+uT2yLKr1NflUb5HJVuHm1wy/IOHrh7lWnqjyViVZOI38GwX9Y8Fu3DmxxkvtBN/6jqs9PnlH369PM7wXnmnENAiZiY0OIdWltJ5XfAfcyD8hpdXZ6FbESicIgzMrLnKBK69eM52UC88LVlN/WfKRrp5eJTWY6Xhqzqg5VubbChqnPbftVbq/tPLSBs9bmBhHGdGvHT11iOX7aqBNGzkrrtMHtaWnc55ZxDTqIpgVqO9lUk3nUk8pxvCNcyAxUNGOp3nuVY6MV6fKIz+X6ZHxspFqTpGurWXoxU11+L6HElkh59ZFJC9aNiVifCWedRiiX6UcAo7moOzvmF85aan+SZj4bxq8Drzl5Vu0YVgg5y/49t4yLQEccvPKYwNb+fxagIgY6hqLSBkQtwq+ErPvWpbVl4CotRaWJiOMoa4l+NBITqPpLZ5rTlasaG106lUBk269eGrFKABDfyYxN7muVhG+jnanaNwgT87tmn4b070egsi1DhqdJbwYBG8F2WDiXNyDrTDd+8tuYibzqNoFcvq1ZSoWf6tsP4aF3fvC3yeu3D/0wFtm0ZmqXaj7YtldHqIeRlG3rMZWrGmO5TTaChq5+Lwal6lcdXnJekybohYMMOhProOvXpi4TjmdJM0ad1wTD9J9K+Bw1nDvG5TWBz2JCq+rzqsfPhFcRHlWbVHV7MStbJi9L7OJ/1QSViYkXI1UxYpUGacov42YiaMMQIBEvHQOR61DhYSpbzGNiSLp+042PPI463OQ65Pr85DFBIBB4TBNUtVnX16p5aVOvqg4v8EqnKu8s6c0wwqaqLFtBxKtNqvk6auZ17hiXCF4SkmkAbCU4v+YTXR6bcrwIvZjHRDy9CKsJP129KiZiIqomPHXEUdcvNv/l5zbpTcTST1m288N2Xtj2q65OL0HGNBds14tNO0xtsMHda574FR51eW3Hxc/6HQQGZQh+rDmqZ36EOpv3o4BzzbhG2cGDLljbsnRMRUU45TJ0jGgQpuqFn8ycVJPbD5EZBD8RvKRBU5+IjEklvZr60ISHWJauTlVer3mhyy/jrfqvymvqK502bUPsbdPK5av6Xkwrw1kSUC+hbpCyhyXog66VJ8FInjScK+cM3WJ9nkBmWuK3ClTESCzLLxARtyEaKgKsA1vir/sv4qMzWYp4qfpR99vUzyqp1qTNiDioylCVZyM5y+3yQzxtmJAKJ50wpSpb1k5NZevap3pm017bNS7PnUHAq8+HKf95o1Ui6Pp2lOZMEc4N45IXJf22kfp0/23fDQM6gmE70CYJWq5H1wYd4ZfL1+Es5vXbTya8TMRMlU7G26sdVL/pPb3zEghkhm9qi06zsZ2Pqnaq8NE9MzFomzki59P9lzVPXRu8wKu9tkxyEGaveycLdqMg0GfJFActw0uAJfCyGMi/h4Vzw7hU4FdC8yJeXmUMMrF0hFYFg046r3c2C0YmasMweRWj9MJDp6k4jvrckA5Xv4RZR5CGFTjEfKrfXiAKKdQHqr6U08llyGZSW2GB8utwH3R92GjtqvaKaWyJ7aAWAi8C7aceP2lGQfgHnZ9+GP6T0BzP3R6XTQeLJg0TmNKoFqpN3ap0w+BhAhXxMtUppvOSlsU88jvZfOQHLxUuYj4vQq8yVfkVSOS8shnMtg1eacRybUGsX9X3fmBQQmirperyes09W/Aqx6u8UWhHNu20pUnDgEnAGqWmo6rXtNbOqv5zoXENQ9SHSaMi0DYqtfzfS1pXLQCThmBjvlCZpXQT0KSxmBanaVF7TWgZF1nKtmEWcp0qnGyIv0rQkcuTx1FmWoR/MBjkdgQCAWVeEy42oMLFNBb0rfotppHr0JWle3ZWc9xPe3XljRq8+meYOlXl6NpsO05e7waxUsnvR8nEnnvG5UWIdGBrTrApd1BiQ5NNRWR1hNdUj4pgek04WybiJdHpJExVP4vt9upX3YK0FRBkvP0wXjm/zjRmElpEZhsMBnHx4kWEQiEtE/YaCxuhRG6fiaDrNDfdmOsYuNwPXszvrOa4V3u9BDa/4JcBjYJJDivc2AqMtnkAvaA4SFk28NwzLhlsO8WLUNmkH1Yi1tWnIzAq8MrvxSBkXGQiMIzk7WUuMS0SmfB49YftuNlI9CoYxHQptiEQCCASiSAejyOZTCIcDivbJ37bMCU/UrypL1VzUjV3bOalPH5Pa46r+tK2TlvwK6jKv89C23saYDsvRgXnbo/LLww7kQeV2GzzqDQGL4lLZcaywdfEDGyIqFf5OuIvl6/Tls6ifttyZfxkTVU1LjLhvHz5MqampuC6LgqFAt555x00m83HcFThq+sLG0lY1p5MWpOpDl17/Zh9dTjq6tHlt53junF7WjAovVFZNs4SRr2OZNAJNLZw7jQuE/hRZ+V0g9p45bQ6bcumfNWE0Zk+bJmTDb5i2SrTn6xh6frZRjqXiZeuveK37TjqmIDcrkG0N1WbxN+BQACrq6u4f/8+crkc7t69q2yjjoGbmIkKVIRdJHwmxmBrEvVr/nsW5rg8z2zAxvQ5SjBZNkx4D4LTIHTNa3z81jUIPPeMS7eIVDCItOq1SGxBtWC8pEr5nUpK9kvQTGBjatItIFnKVRE/+ZnKpdmEg0qSVjE7G5BxUZUnvzeZPnX5A4EAYrEYFhYW4LouAoEA6vU6qtVqX3oV8/YqW8bDixmZtEIaCzGvaSx0a8IWP12+JzHHRWFCbLcJN3EOeLVlUNxE/AYBXb5RCN4mAcm2L4aloSI894zLREh14EdCH2Vn6+ofRJoTF5FOQvPD1CmPV3odrjrmJILoTaerS0c8TZK4CQddO2XmasJFfqcjBCqm5TgOpqamEAqFEIvFEI1GUavVkEql8Hf/7t9FOBw23qumGkMTgTK1Rdcesc915+HENsv9bNOXz/Ic96OF2QpZtulM+UYFprb57bdB6x+kThM894xrELAZhFGptSZNS1z4tpKpipCrCIdYju69CWfbRamSRE2mLRNzMTFEG2ndr2TnpR3oNCyTVib/dl0Xe3t7ODw8RDQaxfT0NKLRKK5cuYIHDx7g2rVrmJ6efoxhyPXKY+JHUjbNDRN4EXNTnzxvc1zV9zZljDLd04BBtNdB5qGqzmHg3DKuYTtnFJ1rWlReexO65zpCbpLWxfc6qVenvdjgJpcvEgA5qoWpHX4Jm6oPvBbgMOZQsQxZAzEx6ng8jqmpKQSDQZRKJSwtLSGZTGJ6ehqHh4fodDoIh8NIp9NYXFx8zOOQ6jSNOb1X9a/fuSwTcdsyzsMcF8t6lhnOqMGrrTpmZTvmo4Zzy7hEMNl4nxToJHQbvAZNo5tgqsmm05TkNDoJTUXEVWn9MkRTOlM7dOBXMlflNRF1VfuTySSuXLmCcDiMa9euoVgs4ujoCJ1OBxcuXEC328XLL7+Ma9euodvtIhQKWRFt8bkfDUz3TGbIcvle8+k8zfFhGP+ToDWjrmOYNaH7f5b98JFgXINKTyqGZytFigtAZ++3MeF4MQwxjQlMBGhQ7UZ+r+tnE7MS6/far5A1WC9irgNbHL3yqgiczEgcx8HBwQG++93votFo4O2330axWMT09DR2dnawvb2NeDyOer2OS5cuodPpoN1uW2k6qrFR9aWX4KBrg1yH3D7ZPCzjdh7m+CAMbBjhyJbe+BEAZYbuRwAw1ecFZ6mxnrtzXDYTXE6ny6N6b0MsVVK4qgy5Xhup0AsnGzOICmcdLl7liGGL5DaIIJevaqet9qDqH1XfqZiiSUL0MxYmoiYSeXo+PT2NSCSC/f19hEIh3LhxA8FgEMViEQAQDAbx/e9/H61WS9lHMvFRtUMlDAxLPLzWiApXU77naY7L9diOhRduXm236SNdXq/nfvvMBIPiOQo4d4zLZhKeZUfbTB7dM9OikheRn3pswISLiI/qvR9p1g9R9TNOsiZAfWciTiairJOa5XRyvMFsNoter4dms4lut8vpt7e3EQwGEQwGEQ6HMTs7i16vh2AwiO3tbRwfH+PNN99EqVTSakjDzgEvzcsEun611eZU/5+XOW4aDxtcBqU3o1wfg8CoyvcjaNjCuWBcug7WEUndBB5EehLz6aRDnQagS6eS8LzaZwuDlCXjpiNc9F6Htyypim1VwTAESsewVHjpCJgqr/iMmBCZX4LBIBYXF9FqtbC3t4darcZpu90ulxsMBnF8fIzd3V1mcL1eD9vb23y+y9QuGU/67ZVmVHNFVZZK23te57g8t20Yngm88nul1+F31lqOLZ6DtGdYOBeMy8/iGqYTvUwNg2opusVrYgKD4m1LpEUgrUIEnUYiS6cqadXLBGPSMsRydQtc1U4V7qb8qj4T0wcCAUSjUUxNTaFcLmN6ehrNZhNHR0eo1+vodDoIBAKP9W8wGESz2USpVEK73WaG1uv1cPfuXfR6PWV/2fSJ+E7XJ/J8smEu4nPTnLZ596zNcZ3WJ5ajm5d+GJipn23Ats+fRTgLHD8SzhmAfu9FBJv3VJb4X/5teibjJKYzleFFuHTl+zFnqLQnsX558asWvC6N6plNP+oIjo5Qm4QYr/GS8ZU/ct52u43j42PE43EUCgXk83lEIhG8/PLLfLA4EAggHo8jFoshmUzi1VdfRafTQbfbfawdItP02x+m/td9q+aGV796CQQ6Yv4sz3FdG3R9Kucztc1La/PS1rzS+GEINnUNW47q3Vkw1o8M47JZePJ73QDpJjstDJPUK0v0KmKlyiuWK096XZ2mhSSnMRFsr3K8TDC69vjNYwsmIqMqU9Unpht2xT6j81fkwj47O8tnthzn1CyYyWRw6dIlZDIZFAoFJJNJLkcVaskLfzmfVx4TM5LHUdVH8nPTXFMxzmdtjuvql/PaCp6i1uY1Ljb4+0kzzLoYFPww6LOCc2EqJNCp717PbCQ2XRrTJPUyN8nPbfGn53IZXiYk08I14WhKa0pv02e29XvlMT33wkOnpajSy+NVr9fR7Xaxt7eHaDSK7e1tlMtldDodvjQyEAggFAohlUrh/fffR7PZRDAYRDabxcLCAh4+fIijo6O+cmWmIgpGcj+ZBCwvQnxWYyHW/bTnuB/tzRY3XXkq2jKsmdAEg9KtpwmjwOlcaVy2i8xWIvcjOZlAlhZVEqw4mCrJ0ws/0zOviUKS4qBgK5V7lTFMWpmpyO90eWXtypZIUZs7nQ52d3dxcnKCZrOJ4+Nj1Ot1FAoFvjCy0Whgd3cXvV4P7XYbvV4PoVAIhUIBABAOh9njkJidWKeXZqUj1Kr0JvBihLYaGZUjx6R8WnPcS2DTpVEJEF71ysKQqtwnyUgGrctLE9fV4yftMHCuNK4nATotSrVwvBaYLCGqJEZVel2dfiRDuRxxkepMSiapWE5jK2GapGS/AoVMaHTt9osj5dFpAO12G6VSCdVqFY7jIBqNYnZ2Fq7rolKpoNfrodvtotFowHVdzMzMoNPpoFaroVgsot1uIxgMIhaLIRQK4fDwkMuWcTOZy2wYgWkcTVqWKu0wY/Qk5rgKb9u0YjobxqrSjuW1LeNii7Oqb8T/w2iUNun8Cj9PQst77jUuv5L9sKBiWvSt0zpEwidPCD+mHBVjJEZjIyXLUqAfSVG3AGVGYKN5eeFrM/HFPlWZpGTcTW0X86rq0f2mD2kWrnt6bcnJyQlarRabCCcmJvDCCy/gzTffRKFQQDgcxvz8POelq0+Wl5cxNTWFeDzeF0mftDAV3ip8qB+92iCmkwmi6rdu7qvKM807Fe46/PzOcR3oBCRdGToria4uuX0qYWIQZmBiWnLdtmX5qVOuy09+EwxLt597jUs3sGddp06KNEmuOqIhl6MyUeikaq82iyZAVf0m6VfOo5P4dG3UjYmKeZvaYyvx6hjxsKBro+M4SCQSCIVCHPEiFAphcnIS7XYb+XwerVYLmUwGFy5cwLvvvot2u41AIIDd3V2022127KjVatjb20O73WbTIXkk0kHl4+NjxsGkeenaIBNi1ZwdRtpWaUuqcmQNX07jd46rhEJVO1XtU9WtYz66ukxMRYe/rYCmK+NJ0LpB1pBpLsllD8O8nnuNi8CLKeie+Xkvp9URD5t6ZMJBeeVv3aLzqkOnYdjkU+Hr1R7V/0EXJT2zwVunbQ27sL3KIU0oEokgFAohFAohGAzyPla73UalUkEikcDBwQEODg7wiU98AsvLy8hkMggEAlhaWuJzXY7joNVqodVqodFoIBQKIZvNYnJyEtlslhmeF246zcJETE3zS/z20p7FvCqiJeKma4ufOe6ltcvtVGkQujbJ69Kk+ZiYtEnoGYVmMiqL06jKGVTo8V2P+6RtbSOAcrmMbDYL4Gw6x0tSEL9tJQyvumwkz0Hwe5bBtl0mIiiXMyoNyyT9h0IhxONxZLNZ5PN51Go1TExM4P79+wDAJsJ0Oo3l5WX2OIxGo3CcUxf5TqeDXq+HVquFk5MTdDodJBIJHB0doVwuIxAI4JVXXkEmk8H29jbu3LnDUTZUTEXVZ/RtywyGnb+6MTJpJF5MzgZHk0ZkYjSDtnUYkNf7s05+bawsfvLL7wCgVCohk8n4wuu5NxXqwKvDTJ1vKwmZJFvTYlGlMREWL9OJF7MahAF6wagYoxduKvMW8HhwXxVefoiCqQ9V2lwwGMT09DRrTBRJAwCy2SzK5TIikQgKhQLK5TJCoRASiQQymQw6nQ4qlQqSySQ2NjaQSqVQq9WQyWTgOA4ajQYAoFgsotPpoFqtIplMYmlpCffv30en09GatFTajzzPdH06CEG3WUeqMTKtE9VzuUzTmrARJAcRNged87r17ke71JU7DE5eeVVp/NCQUTB6HZwrjctWmhpUS9IxKnkhDjtgXsRHfCf/til7UMLk1wRoi4MXEfPSroiJmSR7W/AixMS0wuEwMpkM4vE4ut0ums0mQqEQVlZWsLKygu9973twnFMPw0gkgpmZGQDA/Pw8EokEHj16xJ6IrnvqfRiLxeC6LhKJBLa3twGcuso3m00sLCzg0aNHODw8ZAYlt09lAlOl8+qbQTVfv+WJ71Vt8SNA+knjpSUCT3aOPyva16gZjRedHWtc/3/w0jzkdKq0fpge5VcNkGpx2JgwVDiJ5di2UQemsr3aPEidNtqlScuh36r6A4EAkskkGo0Ger3eY9qEbhz8gmq8SWtyXRfdbhfdbpfPdL344otIpVIAgEKhgEqlgqtXr2Jrawv1eh2JRILxCQaDfIi5VCoBAKrVKmq1Gnq9Hscu3NjYQKfTsZZuVZqV2N/ye68ydfPVpk/9rEfTnDAJcCbGII+/Tqt7WnPcJGzZmNpGJbiOWjsaVLi2gXPFuAjOwgQmT2ovgihOSnlReEmAqgmpM43JZYj/den9MtZBGLBXm2XcdPiqiAk9I8ZFe0aO46DX6/F5KbE88TsQCKDX6xkJtxczBU5jFdJ+VDAYBAB0Oh3cvn0bjnNq8iNXdzqAXCwWcXJygnq9zngWCgWk02lsb2+j2Wzyc8LRdV0cHx8zc5bxCQQCrJnJDIrKEUF+r2unShgT+9+LycjvTHNONf/l8ryYgc3aeJbmuCxkiXjo8g/LDEbF5ExpTM9GpdWdS8Zl6phBOs7PwPgpz0RcVXWbyjdNcFW9KgJhqsvPQvVawCo8dQvWq5xAIICrV69ib2+PmQFFp5DbRwwmn89zdHYVUdf1na7/0+k0Go0GHMdBrVbD2toaO2gcHh6ydkbnsyqVCiKRCDNZgm63i3A4jFQqhZOTE9Yk5Yjx9Mnlcjg+PkYkEsH8/DwODg54Py0ajWJiYgLFYpHDSdlK6DoCacso5Hcma4Hut5+5qXr2PM1x1X+dQDEM4febdxCmpcunm0ODwrlxh1ep2Crwmhxeeei/F9NRTVDVIjIRSVUoIp35R5a05bJE/GxCHNmYLHR5de2Vn6mYkIyfXK78vFKpYG9vj/OQ2zgxDtLIaF+K/lNQXJugqLp2xuNx/PRP/zSmpqa4PAB8v1av18PJyQl6vR6uXLmCiYkJdLtd1Ot1tFotdpsPBoPMtOLxOCYnJzE1NcVnxOT+cZxTz8apqSmkUik+BwYAiUQCExMTePHFF9k936ttOqHHdk3Jc1L+PQixksNF2eChgmdhjpv+m3D2MxdtwJTXtk/99P1ZwrnRuHQTTicV6NR/+b840fyoziaJU1enSfr0kvJMC860eGV8VHiZ/qvMTiKuNn3mxTh0eYhRHR0dIRqNwnVddpaga0UuX76Me/fuoVwuI51O4/Lly+j1etjZ2cHh4SHvTZGbuY75q/Btt9vY3NxEu93GzMwMewkCp04YtVoNgUAAKysruH//PqLRKKrVKtdF93EVi0W4roupqSn2GJycnMTBwQFc1+V7vYBT7S4ajeLk5AQHBweIRqO4du0aHjx4gFgshm63i0AggKOjI+zt7aFSqSjnncnc5tf8o+obr/Re5jdd36ueqeadqh6b+nW4iuXLdfk1qamEZ1N5sjBgu5b9MDm5Xhttys9cGTWcG8alAy+JySafSrrSDZbtBFDV4ZVOLtNLOpQ1CpFgyellAim3S1ev6bdu8du0WdUHMmGKRqMIBoNwXReZTAbdbhfJZBLtdhuRSATHx8dYX19njz/XdbG7u4t8Ps/pcrkc9vb2UCqVHttDMuFBh4/p+pKZmRk0Gg02G3a7XaTTacTjcRwcHKBWq6FUKsFxTqNtpNNpAKceVcfHx3BdFzs7O5idnUW1WsXJycljd3ZRPZlMBo8ePUIoFEI4HEapVGJ3+1AohEajgePj4z4tUDVGqucqAutFnPyMoQ4PU5007iYrijy/bBmY7t2o5rgMOkuN1zO/2qsqnRddshUgTUzYz5oeBp57U+GoVFeddKGSsmxMDPJ7nTmF6pAnqCqPqa06phWPx/GzP/uziEQij8W9k9NTO0STlBwyyoSXjJ/cd6qPDaiISjAYRCqVQiKRQCQSwezsLOLxOFzXxcTEBKLRKOLxOB/sJQ2s2+2iWq2iXq9zRAqxv0w4Ud2RSASvvPIKstksZmdn8dJLL+Hw8BBbW1uoVCpot9vY2dnB0dERAoEAms0m2u02Op1OX3mZTAaRSASu67Lmt7OzA8dxMD8/zyZPwi0QCGBnZwfr6+vIZDKIRqNIJpPIZrPIZrOIx+PY39/H9vY2O4CYNCsRTIRRHEdxHMR8pjGTwc8c1817ej7I+peJrVjeoHPci2ibmLyqzfJvP8zAa0zk33770IspPgl47jWuUXaWjdrr9Z7SmCay+NxL8rR5p/ovfm7duoWXXnoJOzs7cF0XsVgMGxsbjy1InaRnktL84jzoeMn5iHmsr68jEolgf38fFy9eRK1Ww9LSEu7cuYNkMolQKIRYLIZisciMe3p6Gjdu3EC5XEYsFkM2m0WtVutjYjocHMdBp9PBvXv3EI/HsbGxgXw+z16F5BrvOA7HH6zVamg2mwBOmVUsFkOpVGJPQ9oTI6ZITiOTk5OoVqsol8twXRfJZBLNZhPNZhOf+9zncOfOHTiOg3Q6jWAwiPX1dXZKITOkTsgymZ/k92Kf+CFyZzVfVCY10xqU26Ran/I60LV/GA1DpwWqypTrFd/7qcsGRkFD/fbBsArHc8+4dDCIBCBPGLGDdeYFeYGI70wLdxjcVM9EfMTntLlPIYgqlQrq9TprH36kMNV7Lw1lWFAxTcc53dv60Y9+BADI5/MIh8NoNBqIRCJYXFzEw4cP0Wq10O12UavVEI1GcXR0xC7p5LTgui6q1epjZkKdQELj2mq1MDc3h1KphImJCXYQEb0Am80mDg4OOH8gEEC5XEYqleqr13V/7LIeDofR7XZx//591rSSySRc18Xi4iI2NjbQ7XbxjW98A8lkEqlUiuMbOo6DeDyOcDiMnZ0dboeqP1WMSEfodWMi/5bLGcUc1733WmOq8lTM2UZwNJU/DIMwCYQm3LyI/iDr7klpTDbzywbOLePyKwHo8usmlCzB6epWSVCmxa7DySRdiuXKaWq1GoLBIA4PDxGLxdBoNDhEkWhuMS1glUnmLCa5TV/R/263i0qlgvn5edTrdb4TKxKJ4Fvf+hZHZyfzHcUGJO2G2tNsNvv+exE0EVfSmG7fvo12u/3YfCCNR7z2xHVPz2TVajX+L57X2tvb68MhEAjwvtbU1BQODg7QbrcRCoWQz+eRTqdRKpWQTqfR6XRQr9eNB5XlvjbNNZPmIacX3+nq9jPHTflNZdiUo2qLV72qNF6E18TAdevZloHpNGlTPlN6v2NhAhsrzbBwbhmXl0TmVyocZpKJv01EQleuTV0mZtZsNpm4EyEFTj3UyuUyLly4gN3dXVQqlb78gUAA6XS6z1FAxcRUMAhhUvWVKU8wGMRP/uRPYn19Haurq2g2m6jVaqxZ0t6SuI8k4yO2x68ETweMO50O9ykJBGIYKrFMivpOHoeURmRe9Ixge3ubzY4TExOIxWLY39/H1tYWM7disYharYZUKoVsNsvMVAUmE5pqHGR8xDL8zAU/c9xL4zeltWGcfkDHELwYhc1ct7HO6OoQ2+2nbr/v/fabimmNmoE9984ZgH5RAWY1X5d/kA4WCY6KEIhSt6pOU5kq3LwmueOcOjBMTk6yp1k2m0UymcTMzAwSiQSmp6eRTCYxPT2NixcvIpvN8pmnhYUFJJNJpNNp/Hf/3X/XV6+J4cttNy0uFcjlq5iZWPZf/dVf4fr166hWq6hUKgiHw8jlcgiFQqhUKpibm0MikcDrr7+OXC7HZjeZAavaJ39M7ZVNfqp2RSIRJBIJPrtFWlMkEuGyRCZG2mG73cbh4SFOTk4QCAQwNzeHdDqNVqvFHpPkVXlycoKNjQ2+KkXE09SnNuOi+q8j4uK3CWRTpYirV9mmsTGtRy98dDjJhFgEHROXy9LNOx0uch3ib685afPMZowGZThegsowcC40Lr/Shim/PDFN2ppKcpUlDJ2k6cVYTRqVXI/o+UdpI5EIR2oIBoPI5XJYXl5mSX96epqjOWxubqLZbKLT6TDj6na7yOfzaDab+NGPfmTsl2EkPzmtjiGrFnG328Xh4SHC4TCmp6cRCARQr9dx584d3rNqt9tIJpPo9XqIRCJ8rknG2WYBq9qkk7SDwSCi0SharRa3K5PJYHp6GrVaDaFQCJFIBJ/61Kfwwx/+EOvr61yeyPxE4tJqtfjaE/JeJLf8tbU1jnkoa5Y2bZTfm+a4qT/E/6OY47r1ZcpnwtmP1m9qg0lLonrkdOJvFRM0aXMm3GwEb9tnunbYplflHzXTAs6JxgX4k/JU+WQwSTS6RWGSiHT1mOrX4eHFCB3n9IxTNptFOp3G7OwsOp0OGo0GcrkcVlZWEI1Gkc/nkc/nUa/X2XU6Foshn8+jUChgYWEB6XQaruv2nQmS6xLdtm3apmqrrp3ywpdxIEK1srKCWCyGdruNRqPBe1rkiHF4eIh6va7UiLwIrCqtrp30O5lMYmJiou/4QaPRwMnJCWq1GpLJJBKJBK5fv45arYZcLveYqVD8kNNHq9VCuVzmILztdptNuaFQCNPT055tUkn9JoKtSqvKM+gcVz1Xla0j1Cq8ZGYwKrpgwl+3/uXnOmHHJAyq2i4z97MAv2Otyq/K53c8ZDg3jMsP8VHlUz2z7Vx5MEyTSScd2S56G+kKOHXKKBaL2N7eRqPRwLVr1+C6Lqanp5HJZPhamEajwebDUCjUt0dD5qZUKoV0Os1MSocPvRcZmq5/dYxI1S45vZwnGAzi7t27KJfL7GxBGufk5CQ7QpTLZbRaLd8mWL9pQqEQLly4wMFvo9EoQqEQnyGbmppCNpvlcE3hcBjLy8vcnzrzUqfTwcHBAY6Pj/sulez1eigUCnwgO5VKYWFhgV30qRy5P1XPdaAjODrNR5VmGOZhqkeFk0rIUjExL0Jqk9ZkmrPVUG3WtYrO0LeXQKUCv4KG+N5rDPwKK37hXJgKTeBHVZUngJ9OVpk26LkKFxu8VBKYLLHppDzXdTluX6VSwa1btzAxMYGZmRk2AZZKJUSjUWYwS0tL2NvbY1Nhr9dDLBbjIK1EGOk6D7kNOjOibqHaSqwysxTTOs6Pwz6Jh3UJl2g0ikwmg1u3bvW5qtsQC525TJVWhG63i7t372JiYgJzc3MoFArY2Njgg9Lb29t45ZVX2AOw0WjgwYMH3O9iX6q+RZwcx0E4HMbMzAwcx0EymUQ8Hsfu7i5fbNlut5UEW6dpDaI56Yj3MITKdq3oNBrV+Oo0N9OcNPWHbq4PKkgPCn7aZFvWoO9VaWQ8TP1qA+eOcak6aNByKL9u8E3SlIow6BaiaQBNBF5H6Ok7FAohl8uh0+nwfguZzYrFIgDwWadwOIzJyUkcHR0hk8lgdnaWCWo2m8Xk5CQODw9xeHjI3ofyYvEiLl4MV8WgaK+IPCJNREQ8i1WtVtFsNhGLxZDL5Yy4mHBWtUvX7yIEAgFkMhkkEgkcHBywS36j0UAoFML6+jpfX1KpVFg7ks2FqnaKbXDdUycO8iBMJpMcQoocOBzHecxEqsJZRUxsiIs8/qb54CWte+GlYhSqtSozKHE9yulVZalw9RLIVG1RCate7VW1wQtMbdLBILRRN36jYHZ+4NwxLpsO8upo3YS10RJ0eUxSoUnKMxFP3Tuxzk6nw1EbKBQRRRPP5XJ8aWG9XucDunQ1CO0PhcNh7O/vI5lMolwuKwmUbsF7CRGOc+rIMDc3xxrR4eEhQqEQxxd87bXXcHR0hEgkgvv37/e5eesWPn1efPFFPHz4UHnNiW4OUGR5+cyXCnexneL/hYUFZDIZjoXYarX4epNYLIZ6vY7Dw0NmqmTGFNugA3lOVSoVrK6uIp/Pc5BfGkNV9AxVWXKfqIirjYYt//ci0qbnqrbq8tnON1M+W0ZhI0jK70y0Q6eNmPpVVY+XRWdYDViHw6iZkg2cO8ZlAyrJSSZCMmPxMnnZLC65Pvm9zaKjdzLBVBEI8kKjqOOimazdbiORSGBzcxOO47A3Wq/XQ6fTwdbWFqetVquYnJzE5ubmY9dkqIiXafHo2lEul7GysoLt7W3EYjHMz88jlUrh4cOH2NnZQavVQqvV4sgStvA3f/M3fPBYxFnXZ8RIX3jhBRSLRZRKpcdiDJraQhdHbm5uskm13W6zZhsKhThkVCAQwLVr15DJZPisnch0TeC6LjvFkGfh/v4+x6SkQL8m06jYbtUzL8nfL5G31d5068APHqo56FW/11o1mQZN+KnKNgkLOlpiW4euvcMwGC96eFaMUgfnknHZdKJJkpM1BpMko2JapvoHGUgZHxXj072nyZvL5VCpVNh9vNlsYm9vD4VCAd1uFwcHB3ylhkw4yeQlx/LzSwjkPhQ/7XYb1WoVH//4x/HgwQPem0un03x4utPp8GFf3XkpqofOOzUaDTQaDdRqNeMYOY7Tp+XRweV8Ps/Xi5jqonbEYjFcvHgRh4eHaLVauH//PqrVKgsOlUoFJycnAE7NoN///vc5XJXY97K5UDUP6ebko6MjpFIpRCIRbGxs9F3TIrbXBkySvpcg5yXx+2ViMtisHR1+ooCnqttLMBX/y+WJ/03l6jRU+bkXvbHBfdSg6gubPGcF58arUAQbqcxLE/BKq5qwuolpA7rJLL6Tib38XHVBJP0OhULsKi46VwQCAXz2s59FLpfjK0LoQ5rK7u4ubt26xbf1ym2X69K907WVInQ0Gg0cHh7izTffxOLiIhYWFuA4DhN9sU/kqOnix3FOrw65ePEiHMdhE5ypHx3HwQsvvIAXXniBQ2O1Wi2cnJz0ubSLn2AwiHQ6zZdTUhSNra0t5HI5XLt2jaNkiJdL0qfdbqNSqeDo6Ijd2+UIGvJ8oO9er4fj42MOyOs4Tl8dlNaP1K0SkEzvbTVD8dsLj0EFO9Xa0/Whnzq8aIlq/avwMz2X+1pkiDrwMsGqhOlBwSavrk+HqdcE51LjksFGIrGRlnSEWHw3jFnFCzeZGZAzA13ZQZqLjA+ZvKgMOohMUv7q6ioymQxKpRK7i6s0LxNxMDEmU38QnnT4ud1uswv73Nwc78nV6/U+pxCxjeTtSI4IADA5OYl2u43XXnsNb7/9NgcU1knPtI9Hd2UtLy9z3EDS9ETGTcIARek4Ojri/qSD0ScnJ9jZ2Xnskkqx70TCriO0MtDzZrOJzc1NdLtdHB8fo1AoPMb45HaatA3duFF5XuOqIr5eRNgkFHqBlxVDtUZl/GyYma2mMey6UNXjRZdMINOuQcFE12xxGDWcW8blR63VTSDVpNNJpTrmZTKt2JYtfgcCAUSjUZaqA4EApqamkE6nMTc3h3fffZevcad8pDlR/uPjY0xOTvJezIcffsh7LyqGRbjpcNcRNrlNYh6ZgdCh3GQyie9973vseReJRLC8vIzV1VVUq9XHmBYxkEwmg0qlglQqxYwmHA7DcRwsLCygXC7j4OCgzwGC6g8Gg/j85z+PmzdvotlsYmFhAfF4HHNzc3z26rXXXsO7777LGhiZA8l0GY1G4TinV5mQOZCYqRwJQ+5PXZ/rgNLRviT9p6C/Ok3LNIY68Et4dOtON8fF9vjVOrzyy/Wp/ov1mNL6md+m+sVn8repfC/GYYOHKZ1XuX7abtNvw4IvU+GXvvQlvPnmm0in05iensYv/dIv4fbt231pXNfFH/zBH2B+fh7xeBw/8zM/g+vXr/elaTab+M3f/E1MTk4imUziF3/xF9kbalQgD9gweVVqua2kp5Lw5edUhy6fWB8FaSVGRbEIy+Uy3nvvPT67JecTiVmlUuGrME5OTlCtVlljEE1yKm1L9V/VF7q8IsOR+7ndbmNvbw/lchlbW1vY399HuVzG9vY2jo+PAeAxk2A4HGYt6bXXXsMLL7zAZsd79+5hd3cXx8fHHKNQdLmncgDgm9/8JhqNBmKxGBzHwcrKCrLZLC5evIhUKsV9S/d7UVxE2rd6+eWX+SwVmexUTEulxfrRtFQfeqdjWqq+9wsqbcIGbIiYTki0xdWEm279ieWb1qhMuP0KFyrcVGtbfK+iE2IZMrNVpdOV43fsBxFqdALEKMEX4/rmN7+Jf/gP/yH+9m//Fl//+tfR6XTwhS98AdVqldP8i3/xL/Cv/tW/wh//8R/j7bffxuzsLD7/+c/zhjQAvPXWW/izP/szfOUrX8F3vvMdVCoV/MIv/IIvbzFbsJ34KkKrG2x5Iusmkw4XnURKH3E/RU5H0v3i4iIuX76MfD7P7u3k/SaXIROAQCCAarWKw8ND476KaWLK7+QoGSLuqr03uc2uexrZotPp8NmzTqfDV3eEw+G+8sRPJBJBoVDgixbp7BeZ0qrVKmKxWB+uIk7BYJCdVOhM1NbWFo6Pj3F8fIxQKIR4PA7HcZDNZnHlyhXk83lMT0+jUCggGAxia2urz1WfGAn9lpmM6pncdzpGJefxej8smOatLq34X15PJrxUTFw3j1X1mAQoOb+4dnXlm9pj0ib8ajW6vGLfqbQvm7GwSTtqxqLDZWTluUNgvL+/j+npaXzzm9/ET//0T8N1XczPz+Ott97C7/3e7wE41a5mZmbwh3/4h/j1X/91lEolTE1N4U//9E/xK7/yKwCAra0tLC0t4c///M/x8z//8571lstlDlk0ig4Rr5fQLQDxva0kqCpHJ3HavguHwygUCuy9VigUsLq6ilKp9JhnoMz8HOc0skIkEuGArGIIJDnCubhIbcxdKqlW1w4ZL2JIZPar1+sATm86TqfT6Ha7KJVKjB/loSj35BIeCARwdHTEGiWZ0hzH4XNNIr6JRAKXLl1CIBDA4eEhAoEA4vE4Wq0WUqkU9vf3OfDw4eEhgsEgMpkMLl26hEKhgHfeeQcHBwc4OTnpEwBUjEqeGyYGYyMMmRiY2Mc6jU7HJEzzX4eLDZgIveq9TfpB6jWVq9KIdVqP1zPVe795VRqrPDfk9yYcvIQGXVleZQ8ChEupVEImk/GVdyivQtrwLxQKAMBnbr7whS9wmmg0is997nP47ne/CwB499130W63+9LMz8/j1Vdf5TQyNJtNlMvlvo8OdItUByotwZRW1BBUWpr4W6VdyBKgrF2p6hP/k2mqWq3i4OAAt2/fZgIt5iHNLJFIIBQKsRaSy+UwNTXF57VM7ZTBJL2qGJH8kTUvlSbW6/VQKpX6zG2hUAjLy8sc6FfU7prNJt9FVa1WcXx8zB59iUSCGZ2ojYqfZrOJhw8fcnSLk5MT1vxoj4qCEycSCWQyGbiuiwcPHqBUKnFsROofmXmIz21Anjsq6Vs3JiqtTQVe2oVfoc1rzanWgwlkLUN8LjNmGyHSD8GVyzQJkyJeXuPk1WcmfOTf8lrT9Zdcj1dfmWihibGqfp81DMy4XNfFb/3Wb+Hv/J2/g1dffRUA+LrwmZmZvrQzMzP8bmdnh8/H6NLI8KUvfQnZbJY/S0tLfXiIYNvhpnaZNAexXHmgdQtU/C+6cdtMIpVZoN1uo1aroVwu8x6OWDcxrTfeeINvz6VAufPz8+zppmuTSlJXMV45j45ZUfBemanG43FEIpE+d3MCsZ5er8f3Tolpxcsbe70eyuUyn/fa399XholSMc1Wq8XnrrrdLprNZl/opGazibt376JSqaBSqSCTyeDk5AT7+/scysmPgCS3T3wmC0Uq7U18Lpd3FpKxDDqhRcesxfemfhLnOaVVCYm6+WkDuj7T4WHKr8PHZl3L69tLExJ/y3ir+kh874d5yelV/8XnOhp41jAw4/pH/+gf4Uc/+hH+/b//94+985JIVGBK8/u///solUr8obuLqK5Rc32dBGUz6CYwLQgxjfwRn4sXUh4dHaHdbvNNvxRFgYj75uYmrl69ivn5eWSzWb6PipjFIHiKDMyGaUWjUUxNTfFZJ4qGvri4iMXFRbzwwgvI5/NaDcBxTvegPv3pT3PA2lgsxm2kKBF0tYfrnl7BsrW1xdHtxfaIzhki8SDzo+js8alPfYqdOsgzs1ar4dGjR1x2JBJh70UqSwe2zE3sY9XcMzGAQbQL27QEOu1LnBdiHpEJiaBjwqa2yExNLkuFl67NXvNc9U5uky3z9GIsclvkclX1qBimPB42ApP8XNdmGXSCrA0NHpZOD8S4fvM3fxP/6T/9J/y3//bfsLi4yM9nZ2cB4DHNaW9vj7Ww2dlZDkWkSyMDRfgWPyKopD8RTItcRywHmZC6soj4yk4BKkKvw4kY0uTkJObm5voioNPFkHSmiBhYMpnEw4cPUa1WOVbe/v4+X7Mh94H4W+UgIkuJYt+qpEBq0/z8PLuYT01NIR6P4+TkBK57esaMItSL/UPf8XgcmUwGDx8+5Ft+VfgQc2m1WohEIko85EPL8ryhg9CO42BnZwcPHz5kJum6bp/zRq/Xw/7+PqamprC8vMxpTKASsrzyqPrVK63uvw4n05oxMRSdgCVrSipmIadVzXkdMzKtW5u2mUC1nk3WERXz1KUz0QebtPStsyKo2iCvVVOdNu1QtUunsXrlGwZ8MS7XdfGP/tE/wv/7//6/+Ku/+itcvHix7/3FixcxOzuLr3/96/ys1Wrhm9/8Jj772c8CAN544w2Ew+G+NNvb2/jwww85zajBppNsO1+WEr0mNHm9ZTIZZipkPqMbik0LLBAIIJFIYHJyEplMBsFgENVqlWPi5fN5pFIp1Ot1JBIJZnAAcHx8jEqlwoyBHB7oHJiK8BC+KpOmatLLBEm1b7WxsYFKpYKJiQlkMhlMTU0hHA7zHpF4JQkx6XQ6jWw2i0wmA8dxsLu7y1qU67rKe78cx8Hk5CQODg768KP3dJSADizLzBI43a8lxr+7u8uHnmXHi2AwiMuXL2NnZwePHj3SmgtN80pFcFTzSGYEo9C25Hxe46rDT5XWCw9bZi0LJoMwZirHBidV+TZz3yRUmAQAXVqvd3K/yKDCUfXbhhnb4DcsExoEfB1A/of/8B/i3/27f4evfvWrSKfTrFlls1l2F37rrbfwxS9+EVeuXMGVK1fwxS9+EYlEAr/6q7/KaX/t134Nv/3bv42JiQkUCgX8zu/8Dl577TX83M/93Ohb6AGiFGLDiGRJUGXnFX87zqnW8NJLL+HmzZvodrtsQnvppZdw584dHB4eas0OjnPqkJFMJtkxYGdnh81us7OzHNGdtFjxxt18Po9arcZOBJVKBeVy+TG8RRPa8vIyTk5OUCwWEQwG0el0+iJyUL/p+ocgHA5jamoKrVYL8Xgc8/PzyOfz2N7eRr1eZwYuXkciMpp0Oo0rV64AOHX8EftUZFqk7YRCISQSCdTrdX5HZYtRLqLRKI6OjrgNsVgMrusilUrxlS+yW7vsVRkIBHD37l3eb/Ra1F6Cjtx3Ok1e1thsylNJxXJ+PwzKFn8TIdeBKp+ttiNrFrr0fsySYnkmPLw0Yi/cTHlV7+T/XvV7zRWb9IPkt7EUDAK+GNef/MmfAAB+5md+pu/5v/23/xb/8//8PwMAfvd3fxf1eh2/8Ru/gaOjI3z605/G1772NaTTaU7/R3/0RwiFQvjlX/5l1Ot1/OzP/iy+/OUvG/ddzgp0TAdQD55pgaiYluOcHki9f/8+Ll26hG63i729Pbiui8PDQ0xMTPD16yY8KpUKut0uXnzxRXYIAIB8Po/Dw0NEIhEm0JQ/Go2i2+1qHQhkZjE/P4/Dw0MA4Jt05+fn8eDBA65Pt4h1fVGv19k0KQa6JQ/HUqmEYrGoJKLhcJiv+8jlclhcXMQHH3yAXq/HjDYSiSCVSnHk9UKhgHa7jWAwiOPj475LMsPhMCYmJrC3t4der8cMLp/Pc4QMOg/n5dpeLpf73PN1BNmP2cUvsZf7W2SOKiFIl19HZPyajORvlbahYqImBmrDDOV84vEWU1ovDUenQaqYvG49iMKtLfMwpfdiyjowCdm2jNwPyH3nl3F6lu/6mZ3PCIjnuAD1ArTpJC9NS0WkvaQIWSNwHAepVAqFQgEvvvgiyuUyisUiWq0WKpUKkskkewiqpOxgMMgMKRwO85X0APiaD9I0Tk5OEAqFMDk5yQT5/v37fGaLCKwYJshxTs8yAaeMIp/PIx6Po1gsslmu1+sxsbeZLqI2RMwkHA4z/sTM8vk8KpUK1tbW+soOBAJIJpNIJBJ8iWQ2m+Wr68WzWTMzM3j99ddxfHzMWiKFdaJoG4RDNpvFzMwMDg8Psb29jVarhcXFRdTrdWxubrJWKh/Itj1ILL8T55H8TCxTR8zFfI7jPKb1yYRHxxBMz3WEUYW/Lejq1ZWlYrK2Gozp3SD1e71TMS0vbdbmnR/NRMfQVc9VeKveD8IGbOit1ztgsHNcz32sQpUEYcvZdel1DEv1W/yvy0ehlFZXV9HpdBCJRFCr1dBut3F4eMhxBOWySVug/RjybKOzWcfHx+xWvri4iEePHrEpMpFIIJVKsRZLTEQ8oEz1TU9PIxqNolaroVAoIJVKIZfL4YMPPuDwULp+NUnTrusik8mwNyNdJU9XjRCTIFOf2AeNRgOdTgfXrl3Do0ePEA6H4bpun/nPcU7PYe3u7qJarXJEd2LUYhDiTCbDcRop0gtdYeK6rjFOoy3oCKZMTPxK1DomINalqlsl9aqeq3DVCWuq9unwN0n5KnxUeOj+24CuH2WG40fzMGlisqAh51HRBxUeMnjl12k3pj5TCT5+wUarGqWWJcK5vNZEBK9BkRekSVpUgRdDo2elUomji9OliKKWIWtpgUAA4XAYsVgM09PT7MKeSqXwyiuvYG5uDpFIBNPT01haWuI9RnIEqdfr+OEPf4hWq4VgMIiVlRW8/vrrfZ6H9Dk4OOD9rGq1ikgkgm63i8uXL2NycrJvIejaKE5iMU21WsX+/j663S7S6TSb5WjPCQAmJiYec5YAwMy+3W5jbW2NGbWY1nVPzailUon3y2S8Op0ONjY2mMF94hOf4DE4ODhgbVA3jiL40ThN73SCka2G4UUIbfA0aQyqdDLuwzIcVXm6jwofE65yHbQXKp8plNunKksW9OT+9cJXHCud9utF4P1oj16ChkmY8KpfVdYgMGg+gude4/ICr0HxO4CqvCrC7jgOhyECgE6ng+PjY2ZAqijl4u9AIIDFxUUUCgXeo2o0Gmg2m3j//fcRj8eRSqVYg5iamkI0GsWFCxfYbJbP5/kSxkgkgkgkgtnZWfaUEycwaSp0/ouinsfjcYRCoce0Li/zCPUFXTVCDiR05oxMpcFgkE2I5BAh5q/Van0ejjMzMzg+Pua9qGazia2tLdbmxCj48XgcjUaDy0qn0+h0Onj77bc5mka1Wn1Mq1QRP6+FJhMnVT+Z3g2ykL20F1vNzmbemxilDMMSJRtcvN7J32R+zufzPL9t6vGjRajG14tJ2NIccQ7aaKp+6/Sa47q5Mgj99KscqODcMy4v0Nlg5QHRTUAd0wqFQrh69SouXryIv/7rv4bjnO4lxeNxdoAQz2KJnnVURi6Xw/LyMl9XQdoEEdnl5eW+yOeRSISZViKRwLVr13Dr1i2+DmRnZwfpdBqXL1/G8fExDg4OEAgEkMvl4Lou77c1m00EAqc3EF+9ehUbGxt9XnY65kWakjzJXdflyBakAdF7xzmNn1goFPhMV6VSYdd9UWIOh8OYmZlhhiX2veu6fCiYzrtls1k2z87OzuLo6AjNZrPvhmDVJZUqhqACXTrdPJHnEJk9VX1K/0UNUqxLlV7HcMXxMBE9HYMz9YO8Dsica8rj9c6EjxeoGBd5ttK6DIVCysgxKtOhqX55HGQtzraPTWXL5kfb8bOtX4W3Hzz91E3gd0xV8JFlXPJi1klXgH5BiwxL1jSAU8J048YNRKNRRKNRXLp0CcfHxyiXy+j1euxoQZEfZDPX3bt3eS+rVCqhUCjAcRxUKhVcu3YNrVYL2WyW4/ldvHgRJycniEajaDQa7F3nOA6KxSJrGBQCqlwu8z1S2WyWb+QNBAJ45ZVXcOvWLbz77rusfRFzlZms3K86qYy8+MQ0vV4PtVoNU1NTKBQK3Deiez7twV27dg2O47DJlZxSpqam2Gz63nvvMTOanZ1lBthsNplp6YixPCeICIvMTccg5Hz0nyT9YDDI0T2AU2/ImZkZPHr0yHgdiUpIkLUfnbYlPxPziulMc9+WiavS6+aIiUHqyrKpU9XWQCCAWq2GVCqFcDiMSqXS5+RC6VR9YquFiL9tNCwTYZfrVjEvVT02+PjVHv3AKJiRHzh3jGsYSUHHxFQDL08SmXnF43Gsra0hlUohHo+zIwYFCCaCOzExgYODA778UYR2u43r16/zoeJut8uHju/evcsaSDabxezsLGZnZ7G7u4vd3V10Oh3cunUL7Xab4/eJXoXkgk7mwWvXrqHRaGBzcxMA8ODBA1QqFSwvL3NMRCqDmJjcD2Jf+AEy9yUSib74g1Qe3ShADi2ZTIZvGybHi09/+tP4xje+wabZQCCAhw8fIhKJoFqtemomIs7BYJDHjBxLyMmFIn6IeeWygB8T4kAgwLE1Dw4OcHR0hFAohKWlJVy7do3Dl6mi75vKtSFGOnOuKq2NtOyHAIrCG50FVGmduvw68JOf9kHD4TCy2Wyf6bxcLj92U8CwoBMCTNqSitHJ6fz0l5eQbXov1z8oPAkmdi4YlzxhvKRIUxk2k0UsmxYm8GPTn+OcumnTgdZQKIR0Oo16vY54PM4LptvtsrZFeVWmR9d1uYx4PI5SqYT/9X/9X/HVr36V93BqtRpefPFFtNtt7OzsIJvNcrDYWCyGhw8f8gFk8k6kCdrtdvHee+/BdV2OedhsNjm6ejQa5egcZOYjJuYFclvkvnYch6N/AKdHHURvP+rrSqWCzc1Nxi8cDqPT6XDoqm984xt8Pi4YDHJQXgqMK+JDzh3iDcK0jxYOh5HL5ZDNZlGtVtFut+E4pxrp5uamVhKn9sXjceRyOezu7vKzZDKJdruNyclJvhm5VquhWCxiZWUFDx8+7HNIcV3Xqm+9+p36Wuxz3Xv5OYHftSTXQVYF6ktVnSrQ1atbl/l8ng+W011sZBmIRqMoFAp8xdLW1hYikQiHQRPro98mLVaV3g9TNwk+qjpN/W5jojP1n2x9UM3tUTH2UcJzf47LJD2YQKUZ6LQtnQYWCASQzWYxOTnJJjY6DJxKpXhBkSZBC5eI0tLSEm7dusVMIRQKYX9/n/eYiMmRlhONRlmjSKfT+OQnP4nNzU2EQiGkUilcuHABa2trODk5QalU4uvrZ2ZmcOfOHZYyqUzZREVtDQaDWFhYYG+7TqfD+2xTU1PodDp48OBBnzOFqn/lb/lDRO3q1atoNpu8d5dIJLC6utoXlzAYDPJlkLFYDAsLC3xrNkXoKBaLmJ6e5gjvtVqNXeOpzfF4nONllstlPp9G4zk5OcnnxwqFAo6OjrC5uYlyucyMW+wzcV6Q1+fk5CRqtRoajQaq1SqfwSMX/XA4jGg0yhHp6TzezMwM9vf30ev1WLPzugdNB+Jc1mleJul6GIZFfRkIBLCwsIDJyUkcHx/j6OioL2KJV902eJDwmM/nceHCBTQaDV5DzWYTwOlhdxLgms0mWy6KxSKbpsW6gcf3nOX3g4BuTHRmXV3dJpqn6yc5jak+3Zzxws0vc6M6nvh9XM8iDCIZyCYML22Lvh3H4TNJruuyNB2LxZDJZNhElEqlsLi4yHH3KpUKDg4O8O6776JWq6Hb7SISiTCDSiQSyGazSKVSfJWH45w6NZAbfb1ex/Xr13nxtdtt3Lp1C5OTkwgGg5idnWXi3W632SRI8Q5l6ZKIJP3e29tjRjI3N4dYLIZwOIxr165xOlXAYApUK15BoorHSIyLvCwXFxeZwScSCRQKBY6ZSPkpuK0YTDcYDHI093A4jJOTE2SzWT4bRhdvRiIR3hNbWFjA4uJi3/1eVEe5XEatVkMwGESv10M0GkUsFmOGJcdwlAP3xmIxzMzM4MqVK3CcU2eAj33sY5icnGST1crKChPVUCjENzhPTExwLEV5vpkIg4kIijiqypLHTzffVetBLpNArI/2R1utFu/1qeJZqtaajIesqcjzjrTtfD7Pa4nGcXl5mT1zyVxIY2BTn9hvXhqQF8hjIgrHXuZdvxqVnzQ2oBM6nrRGdi5MhbbgZd+l/wReizYYDOLKlSvs4p3JZHB8fIxOp4NSqYR0Os3XXkSjUczPz/N5qUajgZ2dHTaD0d1PkUgEExMTHDEiEAjgJ3/yJ/HOO+/whBcP8qbTaUSjUezt7bEJCjjdiyFCv7q6yowxEokgl8uxG7i8WIi4z8/PY319Hc1mE5ubm3wdynvvvcdmMArWKxJ1Ylzk6XhycsLvZWLYbDaRSqXgui7W19f7+o3Mqp1OB47jsEkvGAxiYmICKysrzJAp1mA8HkcwGESxWESj0UAwGMTFixcRCoXw6NEjDjm1vb3N7Y1Go4xfLpdjYlsul9nc2Gg0MDc3h7W1NU8TVrfbxdWrV7G1tYVUKsXHAD71qU/hb//2b7G0tISHDx8ilUphdnaW9xTJ1X9zc/Ox+9VUfSfPUxNR9aM96daHqQwRN/HSUupHMkHT0Qagf0/PRLRNuNEzEjg2NjYQCoUwNTXFxywo1Nza2hpbHOh+N5PFQFWfX81TJUTQc5FZyf2qm1s2mtQg42xjRpbn15NmVDJ8pEyFKknTC+QJJkrXdLB3cXERtVoNs7OzePfddzlqBbml0/4NxcN77bXXUCwW8f777yvdsWnhJxIJRCIRzM3N8X4O2fCTySSOjo6YgbTbbY6oUSqVmHDU63U0m03E43HWZLrdLhNI0hYJyERJrvEicwuFQpiYmMD+/j4cx8Hs7Cza7TY7elBA37m5Od5je/jwIVqtlnJxkGmNtDly+iDmOzk5iYmJCZTLZfa6dByH8xBxarfbmJ+fx8nJCUcloX1H8rgMBoOoVCpoNBqYmJjA5uYmotEoa2nNZhNLS0vsiUm3TFO8xHA43Bf2SmViFffJyHzlOA4zPgC8d3jlyhXcuXMH9+7dw+XLl7G2toZMJoPd3V0+sC1KtyrpX7YUmOa7/Fz1W8yjEuh0/0WtgUKGraysYHV1Fc1mE5FIhCOlkGcngD4PT8dx+taBiiypCD9pcOTARIGnm80mGo0GZmdnUavV+OhHs9l8LAQalSmaB02M1MvMOgh4mU/lulV5vRib7rmuzLNmDcOYCs+dxmUaJD9MzqvcaDSKK1euoFQqYXJyEnfu3MG7777LjCCVSjERpb0N0npu3LiBVquF5eVlPHz4kBeNCL1eDz/xEz+Bzc1NHB4eolqt8jmliYkJ5HI53lxuNpvI5XLodrtss4/H43j55Zfx3nvv8QWIAJDJZNiLkYij+Ol2u+h0OqydiMSl1+thZ2eHiTOdpSIz3KVLl3B0dIRut4udnZ0+ZiP3I31Xq1UO+0QCAZmXiNgAp0zs6OiIiV+v10MsFsPKygp2dnbQbDZRKBR4P4kOKNO+FGk+1EcAsLi4iLW1NSaq6+vreP311zE5OYnbt29zOC46g0bnf8hcqWuXGJE+Go3CdU/PyJGmnEwmcfv2bRwfH6Pb7eKHP/whut0u6vU68vl837UsfuYkoNbEVGl1GpxOovbKT7/J0YgsC5FIBLFYDLOzszg8PGSGks1msb29jU6nw0x9d3eXbyEwAc0JYlT5fJ4ZIlkgaH83Ho9jf38fwWAQ2WwWx8fHfWcETRYWlSao6i8b854Nw1FpOnJ6lfCgG0OvfCb8RsGYTQx1WDhXjEvHiEwd58W8VO+DwSCWlpZ4P+T999+H4zi80U52dCJckUgEpVIJyWQSwOn9Y3Nzc5iYmMDx8TGKxWLfgUhiYvfu3cPS0hLq9TqSySQfJKZ9LdKCkskkkskkaw4Uk/Du3bssXQJgN+CDgwPepJa1B2KiqsgC4kKJx+NIp9PI5XJYX19HNptlxkOHmEXnCnk8xGdk1hO1FgDMhF599VUcHR0x4w+Hw7zJn06nOazVxMQEUqkU9//+/j4CgQBrMLIn4b1799BqtfrMR9///vdx4cIFDjU1MTGByclJAECtVsPR0RHi8TgfD6D2kMRPTIvOb5FmWqvVEIvFMDk5iYcPH3IAYMK33W6jVCoxc6ZyZclY7EN5bFTvTOtB/jZ5MnpJ6OI7ih85MTHBxz7i8Tjm5uaws7ODeDyO27dvIxQKIRaLsdcl9Z/qcLBcl+OcRkKZnZ1lYWF/fx+u6/J5wYWFBdRqNUxPT6NcLrNnYyKRQLVa5Sgrqj5WEW6xv2zNmjLxtjH7in1uU6Yqr59nJro5DPM6C4ZFcK4Yl06yMaUH/EkGpJVsbW2h0+lwVPZAIIBSqcREjAiluCFMRJKuMWm1Wpiensbx8TFvFAPgfayjoyO0220cHx/zfpV4IDYYDGJ6ehqXLl3C1tYWn5ehfaFqtdq3v9Tr9ZDP57G3t9e3MS0zLbGtOgL52muv4caNG+wuTpdV0h6ZqJHJ+xqiaUmuS6yT3OIPDg5weHjI8QhzuRzvod25c4eJH0nvP/zhD3F0dISJiQnuBzJlTk9P42/+5m9YExNNRq7rotFo4NatW4xnqVRCPB7HT/7kT7InJTmNEH6kVUQiERYoALDHZzKZRC6X43NyIhMlzVclRKjGwYuYes1hFbEj4Yo8GWUTpYlhyeMZCARQKBRQr9fhui6uXLmCYrGIT33qU7h79y57/ZHLOjnkvP7666zhqiwQqvoajUbf/WtkhRDNtOl0mr1Faa83nU5jdXWV54UsYNnQA5VwIPabijnJc16Vn9LQupHng2mMBxHCbdo5KPPS0Y9RMLRzt8dlC7pJBDxORMUoDpRXNFeIgxsIBHDhwgVUKhUsLS3hwYMHvM+SyWTQ6XRYqqa9LLqIUJzsZAYhd3Sqk+z55MFG8ffI/EF7YdeuXcP9+/f7LjokIgWcag/imSGRcFIfiN9y+/P5PDPsXC7H+02Oc+otePnyZfzN3/xNXyR3FZEQCZ78Tf1DDi5ElJaXlxEMBlEul/HCCy/g8PAQk5OT7J1J16aQw0e32+UbqOv1OtbW1tBut5lpqZgG4UXmpmg0yo4mExMT2NjY4HvGiHHSniHt1ZGH6crKCrvfp1IpdtMnc2yxWGQiKh9RkImWbkxU81b3Xp7H8/PziEajbLojoUZVt2ouUJnkmDM9PY2TkxPEYjFMTEzws83NTTaDUuzOYDCITCaDWCyG3d1dzM7O8uF33dwTP+SZSvOQ1mWhUEAsFkMsFmMz7P7+PltEyEQtmpDFtsrM2wZ0AscwxFq1Hm3oFmDWrFS/Vd/0XtZER8GQqMyxO7xPMC1GU3qRwNCekPi/UqngpZdeAgA+v0VSOWljdNaIPJ105jrx+g/XdfvutlpcXGQTYb1eR71eZ62sVCrhwoULeOWVVwCA8XSc09ht5DKeSqXYpCVPVNOH9rKIEZMZstVqoVgsYnV1lbWSxcVFzM/PM4NTxTSkA6Siu7Truuw5SAenaf+Oou3fv38f1WoVBwcHfFllvV7H3t4ee/XV63UcHBzg5OSE97fC4TDHjqRDzGLbSeKniCT7+/solUqoVCpYXV1Fr3d6K/XU1BSSySTC4TCSySTS6TRee+01dsGns3jVahX1eh2NRoPNhOQBqWIUpnlpMieJ72WiKzMtYlztdpsj96+srLAwJmtSKhduWQCp1+vY2tpiQerw8BD7+/scLHpycpL3aunYxJUrV1hDOzw8ZG9am/roPjoAfFBeDGP20ksvYXp6Gq57us/4qU99Cul0GoVCAVeuXMHU1JRSiJXrkeeHiqnLaWVtWAYbhqhqt64MVd0yfnIeOb+qPF27ZDy9YJQ60rkyFfoFWXpQSaQm0ElYu7u7KJfLmJiY4CtCisUiDg8P+SCqaRB1khBweqYqn89jf38f7XYb1WqVI0U4zulNv/SODmE6zo8vIazVajg5OUE8HketVsNLL72E9fV1VCoVTqeT+MU+E6Hb7bIZr9vt8nUsdP6JNsYdx+k7GEpAkvorr7zCnpamxXLnzh3WhAharRb29vY4yjzVQUJCt9vlfSjy+svlclhYWAAAfPvb32bvR/GSx2q1ynuHYt84joOjoyOUSiUAp2bN5eVljnoPnO4pHhwcMLMkRkUm40ajwYep792799jelvjbZGqSx8Yrjagh0Z4kCSEbGxt9EWDk/teZ8Khu0mBJsyTB4Bvf+AafY5Nd07/97W/DdV3W2OXx1rWBgimTQEDrK5FIoNvt4uTkhKOt0OWoDx48QCaTwfb2NkKhELLZLHZ2dvrGXMdo5L7Q0Q6v/PJY6jQzuUzxufxeVa48NmI58reKYXlpcH5h2PwifKQZF/C4lGJSg1Udr5ugFMqJNoEpHRFlEy46icZxHGxtbbFpaXZ2Fi+88AKuX7/OG83VahWvv/467ty5g62tLbiu2xf+JhAI4LXXXsPGxgZarRZ2dnbQbrc5egcFsNW1zbSwM5kM3ypM0jK5lpMmRftO8XictTJiQltbW3Achw8Gu+6Pz4ZRgOFGo8F3Z12+fBnNZhPFYhEnJydIpVIcPJjMcBQVXGTi09PTaDab7DL/8OFD9rYUCRjtZcrMjL7FK1MikQiOjo7wqU99Cmtra3zvE5mpgsEg0uk011kulxGPxzE1NcVR801SuU4jMKXTSf+kYYtXyZCmQ/e6ua6LWCyGarWKaDSK6elpZtQm5kXjl8vlkEqlsLu7y+bBRCKBvb095PN5vihUtCZQX4lmO5mwUh1kJicvQgouTeZ14FRQ2N7extLSEnZ2djA/P4/V1VW2Tty/f/+xS0ypLlW9OoahYx4mZqAaS68x1pWjo08qxqdjRjZt8BKK/JgLh9W+zg3jMk0+1X85L2CeXDb1ib9d12WTkEqzI5DfiWYrYjRE6IkYbm5uslS8t7eH4+NjZkx7e3uo1+vs/EGEgdIDp4cxq9UqE9JYLMb7N2SysZEYZaD9nkqlwjH7yNznuqfeXgsLC3Cc08j3AHDhwgXeK6Nza67rsideKBRCu93Gxz/+cbTbbTx69IjPqv3oRz/C1atXmdhRaKFut4tWq8UMGQD29vbYC5Bs6p1OB/fv38fh4WFfkGORQHlpoPSMTKU3b97kc0viTcxzc3NoNpvIZDLsNEPR4ulbpWnZSv+muS0T2StXrrDpjG4gSKVSHLWDnIGWlpZw48YN9Ho9XLlyBTs7O7h37x5CoVDfbQZUrsjE0+k0a6qk7dK9buQBure3pzySIbdN/h0MBpHL5bC0tIRwOMyhvyKRCJLJJC5fvsxX8TQaDWxvb6NUKnEotUKhgFqtxvVTma7r9u052/Sl/Fz3XtWOQUFkKiZaZcLPi1GbyjDhZQI/WqkXnBvG5SWtmDp1UIblZUbzIjwy08rn8wDAzIO8Bl3XxfLyMu7evYudnZ2+IL3Aj803tHck7ruJDhjkdbi7u8s2/osXL+KrX/0qEysVAdH1lfiMzjrNzs7iypUr6HQ6iEQiePToETqdDrukb25u8j4UcMpQGo0GX7FCEbzpUHWj0UCr1cKdO3fgui6y2SzS6TTvGd28eZOl/IcPH7JXpeu6qNVqHCuS4gKS+Y+ODZCWqdIiZGYlMzBx/KjPDw4O4LouM05K22q1MDc3h0ePHvXta1YqFe53kRipQMfUVIKRiaE9fPgQ6XQamUyGtWTas3PdU5Od67ocuT4cDnNMzWvXrqFareL+/fuPBailuur1Oh48eMDzjsaHHD8uXLiAjY0N5HI5DozsNcfkd2TWJLNvq9ViE/nt27c53Bmd7SONu1AoAACbcx3nx/tk0WgUmUyGI3C0Wi32jBX7XTc2NkxJN066MnRjaYOT3Geq+SOXa2KCfhmNHw3ML5wbxjUs2GhkgHlgxXJ0ZgLxmUysut0um3GazSbb63u9Hvb29pBIJNjdmoghleU4Pw5ESw4bVDYR5Ugkwu7HFJKInCzC4TA+/elP42tf+5rxdlhTP6XTaTSbTWxsbOCll17C7u4uQqEQfuInfgI3btzA7u5un8uz67p8yJgk8kQigYmJCezs7KBWq/F+UK1W4xiOGxsbHBaJ8pHpiIgXHX6t1Wp8nks02eZyOXaWESVs8gi0IQZyGiJ2JHiIe1a0j0IhwWi8yetRpW2p6pR/+yU+jnNqTm61Wjg5OcGbb77JRJ8u9NzY2OBIIhsbGxxSizTUlZUVPigtMy0SYsiMSqbeZDKJTCaDWq2GO3fusGYsCwy6dSO3s1QqsfOPmJ4uUiWvWzJX0jza39/nq2oo/8TEBLrdLubm5nBycoJMJoPFxUXcunWrbz/WSyvRgW5svYRrv9qUDVOVmZYO/DBGHfhRHvzCR4JxeUk5gF2nmgZdV46ozqvqFcttt9t4+eWXcfv2bY5vWCwWea+BTF+lUukxMwGFaqLo6BS4dXt7m4lotVoFcOp9VS6X8d577yEWiyGbzeLw8BB/8Rd/YXWdhow7eUweHx9jZmYGjuOwSYzunyJCQm7fouZCUnmn08H09DRHPaCDqYRTt9tls4/ruhzfjw739no91qKoXDJdyqG1RA/MdDrNezckAJBgoDMZyZo1AHbCkOcBSfUUzYPqII1YBJ32NIxZRcSHmEkqlUK328X169c5hBhp7ORAROa2QCCAtbU1drx4+PBh3/6eCmQt9eTkhPc36eYCU/vFcnTrTTxaIVob6NnHP/5x3Lp1C4eHh31jT276JNBUq1VMTk6yhy1wuucnHjBXacI6QVTXF/JY6ECkF360MLkulVChwtWrHaOYf6OGjwTj0kmjftV720mkSyfXLz4nSZ/iDFYqFSwsLPCCS6VSODg4wKVLl3Djxg2cnJxwGcQYKPpCLpfDysoKtre3+w4x9nqn12XQQVOSjkkbMcWKM0n0tD9FJrdGo4GbN28ycf7+978Px3GwuLiIvb09jnAg90MoFOKIChQaiBgXaQoU5Z72/rrdLod9unz5MjOgbreLw8ND1haoDiKWR0dHAE61UGIk1K7Jycm+O8xEpid+ZBCJpvgBwB5wqVQKW1tbeOGFF/iMHzFIk/TsRTy8pHORiIVCIUxOTvJ+Dh1DaDab2N7eZvf4/f19JuDieTcyn3lpAyJQZAvqJ+pPnXVCV67MLMkELo6h45zGs1xYWOALV+msVrVa5b1TOhIiavUU7eP27dt9lgcbbcimP1QCj47ZiW01CTAqjUosV/VftZ7lOSjj+ywxsHPPuGwXmIk5yeWYmJCXpKSrm4LLvvPOO3xYuVgs8jminZ0dlMtlrK+vP7YxfvHiRbTbbbbbx+NxZDIZuO6p5xt5Fco40EQlJxIvwkh4y4som81yJHfa16nVahyk9vj4GJFIBP/9f//f4zvf+c5jpjjqs8nJSfYsJHOO2KfyQXAKM/Xw4UOcnJygWCz23dJMHovktUhmVrHvWq0WMpkM5ubmsLW1xftNvV6PTZO7u7vsvGHTRzLQ3iJF5I9Go7h69SoikQj29/exv7/PV9aQF6Sp7+V3KgInA6UhE2q32+WwVdeuXcPe3h4zMboKp1qt8gWMdJZOx7S9gIQkirCi6i8vIVKl4dF/umm8XC4jEDi9J+/tt99GJBLhQACi9k59PTMzg0KhwDc1UPBp2fFEtXYH7QcvK48Xk9T1gWptetXlJXjbttVEZ71o6yBw7g8g+9GobNOrBlM2jZjqkvMCYE2ACC85GbTbbbzxxhtYWlpCOp3mg7ii5H98fMwLMR6P4+DggIPzyiGNqB76iOec5HJt8HYcB5cuXcL+/j4f8G21WlhdXcXh4SGy2Sx7zv27f/fvsL6+rtReer0e7ty5w44b4h6IKJ0DYLMjBd4l05PoYu26p+7cL730Eq5cuYJcLsf7IWI/kBROzJKifpD7OpktL1y48FhfyP2j6iPXdXHhwgXMz88jHo/zPuP169f7Io3Mz89jYmKi73C2SsPwkvLFeawi9CQgbWxs8NU3N2/exMnJCZLJJH7+53+e978oyvulS5fw6quv8iWmJtzkQ8MUvoxMpQcHB9roKapySAARY1iq1iqN6eTkJB9NyGQyePPNN5FMJjnSjjj2jnN6NICC/xJzVu3xqnBU9a8IJjpgIvK6tDZrUtdHOlxkbctL4/LbHhUuo4Bzr3HpwEZCUD0H+iexjfnGpG6rJkmr1eKDralUCt/61rewu7uL7e3tvlBNlGdvb48JHh3O/fSnP41Hjx6xx5iO8ch4qDQrHZ6Oc7ovJYZ26na7mJmZQaVSQbfbxfr6OhKJBIrForI+qkckKDLxA8BecIeHhwiFQpibm+M6gB8zfgBsHm02m1hdXUWhUMDk5CS7/Iv3MImmUoruUK/X8ZM/+ZMc07FUKuH+/fuPMXSTxkB9R/tD4hmjqakpdkJpNBqYmZnBjRs3ONiwLtisqj6/ZjZKT2VTdA/XdbG7u4v/5//5f9BsNtnJhxg43WGm0hho7kUikcfMa3TQ23F+vLel6zPxWTQa5QgppqC7VEe328XCwgKbk8PhMJsnG40GrxtxLTQaDdy9exeu67KZMZfLseYuH5S3Wbs6MDEEU3/ozIBiWtW8U2k5tr9t6h6l9jQIfGQZF4HMXEzmCDkPvVMNvGpSqOpWlQ+Ag9Tu7OywJ1qv1+vbDxGJEHmm0eJcXV1lM6FOi1K1SceQTZOUNvBd99TBZHV1lcvY2dlRlq/rO2qDHBYqk8ngypUrWFtbQ6VSwcnJCcLhMFZWVgCAzxs5zmkoIYoCLt5KTYd/RQ2OmGQ0GuVzV8ViEbdv38bk5CTK5TLW1tYeY7w6rVRsI31TeC+6NJOcI8jBgUxwU1NTOD4+5j0+irwvCxNi2bZSsGoOk1b60z/907h37x4ePnzI3natVgu1Wo3DN9GZJ52mQY4yR0dHfQSfzLQkmHjhRvfXtdttPnRONwHIfSyOXygUwtLSEu7fv8/7Vdvb2xyqS3XvHc1X8bD8wsICotEo9vf3ldfLyAScnokCmNwuFY2Rx0JMJ4MNvRHxkOuQNSkTfTOtTxuapsN71HCuGJdKylC9F8G0uL3y0nMbfHR16PLTlfTkGu66Lh/qVO1XEdAG+tbW1mMhjHTtUS0s0wLUlUEgRgdRLVY/C4AIPV2T4bqn3mQUl67ZbHKf0AIl5wLaMyuVSnxxpHzAmkIv3bt3D47jsCkPAF8cSZv4jx49YpxUjEuce3SRJu3rUKipTCbDGjKdX2s0GrzvND09jeXlZayvr/N+jZemJYOJEIn/33zzTQCnB9IPDg76zvElk0m+54ocXnSE13F+7DWZyWQQj8f5uAId8aAraXZ2dvpCeontoP23z372s3jnnXfYOYc0UJFpic40ly5dQqPRwIMHDxAIBHivl4SWqampvpBdqjlGc4E8JkXnJ1X/2momYn/p5rqKZqn62nbMTe90a1gnfKtoga3mdZYa2XPPuFQSgS3TEsGrk3XE1m+ZugkpTxqKQUjRrImAeDFKALynZIOPChdVWlW9Ji2T/quYt5xfhZcoUQeDQcTjcYTDYWxtbfH5mwsXLmBtbY0D2VIdZBJcXFzEyclJX/Rv2ZvNcRyWxslslslk+G6sra0tXLx4Ebu7u8o9QBWzd123LwrI1atXsbm5ydqz4zh8h1kymeQrb8iRpFqtYn9/v885xQ/YCm/vv/8+n52jq+wpLwWAptu36TCyimlFIhFks1mOu0gXYrZaLRwcHCCZTHLkipmZGezt7fXdik0fOix8//59RKNRFjTC4TDq9TqbeOmakk6ng3K5jNXVVeTzeQQCAXz44YePudmvra0ZrQ6ue3qwnQ7Ry+Z4Vd/Kz1R9Y1qr8ljoGIRJU/JTrmlOyGXbCKeqtHL6s4TnnnHZdtIgzEyXVkWY/YLXJKVzVxQ5QjYneC0KsWxVnXI7xGcqhiNL66Y22UxmkTHJZkHxUkk6WFytVjmcFXCq1R0eHuLg4IBvghbLbbfb7Mot3vEk9yPVmUwmce3aNdy4cQPXr1+H4zgs8d+6dasvv4oAylIo3Qfmui4zIXIgoQC09AHAxJmONcTj8T7hw5YAqdKL/SLiSVe7iHt+lI7m3sc+9jGsra31HcyW66YjENlslg92V6tVxGIxlEol9lAkU65qLjnOaVzJqakp9Ho9fO5zn8P+/j7no/6nq26uXr2Kk5MTlEolrK2tsUAgHmoW22ra53Vdl8eaPA917vqEq6oc+b2cTleOrlwTzfKr6ehwlgVynWDupVWa6j4L+Mjcx6WaDDpiLDMpk0ZgU69NWbqydXV4DZtpUdhoiXL7vP6Lz+i56L4uvnMch+9hikajrFFSHrr6otfr8S3RshTsOE5fpH3xOZ0rcxyHL4ykNPI+SzQa5Usg8/k8Zmdn8fbbb/NhYTGPyLi8xoEiekSjUbzwwguoVqt8iJc0xEajAdd12dnEcRzeY2o0Gn1XuYhjpyOEpjFVjZXq2hDxXSAQQCaTYW1H1dfAaaiydDqNubk5PgJBkfFJkxPHTnYYIq1teXmZgyjPzMyg0+kgGo3i8PAQjx49Ys3ok5/8JN577z0Eg0Hs7+/3HThXjY9K2ND1nci0TIzOqxwVmMpTMRA5n1/BUV7rNvPGRB8GbbeubCpjkPu4nnuNyw94DahK8/BSm02TSSe9qMqSJephVW6VRmdqj5+6dITQFi/HOd1Mp/uYqtUqMzmS7BcXF3F0dMQmI/EYAIEcRVzU3NLpNBYWFvCjH/1IKfmKbc9kMhyp4+DggDUGAI9J77LGpnpG5VNIp83NTY5J2Ov1HtNwXPd0T4ki1tNFo3Iaeay8mJhKyxLz6/KJbZmamuLzXmJ54nyiIMF09o20pHQ6jVgshv39/ce0GJlRkqYWiUTYqzYQCHB091wu1xeXMJFIcBxME3NSace69orMzwTyXPdKL689sQ/l8lTamu3a8lqTJk3JBn+vMrxo4iBt0sFHgnF5MRAZdB2sm7Ay05EJjSxFiZNYJWGJ5ZsmjR9moWqjjK/cdtt6dAxfNUHF8ilCPd2fRLEX6fLISCTCUd3FfDJucl/G43Ekk0m+ToXSix6WlL5er2N3d5cJMADGw6sfVbjIjKTT6aBUKj1m7hXTU2DYmZmZPtMY0K+1qu5xsxE8VO90gpvYlxRdolgsspOIaO6T65+dnWVzbjQaxdLSElZWVvAf/+N/fMwNXnQ6cRwHtVoNa2trAE5DktH5v1qtxsGT6ZD76uoqO3/YMiedtiALM35Bnpeqea/rf51m5QdUa0xFl1TPTe0RyzYxrUGE32GZFvARYVwm1VdF+MR8JsJuSqvKo9OwZJxknE3M1Q+otC5V/ab3qnpVhM+EI7WdnC7IrFYqlfgYQKfT6Ys/RxG8xYC4qoUUCoXwP/wP/wMePXqEO3fucBSF6elp3L1797FYiQBY42s2m0in07hy5Qp++MMf9mlGcn1e2o74XLzjTPWe8KGjA2J9jnN691Qmk8Hu7m4f81LNLzK9yniZhCN53IBTxtLpdHDv3j0kk0k+U+W6Lps4xbKbzSZfVRMKhTAzM4ODgwN88MEHyjvoZIJH153EYjFOQxoWxYCkS0lJ0JHbqAM/TI3wMeXRMQMxv01eXVpxfFWCpFyvSkjWtcVrHqjK0DGnUWhOg8Jzz7hG2XkmVVan7aiItpcE4kdCEXEhaVd87rftXuq8DqguEyOz0czED8VUvH//PtrtNu9zbGxsIB6Po9fr9ZmI9vb2mPFQW+R9tG63i//23/4bQqEQQqEQIpEIwuHwY7fcihKy4zjct51OhyPmqxa5DcMS61D1gfxb1M4cp3/viSKrx+NxvPTSS7hz5w6bx8SyKEJFMplkhxRd3aq5qltHkUiEo1HQ+SrRSUYsg7wSHcdBIpHA1tYWM1GZ6esINkW5ODk5QT6f5ytWer0eO68kk0nWqMX+U5Un121Kq1vfKqFU1a9yvSrQlSGWo5t3cptU9evKVTEfm/bqytSBrTA+LDz3jMs0EWSwTednUpgmtB8cvLQ1VX6R+JpwVNUlpvfCXfT88wIVgxOfkafg9PQ0arUaXz1CtwDncjlcuHCBJfDd3V3U63WOPi9v6ruuyzfeUh0UqHhycpIdBchdOhQKcYBdmXm5rss3KsvPdYtRJQl7EVJVn8n5Hec0HFE0GuUoGnRVDY0FHaomgr60tIREIsH3SOkYGNUjMzL6L+4VNptNTE5OYmdnhy8npTQ6LaDX6+Hu3buPmTbFeURXwIhjSVovnc2rVCoc9Z+EDjovRuG9hgFxrHSaDYFOU/Fi/LbCi/yeBCnTfPICk6Agt9cPHfGjuct1jYp5PfeMCzgb26qpk2XmYjMgqoE1aWsqPEz40PtBGKiOURIxIQeJSCTCewsiiOXIGhBw6mE3Pz/P7umzs7PI5XJIJpP4xje+wbfkJpNJjj348Y9/HBMTEygWiwiFQnygWj5MTbfp1ut1xONxdiZYXl5Gp9NBMplELBbDvXv3cHh4yB5oqv4DTh01PvnJT+Kv/uqv+t7J2plu8XotapP5R17giUSCnTYoBqTjnDq20PUbZFrrdruoVCoIh8MccaJYLPKemQ5EpkXj5zinHpvEND788ENcu3YNBwcHHF1ER6AIv4WFBTx69OgxBkeepBcuXMCPfvQj9ia9cOECdnd3EY/HUSwW+aYB+cB9vV5/bB9QBfIaVfW3DejWhm7sxN82a1Gl3dBhdNFU7Rd3E0P20vbOCsYalwG8NBrb5yomIDMfnUSkk87l/zrmp5t0KnVelU5+7qU1yDi7rtsX3JQ87hznx/dIqfpLDIRKQGVMTk6i2+3i+PgY6+vrKJVK7FFI5RFTCYVCuHfvHq5fv85xDslkJONN/U8u8MFgEO12myPSU+DhRqOBWCzGhFJFCMhVvVgsYmpqiqV+qiMSiXD0dDGWnYiXjeSt03hlAtZoNLC8vIxyucxaB0UE6fV6HMqI2pdOpzE9PY3bt28DOL0ss1araYUl+qZxTSQSWF5exsOHD7GwsMCefru7u/jggw/6nFZkRkwCC+1XFgoFbG5u9u1VOo6D+fl5xq1QKHDbKGCyHBhaZd6VPT3ltaBiWl4alaksFajoghcd0IEoOESjUczPz+Pg4ID7RsZFV5+Mj+q/id6onquELRtm6MW0B9UiCc4d49INmFcnqgiIieCrtBXVQKvwUv3WvdfVq0trkuh1E1CVhiQ/cmmm+7GISKkWaSaTQT6fZ/dnKufFF1/kyBTLy8t48OABx58TJWdyFSdHAMdx8Oqrr2J9fb0voC7V57qnHnm7u7uYnZ1FIpHg61QI11wuh+3tbTSbTb6M06Tp7O3tcWBZus2YYicWCgXMz88zzt/73vf6cJHLEvvUDxCjJ49LipNId4dVq1W+pXd3d5djKh4eHmJ/fx+tVguBQIDT68Zc1rZmZmb4xmq6441MtVQ/RRmh8iiyyfT0NFqtFlKpFEd7yefzCIVC7K0ZCAQ4LFSxWEQqlUKn02EPQtLmVOexVH1pmr82xNvmHdVjGkO5PhLWYrEYnz9UlU3po9EoC0okKNJ+pbyPJ4+fiUmr/uvoja7dBKr6TWCraQ4K545xieBXNfVicqr3pgWiw8NGUjFpWTbMWFWmagKbFm0qlcLk5CSmpqbYY0zHmEnbqtVqmJ+fR6fTQaVS4fSXLl3CN77xDWxtbfVdqyLj6boum6kODw/x3e9+lyNj6KTqTqfD8f8c59TBgiJSlMtlRKNR5PP5x/bIqCz6UCRz1z29KoauOyEmUCgUsLCwgG9/+9t8KaKIt+6/CUSHG2oPMcqtrS2+BiSbzaLVamFubo5v8KW69vb2AIAvRKQ9MdExQgUyU9vc3MTs7Czy+TxmZmawv7/PWsDU1BTi8TifnRIFk3g8zu7vdCUNRQshxxpicpOTk3BdF+VymeMQuq7Lda6trfkmarp1SSDuhXmV67WW5bEV6xY/kUgEc3NzWFtb62P2cl2O47DjSSwWQygUwsHBAYcpMwmxcv22GpgOdOlshP5h6h0EzjXjsgUV8wH0xF0nragmj1+pRceUTNKjSQpTaYQ6RiqnpX0V2ggXzUEyIyHJe3l5GdPT0xznj+4JEwmefL2EjAsxGDG6vVe/0cFU2hsQy6/VavxObK9YZygUwssvv4zZ2VmOLE5u3/F4HK1WC1tbW/yc+tGWYenmhSw0UJkbGxsIBoPMfNrtNl81Qh6YxWKRGRVFmVAFk7UlHpOTk1heXkYmk0G73cbVq1c5sr3jOGzKpfEWodvt8n1j3W4Xe3t7aLfbfX0VCARw9+5dFgLS6TSOj4/Z6YOu8hFxpgPpqnWmEsQmJiYQDAZRLBZZEyTm4bqn5l7VdSXyf5UAqVs/Mr50kJr27ehoAfDjyBzi+EciEQQCASwsLDDz3traYoclk4VAhYeJBunw9hLAdTTSBGfFtIAx43oMVBqIajKYzIK697bpvPAS/5sWka4+OZ0qL3BKLOl8FTkDZDIZ5HI5vnae8pCbMnnzUYw6kvyPj49ZuhYJvMrUQXEIbRYc/aaDvqpLMalMlZQq4hCNRnF0dMR7b8Cpeex/+p/+J3z961/nuIh0FYbYn16Rx03PdYSI2kKhl1KpFO7cuYNcLsfmVIogPzU1Bdc9jdZx7949LlfuZ/k3pSPN6caNG8hkMnz1CoVxEuMIEjMR+/7k5AQHBwfIZrNYWVnhQ9eO4/B1MlRnMBhEKpXC2toazxExOoeIO2kkquDIlC4UCvGzWq2Ga9eusYmXbnWm6Pwf+9jH8J3vfKdPm7FZ217rU2Rc8Xgc+XwexWIRS0tLCAaD2NjYYPOzqK3T3uzc3ByuXr2KV199FV/96leRyWTgOKchwGid6dauaV7LYNKqTLTB6/9ZalcqOJeMa5BO9JKsbDUgk8Yjv1f9l3HR1a9LJ7+XNQPdBNVN2nA4jHQ6jWg0yiYdsrvLUnepVEKhUMDbb7+NcDiMfD6Pzc1NHBwc8ELU4akywcjjoGoveRU2m02+cl4sT6UFqSTSZrOJ69evIxaLcVTybDaLRqOBv/zLv0Sj0UAmk8HU1BRu3ryJRCKBdDrNe0CiNqcSdEygEpZE3Hq9HorFIk5OTphIN5tNvPzyy3xmrV6v4+joCPV63Vo7kX8/evSIHVxKpRJ7Y4rX4ySTSaWLPQkb+/v7SCaTffuhdAyh2+0inU4jlUrxBY8yYyWzouM4fG6s1+thYWGBgx3L/bO8vIyf+qmfwle/+lW0Wi2Uy2UUCgW+3Zg0yFQqxUxdbr9q/quYuzhmKiDLQ6FQwNTUFEqlEnZ2dvg8YSKR6Lvni9p5cnLCjJwO29M+I/Ud0B+CTEdjxLJV/eWVV15nNtq7jfA9SjiXjGvYzjNpRrr0qvc6ScivNOOFi45IyQtPp+XoCFkgEMCLL76ImZkZFItFOI7DizCTybAJkZgDXX+Ry+Xw2c9+Fn/5l3/J2g95i4n4ivibzGymfnFdt+86DlX5XmVSueL1IoVCgZk0EZxms4nDw0Pk83n+TyZIk3ZuA17Mi/b5QqEQtre3USwW+czTxMQEYrEYe6GZBARdHxA0Gg2+OkaMXNLtdrG6usrHImQnF9d1+SoeGg8i4tlsFteuXcO9e/cwOzuL7e1tjoYhAjEtCk4shn7a39/n9zIhrdfreP/995FMJjm4Ml3HQnud9Xqd7z+jfDZar7iWyGmHYjPqNLJ6vY6dnR04jsNzntrQ7Xb7wpCl02m+ALNSqeDhw4dwHAcTExMolUq4cOECcrkcPvjgA44ao1vjKu3aRCfEtF40wYYp+aVbw8C5ZFx+VHxVHtUzPx0ua1Oq/CpzhM0727p173RMT05Hm8vVahW1Wg3xeLzvZtxer4epqSlEIhGUy2WW9ElC3tjYYFdyeU+Lrlqn+kVipJMCZZxFd/1oNIpMJsNESl6YJuk4Go1yKCHao6MI5ScnJ4jH47xnV6lUUK1W0Ww2cXBwwERaJuA24DXf5PKoTbTn1Ol02GFmY2MDuVyuz3wn9wMApaZEjJvy0H5ZIBDA6urqY31JRyMogj2dsxLrLBQKbB4mnLa2thCNRrG6usrMRWRsJycn7LovBmBeWlpCIBDA97///b62ifjTrcuFQgGvvvoqrl+/jlQqhdnZWbzzzjt8IFt2CPLSRkUgXEnjpHNmdNkmRXQhDTkcDmN1dRWzs7PcPsojC0v37t1Ds9nE7u4ua6skIJCmL2qi4ryQ8TbRDh09Mmle8lwy0RfT+1FrY+eGcenU2WGkABvmJw+oTssyqexeZZrw1TFpXTrde/l5MBhkUx8AvhMrmUyiWCyy+SqfzwMAE/58Po+pqSn88Ic/5HLE9tN/AH1ExKbtBEREiOiR1pVKpXB0dNTXTipTdfYnl8thbm4Oq6urWF5e5rNikUgE8/Pz2NjY6DOT9Xo9TvfOO+88dpuyzMBM4+e1wHVatPiM9r/oMki6EoXSk5dlIpFAr3d6SaKIrxcREjUn6kNi5rTnKQoLuVyOhRfRxEWCAe3X1Gq1Pjd6mlviHijNNbqzLBQK8dxRRZmncaJ9skqlgpOTE+6nXC7Hl4GKfWgD4XAYn//85/Hee+8hGo3iU5/6FKrVKm7fvo1oNIpQ6JSM0rEB1z29gy0UCqHdbvOBat2cqFQqmJubQygUguOcRkyhM3CdTgc3b95EOBz2FDypL3TtshEKxf8mwVsFXkLzKOHcMC5Z3bXtKBvmYCrbaxLI5YppBmGqXv/FBW3SGFVtEJ91Oh3cuXMH3W6XA7ySpA+cMo90Os33opEzxczMDI6PjwEAhUIB0WgU5XIZx8fH7GRARLHVauHw8FCpFZnGkNyq4/E4FhYWsLq6ylfPE6ElIiDvP4njeHR0hEKhgEuXLqFWq+H4+BjlchndbheHh4ccloguUmy323j48CHC4TA+8YlPsHlHdTO1lzBk004ZXNflixTJuSAUCiGfz2N+fp5d6AkX8m5zHIdd+/0CMW263JPKEhkStavb7eKFF15ArVZjASIcDvOeGXnzUVl09czJyQmmp6fhOA729/f5oHc6nea4laTt0IHrw8NDAEA8HmemfXR0hHfeeQfJZBLpdBpHR0dYXFzk/T95HEwajJiu2+3iW9/6FjOp119/HQ8ePEC5XMbR0RFqtVqfCZDKdl0XlUqFmZbolUtMluqo1Wq4fPkyR8gnpxWau2L/e9EiE30ygdgXXgLWIKBjnIPAuWFcgD1D0IFqsHSMQK7TS8LWaWW69zaSk9czm3wyPvSf9m8cx2G3duoHkVjRvhA5MtBiXFpaguu6WFhYwP3799n0Rndttdttvg5ep6moFiL1C0XG2N/f54jodPCWNsczmQwzF1qMIpPsdDrY2tpCp9PBlStXsLS0hL/+679GIBDA8vIynylynNMoFuTWTLflTkxMYHJyEj/84Q+N/e41DrZjR+fJSBMBTr08Jycnsb29zd5zvV4PoVAImUyGHVfori9T8GDVtwjk6p3P59mFu1wus7NOp9NhoYUiuGcyGc5z7949xONxLC4u4tatW3z+rtPp4OLFi303BNDVNrQ3tbCwwJFXaJ8pEongypUrcN3T4wOpVIojsTx8+BCu6/KcpD1Z0bVep1HIAh8xYApT9l//63/lYxczMzNYXV1lLZO8Lkl4IiZFWmsgEEA+n2dPzF6vh+npaVSrVdy8eZP3scR905OTE+UdbiYhXR5jlRArWgr80A4/wpZN/YPAuWJcg4AXEdH9FtOryrMxCek0ItUzcYGZCLvpuReoJpLrurz3QBJ+Op3mKOqNRoPdf+v1Oubm5rC+vo5QKIRyuYwPP/yQTR7AaZSAUqmE3d1djoYhm69k/MVQUoRHp9NBsVjE3NwcIpEIR3Wg96lUis+hyQyLgMIm0X4OnSOq1Wq4ceMGawh0LXw8HmciffPmTWXZXovRS2OWyxD7IxgMYmZmBul0Gnt7e8xMj4+PWUskwSIWiyEWiyEcDuPSpUt8kaWqH1R9rZqD+XwemUwGFy9e5PNs2Wy276xdqVRCMBhELpdj5pbJZLC/v8/X2Liui4997GO4ceMGjo+PmUm5rtsX3kpcR7VaDcFgEOVymSOJzM3NYX9/H657etaO5gWZTOfn5xEKhbC+vo5IJKIdDxsm3m63+YhHIpFAo9HAxMQE5ufnWSN3XZcdeRzndK/vypUruH37Nra3t+G6p165r7zyCh+YT6VSqNfrHEZMPMZBH69LRWXaQKZj6kuZgenK0r0b1Ko0CIOzhY8847KVIkwDrCrPhkDpypKZn4652jBVlbYi16PqAxUjof+zs7OIRqPY2triK+e3trawuLiIRqOBubk5Ji60p9Fut9n8EY/H+eoQmZDKTCsYDLI7s3hthuM4LIG/+uqraDQaCIVCCIfDKJVKWF9fZ0LmxVioHDGAMDEx0i6z2SzH1qOgwHIcPS8wMQzTM2qv67p8JoiInhitnYgzBSMmQnj9+nXk83kOKUR9R4xX1KRnZmY41BO1j0xcpVIJH/vYx7jsarXK149Q9AfXddmxgK5jabVaHD6s3W5ja2uLzWDiWT/qU9GZx3VPvQwpCoUYQolc26PRKCYmJpBMJtHr9dgs2u12sbGxgU6nw/tPOkuFF/Mi79FcLoeZmRlcv34d0WgUH374YZ/DRTQaZS2wWq3i/fffx9TUFGte3W4XDx48QDKZxOzsLKanp3F4eNjnIq+bM7q5Inp5Oo7DZlcKWeZVrlyejvnoaKCq30y/RwEfOcZlYgIm84ENg/NSp3UMyYt5yWCaUCqcxHyDtonKoYO+hUKBtarXX38dd+/eRaPRwMzMDKamptBsNlGv1xEKhTA5OcleU61Wi/dIdJqQ3NZIJALXdTE5OcmXPJJZjMxToVAIP/VTP4VvfetbfKjz6OiITWckueoYmK6fe70elpaW2HkgkUjw4VYRf53QoQMVoVTlFecnmcCi0Simp6c5CkShUGAGkslkcHBwwAeok8kkdnZ2EI1Gsbi4yFppuVzGwcFB31ynw+M0bqIXInmC/vVf/zVfp0IMpN1us7ed6DACnF5fEovFkMvlOJoGzaNUKoXp6WncuHHjsT4R+7bdbuPtt99GPB5/TGBwnFNzNZmDqWwy6QKnjkX1ep332mTvStVYyRo+4VIqlVCpVJgZ5nI5NBoN7m/XdZFOp/vM5iREkSCVSqUQCoWwurqKtbU1JBIJ7TwQcZHBcRw+fB6LxXB0dMRWhgsXLuDSpUu4ffs2u+bbzHlxfcj0Qq7btG7PUtsCPoKMSzdBZaLh1eleKrGX+q3CRSddeUnlNhPES1tULRYVk3fdU48pcgdPpVL4/ve/j0gkgkQigd3dXRwcHLD5iEI+EbHpdDosHYomENWichyHI43v7OwgHo/zRYrNZhO5XA7RaBTFYhGTk5Mc1b1SqWB/fx/xeJwPCYuETcUsdUSi2+2yQwbFkvNiWqpydAvZltERkHbR6XQQiUQ4gnun00EikUAgEOB9R4obSBpSOBxGtVplh5VAIIDFxUWOvi8eqAbUd24Rwaa9RDpoHo1GEY/HOZJHtVrF0tISms0ma11TU1M4ODjA0tISHjx4gGw2yx6GjnNqim23232u66LQQXNKxInm0PHxMUqlUp+WuLKywpo6efiJMSszmQw7ecggjyONEd2W7TgOmw5JKyS8PvjgA0QiEbzwwgvY3NxEMBhkbTiRSLCmSkdHyMRL/R2NRvvic4pzgyLUkIYq77uGw2Fm7rdu3UIymWQhg+qgWJYkDMlzfxRM5yyZFgDY3Q74HICXqcZkKgLs7LZiOlESM5VhImQqE5nOZKHCxQtX1XMZHxvNQCYUjUaDpdmJiQl+n0gk0G63OTYgLRQyIU1NTXFoG9FNXv6IdVerVd5vunTpEnsLkkZHhGRxcRFXrlxhrc9xHI6VRxvecn2m9oofMncSU1ZFL1eVr6vLFhcCcXy63S5qtRqSySTfy5VIJDA1NYVut4vt7e0+wYBMXBS/j2IDiswpm83i6tWr+Dt/5+8gkUjwfhGNn7jvJc8funvLdV02Rc7OzuLKlSuoVCpIp9P45Cc/iWw2y3VubW3BcRzed0skEohEIozHxMQEotGotr/ksaJbBcQ9IgDsFJTL5fDCCy9genqa8S0UCnjttdf6zgOKDhQm64SIh+M4ePnllzm6DJ3tazab7NwTCoUwOzuLpaUlvPbaa2zaE8t2HIfPyE1PTyOXy/HxAjFdMplkR6K5uTmEw2G+uYGsG6FQCA8ePEC1WuXD5HT0oFAoIJvNIhaLIZVKPRb9xmYees3XJwHnRuPyIsR+CLaOyKvyeanMXnjo6lbVI9ZnwzR1ZXvho5LAxLpJeqvVarw4k8kkHjx4gHQ6Ddc93SwXox0cHR1henqamVEsFutzbtDhSXU1Gg384Ac/4BtwaY/m6tWrfIPy3/7t3yIYDPLBXDpDI2tIqrbJfSuPBQC+nkN+bmKCXnNH1+diGgr947ouu4UTrsFgEAsLCzg4OECtVsPU1BQymQx6vR5WV1e57eTAIXqrUagoivRwfHyMRCKBUCjEt1OvrKzg0aNHHGjXcRzWIIgx/s3f/A27vZMDRbfbxfT0NOLxOLa2ttjDLplMYmVlBe+++y46nQ7y+TzS6TRH5s/n8+zpqRsX6i95TEmLIK2iVCrxwXnaRyMBKhwO44MPPlDOcXl8ZCYm4kKhrojxue7pOcDp6WnWmOgm6kQigTt37rADSygUYguE45zuTdEh+LW1NWxsbHB7CMgT89KlS2xJoIj74rrqdrts7o1EInz2znVPHWCI6d2/f79vfZjmq+7Z04Bzw7gIbM0uXul0gziqgVQxH8JLTKN7pkrv1QY/eKl+U330nIKY5nI5JBIJlEolvvxwfX0dsVgM8Xgc9XqdFxzdoizf62QCMolQBIRKpcKeUx9++CFisRiKxSIKhQKOj49Z+qRQVarLI1V1ejEi0zUTcn9RX+n6UXwv1y/2cSAQwAsvvICjoyPeR6lUKkgkEuwoQEFbE4kE1tfX+dZk0cwmO6kAYEeJQCDAfRqNRvn818WLF/Hiiy9icnISP/jBDziiRiwW43vVCHq9HqLRKJvQXPf0tmK6xZk8BymEluM4rCHS+DabTTx69IjLI4JNTJJMXOJBX92Y0Xm3aDTKeff399Fut1nYIq9Mqk/sf9pXlcN50ScSibCbP0VtIS0qFovh8uXLuHfvHhzH4T3BSqXCHrp0LGBvbw/FYpEZTzKZxP7+Pi5dusROOKJJvdfr4ejoCMViEe12G/Pz82i1Wixw9Ho9xGIxZLNZRCIRPn9J2tzly5fxzjvvIJ1O4+7du4/dcSfPv0HgSTC8c8e4AHv7qlc6sbNFJjPKQVHlUzFNVR4VYTRJ9LYSviq9Ccdms8n7BqlUiu3toVCoLywQES4iQF6MQqyr1Wphc3OT01JYKcdx+C6jcrnMl146zmm8NzJX0QFUG9OcXLfcL3K/6bRoFSOS36nyyWUcHR1hZmYGJycnWF5ext27dzExMYErV67gzp07rB05jtPHpInx6cJrkfBBzwqFAl/kSdeM3Lx5kx1U1tfX+WAwHRReXFzEwcEBm57oYDKVTftArVYL6XQaxWIR29vb7CrfaDT4WESxWEQmk0E6nUav18PBwQEzSiLgdF5KPJsn9yntb4XDYZTLZWxsbODw8JC9DSmALTHHqakpFIvFvuMU5BFJe4KySzo5AE1OTrLTDvDjW7xv3LjBXq7ZbJb3oei8o+u6fD1NoVDgvqdYlKKJTwSaS2tra/jkJz+JQqGADz74gIUOAMwgxZvL33zzTWxubvJ+5s2bN/vWoDhndPNQnKumNWSyeI0KziXjOisQmZdMlFQgamkmExSVo/otliW+U5m4TPn9SFGyNqgi2qJUSpvMtI9BzgGNRgMXLlxgiZs8uvwwD7Gv5D50XZfNM81mk0Mb0b5WuVzmQ6eyR6GXSUTXlzpNmdLq+s5GQFE9c5zTvY+VlRV88MEHuHv3LhznNHrFd77zHbiui4sXL2JtbQ2f/exn4bouHj58iGw2i8985jNYWFjAf/pP/4m1IJ3WSSYuAMjlcmxa293dZccDuh+tVqthYmICc3NzrC3ReayVlRUOtkznyYgxkSZHJryrV6/yAXFiGsfHxzg8PGSiOz8/j/X1dY5dSCZp0j7lOQKANTliMLQfSmbng4MDZqykOSUSCWauhPP09DS77ot3eDmOw4xoe3sboVAIzWaTz6zR4f1sNot0Os3zga79oVuhSVMmK4LrunjjjTdw//59vj6o2WyiWCzy4XqKe+g4Dra3t3F0dISFhQU2F+7v77O348bGBlsfPvjgA3S7XRwdHfFND3LINVumJc71pwXnhnH50RD8lAnotRAv1dqUTyRwMqGzkXzE8uXfuny2aWz6iSTFarXKBGVubg43btzoC1NTr9dZKgXAZhFVe7zwlpkX8GOvMnISmZubw+bmJh/Q9VqgtlqfDQPSzQ+v9lFauRzHcZDP5+E4Dp+roqtNHjx4gFQqheXlZTx8+BCVSgXf+973MDk5iXa7zaGGbt269ZgjjIifWOfOzg7m5+f58DJd8Ei3FYuMwXVdPp90fHzMnqN01ormxMTEBLa3t9HpdDAxMcHaOO3B0WWYZJYjBtHpdJDNZtlrMRaL8ZknMkuqzuiRdk77TmI6SiM6Di0sLOC1117D3/7t3yKTyeCll17iaCyrq6u8X6Qa13q9jna7zcwqGAzi0qVLbBkoFApotVqsrQYCAb7dmM4ykvcgmc6//e1vs4MHBXQOBoMcyxAAe1ceHh4iFotxv5G3aavVQjKZZE2vVquh0WiwQ8/6+rryOIqXpcdmLuto21jjUoCuY8TnJkbgRwvR/TaZEk2qs87EZ5LGVRPNy8Sn0zBkLcqLkdJvilZBcexoQVBMP+A0OOnR0RETOJHQeGmpqraotB0qq1KpcCgd0hBUTMu0GL2ECV1/iuWamL+XQKJqN4WyCofDbM4CwP1PN0u7rouDgwNmEq7r4s6dO7zHKEZGl9tJIaLItEvaK7nYu67LTi4A2AWbIlJUq1UmvHR2jtyyKUTT3t4eyuUyO9aQ04Do0UeChsh80uk0ut0uqtUqNjc3+ZZnMVqHOA/EcSAHHl1/U/y/mzdv8kFo0qDIwWJzcxOO4/SdWxPHqdvtolwu85UndCyk0+lgZ2cH2WwWh4eHeOmll/Do0SNkMhkkEgksLCzgvffeY40VQN++ZKVS4XGjvUM6WpBIJHDt2jWsr69zm0ulUt+1JxsbG3Bdlw/LkxZNQoncfyrwSzN1grwXbRoEHPdp6nsDQrlc5uCuo+bkKqCJpSJoMpgIr837QZ7bmqN0jEAuR1W+nI7s95lMBp/4xCdwcHCAaDSKBw8ecAQKknibzSZf/3B0dPTYgvGa0F6SG+FH5qV6va4kbKa+8apbVacpjdxnXnWpBBnSCuibnl+8eBErKyvc191uFxcvXuTLCn/0ox9xeynosS6CApVNxJRuu6bQRRQgWdS4xOj8hC/tRQGnB37JGUE8PzQzM4N4PI6NjQ2Uy2WEQiHE43G+BkQMWEv9FQ6H+4IzVyoVvttNZsbyR+x7FYh7SOFwGPF4nANDU5gvakMmkwEAjsVIfRcMBrmcUCiEixcv8nGR6elp9Ho9vPLKK7h27Rr+8i//EsVika8A+oVf+AV85StfYRM7mfbkM2xiXRMTE5idnUWpVGIv11QqhU6nwxeg0qH0SqWCR48e9QkoAB47xC2CjQYmC886sFnXwGlEFupfWzgXGpcfMA2GVx4vtVfFCOTybRmFqmyxDpXWpMprqs/EVFV1i+/IHNhut7G7u4t4PM62eFp0dJ4FAHZ2drgsG+atwtPU74SLGP9QfGcq16ZuXZ26eaEbd9N8U/WJHLOP4ip+/OMfRyKRYC3s4OAAExMTbNoiwrS1tWVsC41HIBBgDz/SeEgDI1MZ1U+aBuUjpkq3JyeTSbRaLcTjcQ6GOz09jc997nP43ve+x/jRgWAK2ivGLKRPp9PhK+/pPjSRuMpEVEd4VfNAnCfkMJRMJhGJRFCr1VAoFDjixiuvvIJIJILvfOc7fZrX5OQke7sCp1EywuEwhx4jjevu3btIJpN8tczu7i7+7b/9t/yMPG9FfFVtSaVSvAdHJka63md/fx/hcBidTgcPHz7kfpb7R7ZCyHNQN0d1tM1UljwOo4KPHOMSQaeBmIiQX41FZdqykUJUeJgmlTyJvJisrr0qgqBrT7fbRaVS4cjkFKVAlhZlHG0lYhWY+pgIrq6tcn4/faZjtl4arVyubv54CUQERHTef/997OzssFmWhAYy2clecLr5ROWLcQzFILc2wo2oiYXDYbRaLVy8eBE3b95k0+b09DT+6q/+is13hF+5XMbFixe5vmw2i93dXS6bTHSZTAbZbBarq6scGd+rr+i/PN/E9pNnIR0ZoPNsdGj5+vXr6PV6bEKkPUSKWB8IBDhQM8UjTKfTuHjxIjY3N9HtdrG7u4tqtcrX5kQiESwsLCAcDvOll2SeJPf6mzdvKiOF7OzssFmQvBLpsDJpc7S3ePPmTSUDNPWdHyuBbTkmmjoo+Iqc8Sd/8if42Mc+hkwmg0wmg8985jP4L//lv/Qh8wd/8AeYn59HPB7Hz/zMz+D69et9ZTSbTfzmb/4mJicnkUwm8Yu/+IvY2NgYqhFeIGskJonCloCoBkJHjL00KLlMUUq30QjF96qFqpskJk3GlkFSsFdyBiDTj0rKUxEQr4WkeqZajKrnYh4VEaZnOuFAJbnrQFW+iJtJw7J9Tv1IYahIGyJmcHh42HetvIi/3P+6drqu2yd86MZNnDsUDisYDGJrawt7e3scH4/Cc3344YdYX1/H6uoqawsA2Ank3Xff5byELzGVYDDI5kEKayVqgBTtQ+4723kinncLhUJ444030Ol08OjRI8TjcaRSKQDgIx90IWa5XIbjnN5Bl8/nUSgUeHzoEDcdDH/06BHvZ5VKJbRaLWbsxWIRh4eHyGazmJycxMLCAgfqFfu/2+3i5OQEBwcHHLar0+mgXC7j9u3bODk5QbPZxLVr1x47AiH/Vs0tL4uMKo8KbOb6sBqYrz2u//yf/zOCwSAuX74MAPi//+//G//yX/5LvP/++3jllVfwh3/4h/jn//yf48tf/jJefPFF/LN/9s/wrW99C7dv30Y6nQYA/O//+/+O//yf/zO+/OUvY2JiAr/927+Nw8NDvPvuu4+dWdDBk9jj0g2kjpCbJGcbyVrUfqg8W4nchK/8W6ddqf6LecV8IsEPhUKYn5/H8fEx34UkljWsZDUKsGEQYv979b1pLFRlyAKCiZHJY6aTXIlo69qjEoDEfTK5bF1YJ6rHcRy+lgQAE/l8Ps/OMGI4LPE8HYUbOjo6YmcBIu50kJq0EtG8JRNa2u8iRwrqi1wuh16vh729vce85cSPV5+TxriyssKR5snVXTzPJUbVD4VCuHLlCgqFAp9RI0Zer9cxNTXFmuLk5CQHGqaoFnSOrdPp8IHmZDKJo6MjrK2tKWMJiuNBjiCkbROIsQ5pzpmERnHOymtXN9dNJke5XN07YLA9rqGdMwqFAv7lv/yX+F/+l/8F8/PzeOutt/B7v/d7AE61q5mZGfzhH/4hfv3Xfx2lUglTU1P40z/9U/zKr/wKgFMb/NLSEv78z/8cP//zP29V51kwLi+GQ6CK7aXLS2BT7iDvTURWZjT07UWEvYiy+Js+8pXqcvtV+Mvl+Wn/KEDF1AcBVT+b6jNp0bR/JDMOHc66dKo04n8T46LfcvpAIIB4PI6VlRUcHR1xoN2f+7mfww9/+EOOWCLur9H+FxHkarXKt2mTB5zjnEaWoPN3dLaKnCKojwmfyclJAODQUK1WCysrKzg5OeHbBwCwh6KY3zQ2YjsXFhawsLCAWCyGdDqNtbU13mOjM2FUJt09dvnyZRwcHGBra4sdV6amppBMJvlW6mvXrnHg452dHVy6dAmZTAbf//732VRLh+XFYNQynmJQ4mw2C9d1++7HE7Vlar+JacnPTWlFGmLDuEwwDOMaOMhut9vFV77yFVSrVXzmM5/Bw4cPsbOzgy984QucJhqN4nOf+xy++93vAgDeffddtNvtvjTz8/N49dVXOY0Kms0myuVy38cGZInCBLqFb1OmSQvTlauThGyItooh6d4B6JNgTVqZ6r8OqDzaG5AlZS/8verRSc0qSXwQkM0wfso0CSU2aeX225YnzxN5Dqnw9xIS/NRJETAmJyfZHf8HP/gB0uk0ZmZmsLi42HcUQay70+kgl8shlUox0SOzGkX6X15eZo1HDMUkpqVzgORNGQwGcXR0hJOTE9bsxGtCVETY9MxxTg8o379/H47j9F3ZMjExgYmJiT6c6Fqd999/H2tra+zm/4lPfILNoMSAKLbn3t4eWq0Wtre38eGHH7Km2Ww2+fwhmWtV85OYVzQa5fBZdHWMam54td8LVJr40wbfzhkffPABPvOZz6DRaCCVSuHP/uzP8PLLLzPjmZmZ6UtPV1sDpxuLtAEppyGvMxV86Utfwj/5J//EL6pGLWQQEMsRyxff0XMdEVG98yP922hbKpzov/zMT7/I7RYXh4nx22hfpvdepgaxLt1/FajGQqVBeWm0OlxNY2PCdZDx8NK+VfXYgEi0yFRHBD0ajfJBV3IaIIILgLUBChOVTqeRzWaxtbXFkTyIidE+XTQaxcHBAcf/E83PjuPwRaQUkYIcFAD0hRijdps0C9WzQqHAFoQHDx6wZ2GpVGKmKZvvSGij/Tg620UekBRlgw5nkzegeFkpmU/Fw9jyGAPg2wDokHen08Hk5CQymQzu3LnDHodebaXnujXqRTO91r4OhqXBBL4Z19WrV/GDH/wAx8fH+I//8T/iH/yDf4BvfvOb/H6QReiV5vd///fxW7/1W/y/XC5jaWnJusxRSQriQMoDbkM4ZQJjwllVtmqymJiejgCrmJeqfh3oGLdX+kHKtQWZidm2RZXWRrDww5BMTE6cT/Lc0rVTN+ZeTF7W+FQaoPyM9rXICadarWJ9fZ3TnJyc8H1gkUikb/+n2+3yZZH3799n5wQ6skBl0FUolUoFkUiE71gjpiXOe7rrKxgMotlsYnJykmMKktNEMplkJxU/4Lqn3pUXLlzA9vY2AoEAyuUyB3De2trqY6Kq8SUGf/fuXTZbEt4UoT2fz+MHP/gBB6h+6aWXcOfOHWaQ4t4U5Rf7NJlMcrxIKpcYNu1zyVqaag2qBFjT2jYJp7YwKm3NN+OKRCLsnPETP/ETePvtt/F//V//F+9r7ezsYG5ujtPv7e2xFjY7O4tWq4Wjo6M+rWtvbw+f/exntXVSlGc/MGp1Vied2Gp1OulbR7x05XuVp3ovlmXS+vz2mYqxmpisjZZo0mbEukzt1EmDthqPXI4pnVd7xHxiG3RjPSqJVAXEJEjzoXNRIoj3UgGnWkw2m0W73eZDuXRmieLnESMi8x2VQxc70mFkIqri+SlyRb9z5w4SiQQuXrwI13Wxvb3NOMmEmxyB6G62XC4H1/2x+ZAutJSJv/gt9om4HlqtFl/1QTSnWq323XCsEgAcx+GoGcFg8DHnCLo3KxaL8SHmTqeDSqWCvb095PN5ZpQmfE9OThAOh/Hiiy/ypZ/3799HMBjEyy+/jBs3bvQxLVuhUQVe2tbThKEvknTd07AiFy9exOzsLL7+9a/zu1arhW9+85vMlN544w2Ew+G+NGTnNTGupwmyOUb1XsWIZLCVbrwIrVyfmE4u02aCiQtEXiyqxaN7Jj9XaYS6NprwVGkFqve6xWpqly3o8pn6Wkc4TNqbnE4lKMl12+Ao4plIJBAOh3HlyhU2b1Fd5FpeKBQwMzODubk5TExMoFAooFQqcYBd0ax1fHzM0SxEZwLSlBzH4cO1uv1QSheJRLC1tYWbN2+yc4bsku+6bt+FkYeHh7h9+zbW1tbYRXx/f1+peZjWL/2mfbxOp4P9/X2srq6y27nssRgMBrG4uMgu+tFoFIlEghmU6/7Y5EfMf39/n8/fUT8cHBxgfX2db4PW4eu6p2bKYrGId999F8fHxxyHsF6v48aNG30HuG1Bt27k/iEYVMAdJfjSuP7P//P/xN/7e38PS0tLODk5wVe+8hV84xvfwF/8xV/AcRy89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBXA6eL/2a7+G3/7t3+YF8Tu/8zt47bXX8HM/93MDNWAYCdUmr5dZRqe9qMr3mgAmzUnHGGWm6VWW/E4sS9bIRmEaUOVVMWw/4yjiqCrbpK0NOl9UdcnasghedYj5vIQVm2c28yYUCuHChQtwXRf37t17LHgsOUSkUink83nedy4Wi9xW+WA57U2J/S8yw4mJCQ47JOcn4h+NRjE3N4dMJoOdnR2OJEF7X2KbJicn+XqQUqnEd5OdnJxgfn4eiURCefBW7hfxv9iHhCNpd+JBbLmsYDCIRqMBxzn18CMhnm4Wput8AKBWqyGbzfL9cMQEE4kEGo0GyuUyt1e1TkVcXdflG8gJKACz6uC/3H6xvWK7xTrlek20SYWrCGdhQfDFuHZ3d/H3//7fx/b2NrLZLD72sY/hL/7iL/D5z38eAPC7v/u7qNfr+I3f+A0cHR3h05/+NL72ta/xGS4A+KM/+iOEQiH88i//Mur1On72Z38WX/7yl63PcMlg03FeeQcFE0FU4TMsgVLVZ9t+EyNSTXQvRuA1ieWyvQQA02/5v602Z9tGr7bJ771w8CpH907VVyY8/AgYRIjX1tb4Isjj42M21VHddLbo4sWLAE4tIqT9yAIT/SctgeoR5yY5T4gamMxQ6Nbk1157Dbdv3+6L6i+nbTQamJiY4P0zMhu6rovNzU0OCixrUoSbaUxE/MV+081nCmk2NTWFUqmEUCiEVCqFhYUFviWBNMbj42MOoiuOx/b2tjI2oSyc2TAjU1rd3JLnj81cEhmZTnBTlT1K+EgH2R2U2ItgWgx+ylGlHTSfzX9VXh1zGMUEHITAq9KayhoEp0HLsskrv5cJvI5geJWt0pKAH/el+EzU6uhMVTQa5Rt2Z2dnsb29zftWdAg3k8kgFovxoV4yz8nBbVX1OM6pSXJ2dpbNieQxSAduReIXCARYGywWi9jf3zdG7iDtkbQ9lVblRdZUQpasoaraRc9oLzCZTOLq1at48OABX3KZzWYxMzOD999/n0NyBQIB5HI5ZnaJRAIHBwd9JkixT20Yli6dScuUGaIsSNisR5v+FfHwEhbGQXYtQEWc5ecENoRfNTgqKUYntakmkpxvEObh1RYvnHX9pEvv9c5WM/Ca7IPgYspnqksHNu3TjZmX1igSSJlYy6Ar29TXpBVMTU1x7LxUKoVIJILZ2Vm+DiOfz6NYLPK1KLT/VSqV+vZRVO1wnFPPuomJCRSLRb6sUXSVlw/HUh4dMxe1KNd1eT/NRtvQgdzXqvWmGwPHcfierK2tLVQqFWZSjUYDm5ub7FUo9lEul+P/tVqN9+VMWpL8TMVsqHxVHtO8lNPbMC0ZFxkvE90YFXzkGJcfDct2EOTJbUN0bTQaP0xLlU5HmE0LUs6rMwWoFoDcJjmdzSIx9YOOWdjk0eFq6gcTA7BhemLb5d/ye1MZurbp0ovlix/gx9ePZLNZvPDCC3jw4AG7YB8dHfHFhGJIJrrmvlAoIJ/P4/79+33RIwjo8LHjOKjVarh16xZfOCqe0+p2u313RzmOw/d7UbBZIvrpdJq9E2XmRX2h+vbqRxNDsul3us6EonWIAXHFe+fEcuhG6JWVFY4rSR6I8rktEyMTmb44t3Rak0xHVH1hy8wcRx0x4yyZlAqG9ip8HkEnleiYlm4x+JFWVFKPVz55EXlJk3I6WyZKeUztVL33apMX01cRIK92eTEaE7M25VPhY8LbVJ/pt/hRaWk6nFVlqN7p0gYCAVy6dIldyG/cuIGNjQ3ef261WuxiPjExgXg8josXL/I1GdVqFXt7e32ea2IfuK6LixcvsrMFXUwZDoc5okU2m+VbfeX9HDJDihE4otEo5ufn+7QUeRx0zEz3UY2j2HeyRiGvJcc51bQymQySySRrTXIwXNH8R8+IWd29e5dNinRJpIy3qZ1eOKvmhU0a8bdpnqnqVzFqHXjRMRs49xqXqjNtOteL0NlIcCqtQ5Vf9c6LIJrKsJ08JinM1D5dHbaaiAoX8dsrryqd16KRx0L8bcNERLBtm9i3KkIgj5dXubImJb8Tn4lnsSKRCFZWVjA7O4v9/X2+pdhxHJTLZQ76Wq/XEY/HkcvlkEwmMTk5yWkpQrsqAC7tqbVaLaRSKUxOTuLg4ADNZpM1qGq1isPDw8fuCxNxb7fbODk54UsmKZwTMQqKzq5jVKZx0PWlPJe8hA7a2yoUCmg2mxz9QsRDJuSO47D22m63UavVUC6XUalUEA6HjdqVzHAGWZdye3WCoK58eZ2pyjYJvYPQXy8494xrlCqsTORNg6wjhF4E1i8R0/3X4W7TBhlfFf6mRWRiCCqcVM/9tlFXjokgmZi/CeRxVtUvMy3RYUK8UdurXTLYMD/HOT0TRe7uvV4Pu7u7ODo6QiqV4nNKuVyOrxGJx+P45Cc/iQ8++AAPHjzA0tISm/MajQZisRhef/11fO1rX+vzEAR+HCm+UqmwY0Iul8ODBw9wcnKCer2OSqWCVCrFIY9kbSYQCCCfz2Nubg6O4yCdTnNEjmAwyAeSaU6pmJbNvLEdYzEvRaeIx+PodDoIh8OIRqNwXRepVAqlUqmvL2TcwuEwXn/9dXb139/f78NV7g8V01K1wwS6dopMxlYYtQEvhjlqOHdehX4npinPIGWJOHlpAKMaVB2T8CKMNhKWDohADsKY5Hc2ddrWMYqxVGk0pjJ0mhOVQ6ayw8NDAKd7HeSlZ4uPjJdJ64pGo5iZmeEbhWu1GhzH4Sjt7Xa77woQKicWi7GJb2JiAlNTU1hbW4Pruhw3UIwGIWt45MDx5ptvolarYWtri8NDua7LzJT2g8QyyGkkHo8jGo3iM5/5DHZ2drC8vIxvfetbrMGJOOg0Bpt1oPK8NHljplIpLC8vI5fLYX19Hc1mk/es1tfXuQ6KQyhrXeFwuC8wr4r56hiKjdajS6t6rtJQbdeRbs4Osu4Ih7FXIQbj8CZpYRhGKH7L9dhqJXK5KnxVE07FGGyYhSqPqg5duV59oarbhtnqTBSmOm3feWmZuvp0i12lbUWjUVy+fBnFYhGZTAbb29t8iFTXNlljFM1/KryIeVy8eBFzc3PsOEBaF0W9AKBknBS5gZwsyuUy3/SbTCZxfHysZBT023VdvjTy6tWrKBaLfaY90uBUfUXv6QDvvXv3EA6Hsbu7y/tycuR5lcZgK7zJz8X+Fd/R+1arhVKphI997GPY29uD4zg4PDxkU2Y4HMb09DSOj4+xt7fX127VwWIRDxMTlkHHtMQ5J6dTPdPVoypH7BMdbrq1cVYa13PPuEaluXgR8mHKG5U2YVOOKOXpytQ9UzEW0wRW4Sjj4xf8aGEqZijiqGqHiriZCIQJB1Xd9FxmJnQFPRHgbDbLV9ib+k/8JBIJdiun6AsiHqTxHB8f4/j4GMFgEPPz87h//z5L+XLgWrnNrnvqCk/msKOjIw6Qq2IWYp8C4MPGDx8+ZEaluxjSdfsvtxSZ5vb2NhznNFzU5cuXcXx8jKOjI6OWqtNYxGc6YSwWi+Hy5cs4PDzEwcHBY8yLzqN997vfRSgU4nepVIrPb5GLvuzqr9NwRHxVjMHEjExgomVyXar1IedRlaOrl96b1s0oaPZzz7i8pGAZdJK/iWDaEDFT2TZahzyZVBKpCk8dEfbSBkSwxUnETW633JdyXlO/qEDXB7qxEX+b+trv+NqOvQp/OudDRC+RSKDVamFjY4P3n8RDybpyRMZ15coVJJNJfPe73+V9oXq9jnq9zpcarqysYG1tDaVSiWMMitfTq/pOhKOjI2SzWSSTSY6pp8NNLqPZbKLdbjOT8WIivV4PsVgM4XCY7/iiC2fL5TIODw/xgx/8AHNzcwiHw3zg2MSk5Lp0c1rEIxwOo1Kp8JUoqv6nIwPBYBAvvvgiGo0Gcrkca2PHx8cIhUIIBAKPxTWUcdIxLapT/FbhbWIwqvWnq8umv0SBcBj6qMJ1UHjuGZfcaX60G1umZ0NoVQzEhJtOWpff6/A1MTUdzjr8VRqDXJ6KsarSqAQBlSSmI2iqNuiYlg5MGpWXJOrFKG0gEAggEomwK3gwGEQ2m8XR0VFfgFkVg1XhS59arYbV1VVks1nk83nk83nWrMLhMLuf04WCxWIRd+/efSz6hJdm0m63cXh4iOPj477r4GXc5DZEo1FMT0/j4sWL+Pa3v23sIxGfdruN5eVltFotdhi5desWR+ygKBOZTIbDO+kIsF9BjsZrYWEB1WoVyWSSI9oXCgU2d5LW7Lou33kVDoe5DtIcq9Uq8vk8x1tUMUoV07IRnlRjoGqbqRwvIdAk1HrRxycJzz3jGrbTbLUuem8zeF7ESDdJTczA1E4Zb5mhyWWoGKqXZmezMMSy5fJ1ONuUqXtno4l5MXhZotTVYQuO47Dm0+12+QqRvb09XLhwAZubm317RTq86D89i0QivIEdDAYxMTGBWCyGRqPB5jVyPT84OGDnCFHqVxFRVZ/Jmpmu/WLf0ieZTOLOnTt9z0waB3C6f3Tr1i04jsNalajl7e/vA8BjDFiFv24+mBhCJpNBo9FgN/5YLIZLly7xDcPHx8dYXl7G/v4+R/9oNpvIZrOYn5/na13IhEgMTuwjVR/rmJaKfpgYjQ0DGlTT8gJbBjhqeO4Zl99Okie3LQG1YSCmOsVyTYTAT31ei9OPhmKTT8UATIxZfO6l7Xn91xEjm/zitxdD1rXLjxbmuqcXEiaTSbiuy1oCmZFEgi4TKLnfxN/dbhfZbJbNZtFoFKVSCYuLi9jZ2UGr1eIwS41GQ7l/JjIxWbjxC6rxiMfjcJzTO7sajUbfPVamQL0EotOIDbOVn8uE3ma8ms0mNjY2cHBwwOZdOnd2cnKCdruNcrnMjIzqmJiYQC6XQ61WQyQS4bTi3WMqRiXjrFs7pjSqOSSnNY2pPMdV68Km7/zSrFHBc8+4bIihKv0gzM6mfBNO4juTlOUHF9Uzr0lH71VMx4tp+xEU5IVnIwnr/ttI/TbE12ZuyP/FPDZMi4jW1NQUtre3kcvlmIC32204zo/3tlzX5QjtlF9VT7fbxaVLl7C7u4vd3V2Ew2EEAgFMTExgdXUV9XqdCazrupiYmMDly5dx48aNx8x9VL7MtLz6TzXvROeTubk5bG5usrmN2hkOh5FIJNDr9VAq/f/au7bYuI7z/C25Fy6X1IoUKa4oKZEsuwliykYqJ47VIHYjx0Vg1ShSII3rhwDtS5rYsFAXQZ08SA9FJASo0wZpG9QNEgdBoBfbRYC0qWXEVmoYrlXJaiRZVeVIoq4UJV6WFC+75HL6oJ7T2dFc/plz9sr5gAW558z8889//vlvZ/acYtVuStGwy7IzlZxVbSiGm+87NzcXOt3gVSW9vb3o7OxEpVLB0tISLl++jKGhoXCXZiqVwtzcXPhSyHw+j8HBwfDNx6lUquoxTjp+VetX1kY2V1OGpXKApu+8HHWytHFYcWVjbfnIJ4pxEf+aohMb+rpxVUpEpSlblLqsUTW3QNF0TlZGW/ZdZyhMfKr68bzbGFSKA7ONJHleqKhUKrhy5UoYfZdKJUxOToYZV/BopLVr12JgYCDc8i1eE/776OgolpaWwqi+WCzixo0byOVyoZEtl8thOWt0dPSO18Dz85H9NbWRtUun0+jt7UUicXsDSZDxBW9IzmQy6O3txd133y19Jp+N0+IzN9XmD/Gp8qZ3VAXnZ2dnwyfXB7sjg/PLy8u4fv065ufn0dXVBeD2749mZmYwPj4OADh9+jS6urowPDyMdevWobu7W8q/al66AEyn4yqnZWvXXEBZSxQbYIu2dFwmiFF6vdJbgG4AVQ5FFZGrFj2fKcnoUWmYoFNg0TCpImSxvWjITfzyWRElStQ5RpMz1UGcZ/BG3uDRRUG21N3djTVr1iCdToeZCz9nfj6JRALT09PI5XIYGRkJfxDc3d2N3t7e8EkOwW+Gbt68GWZ5sgBJVZ7ij1FKWMDtezrZbBb9/f1hFhhkWtlsFqlUCgsLC7hw4YL0esoyEtm1Fh2QLGvk5SXrr7pPxtjtTDl4AeTVq1cxMTGB6enpqpdFZrNZTE1NYWpqCqVSCaOjoygWi2G2du3aNczMzIT9dHrPy1m1Tl11XBzXRsdt2pgCX1WbqFiVjgu403nZRNMu0C18U/sA4oLkFdNUytRlZeJ325KgjJZsAcqiSqozsx0zymLRGQORtulaBg9jzeVy4c65wKgXCgVs374dfX19dzgvAHd8Z4xhfHwc//Ef/4GFhYUwkxsbG8Ps7GxVhrG4uKh8XQaFf5vsuKOjA6VSCYlEAnNzc+EOx3w+j3vuuQddXV0olUqYnZ1FJpPBunXrqjYw8LR1eqPjU5d1yOYgC6YYY9i+fTtSqRQmJyerntyeTCaxfv16bNy4EQsLC+jp6QmfPrK4uIjR0dHwWYrB0++D33Xp5Ge6FrY6rgpuTetTB6rT0wXVcdvXtnvkkwq8IaYYeiqtKNBlehQe4+KDOrYpq6I6PFXUL0biqu8yHkVegvYUnkXeTJmmGB3zjoZvE7xkMLivEzwnMIj6gwfZlkqlcKt8sViscjhi1hVsrw9+rLthwwaMj4+HmzHErIJ3ZgCq/vLHebmp5hz8FTPDgJd0Oo1MJgMA4Q9ze3p6wtd3LCwsYMuWLdi0aRNeeeWVqleBiIFd1IDSZo3z67CzsxM9PT3hW595BO8xu3jxYrg1v7OzE8lkEr29vVheXg4fWsz/7MEUtOoCJaqOy+jo1qRJxwNQH0umg86eAG6PfGp7x2UypDqHYOMYXJ2IKmKkQhWByYy/OCcqz5R2umxEJUud49bx4MKPrL+KDoUn3knx/XgnFhi0IPvYtm0bZmZmkMvlwoetBg9tHRkZwfj4OGZnZ3H9+vU7fusV0A+cRnDvKJvNhs/v452R+LDXoH86ncbi4iI6OzsxPz9/h+PSRf3BuHwWGBwLDHgymUQulwu3iQfP6CuXy5iamsLS0hLS6TSuXbumfOagjhcV4grsKDrJBxHB61cKhQIWFxcxPT2N2dnZO540opqPzGFTeTc5RJGuKVuT9XFxXDZ2BfDPKpRCpwgmw2WTlfGG0BTtURSUevF1UaRuTjaZCKUPxQHI5GCah+y8i1xk/W0yMUob2XyDFzEmk0nMzc2Fv+m6detW+JT2SqWCsbExXLp0CR0dHejt7Q03MaTTaSSTyfC3THym09PTg56ennBXHJ8BBe+EAhA6k5WVFWzZsgW/+c1v0NPTg4sXL1bxaor8E4nbPzLu6OgIdyoGr0cJfmQd7JacmppCLpfDZz7zGfznf/4nlpeXUS6XQwfW29uLmZkZ6eYRqtOirDcTHdk14/ur1mbQpqenJ3zcU39/f5htBaVb1Xx0AYJqXFl7VbYqG8cmGBcdnYy2rm+t0Vb3uFQpM0AzrDqaupQ8OKZSdl20o4o4KYZT7EtZHBT6/KLXGTNVGxuFl/FOjbSpxk3FrylK1clVJxt+rtPT0+ETFLLZbOiI8vk8HnnkkfDHrJcuXQo3XFQqFeRyOWzbtg0dHR0ol8thebCjoyO8ZxZExPl8PnQeQfkxk8lU9UkkEhgaGgp/C1YsFpFOp6uMn+kTbLwINlyk02ncd9996O/vRy6XQ6lUQnd3dzju0tISLl68iHK5HL4SJJ1Oo6+vDyMjI1W/iZLJm+p0+DmIOw5NH115VTwvlv6Cx1UFjipw5vzPD6hOSwXd+jM5eN52iTKTOTwTfZsMsNZom4zLFC26ghqp22QMsuOiklGMvclB8nRUfWS0bTMSE30VPZE3XRvZuCINWUQpjm2rCyb9kZ1PJBLhlukgA8rlcpiYmEA+nw+fLXjkyBFkMpnwfVWBHIrFIhYWFrBhwwYkk8nwqe2MMXR2dqKvrw/r16/HzMxM+Ggh/l5L8JLDIOMKypqVSgWFQgG5XA5zc3MYHh4OH61EccTLy8soFovo6+sLnzZx/fr18OWIQVYVZCJr1qzBhQsXwm37g4ODOH36NFKpFN5//32Uy+U7xqAayqjOQJVJBeOq9Jl3qolEApcuXQrbTE9P49Of/jTefvttqeGn2CiTjptomaoA/PGAvyCbptDT8V+PTCtA2zguVZpdT2FGBb9YqBmRqkTC0+P7yNrxx0TjL3NkfBvxmDiWyxxVxkK1KHWGiCJHE2zpJxKJMCvJ5/PIZrNYWFgIDfXc3Fy4W23Lli2YmZnBhQsXQnpBdB88Ib1QKGBsbCx8Zl6pVMLMzEyVbILnFGYyGaysrKC/vx89PT2YmJhAV1cX1q9fj0wmgzNnzqCjowPT09O4fv260WkFYwQZF4DwMUhr165FNpsNH3wb/H5szZo1mJ+fRyaTwezsLFKpFBYXF3Ht2rXwd2j86+3FcagQnYjp2lB0nKcr9lHJBbh9zcvlMn75y19WZXy2c9HpuGxMFS3ZPPlzOtthex0aYWNb3nFFzajqCQqvusyLYohV2RA1K9L9L5uH6NhsnIUsW1JlTFRQeJBBtaD58zL+ZeMyxlCpVNDf34+FhQUUi8VwM0U+n8fVq1fDLeujo6Ph09t5dHZ2YnBwMHwixtDQECYmJpBIJMLsJngxYzabDXcsDgwMYHR0FCsrK8hms6GjyOfzmJiYQKVSQSqVCp0Hb6R0kX3gUGdmZqq2vPf29obZX/BA3M2bN+ODDz7A2NhY+MqP4F5YInH7cVDivS2dsdRlVzIdEq8Tf41M/4t0ed502QyfYVEyI9k4qvPi/yb9VNkOGc+ywNMWjbDBbb+rkAclI9D1tR3LxuiLkC0saolDVFaRno0DlfGl6y8zJCaHoHK4FB4pY5j627RTjRPwm0gkkM/nUSgUkM/nce3aNczOziKZTKK7uxu3bt1CR0cHhoeHce7cufB+CP9eqnQ6jWw2i3Xr1oVZ0/LyMvL5PNLpNKanp9HV1YVcLoeFhQV0dXWFT2o4efJkuOkj2PgRbM1OJBLYsGEDNmzYgHfffTfcVWiT9fDz7OrqCrOrxcXFcC7B77aCLC344XXw2KeJiYmqHY2845RdF935Rui4ajwdbdWcKE5L5qhtoZKTDLY7Cal2VRaUA6t0V6GN0aIawjigc0im8oMYOerai2OZokLKuGIbk7M1GXZZRM+3l/Ftyr5sMz1Rnjw9ajTK95XNMfge7Lo7e/ZsmF2sWbMG2WwW09PTKJfLuH79elXWEZQBgdv3kgLDHpQYGWPhY51SqVS4OSIYb3JyEleuXEFnZyd6e3vDLA9AmFlVKhWMj4/jgw8+kBonPmPQBSaBQwqcY/Bm5YCm+MSOrq6usN/69euxuLiI+fn5KtnLslfxOH9e9b0eOi7yRYn9dTzLaOicKn9ezJQowbIKNg5StoajtLNFW2VccTmeRqS+Oojpf3CM/863dQUlSxSP6ca3oac7R3FQNtl0lKhVXITisUQiUfU7J/54Op2uevq52EcsqQUbLoLnGgZPhQ82a/T09KC7uzv8oW86ncbly5eRyWRw+fJldHV1obu7G1euXAl/WxQ4GNXuO5VcZQj41t3PCTKzYHNJMplEV1cXbt68qX38ks4xNJuOxzGuzlGLDtek6y76rRvf1M92zYvzcMm42mo7vEzJXOkA9Cio1uAXshgpygyprJ/umEhLd1y1iHXOVdVXdk52DSmZAMWYuPCl6qc6FjgD8SGvlUolfEyTbPt1LpfD2rVrq35gnEjcfvpG8CPe69evY3JyMnQG3d3d2Lp1K/r7+5FIJDA4OBiW7NLpNBhj+OhHPxq+TiV4pmA+nw9fgiiTgc6RiX34TEvVZmFhAfPz81hYWMDc3Bzm5ubu+JF00FbmBJtVx6l6oxuXp2WiR81cbByrbeaoG0v2XbZO4kgKWr5UKIJaNqIIzyWyokKWOekiF3ERqDITPnKiLlKKzGR9VcdUc1ItPOrYpshbZeBk8xMDAd15FY+qY7LzplJNZ2cnNm3ahCtXrqCrqyvcgTg4OIj5+XkkEgksLi6Gr8vgr3NXVxempqbwP//zP1heXsbNmzfDB7wuLi6iUCiEJctMJhO+8LBYLIbOQsebbG7Uc8G8g3tswW+eZLKS0WyUjssyEIp8+HF0GZGOpimj4s+Z5mTj5KJAxYdtxYWKtsq4AsRxsWRGMq6LzNNTKanqgqt400Fc6LJI0DZbdXVyIk9iO53DpnwX6aicpU6+wXlKhKuK+MXzusygo6MD/f39GB0dDXfp9fb2olQq4cKFC0gmk1i7dm344+XgDcjlchlXr14N7yndunULmUwGIyMj6O7uRrlcxn/9139hdHQUALBt2zZks1kMDg5i48aN6OrqIhlX/rs4H91HbB9kWTJ6JtRKx3W8m8ZS8aiTqUpGKlo6erJzIk2TfuqOqeag4oNKw2dcsIvWqVEKYB8pqM5FjYhk9IJ+ujRcPKaKUmVZAT8O39/G4escgy4IEOelk6kqu9GNL2sjo6eaj2l+qnYy+QdjLi8v4ze/+Q0ymQw2btyIvr4+pFKp8Ldbk5OTYIyFPypes2YNbt68WbVBAkD4SKWJiYlwi31wLwlAuMtwYWEBk5OTVdvhdQGAKcPRHdf9T1kbOh3X0RXPqfiyhU22oMusdDrOrzedI9bBFBTbOCpXJ1pLtNXmDB7ihW9HyMpQ1DnL2qicu4yuqT9/LODRNngwQXQAKoesO6eDTp6yY7LvOgfN/w3uPwWvOJmZmQlLhMEuwuAeWCqVQl9fH6anp8MfOA8PD+PmzZs4c+ZMuMGju7s7/OFvpVIJf0tWqVQwMzMj/REwPz/+rytc6MiuVy2hC0Z07Uw6xv915ctmvaj03BRY1MsFqGS06jdn8LApN1GOUy6uLj2njkVpq4osbUpbpqhLFrG5ZKmqkpuJR/6vqo1qV5puLJMB4Om5ZsN8FmPSqeD8ysoKUqkUisUiJiYmQsfS1dWFdDodbrYInoxx6dKl8AfBFy9exPHjxzE0NISBgQHMz8+jp6cnfJpGsPNveXkZS0tL4VM7TFviTQ7NdH1MMjDJUtbXJFMVr6o2AahrRuVIgvVCnTfVaah0UTYnVSBlCp5UY/Lf43BuYvUhCtq+VChTNFOZyhRJm8aipvIiXCJ7UQlMEaCqVBZ8p8hJ1tYmgzJlc5TMySay1PEh0uK/6xwYtWTCXx8VzwGKxWJVm+ABu1u2bEEymcTFixfDV4V0dXVhaGgIk5OTSKfTGBkZwblz51AsFrG8vIzp6WkMDQ3h6tWr4e/FVlZWwof46gynKaDRzZH/rssAAhom425TJqMYbpUuqXiTZc2qwE90JnHquGmu/PiqtSm7HqagT8erCaq2tgGhDC3vuCiG3kbYLgYwLkS5yOLi1hljnWLazl8XEaqiRJkhEY2HGN3qxqAsPtVx3aJ00QHdvFU0+awraJNIJMLHQo2Pj2N5eTl8j1aQaV69ehWdnZ2YmprCu+++i3K5HL5QslKpIJ1Ohz9GDuSk+92WbSSscn4qg8+fo0TxKgMexXiqeNM5ORX/wXfxvIpOVB1XOSKZ45XNn+K0TGiEXZSh5R2XCJnhVQk77oigUQ5P5AHQZ4+6TEn33cawm+Sqi0J1zkXGk2ruFB4pgY6MlinbVPUJjunai0ZxcnIy/F1XKpXC5s2bMT8/j6tXryKR+P9HRAX3sZaWllAsFjE6OgrGWPjcw5mZGczOzlY9lV2EyZiJvNnqi8phmjIIU1vVeZEXCi1VhhJA97u1eul40Ec1X/GvSI96DXQw9amlLWzbe1wU6CJj2XdbeiKi0g/6qPrxxkQ1lsn56CJAmRFW8SaLSGWZh4ymKpqV9VUZRltaKp5UPOpkaMo4dNdd5DfInoJP8APm4PmFwWaNjo4ODA0Nhe+HWl5exuTkZPjD5nQ6jZ6eHhQKBSSTyTuic5NeiR/V3HneZX1lkPESHFcFXqoxVedN11DHV/CR/WBaNl9xzLh1XNVOBupcdaCsnXqj7RxXlKzHFAXxY9SSvomGqp+sFCAqrmphB32Cv6romD+vG181nm7BqqJTVXuRF1WmJLanGg/+nMlAiHRUxlvkQdVf5C/4TE9P4+TJk5ienkalUkEmk8HHP/5xzM3Nha8VCZxcKpXCRz7ykfC9XoVCAR0dHchms1JdMY1t0hsX+YjylemWydkH/VVG2jUA1V1Pvl2jdFynQzodMzl2Fc86uNpEV7RlqbAZoDOotRxLNrZsocgWAMW58e2o52SLVJfZiXMTv6siUJnxMhkcl/mY5K2bm8iPrHwl8s8buyDyD579Nzc3h8nJyXA3ImO3H8OUSCSwvLyMsbExjI2NoaenB0tLS+GbenUGLvjOl8R0zsmUUchkJeqa7C9PXxyfbxsck/XV8WsKdGwyjUbquIo3SgBAtU0UHa0n2uJ3XCbFr5UTifuCqaJNncKrFqsMKudlilQptFVGWmckosqOIi/RaYvyMjkal3FUEbWqr8iXaNgTif9/CG/wvbOzE+l0GplMJty4ETi1gE4ymQzvfyUSCWQyGdy4cQNr1qzBjRs3wo0cPF/8X5v56kBxOlTY6g11jaiyK1mbZtZx3ZjitbaxNfz5KPOS6c2qfK0JIE+/VcYjTkcTd5RhiqBU50yRnMzA8MbSdmxKVCs7psr8bMfStdMZDj77lLWn8mWav8l4qQy+yvhkMhls2bIlfEty8LT4QqGAubk5lEqlsB//SKVkMonBwUGk02mcOXMmzMSCl1OKhkyVJZnmxOuRCir9oDhJ/rhNWzEAEM/xfymZSCvoODW4MM1FN/8odi8um9nyjou/mKJhrtfYzUpTt1Ao0SG/4ExZhGocU9AgGmtdVKcymPxiVvEpm4vOien4phok2diyeZjaBJsqLl++jJWVFWzYsAEDAwMAblcfOjo6kEwmq56EwRgLdx52dnZiaWmpykCrXuIoyojnT2WQTXPXyUscS+RHdh1sM1oRvK1QZSGtruPiPCnXSsZzs6LlHZdJaWxhivYo45lKCjq4LhgX8HzKFpKLbG0yXVlbk8ExHbPl01WOpkhfB9VcVTpWKpVw8eJF9PX1YXZ2FhMTE1UOKplMYsOGDWG7oFxYqVTCl1DyY/DGTGXQTHJV9ePlKpuLqr2sjcg31Vnp5K8z5O2m4zwPLqDoci2CdwraZleh68URoboIYsRjohFV2UyIk55ozFTnxTY6OYh9+OMBZFG22CcwgjI6OuMpQnbt+PFM81fxThlHxZdqfHFumUwGn/zkJ5HNZpHNZrFu3TpUKhXce++94Xu5JicncePGjZCG+Dgs1TgyHnVtTLJSZbCqPtSsQHX9ZHRUc9I9IqwddVzXn4I4A+240TaOS2UwVMqlA8UxufaNC7bzMbXXGSRVxKiLDgPDRXHgsqhVLIuIi5s/JvJscioieB2RGUCdUVRBp498G1lAxPOTSqWQTCbxwQcfIJvNYmFhAcPDwygUChgfH8fAwAA+8YlPIJPJ4Hd+53cwMDAgNb46hyTOX1fGks1RbGPSC5GeSp9kBl1WLlNBFhio0G46HtVpRQHF6UdFy5cKA8iiPMAtIohSQnIpN8i+xzGOSia6sSjGSdXHZhwZbCI8cW66+ciMhoxnSsRvA35s1f86+ozdfuVJIpHAf//3f6NcLqO3txfnz5/Hhz70IeRyOXR2duL999/H8vIyzpw5E76bi+qkVOObnJZqnnG3sQlCTBmeSk8paCUd5/l1hav9A9SOOU60jeOiXtRaCFE2nmmcKA5WXESqMcVMwbQAZGPoaMn44M+b5K4y5rIMRMa32F/kTee0VbKzySpUchcjaBXvPK+yeQPA0tISrly5gkQiET4lo7+/H9evX8f69esxMzODtWvXYnJysurNxwEdldPSzVE2H9lx2THbLMxlPYqyU2UlVP5EfmTfW0XHXR2Wynbo9FtHi59LLext25QKZTBFcDYRtqqt6jjlwlLoqGjLFqNsbkFb14hMZuz48VTRoTiGbvFReJddR1EGlOhURkdmHFTGX5y/iqbuOw+Z3Hhe+M/KygquX7+O06dP46677sLZs2dRKpUwPj6OUqmEdevWYXBwUCprfh4yefLtZf1V86AYJV1QqWunWieq4MyUXZnWvsyxtJKOqwITylrXXVsbfZbxbcMHFS3vuGycj+15Slvbi6pqozIWrohz7oA6epfRMzlSEx82vLksUr6tLnoUHQeVD9FJyAxqAMoCF53X0tIS3njjDczNzaG7uxulUgmLi4tYWlrCjRs3wnay/rpxRIepa2uav6mvzAmIbU3GNJgnJYtU0VHRDnhpJR13CaLriTj5aHnHZRJGnF6+FWGbWVHa8Q8b1RksHhSl1S1QVQYkRtym6N5U6hH78P1sXlypygpkjkxnIMV58217enrQ3d0dPgLqypUr0qdhqDIpcRzV3ES5UuYvG8fklHTHRT7FB97aQJyrzuDbVCoapeNioNII6HSnFmh5xwWojafOkIltZd+p56KAGim6jm8yOHw7akQkM6YBDVs+dQ5TFamqyn08byZaKuMrKwupjItsHpTxTc5ShMzRJRIJbNu2DVNTU7j77ruxefNm5RZ4kY6tgaVWFUxrL0rELXPcqjYm3kwlN7E9j2bTcWrAybe3gWld8fxFzSxt0BabM2yjN5VD0wlZZvgox0ygto+66HkjzP819aHwwhtTU1/xvMqgy8a04UlHh/+rMua68VZWVu44b1PqVV0DU1TN/18qlXDkyBFks1kAwPnz56VOSyVrFa+2OszPxURLFuDo5Kwy1CJNyjq3qcxQ9LjROh5HIGvT3jaorXUlrC0cFw+KgCmGG7A33tRIVrdIxUWja+/i9KiK6OIoVYZJRdvGMNgYLJEfFR88r67XjxoIiGPyf01BkGwMxlj4vMHFxUWUy2VlCVc2B9PcVE5Ol0XpDLQ4R1Nb0xzEvtQMT5Rh0E7XV+RDzH7qreMqhy7ybRo/Duiuay3Hb3nH5SoYqoOjjG2TbVCdkMnBRHUsNn1sx5IZHFXkrYJKHirDw5+zjZ5tjsucsmjE4lqsMjmK2R5jDOfOnQvPudCkwDbQMRk0FW+67Io/HtDkqwmydjpHoHJAqnayzFLnlHTnZeeoOi7+Vc1fNb5LJmly0CqogryoaHnHBeiVztQnaqYE0EsBKtQyIrIZxyWrMdHT8aFb3KqMQ8eX7jpQDSBFBiZjpQLVuKgyMNl32ZiqtrJ2rtEyxSnoQOHRlMmY1jBFz/i2KicgG0dlkMXzceq47JrHbW9cA2XbbDEq2sJx8aBeSNuIwyXaqCfiiPKpBtqFnsowqQyvzAjqDKuu7COjKdJT8WIjA9V8485wbUppOlActW49mAy5jG/ROFNgc+1M61RsJ86DGqiYnJmMN92cTDoe1zWvFSgyiyvbAtpkV2EURDXWNheiVkpX6+gmbgTRMv9qDQqvYjtx4VOyKh1tXclFpCcra+l4DubLfxf7RXVaumPimFTdEAMD6jl+fJUMxDaqeaiuq6gLFH7Ea6yioeob9LHJum0DF5EnUYb1gOmaNhpt47iohs+2T9BO1TaOiNwGlHIBpTRiom/TnmrEdf35/3XZj0yGsutqw5NrtkrpI7s2It8q5yr7X5YhyCDLLMRymCpjDb6bypWyObo4SlO2Jru+OidjuybF8VVBBT+2ypZQ17iNjuvWuowHG7jYNapeUMdyQVuVCk0GyDa7iuIATHRta8biMZc6Nb/o4pqTzOi4zo3STja26rqK8ooafOjkbzIo4vlgk4WKF7GPrBwma6PiR6bL1PIYVV9cgxd+PIo+UTIfHY/UtWNafzKHYsuTqr0us6bwLqOl0zcTdHxS7WicaJuMS0QcqS7FCLuAUuuNomQmmjqnEWUMm2hT104sjVDKJLIsRmYEVZGymB2osiK+jY4O/79svqpMbGVl5Y4SKp+JqsZXjR3AVCLTzUWWAYj8imVQmXxsHRt/vVTZia2BtylvirzK+sqcKiXgVTllqr7bQGfHbOXmOn7caFvHpYNt9NgoHnjYGO1a8xInTUq0pjJ4qvmqjJxsPPF4sMjFzFSMxCllKl3EboLMgMmcEZWOjk8VAhm4BBKikRdlRil5UTJmSkatm5uJf553fi66a6kLDHVOLeo6dgHFkYuIK9CNgrYqFQL0cpUJjbogKriUzIDqxe9SWlHRi4OW7bgiDzx4nuKMVE282JRPVOU3iixlpUVd1qXTCbE9JXujXHNZlktpJx43BRkqWjJ5yv7X2QiqMzbJw6QDMlnV02GJoOiJ7LrI5kHR06iIlHHt378fiUQCe/bsCY8xxrBv3z4MDw8jm83ikUcewalTp6r6lUolPPPMMxgYGEAul8MTTzyBy5cvR2GlCqYyRbPAhSdK5sXDxblQFq+r04rrOvClKvH68kbJJlsz8SYaPVN2JfKqmgfF2Ltk6HwZT/UxrQ1KVqvKIsRMxcSvSxuV7GQ2gOpsVFkIpQQo40ukIdMN23URtz2Lq1pTL2fs7LiOHDmCf/zHf8R9991Xdfzb3/42XnjhBXzve9/DkSNHUCgU8LnPfQ6zs7Nhmz179uDVV1/FwYMH8dZbb+HWrVvYvXs3KpWK+0w0cM3AZIK3KU/p6AZ8US4uNTU3zZFaWqplJhUlI1JdC2oJSyz3yGiaQIlMxbFk/UxZRRRjH7Wvim+Vc5ZdU921UJVQdXOn6KVY7qX21TleFT9UiFUAPuiRyYhqb2yyRUoQZQqeXGxCLe2Ik+O6desWnnrqKbz44ovo6+sLjzPG8Dd/8zf45je/iS984QsYGRnBSy+9hPn5efz0pz8FABSLRfzgBz/AX//1X+PRRx/Fxz/+cfzkJz/BiRMn8Prrr8czK5iVzRR9A/KIkVrX1kFWP6e2pyDKQouz1OaSPZiyPd5ZqRYvn22IDk00RirDzI9jOzexbGlbkqIaWtVxMSBSzUW1BnRy5duIslOdt5Er317Fk00kLzpEGS+m7Ei35qlZukhT9VoWio7rxjIdj9PeuK6ROODkuL72ta/h8ccfx6OPPlp1/Pz58xgbG8Njjz0WHstkMnj44Yfx9ttvAwCOHj2KpaWlqjbDw8MYGRkJ24golUqYmZmp+thCXMi1jAbiQC0vOmWxUfuZMpyovKhAzXyC/8XsjBJhRi3fUMaRnTONrcvW+PmJ7XSGTWxDzfJlfOmO6RyHLttT8WsDHS88P+I4VB3XZYqiQ3LhV0a7lqg1/SiwdlwHDx7EsWPHsH///jvOjY2NAQCGhoaqjg8NDYXnxsbGkE6nqzI1sY2I/fv3I5/Ph5/NmzeTeKVEgPx3VwNMvcCULI86po4OJaJy4Vll1CiLV8eL7rupvUhfF0WL2ZcqohbLOmJ/FX3byFbVVxdYqXRI5rBUfSnGVDTYOiOu40nVTja+jHcX4+mSAciycVGmFEfH95Mdo8wnio7HCepatK0oxAErx3Xp0iU8++yz+MlPfoKuri5lO9kFphh/VZvnn38exWIx/Fy6dInMs42zsKHFf6dGU6qyVBTeXJxqVAeq491lMekMHAWmcp9qTL5sI3sJo2ksGU3d2GJGpGqrCyxUc1U5FlUWKBo/SlAiOybORXctZPMKjrlkuOK8ZOPy53QGVjd/lbNWXUOxn6wsWA8dbxTqwZOV4zp69CjGx8exY8cOJJNJJJNJHD58GN/97neRTCbDTEvMnMbHx8NzhUIB5XIZU1NTyjYiMpkM1qxZU/WxBWVxUEs0soWgMwAURImedM6JkhlEhUuWBKh5tJGhTTZHoSXLYnR8qQymLlOjzNeFdxl92yzQ1ihSAydddC47R80qVFmzrq1sbP67bJ2bKgOy663LsBqh43E5FFNAWA9YOa5du3bhxIkTOH78ePh54IEH8NRTT+H48eO46667UCgUcOjQobBPuVzG4cOHsXPnTgDAjh07kEqlqtpcu3YNJ0+eDNvEDV6x41i4lKi71mk8D0pWRDlfL6WjyogiQ2oGZAPR8OgejisrL8l4lAVFspIUhTfZODZ9g/Y2pTORV12wxP+lViNEuqqynQiKHvNr3xRE2QQPMplQfmJg4t+mjY2Ox2WTGmk7Alj9ALm3txcjIyNVx3K5HNatWxce37NnD771rW/hnnvuwT333INvfetb6O7uxh//8R8DAPL5PP70T/8Uzz33HNatW4f+/n78xV/8BbZv337HZo84IS5EXbnD1F8H3cLgyyKu9KmwoWdqGxdvMjou14KKuK5p0FakLYvIbXiPkmmIvNnoZtBep4dipqbiSxYUqrIRlf7r1oSMd3EM07xssjcqbzJ6YiYexd5QEaeOR0U9nVfsT874+te/joWFBXz1q1/F1NQUHnzwQbz22mvo7e0N23znO99BMpnEF7/4RSwsLGDXrl340Y9+hM7OzrjZkcKU9suOR734JsMWt6GyMRL1cqgyGVCvRS3gOpZr6UYn54Cuytjxx8RzLsGAio+oMlGVwFTndVmQih9bPXUNOHXBpuikdPRaVcd1uigbp56OK8HqnePFgJmZGeTzeae+UZWGckFdjb1ugdhmT7aKFzeijGlTNjNFtVGi7SjtXJxCVL2xqRzI5GPSP5PTlbWzdaK1zE5csllZf/F/V1qtruNiH1cUi0XrfQur8iG7UUDJwkyLO/hfVYsXj4nKqltAlKwmLqiiasqYrlmLrJ1sQfNtXB2NaUxxLB78fQ++rey6q+jpjvH0ZPqh4kvUD5We8DT4trpMSpUNmvTClJ2Y5kQxmqoyooqG6rrp+LDhqx10vJFou4fsmlCv7ENVkpP9b+qnoqGjUw9E4SXO7KMRMpEZfh1EJyOLknWGSTS8YrRNib5l46vaqrIi0TmZZC9zCLKMj+8rc5g66LJBldxU8xXPB6+YccFq0fFGOLZVmXFFjdzioG2KiF34qIUC1VImOlBLGnGPW0s6KsMafFQ70nQlIlkGpTPgYoakgi67kGVeqv68sxP55PmQOY4oa03mwE1ZbfC/7Dp4Ha/t+LZYlY4L0N9Qpab4OhqmCClqDZkSJVPomBBHCSLKXKOUW+KKSm3KSzZQBR+yspSqdEcdh6qX/HFZhqXL6GT9+fFlzlD8bqpK6DI03Tn+GM8Lz4OuDOh1/M7vjSwhrrpSIQWu6bsNbEuWptKPK11XvuIqubqWVF3oxtnXxLeJjo2cVd9tSl668XlnJAuQVOU/XRYoa6MLDHVO2bacqCqnBqCW/7yOm3W8UVi1GRdwZ7Rnahsn4lAAl6zLdA9CF+WajKYMNnKLU8ZR5GuK9Kn0o8rIVA42ZWZ8uU7Gm1jO48+JGRP/V6d3spKlzPjJxtY5KxWPqvmJPJsyKq/jdjreyGwLWOWOSwZTqSDumrON0Yoyjgo2Cmwqk1Lpq86bnKqJT/FcXNdCxltUUCJuVQakgqzMqPoEtFRORXZMdBYyY68rJcmckTiGzjnKrg+/Lk3z1dHyOl4bR10r+FKhAGp5xba/LvK15UN2Po6yFE/bVIa0UXKXkgRlDFmpitrXRM8E13npjtmUZmyuKcVwi+PZGnsxexL505USZX11c4nDcHodNyNKKbLW8I4L9AukigJd+satFDpacSl43AtFVqaiQraIo8jUxbm70KOU2aKOH1UOrtBlWPx3WVamy9RqBa/jelCz3kbAO67/g6tCuCpRLSKZekRIUaJLEVGiv7iMDqUvdT61lr8qixFBaRMHL42A1/HG6XizOC3A3+OqArU+Tzlea35kUNXP4+QxymKNwgfVcVBgywdf2tL1l0XHUcdW0ee/63RTd8/G6zhtDJs27arjzeS0AO+4lDDda9DdRObPx8WDbHzTorUpQdXCAKj4aTR9UwlEJgPqvQW+r8xp1EIGKpo2909k372O22M16HgzwDsuAVSltr2pajM+NfJ0uTeioxe1DNNsUZkM1GzJ1F6FKPdBVYhLrrY8eB2/E6tRx5txzt5xSWCzcynudvxirbfC2N6MFc/VMjKnoBZllLgMJgViRlCLLM1lE4TXcX1/E404UW8db0anBXjHpUSUlFzWxuXGp63BqoWS6XiIU0ZxIK5rIaLeu9yoWYYLXy7lIK/j0WjEiVbX8bjgHZcCjYgEZTdEo0SD9ajpx4m4NzOoaNiWRlRyjcpL1LnZZnKmY7WG1/HW0vFmlql3XBrU++LJbpbrShvUexBxRYO29zFs+8sWT5T7TSq6tpsWdOdd74Hxc3Odl8loq/QkLrm6wOt4a+h4s8M7rjrARRl1i6JRSmezc0tmlG23++oWY1RjTzlG3UDgAtuSnSyiNhltlbxsjRwFXsft+8vaN4OON3OmFcA7LgJMES3/v00d3yVad80CXZXUNaNQfaf0j+owbK+F6hjlnk2UrDzKDfS4dwiq4HX8TrSzjreC0wK84yLDpCCUkoVoBFxuClNvvMpq2KYyhQ0fsjFsz6va85EshYZsrpS5RUUgU9fFb3u/xvV+ju19JRWPXsftz6vaN6OOt4rTArzjsgKvZDY3lAO47OgyjaU6T919pKMTVZFVZQ+KfILvFKOiizAp2bLNeUo/V7nW6n6OTq66DMXruBntouOt5LQA77iswRsPnXK6KpNuTNfzrjAteptxeZlQSnCqMVXj2zoDarmGSo96XtYmilxl/W366Ayi1/HVqeOtAO+4LGF7I1ZEPW46uyqrKfKLalCp/V2idhfeXMpYJpq247iMFdXR2fTxOm7HRyvqeCs6N++4HBD1xiqVhitqUfeOsmh05ZlGLZpa3JSm3hSvxTgiqNlQlHl7HW99HW9FpwV4x+WMOGvj9YLJaLneRzBBVteX/R9Fpo28HuI9IYpca20wVHLVXYta8lAveB1XoxbBWqPgHVcEtFoE42K0opZkbHZMxV2Tr9e1EHd4udznsgVF91zk6rLDrZngdby2/ZoF3nFFhG2NO2rExe9sjBu1KHVRFqrrTjTK2AFcd8+ZEKVsHHeZjhL1m3YKxuF0vY7rx220jre60wK846o7oihtsHXWlUaU3WdxGdkoET119xX1vE2GpKPrclM/6rgiqNdHNqbuHk8tdgia+nodN49BPR+HjjcjvOOKAa4RYi0iS12EFcW4murjUQyn2F+3vZcyXr3KJy4GP87I13aHq+12aipd05hex+/s3wgdr2UmW294x9UgRNnJpINsEcYVbUW9yR8lmrRtb5JTHDfpXQy+bfmOMn5Ug1oreB2vRjPoeLvAO64YIUY0JiUWa+OUG+46Za7nTjUTZNFqLYyLDKJsqU7KpXwTB+K4x1JPeB2/jVbR8XbKtAJ4x1UDyCJNSpmGcuPYxhi7ljriQC23XVMzDdv6vi5L0hnfdjEK1Hs9tlu9vY67046q4+2imyK846oTAuMXVZFsjHEtFxYFcRoVakRpM4ZNW53xpRiNOA1IrYy1TrcoY3gdbz4db1d4x1UjyBawrHRCpSX7W0u48Ggq+US5p2O6n+R6U97W0FINlVg2crnuqjHiNNZx65LX8ebQ8XYsD/LwjqvGsNkEoKr/ixGobVnAxTDb3oim3s+g0jbRUEFWuqLch6HyQHUaMuNNNeimfnEYJNuNE9TdbrL2snHFY17H6TDpeDs7rADecTU5bIydKtqzWUQmg6Ez4uIx15KTbgyb0kxcZSNbo833c7kWtZKrbgyVXG0CL1d4HW+8jrcavOOqA2Rpu41BsDV2tdiVZbvRwUTHtY1Lmcw2snahFUfk7cpT1HFk/WXX27X8pxvHdFzVxuv4nX3avTzIwzuuBsEUZdlCVYKRjUsdq9kWQRwLs1alHZf+pvnUK5qmytXWWXgdt8dqcj5R4B1XHaFTyig374P+lGO646Z2jV5QrpswTKUfFz7i6G/ayFAvebvKVaRBaeN1XA+Xa7EanZ13XA2AStF09fIoO9+ignozmxoRx8FLHGW0Wi52Cp8mucru59Rq112c9Gzvj3kdl9Nz2cizWuAdVwNhU56xMb61uHnu2s4lyqaUz3i6NjezZbRqAfG6RblOsns7rrxTSqVRdqiJOwS9jssRh46vVqcFeMfV8rApdcSh6KJRszFMcTsUlcGr906rqA5URq9W2UecmyAo9GtRmvU67uEdV4MRd9Rks1vJhQfRqMWxDbnVQXGg1LkHGUs7yLVWGcFq1/HVnGkF8I6rCeCS9tvUv01tbaPFONCIXV9RaEUtn1H71nMnYa1pRZ2L1/E723mndRvecTUR4t5wELXMY6IfBVHuKdR6TFPfWsi13mgWubrQXY067h1WNbzjajJEVVCbLcM2PFB3XZnoxI1WW9BxXou4ESWrrCe8jnt4x9WEMClqrRVZdjNctetMhBgN16K8IYu4G7W4a72lXpxfcMx1WzxlN5v4v45WrZyd1/Ha/OyhXeAdV5OCamDiHpOy9Zh6c1w0BnGBusvMZFTjMDi1LPOotsGLW87rBdGYihsXeCNeD7m6oJV03DstNbzjamLUWnFF+rY7qEzQ0YrjxrWptGPKIOKerypKbtRvjnTQlcpMmy1MRj1uuUZBq+q4d1p6eMfV5IizHBOHQZX9VqmWO+VMRtLlvoQMUbIEkYdaOZY4+ul4lP3wNQ6oHCIlU3YdK0Cr6bjfOUiDd1wtgjgMtKyvrTGxKanYGKY4ymm2NMV7Fa5lv3qUQ008uMJlK7vtPViKQ4+yU1A2lo6fZtVx77Do8I6rhaCLxuI0/LbGmVKq09Hm28Z5U9p0L8xlY0dcTooaWVOvhczo1mrjBFWuNnQo16JdddxnWfbwjqsFoVt0cdwUp25+cKXP/5Wdj+OGt8wYqIy6rDRGiY6jyIWa4VGvhWmLuKs8KZlDve4ZtaOOe4flBu+4WhQqQ1uL7eFxGj0KPds5uIxjKgdRjEoUg+1aLo3D2NmU5UwOUUc7brSbjnun5Q7vuFoY/NZjcTGbShiyklzcCylqJK7qL/IsMwJxZAE2W6J1JU5qWcqlxOYC13t5lHa13MbeLjruS4PR4R1Xm8G2Tq8qJ9V6YcW1w6wZtl1Ttt2bUG9D1gi5RsmgqWXPZtdx77DigXdcbQLbReFSIooT1J1bVEcQx7bnKKhHFmQL3fzi2rJvszmBirhk0Uw67h1WvPCOq80Q9wKJY5dXlHZxzMf1PoTN9uU4tzrX8hrWctcm5XgUOdTK+Ndax73Tih/ecbUhoiwU6j0Lm51/Udq5RK1x3XexidijRveUDRMmQ66at4zPemQDYhXAdreoze+pbPmi0I1Dx73Tqg2842pT8Bs3qO2B+m0Q0PGgG5OSMegi+7hu1Me5s48Kyk5Im7H4ax7nfHi6cWzJtxmb0q4eOu7vZ9UW3nGtAlC3Wdv2ibsdhQdqpmAqY5mi6VpvXjA5nVref5MZ8KgZGMVB1cqQuzqiWui4d1j1gZXj2rdvXxhFBZ9CoRCeZ4xh3759GB4eRjabxSOPPIJTp05V0SiVSnjmmWcwMDCAXC6HJ554ApcvX45nNh5K2NwvcCmRUA29aeu4rI/qXBTnYXJajd6tGOW3bDZypW7VN41JQb030NRbxz3qB+uM695778W1a9fCz4kTJ8Jz3/72t/HCCy/ge9/7Ho4cOYJCoYDPfe5zmJ2dDdvs2bMHr776Kg4ePIi33noLt27dwu7du1GpVOKZkYcSvNOw+Y0SBdTshXc4rhlPLQ1IMzgtHi7ZhC7jiev+X9A37qxFNoYr6qXjPstqAJgF9u7dy+6//37puZWVFVYoFNiBAwfCY4uLiyyfz7Pvf//7jDHGpqenWSqVYgcPHgzbXLlyhXV0dLBf/OIXZD6KxSID4D8RPolE4o6P6nhcHx394FyjeHOdA//dhXfTvKPKtZ7yi3MOUedULz1q9Dpuh0+xWLRxQ4wxxqwzrrNnz2J4eBhbt27Fl770JZw7dw4AcP78eYyNjeGxxx4L22YyGTz88MN4++23AQBHjx7F0tJSVZvh4WGMjIyEbWQolUqYmZmp+nhEA3OMvsU+Nu1U9BkzvxiRwptp/DiQEMpGiYT51So63k3ztuEpahsgmtzEMWxoiX1d5RHlWog0TG1qpWMeZlg5rgcffBA//vGP8W//9m948cUXMTY2hp07d2JiYgJjY2MAgKGhoao+Q0ND4bmxsTGk02n09fUp28iwf/9+5PP58LN582Ybtj00UC1A1aKkGhQbwxOHMQnOi4YrbuNCod/KBk0XXOi+29CKi74LXco5Hd/eYTUHrBzX5z//efzhH/4htm/fjkcffRQ///nPAQAvvfRS2EYWdZkU2NTm+eefR7FYDD+XLl2yYduDAH4xyq5HvRerbTaoylyiGE/dOPx3lzGjZK5xoV4ZkatcbfuY6ETVce+wmgeRtsPncjls374dZ8+eDXcXipnT+Ph4mIUVCgWUy2VMTU0p28iQyWSwZs2aqo9H/LDNvlTnRQPhApdSkUt0HXVMHXRjumauYmZpGjMOHlyvoaps1ygHwPNB5SlYE95pNRciOa5SqYTTp09jw4YN2Lp1KwqFAg4dOhSeL5fLOHz4MHbu3AkA2LFjB1KpVFWba9eu4eTJk2Ebj+YAv1BlWQUP2X0f8Vw9QOExQFQnR2kbl8EWr4WMdtAurntFMhpxGW8KPZ2DroUTkem4d1ZNDJudHM899xx788032blz59g777zDdu/ezXp7e9mFCxcYY4wdOHCA5fN59sorr7ATJ06wJ598km3YsIHNzMyENL7yla+wTZs2sddff50dO3aMffazn2X3338/W15eJvPhdxXW/1OrXVlx7/CK+7zLfJtZRvWUa3A8Lrm68Gs7TqPX2Wr8uOwqTMICly9fxpNPPombN29icHAQn/rUp/DOO+/gwx/+MADg61//OhYWFvDVr34VU1NTePDBB/Haa6+ht7c3pPGd73wHyWQSX/ziF7GwsIBdu3bhRz/6ETo7O21Y8agz2P9F8wnCUxii0I8CU3+X84mE/RuZXeYhjuEij7iuhQgVPZVOiP1UcnWBTi4yfmzGYT7DahkkWAterZmZGeTz+UazsWoRp2GMw2HVA1H5pDqVKOPwfV0dn62h17Vvpmurk38LmsC2QrFYtN63YJVxNQu8ojUWccu/Va5nHHxSaEQZh+/rQse2j6l9s13bZuPHw+2atORDdvlHSHl4eHh4tC5c7HlLlgpXVlZw5swZfOxjH8OlS5f89ngJZmZmsHnzZi8fBbx89PDy0cPLxwyTjBhjmJ2dxfDwMDo67HKoliwVdnR0YOPGjQDgf9dlgJePHl4+enj56OHlY4ZORq57FVqyVOjh4eHhsXrhHZeHh4eHR0uhZR1XJpPB3r17kclkGs1KU8LLRw8vHz28fPTw8jGjljJqyc0ZHh4eHh6rFy2bcXl4eHh4rE54x+Xh4eHh0VLwjsvDw8PDo6XgHZeHh4eHR0uhJR3X3//932Pr1q3o6urCjh078O///u+NZqku+NWvfoXf//3fx/DwMBKJBP75n/+56jxjDPv27cPw8DCy2SweeeQRnDp1qqpNqVTCM888g4GBAeRyOTzxxBO4fPlyHWdRO+zfvx+f+MQn0Nvbi/Xr1+MP/uAPcObMmao2q1lG//AP/4D77rsv/EHoQw89hH/9138Nz69m2ciwf/9+JBIJ7NmzJzy2mmW0b9++8On7wSd4gTBQZ9lYvwilwTh48CBLpVLsxRdfZO+//z579tlnWS6XY6Ojo41mreb4l3/5F/bNb36TvfzyywwAe/XVV6vOHzhwgPX29rKXX36ZnThxgv3RH/2R9H1oGzduZIcOHWLHjh1jv/u7v2v9PrRmxe/93u+xH/7wh+zkyZPs+PHj7PHHH2cf+tCH2K1bt8I2q1lGP/vZz9jPf/5zdubMGXbmzBn2jW98g6VSKXby5EnG2OqWjYh3332Xbdmyhd13333s2WefDY+vZhnt3buX3XvvvezatWvhZ3x8PDxfT9m0nOP65Cc/yb7yla9UHfvoRz/K/vIv/7JBHDUGouNaWVlhhUKBHThwIDy2uLjI8vk8+/73v88YY2x6epqlUil28ODBsM2VK1dYR0cH+8UvflE33uuF8fFxBoAdPnyYMeZlJENfXx/7p3/6Jy8bDrOzs+yee+5hhw4dYg8//HDouFa7jPbu3cvuv/9+6bl6y6alSoXlchlHjx7FY489VnX8sccew9tvv90grpoD58+fx9jYWJVsMpkMHn744VA2R48exdLSUlWb4eFhjIyMtKX8isUiAKC/vx+AlxGPSqWCgwcPYm5uDg899JCXDYevfe1rePzxx/Hoo49WHfcyAs6ePYvh4WFs3boVX/rSl3Du3DkA9ZdNSz1k9+bNm6hUKhgaGqo6PjQ0hLGxsQZx1RwI5i+TzejoaNgmnU6jr6/vjjbtJj/GGP78z/8cn/70pzEyMgLAywgATpw4gYceegiLi4vo6enBq6++io997GOh4VjNsgGAgwcP4tixYzhy5Mgd51a7/jz44IP48Y9/jN/6rd/C9evX8Vd/9VfYuXMnTp06VXfZtJTjCiB7fXyzvGm10XCRTTvK7+mnn8avf/1rvPXWW3ecW80y+shHPoLjx49jenoaL7/8Mr785S/j8OHD4fnVLJtLly7h2WefxWuvvYauri5lu9Uqo89//vPh/9u3b8dDDz2Ebdu24aWXXsKnPvUpAPWTTUuVCgcGBtDZ2XmHdx4fH7/D0682BLt7dLIpFAool8uYmppStmkHPPPMM/jZz36GN954A5s2bQqPexkB6XQad999Nx544AHs378f999/P/72b//Wywa3S1nj4+PYsWMHkskkkskkDh8+jO9+97tIJpPhHFezjHjkcjls374dZ8+erbv+tJTjSqfT2LFjBw4dOlR1/NChQ9i5c2eDuGoObN26FYVCoUo25XIZhw8fDmWzY8cOpFKpqjbXrl3DyZMn20J+jDE8/fTTeOWVV/DLX/4SW7durTrvZXQnGGMolUpeNgB27dqFEydO4Pjx4+HngQcewFNPPYXjx4/jrrvuWvUy4lEqlXD69Gls2LCh/vpjtZWjCRBsh//BD37A3n//fbZnzx6Wy+XYhQsXGs1azTE7O8vee+899t577zEA7IUXXmDvvfde+FOAAwcOsHw+z1555RV24sQJ9uSTT0q3o27atIm9/vrr7NixY+yzn/1sW2zVZYyxP/uzP2P5fJ69+eabVVt25+fnwzarWUbPP/88+9WvfsXOnz/Pfv3rX7NvfOMbrKOjg7322muMsdUtGxX4XYWMrW4ZPffcc+zNN99k586dY++88w7bvXs36+3tDW1vPWXTco6LMcb+7u/+jn34wx9m6XSa/fZv/3a43bnd8cYbbzAAd3y+/OUvM8Zub0ndu3cvKxQKLJPJsM985jPsxIkTVTQWFhbY008/zfr7+1k2m2W7d+9mFy9ebMBs4odMNgDYD3/4w7DNapbRn/zJn4TrZnBwkO3atSt0WoytbtmoIDqu1Syj4HdZqVSKDQ8Psy984Qvs1KlT4fl6ysa/1sTDw8PDo6XQUve4PDw8PDw8vOPy8PDw8GgpeMfl4eHh4dFS8I7Lw8PDw6Ol4B2Xh4eHh0dLwTsuDw8PD4+WgndcHh4eHh4tBe+4PDw8PDxaCt5xeXh4eHi0FLzj8vDw8PBoKXjH5eHh4eHRUvCOy8PDw8OjpfC/rfkOi9V+1tMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -261,7 +263,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzNUlEQVR4nOy9eYxr53ke/hzycN/J4ZAzd5a7L5KuFsuyKsWx3diWEdQ1gv5hAw6CFDWKtE6MCrbh1M0/TtFKcILGbWH8AqQI6iBB6hZI3TiAm1jNchVbXq6uJEu668ydfeFwuO87f39M3lcfzxxySA5nhhx+DzCYGfIs33eW9/neXWk2m01ISEhISEiMCAwnPQAJCQkJCYleIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkcKLE9f/9f/8fzp07B6vViqeffhp///d/f5LDkZCQkJAYAZwYcf3P//k/8eKLL+K3fuu38Oabb+Lnf/7n8Yu/+ItYW1s7qSFJSEhISIwAlJMqsvvss8/ife97H37/93+fP7t27Rp+6Zd+CS+//PJJDElCQkJCYgSgnsRJK5UKbt26hX/7b/9ty+cvvPACXnvttX3bl8tllMtl/r/RaCCRSCAQCEBRlCMfr4SEhITEYNFsNpHNZjE9PQ2DoTfj34kQVywWQ71eRygUavk8FAohEons2/7ll1/Gb//2bx/X8CQkJCQkjgnr6+uYmZnpaZ8TDc7QakvNZlNXg/rqV7+KdDrNP9IPJiEhIXE64HK5et7nRDSuiYkJGI3GfdpVNBrdp4UBgMVigcViOa7hSfwDpBlWYpwhe+weD/qRMyeicZnNZjz99NN45ZVXWj5/5ZVX8Pzzz5/EkCQ0kKQlMe6Q78Dw4kQ0LgD44he/iF/5lV/B+9//fjz33HP4gz/4A6ytreFf/at/dVJDkoB8WSUkRND7ILWv4cKJEddnPvMZxONx/Pt//++xvb2Nxx57DN/73vcwPz9/UkMaa0jCkpBoD0lgw4UTy+M6DDKZDDwez0kP41RAEpaERO8YQbE5tEin03C73T3tI2sVjjEkaUlI9Af57pwsTsxUKHFykC+dhMThIc2HJwdJXGMESVgSEoOHJLDjhzQVjgkkaUlIHC3kO3Z8kBrXKYd8mSQkjg9S+zoeSOI6pZCEJSFxcpAEdrSQpsJTCElaEhLDAfkuHg0kcZ0yyBdFQmK4IN/JwUOaCk8J5MshITG8kKbDwUJqXKcAkrQkJEYD8l0dDKTGNcKQL4GExOhBal+Hh9S4RhSStCQkRhvyHe4fUuMaMciHXULi9EBqX/1BalwjBElaEhKnE/Ld7g2SuEYE8sGWkDjdkO9495DENQKQD7SExHhAvuvdQRLXkEM+yBIS4wX5zh8MGZwxpJAPr4TE+EIGbXSG1LiGEJK0JCQkACkL2kES15BBPqgSEhIipEzYD2kqHBLIh1NCQqIdpOmwFVLjGgJI0pKQkOgGUlbsQRLXCUM+iBISEr1AygxJXCcK+QBKSEj0g3GXHZK4Tgjj/uBJSEgcDuMsQ2RwxjFjnB82CQmJwWJcgzakxnWMkKQlISFxFBg32SKJ65gwbg+WhITE8WKcZIwkrmPAOD1QEhISJ4dxkTWSuI4Y4/IgSUhIDAfGQeZI4jpCjMMDJCEhMXw47bJHEtcR4bQ/OBISEsON0yyDJHEdAU7zAyMhITE6OK2ySBLXgHFaHxQJCYnRxGmUSZK4BojT+IBISEiMPk6bbJLENSCctgdDQkLidOE0yShJXAPAaXogJCQkTi9Oi6ySxHVInJYHQUJCYjxwGmSWJK5D4DQ8ABISEuOHUZddkrgkJCQkJEYKkrj6xKivWCQkJMYboyzDJHH1gVG+4RISEhKEUZVlkrh6xKjeaAkJCQk9jKJMk8TVA0bxBktISEgchFGTbZK4usSo3VgJCQmJXjBKMk4Sl4SEhITESEESVxcYpZWIhISERL8YFVkniesAjMqNlJCQkBgERkHmSeLqgFG4gRISEhKDxrDLPklcEhISEhIjBUlcbTDsKw4JCQmJo8Qwy0BJXDoY5hsmISEhcVwYVlkoiUuDYb1REhISEieBYZSJkrgEDOMNkpCQkDhpDJtslMT1Dxi2GyMhISExTBgmGSmJS0JCQkJipKCe9ACGAcO0kpDYj6O+P81m80iPLyFxWqAoylC8L2NPXJK0jhd61/uk70E352/3sg7DSywhcZwYBvIae+KSODoMI0n1i3bjbvcSn/SLLSFxmjHWxDWqQnSYYTCMn9u0G4JuNpuSzCRODU5a6xpb4pKkdTiI109ey4OhKIoumXX6X0JimHGS5NXz8vjVV1/FP/2n/xTT09NQFAX/5//8n5bvm80mvva1r2F6eho2mw0f+chHcPv27ZZtyuUyvvCFL2BiYgIOhwOf+tSnsLGxcaiJSBw9SPhqfyT6Q7vrKa+rhERn9Exc+XweTzzxBL75zW/qfv87v/M7+L3f+z1885vfxM2bNxEOh/Hxj38c2WyWt3nxxRfxne98B9/+9rfxgx/8ALlcDp/85CdRr9f7n0kPkEKhO5AANRgMMBgMUqgeMbTERdddXnuJYcVJPY9K8xC6nqIo+M53voNf+qVfArCnbU1PT+PFF1/Eb/7mbwLY065CoRC+/vWv49d+7deQTqcRDAbxx3/8x/jMZz4DANja2sLs7Cy+973v4ROf+MSB581kMvB4PH2PWaIzpIAcbkgTo8Sw4TDPYDqdhtvt7mmfgXrSl5eXEYlE8MILL/BnFosFH/7wh/Haa68BAG7duoVqtdqyzfT0NB577DHeRotyuYxMJtPy0w+kMG4PcZUvr9NwQ08zk4sNiZPEcT97AyWuSCQCAAiFQi2fh0Ih/i4SicBsNsPn87XdRouXX34ZHo+Hf2ZnZwc57LGFFHynB9K8KDFOOJLYZb3oqYNenk7bfPWrX0U6neaf9fX1Q49pnCGDAMYD7bQyec8ljgLH+VwNlLjC4TAA7NOcotEoa2HhcBiVSgXJZLLtNlpYLBa43e6WH4neIbWr8YZe4Id8DiRGEQMlrnPnziEcDuOVV17hzyqVCm7cuIHnn38eAPD000/DZDK1bLO9vY13332Xtxk0xvnllL4riU6QUaMSg8RxPTs9JyDncjksLi7y/8vLy3jrrbfg9/sxNzeHF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+HR/72McGN7N/wLi+hFIASfSKds+LjFqU6AXHkZjcM3G9/vrr+Mf/+B/z/1/84hcBAL/6q7+Kb33rW/jKV76CYrGIz3/+80gmk3j22Wfx/e9/Hy6Xi/f5xje+AVVV8elPfxrFYhEf/ehH8a1vfQtGo3EAUxpvSMKSGAT0KqOIwkiSmcRJ4lB5XCeFbvO4xkmAS8KSOE5IEpM4CN0+F/3kcY1trcLTBElaEscNPY2s0Wic1HAkxgynlrhOuyCn+Z32eUqMDqgzgNTGJICj9XWdSuI67cJcalgSwwwZ5CFBOCryOpXEdZoxjv2uJEYXWpOi7EsmMQicOuI6rZqI1LKOFwdd627uRTcCetyEuPgcS5PieOAotK5TR1ynEZK0jhZ613YQ17ufY4yTANe7PuM0f4n+caqI67QJd0lYR4Nhuq7acYj/j5NZTRtsRPMel/mfdgxa6zpVxHVaICMGBwe9sO1RwTib1fQKdUtIEE4NcY2aUOqE0zSXk8Aok1U7jGuknriIGycN9DRikFrXqSCu0yScTstcjhPjpqHqReoRTrNg19NAT/N8TyMGRV6ngrhOAyRp9Y5hJ6xux3XYF3kczWrjOGeJ9zDyxDWsQqsXSNLqHsN8rXoJoRcFbbvP+x2DqJWcdoGuNSUCksSGHYPQukaeuEYdwyyIhwWjrlmJ49er66dHYoMQvnS+cRHoUgsbH8gyDCcISVqdITY2HMbrdNC4xAaeBoMBRqMR58+fh9FobGncqFcNZZBzHvbrOGiI13Uc5juOkMR1ApAvVWeI12cYr1E34xK3ob/NZjNsNhscDgfMZnMLYbV7Ho6CwMbp2aP5jtOcRwGHvRfSVHjMGFZhfNIY9uvSy9j05qIoCi5duoRgMIhGowG/34/XX38d5XKZTVqdbP+DNCGKxxvkMYcd4zjn0wpJXMeIYRfOJ4FRuCaHIS3RTLi6uopMJoMzZ85gcXERzWYTBoMBzWaTfV4Gg6FjX6tB5sKMo09I5oWdDkhT4TFhFAT0cWGUzDeHJS2j0QiLxYLp6Wkmqnw+j3w+33L8XpKmB/0sjaMJERh+k7REe0jiOgbIF2MPoxQg0Os49UiLfiYnJ6GqKiwWC8xmM4rFIhwOB37hF34BqqruE54neY1G6R4NCuMWvHIaIE2FRwz5MozWNehnnO1IC9gzv0WjUdhsNthsNkxOTiKdTmNychIPHz7EI488gp2dHUSjUTQaDTYbduPTGrTfS3vcozj2MGMcTaejCqlxHSFGSWAPGqNofho0adHfNpsNExMTUFUV6XQas7OzcDgcmJycRDweR7VahclkgsvlwszMDMxmc0/jOarrO2r3b1CQGtjwQxLXEWFcH/pRfOn7HetBpEWw2Wy4dOkSVFXFtWvXEI/HkUqlUKvVcO7cOTQaDTzyyCO4evUq6vU6mw+1xzloLEeFUbqXg4S4+JIYLsg7IjEQjCJhAf0LfC1JiZqJVuOKx+N47bXXUCqVcPPmTcTjcQSDQUQiEWxtbcFqtaJQKODixYuo1WqoVCot+w8LeY1zIMM4ap7DDOnjOgKM08utp2GMCgZFWu2CMsRzTE5OwmKxYHd3FwaDAXfu3IHRaEQ8Hufow5/+9KdMWnrjHAafy7j6v4DxnvuwQRLXgDEupDXK8zzMuEWzkVbLVBQFHo8H9Xod5XIZ9XqdP9/e3obRaITRaITdbkc4HEaj0YDRaEQkEkG1WsUzzzyDdDrdccwHCUxFGWyn2U7nURSlY87ZaYS4IJF5YCcHSVwDxCgL824wytoVcLhx62lWBoMBZrOZBZjBYMDMzAwqlQp2dnZQLBZZsNXrdQDgZOR0Oo1IJIJKpcLfbW9vI5fL7RuvWFlD/L/TWI9LoFIC9TgKcKmBnRwkcQ0Ip5m0Rp2wgMGYBbWfWywWTE5OIpPJIBgMolwuI5FIoFgsolarcRUM8RgGgwGlUgnpdBrVahX1ep1D4BcWFvaRgJaEhpG8hsmUedyQ5HUykMEZA8BpJa3T4JA/TMSgnkNe/LxWqyGVSsFms8Hv98Pr9cJsNuORRx6ByWRi7YpyuGw2G65fv456vY5ardax3YhWu9Ob0zDdk3ENnSechndllCA1rkPitD2o46xd0b7t9tczF6qqCpfLBZPJhHK5jKmpKQSDQaiqimq1CoPBAI/Hg2AwiFQqBZ/PB4fD0RI5CLxnStSer9ls6mpP3az0j1PrEs9JGEcNZJy1z+OEJK5DYpQFvIjTQFjAYJKIuz12o9Fgs+DOzg4sFgu2traQyWTYVEircFVV4XA48Oabb6JUKsFoNMLtdmN6ehqrq6tIJBL7HP/ac3fSzCR5DRfG2fd3HJDEdQicFiF/WubR7z4H7d+J2Ii0XC4XFEVBOp2Goijw+/1IJpNQFAWlUgnRaBR2ux21Wo2jCX0+HwwGA1RVhdFobBF0VP6pG+IZRvKi8wLjS16SwI8Okrj6xCibCEedsI7KFNgPms0mqtUqMpkM8vk8DAYDrFYrh7vncjk0Gg3U63WUSiU0m02EQiHU63UUi0UkEglUKhWoqgqr1QpVVRGPx9sKuuPq1zUoDOu4jguSvI4GMjhjjDDqDuRexy0GMfTbRkXvnNooQTouhcRns1lUq1UYjUaoqgq/34/z58/j2Wefhd/vh8lkwtTUFI+LWp/Mzs4iGAzCZrPBaDTysenvg+bfKUDiJO/3uAduAPIaDBpS4+oDoyT4R027GsQ4BzXnTqHwJIjsdjtUVeVgC6PRiImJCVQqFfh8PpTLZXg8HszPz+ONN97g7XZ2dlCr1eB2u6GqKvL5PHZ3d1GtVmE2m1Eul6EoCux2O+r1OoxGI1KpFI/hoKrx7fxhJ7nqH3ftC5DXYFCQxNUHhp0EevHfnCQGObZBE3Qn0qLfBoMBJpMJRqMRjUaD/VLVahWKonDfrXg8jlgshieeeALb29soFotcJT6ZTKJUKkFRFJTLZVSrVdRqNaiqCrvdDrfbjXK5jGQy2dIdmUionQBs10l5WMgLGF/hTc/WuFUdGSQkcfWIYa0UPYya1VGP5SgIuptwePJHeTwe+Hw+FItF+P1+PHz4EAAQjUahqircbjdmZ2exs7ODSCTCGpOqqlwaymKxoFKpoNlsIhwOI5lMIpvNwmAw4PLly3C73dje3uZAD3HFTv+3ywdrF9kmyWs4ICMP+4ckrh4wTKRAOErCGsb5Eg7SiIDehOJB11FLkkajEaFQCEajkcPbrVYrAMDtdiOTycBsNsPv9yOTyUBVVdhsNng8HlSrVeRyOdjtdmxtbcHpdKJQKMDj8XBlDQBIJBKoVqvI5/Ow2+2YmZnBw4cPUavV9hGYiG7mfdLkRWMgnPRYTgrSdNgflOYIXrFMJgOPxwPgeIXrMGlbR2EaG2a0066Ow98oXmvRROh2uznEvVQqwWw2Y35+HnNzc/jJT37CtQypNBQATE9Pw+FwYHl5Gel0Gvl8Hs1mE/l8HlarFc1mEzabDdvb2wAAs9mMUqmEmZkZLC8vI5lMsompU+UNcSXfaVU/LK//uGsene7laQXNNZ1Ow+1297Sv1Li6xLAI9kEK6mGZ00HoFNnncDhQLpfZvwQc/uXv5rrUajUuiFur1VCv11Gv17Gzs4PLly/D6XQCAHw+HwqFAq5cuYKtrS2USiU4HA4+D2ls9XodqVQKiqIgn8+jWCyi0Wggm82i2WxifX2dq82LNRAPgqiRDbNQHIUxHiWk9tkbJHF1iZMW8oPQsE56Dr2im6g+h8PB5ZXI/FUsFg88Zq8rfL2xVKtVpNNpbleiKAoqlQru3bsHAC35WTs7O2g0GojH48hkMigUCmwS9Pv9cDgc2NnZYRKjwrv0O51Oc1komjuNX1VVjmykedFYKWikHTEMg8mQMO7kBchr0C0kcXWBkxL4g9CuRpGsxN9632sj+y5fvozd3V0mA20VCgLlRXm9XmQyGVSr1a4I7KCADafTiXK5DAAolUpYXV2F0WiEyWRCPB5HrVZDNpuF3W5nojCZTGg2myiVSmg0GjAYDKjX6zCbzTCbzchkMkw6ojZJhEU1ENPpNCwWC8LhMBKJBDKZDPvbAoEA4vE4EolEX+HzJwEpuOU16AbD47QZUpxEzhad87DaVTvz2iCOfxQ4aFxa0gKAXC6HnZ0d9j+KNQKpaSMl8FK9QNJQxOThbs6phd1ux8///M8jGAzyOQC0aEpEQJcvX4bf70etVkOxWES1WkWlUmGtrFarwWQywWq1IhgMIhQK8dhpHDRW8rGFQiG4XC4YjUbu/WWz2TAxMYHLly8zGXZzz4fpWRDnOq4Y1nd0WCA1rgNwnA/OUZgDD3r49VZ3x7nS6+Xl1AvQoNYiVqsVjUYDVqsV9Xqd24pcvHgRi4uLyGQycLlcuHjxIhqNBra3t5FKpdg/RZF6er2v2o2lUqlgc3MTlUoF4XAYDocD6+vrAICpqSkUi0UYDAbMz89jcXERVqsVhUKB/WHVahWNRgOxWAwAMDExwbUM/X4/dnd3Wbsi85/D4YDFYkE2m8Xu7i63UVlaWoLFYoHJZIKiKEgkEtjd3UU+n9e9hsOYoKzFuGse0u/VHpK4OuC4SesoCEuMhOy2/5N2+6NAr/PViyS0Wq1sFnS73ajX69wyxGw2I5VKYX19nbWaZrOJnZ0deL1eOJ1O1Go1eL1e7O7uIpVKdTVf0gSMRiPMZjPXJpycnES5XIbb7WY/lcPhgMPhQDQaRaFQQCqV4v5cFBWbTqeRSqXQaDQQiUQQDoeRz+eRzWZbfFp07nA4DJfLheXlZaiqCovFgnQ6DVVVuR9YoVBgk6G4GBqVMHkR/fokTxPGncD1IInrhHGUWhYJ1Q9+8IN49dVXW5oXin6Tg8Y0qAz/fslZbz+j0QiHwwGDwYBqtYpwOIx4PI5Go4GJiQmUSiXYbDbkcjnYbDaUy2UYDAY21ZVKJXi9Xr4m3axuaRFgNptx7do1xGIxTE1Nwe124+HDh0ilUqhUKkxCTqcTLpeLq2GQL4vO4fF4OHqQfiKRCDweD6anp5FIJFoWHoqisKZIY7darS2hxJubm8jlcqjVam3ncpAgHEZBOYxjOk6M+/y1kMTVBkdtXz6qwAvtcRVFwZ07d3D16lVEIhE0m01YrVZsbm625AN1eiFEYSviIIf/QWPtBnrzURQFZrMZjz76KDY2NmAymRCNRnHu3DkUCgXMzc3h/v377M+y2WyIxWLs55qcnMTt27eRyWRgs9ngdrtRKBQ4MvEgE2G9XsfCwgJsNhvW19cRCASgqnuvEhEUABSLRezs7KBYLHLwhtvths1mQzqdxs7ODur1OhqNBvvmLBYLB41MTEwgl8shk8mg2Wxy6H+pVMKHP/xhPHjwgI+pqirW1tb43GSGPAw5Dav2Na6lkiR5vQdJXMeMo9CwxM+1xzeZTADAJYgymQzXxiPBpCes9cyK/Zr2+kU7ElEUBdVqFe+88w6AvVwpk8nEScCUrFupVFCv15HL5WCxWNgkR5oZzY1ajxwkqMVrVqlUMD09jUwmg2AwiEgkwjULycRXLpfZf0XzSKVScDgcnHTcbDZ5+0ajAZPJhFqthocPH7LW7HQ60Wg0MDs7y/lcN27cgMPhgNPpRKVS4Xtqs9lgMpk4JaCbxcUokRcwnGM6Lkjy2oMkrjY4Cm3rqLSsTigUCjAajUgmk7BarahUKmw26xSQoSXAdjXvjgp610r8v16vI5vN4syZM8jn8zCbzUin0zCbzXj11VdRLpfh8/mwtbWFfD7PQRhieLkYji6eo515TWtOJI3p/v37XPVdhNgMkiIYgT2/VqFQ4OPQtsBe1XhxQSH6tSYmJrC7u8tFeL1eL1wuF1KpFNxuN5tB9QJNDoNhI4pxF97jPn9AEpcuRpG09ExqJCjL5TKHYJNANBqNcLlcyGazmJ+fRzQa5UoQBFrtU6CAKMCOO3BDT1NVVRU/93M/h7W1NaytraFcLqNQKHDtv2q1imq1CovF0qLZEGlpybhXbZiiBnO5XEtYvVabFaGqKlwuFxOXdmGgvb7k18rlctjd3UUgEIDVasXu7i42NzeZEOPxOIrFIlwuF1wuFx48eMB+LnF+7RYf3eSydbPdcWHcgzaG7X4cN2Qelw4GTVzHoWnp+YGMRiPnGBWLRbjdbjgcDs4Rmpyc5N9nz56F2+1mQTg9Pc1tNZ577jldwXwcBN/pPM1mE3/913+N27dvI5fLsebl9/uhqipyuRymp6dhs9nw1FNPwePxwG63t+yvPXevEImmHRECYP+Vw+FAtVplf5vP54PZbNY9FmmH1WoVqVSKq8ZPT09z0AdFTJLGlc1msbW1xf28uplfrybgo9S0e8Wwjec4Mc5zlxqXBoN+EA5bmLeb8eidw2QywWazMYF5vV7Mz8+jWCxyZfNsNgubzcY19Gq1Gpcvqtfr8Pv9KJfLePvtt/et1kXtZFDOcu089ASveN5arYZkMglVVREKhaAoCgqFAh48eMA+q2q1CqfTyS1ECoXCocbciUTF76mrsWhCdLlcmJycRLFYRC6Xg9lsxjPPPIO3336b87+0NRdFra1SqSCZTCKdTiOXy6FarUJVVZjNZqytraFYLHKOmHbM3WhUvZbAEud9khhn7WuY7sNxQmpcR4jj8GfpCXcKg/d4PHC73QiHw1zBnAjMZDLB7/dzEVix8oLX60UgEMD09DQHBlBOkN6YuqlA0Wn8olmz07z0/iZhNTc3B5vNxvOkwAwKxEgmkyzYO13Dg8yx4pjF84vjUZS9RGG/3w+j0chVOkqlErLZLAqFAhwOB+x2O+7cuYN8Pg+v17uPsMRjkvZVqVSQy+U4jL5arXJ1DoqY1BJ8N+h39T5MK/5x1UDGcd5S4xIwqAegV6FxmPO0E/D5fJ4rjvv9fly7dg2VSoXNg9VqFclkEuVyGQ6HA16vF9FolAmEBK2iKHC5XKhUKkin012FWGvRznymt32777XCWFxlq6qKxcVFHjMl/6qqikAggFwu1+KrO6hqRC9mWb3vVFXF/Pw8MpkMd0im6hyFQgFTU1Mcrl6tVmE2mzE5OYlYLNbWh0jkFY/HWyJBadzU94vy25xOJzY2NnSJutPY+1m5D9OqX7uoGRcM0z04DkjiGjCOw5/V7X7VahVGoxG5XA737t1jx77X60WpVEIqleLqDwC4Wy/VzqPK5tS512Kx8PE6mdq69a1ot2lnGtRGQIrHVBSFTWii1kfjI83z3r17HFUo7i+SlSi4u4ksbPcZhbP7/X5MTU0hEAhgfX0dJpMJU1NT2N7exmOPPcYRgMVikSthlMvlfWMQx0gRg6Ifk+oWAoDT6YTNZkMkEoHVamUTcLfol7xoX3G8JwVJXqd/zpK4BAyCcI6LtLoJYqAW8bVaraVFfCKRQDweh8Fg4EoPpJ2Qoz8UCqFcLuPhw4dwu90IBAJIJpNIJBJ8vkG8IKIQbmf2FJNy9fYH0EJIBoMBhUIB5XIZ8Xgcfr9/H9Fqz9WNtnXQd+L3BoOBg2FisRhXs6BgivX1dQ7Fz+Vy+3w0ev4avfmLJkQAXPIK2POpUeJztxiE8BsW4hgnQU4YlzlL4hoiDIK0tMKThCWwpwlsb2/DZDK1tIovFArsB6KyQ5VKBYlEggvW7u7uwul0IpPJDEQwieOlSDlK3k0kElzBvdls4vr160gmk7BYLFhcXGzRIPTGQmY1g8GAK1euYHl5ue1YxXGI5KWqKpsV2zn9Oy1Uzpw5A4/HA4/Hg52dHW52mclkYLVaYbFYkEwm4fF4oCgKstksqtUqj7Pb60r7VioV+P1+DvIgTaufIJRBCr+TFqQnff6TwDjMWRLXP+Cw0X/HET1I22lJqp1prlwuo1arYXJykn0qhEqlAofDwblA1WqVBTURHB0rn88jGAxia2tLV3PpJxpNO5dMJoO5uTlsb2/DZrNhamoKLpcLS0tL2NnZQaVSQSwWg8lkautn0/OP/ehHP2JC1I5V738yv50/fx6JRALpdJpLQXWak2jWpJJauVwOs7OzqFQqfP2pezH55K5du8aFeUulkm4uVztQKxUq+BuNRtn0S9rcYaInByn4TlILGxYN8Dgx6Ps3bJDENQAcdRCGeB5tgILe93ovqtfrRS6XQzweh9lsRqVSQTQa5R5RsViMfUDaiDa3280BHeK5ug1m6GZeFC335JNPcrmjbDbbUkeQql+080+JY1EUBdPT01wnkNp76O0LgPOqqNp8rVaD2WyGz+drCZrQGzstWhRlr2L9uXPnOPBlcXERhUKBi/kWCgUu9WQ0GvGTn/wEJpOJfVu9EJff74fT6UQqlYLL5YLZbMbGxgZrWocVXEcl/E6CSCR5nS5I4sLhBO9JaVpak6D2WFpBbjKZWPhT/g/Vxnv22Wdx48YNxOPxFvMYIRqNIhKJ7ItQo6CJfiPRaGxGoxFOpxOlUgnxeBzPPPMMUqkU6vU6lpaWWgSxHlmJ/xOR2O12nDt3Dnfv3mVTqd71Ef8/f/48DAYDtre3WQMqFAqsJWlB5wHA/sN6vY6trS2Ew2FMTk5ia2sLu7u7+8YPgO8F0Jp0fBDoGNSHjMhcW85K71i9CLPjMDkdN6GMgxmNcJrnKonrEDiOQAw9TUIkKvLHUC6VaJIixONxpNNpPsbc3By39gCA1dVVeL1eZLPZlpU/gJ40gF7mrSXher3O0YzBYJDDxiORCFRV5aRdPcKhaEeqFqEoCiYmJlCpVPD444/jpz/9qW4YPP1P2tbu7i7sdjucTifm5+exs7ODZDLJhE/Xi8LRqV6gqqpIpVJsnqP8sWw2i52dnRYy0Wqz4t/dBGOI35XLZWxubrakPXTyyfWD4xR+7QJmjuI82mCY04rTSl6SuPpEJ8d8t/sfBL2kXPJniJpHMBiEy+XC1NQU3njjDeTz+X0rWVqVGwwGpFIpTExMwGazYXNzE++++y6TRjtzVSdTWafv9bbXklaj0eCkXJvNhh//+McwmUxYX1+H2WzG3Nwc1tbW9s2LrhHV/6N8LTIpUjfgmZkZZDIZxGKxllJIosb3wgsv4M6dOyiXy5iZmYHNZsP09DTnXj3++ON4/fXXmTzPnTuHRCLB1UYsFguAvaLGuVwO2WwWRqOxbXsRrdAUtaODriV9T1Uy6Fhakmx3/bs5h3afkxB8Ry10T6tQHwf0ZOd6+eWX8cwzz3Dpml/6pV/C/fv3W7ZpNpv42te+xjXiPvKRj+D27dst25TLZXzhC1/AxMQEHA4HPvWpT2FjY+Pws+kDhyWgfs/Z6TtRqxI/J0c8VQWfmppCMBiEqqrIZDJ48803OXdLz99FyOfzqFarKBaLyGazyOfzSKVSXD3joLF341s7aF89U1+1WsXu7i4ymQw2NzcRi8WQyWSwvb3dEoZP2iWRFvXUun79Oi5cuMBmx8XFRezs7HArEdJEtdqroii4ceMGyuUyrFYrgL2cNo/Hg3PnzsHlcuGNN95gE6vFYkEul+Oox1wuh2vXriEUCrFZkULUtSWcRHMeod3fehAXFtpjif3VBo3jfke05z6q91TvXTttOAkZd9To6Y7duHEDv/7rv44f//jHeOWVV1Cr1fDCCy+w4xsAfud3fge/93u/h29+85u4efMmwuEwPv7xjyObzfI2L774Ir7zne/g29/+Nn7wgx8gl8vhk5/8ZE9Z/ieJwzwI7fYTX852xADsaRjUc+rChQvci4qSWfWOpael5PN5JJNJXrFrBWw/82o3drEklHY+9JtCxWu1Gnw+H4fx+/1+DjzQnoeOa7FY4Pf7udGiqqrcn2tjY4P7cYn7a4sGU5AK+Z0ikQhSqRRSqRSTo6IocLvduHLlCnw+H8LhMHw+HxRFwdbWFpaWltjXpae56l3Xbk2x2nukRS+k1c+zOyzCr9NzPYjjnlactvkpzUMsz3Z3dzE5OYkbN27gQx/6EJrNJqanp/Hiiy/iN3/zNwHsaVehUAhf//rX8Wu/9mtIp9MIBoP44z/+Y3zmM58BAGxtbWF2dhbf+9738IlPfOLA82YyGXg8nr0JDMDP1Osx+l2h6Ql1vc+124jbmUwmeL1ejl6bmJjA8vIyMpkM4vF4i7OfxtpsNllQUykkKo0khslrf4vH0RO8vYZatyNR+o40KI/Hw20/zGYzXC4XarUadwIWzaQOhwMTExNcbJZ6j1FzRTKnUbK1dh52ux0XLlyA0WhEPB6H0WjkvmUulwu7u7tceDgej7NZ8uLFi/D5fLh16xa3hNFqPweRVrfmwYN8MeJx2t2Tg0yVvWDYfEODHMuwzW3QGKbu0XSd0+k03G53T/seSkdOp9MA9sJyAWB5eRmRSAQvvPACb2OxWPDhD38Yr732GgDg1q1bqFarLdtMT0/jscce4220KJfLyGQyLT+DQq+kNYjVajerRlErED+r1+vI5/MoFApIJBIcNUeak6iZWa1W2Gw2Dt6wWCzwer0IhUItnXr7nWMv5kE9jYs+E5ssNptNpNNpDs0n89zZs2d5HuK1K5VKSCaTKBQKKBQKnNR75coV2O12fjn0tFEis5WVFa5uQc9XrVbjfKhisQiv1wuHwwGXywUAWFpaQiqV0q1M0UuQxWGgjRzs1W91GKvBMK3eB6mB6b13pwmnxSza9yyazSa++MUv4oMf/CAee+wxAEAkEgEArptGCIVC/F0kEuH8mHbbaPHyyy9zFQKPx4PZ2dl+h33s6Mcf1M7kRiD/VDqdRjQa5VqCAFoSUt/3vvchHA7D7XbD5XLB6XRypJ6e2akbDbDdXDr9aH1uIqmaTKZ9leX1ou1KpRJUVeXjiWSnKAqbGimROhaLtQRG6C0cCFQaSowepPwo+v7BgwfIZDLI5XJwuVys4VJ7kV78VN1uI87/MMdoh8MI52EjL8KgSOwozJHDgtNAXn3P4Dd+4zfw9ttv43/8j/+x7zvtzdYKDj102uarX/0q0uk0/1BZm8OiH22rH21ET+votE8nsiOB3Ww2kUwmWdBSUAZ9bzQasbm5iStXrnD5IbPZjFwux2ShvQ7ttMKD5t6OsIiggsEgmyjp58yZM+yn8/v9+86lPe4/+kf/CFNTU5iYmIDFYmnRLEulEtcCBPaiBLe3t1kbErfVe2kp6hLYsxA4nU44nU584AMfgMPhAPBeTcBisYjV1VVUKhU23VL0Ih1L/H0YdCKto+qB1guGXTs5LPGcZvIa9Tn1FQ7/hS98Ad/97nfx6quvYmZmhj8Ph8MA9rSqqakp/jwajbIWFg6HuZq3qHVFo1E8//zzuuezWCzsXD9J9EJa4t/dPvx624gkYDQa4ff7YbFYsLu7y4LNYDAgGAwinU4jm82i2WxyUu/y8jIqlQr7d3Z3d2G1WlEsFrmUES0atL8JvQphLQmdOXMG+Xwe29vb3LaeNJd4PM55WKLvikiG+oMtLy/D4/FwPprRaGw5JwnycrnM6QJ0baipZDuNUtTiqOkkaf9Wq5U1OkK9XofRaMTu7i6CwSAURcH9+/ePLbjooCCPXtEuwbpb6GnKw4TDjm/Y59cPRn1OPS23ms0mfuM3fgP/+3//b/zN3/wNzp071/L9uXPnEA6H8corr/BnlUoFN27cYFJ6+umnYTKZWrbZ3t7Gu+++25a4Rgl6pGU2m+F2u7k3EzUXtNlsLDA7aVl2ux3BYBButxtGoxGFQoGDCKjsT6lUYq2GVtHJZLIloq5YLALYWwiIpZNEUx1FLRIx6GldB2mNBDru+vo6crkcAoEA3G43B1NkMhmUSiUkEol9/i6n0wm3281FaCORCDY3N5mAtZodnTcYDGJ3d7dlPHSNqfI9aWx6ZOb3+3nbSCTCEbNiCDqwp9VduHABOzs7WFlZacmBO0q0O8dhNYPDak7Drn0Bg/HrDfP8xgk9aVy//uu/jj/90z/Fn//5n8PlcvGq1OPxcLjwiy++iJdeegmXLl3CpUuX8NJLL8Fut+Ozn/0sb/u5z30OX/rSlxAIBOD3+/HlL38Z169fx8c+9rHBz3BA6FVjEh90m82Ga9eu4c6dO7xaN5vNuHbtGh48eIBEItG2PI/BYEC9XofNZuNIykgkwn2YJicn2QeUTCYBvCeEyuUyvF4v8vk8B3BQcixpIdqxK4qC2dlZZLNZJhQx+rBb0lKUvcoSwWAQlUoFdrsdU1NT8Pl8iEQi2NraYoIgP5TYxJLI6/LlywCAlZWVFsEh+reMRiO3ZiFtUitkqMoFXXvRL2i1WtFoNOByubjlCxER8F6EoBh1abVasbCwgEqlgkKhoOsvFDXIQRHaYbSGbnL0BnEeEcO4ou9X2xiFufWCUda6eiKu3//93wcAfOQjH2n5/L//9/+Of/7P/zkA4Ctf+QqKxSI+//nPI5lM4tlnn8X3v/99jsYCgG984xtQVRWf/vSnUSwW8dGPfhTf+ta39pl/Rgl6pEV/12o1LC4u4vz581zhoNnc64vl8/m4wKwo6LSgcOsrV660tMAIBAJcOFfULoC9UPJarcb+n3bBGMAeEZw5c4YTfVVVhcPhwJkzZ7heoFYYd3M9CoUCLBYLl22iz81mM4LBILLZLGKxGID9hW8tFguy2SxKpRK8Xi/OnDmDd955p+X6qqoKp9PJ5tGJiQkOf0+n03zM2dlZmEwm+P1+RKNRNJtNFItFGAwG+Hw+JvVGo8GVN2hMWhNgs9lENptFJpPpqphtv8R1EgJlEML5JAW8+GwcpAEPgsBGUeifBhwqj+ukMIg8rl7U/l7MY3qmNZfLBZ/Ph8uXL3PpISIUu92OQqHAWpD2uGKwhdlshslk4uoO1WoVJpMJqqrCbrdzNYdAIMACeXFxEcVikcPl9YroUqFY2tdmsyEWi3Hlh0aj0VIoFji4BBRpfSaTiZOkqepEqVSCyWRCIBBALpfD6upqy9ypeK3dbuecKmqISdoQnWtychLve9/7kEgkkM/nEY/HOSiDtCqaFzXITCQS2NraQrVaxezsLIrFIjY3N7mtiFjXUC/kXPsDtCYA610j7TXXE6ra/7XPw0GCuJvv+8Egc396jb4E2vt+B3nuw4jBUc/9OqnxHyaPS9YqPCT0fFPi34qicB7Q6uoq6vU6zGYzRwJSs0a9Y2n9PkQi5MtKp9OwWq2wWq2YmZlhXwsJftqONDEaj7YR4+TkJKxWK/L5PHw+H1wuFzweD959990W7a4XjYvgcrlgsVi4gSKw52sjf1uj0WBNW3x5KHmY5kXllbT5YOVyGZFIBIVCAaVSCeVymZsoUsAHJTEbjUakUink83kYDAaYTKaWfDHtGLTo9QXXu15HYT7UO18/37eDmGMn/u4H2vejm2MNwq9Ez3478jqM2WyUTW7AaI5/9AP6TxDdkBZ9RtXDm80mKpUKd8QVBZk24MBsNsNqtSIUCnGDQKfTiUcffRTT09Mwm82YnJzE3Nwca00Wi4UbE/7sZz9DqVSC0WjE3NwcnnrqKa5mTkRGFSGoKkQ+n4fZbEa9XseFCxcwMTHR4tvq1deXz+cRjUbRaDTgdrsRCAS4nYrX6wWwZ+4UiZXIqV6vY2VlBdVqFevr60ilUhyBSNs1Gg3kcjmkUikmKpHgDIa9LtAbGxscbPHkk0+iXC6jUqmwmdVkMnX94h5EDnq+w4O+GxSOMnhAe38GSSidfgZ1fPILi/Not/1hziNx9JAaVxfoxlShJ5SIfIC9yg0keKn9iHY/cX+j0YiZmRn4fD7k83nO1yqXy3jrrbdgtVrhdDrZRBYMBmG1WnH27FmkUilkMhn4fD6uYUgpBeFwmH1e4rnL5TL7xzY2NjjqkJKEKW+J0MlUKG4nhtyTVkTlmLLZLFf0IIGiDcUnvxiRbSgUYq2Jgka2t7fZxydGS9rtdjYbGgwGLh118+ZN1rTy+TwXHdbO47DaFV0n7XftVv6D0MKOSuvSO474m9AuVP84oR0bXXOn0wmv18tmYlrg6GnS/Vwn8XyjZj4cNa1LEtcRgFZ3V65cwfnz5/HDH/4QAGCz2WC32zkAgjQGvTwaRVHg8XgwNzfHlS7IpEjaGpGUw+FAs9mExWJBKpVCNpuF3W7HI488gjt37nDdv0gkAqfTiYsXLyKVSiEWi8FgMMDj8XBUXT6f59YfuVwOV69e5cr9BwmpdhoF+Ymy2SyTCwDW5BwOB/x+P2KxGKxWK3K5HAqFQou/DNjzVU1OTqJarXLfMBFEUkajEcFgEB6Ph82n4XCYSzRRMV0SLnrVNUS0y3MS56dnCtRuqzVN6ZVr0pJcv6arkxJA3WocRzU+vYUgRbZSFCu18KFxtBPah7mOo0YEwMk+N71ibInrMCp9O21L+9IYDAbcuXOHAyouXryIZDLJ0Whms5mDM/SiChcWFtiXlU6nEQgEoCh7Le0fffRRDlqgiujnzp1DNpuF1WplHxr5uGKxGJvVPB4PnE4nstks5zT5fD5Uq1XuefXYY4/h7t27eP3119lv1i6EXu/66JFcqVTad51IEwsGgwgEAkin0/saYU5OTsJsNuORRx4BAG7oSJGPwWCQUwPeeOMNjgqcnJxk0haL7oqBFHpRgaLPTVEUnr/oi9SSEG0rEhI9A+RrzGazrOmaTCaEw2EsLy8PvB3JQULzuAVUNxaLfjUUvWdN+w4Wi0U4HA6YTCbkcrkWrbydD1I81mHIa9S0r1Ehr7ElrkFBtJWLGoLVasX6+jocDgfsdjsqlQoSiQQXCLbb7ZiYmMDExARisRiWl5dbwq5JYN6+fZuTlmu1GqxWK3w+H+7fvw+LxYJQKASv14twOIxQKISdnR1Eo1FUq1Xcu3cPlUqF6/fVajUO8IjH46jX6xwSfu3aNW4DYjAYsLS0hFwuh7m5OWSzWUQikRahD+i/5OJv8XM9wUBCvlQqYXNzEw6Ho0ULpW1SqRR3Ra5UKnC73ax1mkwmuFwuPPvss7hx40ZLWsDKygr3zuqkMYn3TcwHq9VqXCaLxkOVSfSOQZ+LaR2KonBtTbPZjGQyCVVVMTs7i6tXr2J9fZ21v4MK5vYiVLohr07f9ws9czk11OwU3HFY/5De/mJkK/lXySxMi8duNNzDXqtuTOwSvUESV4/QezlIUJG9XFEUhMNh2O12FlRutxuFQoEFIrBnKiuXyy2CUS9Yo9lscjsNm82GTCaDf/kv/yW++93vcnRePp/H5cuXUavVsLOzA4/Hg0qlAp/PB6vViuXlZTSbTdbsiIRIWL755ptMbgaDAeVymev0mc1mOJ3Olp5fRIKdro1WuyKI5hmDwcCNMYG9VAez2YxKpdKyfTabxfr6Oq+WVVXlZG5F2WsESUEgiqJwUd5cLteizWojNIkwaJxUYsrtdrf4vjweDzY3N1u0K737Rfvv7Ozw+B0OB6rVKgKBADKZDJth4/E45ubmsLKywsccpPbVjcAd1Aq73b03m82w2Wx8LUWtfVDnJYuBxWJBMpnk54eeFbPZjEAggHK5jKmpKfaJii19CJ3KXw3CdEgYVgIbFRPn2OZxdVtcVLuduMJWFAVer5dXcgaDgWvvOZ1OAIDP5+PSTiQE6cWYnZ3F/fv3YbfbWdBSe3nS2ohgKIiByjc5nU68733vw+bmJifhnj17Fuvr68hkMtwahExoCwsLLe1CKNFWD6qqYmZmhhsyEhk2Gg0Eg0FUq1UsLy/rJjVrr5t4f8TPRKF25coVjvID9gS9aEKjxQHN3WKxYHZ2lost0xxjsRhCoRA3oaRWJ+KcKUCF+ntRMjg56qkrt9lsht/vRyqVwubmJkeFir4R+k1zNBqNXJ6rWCxy8V/qFSYKUrPZjEQiwRqxqqoIh8M8HrG/lzaQo9dXttsw9n6DEfQ+J21rZmYGExMTSCaTSKVSSCaTLXM4LBGIxHX27FmUy2Xs7OxwfU4AbJKnnMB6vQ6r1Yp4PM75k71c40GIzGE3Hx5H3y6a/7H34xpXiJpEqVTiMPdsNssC1uVysYmI/qa6e7lcDrFYDLdu3UKhUGB/FxGU3W7nNiRi7cF6vY5yuYx6vY5SqYTbt2+z+ZFMgxRaPjU1hVKpxOY1CnbweDwtZEwah/bljUaj/OJPT0/DZrPBbDbj6tWrvB8JJ1FQGY1GuN3ufb2z9BYARMQUQelwOFj4BwIBTgEgkJbXbDZRLpe5Igf1yTKbzchkMlzaiUyJfr+fE6CdTidmZmZw5syZljGKpsB8Ps95YxaLhUtCAfvJV/tjt9sRCoVw6dIlAHuLgCeeeAKBQAAmk4kDbihKkxYHVP6MmoQe9Oz1+7x2u103P+2OQVotpSIoisJlv7Qtbrodm/Yc2jGTpmQ0GhEIBHghQlaQ+fl5jsylAtOiVq93HQ66TodBP/M+TgzruAjSVNgHxBX2xYsXeXXncrmQSqVQq9WQTqfhcrm47YXFYsH09HRL+SOq9ZjP55FKpdBsNnmlT6tDg8GAj3zkI3j99df5nCaTCcBeFB0l+O7u7rIjGgAHAlQqFayvr8NsNrOQ9Hq9KBQKLQ05aQVosVhgt9tx5swZrK2toVKpYGtrC9lsFmazGW+++Sai0SgTj6i5EQk4nU7Y7XYOBiHNTLtKLpfL3OyRfD103UqlEvsGjUYjV7MgwTQ/P4+FhQWUSiVYLBY0m01YrVbOSyMN9uzZszCZTFhZWeFAje3tbR4LlcVqNpvwer1QFIVTF+gYxWIRoVBIt52OVojW63VcvXoVm5ubcDqd3ArlAx/4AH784x9jbm4OS0tLcDqdCIVC2Nra4n3D4TC2tra44kc7s02/JivR9Cze98NCvK+0GLBarexLajabLYsn0RzX7Xj0BKko/DOZDDY2NriUGCWYO51OKIqC1dVV1q4ajQZrunpj6GXeh7l+4pyGWfsaRkhTYY/biZoFJfbOzs4in89jamoKr7/+Ogdk5HI5OBwOFmBkArp+/Tri8Tj7lbTaDpV3stvtMJvNmJqaQq1Wg6qqSCaTbIqkVvNkr6fgBooWrNVqKBaLKJfLsFqtrMlQQi6Fh4vnplYiTqeTc5xofKqqwu/3Ix6PAwCmpqY4iRfYM4sWCgWEw2GOdqS2KtprSD9OpxNWq5W1q0ajwQQzMTHBfiGxMDCRNRFxuVzGzMwMstksTCYTB5wQOVJVfqp7ODExgc3NTT5GJpNBpVLB7OwsV9zIZDIoFAowm81Ip9MwmUzstxJ9g+I9o2eRIjW9Xi/7C6nlD2kely5dwv3797GwsIBLly5hfX0dLpcLOzs7LeW1xB8RhzW1aY/Tz7FEwqLfZBo/e/YsVlZWeGFBwTSiuVVrqu7FhChqWuL7SCZXqqASDodRLBZ5YVcul1EsFlusDJ2ucTfXZFAidNjMh0c9nsOYCqXG1QdI27h06RKHqScSCdy6dYvNhk6nExaLhZOHFUWB1WpFs9nEnTt3UK1WMT8/j6WlpX0RZcCecHzmmWewubnJScZkXiKzU7VaZVOl1+tFvV7nwrI2mw2PPPIIh4eTJuZ2uxGPx1EsFve9sDSObDbLq2MxMbdSqbC2RYRBJaxMJhMuXLjAzS0jkQiy2SwXvG33AtA4KFGZzEsGg4HzzIA9EkulUhzQQhXzKc+tXC7D5/OxP4kSlIvFIpMehcNns1kAwMzMDFZXV1mobmxs4Mknn8TExATu37+PZDLJC4t0Os3aGT0DYmAGgcLmiVTJ7Od0OjkZ3el04v79+6xl/+xnP2PC9vl8XHRYfN7o/mg/037eK7Qa42GOoygK5+rFYjGOzrRYLJiamkIikWBCoe4S9Xqde/dFIpEWv+lB/lPKy6JC1bVaDS6Xi33D1Dpod3eXA6RSqRS/C3r38CQ0L/E4/Y5h3CCJ6wBoc4qAvRdmdnYW6XQa+Xweb731FgCwyZBeTvJ3Ua0+IidqtEnOfwpNF8+pKAoWFha4CKzD4WBNJB6PM0GROcTpdHJ/K1VVUa1W8eDBAy6wSyawTCaD3d3dfSWntATWrikijY0qd/h8PtYWALA/g45Pn9Fx6X/xs3K5zMQl+ptMJhPMZjMeffRR1jQpXJ2EvsvlQqVSgaqqmJiY4OjHYrGIaDQKg8HA0YZEKvSzsLDAGifN9+bNmzh79ixWV1c5EnBiYgLAHskmk0nYbDYWugQykYkLEDJThUIh5PN5WK1WTExMYGlpicdP461Wq0in00zOeuZB8RqKn5Pg7EbgtSMqRdFPiO4GWl8NLXD8fj8Hq9hsNoTDYUQiEdhsNjx48AAmk4mT8ilARdRmD/IzuVwu1mSBPb8s8F7fudnZWc4RpKT2Wq0Gh8PBC5tO5NULkQySvHq5n0eJQc3pKCCJqw80Gg1sbm7yS0CrzHQ6DQDskyHtgSLMKKKJbP+lUgnBYJD9KcB7pkiqglGpVNiURX4iyssyGo2YnJzExYsXsbm5yblepLHQy0nCoF6vc1sPsa291lzSzcN6/fp11hyJyKgqAZWJKpVKHROXxQWBWGyXQCHvVEsxlUrBbDbD6/XC4XAw+VitVjgcDtRqNUxNTeHNN99EKpXiQJVcLgcA8Hq9mJycxI9+9CPUajUmV5EoisUi7t69y+NLp9Ow2+14/vnnsbS0hEqlwrliFMBBmpXFYmlppbK+vs5pDORX3NjY4PtTq9X4Hokm405+nl58QN1sQ/fOZDLty1EDujfZ0d8GgwF+v5816UuXLiEWi+EDH/gAFhYWsLKygt3dXTYf2mw2GAwGPPXUU1xwupPGJT471DyVTH8+n48jcv1+PxRFYRNUMBjE2toap3asrq5yk9Bh07zoWMNAYMNKXtLH1eO22kgo8m3QZTQYDJibm0OhUMDMzAyWlpZ4NUm18lKpFBOPxWLhRoRaJzf5r8TgBzKPiFqP6BciX9i1a9fw8OFDrhhBGgcJXdF3RcJbm0Ok99LQvH0+HxM2Fe6lcVksFly4cAE//vGPeVUr5k7pHY/mJs6TujxTgAuZLc+ePQuj0Yh0Oo1z584hmUxyHy6qvG82mzngo16vw+PxwGg0olQqsTYlkrqelkmBMERKFGgSCAQ4EIDMYU6nkxcgYhI1mTNpAeJ0OlEoFFAsFvmekSmY7kUnX88gBRlddwoa2t7eZkLv5pxaTYvqQU5OTnLn7YmJCbhcLgSDQWxtbbEZlN4Do9HI+YmRSAThcBhLS0t8PbTmUS1JkpnaaDSyT7HRaHB7Hur2XSwWOdWEom3p/pMJud18e73mgxapg/Jn9oujCo2XPq5jhPbhIf8V8N7qpFAo4MqVKygUCjAajSgUCrDZbFyKiVbYFPVH+4rHoJUnaSvkJ6KcMaPRiNnZWVSrVV7FA+8J/Uwmg/n5eVgsFrz++ut8TovFwiWSqNVIvV7nCEM9rUtPeCYSCRYkyWQSbrcbxWIRNpsNuVwOJpOJx0LmHKriTscQV89+v59TA0RQbUGKsDQajey3KJfLWFpaYt8RlXgql8tIpVIcwELlr6i8FgCO9CTBRfdBO+9wOMzdjsl/mcvlOLDE5XJx4AqVdjp//jzW19dRLBY5lD6fz6NYLHIJLwoMEdMO9KBd8Q5qJS6mAdRqNQSDQdZgFhcXW7RQLUG1G6ei7KWHbG1tMeGTP/XKlSt48OAB/H4/tra2eCFXqVRw+fJl3L9/HwDYR6oN/Gh3PvIl0qJFjMZ1uVw4f/48YrEYVlZWYLPZ8OSTT+LWrVuwWCzw+XxIJBJcLaadabtXDNpXNSh/5mHOP2z6jSSuPtHuRjabex2OM5kMB1HU63UkEgkkEglORNWuotqZK7TnCYVCCAQCXNaJElxppX/27Fns7u6y30dMeiZNi3p4EcGur6+z9tRNMiaNlX43Gg1kMhkuXkoChKqEkJAC3qsZqNVSXS4XHn30Udy6dUvXx0FCVlEUPHjwgJtnkgCjxFPSUKlQcLPZbDGfkqCjih0zMzNoNpt49dVXWzRQQj6fRzab5YAQEYlEoqVZ5fz8PAeGAHuV8cUkV1VVOUCBcopsNhump6fx8OHDlsCPTs9Yt9u020+r5ZL2UavVsL6+vq+Ki/Z87fxvwHsRl1Qs2W63Q1VV3LhxA6qqwuv1Yn19nWtSNhoN/P3f/z2TP52j0/xEa8fExAQHKNH7Zbfb2QxLleBtNhvi8TiWlpbg8Xiwvb3NqSGRSIRN3uL59d7Nk4QM3ngPkri6gPgiif+L5CNGztEqnkKqxWoL2nqE9JuOqbe6Fbfb3t5GMplELpfD1NQUzp07hzt37rSE2z/55JO4f/8+tre3OfiBiMtsNuOxxx7D5uYmKpUKtre3Ua1W4XK5Who80jz0roV2zPSZ2+1GtVrFzMwMj5nC0ClcORAIANir1biyssIhzFarlf10tJ94Tfx+PwCwGRAALly4gHK5zKY2AFw8mIoFE4FRwIjBYMDk5CQXJgaA5eVleL1eDkMn1Go1bG5u6ppQAbT4Canc0Ac+8AGsra2xqZdIiuZI86MmoKFQCOl0ui+Tdy8rcfEZcjgc/CyQwKbO0jabjbc1m81cpiwYDLYUiO5EXmS2s9vt2N3dRTweR7PZhN1u56AN0nJF8yiZ9PQWLloNnVI23G43rFYrWw/IZE3bbW1tYXZ2lgOiVldXub3O4uJiy3OmjX7VLq56NZkdBeHR+3AclS3EcwLDRZiSuAYEvRps2kRS8TstxFWkuA+timnlajAYWmrmRaNRJJNJPn80GuUQ8EqlwkJBHNva2hry+TzcbjcUZa++HnU6Fsm3HdrNgYRzLpfjYsCNRoNrwhWLRZw5cwbAXuV7RVFw9uxZJjaz2YxUKgWTyYRQKIRiscilsp544gmUy2WsrKxwbtU777yDy5cvc1QehcxTAAwRMrAXcUZaRSqVgtvtRqVSwcOHDxGLxTg4RpyjqH2JmoZ4bUg7KZfLSKfTuH37Ngce0KJFVVWuZOLxeNi0S2WdqGJ5PzjIpKaFwWDApUuX0Gw22SxoNBq5VxUVAq7VapidneVF0eXLl7G9vY2HDx/yYkRLMPQMU+FjCkAifx+lUJhMJkxMTHBkpnit9RZG2vmJ2jL5MoE98y/lyFHwVLlcxvb2dov/cWJiAoVCATs7Oy0+2GZzLwGfAkuIrA6jeR2VtkbjHSYyOU7I4Iwu0M7G3+nc7TSndtqU0Whs0SqazSb3lQL2QnsXFxdbwuppZSkKEKvVyoV4xRJJRIomkwkOhwM+nw9Xr17F+fPn8ed//ueIx+Nc3aCb1Zw4F/I92e12hMNhXLp0CbVaraViBWl9drudoywBcLNLMuHR/5OTk8jn89w8k66D2+2G2+3G0tISN6IkYUlJ15QLRKWU7HY7V7una00loIrFIgeqkB8QaNWO25GWCAokocLEZBKlaz81NYVwOIy1tTU25dJ+lA6gNVP2G55+0D2jcmIXLlzA5uYmqtUqLBYLj53uV61W40WF2+2G0+mEzWZDoVBg06bWvK2tK0nzpyAKp9OJ+fl5bGxsoFQqsclb9K0eJJDJJ0rBMRSo02w24fF4uAN4sViEz+eDx+PB8vIyAMDv96PZbCIWiyEej7e8S2azmYspG43GfWkdNJ9+7sVRidnjJK9Ba3kyOOOEoDUhar+jVZv2M6DVyS4GZJDwoEhEh8OBRqOBaDQKu93OLygJWtG8KEa4kVAXI/monBOZHMUSVWazGc8++yxeeeWVtqv/dqYbgtPp5NYoV65cwc7ODlRVxfvf/37cuXMHOzs7nNRL14GizChBlKp77OzscNJ1o9HA6uoq7HY73G43+0joGCQo3W43C0L6LJ/Pc9UE8fp7vV4ufkzEBbxnEtK7r51eXEp4FaM4xWNGo1E0m03WCOl4FPUoXuN2fs/DCChxPnRdc7kcnnnmGVQqFcRiMTidTvj9fmxubsJkMmF2dpYrjAB7z+TS0hLm5ubg9XoRi8X2+SFpXpQsT9qM3W6Hx+NBPp/HgwcP+DroPWud5krnSKfTbH4WtTLq/k0LCapGQj5KbasaMl9TInQul4Pb7cbMzAzu3r3L8zjsfTgqzUuUIyOog/QNSVxdQLuq1H7XSfNqt6/2RaAggkcffRT37t1DtVrlqCyxAgeRjda/RtoWdQgmkhKrn1OIMfkEbt26BavVytU0/vIv/7IrE6HWiU1J1ul0GqFQCAC4LQi1dQHe85mIxxJNMrVaDZOTk2xeczgcTFzAns9pe3ub8+UURcHk5CRHM1IABPlJms292o9Ut1GcG2mWiqJw8jb9LybCtrseekIinU63hMLTGBuNvWK/ZDqkc4hVSbSmMa3/8DDQmtkMBgOnUdy+fZvLgYmJ3xSoQeOlljKNRgPLy8tsdtML4NC7Ptlslv2btFjS85Vpr4f2M/H60AKIyFFcdDSbTTzxxBO4f/8+a1aNRoOLJk9MTPCCplAoIBAIwOVycTdxsSiA1gUwbORFxwaO1g91lOPvFZK4BoCDNC9CJ/IC9lbtqVSK/URnzpxh0qHQ7vPnz+POnTvcY0p8aalIrcfjwfz8PBeTFU1Q2WyWSx7RGKiihLaShghxVaudL62oKdS/VCrh3r17XKH9Jz/5Cee3ibX4RJAPhCIGyUQoEg451WmVTcen454/f54rTzQae80yqeSSqA2QOZFqENI1pG0mJiZgtVqxsrLCq3TxenQiM7o2tI3Yqy0YDMLhcGB7exvnzp3jOo7VapUJQktYh13tazUiMqsGg0FeSFCF/kqlgkgkwgWjd3d3kUwm9+W8iYTRCVprwu7ubsvzqDdXunZaTUIkLT3Nn+4hweVy4cyZM3jw4AHPk/yJVP2fuhhQYYB8Ps+m5QcPHrRt+3MYkhhl8pLENYLoRrPqRvMC9FemlET8+uuvQ1VVeDweJBIJhMNhLpWTyWQ4dF18oWdmZtgfQaHIHo+HAyK0dnoRVGroIFODdvyisKEEUgqKAPbMUYVCgcszWSwW/MIv/AJ+8IMf7HN4k0Ck4reUWErBC3qCCQC3aFleXkY2m0UsFmMBKwpp8n+JvZdEE5XL5cLU1BS2trZamnzabDZ4PB7s7Ozs0xS1f2uh1Zzq9To3tbRarbh69SosFgtisRgHjlDJsE7aVi/CQ8+fSlGc9XqdzarXrl3D7u4uRxBS00eqnUjh5mJSsB7J0jm0BEP3jp5NvfdEPI5o1hWPpz2+CCpsTWZCt9uNmzdv8rvw8OFDNhc2m01uaxIOh+Hz+biAMlXn10uUB/orB6U31373Pclj0/GHgbzGth/XUThYuxH+etuIn4svFr1cTz/9NGZnZ+F0OlnTEnOOqDQUVR6Px+PY2tpic4c2Mk78oRV0J7NNuzmStnbx4kXs7u4im80inU6jWq1ibW0NsVgMHo+HSfVP/uRPsLa2pjuOWq2G+/fvc0UJPXOSKAgpRDuRSCCdTnMEGUUwNpt7hYavXr2Kixcvwu/3s8lSrFdIK20ATHIXL15sqXSiqirOnTvX8gy0u1bae9xoNHD+/HlMTU1xKSyr1Yrbt29zWD91APD7/az5aX9EdPO53nc091KpxA1Ha7Ua7t27h0wmA7vdjk984hOcH0hV3i9evIjHHnuMxyueS/ybNH8tYVFgBlVp1/q1tMfRHqubedG1npiYgMlkQjKZhMvlwjPPPAO73Q6v17vvuVeUvf5piUSCq2lQdG03aDembtHvft0c96iOPSyQGtcRQCtou/leFHZkugD2Ah5effVVRCIRRCIRThYVBScVkwXAxUufffZZNkV18tV0Gls3D3+tVsOPf/zjFv8Qhdc3Gg2sr6/D4XBw6xNx3lqzo2g+EoVWo9HgaMJEIgFVVTE9Pc3V50VzFPCeea5UKmFlZQUTExOYmJhgX5fYH4yqiZDQy+VyKBaLeP755xGNRjkf7+HDh/uuUTtzKn1H86AaeUSMVHQ2EAigVCohFArh7t27KBQKHDCgF7jQTgPrBD3zmqiRUrI4AOzu7uJ//a//xU06KZCHknTFe6WnDVksln1+O7EUUyqVaumBpT2OOD9KYM9kMvued9pfJLlarYaZmRnkcjkuNN1sNrG7u8ukJC74gL0UhsXFRV6A0Vwpp02vHY/2PuhZT3rBUWkwR615nTQkcfWAgwhJb/teyYugqirK5TIikUiL9kGmJNpe9KnQ72azyb2QxOCGdhphO99Bu7lqvxMru5O2RdtEIpF9BCX+rT2+qKmIAQ5utxuXL1/G6uoqcrkcstksN4psNpu4e/duS7AF9ScjfwYVc6Vjiz4og2Gv8WGxWEStVsPu7i5Hm+VyOayuriKRSOiOs51gEMdO5ken08nfORwOriBCJtHJyUmkUin2u1CVCSLnTufTg56ZjUDX12Kx4EMf+hAWFhb42hoMBjYVbm9vo1QqIRKJtAQ+aO+bwWBAKBTitAo6H1U4oWsuCmo97clut/P98/l8ALDPlE37iYsbs9mMmZkZDtOnQJ7d3V3WyOndEO9dtVrle6WqKmZmZmCxWBCNRvfdczp3u3eI3r9eIcmrd0jiOmL0QgBa4qJV+c7ODhqNBlwuV0tHYe1x6G+xIkangAu9/fW0wE45b3pmT5HItATViwmj0XivYnw0GuWW7FSXzuVyoVwu86qchEa1WoXb7WafWSaTwdbWFhfgFYULVWtYXFxkAWiz2QDsaSC1Wg1erxcmkwnLy8ttzb3itVAUhevwkV+HTGYUnq0oCo+dqoHU63VMTk5ifn6eSUTURsTr2WkR0u01fuaZZ9Bs7nWfJsKha2O327naOiXSi+fQ/q+qKvL5PLxeL6xWK0e+1ut1bojaaDSws7Oz7/klUArDc889hzfeeIObTpIGKp5XDIO/cOECSqUSlpaWWroBUBmzUCjUkoyvvWf0nNXrdY6YJPOxHjoRTb+JwaNCXsNChpK4ekSvWtdB+2nJgbajQrrULJKEXKeXgoRbs9nkl3dQYzxovnrbtBtnu1W7FrSipvw0k8mEra0tjkA8d+4c53eJkW7ku6GuyGJelail0vnFhGWbzQav14tUKoVUKoXNzU2cP3+ey2dpiUvP/wbsBQtQ/tPly5extbXF2jMAbGxswOPxwG63c14VmRNzuRxisRjfQ5G8ejXlitdcu/0bb7zBcxY7EwN75upsNoupqSnU63Wsra3tGwv9Tzl0VqsVMzMznPhL3bEdDgfS6TQqlQqCweC+qFIy91Ej0KWlJVgsFl5oUJSpuCAKBoOci7ayssL+wdu3b+8zLZIFoJ0fl4I5Go29mpti54R21xI4uArOQQvGXo/bL4aFbAYJSVzHjHYCWxsC3Gg0uHKEuBLu5vgHoZPA65eYad92ZkHxN9BqStOas8g3oigK55nlcjmOfCOfBvXporB5Oq7BYGChSSYikbS0ZkhgT8O4du0a7ty5w2HbdO3v3bvH2kM7jUv8v9FoIJlMciUUClyh3mzU2oR+AHD+GZnprFYrpy3oEf1hhRCZdSmaUbz2FDZeKBTw+OOPY2VlZV+tPpGoqWCwx+OBx+PhsVutVg7WoRw2aqtDmol4nGq1imAwiEajgQ996EOIxWLs06U5U2mwK1euIJvNIpVKYW1tDalUCoqi6AYjiX/rXbd6vY5yucwBTuLzcthrrEW37+cwk9dRaYc9jaF50iPoA4Mo+UT79rv/YfYVj9HpuFrTkBadbl23prmDxkDQmgv1zIDa7cS/SVjR37TKpVYv5O+hWnKkJVH9QVGA0THERGFRCFLrE0ouFUPctQsACgKwWCzwer2YmprCzZs3OeFbq2UR8R0EqupgsVhw/vx55HI5rK+vo9FocPVyKntlNBoxNTUFRVHYx1Qul7mGYTui7GUlr7c40PsR7xX1yhIXT3ph4l6vFy6XiwNmzGYzKpUKR+tpq4PQvEXt12KxYG5uDsViEWazmRPRqXbiysoKms29kk5PP/00bt26xW1hqLSWuDjRms/b3TftNRTn2Inser0Heuc8aN+jEM39jlmLfnx5emMBZMmnY8VhNJNOxxBf5m7MaQcdm9DuOO1MfJ0+GwRpUyFW8o2IxYUbjQZmZ2e5agg1cdQKH9G0pdWgKAH17bff3qctaK+7x+PhSh3UnZfMdHrEpUU7YqHk5Y2NDeRyOa7JJ1b+oLHb7XZuRZNIJPaRsThu2rebVbSeP0o7Tq3pT8Tk5CS3/aCxasdBBEukTEEuTqcTVqsVu7u7LRqrWOGCSNLr9cJisXDDUOoPt729jdnZ2ZZmpaVSibsLaIMu2pHWQQu/Ttu10zD61WJ6Man3c/xxgCSuQ+AwxKI9DtA+wnAQ5EhjbWe+6MevpTe2TucRQeYoMi01m01uE0KmJYvFws582kf8TecnsiOfGLW8IO2F8rfo+OI1KRaLHPlIZNWpsaMWB5FZs9nkfl7iucVrVavVsLCwgFAoxBGG4vUnstBGxYnX4CB0IrB2958S4ePxOC8stEES4pympqaws7ODYrEIi8WC2dlZzM/P48/+7M/2VaHQlsYqFApYXV3lIBav14t6vY5CoYCVlRXuqUX+Ngr+0CMfvbF1Mu122k68XoMkL3Ff8Ri9EGc/GBQZnrS5UBLXITEo8mp3LFEDO+x5OmmJneYhnvugqvoHmSjFY1HkJJnVqAQT+axIWDYaDa4ETj4hEnraOamqik9+8pNYXl7GwsICt+wIhUK4f/8+R1qKII2PSh1dunQJb7/9dtuSP9rrdtD/Yo8zvf1JCIglusTrTdUfqA1HJ/Kiliq9aGHttiFCdTgcsNlsHFhCbT8I5JejLsaqqiIUCiEWi+Hdd99tuY6i4KRnyWAwcBAG5ZQRcdJzAbxHmg6Ho6VEVidTnvi73Tbdmu4OIq9ujnHQ8dvNadDkNepa3NhWzgAGo4IPymYsHq/d59ogg36Pf9CL3g4HmZ3akZaejwXYa2kyPz/Pgs9sNuPs2bOw2+3cFNDr9eLMmTOYm5tjoaanedFxG40G/uZv/obbsbtcLlitVmxvb7ecW2saooTfarXKeXPt/H9616uTiaobUyNVMBGJicxoZHK7cuUKVFXlz0VTG5kbXS4X56Z167/sBLPZjImJCUxPT+PMmTOcPC2en+Ygmu0oh45IW+vjpDGL5AXsRWOGQiGUy2XuQUfXh9rhKMpert5Bi6h2C7Vu352D7r/2c62vsF+0O84gji0ea5QhNa4hRCfNSPye0OtD2KvmJQqdTufTe+HEz8Qq9qFQCPl8nqumUxdgr9eL+fl5butCpifKDRLD3uk8JpOp5XzUXdjv97MGMjMzg62tLRiNxpbq+jRn0t4oGlFvbuL10e4v/n2QYBSvfzsipCRl6jFGtQ7Fe0HkXiwWoSh7NSupoj7V5eumQaVW6IoLkHK5jImJCezs7HBzUu01EUEE/ODBA90oRGqGSpGh2jmXy2WUSiWOajSbzS1mUnpeqLzXYaC9V3qaSLefaecpnqMdOhGjuHjRG+dBxz4IgzIZnhQkcQ0ABxHNYY7b6ZiiiUNPozno2N1sS6YqcpyLfbBE6Ak90dw1PT2NRCKBWq3GhU3tdjv+7u/+jktc2Ww2JJNJpFIpPPnkkwgEAojH41BVlTvaas061FSwUCjA4XCwkJ2bm+P+ZhaLBYuLi0gkElz6RzsHMj06nU48/fTT+Ou//uuW3DrxerVL6u5VE9YTRiLIV0c5VeVyuUW7om0AMLGZzWYOw08kEi2FcfWgjQIVTY7ke3z33XfxyCOPYHd3F8ViEfV6nVvei75FOoaqqjhz5gyWl5eZaCkYw+PxwGKx4OzZs3j77bc5WvHcuXPY2dnhWpsUKSjmLlKKiOgH1EIkFTEop1vzWC/bETqZD3uVCeTjI+2frpveeQ5LPofZ/6SJb+yJa1A+qpMiL+35RRxmLKI5h1qii3X09LYXqxloP6f8nEQigY2NDS5tJApWCpNWVRWLi4u4c+cO7HY7YrEYzGazbnVy4L0KGzRGqnhPYdlWqxXlchlWq5W1ET3SoKi4eDyOUCiEbDbbUqGefDAUNUfjPQz0VvxE+qVSCWfPnkU6nWZNxu12IxAIoNFocCkjSiB2uVxceFhRFO4m3SmiUrxHDocDc3NzWFpawvT0NFfBiEajePvtt/fVIQRayy7R86KqKgKBAC82xG2mp6cB7JmJA4EAzy0YDCKZTPLipp1ZXOuT0tOExWdD77Ne0I2A7vf9FPenH4vFgunpacRisRbSpu/1wtD7ndsoY+yJa5A4SvLq5bjaF/sgk2M7kwWVKCKBT/4KPd+CouzVE/R6vdztl4579epVDrCYn5/H0tISa24iCZL5x2azcTj0o48+yq1c9AizWq1id3cX4XCYQ7EpcZtMj9TaRa9cljh+YK+0FOUvkYZDcw4EApienubV/09+8pOWa9nJd9hJSxW3oc8mJibgdrths9m4SzQl7xYKBe7SG4lEEAwGkc1mkUgkEIvFeNzaau7ib+0YFGWvNJKqqnjmmWfYl0amWkXZaxFDvdvEfVVV5UoWdN2KxSJX5M9kMkyOxWIRLpcL8XgcTqcTtVoNbrcb1WqVFwR0fQ+CSErtrrve9t0cU/uZ3vH09qXflMNHGn67c9N7FgwG2RRsMplgNpvhcDg4CV3UIvWep341oJPWnPrF2BPXoMnmqMiLjt3rcekhb+fI7nRMMr0Fg0EsLi4CeM/8otUUxLDmmZkZbo1Bq8QLFy7gb//2b1vK6YiJnnScRqPBmk08HsePfvSjlsoYWjQae40hqf4f+U4o8i2TycBsNiMQCOj2WaLzErxeLwAgmUxylQ4AbIKbmZnBq6++ymTSDt36urT+LrouRqMRW1tbiMViLNwrlQqmp6dhsVi4xFGzuVcBHdgL4yfBT5qlOD89LVMkz83NTUxOTsLn82FycpKPSwEaNpuNQ9OJvMiUbLVaMTs7yxre7u4ucrkcTCYTmxWpcDFpi2KB20AggFAoxKWltLl3B0HUALXXVW+x0une6JFDJ9OgdlFAVoqpqSmsr69z/p64v3jdKfDEYrFAVVWuaK9NPdDKlk4LsFEjol4x9sR1FBg28gJaS0p1c8xms8lliog4SMgYjcYWYUCEoaoq5ufnMTk5iWQyiY2NDW4PQcmior9CzwykKAprW6QpEfS0BdqPwtmJyMR6dZSr1c7E2WzuOf2vXbuGcDiMfD6PSCTC1Tuo0sX29jZXS6c5i+WI9H53Cy15r6+vw2g0sq+Heq05HA4uCSU2zqSoTOC9PLSDnhXtd36/H/Pz81yd/erVq6jX69je3obBYODFAGlZIshkSS1iKP+uXC63aHWLi4swmUwIBAJwu91YW1tj/x3dd5EAtIsb7di1ZsFAIABVVTn3LBgMYn19nZ89KgcmHqNbAujGb0VEThGytKCi50RbR5E0LvIDh8NhrK+vY2trizVVgt5Y2j1nvZgPR5HsJHEdEYaRvA5aQWqPSe0hUqkUHA4Hms0m3G43fD4flpaW9tW4oyrgVKaJ9i+VSuzT6lSWh36TL0yPTEXNRJxLrVZDOp1uCSkXV+x6fi3tcShy0Wg0cr6YxWLBpz/9abzyyivY3d1lrYaIS6s5dnr5211/ve8BMCkZDAZ4PB64XC7cv38fXq8XNpsN6XSahX0wGOR9FhYW+BwHnVP8zOFw4Pbt2/B6vVAUBQ8fPsTU1BT3uAqFQi2V1AnUKDQej8PlcmFubo6bm5LZTBSOqqrC6XRidXWVnxHKUdOrqkEmZW2ghWiqpH3z+TweeeQRru5eKBRY61NVFY8//jh++MMfdpWjpzXldrO9wWDgQs2JRAJzc3MwGo1YX1/njgGkyQLvVU2Znp7GtWvX8Oijj+LP//zP4Xa7oSh7SfHie9YreXU79lGDJK4jxCiRVztQJ2DKofL5fBwkIRZKVRQFqVQKgUAAP/3pT2EymeDz+djcRbUltWOg//U+02qIej4No9HItQ2pLuFB9ea0q3RgT0t599132exVLBbhdrtRKpXwV3/1VyiVSnC73QgGg7h79y5sNhtcLhei0SgKhULblhnt0K0ZCgATeTab5dD/crmMRx99FH/7t3/LviPRvClGo7U7rlaDWF5eht1u56Rfq9WKhYUFNnU1Go0Wv4sIKnq8u7sLu93eopWSNk4mT4fD0VJjUByfuA9FVDYaDczMzODevXv7CEdRFMzNzeGDH/wgvvvd76JcLiObzWJiYoIbmFIXbqfTyY0jtc9SN/4rcbHTbnuaKzUvTafT2N7ehtlshtls5uAf8fl2Op3IZDJYXV1FpVKByWTitAEi/nY92Q66x+I2nebYi4Z2mH0GBUlcGFxkYbtjA0dHXv0eu529XDyWwWDAlStXMDk5yU31dnZ2YDabWaiL5r9arYbV1VX4/X48//zz+Ku/+is228XjcV1TnSgE6G+tgBDD0vW0MPKVtCOPdqRIx6ZjFotFDkLx+Xzw+XwcYk7COB6Pcyh/uVzmfCmtP6aXF7rd8yeOkzS9arXKiwHKeZqamoLdbm+pJk/o5tkQtymVStjc3ORqJsB7mvfy8jKbwUgL0JZtIjMyCVxgrxbkI488gsXFRYRCIUQiEdYURYiBMLSAINKJRqP8nUjKVEj5zTff5AofABAOh1Gv11nzKhaLKBaL+66R9tp3MklSFRYqwEyfa9+dQqGASCQCAKwJ1ut1RKPRloovRFqzs7NYWlriFi3Antk2lUrh7Nmz8Pl8ePvtt3mBpB1nN+SlHWs/3w8TJHH9A0aVvOj4gyAvEeRczuVycLlcXJqpUqnwCxQMBmEymZDNZpHP5zkwol6vc2FZgkgq4guiJS3xbyIwrX+OCIfC800mEzweDwd+aM+hnS9BzJmhY83NzXFjx2w2C5vNhlAohGQyiWw2i0KhwASml0Srd55u74WeMBXJixYHZDojk+DW1hY8Hk/LwoBIgEx7nfKetOMgrVXbzoS0CafTCUVRuOGiVpgSsSeTSf5ua2sLFosFa2trsNlsLSZE0kwovYCiWVVVxezsLIxGI37yk5/oBhgZDAYkk0mUy2X4fD5cv34dt2/fhtPpRDgc5qRp0ty0iyet5tXuPaLnw+l0otFosLbo8/lY2xfvlaqqWFlZQTgchtvt5oah2me5WCyyVruzs8OdsSl3slwuw+Vy6RYAaEeyet9p5zvqkMT1DzhK4qLjA8NJXnpal6qqbOoDwN2XRVNHLBaDz+fjF9VoNMLn8yEYDOLtt9/e56cgsiHBKwY26L1M7eZEQo9aowB7YfEul0vXN6Z3jmazCb/fj6mpKaytrWFubo7LC5nNZkxPT2NjY6PFTNZsNjE3NweTyYSbN2/qdtUdlFAQhSDNWXuvqJ6jqqrckFLUSOh6UyIx1fzrBhTkAryXq0WFkR0OB5dcEks6eTweKIrCDR9NJhNXyDcYDMjlciiXy6yZKcpeQ0i3281jp3Pn83k4HA4UCgXk83k2nWlrVNK5SQMk7TuXy7F2Va/X4fF4EI1GW0L521kdtDCZTHjhhRfwxhtvwGq14tq1a8jlcnjw4AHX0FSUvTQFOu7u7i6bR6m9C51LW2Mzn89jamoKJpOJtbDNzU0OuLl79y5/d5CJ8zBmwVHyiUniOkZoNYmjOP4gyIuE4sLCAur1OrebJ3MVAK4D6PV60Ww2kUwmAeyZaKgYayAQgNlsRiaT4ZJOpBlQtGEikTjQF6SdE4VV2+12zMzMYHV1lRtKamvokSlPz5dCPrnz58+zjyiTyaBeryORSEBVVVSrVQ7RrlarWFpagtlsxpNPPonFxcUWAXnYF/4grYvmbrFYWAAbjUbuI6YoChfqVRSFzXrAe4WE25WA0tNm6LyktRERUhsTsRAysEc458+fRz6f5wUE+WsymQxHiNK5XC4XZmZmkMlkOLiE2spYrVY4nU5sbGxwbUQqrksVVoC9gBqbzYZCoYBkMolbt27B4XDA5XIhlUrhzJkzKBaLXKtShFaAt3t3Go0Gbty4AYvFApfLhaeeegoPHz7k3DkyHVLYP127ZrPJgS2iyZt+i+bGQqGAixcvYm1tjcm/Xq+39GwTtUKtHNEuzNrle7Wb+6hBEpeAo9a6xPMAwxO0obfypI6wJAwprJmEF/1NIevk86LqCrOzs2g2mzhz5gwWFha4JX29Xsfs7CwqlQo2NjZazq+Fdh7iijOTyXBVB4oaA97rgBwIBOByubC4uLiv7JH4e3NzE/V6HRcvXsS1a9fwgx/8AEajEbOzs1hfXwcA9meRaZASpSnH7e233x64pqX3N5k2SRMBALfbjYmJCUQiEc4DqtVqUFWVq2yUSiW+f2KpJgIJUlEQtjPLmc1m+Hw+JqR0Os1+JIpAbTb3iuzmcjm43W5YLBb4fD4sLCzAarXizJkzePDgAft9KpUKzp8/D6PRyAEo1WqVG4yWSiWcOXMG9XodqVSKtX9VVXH58mW+j9TKptFoYHl5GQC4RBU9nzTPbu+XmMfn9XrhdDrxyiuvoNFooFKpcO4ZaZV0z8isKj6XdA99Ph9HYjabTUxOTiKfz+Pu3bucBydaIyhxXhy7HunqWU70qqaI+4wqeUniOiGQIG2XGHzYY/dDXuKDL5pkSEgSYZGdP5FIwGq1wuFwcHmhqakpbGxssFCjthaVSgXNZhMWiwXpdBqRSKQlGVk7BvEF1a42gT0hGYvFEA6HuYuyaAay2+3IZDJs6tOSFgBOhDUajVhdXWVTWqFQwN27d1nYUz6N1WplErx37x6H2LerXaiHg3wpnWAwGDA5OcktTkqlEhcNrtfrrIWQ6dBqtcJkMuHChQvI5/OoVqu8GNEzlYmkpWcV8Hq9cLvdOHfuHCKRCIrFIjweD5tMAXA6gdfr5fwkt9uN3d1dmEwmDp64fv067t69i2QyiWq1ijt37qDZbLb02VIUhf2PhUKBNbdYLMaLImpSSX4zqtloMBgwNTUFo9GIjY0NjsZsZ0Zud71pH2puSZVdKpUKAoEAJxmLGrHdboei7OWUXbx4Effv38f29jabp69du4ZYLIbt7W04nU72FVKQj15jTL3FrngPxXeHSrRpLQGir3TUIYlLwFH7ofTQKTH4MOiHvMQIMb0HnI5J1Rs2NzcxNTUFg8GA7e1tnDlzhqPcqMI6lf8hM2Oj0eB8KbENhngOApGWy+VCtVrlaDWRvDKZDGZnZ7mfk9lsRiqV4gRe0TTWjlxoJS9WjSfTJl0Pyl/LZrPsjG+Xk9YJ3ZimOu2rqio2NjZ4ASFWx6D5U9FiMjfdvn0bPp8PmUymxY+kbZhJfbQMBkOLP4iILJVK4fHHH2f/Vz6fRzabhc/nQ6PR4AAF6lpNhFKpVGCxWPhab29vc6QiBfNQknuz+V4ZMFFboMRcMbKOQtupE4Db7W4hrmazyX5K0Rcnaix6fh2995GeX7fbjampKdy+fRtms5lrK9L5LBYLLl26xAu+t956CxMTExwgQ9GZTqcT09PTXFuSKrHovXNa4hHHRlqwmOsVDAZhNBp53mLwjLhvO81tFIhNEtcQ4KgIcxCal3ZVR+Ygv9/PEYVPPPEEFhYWOEk1GAyycDeZTBwpRX4yMhl2Evji5yT0JiYmcPnyZfzsZz9jpziNR1VVfPCDH8Srr77KOUDJZJIFRqc+ZgeZKmdnZ7kFi91uZ+HZLlKv2+ssnuOgbcjss7KyArPZjMnJSY46I0L1+Xxwu92IxWJsvnM4HNjZ2eGOxBQ4kclkOMiG7rPFYkEwGESxWGzxXREajQZee+01WK3WlmjDarUKu93OATdEotRRwGq1wufzIRqNssZKvtNgMIg7d+7ophPQZ41GA7du3YLNZtuXo0f+IfLl0TNar9e5xqLL5UKxWITBYNhXuFbvHdFqNaKmks1mcffuXS4rRlGFVN4M2PPdiaki6+vrbMKu1WrcM21tbQ2rq6ushdL5tO9dJ78n5THSYpC0wjNnzuD8+fO4f/8+dnZ2unrPRgmSuDToR9gP6ryEQZ7/MPPRvjikHe7u7nJJHbvdjps3b8JiscDpdCIajXKgRLO5V/GdTEmKovAqW0si2v9Fs4fP50MkEoHNZsODBw/Yz0TmqEQigYmJCcTjcUxOTiKbzSIWi3FbkGg0yv6EducTzysKh3q9juXlZRbEWiI8DEQBqrcS1gPVTKzVajCbzfB4PLBarajVanA4HDAYDHzNS6USmw/J70UFiElLmJmZQTweh8lkgtPp5FJXeloH3T9KcqZUBKoiT8WRVVVFLpfD3NwcyuUybDYb9/VSlL3Cx8vLy/B4PByJp6oq+7bIvwWghagonFxr+m00Gqwx02dGoxFnz57lZ4UWOT6fjzVrt9vdNjhInL94HUibUxSFq/M3m3slw2ic77zzDsxmM86fP4/Nzc2WgseUwE0VMZrNvcAmOh8F35DWLD4jwHt92uhaEBnSPadIzmazibt378LpdPIzS3MRtVrxmRsljHUH5HY4qZvYq9mpl+P2OoZ2oBwWqls3MTHB+9hsNlSrVeTz+ZZgADIhTUxMYGpqCleuXNlnkmxnIsnlcrh79y4qlQouXLjA/q5yuYx8Po98Pg9F2WuieOnSJRSLRUxOTgIAC0Ba5XczRxKE4jYUwh2NRhGLxdqSltYnof3pdM07QRSgdP0dDgdrgHa7HZOTk6jX64hEIiiXy2yWIhOr0WhEPB5HKpVicycJPrfbjcuXL+ODH/wg+8bEQBwiKe14gD3z4szMDJrNJpsiQ6EQLl26hGw2C6fTife9733wer1MRpFIBIqicDQezcXr9eLatWvw+/1cqUV7X8TrJS4gaJ5idfnFxUWoqgq/34/z589jcnISJpMJMzMz8Pv9eOyxx1rmKP500sK09+uRRx7hLtVEJJVKhaNRzWYzwuEwZmdncf36dVgsFg5iIlIyGAxsnQgGg/D5fPB6vS1jURQFDocDly5dwtzcHMLhMFRV5UR0qtihqiqWlpZQLBaxtbXF7+Hk5CT8fj8vdrrpIj2skBqXDk5K6xLPr7cSP+wx+zmWnrmCPisWi1hbW+N6a2S7JxKLxWL8YiSTSRau+XweVquVzTYHnZvCgt966y3ugEs+nHPnzqFYLCKdTuNHP/oRVFXFw4cPAYBt/NoVejdErkek2moPWjLsBu3uQbv7oygK5/AA7624yVRHgpjMgxMTE3C5XGg2m1heXuaVdTKZ3NcRmUpFUVHhdDoNu90Ok8nEXafPnj2L5eVl9qXRwoG0vGq1itdee62lTBG1oAmFQrBardja2uIIO7vdjrm5ObzxxhsolUoc8EH1GCl3UK+7sWiebFcfksjdYDDwfIhMxMWWqqp45513Dnwn9DQv8XxUFUaMtCVTrlh+jJqaPnjwgANYRA0TACYnJzmidW1tjX2ZIrlQJOaFCxews7ODfD6PQCAAYC/lgczH1OyTfttsNm4+mk6nMTU1xe9KN12yhw2SuNrgpMmLxjBIAut2Tnpkpf2fBEShUIDX6+UovmKxiLm5Oayvr7fk2FDZHrPZjGQy2WIuPMjHJGoPVItOVVXYbDbcvn0bNpsNiUSCzUClUgkmkwmTk5OIxWK80u9Hm+2HnDodq9391F5j+ttoNOLcuXNIpVLst6JEcK/Xi8nJSS6H5HA4sL6+zqYkAl0/kbzpN5myyPxHpZZMJhPOnTuHK1euIBAI4Gc/+xmbFy0WC/dVE89B2gq1jykWi3A4HLDb7byIyGazbDar1Wpctd9gMKBcLnPJIzFQyGq1smZFvivxeupdQ5qL2WxmkovFYqhWq1hdXYXRaOQUB1Gbo/1NJtM+k5pIYBQh6fV64fF4uJeYoiiw2Wy4dOkSFhYWOEHcaDQil8txorXNZsPs7CwikQiSySRbF5xOJ3Z3d3Hx4kVsbGy0kDVdl2QyiXg8jmq1iqmpKe4WQMWGqVSWxWJhDZzSKC5evIhbt27B6XRynqYW2nMOIyRxjQD0hNphjjUozYv+LpfLLKwoLF6sDE8rcGpBf1CwhPacZAqivC9gL8qLqnqUSiVYLBZkMhlecSrKXimhXC7HfoR2gq5baEmlX+j58sTPxc9IUFFH5tnZWSwsLMDv9+Py5cu4d+8el6gCwJoRCR6qHUjH1wokIodKpYJwOIxKpcKRgJlMhgMnZmZmsL6+znUqd3d3YTabMTMzg93dXVitVrhcLtaEaWGTTqdRqVS4ssnu7i4XnSWyovY5sVgMLpcLbrcbjUaDNXYKdadISAqy0LuezWaTidVsNiOdTmNzcxPJZJKJ3+VytZT6CgaD3PeMSI9ayORyuX1dpGnhYbfbOWLQZrOh2WxysvGdO3fY/OdyubgaCPVVo2eactwot0tVVW6fozXRis/G2toa3ve+98Hv9+Odd97h5pOUIC4GExkMBjzzzDPY3NzkxHq9gsWjBElcbTBIshgEBql9dUNeevMX91OUvT5CzeZ79fPcbjcXM6Uw+LNnz8LhcLAgPCiEXM9ER+fTmmyovA9tY7fbWXgUCgWu1qDn0O8HB2mG/RxLT/MSPyPT09mzZ/H222/j4cOHMBqNyOfz+Pu//3s0m02cP38ea2treO6559BsNrGysgK3243nnnsOMzMz+O53v9u2iaZYh5BynXw+H/sHo9Eol8KiROZiscg5TKSFUWPIs2fPolqtYn19nRuCUhQp1d+jyvNXr17F4uIiL2yI6JLJJFRVhcPhwJkzZ7C2tgaPx8OCeGlpqaUnnHhfKYCEBD8Fq4jkQ6a9RqMBi8XCRZSJXK1WK7LZLCYnJzmlQEw7oHOUSiVEIhGoqopSqcTVZKiJJ4WlK4rCfklaWGWzWezs7AAAR9oCwNNPP42HDx9yN/FyuYx4PM75d16vF9lsFoqisLY2MzPDDTrj8Tjy+Ty8Xi82NjZQLpdhNBrx9ttvo16v8z0Rg15GEZK4RgztVuv9HKdfgUumEr/fzxUM7HY7zpw5gzt37rSUIyqVSpiYmIDBYMDGxgZHcfWq+Wi310Y6+v1+AODSR9FoVDdBeFDQG89hrqfesUlQAWCTGkXtLS8vw+FwYG5uDktLS8jn8/jJT36CYDDIgrBUKuHu3bv7Vu3t7v3Ozg6mp6fZ1JTL5VCtVrnRI4EEHvmKSKuq1+tYW1vjWoROpxOBQABbW1scJk8RjcVikUt1URQchbEDe0EfRFY+nw9WqxWhUAiJRIJ9e9rkchoblRIjs6Y29YJ8SgbDXvPG69ev40c/+hE8Hg+uXLnC2iS1GRHztEQUCgVUKhV4PB4Ojrhw4QLP1+/3o1KpYG5uDmtrazAajdzd2GKxoFAocFAJldC6ceMGlxqj60/J1NS8kxZj8XgcVquViTUQCLDPzGKxwOv1MpGVy2XY7XbOA9Q2QB01SOLqgGHwc+lhkOTV6RidvqccHaoar6oqVldX2aQD7AmfZDKJiYkJ9jUcxlzXblsK+PD5fOyM7sYceRhTYadj9XJPDroHpOWIvkFgb1FgNptbOkvH43FO7gWAhYUF9jHq1Wuk84r+KTqfzWbjiD/gPWFJ29dqNayvr3MpLwpESCQSHHhAOXZutxs7OzvIZDLs76RwfjF6UUw8rlQqiMfjnFScz+exsbHBoeJEWiK05Y30kqzpOzHogfKyGo0Gtre3OZF7cnKSzdPtFiZi9RW73Q6LxcLa287ODjweDxKJBK5du8YpAFRj89atW8jlcuxvozHUajU2UZLpk+6B1WqF3W7H1atXOWqx2dwroEz3GQDW19c5ArVer8Pr9bZovWTSHFXiUpojOPJMJsONCY+aWAYZ2XcU0Ms1Ocxx9KANmSWNi+z3Tz75JGKxGCwWC5aXl9mfRCvecrkMv9/PnZAH9cJoTWpkXiLhq3eeQZ+33fe93g+9a0zCVfytKArOnj2L+fl5LC8vswZy/vx5vidvv/02H4dasogBKto5UKTi9PQ00ul0S6h9NptFKpVq0bjoWhPh0PEokdbpdHIuF/mRqFyVzWbD5uYmMplMi2/IaDQimUxybUEiFwpsoC4AVNhWLI9E0EYaHnTvaR4AONiHCkNT+S+qfUgdiSkvjvYnUyCR9dmzZ/n5CwaDaDabePTRR3H16lX81V/9FeLxOCdDf/KTn8S3v/1tNrFvbGwwoWhzBekZIBOt2P3a6XSiVqvBYrGwmZ56ya2trbUsWOjYnfK4ejEhHsbcSOdMp9N8f7uF1LgOwLD5urTQvoz9jrOTdilGeBFIuFSrVUQiEe42K7b6oHwWYM/UNegVnnhvGo0G55DpVeUY9Hm70b4GFUwDvNeQUFEUrK2t4YknnmChX6/XEYvFEAgEWhJXAWBzc5OP1S4QhOazvb3NgqhSqUBVVSYSkThJ8ImaGpEQmQhJO6CE3cnJSXzkIx/Bj3/8YzaNNZtNjswzm83sNxKJp1arwW63o1KpIJ/PM5GIc9Le53b3Xk9DEwNJKGTdbDZzmDnluz366KMwm8344Q9/2JLMS9ecFgakhRL5eTwexONxLCwswOFwcApINBrFH/7hH3L3YzKh0lhEkhHnSvliFNAiFlSmqN16vY6VlRUmv14JfRQgieuUYBDmw04CVxTW4kuVy+W4MjnZ17V+Jb0XpZ+XpZ0mI55H1AyOEocxs7bbvtPcgPf8ebVaDW+99RYikQhf71gs1tIwUbzGYrK3nobebO6VMiLtQdR4xHOL2pXeeEnrKJfLOHv2LO7du8fjm5ycxN/8zd9w1CGNMZ1O49y5czw3KiBMUFUVjUYDHo8HXq8Xq6urbBLTzqGdUO7GVExzpnw2r9eL8+fP491330Wz2cT29jZMJhP7kcrlMqanpzkwhbQ30s7OnTvHnQei0SgKhQISiQSy2SwsFgump6dhMplw+/ZtbppJfim3281FnsVxUvoApXxUKhWuWk/+rEKhwL5FsZSWeH1Gkai06Clt+vd///fx+OOPw+12c9TS//2//5e/bzab+NrXvobp6WnYbDZ85CMfwe3bt1uOUS6X8YUvfAETExNwOBz41Kc+1RLmPIwYpRutJY1+j6H3md7KllbYFAxgs9laNB6R5A5bKkl7HG2E4km8lJ3OdxQaJl2DpaUl9l+Q5pBIJFrqQBIOWkRotyNi0SYsA++ZrIg0SGBbrVYYjUZsbW0hGo0iGo1y4m+5XMbt27extraGlZUV1hYAcCL666+/jq2tLa72TveXtLl4PI5arcZVPURTKuULaolUO+9Ozw5tbzKZ8PTTT6NWq2FlZQV2ux1OpxMAWvKtKDJQURSEw2H4/X74/X7WgKm8FiWGkwYkRmDeuXOH0wDi8Tg8Hg8mJia4Cow4B3GhSOZGukeZTAb37t3jYI5r167tS4E4Cm3rJOViTz6uv/iLv4DRaMTFixcBAH/0R3+E3/3d38Wbb76JRx99FF//+tfxH//jf8S3vvUtXL58Gf/hP/wHvPrqq7h//z5cLhcA4F//63+Nv/iLv8C3vvUtBAIBfOlLX0IikcCtW7d0C3vq4Th9XIRh93Xp4bBj1ttXG5ZuMpkwPT3NeTLiy9FOWB412o37OM8nopuyOnr3StxP/E4U3Np9tBqV3n7t/hbJSO9/Iihg756Sz4XGSRGCAFry6VRVRTAYRDKZZFMmBdE4HA7WskQzr7aqv+jvokARIgIKytnd3eX9taTV7hnUXkuz2Yy5uTlu3WM0GtlMSaXLyH9KY7p06RICgQC3KqHCwsViEcFgEF6vFysrK5iYmOD+Y5RiUCwWW9IFfD4fN8qkAAvteOl+GI1GDm2n4A4CXWdtwEo3xNWt3+qwCzPatx8f16GDM/x+P373d38X/+Jf/AtMT0/jxRdfxG/+5m8C2NOuQqEQvv71r+PXfu3XkE6nEQwG8cd//Mf4zGc+AwDY2trC7Owsvve97+ETn/hEV+c8CeKic40aeQGHC+Bot49oNqKXsNPKftgwqKAW7fHafddPQIdewIbe9gcRmDYQo93+WqKi7+h/m82G+fl5DvYwGAz46Ec/irfffps/E30qtB+1HcnlcvB4PIhEIlxhnxKMqaxXs9nkSEWtn4c6XwN7cmdrawuVSgXz8/PIZrMtplMxOOegZ1EbCDMzM4MzZ87AYrHA7XZjbW2tJcWANF3y73m9Xly6dImTq+mdmJychMPh4PD4Rx55hAsf7+zs4MKFC3C5XPjpT3+KbDbLeWAUPaqNnBTHSdfN7XYz0VNwC72HB5F3N5aVTjhJ4uq7wmK9Xse3v/1t5PN5PPfcc1heXkYkEsELL7zA21gsFnz4wx/Ga6+9BgC4desWqtVqyzbT09N47LHHeBs9lMtlZDKZlh+J7nEYM1q7/UTzAyVpDspcp2f+G7Q5UBSKR21iPIpj65lt223X6fzdEjf51qiBotlshtlsxltvvQWn04lwOIyZmRn289C1JWFbq9W4gzAl/5LApSi42dlZmEwmzM/Pt3RqpjlQXUAA3M/NYDAgmUxygd9gMMgh/NrrdNC1JC1yd3cXDx8+hMFgQLVahcPhQK1WQyAQQCAQaNEKKeT/zTffxPr6OmtOTz31FFdzIV9VoVDA2toaa11bW1u4ffs2k3ilUkE0GuVO4nqmcLoXlJiuqiovDijnT+89GaSJcBjQc3DGO++8g+eeew6lUglOpxPf+c538MgjjzDxhEKhlu1DoRBWV1cB7EWWUetv7TaRSKTtOV9++WX89m//dq9DHTjEB2cUcZjx6+2rfTEOc9yDPtPbRquB9AutlthPxeyD5t/v9en2nNr708v5DtII6TsxBL5arXIrFDL1USIyaUgkSC0WC1wuF5dz2tzc3BfGTrloZrMZ8XgcLpcLhUKBzXPiHKldDQAeB9XqI9+T3rXqNDe6Xn6/n4nh4cOHCAQCyOfzSKfT3L9Ma0qjsZP5jhqcUjUMsVo85bFVq1UOuadrKjZW1fMFU1Qh5eZRq5ZgMAiXy4UHDx7AZrPptvDp5lqMEnomritXruCtt95CKpXCn/3Zn+FXf/VXcePGDf5e+wJ08wIdtM1Xv/pVfPGLX+T/qevtSeA0kBdd736JphN5EfSeg0Gj07kPc39IU6BjHQe6OU+/5KglZG2AhZ6ZkT6jMHeDYa85JyUC0zEzmQysViuq1eq+TryNRgNOpxOhUAgLCwtsGtSGtDcaDYTDYeRyOS7BRIEmoumRxkSFaiuVCiYmJmCz2ThUnppaUgDIQc+d9hnKZDI4d+4ctwNJp9NcwHlra6tlLOJ1Et8pVVWxsLDA10I0iTocDvj9frz11ltcoPratWt48OABd5TWkhb9TQRvt9vhcrkQi8WgKHs1E8lXJgZl0O9OJKa9FsdlJjwseiYus9nMwRnvf//7cfPmTfyX//Jf2K8ViUQwNTXF20ejUdbCqIhnMpls0bqi0Sief/75tuekVuASg0Mnkul234OE6ElBb6V6Esc4DPo930HkRqt2r9eLXC7HWgHw3spf67/0eDyoVqtIpVJQFIVNX1Q/j4IqtPUQqTYlVUYn054Y9agoe6H1CwsLsNvtHBq/vb3N89FqXMlkkkuNAYDH40GjsddMsl6vM3F1o2mIxENm74cPH6LRaHAgCpFiu33pb6p5SMnXpEERoVFuG5U9o4ogOzs78Pl8UBSFtcV2PqlcLgeTyYTLly9zR3GqX/noo4/izp07fZHWqOHQXcSazT1H6Llz5xAOh/HKK6/wd5VKBTdu3GBSevrpp2EymVq22d7exrvvvtuRuIYNJ73aGBQO6zca5uswKJ9YL8fo9zyDJMVOgooqZJjNZly6dAmNRoPNf0ajkUPL/X4/wuEwwuEwAoEA/H4/MpkMR9dR4qtoEqM2G9rrbjAYuFtAs/lePUJtYiyw1+16a2sLd+/eZaIQTWe0rWhSSyQSuH//PtbW1vg8u7u7+9rmtEudEO8t+ZnK5TKq1Sp2d3extrbWMmZxH6PRiJmZGe4yTK1DKpUKLBZLy7i9Xi+q1SpisRii0Sgfk5LHafxUrkxLPuI8EokE3njjDS7zRI0kyV+m98we5fN7EuhJ4/p3/+7f4Rd/8RcxOzuLbDaLb3/72/i7v/s7/OVf/iUURcGLL76Il156CZcuXcKlS5fw0ksvwW6347Of/SyAvZXR5z73OXzpS1/iF+LLX/4yrl+/jo997GNHMkGJg3EY7Uvcf1jNp4c1j4rH6Mf/RfsDnc1yRwU6h9FoxPz8PJrNZksDQe2cSCMjv3MikWiZg/i8lMvlffUARTNkIBDA8vIy76c1g5GmMj09DZfLhZ2dHWSzWY6OE7dvNBoIBoMol8twuVzIZDLI5/PcC+7MmTOYnJzE3bt394WBt4N2LOKzQsSiNQlSwV0KzQfA5a7K5TIHoFDV+2aziXw+z1U0qNFjs9mE3W5vaf3TKVhI/Jx6khEosbtf0ho19ERcOzs7+JVf+RVsb2/D4/Hg8ccfx1/+5V/i4x//OADgK1/5CorFIj7/+c8jmUzi2Wefxfe//33O4QKAb3zjG1BVFZ/+9KdRLBbx0Y9+FN/61re6zuEaFgy7sO4Hh53TsF+TQYxPr/xVN2hHUMfpQ2s0GlhbW4PVasX8/Dx34hUrZTSbe7lF73vf+6AoCra2ttjvIkaOisSgDbEnTU5RFNY+aHutBkW5WZlMBtevX8f9+/f3kZYoiKnbQK1Wg8vlwvr6OmtnGxsbcDgch44U1SMzvd/U+iUYDCKdTre0YqEuCTQPMXBFvE5U9b+bJOGD5qO3XbfXYNTITRbZPST6XYEPMwYVmHDS96YTDqvptLvv7Y6pd75Ox+h0nIO2E4mE/qdtbTYbLBYLLly4gLW1NUxNTWF7e5uFKpVt8ng8sFqt2NnZYdMcaSCimU8ELT4VRYHD4UAoFEKjsdcIk4I3SqUSE43ojzObzZifn0cikUA0Gm0JlwewjyiJcClsXLwmB1Vn6eYeiddO+52YAOxwOHD58mUsLy9zk0uPx4NwOIw33niDgyUURWnpc2a329m82imVpBsC7kR23aAfku82Sfmg8wKyyO6JoN8V+DDjsKbDQR/nKDAI7fIwc+qF4Ho9RrttKNjC6XQiGAwilUohm83C6XSiUqlgamqKqzX4fD7EYjFYrVZODPZ6vUin09xJWHsNyYxGTSkDgQASiQS3v6HOv0BrOSYKBac2J9oxi4KVyEw8Vr+aRi+RnNr7TZGZRPy5XI5NpqVSiZOjaT8idUoRAPbyugC07Y11EKG008RGUBfpGZK4BoDTSF7AYHxD4rEIw0JihyGvXvbVXr9+n5VeiUr7Pwlbqghx7tw5PHz4EJlMhisvUBULqrdnt9u54nggEIDP58PDhw9Z6IrHNplM7BMqFAq4f/8+522S+dBqtaJWq7UEEQB713N9fZ1Jjz53uVyc76T1d4noRWvo5d61W6BQMAtV6xCbloqllkTSowCOs2fPctI0NY2k5pbdzGXQhNXrfsNAjKdP2p4QhuFmHhXamTEOc7xhgV7AQC/79gIijk7fd0tOesfRmrrEv41GI86fP89RhHfu3MHGxgb7n8vlMvL5PJdVstlsOHfuHOdmUdi2XuQaXYdz585BVVWYTCbWvMiHFQwG4fF4uBuvuB+ZHuv1OqampjAzMwOj0chV1L1eb8t10WpWenlP3RR17uW+i2ZCg8EAt9sNh8OBYrHIlS9E86Z4fgC8MMjlclhcXORSUaRlimPvFJjRzn93XKQ1LJAa14Aw7IEJh8Wg56d9YU76uvU7v25Mhgf5DLshLD1CancM+pt+aJUfCoUQi8WQTCaZ/DKZDGq1GoxGI4rFIqxWK9xuN5xOJyYmJpBMJqGqKnez1hKWOBaKqJuYmOA2K9SuI5/Pc0Sdno9MURQu7ZbNZmE2m7mcE+WSUZ6WqHHo/a3FYbR98ZqKvi3yV2nLz7Vb5JH2Wq1WUSgUOI2ASmS1m0M3gRmHIS1JXBKnnryA96pKDHqOw2BKPKzfSgs986A2tFq7Xafj6Pl/9EyDZG4jsx1FryUSCW7ySLUDd3d3Odn2qaeewjvvvIPl5WXMzc2xZlUqlWCxWPChD30I3//+93UrjptMJuTzeXi9XoRCITYp5nI5/u10OjnXShtQAYC7+yqKApfLxWZFg8GA7e3tfVpVN6Qlbq93X7q5BxTUYrPZ2BdH4e8Oh4NNmXpjazQasNlsePLJJxGJRJDNZhGLxVoKEYtRhSK6CYA4buIZFrKTUYUDxlEI9WHEcczzJK5jP/PSi0ajvykCLhgMIpFI8IqdElAPOq72HNrP9L43m80Ih8O8ui8UCpxc7PV6UavVOAlWJGuq96eqKvx+P4LBINbX19Fs7uUhFYvFlorlWkKl8lDPPPMMCoUCtre3ef9mswmLxcJFdbVEQn3dKOrx+eefx/b2Nubm5vDqq68iFouhXC6jUCi0jKEfQdpuAdCucj5VbZ+dnYXP58P6+jpKpRK3FVlfX+exiMnKwHv+b5PJxJqmmBxN23QKNNHDYcV2vwR0FC4DGVU4BBgHrQsYbOBGp3OIOI5rOqj7JxIJkcbFixcRi8W4tQdF6/V6PL3xiec6d+4cpqamEI1GUS6XeVVPBV4B7BP+AJjgSMhSG48zZ87A4XBgcXFxn9YjgipPvPPOO7h27RprFiSYqV+bHprNJleBcDqdWFxchKqqiEajXNqJKsYfhrTaga4dJRdrr2ulUkEqlcITTzyBaDQKYK/0VCqVYrKfnJxEKpVCNBptMRlSsIueGfGo5nMQRlBfaYEkriPAuJAXcLxzPS5zYq9z0poYtT4mUSAajUb22Whbs2uhXfXb7XZYrVYuS6St6qAoe/lTqVSKBer09DQePnzIRCWWS9JDo9HgVvJWqxXJZJKrbFBwgN4YCWazGc1mE0tLSxy0oPWLiddXe52IpKjI7cLCAi5cuIBUKsXJunTNDuvbEQNcbDYbLly4gEQigVgstm8fqsX4wx/+kMeoKAqbXo1GI0cG6mlP7fxXvZLWSWlagzr/oCCJ64gwaH/JMOMk/FNHfc7D3j8SxNPT09yzyW63o1wuY3Nzk0nnoGPQb0XZ67l0+fJlOBwOvPbaa9z9lzQVilSbm5vD+vo60uk0UqkUB0S0E6DaeSeTSXg8HjgcjpYEWb2xaUm+VCpxIe12Alw8FwDWWKxWK8xmM1KpFC5cuMCtRLLZLKamplqqz+uNu1uIY6e/qXklNXQUj0dBGUReBoMBV65cQalU4hqEdK2pYog4rnbzPm5Na1j8U4OADIc/QpyWh6QbdCMUR+3c/R6PmvxZrVb+e3JysqWduhjk0u4HaNVKisUi1tbWsLW1BZ/Ph4sXL7KWYjKZYLFYYDKZmLympqa4K7H2GpH2pP1pNvcqpMfjcSwvL7doaJ3MhOTDmp6exnPPPbdvGz2zIv1Uq1WcOXOGW6BUKhXcvXuXfUmqqiIWi3Ho/mHNa9rtxQWGw+HgUPypqSlYLBbWmKkArs1mQy6Xg9lsbjkGsGdu9fv93M2inZbVj6Z1WE3psO/HIKplDApS4zpCjJPJkHDScx7k+fs9ltFo5CAIp9MJn8+HnZ0dnD17FhsbG/ui0NpBJDCz2QyPx8MmrkAgAKvVinK5DLPZzLXyTCYT4vE48vk8tra22s5LT4hpP6/Vam3nrudjA/ai7O7fv88ap9jbTKtp0N/VahV3796FoijY2Nho0RABYHd3t2V8gxDC4v4ej4drDsbjcfZHUpfnRCKB+fl5rjpPASYejwfT09PI5XKcsA2ACU57rk7+rW7HKrEHSVxHjJMW5CeBYZjzoEyJ/cyl0Wggm81yyDT1WKJkXK0pqt25tL/r9Tp8Ph+mp6fZtJZOpzE/P4/t7W1Uq1XOodIGfnRjIuz0vZZ8tJ8D4GaJ1OSxVCpx00faTwxSoGslolOF9EFr1WQqLJVK2NjYQDweh9Fo5KaW5XKZ+2pls1lYrdaWIsF+vx9erxeFQgFms5kbWVLrl05jP07rxKCJfhggiesYMAyC/LhxEn6vdjjs9e/V31Wv17mK+fb2Nnw+X0sbdwAszOnY7XxepHXVajWcP38eOzs72NnZgclkAgBMTExgdXWVIwapkvvExAQuXLiAu3fvtoTd6wmxTiYgUVsQNUDxmpIZbXp6Gpubm3A6naxp0XcOhwP1eh2ZTIZbcnTrA9P+fdD37bRBPTQaDeTzeSjKXidho9GIUqkEt9vNaQu1Wg0bGxuYnJxEtVqFouzVfMzn89wU0uPxIBgMYmFhAclkkvPoOo3/IAyKbIaNdAYBSVzHBEleJz/vw9yDXsmr0Whgc3MTqqrC5XKhXC4jkUiw36vZbLLWRFUp9IIgxPGurq7CYDBwhXHalpoXlkolHmuj0cDq6uqB7eu76VvVad6UN2a326Eoe4m68XgcpVKJK3JYrVa4XC5MTEzgpz/9KRRF0Y021BtDu/8P0h57mQdtn8lkYDab4XK5YDabW4rg1mo17OzswGKxYGJiAoqiIJVKsWnW4/Hg7t27cDqdmJqaQqFQ4CLGR605tpvToM5xnNpht5DBGceIYXwAjgOD8ksMCv2ufrvdT6tBRKNR1Ot1rnFHtfzsdjvcbjeXNxIbMAL7E2FTqRScTiceeeQRFAoFbqJIVSYAsA8mFotx3lS7Yx6k0bSbjxZkIvR6vVBVFYFAgAvKEjEXi0WsrKzsy/vrNAY9zbCf54j2adeOhb6v1+swGo3IZrPY2triPK1SqcT3y263I5FIIJFIoFKpYHV1Fel0Gna7HaqqIhKJIJPJ8H56qQfH4dcalnftqCCJ65gxTAL8ODGM5NWPAOx1G4/HwwJvbm6OezaZTCaEQiFcv34dPp+vhbzE/ln0Px07Go3i5s2bbBosFotcSkgcQ6lUajFVdUoU7/eeKMpe5XODwcC5TLlcDiaTCaqqwuv14vLlyxxEks1mYbFYEAgEoKpqR0LUEtogI9o6+dAee+wxqKqKRCIBo9HIkaBU/eTMmTMoFotwOp28ICmXy1hdXWWtudFocJURvXN3wmHfkUFfKzrmsEGWfDohHGXFiWHHMM692/G0G7teCLvdbsfVq1c5l4pMerTyp4K05XIZyWSSfVSieU97TKPRCKPRyCa6UCiE3d1dXt2LwQNaU5wo1LrN69Kbo/aHxkQaFgA4nU5Uq1XY7Xbkcjn2HZ09exYzMzP4sz/7M+5XdZCp8ChFlDYAxmg0wuVyIZfL7SMAul9ra2twu90tlUZcLhdqtRoymUzLPdar69gOg9CyBn2tjvL603FlyacRwjj6vAj0MgwTgXV7P9ptp+cDq1QqWFlZgaqqcLvdOH/+PNLpNBwOB7LZLHZ2drC2tgZVVfHoo48iFovB6XQiEokwsZBWozWv0f9EdFqI+4n7Uhdio9G4r6dWOyGlF+WozTcjUxsRtN/vZw2Lek4Vi0Xcv38fKysruoELJ+ULot9ikrEeqHI9AKRSKV5AKMpeUeBSqYRyuczEpdUaR4206LjDCElcJ4hxJi9gOOevR0D9gIiDItUoCs3r9SIajTLhVKtVLnq7vr4ORdkrI0SCyGw2cwKueGxgr8mi0+nkiEXRRyYGelAB20ajgfn5eTx8+BAulwurq6sH+q+014SCSyi6TjRver1ezt1KJpNwOp340Ic+hNdff52bLZpMJiSTSbhcrhbSPSrS6nQMvcWHnqbb7nikNSuKgmq1Cp/Px6W4tO1O+h1jt/uOE2kB0sd14hgmv89JYBjnftCYDrpnorBLpVIoFotoNptc0shgMMDj8eDDH/4waynr6+vI5/PI5/NoNBpwOBy4cOEC50SRn0tVVTgcDjgcDo7O83q9bK5zOBwIBoOwWCz8Ge07OTnJ26dSKW5i2M0z2Gw2uQ+VzWaDyWSCyWTC448/Dp/PB4fDgVKpxERN415dXUW5XOYWJSaTCT6fD9evX2/xc/VyfQ8aZ78/esfRqywifk+5XdTXDIBuzcJBz1M713GD1LiGAMOoeRwnjqrH12FwkObV6Z4pisIlf0grcTqdSCQSHFBRKpXw+uuvw2q1olgsIpfLtdj8S6USwuEwTCYT+1JEzSYUCiGdTiOTyaBQKLBW53a74ff7W4IziLhqtRrm5+dht9uRz+dx5swZ3Lt3jwVuO6e+mEuWyWTg9/vhdrtRLBYRjUY5FJ80SGDPH+RyubCysoJ0Oo1YLIZgMIh79+7BZDLh9u3bXPi3F5Nap/vR6356ZAW8d70OOk+z2cTGxgaA96I+f/7nfx4//OEPO45rWDUs7XmGmRAlcQ0Jxp28hnH+B42p3feUz2QymeB2u5koSFAXi0Vu5nj+/HlkMhmsrKy0lEeq1+vY2tqCwWDA1NQUtre3ubdTpVLZVzaKahZaLBY0Gg34fD4mS6vVylrY/fv3Aexpgjs7OweSljhPGp+qqkilUvB6vVw4mFqaNBoNJjWr1cpdfkulEra3t1GpVLhwrzZvrVdheVTCla5FO3OheH4xcbzRaOCv//qv+e+jIK1hJpPjhCSuIcIwCu/jxDAGbQDd+73EYIp6vY5AIIBSqYRMJtPSyHFrawuNRgOlUolNadqmkhR+XSqVUK1WEQ6H2c9FzRRNJhNqtRrsdjucTidX66DgB4pirFQq8Hg8iMfjaDQaMJlMHOZN5rB289H+n06nW0LeXS4XQqEQ+6vsdjtmZmawuLjIZajIdEg+OCLtfoX6cQlwbeAGoP9uarWgUdWy9M45rJDh8EOIg1Z644BhIy+g/f3QRtl5PB6EQiF4vV5sb28jk8mwbyqbzXJ5pKWlJdZ4xPlSJYpAIACn04l4PI5qtQqv1wuTyYRUKgWr1Qqn08maTSAQgM1mw+3btzk0nsoViWHZ09PTCIfD+OlPf4pCoaBLXO2IgcZHBEQVMYrFIorFIhfltVgs3GuMNDSn0wmn04larYZEIoFisajrM2qHYdM2OhHYQZ91i5MgLDrfcS4MZDj8KYH40Ayb8D4uDKP21U7z0t4vg8GAWq2GBw8esDbldrthtVqRSqVQKBQQiUTYdCgm8lJItphgTPlOVDuPqpZTvUJFUZBIJNgX5na7kclkeCxiYEE0GsXi4uI+DU+cSzuhpTUZUkQkBZQQAVKYPd07qpreaDQQCoVQKpU4YKXbcw4TaQHdBfAc9vgnMedhWyC0g9S4hhzDJLhPCsN2DQ5KQBarXYjfmc1mVKvVFh+KuI/WpEZRgVTvLxQKwWKxMEE5nU7Y7XZUKhXuWry1tQWz2YzNzU2YzWY4nU5sbGxw6w36EX0wNJ5ehRaN/6D9bDYbb0f1GWOxWMcSTqMiQEWMonalxXH23JIa1ynGuPu9gOG7BnqalzhGMXmYBDYAroouJu0SSTkcDlgsFq5UTp87nU4mm93dXdjtdthsNlgsFthsNpw9e5ZNiZOTk3j48CE3rwSAq1evIhKJ8DHJN5XL5Vq6CXej9XT7uRbivA0Gw7G2LjlKDGqcwzLnYRhDt5DENQKQpsPhIy89iGPsRggQyVFE4OzsLDY2NmC1WplUJiYmUCwWoSgKdwPWVsqwWq1IJBLIZrNMcBThVywWEQ6HOUiDit4Ce5YLvXp6gxZgojZBHY+10YRHde5BYpBjGxYNS8QwjeUgyATkEQGtykbp4Ro0hukadNJCtIJaO2ZxHqR1+f1+rKyscPt6aoVCJaMoMENVVaiqCr/fj0qlgs3NTa6cQe3kr1+/DpvNhkqlgp/97Gccan/p0iXY7XYEg0HMzMxwW3rtmDvNS5uQ2+lHnGO7JN5+aiYeF7T3aVDH7LfK/VFimMbSDaTGNWIYBc3jKDFM2me7YA297USIpkJK7F1cXITVasXMzAx8Ph9UVcXOzg4ajQaHsZMW5XK5EI/HeV8KtKA+XfF4nHOryJcEgKMMi8UiEomEbh5Vu/H3I9gOirI7amE5TMJ4GDUsEcM6rnaQwRkjjE4Z/uOAYUkbaHf+TvdHDMwg34/NZoPP54PFYuGKGBSVZzKZuLQTlU1KJpPweDyw2WyYmppCPB7HgwcPYDQaAYDLMFHeGPm+qJZeJ18TMFjfy1FoGMMsukbF/Akcb0CGCBmcMaYYxlJJx4lh0b7aaV5EFu32EfejxOB0Os2V26nqOJFVs9mExWJBrVbD+vo6HA4H0uk0dnd3EY1G8f73vx/xeBybm5sIh8NQFIWbVlI0I4Xqa0127cZ32OvS7vj9HmvYMeyalRajMk4tJHGNOMbddAgMxzVoR14HmRNFwZFOp1uIjso7zc/PQ1VVrK2tcdUKq9WKyclJJJNJAMD169fx8OFDpNNp1Go1JJNJhMNhbG1ttVTIoD5TR6VpHUbTGFUhCgxPZGAvGMUxEyRxnQKIq/dxJbBhuAZ6JNXNuEh4iFoQRSZSIVuqIk/5Xs1mE9vb2zAYDEilUvjJT37CxW4bjQbq9TrMZjNcLhcnI2ubG+oJrn6E2WEF4KgKz1HTrk4TJHGdIgyL6ewkMQzalx4OGpf23olklkwmW5KYZ2dnkc/nsb29zSWW7HZ7iykwnU5jdXUVjUYDRqMRoVCIGyFSJY6DxnHQXLrdvp9zDDNOA2GNsrYFyHD4U4dhDS0+Tpzk/Dudt9txacPFxYoX5J+iqEDyfymKgsnJSVitVt4ukUjA4XDA6/Wy9hUKhTiPS4tunPT9hoiP+nMphvWP8jwIoz5+SVynFKfh5ToMTlJQ9ktenfxNYgTW7du3kU6nUa/XYbFY8NRTTyGfzzOpUbSgqqq4cuUKpqamYDKZEA6HYTQauQRTN2MWBba2HX03GPXnsF+iHmachnlIU+EpxribDk9y/p2CMjqNi/brFKkIvBdqn8/nEYvFkEqlEI/H0Wy+1yOqVqshEolge3sbTqcTlUqF24/oHVNvnIMI0hhFnCaiEnFa5iWJ65RDNDuNa/DGMARuaNGOvETC0iMvMfdLVVUYjUbcvn2bE45JK6IQ+Lt378JutyOZTHLnZa/Xi0qlwhqa3tjGkbBOg++qE04LaQGSuMYKUgM73sCNg0LhaRugPXlR8MXZs2exvLwMYK/JpMViQSgUQqFQQCaT4f1E0x51Pjabzbh//z7q9ToMBkNLqxTtWGR04OnEaSItQBLX2EGS1/FqX/2Ql/Z/h8OBUCiE9fV1NJtNTE1Nwe/3w2AwIJvNsvalKAoTUqPRQKFQ4JB56jhMOV1aQXaY6gmjKhBPmzBvh9M4T0lcYwpRgAPjR2LHqX31q3kRKpUK1tfX4fP5kMvlEIvF2E9Vr9dhMpkQDAZRLpexurraEkxBRNaOpMbNLDgO2pWI00hagIwqHHuctoipXjBsc283FovFgg984AOw2+2wWq0IBAKo1+t49NFHYbfbYbfbEY/HEY1GW46jF7o9rqR1GqMDD8JpnqskLgkA7+UMjRu0Qv4oz9PLeGh7s9kMo9GIhYUF2Gw2lEolTE9PIxwOIxqNIhAI4P3vfz+sVit+7ud+DoFAoGV/8fc4ktY4EtY4QJoKJVpAhXsBaT48iuN32waFSjTVajUoioJ79+6hWq3C6XRiZWUFs7OzcDqdMBgMuHv3Lmq1Gh48eMDdhsX5aIV2v0J8lAT/uJkEtTjtRC2JS2IftA/8OBHYUQdv9EpelUoFW1tb3PrEZDLB7/djZ2cHwF5CstfrRTweRzabRbFY3KdxjRNpnXaB3Q3G4RpIU6FEW4yzmeUo593NccVtKNCiXq9jZ2cHd+7cwfnz57GwsIBKpYJoNIpyuYxAIIDJycmW6MTDktYo3PvjMveOAkbhfg0CkrgkDsS4EthJz1lPcyLz4d/+7d8in8/DarWiVCqhVCoxiemNu9d5jMq9Pul7NEwYp+sgiUuia4zryrZdhN4gjtuN5qX9m347HA44HA4AeyWgtra2UC6XOVerl/O0O+ewQXwGx+057IRxIi1AEpdEnzgqYT7MOCrN86BjidGAJLANBgMuXLiAZDKJCxcuYHZ2lovrnnbSGuYxngTG8ZrI4AyJQ0F8YcYliOMo5nxQRKMY1NFsNlEul3Hz5k2u9L60tNS3eXCYhd44CuVeMK7XRxKXxEAgvkDDVMz2KCFGIAKDIbF2BEbnoqrwjUYD1WoVjUaDaw/2mqc1rAJv3EPZu8GoE9Zhxy6JS2LgOAqBPszQvoRHSWBinh1ts7y8vC+Qo5fxDgskYXWHUSetQUASl8SR4SgE+jBDFLyD0jr1CEy8rlotq5tjDRukIO4e8lrtYeSJS1zZSwwntAIdGA8SG6TptJ1frZMQG1YBJzWr/nBaSGsQcxh54pIYLYybFgYMfs6jKrwkYfWP00Jag8KpIC6pdY0etELstAd0aKP9xLmexnnr5Z9J9IfTVPx6UM/CqSAuQJLXqGPcAzoIozxvSVaDxWm7hoOcz6khLonTgXE3JY6aBipNWEcDeV0741QRl9S6Tg/0TIni79MOreDSzvu4roOe8JQC9ehwWglr0HM6VcQlcXqh9+CPC4kB/b343bZPGfR5JfrDaSWto8ChahW+/PLLUBQFL774In/WbDbxta99DdPT07DZbPjIRz6C27dvt+xXLpfxhS98ARMTE3A4HPjUpz6FjY2Nwwyl5fwSpxdivbpxLrQqXod2P3R9Ov0cdAyJ48Fpfo6PYl59E9fNmzfxB3/wB3j88cdbPv+d3/kd/N7v/R6++c1v4ubNmwiHw/j4xz+ObDbL27z44ov4zne+g29/+9v4wQ9+gFwuh09+8pOo1+v9z0RibEFCWgpciVEDPbsSvaEv4srlcvjlX/5l/Lf/9t/g8/n482azif/8n/8zfuu3fgv/7J/9Mzz22GP4oz/6IxQKBfzpn/4pgL2OrX/4h3+I//Sf/hM+9rGP4amnnsKf/Mmf4J133sH/+3//byCTkoJrPCG1BolRwbg8n0c1v76I69d//dfxT/7JP8HHPvaxls+Xl5cRiUTwwgsv8GcWiwUf/vCH8dprrwEAbt26hWq12rLN9PQ0HnvsMd5Gi3K5jEwm0/JzEE77AyHRGXomMwmJk4bWOnCacZTz6zk449vf/jbeeOMN3Lx5c993kUgEABAKhVo+D4VCWF1d5W3MZnOLpkbb0P5avPzyy/jt3/7tXocqIdECIq/TnvwrMZyQi6fBoSeNa319Hf/m3/wb/Mmf/AmsVmvb7fRaMhwkIDpt89WvfhXpdJp/1tfXuxrvaV/RSPQHaVKUOE6Mox/rqN+nnojr1q1biEajePrpp6GqKlRVxY0bN/Bf/+t/haqqrGlpNadoNMrfhcNhVCoVJJPJtttoYbFY4Ha7W34kJAaBdlGKkswkDgvRLCgxWPREXB/96Efxzjvv4K233uKf97///fjlX/5lvPXWWzh//jzC4TBeeeUV3qdSqeDGjRt4/vnnAQBPP/00TCZTyzbb29t49913eZtBQj40Er1CamQS/UJcBI3rM3Mc8+7Jx+VyufDYY4+1fOZwOBAIBPjzF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+fV+wx6AgK2pI9ItRLsckcXyQi5s9HNc1GHjljK985SsoFov4/Oc/j2QyiWeffRbf//734XK5eJtvfOMbUFUVn/70p1EsFvHRj34U3/rWt2A0Ggc9HAmJgUMUUjLQY3yhLUsmcXxQmiN41TOZDDweT8/7ScEicdSQRHb6IQlLH/1ej3Q63XPcgqxVKCExQLRr7TFuRYJPGyRZDRfGirikr0vipCAKvpOq9C7RO6Tvqjsc9zUaK+ICJHlJnDy0L7n4v8FwqLrXEgPAuOVcHRYnQexjR1yAJC+J4YUoNKVmdvRoZ9qV6A4ndc3GkrgkJEYBBwkFSWT9QZLVYHCS125siUtqXRKjhk4mRkDml3WCNP+dLowtcQGSvCROF/QCCfSe79P4zOut/qU2dXQ46Ws71sQlIXHa0U6gtyOvUSA1SVISY09cUuuSGEe0E/TdEMBRvy+ShIYbw3B/xp64AEleEhK9YBgEl8TJYFjuvUwakZCQkJAYKUji+gcMy0pCQkJCYhgxTDJSEpeAYboxEhISEsOCYZONkrg0GLYbJCEhIXGSGEaZKIlLB8N4oyQkJCSOG8MqCyVxtcGw3jAJCQmJ48Awy0BJXBISEhISIwVJXB0wzCsOCQkJiaPCsMs+SVwHYNhvoISEhMQgMQoyTxJXFxiFGykhISFxWIyKrJPEJSEhISExUpDE1SVGZSUiISEh0Q9GScZJ4uoBo3RjJSQkJLrFqMk2SVw9YtRusISEhEQnjKJMk8TVB0bxRktISEhoMaqyTBJXnxjVGy4hISEBjLYMk8QlISEhITFSkMR1CIzyikVCQmJ8MeqySxLXITHqD4CEhMR44TTILElcA8BpeBAkJCROP06LrJLENSCclgdCQkLidOI0yShJXAPEaXowJCQkTg9Om2ySxDVgnLYHREJCYrRxGmWSJK4jwGl8UCQkJEYPp1UWSeI6IpzWB0ZCQmI0cJplkCSuI8RpfnAkJCSGF6dd9kjiOmKc9gdIQkJiuDAOMkcS1zFgHB4kCQmJk8e4yBpJXMeEcXmgJCQkTgbjJGMkcR0jxunBkpCQOB40m82xky2SuI4Z4/iQSUhIHA3GVZZI4johjOsDJyEhMRiMswyRxHWCGOcHT0JCon+Mu+yQxHXCGPcHUEJCojdImSGJayggH0QJCYluIGXFHtSTHoDEHuiBVBTlhEciISExbJCE1QqpcQ0Z5AMqISEhQsqE/ZDENYSQD6qEhAQgZUE7SFPhkEKaDiUkxheSsDpDalxDDvkAS0iMF+Q7fzAkcY0A5IMsITEekO96d5DENSKQD7SExOmGfMe7hySuEYJ8sCUkTifku90bZHDGiEEGbUhInB5IwuoPUuMaUcgHXkJitCHf4f4hNa4RhtS+JCT+//buLqat8o8D+LcdbYcVG5DJ4ezNqqjZYCR2yiBGpihmGVuMJrrpBYneTIVA3GLcvCgXyyBezGh8WTLN3K56wzBLppMat85lWVx4yQpbCAk4YaE2M9AyhXbCzwv/nD8db5ZB29Pz/SRPspznGXnOd3362zk87dEfFqy7xyuuNMCFQJT6+Cy+pcPClSa4KIhSF9fm0mLhSjNcIESphWty6bFwpSEuFKLUwLW4PLg5I01x4wZR8rBgLa+4rrgaGhpgMplimqIoWr+IoKGhAaqqIjMzE1u3bkV3d3fMz4hEIqitrUVubi7sdjt27tyJwcHBpTkbmoG/+yJKHK63xIj7VuHGjRsxNDSkNb/fr/V99NFHOHz4MD777DNcvnwZiqLghRdewOjoqDamvr4eLS0t8Hg8uHDhAm7duoWqqipMTEwszRnRrLiYiJYX11gCSRzcbrcUFxfP2jc5OSmKokhTU5N2bHx8XBwOhxw5ckREREZGRsRisYjH49HG3LhxQ8xms5w5c+Y/zyMUCgkAtkU2k8nExsa2RC3Z61nvLRQKxVOGREQk7iuu3t5eqKoKp9OJXbt2oa+vDwDQ39+PQCCAyspKbazNZkN5eTkuXrwIAGhra8Pt27djxqiqisLCQm3MbCKRCMLhcEyjxRPeziC6a1xHyRNX4SopKcGJEyfwww8/4OjRowgEAigrK8Mff/yBQCAAAMjLy4v5O3l5eVpfIBCA1WpFdnb2nGNm09jYCIfDobW1a9fGM22aAxcd0eJw7SRXXIVr27ZteOWVV1BUVITnn38ep0+fBgAcP35cG2O6YxebiCy4s22hMfv370coFNLawMBAPNOmefB/jUT/HddLarirz3HZ7XYUFRWht7dX211455VTMBjUrsIURUE0GsXw8PCcY2Zjs9lw3333xTRaWlyQRHPj+kgtd1W4IpEIrl27hvz8fDidTiiKAq/Xq/VHo1H4fD6UlZUBAFwuFywWS8yYoaEhdHV1aWMoubhAif6P6yE1xfUB5H379mHHjh1Yt24dgsEgDh48iHA4jOrqaphMJtTX1+PQoUMoKChAQUEBDh06hHvuuQevv/46AMDhcOCtt97C3r17cf/99yMnJwf79u3Tbj1S6vgvt3iJ0hkLVuqKq3ANDg5i9+7duHnzJlatWoUtW7bg0qVLWL9+PQDg/fffx9jYGN555x0MDw+jpKQEra2tyMrK0n7Gxx9/jIyMDLz66qsYGxtDRUUFvvnmG6xYsWJpz4zumvDbN8iAWLBSn0l0+K8UDofhcDiSPQ1DYhGjdKTDt8G0EQqF4t63oMvvKuSLLHmYPREtpcW8p+jy2+Gnf4UUERHp12Lez3V5q3BychI9PT3YsGEDBgYGuD1+FuFwGGvXrmU+c2A+82M+82M+C1soIxHB6OgoVFWF2RzfNZQubxWazWasXr0aAPi5rgUwn/kxn/kxn/kxn4XNl9Fi9yro8lYhEREZFwsXERHpim4Ll81mg9vths1mS/ZUUhLzmR/zmR/zmR/zWdhyZqTLzRlERGRcur3iIiIiY2LhIiIiXWHhIiIiXWHhIiIiXdFl4friiy/gdDqxcuVKuFwu/Pzzz8meUkKcP38eO3bsgKqqMJlM+Pbbb2P6RQQNDQ1QVRWZmZnYunUruru7Y8ZEIhHU1tYiNzcXdrsdO3fuxODgYALPYvk0NjbiySefRFZWFh544AG89NJL6OnpiRlj5Iy+/PJLbNq0SftAaGlpKb7//nut38jZzKaxsVF7XNMUI2fU0NAAk8kU06YeIAwkOBvRGY/HIxaLRY4ePSpXr16Vuro6sdvtcv369WRPbdl999138uGHH0pzc7MAkJaWlpj+pqYmycrKkubmZvH7/fLaa69Jfn6+hMNhbcyePXtk9erV4vV6pb29XZ599lkpLi6Wv//+O8Fns/RefPFFOXbsmHR1dUlnZ6ds375d1q1bJ7du3dLGGDmjU6dOyenTp6Wnp0d6enrkwIEDYrFYpKurS0SMnc2dfvnlF3nwwQdl06ZNUldXpx03ckZut1s2btwoQ0NDWgsGg1p/IrPRXeF66qmnZM+ePTHHHn/8cfnggw+SNKPkuLNwTU5OiqIo0tTUpB0bHx8Xh8MhR44cERGRkZERsVgs4vF4tDE3btwQs9ksZ86cSdjcEyUYDAoA8fl8IsKMZpOdnS1fffUVs5lmdHRUCgoKxOv1Snl5uVa4jJ6R2+2W4uLiWfsSnY2ubhVGo1G0tbWhsrIy5nhlZSUuXryYpFmlhv7+fgQCgZhsbDYbysvLtWza2tpw+/btmDGqqqKwsDAt8wuFQgCAnJwcAMxouomJCXg8Hvz5558oLS1lNtO8++672L59+4ynsjMjoLe3F6qqwul0YteuXejr6wOQ+Gx09SW7N2/exMTEBPLy8mKO5+XlIRAIJGlWqWHq/GfL5vr169oYq9WK7OzsGWPSLT8RwXvvvYenn34ahYWFAJgRAPj9fpSWlmJ8fBz33nsvWlpasGHDBu2Nw8jZAIDH40F7ezsuX748o8/or5+SkhKcOHECjz76KH7//XccPHgQZWVl6O7uTng2uipcU+58Cq+I8Mm8/7OYbNIxv5qaGly5cgUXLlyY0WfkjB577DF0dnZiZGQEzc3NqK6uhs/n0/qNnM3AwADq6urQ2tqKlStXzjnOqBlt27ZN+3NRURFKS0vx8MMP4/jx49iyZQuAxGWjq1uFubm5WLFixYzqHAwGZ1R6o5na3TNfNoqiIBqNYnh4eM4x6aC2thanTp3C2bNnsWbNGu04MwKsViseeeQRbN68GY2NjSguLsYnn3zCbPDvraxgMAiXy4WMjAxkZGTA5/Ph008/RUZGhnaORs5oOrvdjqKiIvT29ib89aOrwmW1WuFyueD1emOOe71elJWVJWlWqcHpdEJRlJhsotEofD6flo3L5YLFYokZMzQ0hK6urrTIT0RQU1ODkydP4qeffoLT6YzpZ0YziQgikQizAVBRUQG/34/Ozk6tbd68GW+88QY6Ozvx0EMPGT6j6SKRCK5du4b8/PzEv37i2sqRAqa2w3/99ddy9epVqa+vF7vdLr/++muyp7bsRkdHpaOjQzo6OgSAHD58WDo6OrSPAjQ1NYnD4ZCTJ0+K3++X3bt3z7oddc2aNfLjjz9Ke3u7PPfcc2mxVVdE5O233xaHwyHnzp2L2bL7119/aWOMnNH+/fvl/Pnz0t/fL1euXJEDBw6I2WyW1tZWETF2NnOZvqtQxNgZ7d27V86dOyd9fX1y6dIlqaqqkqysLO29N5HZ6K5wiYh8/vnnsn79erFarfLEE09o253T3dmzZwXAjFZdXS0i/25JdbvdoiiK2Gw2eeaZZ8Tv98f8jLGxMampqZGcnBzJzMyUqqoq+e2335JwNktvtmwAyLFjx7QxRs7ozTff1NbNqlWrpKKiQitaIsbOZi53Fi4jZzT1uSyLxSKqqsrLL78s3d3dWn8is+FjTYiISFd09TsuIiIiFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItKVfwA7ta5FL6ZI4QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/nFJREFUeJzs/WmsZMl1H4j/bu779va9qquqq6sXks1Wk0PKEuWRSMEYjaAPAwkQYHgwGkAzsgU0JEEajb/Ihk1CNmBhAMEC/MUcCLDpATwa2oAskbDMTZTI3kh2176+fc33XubLfbv/D+9/DiOjIuLGzcxXy+s8QCIz743lxHa2OHHCcV3XxRjGMIYxjGEMzwkEnjYCYxjDGMYwhjH4gTHjGsMYxjCGMTxXMGZcYxjDGMYwhucKxoxrDGMYwxjG8FzBmHGNYQxjGMMYnisYM64xjGEMYxjDcwVjxjWGMYxhDGN4rmDMuMYwhjGMYQzPFYwZ1xjGMIYxjOG5gjHjGsMYxjCGMTxX8FQZ17/+1/8aFy9eRCwWwxtvvIFvf/vbTxOdMYxhDGMYw3MAT41x/Yf/8B/w1ltv4R//43+M999/Hz/1Uz+Fv/f3/h7W1taeFkpjGMMYxjCG5wCcpxVk99Of/jQ++clP4k/+5E/42bVr1/BLv/RL+NKXvvQ0UBrDGMYwhjE8BxB6GpW2Wi28++67+D/+j/+j7/kXvvAFfPe7330sfbPZRLPZ5P+9Xg+Hh4eYmJiA4zhnju8YxjCGMYxhtOC6Lk5OTjA/P49AwJ/x76kwroODA3S7XczMzPQ9n5mZwc7OzmPpv/SlL+Gf/JN/8qTQG8MYxjCGMTwhWF9fx+Lioq88T9U5Q9aWXNdValC///u/j1KpxJ/xPtgYxjCGMZwPSKfTvvM8FY1rcnISwWDwMe1qb2/vMS0MAKLRKKLR6JNCbwwKGLVJViekPKn8Zwm0bUz4Pcu4nneQ+95rLMb36j55GGRtPBWNKxKJ4I033sDXv/71vudf//rX8dnPfvZpoDQGA+gmltciN72XicmocHoWwHGcPvxUlgUTiO9VaXX5R0F0hylj2PrPIr/c96IwQd9iPhq7Z3l+jeEpaVwA8Fu/9Vv4+3//7+MnfuIn8JnPfAb/5t/8G6ytreF/+9/+t6eF0hgE8JJKvRa3Hy1D1kz8SsnDgKouEadByvACr7Rempqub0wCht+x0OU1lWVKZ4OD6r1NPnE+iultcPXqs7EG9mzCU2Ncv/Irv4JisYh/+k//Kba3t/Hqq6/iz//8z7GysvK0UPrIgy3hsCGCgzAaHTGxJVym37Z42jBjudxBGMaghPys0uhwkvtS1X5VGXK6QQUP2/pU+I+i3cNaBsZwNvDUznENA+VyGdls9mmjca7gWTGN2GoHg2phXpqAzR7IMATxacFZ4+KluXppss9SX5ngOSSXzzyUSiVkMhlfecaxCj/iIJr8BlmUo17INtqVTTrb8m01rkHqfR77dVTlq/b5TDg8KaY17FiM97+eDRgzro8oqBbgMOY9HTxpAnwWddrWa8rrF6dnsV8HgWdNQxnVHB8zsKcLY8b1EYQnueD8mNVs4VkjhjYwakb0rBDNUY6F6Ok3inRPAp6VcfiowZhxfcTAyxRmgmHNLLbu8V7leJngzoJZDluOKc0g+zu2/ToI+ClP59BD36b38n9bRw45nW1fnNUcF3EZw5OBMeP6iMAwewx01sWvi7hfLy+/jM22vGEZnFcdw3r2+WG0o+5XEz6DnhczMSA/zje2YNsXZz3Hx8zrycGYcZ1zsLHF2xAJuQz54Kau3mGl91GACnc/YGrrqHDWHYhV1fWk+vUsxkM1Fn6EkkE1oic1x8d7X08GxozrnIKfBWRrmhlkgY5Kqxkkva5uv2dzbNs6DFEVmZKN1nAWxNHWlOanL2y1M1s4KyY86jk+ZmBnC2PGdQ5hWA3DD4xyn0hV1iD7P4O4rFNdOtxGUa/YRlsHhFGArl9lGKUgYqMdDtLfw47RIDBM2WPmdTYwZlznDHSS46jKlhfxoGWryhm1ycivp6KNhjZMnWIbvfZlRknwRj0nRuUB6ee5Sot+Xub4mHmNHsaM65yATPi9NthtQKUFDVKuTrrXeZfZ5vcCP0xvVA4Oo9TgBgWT194ovO5G6bU5jDb7PM3xselwtDBmXOcARuGxpss7Ci3EtgwdwTBJ4H5gGAl4lHnOmoCZ+tVv3Wc1Fqby/Jb7PM7xMQwHY8b1HIMfKW5Y6fEswK+nno1pyFaLGwRs94pGCbZnlMT3g/arH61mEC89PzAKJjuqtMOAThMbM7DhYMy4nlMYtbuwTdl+6xmFR5nffQxbLW4QOOu9KK86vdoi75/ZmgWH6dezglFoYoOW76eeYeb4mHkNDmPG9RyCaa9CZ8oZtVu6DWHx2lOxqUu3Z2RDlMX9C79S7rCecCYvSdsydWDbr7bzxLZ+Vb/KZeny2JZtk/c8zfEx8xoMxozrOQKdV5pNPoIn4drr5THntwwVE5PLVRGcYUwyw+57+PGSPMs9t2GcWFTpiNiOsn5duo/KHB8zL/8wZlzPCYzS5EVgq7X4zTtqGLUHoS0MqgU8yb550jAqTz7Ts4/qHB8zMHsYM65nHOQJrTNN+NnPsPGu85IGvRbZsIt+VERjWI8zr2cm13oVMdZ924Ctc8aTgFET2fEc/3GdYwbmDWPG9QzDKNxxVe9sXZr97NPI7wZZfH4dBmzKeZqgMieJ5jbxuQ1T8hq3s3TYGRRGWfdHaY6PmZcZxozrGQVRarQ5S6NKZyuh6sr0s09j884LBjFD2Wo8qjyDOA6MwjFBpVEMypRGuYelqnsQZxIvvFVm1fEcH2095x3GjOsZBFkaH2TD2OSx5OXN9KQkdJ0nnq20DAxGYIbp11E5JtgQsEE91mw9HE1g6iOv9g9iKRjPcbMQNoZ+GDOuZwxsJqpfaU0leQ5CMG2lXT9SsfhexRQGNcucxYa7ac9qULxUfT0qkymVJfbrWTkkDKKZ+S1Pho/KHB8zr8dhzLieIbCRsGVpzUaaVkn3XtKojaRtu9B0BEbe77HFQ06jcnjQ9eUw+0CmPSvbcvz26yDmTJNzgqnPxecmJq3rV5UZdVBT43iO96cZQz+EnjYCY1ATRK+FJUvSfusZRbpBwJYw2OKhYya2+f3U5QcHG7AhWoOOma2Z0oYw2/arrVlxPMf94aHT0D7KMNa4njIMahobdOH52Vg/K/CSoM8Kh7Nu26D7SE8KvMxpXvsuozIvjuf4cDiMTYdjxvVUwa95g+AsJ/1Z1091DCuFDlqvCKPYl3na0u+ozZSm97aalle/juf48HP8o868xozrKcGg5iVK74dgiTCKzfdhTBfDbIiPGlR7MF77IqoydOU9CSYom9WG7btRjIXffrUpYzzHH4ePMvMaM66nAGdlAjnLur2kR9uFqZP6B/WkG4VkbGsCMxEzP44gJlz8gKrPRiXJ25rzvMrxC+M5/jh4eUd+FGHMuJ4g+N1oVuX3+v20wM+GtE3+s85nU8YgZrQnORajrmtQwjpKGM9x//mGpSvPI4wZ1zMCo9pvscnzJMwufsodxOV7VHU/yXqfdNl+cRiFqdGmHq9nXmWM5/gYxozrCYBKIrI58+LHPGGqR5VOBcMsGrE9NuX4kab9mq28+uxJSMq2ROusHQXOaixsyh7P8Sc7xz9KmteYcT1FUO0nyIRh1OYJv0TUT31nZS4bts1++mBUEq84ll5u5jZlDYrbKMdCno82ZY/nuL9yB03/UWFYBGPGdcZgs39i83tUXkl+JGo/7024+q1jlODXaWKUBGDYvvZb3iB1DMJAbfON5/iTgWEtCs8jjBnXGYGX2j4s0RrExGTz30u69yNle70f9eJ+UsTCph9VJjXZbDZqxqbK50VsbYjxKPCwgfEc9wbb8s672XDMuJ4AnPVGsW7T2y8hEBfbqE1Mqv9+JXhTmXJ58jM/exNeOJn61a+GZ4JBnSX8CEw6JudVnh/znBcOg+YZz/H+Z4PM8ecVxozrDMCvJD3sRFMRERuip5vwo/YusyH0XiYjFY7D4KBb5OJzrw1+HWERpV3C3ZZQjsrsY8JNTOOlGQw6V8dz/NmY4+dV6xozrhGCTj2XF4mczmbDWzY/eeGhK2uUGoFf8FO3rr9sGZAO5HJobGRiYbMPZqN1+DUXj2ofy6+5y1aDMmll4zn+7M7x8wZjxvWEYNjJM8iemc0i0pmKzmKy2yxgSmdbv+3iNC16v/sBgxB1G3PboHAWJq9BiN54jj/bc/w8wZhxjQAG3Qgdla2fcLB5ZkrjR+K1AVvz0zD7ALryR2Vyk8sdpKyn7fTgB4dRE7jxHFfjMIp6/Y7doHTqWYQx43rOwNY0MmjZo1xgJg1EBhum4AefJyFND6sBDIrjIPlsTXzPAozn+HB1fxRgzLiGhGEmzyjMU7pybImq6fmoNAsb8Cs5jyKdF/jd+DfVrdpHs61zVER7VOPsB8Zz3F9dT2KOnweGN2ZcQ4BJArfZUPWzyGwmm5dHnJfUbSIEJu87uU7bzWRVf3nVbUM4RmGaE73WbBiYqf+oLD+Ey8QMB+1XVdkynl4wnuPnY44/78xrzLgGBBUx8bvx68fMMAxutnlMZiO5TJXnkkikxXdeZXoRoVH1qx/w65xgcsAY1rQnE1ybvQxdWlNfe5kNx3P8fM7x5xHGjGsA8JL0hpGWR42X3zp1i9c27yAb6F6agA78SqaDjsWgC3xUZr9hN9VttS56b0PYx3PcDi/5/bM2x59X5jVmXD7haUiKZ7WBrKpjmLr85pXTmwjCoKYlE5z1WKgI/ZMYf3ksbQntMDh6le0F4zn+9Ob488i8xoxrABhEihnGJq2a2MNKabo6Rr3p63fD3Sutat/BL04y+CFofvvHDzOwNWGZ0orp/eAqm7LGc9xchi0uz+Mcfx5gzLh8wDAT39bMIoJJWjPlM5l7bDfhhwE/+zG6DXEdqPYd/OIk/7YtaxBp20+ZgxA5r3LFbz8EdjzHzXDe5vjzpnWNGZcljHJgbcsaVjJUSVnD7pfY1j1IWhtCrwM/UqnfjXA57TB7Yzamo1EAjb/4/SSJ03iOq9M+y3P8eWJeY8ZlAaMYUFtiN4wrrAw6KWtQs4GtJDuotGuSom3yPinwMqmZnqnG4qy0A5l5PUktZNh04zmuznvW8LwwrzHj8gC/Nm0/5fhJdxZEZxANYtSbvcO262na7P3sSXmZvbzK9IuPilGe9biM57ganrc5/jwwrzHjGgBGxcxsytARID/1qcxTg+6t2NZhSqOrW2VGGeXG9KhhEJOUl6lwkLHwYlKmfh2VQ4hfXFXPxnNcDU9jjj/rzGvMuDQgEyWbyaUjBjb/xQlts+D8bM6r2jHqiWnTV4NsENsSMNNGvQk3v//91i/DWUjqJq1Ct6eiGovxHDfDR22OP8vMa8y4PEBcBCYp1eS5Y5L+VBvnNqYUWyltlBK9bRq/pi/btvjZO1LhovtPRFVF5G0Jgi2R9QMmrUdVnl8TpVzmeI7bp/mozPFnFcaMSwG6BWaSprwWy6BSJYE84Uz5RrGQ/MIw5oxh9kZGIRUSUfU7hn6ZwrBgkriHgfEct4PxHH92YMy4JHgWB0pn7tGBTdpRl2eT91nsW7/glxiOss0i4TmP/Tqe488GeO3DPgswZlxPEAaVAP1KnoPU48dEM4p6vdKOsqxRluF3EQ+LG5l3nhcYz3H7tOdljj8NGDMuAYY1TXill/cBBjH9nJU0JOLmV5odxBzm1RfDSMuDOFTY7LkMCrZEUjdn/PTFMIxuPMcfTy/j9FGd488aMws9bQSeFaBJNspF4lWPbvPdhIPtgrNZaH72FGzKsPkt42lTt1+8/Own2G6ai+A1RiYnBtt0qv6zmZ9e78dz/Nmc437B7xz32986J45nRfsfMy48viHt5Xkzqvr8vhtVHXIa08SWPc5M/WLzexBcbQiT+G3KMyjhtpFc5fdyXToiqiKAKuI/CuFqPMcfhycxx004+BFMBoFByvQSSp42jBmXAmwJz3kBWyIzigWgW6Am6dWPpuG1sPyUKxKUQCCgzGfaB/FiDCqtxKu/R0XgxnNc/c5v272Ykfjfq/5R1f2k8j9N+MjvcdlO6FFLGfJehFz+oPsNg+QbNK8KiBDrPpRGxsHPONia9wYxA6ree0ngqvbp2u5Vv+1+w6g2/sdzfDjQjYWqX0fJJEYpvIhlDpLvacBHmnF5Sdty2lGbUkymLb91DSq1mRiKCkwOBDbEWlWOSeL3Igp+TFIy8VIxwWGdCVQMTH5n6hvb8bNluiYYz3E1+GVuNmMxqJAyaJ0q8BL6/PTN02ZevhnXt771LfyP/+P/iPn5eTiOg//v//v/+t67ros/+IM/wPz8POLxOH7mZ34G169f70vTbDbxm7/5m5icnEQymcQv/uIvYmNjY6iGjBr8TrRBCJ6unicBgywax3EQCAR4IQYCgb7/RKRMfeE18eUyVMROx4D8SIxe5auIuhfomLGOcOr6cNA5YdJuVDCe42rwI9Da1K+bm2fRL6Mei0HWwZMA34yrWq3i4x//OP74j/9Y+f5f/It/gX/1r/4V/viP/xhvv/02Zmdn8fnPfx4nJyec5q233sKf/dmf4Stf+Qq+853voFKp4Bd+4RfQ7XYHb4lPGGQA/Ej3w9RzFjDMBDRpEXId8nt50dqY8byINzEXHXMw4aYqR1W+iKMtMVBpiiomrOojuR02jEzGz1YTtWmLn3fnYY7bgleZqrk+ak3WBIOM35Msb1TguEPoq47j4M/+7M/wS7/0SwBOB21+fh5vvfUWfu/3fg/AqXY1MzODP/zDP8Sv//qvo1QqYWpqCn/6p3+KX/mVXwEAbG1tYWlpCX/+53+On//5n/est1wuI5vNDoo24y6DaaNVl0eV3ya9Hxv1MBvosiOBbbu9TCtnubEr9qMX0fZqz5PcgNaNv2n8BsFVZ+K0mSPjOX42c8LULzb1DYPfqNujM9d7rcVBoVQqIZPJ+Moz0j2uhw8fYmdnB1/4whf4WTQaxec+9zl897vfBQC8++67aLfbfWnm5+fx6quvchoZms0myuVy32dQMEk/JgncZmL4kbBszTQmpmICP1K4jLdoujLh79c0pUqr0mp02ohuL0mFm6pOVV1eWpXKLKlLoxt/0/jJxMrG5CmPkfhfV6f4/KM8x23L1tWnGxtTv5gIvtgGW+FBVfewzEMuT/4vzlOv9E8CRsq4dnZ2AAAzMzN9z2dmZvjdzs4OIpEI8vm8No0MX/rSl5DNZvmztLQ0SrT7YNSTwG/dNs8GLUuXTv74ZUIqwqMjUCoTH32rTF8iMdfVYWJEJs1NfG7D1OV0fgiNF0OSy/drphT/ix9dno/SHB8VqPrUJMjYljcow5LL8oJRjPnTYFIqOBOvQtXg+lGVZfj93/99lEol/qyvr48ML5t0tvC0iIHf+mXCJktUNhqPqhz5na5esSzdnoAunwknuSzdnoeOSdiCrZlMp0Wq0um0SS+tV0yvGleV84dXuSZ4Xub4WdShmmumeWYLtpr2sOA1X/2Czfw+Kxgp45qdnQWAxzSnvb091sJmZ2fRarVwdHSkTSNDNBpFJpPp+4wCvBiZ38G0Yc7DlE95Bp3gKgKnM2t4mWFMGpX43sRYdGV6aRs6s4yuLSamYfNeV79XGpPJSNYqbZig3JemfpI1WJuxt4FnfY4PAraMxzTXRkE7/DCWYRnNKPI9Te1rpIzr4sWLmJ2dxde//nV+1mq18M1vfhOf/exnAQBvvPEGwuFwX5rt7W18+OGHnOYswKaTTYRGhGEYh1+cVGXYLCzdO5OZSCZ0OgKi045VC1uuz4bYmpiaCRf5t6l9XmNoW5bXM7E+uX/lPCripOsP2cyk60/6tmFioyBET3OOA95r09RPur40lSn2p1zmqJivar2NWujweudnvTwJ8B3yqVKp4N69e/z/4cOH+MEPfoBCoYDl5WW89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBQBks1n82q/9Gn77t38bExMTKBQK+J3f+R289tpr+Lmf+7nRtUyApyEZ6AjqWddF4LWQVMTThrmpyvZ6pyO8qrplUBERneQr4m3LWHV1eaWV+0pHbE2mVxWYGJUKTP1mwlvG2TRH/QoNZwGqflRpPV7PbIU71XO/DOSs6Y6uz/2MhW1anbVALmOUDNsEvhnXO++8g7/7d/8u//+t3/otAMA/+Af/AF/+8pfxu7/7u6jX6/iN3/gNHB0d4dOf/jS+9rWvIZ1Oc54/+qM/QigUwi//8i+jXq/jZ3/2Z/HlL38ZwWBwBE16HEa9wGzKsl0sOjxNz7zemQi7H/z9TEAVwzD1u0lStf1v034VDn6JjRfRNI2ZSYBQlWOj4drMYZGh6vDQpbfVYp+VOe73mZ96VGV5jYcNvfFDh2xojGmsTXj5mVd+haqzhKHOcT0t8HOO62l06tMCE1H2IkZ++mkQ5q+rx0bj8tsmv3lN+WXcbBe3TR+pJFe5Pi8w9asXnrp8XjiYzJtPGgbps1HWfV7py7Bt8zMvnvo5rmcNnoSq/iyUSQzLS5Owse/LuKjs/n6kWFVdKtzlenT4yHl1xF+uT2yLKr1NflUb5HJVuHm1wy/IOHrh7lWnqjyViVZOI38GwX9Y8Fu3DmxxkvtBN/6jqs9PnlH369PM7wXnmnENAiZiY0OIdWltJ5XfAfcyD8hpdXZ6FbESicIgzMrLnKBK69eM52UC88LVlN/WfKRrp5eJTWY6Xhqzqg5VubbChqnPbftVbq/tPLSBs9bmBhHGdGvHT11iOX7aqBNGzkrrtMHtaWnc55ZxDTqIpgVqO9lUk3nUk8pxvCNcyAxUNGOp3nuVY6MV6fKIz+X6ZHxspFqTpGurWXoxU11+L6HElkh59ZFJC9aNiVifCWedRiiX6UcAo7moOzvmF85aan+SZj4bxq8Drzl5Vu0YVgg5y/49t4yLQEccvPKYwNb+fxagIgY6hqLSBkQtwq+ErPvWpbVl4CotRaWJiOMoa4l+NBITqPpLZ5rTlasaG106lUBk269eGrFKABDfyYxN7muVhG+jnanaNwgT87tmn4b070egsi1DhqdJbwYBG8F2WDiXNyDrTDd+8tuYibzqNoFcvq1ZSoWf6tsP4aF3fvC3yeu3D/0wFtm0ZmqXaj7YtldHqIeRlG3rMZWrGmO5TTaChq5+Lwal6lcdXnJekybohYMMOhProOvXpi4TjmdJM0ad1wTD9J9K+Bw1nDvG5TWBz2JCq+rzqsfPhFcRHlWbVHV7MStbJi9L7OJ/1QSViYkXI1UxYpUGacov42YiaMMQIBEvHQOR61DhYSpbzGNiSLp+042PPI463OQ65Pr85DFBIBB4TBNUtVnX16p5aVOvqg4v8EqnKu8s6c0wwqaqLFtBxKtNqvk6auZ17hiXCF4SkmkAbCU4v+YTXR6bcrwIvZjHRDy9CKsJP129KiZiIqomPHXEUdcvNv/l5zbpTcTST1m288N2Xtj2q65OL0HGNBds14tNO0xtsMHda574FR51eW3Hxc/6HQQGZQh+rDmqZ36EOpv3o4BzzbhG2cGDLljbsnRMRUU45TJ0jGgQpuqFn8ycVJPbD5EZBD8RvKRBU5+IjEklvZr60ISHWJauTlVer3mhyy/jrfqvymvqK502bUPsbdPK5av6Xkwrw1kSUC+hbpCyhyXog66VJ8FInjScK+cM3WJ9nkBmWuK3ClTESCzLLxARtyEaKgKsA1vir/sv4qMzWYp4qfpR99vUzyqp1qTNiDioylCVZyM5y+3yQzxtmJAKJ50wpSpb1k5NZevap3pm017bNS7PnUHAq8+HKf95o1Ui6Pp2lOZMEc4N45IXJf22kfp0/23fDQM6gmE70CYJWq5H1wYd4ZfL1+Es5vXbTya8TMRMlU7G26sdVL/pPb3zEghkhm9qi06zsZ2Pqnaq8NE9MzFomzki59P9lzVPXRu8wKu9tkxyEGaveycLdqMg0GfJFActw0uAJfCyGMi/h4Vzw7hU4FdC8yJeXmUMMrF0hFYFg046r3c2C0YmasMweRWj9MJDp6k4jvrckA5Xv4RZR5CGFTjEfKrfXiAKKdQHqr6U08llyGZSW2GB8utwH3R92GjtqvaKaWyJ7aAWAi8C7aceP2lGQfgHnZ9+GP6T0BzP3R6XTQeLJg0TmNKoFqpN3ap0w+BhAhXxMtUppvOSlsU88jvZfOQHLxUuYj4vQq8yVfkVSOS8shnMtg1eacRybUGsX9X3fmBQQmirperyes09W/Aqx6u8UWhHNu20pUnDgEnAGqWmo6rXtNbOqv5zoXENQ9SHSaMi0DYqtfzfS1pXLQCThmBjvlCZpXQT0KSxmBanaVF7TWgZF1nKtmEWcp0qnGyIv0rQkcuTx1FmWoR/MBjkdgQCAWVeEy42oMLFNBb0rfotppHr0JWle3ZWc9xPe3XljRq8+meYOlXl6NpsO05e7waxUsnvR8nEnnvG5UWIdGBrTrApd1BiQ5NNRWR1hNdUj4pgek04WybiJdHpJExVP4vt9upX3YK0FRBkvP0wXjm/zjRmElpEZhsMBnHx4kWEQiEtE/YaCxuhRG6fiaDrNDfdmOsYuNwPXszvrOa4V3u9BDa/4JcBjYJJDivc2AqMtnkAvaA4SFk28NwzLhlsO8WLUNmkH1Yi1tWnIzAq8MrvxSBkXGQiMIzk7WUuMS0SmfB49YftuNlI9CoYxHQptiEQCCASiSAejyOZTCIcDivbJ37bMCU/UrypL1VzUjV3bOalPH5Pa46r+tK2TlvwK6jKv89C23saYDsvRgXnbo/LLww7kQeV2GzzqDQGL4lLZcaywdfEDGyIqFf5OuIvl6/Tls6ifttyZfxkTVU1LjLhvHz5MqampuC6LgqFAt555x00m83HcFThq+sLG0lY1p5MWpOpDl17/Zh9dTjq6tHlt53junF7WjAovVFZNs4SRr2OZNAJNLZw7jQuE/hRZ+V0g9p45bQ6bcumfNWE0Zk+bJmTDb5i2SrTn6xh6frZRjqXiZeuveK37TjqmIDcrkG0N1WbxN+BQACrq6u4f/8+crkc7t69q2yjjoGbmIkKVIRdJHwmxmBrEvVr/nsW5rg8z2zAxvQ5SjBZNkx4D4LTIHTNa3z81jUIPPeMS7eIVDCItOq1SGxBtWC8pEr5nUpK9kvQTGBjatItIFnKVRE/+ZnKpdmEg0qSVjE7G5BxUZUnvzeZPnX5A4EAYrEYFhYW4LouAoEA6vU6qtVqX3oV8/YqW8bDixmZtEIaCzGvaSx0a8IWP12+JzHHRWFCbLcJN3EOeLVlUNxE/AYBXb5RCN4mAcm2L4aloSI894zLREh14EdCH2Vn6+ofRJoTF5FOQvPD1CmPV3odrjrmJILoTaerS0c8TZK4CQddO2XmasJFfqcjBCqm5TgOpqamEAqFEIvFEI1GUavVkEql8Hf/7t9FOBw23qumGkMTgTK1Rdcesc915+HENsv9bNOXz/Ic96OF2QpZtulM+UYFprb57bdB6x+kThM894xrELAZhFGptSZNS1z4tpKpipCrCIdYju69CWfbRamSRE2mLRNzMTFEG2ndr2TnpR3oNCyTVib/dl0Xe3t7ODw8RDQaxfT0NKLRKK5cuYIHDx7g2rVrmJ6efoxhyPXKY+JHUjbNDRN4EXNTnzxvc1zV9zZljDLd04BBtNdB5qGqzmHg3DKuYTtnFJ1rWlReexO65zpCbpLWxfc6qVenvdjgJpcvEgA5qoWpHX4Jm6oPvBbgMOZQsQxZAzEx6ng8jqmpKQSDQZRKJSwtLSGZTGJ6ehqHh4fodDoIh8NIp9NYXFx8zOOQ6jSNOb1X9a/fuSwTcdsyzsMcF8t6lhnOqMGrrTpmZTvmo4Zzy7hEMNl4nxToJHQbvAZNo5tgqsmm05TkNDoJTUXEVWn9MkRTOlM7dOBXMlflNRF1VfuTySSuXLmCcDiMa9euoVgs4ujoCJ1OBxcuXEC328XLL7+Ma9euodvtIhQKWRFt8bkfDUz3TGbIcvle8+k8zfFhGP+ToDWjrmOYNaH7f5b98JFgXINKTyqGZytFigtAZ++3MeF4MQwxjQlMBGhQ7UZ+r+tnE7MS6/far5A1WC9irgNbHL3yqgiczEgcx8HBwQG++93votFo4O2330axWMT09DR2dnawvb2NeDyOer2OS5cuodPpoN1uW2k6qrFR9aWX4KBrg1yH3D7ZPCzjdh7m+CAMbBjhyJbe+BEAZYbuRwAw1ecFZ6mxnrtzXDYTXE6ny6N6b0MsVVK4qgy5Xhup0AsnGzOICmcdLl7liGGL5DaIIJevaqet9qDqH1XfqZiiSUL0MxYmoiYSeXo+PT2NSCSC/f19hEIh3LhxA8FgEMViEQAQDAbx/e9/H61WS9lHMvFRtUMlDAxLPLzWiApXU77naY7L9diOhRduXm236SNdXq/nfvvMBIPiOQo4d4zLZhKeZUfbTB7dM9OikheRn3pswISLiI/qvR9p1g9R9TNOsiZAfWciTiairJOa5XRyvMFsNoter4dms4lut8vpt7e3EQwGEQwGEQ6HMTs7i16vh2AwiO3tbRwfH+PNN99EqVTSakjDzgEvzcsEun611eZU/5+XOW4aDxtcBqU3o1wfg8CoyvcjaNjCuWBcug7WEUndBB5EehLz6aRDnQagS6eS8LzaZwuDlCXjpiNc9F6Htyypim1VwTAESsewVHjpCJgqr/iMmBCZX4LBIBYXF9FqtbC3t4darcZpu90ulxsMBnF8fIzd3V1mcL1eD9vb23y+y9QuGU/67ZVmVHNFVZZK23te57g8t20Yngm88nul1+F31lqOLZ6DtGdYOBeMy8/iGqYTvUwNg2opusVrYgKD4m1LpEUgrUIEnUYiS6cqadXLBGPSMsRydQtc1U4V7qb8qj4T0wcCAUSjUUxNTaFcLmN6ehrNZhNHR0eo1+vodDoIBAKP9W8wGESz2USpVEK73WaG1uv1cPfuXfR6PWV/2fSJ+E7XJ/J8smEu4nPTnLZ596zNcZ3WJ5ajm5d+GJipn23Ats+fRTgLHD8SzhmAfu9FBJv3VJb4X/5teibjJKYzleFFuHTl+zFnqLQnsX558asWvC6N6plNP+oIjo5Qm4QYr/GS8ZU/ct52u43j42PE43EUCgXk83lEIhG8/PLLfLA4EAggHo8jFoshmUzi1VdfRafTQbfbfawdItP02x+m/td9q+aGV796CQQ6Yv4sz3FdG3R9Kucztc1La/PS1rzS+GEINnUNW47q3Vkw1o8M47JZePJ73QDpJjstDJPUK0v0KmKlyiuWK096XZ2mhSSnMRFsr3K8TDC69vjNYwsmIqMqU9Unpht2xT6j81fkwj47O8tnthzn1CyYyWRw6dIlZDIZFAoFJJNJLkcVaskLfzmfVx4TM5LHUdVH8nPTXFMxzmdtjuvql/PaCp6i1uY1Ljb4+0kzzLoYFPww6LOCc2EqJNCp717PbCQ2XRrTJPUyN8nPbfGn53IZXiYk08I14WhKa0pv02e29XvlMT33wkOnpajSy+NVr9fR7Xaxt7eHaDSK7e1tlMtldDodvjQyEAggFAohlUrh/fffR7PZRDAYRDabxcLCAh4+fIijo6O+cmWmIgpGcj+ZBCwvQnxWYyHW/bTnuB/tzRY3XXkq2jKsmdAEg9KtpwmjwOlcaVy2i8xWIvcjOZlAlhZVEqw4mCrJ0ws/0zOviUKS4qBgK5V7lTFMWpmpyO90eWXtypZIUZs7nQ52d3dxcnKCZrOJ4+Nj1Ot1FAoFvjCy0Whgd3cXvV4P7XYbvV4PoVAIhUIBABAOh9njkJidWKeXZqUj1Kr0JvBihLYaGZUjx6R8WnPcS2DTpVEJEF71ysKQqtwnyUgGrctLE9fV4yftMHCuNK4nATotSrVwvBaYLCGqJEZVel2dfiRDuRxxkepMSiapWE5jK2GapGS/AoVMaHTt9osj5dFpAO12G6VSCdVqFY7jIBqNYnZ2Fq7rolKpoNfrodvtotFowHVdzMzMoNPpoFaroVgsot1uIxgMIhaLIRQK4fDwkMuWcTOZy2wYgWkcTVqWKu0wY/Qk5rgKb9u0YjobxqrSjuW1LeNii7Oqb8T/w2iUNun8Cj9PQst77jUuv5L9sKBiWvSt0zpEwidPCD+mHBVjJEZjIyXLUqAfSVG3AGVGYKN5eeFrM/HFPlWZpGTcTW0X86rq0f2mD2kWrnt6bcnJyQlarRabCCcmJvDCCy/gzTffRKFQQDgcxvz8POelq0+Wl5cxNTWFeDzeF0mftDAV3ip8qB+92iCmkwmi6rdu7qvKM807Fe46/PzOcR3oBCRdGToria4uuX0qYWIQZmBiWnLdtmX5qVOuy09+EwxLt597jUs3sGddp06KNEmuOqIhl6MyUeikaq82iyZAVf0m6VfOo5P4dG3UjYmKeZvaYyvx6hjxsKBro+M4SCQSCIVCHPEiFAphcnIS7XYb+XwerVYLmUwGFy5cwLvvvot2u41AIIDd3V2022127KjVatjb20O73WbTIXkk0kHl4+NjxsGkeenaIBNi1ZwdRtpWaUuqcmQNX07jd46rhEJVO1XtU9WtYz66ukxMRYe/rYCmK+NJ0LpB1pBpLsllD8O8nnuNi8CLKeie+Xkvp9URD5t6ZMJBeeVv3aLzqkOnYdjkU+Hr1R7V/0EXJT2zwVunbQ27sL3KIU0oEokgFAohFAohGAzyPla73UalUkEikcDBwQEODg7wiU98AsvLy8hkMggEAlhaWuJzXY7joNVqodVqodFoIBQKIZvNYnJyEtlslhmeF246zcJETE3zS/z20p7FvCqiJeKma4ufOe6ltcvtVGkQujbJ69Kk+ZiYtEnoGYVmMiqL06jKGVTo8V2P+6RtbSOAcrmMbDYL4Gw6x0tSEL9tJQyvumwkz0Hwe5bBtl0mIiiXMyoNyyT9h0IhxONxZLNZ5PN51Go1TExM4P79+wDAJsJ0Oo3l5WX2OIxGo3CcUxf5TqeDXq+HVquFk5MTdDodJBIJHB0doVwuIxAI4JVXXkEmk8H29jbu3LnDUTZUTEXVZ/RtywyGnb+6MTJpJF5MzgZHk0ZkYjSDtnUYkNf7s05+bawsfvLL7wCgVCohk8n4wuu5NxXqwKvDTJ1vKwmZJFvTYlGlMREWL9OJF7MahAF6wagYoxduKvMW8HhwXxVefoiCqQ9V2lwwGMT09DRrTBRJAwCy2SzK5TIikQgKhQLK5TJCoRASiQQymQw6nQ4qlQqSySQ2NjaQSqVQq9WQyWTgOA4ajQYAoFgsotPpoFqtIplMYmlpCffv30en09GatFTajzzPdH06CEG3WUeqMTKtE9VzuUzTmrARJAcRNged87r17ke71JU7DE5eeVVp/NCQUTB6HZwrjctWmhpUS9IxKnkhDjtgXsRHfCf/til7UMLk1wRoi4MXEfPSroiJmSR7W/AixMS0wuEwMpkM4vE4ut0ums0mQqEQVlZWsLKygu9973twnFMPw0gkgpmZGQDA/Pw8EokEHj16xJ6IrnvqfRiLxeC6LhKJBLa3twGcuso3m00sLCzg0aNHODw8ZAYlt09lAlOl8+qbQTVfv+WJ71Vt8SNA+knjpSUCT3aOPyva16gZjRedHWtc/3/w0jzkdKq0fpge5VcNkGpx2JgwVDiJ5di2UQemsr3aPEidNtqlScuh36r6A4EAkskkGo0Ger3eY9qEbhz8gmq8SWtyXRfdbhfdbpfPdL344otIpVIAgEKhgEqlgqtXr2Jrawv1eh2JRILxCQaDfIi5VCoBAKrVKmq1Gnq9Hscu3NjYQKfTsZZuVZqV2N/ye68ydfPVpk/9rEfTnDAJcCbGII+/Tqt7WnPcJGzZmNpGJbiOWjsaVLi2gXPFuAjOwgQmT2ovgihOSnlReEmAqgmpM43JZYj/den9MtZBGLBXm2XcdPiqiAk9I8ZFe0aO46DX6/F5KbE88TsQCKDX6xkJtxczBU5jFdJ+VDAYBAB0Oh3cvn0bjnNq8iNXdzqAXCwWcXJygnq9zngWCgWk02lsb2+j2Wzyc8LRdV0cHx8zc5bxCQQCrJnJDIrKEUF+r2unShgT+9+LycjvTHNONf/l8ryYgc3aeJbmuCxkiXjo8g/LDEbF5ExpTM9GpdWdS8Zl6phBOs7PwPgpz0RcVXWbyjdNcFW9KgJhqsvPQvVawCo8dQvWq5xAIICrV69ib2+PmQFFp5DbRwwmn89zdHYVUdf1na7/0+k0Go0GHMdBrVbD2toaO2gcHh6ydkbnsyqVCiKRCDNZgm63i3A4jFQqhZOTE9Yk5Yjx9Mnlcjg+PkYkEsH8/DwODg54Py0ajWJiYgLFYpHDSdlK6DoCacso5Hcma4Hut5+5qXr2PM1x1X+dQDEM4febdxCmpcunm0ODwrlxh1ep2Crwmhxeeei/F9NRTVDVIjIRSVUoIp35R5a05bJE/GxCHNmYLHR5de2Vn6mYkIyfXK78vFKpYG9vj/OQ2zgxDtLIaF+K/lNQXJugqLp2xuNx/PRP/zSmpqa4PAB8v1av18PJyQl6vR6uXLmCiYkJdLtd1Ot1tFotdpsPBoPMtOLxOCYnJzE1NcVnxOT+cZxTz8apqSmkUik+BwYAiUQCExMTePHFF9k936ttOqHHdk3Jc1L+PQixksNF2eChgmdhjpv+m3D2MxdtwJTXtk/99P1ZwrnRuHQTTicV6NR/+b840fyoziaJU1enSfr0kvJMC860eGV8VHiZ/qvMTiKuNn3mxTh0eYhRHR0dIRqNwnVddpaga0UuX76Me/fuoVwuI51O4/Lly+j1etjZ2cHh4SHvTZGbuY75q/Btt9vY3NxEu93GzMwMewkCp04YtVoNgUAAKysruH//PqLRKKrVKtdF93EVi0W4roupqSn2GJycnMTBwQFc1+V7vYBT7S4ajeLk5AQHBweIRqO4du0aHjx4gFgshm63i0AggKOjI+zt7aFSqSjnncnc5tf8o+obr/Re5jdd36ueqeadqh6b+nW4iuXLdfk1qamEZ1N5sjBgu5b9MDm5Xhttys9cGTWcG8alAy+JySafSrrSDZbtBFDV4ZVOLtNLOpQ1CpFgyellAim3S1ev6bdu8du0WdUHMmGKRqMIBoNwXReZTAbdbhfJZBLtdhuRSATHx8dYX19njz/XdbG7u4t8Ps/pcrkc9vb2UCqVHttDMuFBh4/p+pKZmRk0Gg02G3a7XaTTacTjcRwcHKBWq6FUKsFxTqNtpNNpAKceVcfHx3BdFzs7O5idnUW1WsXJycljd3ZRPZlMBo8ePUIoFEI4HEapVGJ3+1AohEajgePj4z4tUDVGqucqAutFnPyMoQ4PU5007iYrijy/bBmY7t2o5rgMOkuN1zO/2qsqnRddshUgTUzYz5oeBp57U+GoVFeddKGSsmxMDPJ7nTmF6pAnqCqPqa06phWPx/GzP/uziEQij8W9k9NTO0STlBwyyoSXjJ/cd6qPDaiISjAYRCqVQiKRQCQSwezsLOLxOFzXxcTEBKLRKOLxOB/sJQ2s2+2iWq2iXq9zRAqxv0w4Ud2RSASvvPIKstksZmdn8dJLL+Hw8BBbW1uoVCpot9vY2dnB0dERAoEAms0m2u02Op1OX3mZTAaRSASu67Lmt7OzA8dxMD8/zyZPwi0QCGBnZwfr6+vIZDKIRqNIJpPIZrPIZrOIx+PY39/H9vY2O4CYNCsRTIRRHEdxHMR8pjGTwc8c1817ej7I+peJrVjeoHPci2ibmLyqzfJvP8zAa0zk33770IspPgl47jWuUXaWjdrr9Z7SmCay+NxL8rR5p/ovfm7duoWXXnoJOzs7cF0XsVgMGxsbjy1InaRnktL84jzoeMn5iHmsr68jEolgf38fFy9eRK1Ww9LSEu7cuYNkMolQKIRYLIZisciMe3p6Gjdu3EC5XEYsFkM2m0WtVutjYjocHMdBp9PBvXv3EI/HsbGxgXw+z16F5BrvOA7HH6zVamg2mwBOmVUsFkOpVGJPQ9oTI6ZITiOTk5OoVqsol8twXRfJZBLNZhPNZhOf+9zncOfOHTiOg3Q6jWAwiPX1dXZKITOkTsgymZ/k92Kf+CFyZzVfVCY10xqU26Ran/I60LV/GA1DpwWqypTrFd/7qcsGRkFD/fbBsArHc8+4dDCIBCBPGLGDdeYFeYGI70wLdxjcVM9EfMTntLlPIYgqlQrq9TprH36kMNV7Lw1lWFAxTcc53dv60Y9+BADI5/MIh8NoNBqIRCJYXFzEw4cP0Wq10O12UavVEI1GcXR0xC7p5LTgui6q1epjZkKdQELj2mq1MDc3h1KphImJCXYQEb0Am80mDg4OOH8gEEC5XEYqleqr13V/7LIeDofR7XZx//591rSSySRc18Xi4iI2NjbQ7XbxjW98A8lkEqlUiuMbOo6DeDyOcDiMnZ0dboeqP1WMSEfodWMi/5bLGcUc1733WmOq8lTM2UZwNJU/DIMwCYQm3LyI/iDr7klpTDbzywbOLePyKwHo8usmlCzB6epWSVCmxa7DySRdiuXKaWq1GoLBIA4PDxGLxdBoNDhEkWhuMS1glUnmLCa5TV/R/263i0qlgvn5edTrdb4TKxKJ4Fvf+hZHZyfzHcUGJO2G2tNsNvv+exE0EVfSmG7fvo12u/3YfCCNR7z2xHVPz2TVajX+L57X2tvb68MhEAjwvtbU1BQODg7QbrcRCoWQz+eRTqdRKpWQTqfR6XRQr9eNB5XlvjbNNZPmIacX3+nq9jPHTflNZdiUo2qLV72qNF6E18TAdevZloHpNGlTPlN6v2NhAhsrzbBwbhmXl0TmVyocZpKJv01EQleuTV0mZtZsNpm4EyEFTj3UyuUyLly4gN3dXVQqlb78gUAA6XS6z1FAxcRUMAhhUvWVKU8wGMRP/uRPYn19Haurq2g2m6jVaqxZ0t6SuI8k4yO2x68ETweMO50O9ykJBGIYKrFMivpOHoeURmRe9Ixge3ubzY4TExOIxWLY39/H1tYWM7disYharYZUKoVsNsvMVAUmE5pqHGR8xDL8zAU/c9xL4zeltWGcfkDHELwYhc1ct7HO6OoQ2+2nbr/v/fabimmNmoE9984ZgH5RAWY1X5d/kA4WCY6KEIhSt6pOU5kq3LwmueOcOjBMTk6yp1k2m0UymcTMzAwSiQSmp6eRTCYxPT2NixcvIpvN8pmnhYUFJJNJpNNp/Hf/3X/XV6+J4cttNy0uFcjlq5iZWPZf/dVf4fr166hWq6hUKgiHw8jlcgiFQqhUKpibm0MikcDrr7+OXC7HZjeZAavaJ39M7ZVNfqp2RSIRJBIJPrtFWlMkEuGyRCZG2mG73cbh4SFOTk4QCAQwNzeHdDqNVqvFHpPkVXlycoKNjQ2+KkXE09SnNuOi+q8j4uK3CWRTpYirV9mmsTGtRy98dDjJhFgEHROXy9LNOx0uch3ib685afPMZowGZThegsowcC40Lr/Shim/PDFN2ppKcpUlDJ2k6cVYTRqVXI/o+UdpI5EIR2oIBoPI5XJYXl5mSX96epqjOWxubqLZbKLT6TDj6na7yOfzaDab+NGPfmTsl2EkPzmtjiGrFnG328Xh4SHC4TCmp6cRCARQr9dx584d3rNqt9tIJpPo9XqIRCJ8rknG2WYBq9qkk7SDwSCi0SharRa3K5PJYHp6GrVaDaFQCJFIBJ/61Kfwwx/+EOvr61yeyPxE4tJqtfjaE/JeJLf8tbU1jnkoa5Y2bZTfm+a4qT/E/6OY47r1ZcpnwtmP1m9qg0lLonrkdOJvFRM0aXMm3GwEb9tnunbYplflHzXTAs6JxgX4k/JU+WQwSTS6RWGSiHT1mOrX4eHFCB3n9IxTNptFOp3G7OwsOp0OGo0GcrkcVlZWEI1Gkc/nkc/nUa/X2XU6Foshn8+jUChgYWEB6XQaruv2nQmS6xLdtm3apmqrrp3ywpdxIEK1srKCWCyGdruNRqPBe1rkiHF4eIh6va7UiLwIrCqtrp30O5lMYmJiou/4QaPRwMnJCWq1GpLJJBKJBK5fv45arYZcLveYqVD8kNNHq9VCuVzmILztdptNuaFQCNPT055tUkn9JoKtSqvKM+gcVz1Xla0j1Cq8ZGYwKrpgwl+3/uXnOmHHJAyq2i4z97MAv2Otyq/K53c8ZDg3jMsP8VHlUz2z7Vx5MEyTSScd2S56G+kKOHXKKBaL2N7eRqPRwLVr1+C6Lqanp5HJZPhamEajwebDUCjUt0dD5qZUKoV0Os1MSocPvRcZmq5/dYxI1S45vZwnGAzi7t27KJfL7GxBGufk5CQ7QpTLZbRaLd8mWL9pQqEQLly4wMFvo9EoQqEQnyGbmppCNpvlcE3hcBjLy8vcnzrzUqfTwcHBAY6Pj/sulez1eigUCnwgO5VKYWFhgV30qRy5P1XPdaAjODrNR5VmGOZhqkeFk0rIUjExL0Jqk9ZkmrPVUG3WtYrO0LeXQKUCv4KG+N5rDPwKK37hXJgKTeBHVZUngJ9OVpk26LkKFxu8VBKYLLHppDzXdTluX6VSwa1btzAxMYGZmRk2AZZKJUSjUWYwS0tL2NvbY1Nhr9dDLBbjIK1EGOk6D7kNOjOibqHaSqwysxTTOs6Pwz6Jh3UJl2g0ikwmg1u3bvW5qtsQC525TJVWhG63i7t372JiYgJzc3MoFArY2Njgg9Lb29t45ZVX2AOw0WjgwYMH3O9iX6q+RZwcx0E4HMbMzAwcx0EymUQ8Hsfu7i5fbNlut5UEW6dpDaI56Yj3MITKdq3oNBrV+Oo0N9OcNPWHbq4PKkgPCn7aZFvWoO9VaWQ8TP1qA+eOcak6aNByKL9u8E3SlIow6BaiaQBNBF5H6Ok7FAohl8uh0+nwfguZzYrFIgDwWadwOIzJyUkcHR0hk8lgdnaWCWo2m8Xk5CQODw9xeHjI3ofyYvEiLl4MV8WgaK+IPCJNREQ8i1WtVtFsNhGLxZDL5Yy4mHBWtUvX7yIEAgFkMhkkEgkcHBywS36j0UAoFML6+jpfX1KpVFg7ks2FqnaKbXDdUycO8iBMJpMcQoocOBzHecxEqsJZRUxsiIs8/qb54CWte+GlYhSqtSozKHE9yulVZalw9RLIVG1RCate7VW1wQtMbdLBILRRN36jYHZ+4NwxLpsO8upo3YS10RJ0eUxSoUnKMxFP3Tuxzk6nw1EbKBQRRRPP5XJ8aWG9XucDunQ1CO0PhcNh7O/vI5lMolwuKwmUbsF7CRGOc+rIMDc3xxrR4eEhQqEQxxd87bXXcHR0hEgkgvv37/e5eesWPn1efPFFPHz4UHnNiW4OUGR5+cyXCnexneL/hYUFZDIZjoXYarX4epNYLIZ6vY7Dw0NmqmTGFNugA3lOVSoVrK6uIp/Pc5BfGkNV9AxVWXKfqIirjYYt//ci0qbnqrbq8tnON1M+W0ZhI0jK70y0Q6eNmPpVVY+XRWdYDViHw6iZkg2cO8ZlAyrJSSZCMmPxMnnZLC65Pvm9zaKjdzLBVBEI8kKjqOOimazdbiORSGBzcxOO47A3Wq/XQ6fTwdbWFqetVquYnJzE5ubmY9dkqIiXafHo2lEul7GysoLt7W3EYjHMz88jlUrh4cOH2NnZQavVQqvV4sgStvA3f/M3fPBYxFnXZ8RIX3jhBRSLRZRKpcdiDJraQhdHbm5uskm13W6zZhsKhThkVCAQwLVr15DJZPisnch0TeC6LjvFkGfh/v4+x6SkQL8m06jYbtUzL8nfL5G31d5068APHqo56FW/11o1mQZN+KnKNgkLOlpiW4euvcMwGC96eFaMUgfnknHZdKJJkpM1BpMko2JapvoHGUgZHxXj072nyZvL5VCpVNh9vNlsYm9vD4VCAd1uFwcHB3ylhkw4yeQlx/LzSwjkPhQ/7XYb1WoVH//4x/HgwQPem0un03x4utPp8GFf3XkpqofOOzUaDTQaDdRqNeMYOY7Tp+XRweV8Ps/Xi5jqonbEYjFcvHgRh4eHaLVauH//PqrVKgsOlUoFJycnAE7NoN///vc5XJXY97K5UDUP6ebko6MjpFIpRCIRbGxs9F3TIrbXBkySvpcg5yXx+2ViMtisHR1+ooCnqttLMBX/y+WJ/03l6jRU+bkXvbHBfdSg6gubPGcF58arUAQbqcxLE/BKq5qwuolpA7rJLL6Tib38XHVBJP0OhULsKi46VwQCAXz2s59FLpfjK0LoQ5rK7u4ubt26xbf1ym2X69K907WVInQ0Gg0cHh7izTffxOLiIhYWFuA4DhN9sU/kqOnix3FOrw65ePEiHMdhE5ypHx3HwQsvvIAXXniBQ2O1Wi2cnJz0ubSLn2AwiHQ6zZdTUhSNra0t5HI5XLt2jaNkiJdL0qfdbqNSqeDo6Ijd2+UIGvJ8oO9er4fj42MOyOs4Tl8dlNaP1K0SkEzvbTVD8dsLj0EFO9Xa0/Whnzq8aIlq/avwMz2X+1pkiDrwMsGqhOlBwSavrk+HqdcE51LjksFGIrGRlnSEWHw3jFnFCzeZGZAzA13ZQZqLjA+ZvKgMOohMUv7q6ioymQxKpRK7i6s0LxNxMDEmU38QnnT4ud1uswv73Nwc78nV6/U+pxCxjeTtSI4IADA5OYl2u43XXnsNb7/9NgcU1knPtI9Hd2UtLy9z3EDS9ETGTcIARek4Ojri/qSD0ScnJ9jZ2Xnskkqx70TCriO0MtDzZrOJzc1NdLtdHB8fo1AoPMb45HaatA3duFF5XuOqIr5eRNgkFHqBlxVDtUZl/GyYma2mMey6UNXjRZdMINOuQcFE12xxGDWcW8blR63VTSDVpNNJpTrmZTKt2JYtfgcCAUSjUZaqA4EApqamkE6nMTc3h3fffZevcad8pDlR/uPjY0xOTvJezIcffsh7LyqGRbjpcNcRNrlNYh6ZgdCh3GQyie9973vseReJRLC8vIzV1VVUq9XHmBYxkEwmg0qlglQqxYwmHA7DcRwsLCygXC7j4OCgzwGC6g8Gg/j85z+PmzdvotlsYmFhAfF4HHNzc3z26rXXXsO7777LGhiZA8l0GY1G4TinV5mQOZCYqRwJQ+5PXZ/rgNLRviT9p6C/Ok3LNIY68Et4dOtON8fF9vjVOrzyy/Wp/ov1mNL6md+m+sVn8repfC/GYYOHKZ1XuX7abtNvw4IvU+GXvvQlvPnmm0in05iensYv/dIv4fbt231pXNfFH/zBH2B+fh7xeBw/8zM/g+vXr/elaTab+M3f/E1MTk4imUziF3/xF9kbalQgD9gweVVqua2kp5Lw5edUhy6fWB8FaSVGRbEIy+Uy3nvvPT67JecTiVmlUuGrME5OTlCtVlljEE1yKm1L9V/VF7q8IsOR+7ndbmNvbw/lchlbW1vY399HuVzG9vY2jo+PAeAxk2A4HGYt6bXXXsMLL7zAZsd79+5hd3cXx8fHHKNQdLmncgDgm9/8JhqNBmKxGBzHwcrKCrLZLC5evIhUKsV9S/d7UVxE2rd6+eWX+SwVmexUTEulxfrRtFQfeqdjWqq+9wsqbcIGbIiYTki0xdWEm279ieWb1qhMuP0KFyrcVGtbfK+iE2IZMrNVpdOV43fsBxFqdALEKMEX4/rmN7+Jf/gP/yH+9m//Fl//+tfR6XTwhS98AdVqldP8i3/xL/Cv/tW/wh//8R/j7bffxuzsLD7/+c/zhjQAvPXWW/izP/szfOUrX8F3vvMdVCoV/MIv/IIvbzFbsJ34KkKrG2x5Iusmkw4XnURKH3E/RU5H0v3i4iIuX76MfD7P7u3k/SaXIROAQCCAarWKw8ND476KaWLK7+QoGSLuqr03uc2uexrZotPp8NmzTqfDV3eEw+G+8sRPJBJBoVDgixbp7BeZ0qrVKmKxWB+uIk7BYJCdVOhM1NbWFo6Pj3F8fIxQKIR4PA7HcZDNZnHlyhXk83lMT0+jUCggGAxia2urz1WfGAn9lpmM6pncdzpGJefxej8smOatLq34X15PJrxUTFw3j1X1mAQoOb+4dnXlm9pj0ib8ajW6vGLfqbQvm7GwSTtqxqLDZWTluUNgvL+/j+npaXzzm9/ET//0T8N1XczPz+Ott97C7/3e7wE41a5mZmbwh3/4h/j1X/91lEolTE1N4U//9E/xK7/yKwCAra0tLC0t4c///M/x8z//8571lstlDlk0ig4Rr5fQLQDxva0kqCpHJ3HavguHwygUCuy9VigUsLq6ilKp9JhnoMz8HOc0skIkEuGArGIIJDnCubhIbcxdKqlW1w4ZL2JIZPar1+sATm86TqfT6Ha7KJVKjB/loSj35BIeCARwdHTEGiWZ0hzH4XNNIr6JRAKXLl1CIBDA4eEhAoEA4vE4Wq0WUqkU9vf3OfDw4eEhgsEgMpkMLl26hEKhgHfeeQcHBwc4OTnpEwBUjEqeGyYGYyMMmRiY2Mc6jU7HJEzzX4eLDZgIveq9TfpB6jWVq9KIdVqP1zPVe795VRqrPDfk9yYcvIQGXVleZQ8ChEupVEImk/GVdyivQtrwLxQKAMBnbr7whS9wmmg0is997nP47ne/CwB499130W63+9LMz8/j1Vdf5TQyNJtNlMvlvo8OdItUByotwZRW1BBUWpr4W6VdyBKgrF2p6hP/k2mqWq3i4OAAt2/fZgIt5iHNLJFIIBQKsRaSy+UwNTXF57VM7ZTBJL2qGJH8kTUvlSbW6/VQKpX6zG2hUAjLy8sc6FfU7prNJt9FVa1WcXx8zB59iUSCGZ2ojYqfZrOJhw8fcnSLk5MT1vxoj4qCEycSCWQyGbiuiwcPHqBUKnFsROofmXmIz21Anjsq6Vs3JiqtTQVe2oVfoc1rzanWgwlkLUN8LjNmGyHSD8GVyzQJkyJeXuPk1WcmfOTf8lrT9Zdcj1dfmWihibGqfp81DMy4XNfFb/3Wb+Hv/J2/g1dffRUA+LrwmZmZvrQzMzP8bmdnh8/H6NLI8KUvfQnZbJY/S0tLfXiIYNvhpnaZNAexXHmgdQtU/C+6cdtMIpVZoN1uo1aroVwu8x6OWDcxrTfeeINvz6VAufPz8+zppmuTSlJXMV45j45ZUfBemanG43FEIpE+d3MCsZ5er8f3Tolpxcsbe70eyuUyn/fa399XholSMc1Wq8XnrrrdLprNZl/opGazibt376JSqaBSqSCTyeDk5AT7+/scysmPgCS3T3wmC0Uq7U18Lpd3FpKxDDqhRcesxfemfhLnOaVVCYm6+WkDuj7T4WHKr8PHZl3L69tLExJ/y3ir+kh874d5yelV/8XnOhp41jAw4/pH/+gf4Uc/+hH+/b//94+985JIVGBK8/u///solUr8obuLqK5Rc32dBGUz6CYwLQgxjfwRn4sXUh4dHaHdbvNNvxRFgYj75uYmrl69ivn5eWSzWb6PipjFIHiKDMyGaUWjUUxNTfFZJ4qGvri4iMXFRbzwwgvI5/NaDcBxTvegPv3pT3PA2lgsxm2kKBF0tYfrnl7BsrW1xdHtxfaIzhki8SDzo+js8alPfYqdOsgzs1ar4dGjR1x2JBJh70UqSwe2zE3sY9XcMzGAQbQL27QEOu1LnBdiHpEJiaBjwqa2yExNLkuFl67NXvNc9U5uky3z9GIsclvkclX1qBimPB42ApP8XNdmGXSCrA0NHpZOD8S4fvM3fxP/6T/9J/y3//bfsLi4yM9nZ2cB4DHNaW9vj7Ww2dlZDkWkSyMDRfgWPyKopD8RTItcRywHmZC6soj4yk4BKkKvw4kY0uTkJObm5voioNPFkHSmiBhYMpnEw4cPUa1WOVbe/v4+X7Mh94H4W+UgIkuJYt+qpEBq0/z8PLuYT01NIR6P4+TkBK57esaMItSL/UPf8XgcmUwGDx8+5Ft+VfgQc2m1WohEIko85EPL8ryhg9CO42BnZwcPHz5kJum6bp/zRq/Xw/7+PqamprC8vMxpTKASsrzyqPrVK63uvw4n05oxMRSdgCVrSipmIadVzXkdMzKtW5u2mUC1nk3WERXz1KUz0QebtPStsyKo2iCvVVOdNu1QtUunsXrlGwZ8MS7XdfGP/tE/wv/7//6/+Ku/+itcvHix7/3FixcxOzuLr3/96/ys1Wrhm9/8Jj772c8CAN544w2Ew+G+NNvb2/jwww85zajBppNsO1+WEr0mNHm9ZTIZZipkPqMbik0LLBAIIJFIYHJyEplMBsFgENVqlWPi5fN5pFIp1Ot1JBIJZnAAcHx8jEqlwoyBHB7oHJiK8BC+KpOmatLLBEm1b7WxsYFKpYKJiQlkMhlMTU0hHA7zHpF4JQkx6XQ6jWw2i0wmA8dxsLu7y1qU67rKe78cx8Hk5CQODg768KP3dJSADizLzBI43a8lxr+7u8uHnmXHi2AwiMuXL2NnZwePHj3SmgtN80pFcFTzSGYEo9C25Hxe46rDT5XWCw9bZi0LJoMwZirHBidV+TZz3yRUmAQAXVqvd3K/yKDCUfXbhhnb4DcsExoEfB1A/of/8B/i3/27f4evfvWrSKfTrFlls1l2F37rrbfwxS9+EVeuXMGVK1fwxS9+EYlEAr/6q7/KaX/t134Nv/3bv42JiQkUCgX8zu/8Dl577TX83M/93Ohb6AGiFGLDiGRJUGXnFX87zqnW8NJLL+HmzZvodrtsQnvppZdw584dHB4eas0OjnPqkJFMJtkxYGdnh81us7OzHNGdtFjxxt18Po9arcZOBJVKBeVy+TG8RRPa8vIyTk5OUCwWEQwG0el0+iJyUL/p+ocgHA5jamoKrVYL8Xgc8/PzyOfz2N7eRr1eZwYuXkciMpp0Oo0rV64AOHX8EftUZFqk7YRCISQSCdTrdX5HZYtRLqLRKI6OjrgNsVgMrusilUrxlS+yW7vsVRkIBHD37l3eb/Ra1F6Cjtx3Ok1e1thsylNJxXJ+PwzKFn8TIdeBKp+ttiNrFrr0fsySYnkmPLw0Yi/cTHlV7+T/XvV7zRWb9IPkt7EUDAK+GNef/MmfAAB+5md+pu/5v/23/xb/8//8PwMAfvd3fxf1eh2/8Ru/gaOjI3z605/G1772NaTTaU7/R3/0RwiFQvjlX/5l1Ot1/OzP/iy+/OUvG/ddzgp0TAdQD55pgaiYluOcHki9f/8+Ll26hG63i729Pbiui8PDQ0xMTPD16yY8KpUKut0uXnzxRXYIAIB8Po/Dw0NEIhEm0JQ/Go2i2+1qHQhkZjE/P4/Dw0MA4Jt05+fn8eDBA65Pt4h1fVGv19k0KQa6JQ/HUqmEYrGoJKLhcJiv+8jlclhcXMQHH3yAXq/HjDYSiSCVSnHk9UKhgHa7jWAwiOPj475LMsPhMCYmJrC3t4der8cMLp/Pc4QMOg/n5dpeLpf73PN1BNmP2cUvsZf7W2SOKiFIl19HZPyajORvlbahYqImBmrDDOV84vEWU1ovDUenQaqYvG49iMKtLfMwpfdiyjowCdm2jNwPyH3nl3F6lu/6mZ3PCIjnuAD1ArTpJC9NS0WkvaQIWSNwHAepVAqFQgEvvvgiyuUyisUiWq0WKpUKkskkewiqpOxgMMgMKRwO85X0APiaD9I0Tk5OEAqFMDk5yQT5/v37fGaLCKwYJshxTs8yAaeMIp/PIx6Po1gsslmu1+sxsbeZLqI2RMwkHA4z/sTM8vk8KpUK1tbW+soOBAJIJpNIJBJ8iWQ2m+Wr68WzWTMzM3j99ddxfHzMWiKFdaJoG4RDNpvFzMwMDg8Psb29jVarhcXFRdTrdWxubrJWKh/Itj1ILL8T55H8TCxTR8zFfI7jPKb1yYRHxxBMz3WEUYW/Lejq1ZWlYrK2Gozp3SD1e71TMS0vbdbmnR/NRMfQVc9VeKveD8IGbOit1ztgsHNcz32sQpUEYcvZdel1DEv1W/yvy0ehlFZXV9HpdBCJRFCr1dBut3F4eMhxBOWySVug/RjybKOzWcfHx+xWvri4iEePHrEpMpFIIJVKsRZLTEQ8oEz1TU9PIxqNolaroVAoIJVKIZfL4YMPPuDwULp+NUnTrusik8mwNyNdJU9XjRCTIFOf2AeNRgOdTgfXrl3Do0ePEA6H4bpun/nPcU7PYe3u7qJarXJEd2LUYhDiTCbDcRop0gtdYeK6rjFOoy3oCKZMTPxK1DomINalqlsl9aqeq3DVCWuq9unwN0n5KnxUeOj+24CuH2WG40fzMGlisqAh51HRBxUeMnjl12k3pj5TCT5+wUarGqWWJcK5vNZEBK9BkRekSVpUgRdDo2elUomji9OliKKWIWtpgUAA4XAYsVgM09PT7MKeSqXwyiuvYG5uDpFIBNPT01haWuI9RnIEqdfr+OEPf4hWq4VgMIiVlRW8/vrrfZ6H9Dk4OOD9rGq1ikgkgm63i8uXL2NycrJvIejaKE5iMU21WsX+/j663S7S6TSb5WjPCQAmJiYec5YAwMy+3W5jbW2NGbWY1nVPzailUon3y2S8Op0ONjY2mMF94hOf4DE4ODhgbVA3jiL40ThN73SCka2G4UUIbfA0aQyqdDLuwzIcVXm6jwofE65yHbQXKp8plNunKksW9OT+9cJXHCud9utF4P1oj16ChkmY8KpfVdYgMGg+gude4/ICr0HxO4CqvCrC7jgOhyECgE6ng+PjY2ZAqijl4u9AIIDFxUUUCgXeo2o0Gmg2m3j//fcRj8eRSqVYg5iamkI0GsWFCxfYbJbP5/kSxkgkgkgkgtnZWfaUEycwaSp0/ouinsfjcYRCoce0Li/zCPUFXTVCDiR05oxMpcFgkE2I5BAh5q/Van0ejjMzMzg+Pua9qGazia2tLdbmxCj48XgcjUaDy0qn0+h0Onj77bc5mka1Wn1Mq1QRP6+FJhMnVT+Z3g2ykL20F1vNzmbemxilDMMSJRtcvN7J32R+zufzPL9t6vGjRajG14tJ2NIccQ7aaKp+6/Sa47q5Mgj99KscqODcMy4v0Nlg5QHRTUAd0wqFQrh69SouXryIv/7rv4bjnO4lxeNxdoAQz2KJnnVURi6Xw/LyMl9XQdoEEdnl5eW+yOeRSISZViKRwLVr13Dr1i2+DmRnZwfpdBqXL1/G8fExDg4OEAgEkMvl4Lou77c1m00EAqc3EF+9ehUbGxt9XnY65kWakjzJXdflyBakAdF7xzmNn1goFPhMV6VSYdd9UWIOh8OYmZlhhiX2veu6fCiYzrtls1k2z87OzuLo6AjNZrPvhmDVJZUqhqACXTrdPJHnEJk9VX1K/0UNUqxLlV7HcMXxMBE9HYMz9YO8Dsica8rj9c6EjxeoGBd5ttK6DIVCysgxKtOhqX55HGQtzraPTWXL5kfb8bOtX4W3Hzz91E3gd0xV8JFlXPJi1klXgH5BiwxL1jSAU8J048YNRKNRRKNRXLp0CcfHxyiXy+j1euxoQZEfZDPX3bt3eS+rVCqhUCjAcRxUKhVcu3YNrVYL2WyW4/ldvHgRJycniEajaDQa7F3nOA6KxSJrGBQCqlwu8z1S2WyWb+QNBAJ45ZVXcOvWLbz77rusfRFzlZms3K86qYy8+MQ0vV4PtVoNU1NTKBQK3Deiez7twV27dg2O47DJlZxSpqam2Gz63nvvMTOanZ1lBthsNplp6YixPCeICIvMTccg5Hz0nyT9YDDI0T2AU2/ImZkZPHr0yHgdiUpIkLUfnbYlPxPziulMc9+WiavS6+aIiUHqyrKpU9XWQCCAWq2GVCqFcDiMSqXS5+RC6VR9YquFiL9tNCwTYZfrVjEvVT02+PjVHv3AKJiRHzh3jGsYSUHHxFQDL08SmXnF43Gsra0hlUohHo+zIwYFCCaCOzExgYODA778UYR2u43r16/zoeJut8uHju/evcsaSDabxezsLGZnZ7G7u4vd3V10Oh3cunUL7Xab4/eJXoXkgk7mwWvXrqHRaGBzcxMA8ODBA1QqFSwvL3NMRCqDmJjcD2Jf+AEy9yUSib74g1Qe3ShADi2ZTIZvGybHi09/+tP4xje+wabZQCCAhw8fIhKJoFqtemomIs7BYJDHjBxLyMmFIn6IeeWygB8T4kAgwLE1Dw4OcHR0hFAohKWlJVy7do3Dl6mi75vKtSFGOnOuKq2NtOyHAIrCG50FVGmduvw68JOf9kHD4TCy2Wyf6bxcLj92U8CwoBMCTNqSitHJ6fz0l5eQbXov1z8oPAkmdi4YlzxhvKRIUxk2k0UsmxYm8GPTn+OcumnTgdZQKIR0Oo16vY54PM4LptvtsrZFeVWmR9d1uYx4PI5SqYT/9X/9X/HVr36V93BqtRpefPFFtNtt7OzsIJvNcrDYWCyGhw8f8gFk8k6kCdrtdvHee+/BdV2OedhsNjm6ejQa5egcZOYjJuYFclvkvnYch6N/AKdHHURvP+rrSqWCzc1Nxi8cDqPT6XDoqm984xt8Pi4YDHJQXgqMK+JDzh3iDcK0jxYOh5HL5ZDNZlGtVtFut+E4pxrp5uamVhKn9sXjceRyOezu7vKzZDKJdruNyclJvhm5VquhWCxiZWUFDx8+7HNIcV3Xqm+9+p36Wuxz3Xv5OYHftSTXQVYF6ktVnSrQ1atbl/l8ng+W011sZBmIRqMoFAp8xdLW1hYikQiHQRPro98mLVaV3g9TNwk+qjpN/W5jojP1n2x9UM3tUTH2UcJzf47LJD2YQKUZ6LQtnQYWCASQzWYxOTnJJjY6DJxKpXhBkSZBC5eI0tLSEm7dusVMIRQKYX9/n/eYiMmRlhONRlmjSKfT+OQnP4nNzU2EQiGkUilcuHABa2trODk5QalU4uvrZ2ZmcOfOHZYyqUzZREVtDQaDWFhYYG+7TqfD+2xTU1PodDp48OBBnzOFqn/lb/lDRO3q1atoNpu8d5dIJLC6utoXlzAYDPJlkLFYDAsLC3xrNkXoKBaLmJ6e5gjvtVqNXeOpzfF4nONllstlPp9G4zk5OcnnxwqFAo6OjrC5uYlyucyMW+wzcV6Q1+fk5CRqtRoajQaq1SqfwSMX/XA4jGg0yhHp6TzezMwM9vf30ev1WLPzugdNB+Jc1mleJul6GIZFfRkIBLCwsIDJyUkcHx/j6OioL2KJV902eJDwmM/nceHCBTQaDV5DzWYTwOlhdxLgms0mWy6KxSKbpsW6gcf3nOX3g4BuTHRmXV3dJpqn6yc5jak+3Zzxws0vc6M6nvh9XM8iDCIZyCYML22Lvh3H4TNJruuyNB2LxZDJZNhElEqlsLi4yHH3KpUKDg4O8O6776JWq6Hb7SISiTCDSiQSyGazSKVSfJWH45w6NZAbfb1ex/Xr13nxtdtt3Lp1C5OTkwgGg5idnWXi3W632SRI8Q5l6ZKIJP3e29tjRjI3N4dYLIZwOIxr165xOlXAYApUK15BoorHSIyLvCwXFxeZwScSCRQKBY6ZSPkpuK0YTDcYDHI093A4jJOTE2SzWT4bRhdvRiIR3hNbWFjA4uJi3/1eVEe5XEatVkMwGESv10M0GkUsFmOGJcdwlAP3xmIxzMzM4MqVK3CcU2eAj33sY5icnGST1crKChPVUCjENzhPTExwLEV5vpkIg4kIijiqypLHTzffVetBLpNArI/2R1utFu/1qeJZqtaajIesqcjzjrTtfD7Pa4nGcXl5mT1zyVxIY2BTn9hvXhqQF8hjIgrHXuZdvxqVnzQ2oBM6nrRGdi5MhbbgZd+l/wReizYYDOLKlSvs4p3JZHB8fIxOp4NSqYR0Os3XXkSjUczPz/N5qUajgZ2dHTaD0d1PkUgEExMTHDEiEAjgJ3/yJ/HOO+/whBcP8qbTaUSjUezt7bEJCjjdiyFCv7q6yowxEokgl8uxG7i8WIi4z8/PY319Hc1mE5ubm3wdynvvvcdmMArWKxJ1Ylzk6XhycsLvZWLYbDaRSqXgui7W19f7+o3Mqp1OB47jsEkvGAxiYmICKysrzJAp1mA8HkcwGESxWESj0UAwGMTFixcRCoXw6NEjDjm1vb3N7Y1Go4xfLpdjYlsul9nc2Gg0MDc3h7W1NU8TVrfbxdWrV7G1tYVUKsXHAD71qU/hb//2b7G0tISHDx8ilUphdnaW9xTJ1X9zc/Ox+9VUfSfPUxNR9aM96daHqQwRN/HSUupHMkHT0Qagf0/PRLRNuNEzEjg2NjYQCoUwNTXFxywo1Nza2hpbHOh+N5PFQFWfX81TJUTQc5FZyf2qm1s2mtQg42xjRpbn15NmVDJ8pEyFKknTC+QJJkrXdLB3cXERtVoNs7OzePfddzlqBbml0/4NxcN77bXXUCwW8f777yvdsWnhJxIJRCIRzM3N8X4O2fCTySSOjo6YgbTbbY6oUSqVmHDU63U0m03E43HWZLrdLhNI0hYJyERJrvEicwuFQpiYmMD+/j4cx8Hs7Cza7TY7elBA37m5Od5je/jwIVqtlnJxkGmNtDly+iDmOzk5iYmJCZTLZfa6dByH8xBxarfbmJ+fx8nJCUcloX1H8rgMBoOoVCpoNBqYmJjA5uYmotEoa2nNZhNLS0vsiUm3TFO8xHA43Bf2SmViFffJyHzlOA4zPgC8d3jlyhXcuXMH9+7dw+XLl7G2toZMJoPd3V0+sC1KtyrpX7YUmOa7/Fz1W8yjEuh0/0WtgUKGraysYHV1Fc1mE5FIhCOlkGcngD4PT8dx+taBiiypCD9pcOTARIGnm80mGo0GZmdnUavV+OhHs9l8LAQalSmaB02M1MvMOgh4mU/lulV5vRib7rmuzLNmDcOYCs+dxmUaJD9MzqvcaDSKK1euoFQqYXJyEnfu3MG7777LjCCVSjERpb0N0npu3LiBVquF5eVlPHz4kBeNCL1eDz/xEz+Bzc1NHB4eolqt8jmliYkJ5HI53lxuNpvI5XLodrtss4/H43j55Zfx3nvv8QWIAJDJZNiLkYij+Ol2u+h0OqydiMSl1+thZ2eHiTOdpSIz3KVLl3B0dIRut4udnZ0+ZiP3I31Xq1UO+0QCAZmXiNgAp0zs6OiIiV+v10MsFsPKygp2dnbQbDZRKBR4P4kOKNO+FGk+1EcAsLi4iLW1NSaq6+vreP311zE5OYnbt29zOC46g0bnf8hcqWuXGJE+Go3CdU/PyJGmnEwmcfv2bRwfH6Pb7eKHP/whut0u6vU68vl837UsfuYkoNbEVGl1GpxOovbKT7/J0YgsC5FIBLFYDLOzszg8PGSGks1msb29jU6nw0x9d3eXbyEwAc0JYlT5fJ4ZIlkgaH83Ho9jf38fwWAQ2WwWx8fHfWcETRYWlSao6i8b854Nw1FpOnJ6lfCgG0OvfCb8RsGYTQx1WDhXjEvHiEwd58W8VO+DwSCWlpZ4P+T999+H4zi80U52dCJckUgEpVIJyWQSwOn9Y3Nzc5iYmMDx8TGKxWLfgUhiYvfu3cPS0hLq9TqSySQfJKZ9LdKCkskkkskkaw4Uk/Du3bssXQJgN+CDgwPepJa1B2KiqsgC4kKJx+NIp9PI5XJYX19HNptlxkOHmEXnCnk8xGdk1hO1FgDMhF599VUcHR0x4w+Hw7zJn06nOazVxMQEUqkU9//+/j4CgQBrMLIn4b1799BqtfrMR9///vdx4cIFDjU1MTGByclJAECtVsPR0RHi8TgfD6D2kMRPTIvOb5FmWqvVEIvFMDk5iYcPH3IAYMK33W6jVCoxc6ZyZclY7EN5bFTvTOtB/jZ5MnpJ6OI7ih85MTHBxz7i8Tjm5uaws7ODeDyO27dvIxQKIRaLsdcl9Z/qcLBcl+OcRkKZnZ1lYWF/fx+u6/J5wYWFBdRqNUxPT6NcLrNnYyKRQLVa5Sgrqj5WEW6xv2zNmjLxtjH7in1uU6Yqr59nJro5DPM6C4ZFcK4Yl06yMaUH/EkGpJVsbW2h0+lwVPZAIIBSqcREjAiluCFMRJKuMWm1Wpiensbx8TFvFAPgfayjoyO0220cHx/zfpV4IDYYDGJ6ehqXLl3C1tYWn5ehfaFqtdq3v9Tr9ZDP57G3t9e3MS0zLbGtOgL52muv4caNG+wuTpdV0h6ZqJHJ+xqiaUmuS6yT3OIPDg5weHjI8QhzuRzvod25c4eJH0nvP/zhD3F0dISJiQnuBzJlTk9P42/+5m9YExNNRq7rotFo4NatW4xnqVRCPB7HT/7kT7InJTmNEH6kVUQiERYoALDHZzKZRC6X43NyIhMlzVclRKjGwYuYes1hFbEj4Yo8GWUTpYlhyeMZCARQKBRQr9fhui6uXLmCYrGIT33qU7h79y57/ZHLOjnkvP7666zhqiwQqvoajUbf/WtkhRDNtOl0mr1Faa83nU5jdXWV54UsYNnQA5VwIPabijnJc16Vn9LQupHng2mMBxHCbdo5KPPS0Y9RMLRzt8dlC7pJBDxORMUoDpRXNFeIgxsIBHDhwgVUKhUsLS3hwYMHvM+SyWTQ6XRYqqa9LLqIUJzsZAYhd3Sqk+z55MFG8ffI/EF7YdeuXcP9+/f7LjokIgWcag/imSGRcFIfiN9y+/P5PDPsXC7H+02Oc+otePnyZfzN3/xNXyR3FZEQCZ78Tf1DDi5ElJaXlxEMBlEul/HCCy/g8PAQk5OT7J1J16aQw0e32+UbqOv1OtbW1tBut5lpqZgG4UXmpmg0yo4mExMT2NjY4HvGiHHSniHt1ZGH6crKCrvfp1IpdtMnc2yxWGQiKh9RkImWbkxU81b3Xp7H8/PziEajbLojoUZVt2ouUJnkmDM9PY2TkxPEYjFMTEzws83NTTaDUuzOYDCITCaDWCyG3d1dzM7O8uF33dwTP+SZSvOQ1mWhUEAsFkMsFmMz7P7+PltEyEQtmpDFtsrM2wZ0AscwxFq1Hm3oFmDWrFS/Vd/0XtZER8GQqMyxO7xPMC1GU3qRwNCekPi/UqngpZdeAgA+v0VSOWljdNaIPJ105jrx+g/XdfvutlpcXGQTYb1eR71eZ62sVCrhwoULeOWVVwCA8XSc09ht5DKeSqXYpCVPVNOH9rKIEZMZstVqoVgsYnV1lbWSxcVFzM/PM4NTxTSkA6Siu7Truuw5SAenaf+Oou3fv38f1WoVBwcHfFllvV7H3t4ee/XV63UcHBzg5OSE97fC4TDHjqRDzGLbSeKniCT7+/solUqoVCpYXV1Fr3d6K/XU1BSSySTC4TCSySTS6TRee+01dsGns3jVahX1eh2NRoPNhOQBqWIUpnlpMieJ72WiKzMtYlztdpsj96+srLAwJmtSKhduWQCp1+vY2tpiQerw8BD7+/scLHpycpL3aunYxJUrV1hDOzw8ZG9am/roPjoAfFBeDGP20ksvYXp6Gq57us/4qU99Cul0GoVCAVeuXMHU1JRSiJXrkeeHiqnLaWVtWAYbhqhqt64MVd0yfnIeOb+qPF27ZDy9YJQ60rkyFfoFWXpQSaQm0ElYu7u7KJfLmJiY4CtCisUiDg8P+SCqaRB1khBweqYqn89jf38f7XYb1WqVI0U4zulNv/SODmE6zo8vIazVajg5OUE8HketVsNLL72E9fV1VCoVTqeT+MU+E6Hb7bIZr9vt8nUsdP6JNsYdx+k7GEpAkvorr7zCnpamxXLnzh3WhAharRb29vY4yjzVQUJCt9vlfSjy+svlclhYWAAAfPvb32bvR/GSx2q1ynuHYt84joOjoyOUSiUAp2bN5eVljnoPnO4pHhwcMLMkRkUm40ajwYep792799jelvjbZGqSx8Yrjagh0Z4kCSEbGxt9EWDk/teZ8Khu0mBJsyTB4Bvf+AafY5Nd07/97W/DdV3W2OXx1rWBgimTQEDrK5FIoNvt4uTkhKOt0OWoDx48QCaTwfb2NkKhELLZLHZ2dvrGXMdo5L7Q0Q6v/PJY6jQzuUzxufxeVa48NmI58reKYXlpcH5h2PwifKQZF/C4lGJSg1Udr5ugFMqJNoEpHRFlEy46icZxHGxtbbFpaXZ2Fi+88AKuX7/OG83VahWvv/467ty5g62tLbiu2xf+JhAI4LXXXsPGxgZarRZ2dnbQbrc5egcFsNW1zbSwM5kM3ypM0jK5lpMmRftO8XictTJiQltbW3Achw8Gu+6Pz4ZRgOFGo8F3Z12+fBnNZhPFYhEnJydIpVIcPJjMcBQVXGTi09PTaDab7DL/8OFD9rYUCRjtZcrMjL7FK1MikQiOjo7wqU99Cmtra3zvE5mpgsEg0uk011kulxGPxzE1NcVR801SuU4jMKXTSf+kYYtXyZCmQ/e6ua6LWCyGarWKaDSK6elpZtQm5kXjl8vlkEqlsLu7y+bBRCKBvb095PN5vihUtCZQX4lmO5mwUh1kJicvQgouTeZ14FRQ2N7extLSEnZ2djA/P4/V1VW2Tty/f/+xS0ypLlW9OoahYx4mZqAaS68x1pWjo08qxqdjRjZt8BKK/JgLh9W+zg3jMk0+1X85L2CeXDb1ib9d12WTkEqzI5DfiWYrYjRE6IkYbm5uslS8t7eH4+NjZkx7e3uo1+vs/EGEgdIDp4cxq9UqE9JYLMb7N2SysZEYZaD9nkqlwjH7yNznuqfeXgsLC3Cc08j3AHDhwgXeK6Nza67rsideKBRCu93Gxz/+cbTbbTx69IjPqv3oRz/C1atXmdhRaKFut4tWq8UMGQD29vbYC5Bs6p1OB/fv38fh4WFfkGORQHlpoPSMTKU3b97kc0viTcxzc3NoNpvIZDLsNEPR4ulbpWnZSv+muS0T2StXrrDpjG4gSKVSHLWDnIGWlpZw48YN9Ho9XLlyBTs7O7h37x5CoVDfbQZUrsjE0+k0a6qk7dK9buQBure3pzySIbdN/h0MBpHL5bC0tIRwOMyhvyKRCJLJJC5fvsxX8TQaDWxvb6NUKnEotUKhgFqtxvVTma7r9u052/Sl/Fz3XtWOQUFkKiZaZcLPi1GbyjDhZQI/WqkXnBvG5SWtmDp1UIblZUbzIjwy08rn8wDAzIO8Bl3XxfLyMu7evYudnZ2+IL3Aj803tHck7ruJDhjkdbi7u8s2/osXL+KrX/0qEysVAdH1lfiMzjrNzs7iypUr6HQ6iEQiePToETqdDrukb25u8j4UcMpQGo0GX7FCEbzpUHWj0UCr1cKdO3fgui6y2SzS6TTvGd28eZOl/IcPH7JXpeu6qNVqHCuS4gKS+Y+ODZCWqdIiZGYlMzBx/KjPDw4O4LouM05K22q1MDc3h0ePHvXta1YqFe53kRipQMfUVIKRiaE9fPgQ6XQamUyGtWTas3PdU5Od67ocuT4cDnNMzWvXrqFareL+/fuPBailuur1Oh48eMDzjsaHHD8uXLiAjY0N5HI5DozsNcfkd2TWJLNvq9ViE/nt27c53Bmd7SONu1AoAACbcx3nx/tk0WgUmUyGI3C0Wi32jBX7XTc2NkxJN066MnRjaYOT3Geq+SOXa2KCfhmNHw3ML5wbxjUs2GhkgHlgxXJ0ZgLxmUysut0um3GazSbb63u9Hvb29pBIJNjdmoghleU4Pw5ESw4bVDYR5Ugkwu7HFJKInCzC4TA+/elP42tf+5rxdlhTP6XTaTSbTWxsbOCll17C7u4uQqEQfuInfgI3btzA7u5un8uz67p8yJgk8kQigYmJCezs7KBWq/F+UK1W4xiOGxsbHBaJ8pHpiIgXHX6t1Wp8nks02eZyOXaWESVs8gi0IQZyGiJ2JHiIe1a0j0IhwWi8yetRpW2p6pR/+yU+jnNqTm61Wjg5OcGbb77JRJ8u9NzY2OBIIhsbGxxSizTUlZUVPigtMy0SYsiMSqbeZDKJTCaDWq2GO3fusGYsCwy6dSO3s1QqsfOPmJ4uUiWvWzJX0jza39/nq2oo/8TEBLrdLubm5nBycoJMJoPFxUXcunWrbz/WSyvRgW5svYRrv9qUDVOVmZYO/DBGHfhRHvzCR4JxeUk5gF2nmgZdV46ozqvqFcttt9t4+eWXcfv2bY5vWCwWea+BTF+lUukxMwGFaqLo6BS4dXt7m4lotVoFcOp9VS6X8d577yEWiyGbzeLw8BB/8Rd/YXWdhow7eUweHx9jZmYGjuOwSYzunyJCQm7fouZCUnmn08H09DRHPaCDqYRTt9tls4/ruhzfjw739no91qKoXDJdyqG1RA/MdDrNezckAJBgoDMZyZo1AHbCkOcBSfUUzYPqII1YBJ32NIxZRcSHmEkqlUK328X169c5hBhp7ORAROa2QCCAtbU1drx4+PBh3/6eCmQt9eTkhPc36eYCU/vFcnTrTTxaIVob6NnHP/5x3Lp1C4eHh31jT276JNBUq1VMTk6yhy1wuucnHjBXacI6QVTXF/JY6ECkF360MLkulVChwtWrHaOYf6OGjwTj0kmjftV720mkSyfXLz4nSZ/iDFYqFSwsLPCCS6VSODg4wKVLl3Djxg2cnJxwGcQYKPpCLpfDysoKtre3+w4x9nqn12XQQVOSjkkbMcWKM0n0tD9FJrdGo4GbN28ycf7+978Px3GwuLiIvb09jnAg90MoFOKIChQaiBgXaQoU5Z72/rrdLod9unz5MjOgbreLw8ND1haoDiKWR0dHAE61UGIk1K7Jycm+O8xEpid+ZBCJpvgBwB5wqVQKW1tbeOGFF/iMHzFIk/TsRTy8pHORiIVCIUxOTvJ+Dh1DaDab2N7eZvf4/f19JuDieTcyn3lpAyJQZAvqJ+pPnXVCV67MLMkELo6h45zGs1xYWOALV+msVrVa5b1TOhIiavUU7eP27dt9lgcbbcimP1QCj47ZiW01CTAqjUosV/VftZ7lOSjj+ywxsHPPuGwXmIk5yeWYmJCXpKSrm4LLvvPOO3xYuVgs8jminZ0dlMtlrK+vP7YxfvHiRbTbbbbbx+NxZDIZuO6p5xt5Fco40EQlJxIvwkh4y4som81yJHfa16nVahyk9vj4GJFIBP/9f//f4zvf+c5jpjjqs8nJSfYsJHOO2KfyQXAKM/Xw4UOcnJygWCz23dJMHovktUhmVrHvWq0WMpkM5ubmsLW1xftNvV6PTZO7u7vsvGHTRzLQ3iJF5I9Go7h69SoikQj29/exv7/PV9aQF6Sp7+V3KgInA6UhE2q32+WwVdeuXcPe3h4zMboKp1qt8gWMdJZOx7S9gIQkirCi6i8vIVKl4dF/umm8XC4jEDi9J+/tt99GJBLhQACi9k59PTMzg0KhwDc1UPBp2fFEtXYH7QcvK48Xk9T1gWptetXlJXjbttVEZ71o6yBw7g8g+9GobNOrBlM2jZjqkvMCYE2ACC85GbTbbbzxxhtYWlpCOp3mg7ii5H98fMwLMR6P4+DggIPzyiGNqB76iOec5HJt8HYcB5cuXcL+/j4f8G21WlhdXcXh4SGy2Sx7zv27f/fvsL6+rtReer0e7ty5w44b4h6IKJ0DYLMjBd4l05PoYu26p+7cL730Eq5cuYJcLsf7IWI/kBROzJKifpD7OpktL1y48FhfyP2j6iPXdXHhwgXMz88jHo/zPuP169f7Io3Mz89jYmKi73C2SsPwkvLFeawi9CQgbWxs8NU3N2/exMnJCZLJJH7+53+e978oyvulS5fw6quv8iWmJtzkQ8MUvoxMpQcHB9roKapySAARY1iq1iqN6eTkJB9NyGQyePPNN5FMJjnSjjj2jnN6NICC/xJzVu3xqnBU9a8IJjpgIvK6tDZrUtdHOlxkbctL4/LbHhUuo4Bzr3HpwEZCUD0H+iexjfnGpG6rJkmr1eKDralUCt/61rewu7uL7e3tvlBNlGdvb48JHh3O/fSnP41Hjx6xx5iO8ch4qDQrHZ6Oc7ovJYZ26na7mJmZQaVSQbfbxfr6OhKJBIrForI+qkckKDLxA8BecIeHhwiFQpibm+M6gB8zfgBsHm02m1hdXUWhUMDk5CS7/Iv3MImmUoruUK/X8ZM/+ZMc07FUKuH+/fuPMXSTxkB9R/tD4hmjqakpdkJpNBqYmZnBjRs3ONiwLtisqj6/ZjZKT2VTdA/XdbG7u4v/5//5f9BsNtnJhxg43WGm0hho7kUikcfMa3TQ23F+vLel6zPxWTQa5QgppqC7VEe328XCwgKbk8PhMJsnG40GrxtxLTQaDdy9exeu67KZMZfLseYuH5S3Wbs6MDEEU3/ozIBiWtW8U2k5tr9t6h6l9jQIfGQZF4HMXEzmCDkPvVMNvGpSqOpWlQ+Ag9Tu7OywJ1qv1+vbDxGJEHmm0eJcXV1lM6FOi1K1SceQTZOUNvBd99TBZHV1lcvY2dlRlq/rO2qDHBYqk8ngypUrWFtbQ6VSwcnJCcLhMFZWVgCAzxs5zmkoIYoCLt5KTYd/RQ2OmGQ0GuVzV8ViEbdv38bk5CTK5TLW1tYeY7w6rVRsI31TeC+6NJOcI8jBgUxwU1NTOD4+5j0+irwvCxNi2bZSsGoOk1b60z/907h37x4ePnzI3natVgu1Wo3DN9GZJ52mQY4yR0dHfQSfzLQkmHjhRvfXtdttPnRONwHIfSyOXygUwtLSEu7fv8/7Vdvb2xyqS3XvHc1X8bD8wsICotEo9vf3ldfLyAScnokCmNwuFY2Rx0JMJ4MNvRHxkOuQNSkTfTOtTxuapsN71HCuGJdKylC9F8G0uL3y0nMbfHR16PLTlfTkGu66Lh/qVO1XEdAG+tbW1mMhjHTtUS0s0wLUlUEgRgdRLVY/C4AIPV2T4bqn3mQUl67ZbHKf0AIl5wLaMyuVSnxxpHzAmkIv3bt3D47jsCkPAF8cSZv4jx49YpxUjEuce3SRJu3rUKipTCbDGjKdX2s0GrzvND09jeXlZayvr/N+jZemJYOJEIn/33zzTQCnB9IPDg76zvElk0m+54ocXnSE13F+7DWZyWQQj8f5uAId8aAraXZ2dvpCeontoP23z372s3jnnXfYOYc0UJFpic40ly5dQqPRwIMHDxAIBHivl4SWqampvpBdqjlGc4E8JkXnJ1X/2momYn/p5rqKZqn62nbMTe90a1gnfKtoga3mdZYa2XPPuFQSgS3TEsGrk3XE1m+ZugkpTxqKQUjRrImAeDFKALynZIOPChdVWlW9Ji2T/quYt5xfhZcoUQeDQcTjcYTDYWxtbfH5mwsXLmBtbY0D2VIdZBJcXFzEyclJX/Rv2ZvNcRyWxslslslk+G6sra0tXLx4Ebu7u8o9QBWzd123LwrI1atXsbm5ydqz4zh8h1kymeQrb8iRpFqtYn9/v885xQ/YCm/vv/8+n52jq+wpLwWAptu36TCyimlFIhFks1mOu0gXYrZaLRwcHCCZTHLkipmZGezt7fXdik0fOix8//59RKNRFjTC4TDq9TqbeOmakk6ng3K5jNXVVeTzeQQCAXz44YePudmvra0ZrQ6ue3qwnQ7Ry+Z4Vd/Kz1R9Y1qr8ljoGIRJU/JTrmlOyGXbCKeqtHL6s4TnnnHZdtIgzEyXVkWY/YLXJKVzVxQ5QjYneC0KsWxVnXI7xGcqhiNL66Y22UxmkTHJZkHxUkk6WFytVjmcFXCq1R0eHuLg4IBvghbLbbfb7Mot3vEk9yPVmUwmce3aNdy4cQPXr1+H4zgs8d+6dasvv4oAylIo3Qfmui4zIXIgoQC09AHAxJmONcTj8T7hw5YAqdKL/SLiSVe7iHt+lI7m3sc+9jGsra31HcyW66YjENlslg92V6tVxGIxlEol9lAkU65qLjnOaVzJqakp9Ho9fO5zn8P+/j7no/6nq26uXr2Kk5MTlEolrK2tsUAgHmoW22ra53Vdl8eaPA917vqEq6oc+b2cTleOrlwTzfKr6ehwlgVynWDupVWa6j4L+Mjcx6WaDDpiLDMpk0ZgU69NWbqydXV4DZtpUdhoiXL7vP6Lz+i56L4uvnMch+9hikajrFFSHrr6otfr8S3RshTsOE5fpH3xOZ0rcxyHL4ykNPI+SzQa5Usg8/k8Zmdn8fbbb/NhYTGPyLi8xoEiekSjUbzwwguoVqt8iJc0xEajAdd12dnEcRzeY2o0Gn1XuYhjpyOEpjFVjZXq2hDxXSAQQCaTYW1H1dfAaaiydDqNubk5PgJBkfFJkxPHTnYYIq1teXmZgyjPzMyg0+kgGo3i8PAQjx49Ys3ok5/8JN577z0Eg0Hs7+/3HThXjY9K2ND1nci0TIzOqxwVmMpTMRA5n1/BUV7rNvPGRB8GbbeubCpjkPu4nnuNyw94DahK8/BSm02TSSe9qMqSJephVW6VRmdqj5+6dITQFi/HOd1Mp/uYqtUqMzmS7BcXF3F0dMQmI/EYAIEcRVzU3NLpNBYWFvCjH/1IKfmKbc9kMhyp4+DggDUGAI9J77LGpnpG5VNIp83NTY5J2Ov1HtNwXPd0T4ki1tNFo3Iaeay8mJhKyxLz6/KJbZmamuLzXmJ54nyiIMF09o20pHQ6jVgshv39/ce0GJlRkqYWiUTYqzYQCHB091wu1xeXMJFIcBxME3NSace69orMzwTyXPdKL689sQ/l8lTamu3a8lqTJk3JBn+vMrxo4iBt0sFHgnF5MRAZdB2sm7Ay05EJjSxFiZNYJWGJ5ZsmjR9moWqjjK/cdtt6dAxfNUHF8ilCPd2fRLEX6fLISCTCUd3FfDJucl/G43Ekk0m+ToXSix6WlL5er2N3d5cJMADGw6sfVbjIjKTT6aBUKj1m7hXTU2DYmZmZPtMY0K+1qu5xsxE8VO90gpvYlxRdolgsspOIaO6T65+dnWVzbjQaxdLSElZWVvAf/+N/fMwNXnQ6cRwHtVoNa2trAE5DktH5v1qtxsGT6ZD76uoqO3/YMiedtiALM35Bnpeqea/rf51m5QdUa0xFl1TPTe0RyzYxrUGE32GZFvARYVwm1VdF+MR8JsJuSqvKo9OwZJxknE3M1Q+otC5V/ab3qnpVhM+EI7WdnC7IrFYqlfgYQKfT6Ys/RxG8xYC4qoUUCoXwP/wP/wMePXqEO3fucBSF6elp3L1797FYiQBY42s2m0in07hy5Qp++MMf9mlGcn1e2o74XLzjTPWe8KGjA2J9jnN691Qmk8Hu7m4f81LNLzK9yniZhCN53IBTxtLpdHDv3j0kk0k+U+W6Lps4xbKbzSZfVRMKhTAzM4ODgwN88MEHyjvoZIJH153EYjFOQxoWxYCkS0lJ0JHbqAM/TI3wMeXRMQMxv01eXVpxfFWCpFyvSkjWtcVrHqjK0DGnUWhOg8Jzz7hG2XkmVVan7aiItpcE4kdCEXEhaVd87rftXuq8DqguEyOz0czED8VUvH//PtrtNu9zbGxsIB6Po9fr9ZmI9vb2mPFQW+R9tG63i//23/4bQqEQQqEQIpEIwuHwY7fcihKy4zjct51OhyPmqxa5DcMS61D1gfxb1M4cp3/viSKrx+NxvPTSS7hz5w6bx8SyKEJFMplkhxRd3aq5qltHkUiEo1HQ+SrRSUYsg7wSHcdBIpHA1tYWM1GZ6esINkW5ODk5QT6f5ytWer0eO68kk0nWqMX+U5Un121Kq1vfKqFU1a9yvSrQlSGWo5t3cptU9evKVTEfm/bqytSBrTA+LDz3jMs0EWSwTednUpgmtB8cvLQ1VX6R+JpwVNUlpvfCXfT88wIVgxOfkafg9PQ0arUaXz1CtwDncjlcuHCBJfDd3V3U63WOPi9v6ruuyzfeUh0UqHhycpIdBchdOhQKcYBdmXm5rss3KsvPdYtRJQl7EVJVn8n5Hec0HFE0GuUoGnRVDY0FHaomgr60tIREIsH3SOkYGNUjMzL6L+4VNptNTE5OYmdnhy8npTQ6LaDX6+Hu3buPmTbFeURXwIhjSVovnc2rVCoc9Z+EDjovRuG9hgFxrHSaDYFOU/Fi/LbCi/yeBCnTfPICk6Agt9cPHfGjuct1jYp5PfeMCzgb26qpk2XmYjMgqoE1aWsqPEz40PtBGKiOURIxIQeJSCTCewsiiOXIGhBw6mE3Pz/P7umzs7PI5XJIJpP4xje+wbfkJpNJjj348Y9/HBMTEygWiwiFQnygWj5MTbfp1ut1xONxdiZYXl5Gp9NBMplELBbDvXv3cHh4yB5oqv4DTh01PvnJT+Kv/uqv+t7J2plu8XotapP5R17giUSCnTYoBqTjnDq20PUbZFrrdruoVCoIh8MccaJYLPKemQ5EpkXj5zinHpvEND788ENcu3YNBwcHHF1ER6AIv4WFBTx69OgxBkeepBcuXMCPfvQj9ia9cOECdnd3EY/HUSwW+aYB+cB9vV5/bB9QBfIaVfW3DejWhm7sxN82a1Gl3dBhdNFU7Rd3E0P20vbOCsYalwG8NBrb5yomIDMfnUSkk87l/zrmp5t0KnVelU5+7qU1yDi7rtsX3JQ87hznx/dIqfpLDIRKQGVMTk6i2+3i+PgY6+vrKJVK7FFI5RFTCYVCuHfvHq5fv85xDslkJONN/U8u8MFgEO12myPSU+DhRqOBWCzGhFJFCMhVvVgsYmpqiqV+qiMSiXD0dDGWnYiXjeSt03hlAtZoNLC8vIxyucxaB0UE6fV6HMqI2pdOpzE9PY3bt28DOL0ss1araYUl+qZxTSQSWF5exsOHD7GwsMCefru7u/jggw/6nFZkRkwCC+1XFgoFbG5u9u1VOo6D+fl5xq1QKHDbKGCyHBhaZd6VPT3ltaBiWl4alaksFajoghcd0IEoOESjUczPz+Pg4ID7RsZFV5+Mj+q/id6onquELRtm6MW0B9UiCc4d49INmFcnqgiIieCrtBXVQKvwUv3WvdfVq0trkuh1E1CVhiQ/cmmm+7GISKkWaSaTQT6fZ/dnKufFF1/kyBTLy8t48OABx58TJWdyFSdHAMdx8Oqrr2J9fb0voC7V57qnHnm7u7uYnZ1FIpHg61QI11wuh+3tbTSbTb6M06Tp7O3tcWBZus2YYicWCgXMz88zzt/73vf6cJHLEvvUDxCjJ49LipNId4dVq1W+pXd3d5djKh4eHmJ/fx+tVguBQIDT68Zc1rZmZmb4xmq6441MtVQ/RRmh8iiyyfT0NFqtFlKpFEd7yefzCIVC7K0ZCAQ4LFSxWEQqlUKn02EPQtLmVOexVH1pmr82xNvmHdVjGkO5PhLWYrEYnz9UlU3po9EoC0okKNJ+pbyPJ4+fiUmr/uvoja7dBKr6TWCraQ4K545xieBXNfVicqr3pgWiw8NGUjFpWTbMWFWmagKbFm0qlcLk5CSmpqbYY0zHmEnbqtVqmJ+fR6fTQaVS4fSXLl3CN77xDWxtbfVdqyLj6boum6kODw/x3e9+lyNj6KTqTqfD8f8c59TBgiJSlMtlRKNR5PP5x/bIqCz6UCRz1z29KoauOyEmUCgUsLCwgG9/+9t8KaKIt+6/CUSHG2oPMcqtrS2+BiSbzaLVamFubo5v8KW69vb2AIAvRKQ9MdExQgUyU9vc3MTs7Czy+TxmZmawv7/PWsDU1BTi8TifnRIFk3g8zu7vdCUNRQshxxpicpOTk3BdF+VymeMQuq7Lda6trfkmarp1SSDuhXmV67WW5bEV6xY/kUgEc3NzWFtb62P2cl2O47DjSSwWQygUwsHBAYcpMwmxcv22GpgOdOlshP5h6h0EzjXjsgUV8wH0xF0nragmj1+pRceUTNKjSQpTaYQ6RiqnpX0V2ggXzUEyIyHJe3l5GdPT0xznj+4JEwmefL2EjAsxGDG6vVe/0cFU2hsQy6/VavxObK9YZygUwssvv4zZ2VmOLE5u3/F4HK1WC1tbW/yc+tGWYenmhSw0UJkbGxsIBoPMfNrtNl81Qh6YxWKRGRVFmVAFk7UlHpOTk1heXkYmk0G73cbVq1c5sr3jOGzKpfEWodvt8n1j3W4Xe3t7aLfbfX0VCARw9+5dFgLS6TSOj4/Z6YOu8hFxpgPpqnWmEsQmJiYQDAZRLBZZEyTm4bqn5l7VdSXyf5UAqVs/Mr50kJr27ehoAfDjyBzi+EciEQQCASwsLDDz3traYoclk4VAhYeJBunw9hLAdTTSBGfFtIAx43oMVBqIajKYzIK697bpvPAS/5sWka4+OZ0qL3BKLOl8FTkDZDIZ5HI5vnae8pCbMnnzUYw6kvyPj49ZuhYJvMrUQXEIbRYc/aaDvqpLMalMlZQq4hCNRnF0dMR7b8Cpeex/+p/+J3z961/nuIh0FYbYn16Rx03PdYSI2kKhl1KpFO7cuYNcLsfmVIogPzU1Bdc9jdZx7949LlfuZ/k3pSPN6caNG8hkMnz1CoVxEuMIEjMR+/7k5AQHBwfIZrNYWVnhQ9eO4/B1MlRnMBhEKpXC2toazxExOoeIO2kkquDIlC4UCvGzWq2Ga9eusYmXbnWm6Pwf+9jH8J3vfKdPm7FZ217rU2Rc8Xgc+XwexWIRS0tLCAaD2NjYYPOzqK3T3uzc3ByuXr2KV199FV/96leRyWTgOKchwGid6dauaV7LYNKqTLTB6/9ZalcqOJeMa5BO9JKsbDUgk8Yjv1f9l3HR1a9LJ7+XNQPdBNVN2nA4jHQ6jWg0yiYdsrvLUnepVEKhUMDbb7+NcDiMfD6Pzc1NHBwc8ELU4akywcjjoGoveRU2m02+cl4sT6UFqSTSZrOJ69evIxaLcVTybDaLRqOBv/zLv0Sj0UAmk8HU1BRu3ryJRCKBdDrNe0CiNqcSdEygEpZE3Hq9HorFIk5OTphIN5tNvPzyy3xmrV6v4+joCPV63Vo7kX8/evSIHVxKpRJ7Y4rX4ySTSaWLPQkb+/v7SCaTffuhdAyh2+0inU4jlUrxBY8yYyWzouM4fG6s1+thYWGBgx3L/bO8vIyf+qmfwle/+lW0Wi2Uy2UUCgW+3Zg0yFQqxUxdbr9q/quYuzhmKiDLQ6FQwNTUFEqlEnZ2dvg8YSKR6Lvni9p5cnLCjJwO29M+I/Ud0B+CTEdjxLJV/eWVV15nNtq7jfA9SjiXjGvYzjNpRrr0qvc6ScivNOOFi45IyQtPp+XoCFkgEMCLL76ImZkZFItFOI7DizCTybAJkZgDXX+Ry+Xw2c9+Fn/5l3/J2g95i4n4ivibzGymfnFdt+86DlX5XmVSueL1IoVCgZk0EZxms4nDw0Pk83n+TyZIk3ZuA17Mi/b5QqEQtre3USwW+czTxMQEYrEYe6GZBARdHxA0Gg2+OkaMXNLtdrG6usrHImQnF9d1+SoeGg8i4tlsFteuXcO9e/cwOzuL7e1tjoYhAjEtCk4shn7a39/n9zIhrdfreP/995FMJjm4Ml3HQnud9Xqd7z+jfDZar7iWyGmHYjPqNLJ6vY6dnR04jsNzntrQ7Xb7wpCl02m+ALNSqeDhw4dwHAcTExMolUq4cOECcrkcPvjgA44ao1vjKu3aRCfEtF40wYYp+aVbw8C5ZFx+VHxVHtUzPx0ua1Oq/CpzhM0727p173RMT05Hm8vVahW1Wg3xeLzvZtxer4epqSlEIhGUy2WW9ElC3tjYYFdyeU+Lrlqn+kVipJMCZZxFd/1oNIpMJsNESl6YJuk4Go1yKCHao6MI5ScnJ4jH47xnV6lUUK1W0Ww2cXBwwERaJuA24DXf5PKoTbTn1Ol02GFmY2MDuVyuz3wn9wMApaZEjJvy0H5ZIBDA6urqY31JRyMogj2dsxLrLBQKbB4mnLa2thCNRrG6usrMRWRsJycn7LovBmBeWlpCIBDA97///b62ifjTrcuFQgGvvvoqrl+/jlQqhdnZWbzzzjt8IFt2CPLSRkUgXEnjpHNmdNkmRXQhDTkcDmN1dRWzs7PcPsojC0v37t1Ds9nE7u4ua6skIJCmL2qi4ryQ8TbRDh09Mmle8lwy0RfT+1FrY+eGcenU2WGkABvmJw+oTssyqexeZZrw1TFpXTrde/l5MBhkUx8AvhMrmUyiWCyy+SqfzwMAE/58Po+pqSn88Ic/5HLE9tN/AH1ExKbtBEREiOiR1pVKpXB0dNTXTipTdfYnl8thbm4Oq6urWF5e5rNikUgE8/Pz2NjY6DOT9Xo9TvfOO+88dpuyzMBM4+e1wHVatPiM9r/oMki6EoXSk5dlIpFAr3d6SaKIrxcREjUn6kNi5rTnKQoLuVyOhRfRxEWCAe3X1Gq1Pjd6mlviHijNNbqzLBQK8dxRRZmncaJ9skqlgpOTE+6nXC7Hl4GKfWgD4XAYn//85/Hee+8hGo3iU5/6FKrVKm7fvo1oNIpQ6JSM0rEB1z29gy0UCqHdbvOBat2cqFQqmJubQygUguOcRkyhM3CdTgc3b95EOBz2FDypL3TtshEKxf8mwVsFXkLzKOHcMC5Z3bXtKBvmYCrbaxLI5YppBmGqXv/FBW3SGFVtEJ91Oh3cuXMH3W6XA7ySpA+cMo90Os33opEzxczMDI6PjwEAhUIB0WgU5XIZx8fH7GRARLHVauHw8FCpFZnGkNyq4/E4FhYWsLq6ylfPE6ElIiDvP4njeHR0hEKhgEuXLqFWq+H4+BjlchndbheHh4ccloguUmy323j48CHC4TA+8YlPsHlHdTO1lzBk004ZXNflixTJuSAUCiGfz2N+fp5d6AkX8m5zHIdd+/0CMW263JPKEhkStavb7eKFF15ArVZjASIcDvOeGXnzUVl09czJyQmmp6fhOA729/f5oHc6nea4laTt0IHrw8NDAEA8HmemfXR0hHfeeQfJZBLpdBpHR0dYXFzk/T95HEwajJiu2+3iW9/6FjOp119/HQ8ePEC5XMbR0RFqtVqfCZDKdl0XlUqFmZbolUtMluqo1Wq4fPkyR8gnpxWau2L/e9EiE30ygdgXXgLWIKBjnIPAuWFcgD1D0IFqsHSMQK7TS8LWaWW69zaSk9czm3wyPvSf9m8cx2G3duoHkVjRvhA5MtBiXFpaguu6WFhYwP3799n0Rndttdttvg5ep6moFiL1C0XG2N/f54jodPCWNsczmQwzF1qMIpPsdDrY2tpCp9PBlStXsLS0hL/+679GIBDA8vIynylynNMoFuTWTLflTkxMYHJyEj/84Q+N/e41DrZjR+fJSBMBTr08Jycnsb29zd5zvV4PoVAImUyGHVfori9T8GDVtwjk6p3P59mFu1wus7NOp9NhoYUiuGcyGc5z7949xONxLC4u4tatW3z+rtPp4OLFi303BNDVNrQ3tbCwwJFXaJ8pEongypUrcN3T4wOpVIojsTx8+BCu6/KcpD1Z0bVep1HIAh8xYApT9l//63/lYxczMzNYXV1lLZO8Lkl4IiZFWmsgEEA+n2dPzF6vh+npaVSrVdy8eZP3scR905OTE+UdbiYhXR5jlRArWgr80A4/wpZN/YPAuWJcg4AXEdH9FtOryrMxCek0ItUzcYGZCLvpuReoJpLrurz3QBJ+Op3mKOqNRoPdf+v1Oubm5rC+vo5QKIRyuYwPP/yQTR7AaZSAUqmE3d1djoYhm69k/MVQUoRHp9NBsVjE3NwcIpEIR3Wg96lUis+hyQyLgMIm0X4OnSOq1Wq4ceMGawh0LXw8HmciffPmTWXZXovRS2OWyxD7IxgMYmZmBul0Gnt7e8xMj4+PWUskwSIWiyEWiyEcDuPSpUt8kaWqH1R9rZqD+XwemUwGFy9e5PNs2Wy276xdqVRCMBhELpdj5pbJZLC/v8/X2Liui4997GO4ceMGjo+PmUm5rtsX3kpcR7VaDcFgEOVymSOJzM3NYX9/H657etaO5gWZTOfn5xEKhbC+vo5IJKIdDxsm3m63+YhHIpFAo9HAxMQE5ufnWSN3XZcdeRzndK/vypUruH37Nra3t+G6p165r7zyCh+YT6VSqNfrHEZMPMZBH69LRWXaQKZj6kuZgenK0r0b1Ko0CIOzhY8847KVIkwDrCrPhkDpypKZn4652jBVlbYi16PqAxUjof+zs7OIRqPY2triK+e3trawuLiIRqOBubk5Ji60p9Fut9n8EY/H+eoQmZDKTCsYDLI7s3hthuM4LIG/+uqraDQaCIVCCIfDKJVKWF9fZ0LmxVioHDGAMDEx0i6z2SzH1qOgwHIcPS8wMQzTM2qv67p8JoiInhitnYgzBSMmQnj9+nXk83kOKUR9R4xX1KRnZmY41BO1j0xcpVIJH/vYx7jsarXK149Q9AfXddmxgK5jabVaHD6s3W5ja2uLzWDiWT/qU9GZx3VPvQwpCoUYQolc26PRKCYmJpBMJtHr9dgs2u12sbGxgU6nw/tPOkuFF/Mi79FcLoeZmRlcv34d0WgUH374YZ/DRTQaZS2wWq3i/fffx9TUFGte3W4XDx48QDKZxOzsLKanp3F4eNjnIq+bM7q5Inp5Oo7DZlcKWeZVrlyejvnoaKCq30y/RwEfOcZlYgIm84ENg/NSp3UMyYt5yWCaUCqcxHyDtonKoYO+hUKBtarXX38dd+/eRaPRwMzMDKamptBsNlGv1xEKhTA5OcleU61Wi/dIdJqQ3NZIJALXdTE5OcmXPJJZjMxToVAIP/VTP4VvfetbfKjz6OiITWckueoYmK6fe70elpaW2HkgkUjw4VYRf53QoQMVoVTlFecnmcCi0Simp6c5CkShUGAGkslkcHBwwAeok8kkdnZ2EI1Gsbi4yFppuVzGwcFB31ynw+M0bqIXInmC/vVf/zVfp0IMpN1us7ed6DACnF5fEovFkMvlOJoGzaNUKoXp6WncuHHjsT4R+7bdbuPtt99GPB5/TGBwnFNzNZmDqWwy6QKnjkX1ep332mTvStVYyRo+4VIqlVCpVJgZ5nI5NBoN7m/XdZFOp/vM5iREkSCVSqUQCoWwurqKtbU1JBIJ7TwQcZHBcRw+fB6LxXB0dMRWhgsXLuDSpUu4ffs2u+bbzHlxfcj0Qq7btG7PUtsCPoKMSzdBZaLh1eleKrGX+q3CRSddeUnlNhPES1tULRYVk3fdU48pcgdPpVL4/ve/j0gkgkQigd3dXRwcHLD5iEI+EbHpdDosHYomENWichyHI43v7OwgHo/zRYrNZhO5XA7RaBTFYhGTk5Mc1b1SqWB/fx/xeJwPCYuETcUsdUSi2+2yQwbFkvNiWqpydAvZltERkHbR6XQQiUQ4gnun00EikUAgEOB9R4obSBpSOBxGtVplh5VAIIDFxUWOvi8eqAbUd24Rwaa9RDpoHo1GEY/HOZJHtVrF0tISms0ma11TU1M4ODjA0tISHjx4gGw2yx6GjnNqim23232u66LQQXNKxInm0PHxMUqlUp+WuLKywpo6efiJMSszmQw7ecggjyONEd2W7TgOmw5JKyS8PvjgA0QiEbzwwgvY3NxEMBhkbTiRSLCmSkdHyMRL/R2NRvvic4pzgyLUkIYq77uGw2Fm7rdu3UIymWQhg+qgWJYkDMlzfxRM5yyZFgDY3Q74HICXqcZkKgLs7LZiOlESM5VhImQqE5nOZKHCxQtX1XMZHxvNQCYUjUaDpdmJiQl+n0gk0G63OTYgLRQyIU1NTXFoG9FNXv6IdVerVd5vunTpEnsLkkZHhGRxcRFXrlxhrc9xHI6VRxvecn2m9oofMncSU1ZFL1eVr6vLFhcCcXy63S5qtRqSySTfy5VIJDA1NYVut4vt7e0+wYBMXBS/j2IDiswpm83i6tWr+Dt/5+8gkUjwfhGNn7jvJc8funvLdV02Rc7OzuLKlSuoVCpIp9P45Cc/iWw2y3VubW3BcRzed0skEohEIozHxMQEotGotr/ksaJbBcQ9IgDsFJTL5fDCCy9genqa8S0UCnjttdf6zgOKDhQm64SIh+M4ePnllzm6DJ3tazab7NwTCoUwOzuLpaUlvPbaa2zaE8t2HIfPyE1PTyOXy/HxAjFdMplkR6K5uTmEw2G+uYGsG6FQCA8ePEC1WuXD5HT0oFAoIJvNIhaLIZVKPRb9xmYees3XJwHnRuPyIsR+CLaOyKvyeanMXnjo6lbVI9ZnwzR1ZXvho5LAxLpJeqvVarw4k8kkHjx4gHQ6Ddc93SwXox0cHR1henqamVEsFutzbtDhSXU1Gg384Ac/4BtwaY/m6tWrfIPy3/7t3yIYDPLBXDpDI2tIqrbJfSuPBQC+nkN+bmKCXnNH1+diGgr947ouu4UTrsFgEAsLCzg4OECtVsPU1BQymQx6vR5WV1e57eTAIXqrUagoivRwfHyMRCKBUCjEt1OvrKzg0aNHHGjXcRzWIIgx/s3f/A27vZMDRbfbxfT0NOLxOLa2ttjDLplMYmVlBe+++y46nQ7y+TzS6TRH5s/n8+zpqRsX6i95TEmLIK2iVCrxwXnaRyMBKhwO44MPPlDOcXl8ZCYm4kKhrojxue7pOcDp6WnWmOgm6kQigTt37rADSygUYguE45zuTdEh+LW1NWxsbHB7CMgT89KlS2xJoIj74rrqdrts7o1EInz2znVPHWCI6d2/f79vfZjmq+7Z04Bzw7gIbM0uXul0gziqgVQxH8JLTKN7pkrv1QY/eKl+U330nIKY5nI5JBIJlEolvvxwfX0dsVgM8Xgc9XqdFxzdoizf62QCMolQBIRKpcKeUx9++CFisRiKxSIKhQKOj49Z+qRQVarLI1V1ejEi0zUTcn9RX+n6UXwv1y/2cSAQwAsvvICjoyPeR6lUKkgkEuwoQEFbE4kE1tfX+dZk0cwmO6kAYEeJQCDAfRqNRvn818WLF/Hiiy9icnISP/jBDziiRiwW43vVCHq9HqLRKJvQXPf0tmK6xZk8BymEluM4rCHS+DabTTx69IjLI4JNTJJMXOJBX92Y0Xm3aDTKeff399Fut1nYIq9Mqk/sf9pXlcN50ScSibCbP0VtIS0qFovh8uXLuHfvHhzH4T3BSqXCHrp0LGBvbw/FYpEZTzKZxP7+Pi5dusROOKJJvdfr4ejoCMViEe12G/Pz82i1Wixw9Ho9xGIxZLNZRCIRPn9J2tzly5fxzjvvIJ1O4+7du4/dcSfPv0HgSTC8c8e4AHv7qlc6sbNFJjPKQVHlUzFNVR4VYTRJ9LYSviq9Ccdms8n7BqlUiu3toVCoLywQES4iQF6MQqyr1Wphc3OT01JYKcdx+C6jcrnMl146zmm8NzJX0QFUG9OcXLfcL3K/6bRoFSOS36nyyWUcHR1hZmYGJycnWF5ext27dzExMYErV67gzp07rB05jtPHpInx6cJrkfBBzwqFAl/kSdeM3Lx5kx1U1tfX+WAwHRReXFzEwcEBm57oYDKVTftArVYL6XQaxWIR29vb7CrfaDT4WESxWEQmk0E6nUav18PBwQEzSiLgdF5KPJsn9yntb4XDYZTLZWxsbODw8JC9DSmALTHHqakpFIvFvuMU5BFJe4KySzo5AE1OTrLTDvDjW7xv3LjBXq7ZbJb3oei8o+u6fD1NoVDgvqdYlKKJTwSaS2tra/jkJz+JQqGADz74gIUOAMwgxZvL33zzTWxubvJ+5s2bN/vWoDhndPNQnKumNWSyeI0KziXjOisQmZdMlFQgamkmExSVo/otliW+U5m4TPn9SFGyNqgi2qJUSpvMtI9BzgGNRgMXLlxgiZs8uvwwD7Gv5D50XZfNM81mk0Mb0b5WuVzmQ6eyR6GXSUTXlzpNmdLq+s5GQFE9c5zTvY+VlRV88MEHuHv3LhznNHrFd77zHbiui4sXL2JtbQ2f/exn4bouHj58iGw2i8985jNYWFjAf/pP/4m1IJ3WSSYuAMjlcmxa293dZccDuh+tVqthYmICc3NzrC3ReayVlRUOtkznyYgxkSZHJryrV6/yAXFiGsfHxzg8PGSiOz8/j/X1dY5dSCZp0j7lOQKANTliMLQfSmbng4MDZqykOSUSCWauhPP09DS77ot3eDmOw4xoe3sboVAIzWaTz6zR4f1sNot0Os3zga79oVuhSVMmK4LrunjjjTdw//59vj6o2WyiWCzy4XqKe+g4Dra3t3F0dISFhQU2F+7v77O348bGBlsfPvjgA3S7XRwdHfFND3LINVumJc71pwXnhnH50RD8lAnotRAv1dqUTyRwMqGzkXzE8uXfuny2aWz6iSTFarXKBGVubg43btzoC1NTr9dZKgXAZhFVe7zwlpkX8GOvMnISmZubw+bmJh/Q9VqgtlqfDQPSzQ+v9lFauRzHcZDP5+E4Dp+roqtNHjx4gFQqheXlZTx8+BCVSgXf+973MDk5iXa7zaGGbt269ZgjjIifWOfOzg7m5+f58DJd8Ei3FYuMwXVdPp90fHzMnqN01ormxMTEBLa3t9HpdDAxMcHaOO3B0WWYZJYjBtHpdJDNZtlrMRaL8ZknMkuqzuiRdk77TmI6SiM6Di0sLOC1117D3/7t3yKTyeCll17iaCyrq6u8X6Qa13q9jna7zcwqGAzi0qVLbBkoFApotVqsrQYCAb7dmM4ykvcgmc6//e1vs4MHBXQOBoMcyxAAe1ceHh4iFotxv5G3aavVQjKZZE2vVquh0WiwQ8/6+rryOIqXpcdmLuto21jjUoCuY8TnJkbgRwvR/TaZEk2qs87EZ5LGVRPNy8Sn0zBkLcqLkdJvilZBcexoQVBMP+A0OOnR0RETOJHQeGmpqraotB0qq1KpcCgd0hBUTMu0GL2ECV1/iuWamL+XQKJqN4WyCofDbM4CwP1PN0u7rouDgwNmEq7r4s6dO7zHKEZGl9tJIaLItEvaK7nYu67LTi4A2AWbIlJUq1UmvHR2jtyyKUTT3t4eyuUyO9aQ04Do0UeChsh80uk0ut0uqtUqNjc3+ZZnMVqHOA/EcSAHHl1/U/y/mzdv8kFo0qDIwWJzcxOO4/SdWxPHqdvtolwu85UndCyk0+lgZ2cH2WwWh4eHeOmll/Do0SNkMhkkEgksLCzgvffeY40VQN++ZKVS4XGjvUM6WpBIJHDt2jWsr69zm0ulUt+1JxsbG3Bdlw/LkxZNQoncfyrwSzN1grwXbRoEHPdp6nsDQrlc5uCuo+bkKqCJpSJoMpgIr837QZ7bmqN0jEAuR1W+nI7s95lMBp/4xCdwcHCAaDSKBw8ecAQKknibzSZf/3B0dPTYgvGa0F6SG+FH5qV6va4kbKa+8apbVacpjdxnXnWpBBnSCuibnl+8eBErKyvc191uFxcvXuTLCn/0ox9xeynosS6CApVNxJRuu6bQRRQgWdS4xOj8hC/tRQGnB37JGUE8PzQzM4N4PI6NjQ2Uy2WEQiHE43G+BkQMWEv9FQ6H+4IzVyoVvttNZsbyR+x7FYh7SOFwGPF4nANDU5gvakMmkwEAjsVIfRcMBrmcUCiEixcv8nGR6elp9Ho9vPLKK7h27Rr+8i//EsVika8A+oVf+AV85StfYRM7mfbkM2xiXRMTE5idnUWpVGIv11QqhU6nwxeg0qH0SqWCR48e9QkoAB47xC2CjQYmC886sFnXwGlEFupfWzgXGpcfMA2GVx4vtVfFCOTybRmFqmyxDpXWpMprqs/EVFV1i+/IHNhut7G7u4t4PM62eFp0dJ4FAHZ2drgsG+atwtPU74SLGP9QfGcq16ZuXZ26eaEbd9N8U/WJHLOP4ip+/OMfRyKRYC3s4OAAExMTbNoiwrS1tWVsC41HIBBgDz/SeEgDI1MZ1U+aBuUjpkq3JyeTSbRaLcTjcQ6GOz09jc997nP43ve+x/jRgWAK2ivGLKRPp9PhK+/pPjSRuMpEVEd4VfNAnCfkMJRMJhGJRFCr1VAoFDjixiuvvIJIJILvfOc7fZrX5OQke7sCp1EywuEwhx4jjevu3btIJpN8tczu7i7+7b/9t/yMPG9FfFVtSaVSvAdHJka63md/fx/hcBidTgcPHz7kfpb7R7ZCyHNQN0d1tM1UljwOo4KPHOMSQaeBmIiQX41FZdqykUJUeJgmlTyJvJisrr0qgqBrT7fbRaVS4cjkFKVAlhZlHG0lYhWY+pgIrq6tcn4/faZjtl4arVyubv54CUQERHTef/997OzssFmWhAYy2clecLr5ROWLcQzFILc2wo2oiYXDYbRaLVy8eBE3b95k0+b09DT+6q/+is13hF+5XMbFixe5vmw2i93dXS6bTHSZTAbZbBarq6scGd+rr+i/PN/E9pNnIR0ZoPNsdGj5+vXr6PV6bEKkPUSKWB8IBDhQM8UjTKfTuHjxIjY3N9HtdrG7u4tqtcrX5kQiESwsLCAcDvOll2SeJPf6mzdvKiOF7OzssFmQvBLpsDJpc7S3ePPmTSUDNPWdHyuBbTkmmjoo+Iqc8Sd/8if42Mc+hkwmg0wmg8985jP4L//lv/Qh8wd/8AeYn59HPB7Hz/zMz+D69et9ZTSbTfzmb/4mJicnkUwm8Yu/+IvY2NgYqhFeIGskJonCloCoBkJHjL00KLlMUUq30QjF96qFqpskJk3GlkFSsFdyBiDTj0rKUxEQr4WkeqZajKrnYh4VEaZnOuFAJbnrQFW+iJtJw7J9Tv1IYahIGyJmcHh42HetvIi/3P+6drqu2yd86MZNnDsUDisYDGJrawt7e3scH4/Cc3344YdYX1/H6uoqawsA2Ank3Xff5byELzGVYDDI5kEKayVqgBTtQ+4723kinncLhUJ444030Ol08OjRI8TjcaRSKQDgIx90IWa5XIbjnN5Bl8/nUSgUeHzoEDcdDH/06BHvZ5VKJbRaLWbsxWIRh4eHyGazmJycxMLCAgfqFfu/2+3i5OQEBwcHHLar0+mgXC7j9u3bODk5QbPZxLVr1x47AiH/Vs0tL4uMKo8KbOb6sBqYrz2u//yf/zOCwSAuX74MAPi//+//G//yX/5LvP/++3jllVfwh3/4h/jn//yf48tf/jJefPFF/LN/9s/wrW99C7dv30Y6nQYA/O//+/+O//yf/zO+/OUvY2JiAr/927+Nw8NDvPvuu4+dWdDBk9jj0g2kjpCbJGcbyVrUfqg8W4nchK/8W6ddqf6LecV8IsEPhUKYn5/H8fEx34UkljWsZDUKsGEQYv979b1pLFRlyAKCiZHJY6aTXIlo69qjEoDEfTK5bF1YJ6rHcRy+lgQAE/l8Ps/OMGI4LPE8HYUbOjo6YmcBIu50kJq0EtG8JRNa2u8iRwrqi1wuh16vh729vce85cSPV5+TxriyssKR5snVXTzPJUbVD4VCuHLlCgqFAp9RI0Zer9cxNTXFmuLk5CQHGqaoFnSOrdPp8IHmZDKJo6MjrK2tKWMJiuNBjiCkbROIsQ5pzpmERnHOymtXN9dNJke5XN07YLA9rqGdMwqFAv7lv/yX+F/+l/8F8/PzeOutt/B7v/d7AE61q5mZGfzhH/4hfv3Xfx2lUglTU1P40z/9U/zKr/wKgFMb/NLSEv78z/8cP//zP29V51kwLi+GQ6CK7aXLS2BT7iDvTURWZjT07UWEvYiy+Js+8pXqcvtV+Mvl+Wn/KEDF1AcBVT+b6jNp0bR/JDMOHc66dKo04n8T46LfcvpAIIB4PI6VlRUcHR1xoN2f+7mfww9/+EOOWCLur9H+FxHkarXKt2mTB5zjnEaWoPN3dLaKnCKojwmfyclJAODQUK1WCysrKzg5OeHbBwCwh6KY3zQ2YjsXFhawsLCAWCyGdDqNtbU13mOjM2FUJt09dvnyZRwcHGBra4sdV6amppBMJvlW6mvXrnHg452dHVy6dAmZTAbf//732VRLh+XFYNQynmJQ4mw2C9d1++7HE7Vlar+JacnPTWlFGmLDuEwwDOMaOMhut9vFV77yFVSrVXzmM5/Bw4cPsbOzgy984QucJhqN4nOf+xy++93vAgDeffddtNvtvjTz8/N49dVXOY0Kms0myuVy38cGZInCBLqFb1OmSQvTlauThGyItooh6d4B6JNgTVqZ6r8OqDzaG5AlZS/8verRSc0qSXwQkM0wfso0CSU2aeX225YnzxN5Dqnw9xIS/NRJETAmJyfZHf8HP/gB0uk0ZmZmsLi42HcUQay70+kgl8shlUox0SOzGkX6X15eZo1HDMUkpqVzgORNGQwGcXR0hJOTE9bsxGtCVETY9MxxTg8o379/H47j9F3ZMjExgYmJiT6c6Fqd999/H2tra+zm/4lPfILNoMSAKLbn3t4eWq0Wtre38eGHH7Km2Ww2+fwhmWtV85OYVzQa5fBZdHWMam54td8LVJr40wbfzhkffPABPvOZz6DRaCCVSuHP/uzP8PLLLzPjmZmZ6UtPV1sDpxuLtAEppyGvMxV86Utfwj/5J//EL6pGLWQQEMsRyxff0XMdEVG98yP922hbKpzov/zMT7/I7RYXh4nx22hfpvdepgaxLt1/FajGQqVBeWm0OlxNY2PCdZDx8NK+VfXYgEi0yFRHBD0ajfJBV3IaIIILgLUBChOVTqeRzWaxtbXFkTyIidE+XTQaxcHBAcf/E83PjuPwRaQUkYIcFAD0hRijdps0C9WzQqHAFoQHDx6wZ2GpVGKmKZvvSGij/Tg620UekBRlgw5nkzegeFkpmU/Fw9jyGAPg2wDokHen08Hk5CQymQzu3LnDHodebaXnujXqRTO91r4OhqXBBL4Z19WrV/GDH/wAx8fH+I//8T/iH/yDf4BvfvOb/H6QReiV5vd///fxW7/1W/y/XC5jaWnJusxRSQriQMoDbkM4ZQJjwllVtmqymJiejgCrmJeqfh3oGLdX+kHKtQWZidm2RZXWRrDww5BMTE6cT/Lc0rVTN+ZeTF7W+FQaoPyM9rXICadarWJ9fZ3TnJyc8H1gkUikb/+n2+3yZZH3799n5wQ6skBl0FUolUoFkUiE71gjpiXOe7rrKxgMotlsYnJykmMKktNEMplkJxU/4Lqn3pUXLlzA9vY2AoEAyuUyB3De2trqY6Kq8SUGf/fuXTZbEt4UoT2fz+MHP/gBB6h+6aWXcOfOHWaQ4t4U5Rf7NJlMcrxIKpcYNu1zyVqaag2qBFjT2jYJp7YwKm3NN+OKRCLsnPETP/ETePvtt/F//V//F+9r7ezsYG5ujtPv7e2xFjY7O4tWq4Wjo6M+rWtvbw+f/exntXVSlGc/MGp1Vied2Gp1OulbR7x05XuVp3ovlmXS+vz2mYqxmpisjZZo0mbEukzt1EmDthqPXI4pnVd7xHxiG3RjPSqJVAXEJEjzoXNRIoj3UgGnWkw2m0W73eZDuXRmieLnESMi8x2VQxc70mFkIqri+SlyRb9z5w4SiQQuXrwI13Wxvb3NOMmEmxyB6G62XC4H1/2x+ZAutJSJv/gt9om4HlqtFl/1QTSnWq323XCsEgAcx+GoGcFg8DHnCLo3KxaL8SHmTqeDSqWCvb095PN5ZpQmfE9OThAOh/Hiiy/ypZ/3799HMBjEyy+/jBs3bvQxLVuhUQVe2tbThKEvknTd07AiFy9exOzsLL7+9a/zu1arhW9+85vMlN544w2Ew+G+NGTnNTGupwmyOUb1XsWIZLCVbrwIrVyfmE4u02aCiQtEXiyqxaN7Jj9XaYS6NprwVGkFqve6xWpqly3o8pn6Wkc4TNqbnE4lKMl12+Ao4plIJBAOh3HlyhU2b1Fd5FpeKBQwMzODubk5TExMoFAooFQqcYBd0ax1fHzM0SxEZwLSlBzH4cO1uv1QSheJRLC1tYWbN2+yc4bsku+6bt+FkYeHh7h9+zbW1tbYRXx/f1+peZjWL/2mfbxOp4P9/X2srq6y27nssRgMBrG4uMgu+tFoFIlEghmU6/7Y5EfMf39/n8/fUT8cHBxgfX2db4PW4eu6p2bKYrGId999F8fHxxyHsF6v48aNG30HuG1Bt27k/iEYVMAdJfjSuP7P//P/xN/7e38PS0tLODk5wVe+8hV84xvfwF/8xV/AcRy89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBXA6eL/2a7+G3/7t3+YF8Tu/8zt47bXX8HM/93MDNWAYCdUmr5dZRqe9qMr3mgAmzUnHGGWm6VWW/E4sS9bIRmEaUOVVMWw/4yjiqCrbpK0NOl9UdcnasghedYj5vIQVm2c28yYUCuHChQtwXRf37t17LHgsOUSkUink83nedy4Wi9xW+WA57U2J/S8yw4mJCQ47JOcn4h+NRjE3N4dMJoOdnR2OJEF7X2KbJicn+XqQUqnEd5OdnJxgfn4eiURCefBW7hfxv9iHhCNpd+JBbLmsYDCIRqMBxzn18CMhnm4Wput8AKBWqyGbzfL9cMQEE4kEGo0GyuUyt1e1TkVcXdflG8gJKACz6uC/3H6xvWK7xTrlek20SYWrCGdhQfDFuHZ3d/H3//7fx/b2NrLZLD72sY/hL/7iL/D5z38eAPC7v/u7qNfr+I3f+A0cHR3h05/+NL72ta/xGS4A+KM/+iOEQiH88i//Mur1On72Z38WX/7yl63PcMlg03FeeQcFE0FU4TMsgVLVZ9t+EyNSTXQvRuA1ieWyvQQA02/5v602Z9tGr7bJ771w8CpH907VVyY8/AgYRIjX1tb4Isjj42M21VHddLbo4sWLAE4tIqT9yAIT/SctgeoR5yY5T4gamMxQ6Nbk1157Dbdv3+6L6i+nbTQamJiY4P0zMhu6rovNzU0OCixrUoSbaUxE/MV+081nCmk2NTWFUqmEUCiEVCqFhYUFviWBNMbj42MOoiuOx/b2tjI2oSyc2TAjU1rd3JLnj81cEhmZTnBTlT1K+EgH2R2U2ItgWgx+ylGlHTSfzX9VXh1zGMUEHITAq9KayhoEp0HLsskrv5cJvI5geJWt0pKAH/el+EzU6uhMVTQa5Rt2Z2dnsb29zftWdAg3k8kgFovxoV4yz8nBbVX1OM6pSXJ2dpbNieQxSAduReIXCARYGywWi9jf3zdG7iDtkbQ9lVblRdZUQpasoaraRc9oLzCZTOLq1at48OABX3KZzWYxMzOD999/n0NyBQIB5HI5ZnaJRAIHBwd9JkixT20Yli6dScuUGaIsSNisR5v+FfHwEhbGQXYtQEWc5ecENoRfNTgqKUYntakmkpxvEObh1RYvnHX9pEvv9c5WM/Ca7IPgYspnqksHNu3TjZmX1igSSJlYy6Ar29TXpBVMTU1x7LxUKoVIJILZ2Vm+DiOfz6NYLPK1KLT/VSqV+vZRVO1wnFPPuomJCRSLRb6sUXSVlw/HUh4dMxe1KNd1eT/NRtvQgdzXqvWmGwPHcfierK2tLVQqFWZSjUYDm5ub7FUo9lEul+P/tVqN9+VMWpL8TMVsqHxVHtO8lNPbMC0ZFxkvE90YFXzkGJcfDct2EOTJbUN0bTQaP0xLlU5HmE0LUs6rMwWoFoDcJjmdzSIx9YOOWdjk0eFq6gcTA7BhemLb5d/ye1MZurbp0ovlix/gx9ePZLNZvPDCC3jw4AG7YB8dHfHFhGJIJrrmvlAoIJ/P4/79+33RIwjo8LHjOKjVarh16xZfOCqe0+p2u313RzmOw/d7UbBZIvrpdJq9E2XmRX2h+vbqRxNDsul3us6EonWIAXHFe+fEcuhG6JWVFY4rSR6I8rktEyMTmb44t3Rak0xHVH1hy8wcRx0x4yyZlAqG9ip8HkEnleiYlm4x+JFWVFKPVz55EXlJk3I6WyZKeUztVL33apMX01cRIK92eTEaE7M25VPhY8LbVJ/pt/hRaWk6nFVlqN7p0gYCAVy6dIldyG/cuIGNjQ3ef261WuxiPjExgXg8josXL/I1GdVqFXt7e32ea2IfuK6LixcvsrMFXUwZDoc5okU2m+VbfeX9HDJDihE4otEo5ufn+7QUeRx0zEz3UY2j2HeyRiGvJcc51bQymQySySRrTXIwXNH8R8+IWd29e5dNinRJpIy3qZ1eOKvmhU0a8bdpnqnqVzFqHXjRMRs49xqXqjNtOteL0NlIcCqtQ5Vf9c6LIJrKsJ08JinM1D5dHbaaiAoX8dsrryqd16KRx0L8bcNERLBtm9i3KkIgj5dXubImJb8Tn4lnsSKRCFZWVjA7O4v9/X2+pdhxHJTLZQ76Wq/XEY/HkcvlkEwmMTk5yWkpQrsqAC7tqbVaLaRSKUxOTuLg4ADNZpM1qGq1isPDw8fuCxNxb7fbODk54UsmKZwTMQqKzq5jVKZx0PWlPJe8hA7a2yoUCmg2mxz9QsRDJuSO47D22m63UavVUC6XUalUEA6HjdqVzHAGWZdye3WCoK58eZ2pyjYJvYPQXy8494xrlCqsTORNg6wjhF4E1i8R0/3X4W7TBhlfFf6mRWRiCCqcVM/9tlFXjokgmZi/CeRxVtUvMy3RYUK8UdurXTLYMD/HOT0TRe7uvV4Pu7u7ODo6QiqV4nNKuVyOrxGJx+P45Cc/iQ8++AAPHjzA0tISm/MajQZisRhef/11fO1rX+vzEAR+HCm+UqmwY0Iul8ODBw9wcnKCer2OSqWCVCrFIY9kbSYQCCCfz2Nubg6O4yCdTnNEjmAwyAeSaU6pmJbNvLEdYzEvRaeIx+PodDoIh8OIRqNwXRepVAqlUqmvL2TcwuEwXn/9dXb139/f78NV7g8V01K1wwS6dopMxlYYtQEvhjlqOHdehX4npinPIGWJOHlpAKMaVB2T8CKMNhKWDohADsKY5Hc2ddrWMYqxVGk0pjJ0mhOVQ6ayw8NDAKd7HeSlZ4uPjJdJ64pGo5iZmeEbhWu1GhzH4Sjt7Xa77woQKicWi7GJb2JiAlNTU1hbW4Pruhw3UIwGIWt45MDx5ptvolarYWtri8NDua7LzJT2g8QyyGkkHo8jGo3iM5/5DHZ2drC8vIxvfetbrMGJOOg0Bpt1oPK8NHljplIpLC8vI5fLYX19Hc1mk/es1tfXuQ6KQyhrXeFwuC8wr4r56hiKjdajS6t6rtJQbdeRbs4Osu4Ih7FXIQbj8CZpYRhGKH7L9dhqJXK5KnxVE07FGGyYhSqPqg5duV59oarbhtnqTBSmOm3feWmZuvp0i12lbUWjUVy+fBnFYhGZTAbb29t8iFTXNlljFM1/KryIeVy8eBFzc3PsOEBaF0W9AKBknBS5gZwsyuUy3/SbTCZxfHysZBT023VdvjTy6tWrKBaLfaY90uBUfUXv6QDvvXv3EA6Hsbu7y/tycuR5lcZgK7zJz8X+Fd/R+1arhVKphI997GPY29uD4zg4PDxkU2Y4HMb09DSOj4+xt7fX127VwWIRDxMTlkHHtMQ5J6dTPdPVoypH7BMdbrq1cVYa13PPuEaluXgR8mHKG5U2YVOOKOXpytQ9UzEW0wRW4Sjj4xf8aGEqZijiqGqHiriZCIQJB1Xd9FxmJnQFPRHgbDbLV9ib+k/8JBIJdiun6AsiHqTxHB8f4/j4GMFgEPPz87h//z5L+XLgWrnNrnvqCk/msKOjIw6Qq2IWYp8C4MPGDx8+ZEaluxjSdfsvtxSZ5vb2NhznNFzU5cuXcXx8jKOjI6OWqtNYxGc6YSwWi+Hy5cs4PDzEwcHBY8yLzqN997vfRSgU4nepVIrPb5GLvuzqr9NwRHxVjMHEjExgomVyXar1IedRlaOrl96b1s0oaPZzz7i8pGAZdJK/iWDaEDFT2TZahzyZVBKpCk8dEfbSBkSwxUnETW633JdyXlO/qEDXB7qxEX+b+trv+NqOvQp/OudDRC+RSKDVamFjY4P3n8RDybpyRMZ15coVJJNJfPe73+V9oXq9jnq9zpcarqysYG1tDaVSiWMMitfTq/pOhKOjI2SzWSSTSY6pp8NNLqPZbKLdbjOT8WIivV4PsVgM4XCY7/iiC2fL5TIODw/xgx/8AHNzcwiHw3zg2MSk5Lp0c1rEIxwOo1Kp8JUoqv6nIwPBYBAvvvgiGo0Gcrkca2PHx8cIhUIIBAKPxTWUcdIxLapT/FbhbWIwqvWnq8umv0SBcBj6qMJ1UHjuGZfcaX60G1umZ0NoVQzEhJtOWpff6/A1MTUdzjr8VRqDXJ6KsarSqAQBlSSmI2iqNuiYlg5MGpWXJOrFKG0gEAggEomwK3gwGEQ2m8XR0VFfgFkVg1XhS59arYbV1VVks1nk83nk83nWrMLhMLuf04WCxWIRd+/efSz6hJdm0m63cXh4iOPj477r4GXc5DZEo1FMT0/j4sWL+Pa3v23sIxGfdruN5eVltFotdhi5desWR+ygKBOZTIbDO+kIsF9BjsZrYWEB1WoVyWSSI9oXCgU2d5LW7Lou33kVDoe5DtIcq9Uq8vk8x1tUMUoV07IRnlRjoGqbqRwvIdAk1HrRxycJzz3jGrbTbLUuem8zeF7ESDdJTczA1E4Zb5mhyWWoGKqXZmezMMSy5fJ1ONuUqXtno4l5MXhZotTVYQuO47Dm0+12+QqRvb09XLhwAZubm317RTq86D89i0QivIEdDAYxMTGBWCyGRqPB5jVyPT84OGDnCFHqVxFRVZ/Jmpmu/WLf0ieZTOLOnTt9z0waB3C6f3Tr1i04jsNalajl7e/vA8BjDFiFv24+mBhCJpNBo9FgN/5YLIZLly7xDcPHx8dYXl7G/v4+R/9oNpvIZrOYn5/na13IhEgMTuwjVR/rmJaKfpgYjQ0DGlTT8gJbBjhqeO4Zl99Okie3LQG1YSCmOsVyTYTAT31ei9OPhmKTT8UATIxZfO6l7Xn91xEjm/zitxdD1rXLjxbmuqcXEiaTSbiuy1oCmZFEgi4TKLnfxN/dbhfZbJbNZtFoFKVSCYuLi9jZ2UGr1eIwS41GQ7l/JjIxWbjxC6rxiMfjcJzTO7sajUbfPVamQL0EotOIDbOVn8uE3ma8ms0mNjY2cHBwwOZdOnd2cnKCdruNcrnMjIzqmJiYQC6XQ61WQyQS4bTi3WMqRiXjrFs7pjSqOSSnNY2pPMdV68Km7/zSrFHBc8+4bIihKv0gzM6mfBNO4juTlOUHF9Uzr0lH71VMx4tp+xEU5IVnIwnr/ttI/TbE12ZuyP/FPDZMi4jW1NQUtre3kcvlmIC32204zo/3tlzX5QjtlF9VT7fbxaVLl7C7u4vd3V2Ew2EEAgFMTExgdXUV9XqdCazrupiYmMDly5dx48aNx8x9VL7MtLz6TzXvROeTubk5bG5usrmN2hkOh5FIJNDr9VAq/f/au7bYuI7z/C25Fy6X1IoUKa4oKZEsuwliykYqJ47VIHYjx0Vg1ShSII3rhwDtS5rYsFAXQZ08SA9FJASo0wZpG9QNEgdBoBfbRYC0qWXEVmoYrlXJaiRZVeVIoq4UJV6WFC+75HL6oJ7T2dFc/plz9sr5gAW558z8889//vlvZ/acYtVuStGwy7IzlZxVbSiGm+87NzcXOt3gVSW9vb3o7OxEpVLB0tISLl++jKGhoXCXZiqVwtzcXPhSyHw+j8HBwfDNx6lUquoxTjp+VetX1kY2V1OGpXKApu+8HHWytHFYcWVjbfnIJ4pxEf+aohMb+rpxVUpEpSlblLqsUTW3QNF0TlZGW/ZdZyhMfKr68bzbGFSKA7ONJHleqKhUKrhy5UoYfZdKJUxOToYZV/BopLVr12JgYCDc8i1eE/776OgolpaWwqi+WCzixo0byOVyoZEtl8thOWt0dPSO18Dz85H9NbWRtUun0+jt7UUicXsDSZDxBW9IzmQy6O3txd133y19Jp+N0+IzN9XmD/Gp8qZ3VAXnZ2dnwyfXB7sjg/PLy8u4fv065ufn0dXVBeD2749mZmYwPj4OADh9+jS6urowPDyMdevWobu7W8q/al66AEyn4yqnZWvXXEBZSxQbYIu2dFwmiFF6vdJbgG4AVQ5FFZGrFj2fKcnoUWmYoFNg0TCpImSxvWjITfzyWRElStQ5RpMz1UGcZ/BG3uDRRUG21N3djTVr1iCdToeZCz9nfj6JRALT09PI5XIYGRkJfxDc3d2N3t7e8EkOwW+Gbt68GWZ5sgBJVZ7ij1FKWMDtezrZbBb9/f1hFhhkWtlsFqlUCgsLC7hw4YL0esoyEtm1Fh2QLGvk5SXrr7pPxtjtTDl4AeTVq1cxMTGB6enpqpdFZrNZTE1NYWpqCqVSCaOjoygWi2G2du3aNczMzIT9dHrPy1m1Tl11XBzXRsdt2pgCX1WbqFiVjgu403nZRNMu0C18U/sA4oLkFdNUytRlZeJ325KgjJZsAcqiSqozsx0zymLRGQORtulaBg9jzeVy4c65wKgXCgVs374dfX19dzgvAHd8Z4xhfHwc//Ef/4GFhYUwkxsbG8Ps7GxVhrG4uKh8XQaFf5vsuKOjA6VSCYlEAnNzc+EOx3w+j3vuuQddXV0olUqYnZ1FJpPBunXrqjYw8LR1eqPjU5d1yOYgC6YYY9i+fTtSqRQmJyerntyeTCaxfv16bNy4EQsLC+jp6QmfPrK4uIjR0dHwWYrB0++D33Xp5Ge6FrY6rgpuTetTB6rT0wXVcdvXtnvkkwq8IaYYeiqtKNBlehQe4+KDOrYpq6I6PFXUL0biqu8yHkVegvYUnkXeTJmmGB3zjoZvE7xkMLivEzwnMIj6gwfZlkqlcKt8sViscjhi1hVsrw9+rLthwwaMj4+HmzHErIJ3ZgCq/vLHebmp5hz8FTPDgJd0Oo1MJgMA4Q9ze3p6wtd3LCwsYMuWLdi0aRNeeeWVqleBiIFd1IDSZo3z67CzsxM9PT3hW595BO8xu3jxYrg1v7OzE8lkEr29vVheXg4fWsz/7MEUtOoCJaqOy+jo1qRJxwNQH0umg86eAG6PfGp7x2UypDqHYOMYXJ2IKmKkQhWByYy/OCcqz5R2umxEJUud49bx4MKPrL+KDoUn3knx/XgnFhi0IPvYtm0bZmZmkMvlwoetBg9tHRkZwfj4OGZnZ3H9+vU7fusV0A+cRnDvKJvNhs/v452R+LDXoH86ncbi4iI6OzsxPz9/h+PSRf3BuHwWGBwLDHgymUQulwu3iQfP6CuXy5iamsLS0hLS6TSuXbumfOagjhcV4grsKDrJBxHB61cKhQIWFxcxPT2N2dnZO540opqPzGFTeTc5RJGuKVuT9XFxXDZ2BfDPKpRCpwgmw2WTlfGG0BTtURSUevF1UaRuTjaZCKUPxQHI5GCah+y8i1xk/W0yMUob2XyDFzEmk0nMzc2Fv+m6detW+JT2SqWCsbExXLp0CR0dHejt7Q03MaTTaSSTyfC3THym09PTg56ennBXHJ8BBe+EAhA6k5WVFWzZsgW/+c1v0NPTg4sXL1bxaor8E4nbPzLu6OgIdyoGr0cJfmQd7JacmppCLpfDZz7zGfznf/4nlpeXUS6XQwfW29uLmZkZ6eYRqtOirDcTHdk14/ur1mbQpqenJ3zcU39/f5htBaVb1Xx0AYJqXFl7VbYqG8cmGBcdnYy2rm+t0Vb3uFQpM0AzrDqaupQ8OKZSdl20o4o4KYZT7EtZHBT6/KLXGTNVGxuFl/FOjbSpxk3FrylK1clVJxt+rtPT0+ETFLLZbOiI8vk8HnnkkfDHrJcuXQo3XFQqFeRyOWzbtg0dHR0ol8thebCjoyO8ZxZExPl8PnQeQfkxk8lU9UkkEhgaGgp/C1YsFpFOp6uMn+kTbLwINlyk02ncd9996O/vRy6XQ6lUQnd3dzju0tISLl68iHK5HL4SJJ1Oo6+vDyMjI1W/iZLJm+p0+DmIOw5NH115VTwvlv6Cx1UFjipw5vzPD6hOSwXd+jM5eN52iTKTOTwTfZsMsNZom4zLFC26ghqp22QMsuOiklGMvclB8nRUfWS0bTMSE30VPZE3XRvZuCINWUQpjm2rCyb9kZ1PJBLhlukgA8rlcpiYmEA+nw+fLXjkyBFkMpnwfVWBHIrFIhYWFrBhwwYkk8nwqe2MMXR2dqKvrw/r16/HzMxM+Ggh/l5L8JLDIOMKypqVSgWFQgG5XA5zc3MYHh4OH61EccTLy8soFovo6+sLnzZx/fr18OWIQVYVZCJr1qzBhQsXwm37g4ODOH36NFKpFN5//32Uy+U7xqAayqjOQJVJBeOq9Jl3qolEApcuXQrbTE9P49Of/jTefvttqeGn2CiTjptomaoA/PGAvyCbptDT8V+PTCtA2zguVZpdT2FGBb9YqBmRqkTC0+P7yNrxx0TjL3NkfBvxmDiWyxxVxkK1KHWGiCJHE2zpJxKJMCvJ5/PIZrNYWFgIDfXc3Fy4W23Lli2YmZnBhQsXQnpBdB88Ib1QKGBsbCx8Zl6pVMLMzEyVbILnFGYyGaysrKC/vx89PT2YmJhAV1cX1q9fj0wmgzNnzqCjowPT09O4fv260WkFYwQZF4DwMUhr165FNpsNH3wb/H5szZo1mJ+fRyaTwezsLFKpFBYXF3Ht2rXwd2j86+3FcagQnYjp2lB0nKcr9lHJBbh9zcvlMn75y19WZXy2c9HpuGxMFS3ZPPlzOtthex0aYWNb3nFFzajqCQqvusyLYohV2RA1K9L9L5uH6NhsnIUsW1JlTFRQeJBBtaD58zL+ZeMyxlCpVNDf34+FhQUUi8VwM0U+n8fVq1fDLeujo6Ph09t5dHZ2YnBwMHwixtDQECYmJpBIJMLsJngxYzabDXcsDgwMYHR0FCsrK8hms6GjyOfzmJiYQKVSQSqVCp0Hb6R0kX3gUGdmZqq2vPf29obZX/BA3M2bN+ODDz7A2NhY+MqP4F5YInH7cVDivS2dsdRlVzIdEq8Tf41M/4t0ed502QyfYVEyI9k4qvPi/yb9VNkOGc+ywNMWjbDBbb+rkAclI9D1tR3LxuiLkC0saolDVFaRno0DlfGl6y8zJCaHoHK4FB4pY5j627RTjRPwm0gkkM/nUSgUkM/nce3aNczOziKZTKK7uxu3bt1CR0cHhoeHce7cufB+CP9eqnQ6jWw2i3Xr1oVZ0/LyMvL5PNLpNKanp9HV1YVcLoeFhQV0dXWFT2o4efJkuOkj2PgRbM1OJBLYsGEDNmzYgHfffTfcVWiT9fDz7OrqCrOrxcXFcC7B77aCLC344XXw2KeJiYmqHY2845RdF935Rui4ajwdbdWcKE5L5qhtoZKTDLY7Cal2VRaUA6t0V6GN0aIawjigc0im8oMYOerai2OZokLKuGIbk7M1GXZZRM+3l/Ftyr5sMz1Rnjw9ajTK95XNMfge7Lo7e/ZsmF2sWbMG2WwW09PTKJfLuH79elXWEZQBgdv3kgLDHpQYGWPhY51SqVS4OSIYb3JyEleuXEFnZyd6e3vDLA9AmFlVKhWMj4/jgw8+kBonPmPQBSaBQwqcY/Bm5YCm+MSOrq6usN/69euxuLiI+fn5KtnLslfxOH9e9b0eOi7yRYn9dTzLaOicKn9ezJQowbIKNg5StoajtLNFW2VccTmeRqS+Oojpf3CM/863dQUlSxSP6ca3oac7R3FQNtl0lKhVXITisUQiUfU7J/54Op2uevq52EcsqQUbLoLnGgZPhQ82a/T09KC7uzv8oW86ncbly5eRyWRw+fJldHV1obu7G1euXAl/WxQ4GNXuO5VcZQj41t3PCTKzYHNJMplEV1cXbt68qX38ks4xNJuOxzGuzlGLDtek6y76rRvf1M92zYvzcMm42mo7vEzJXOkA9Cio1uAXshgpygyprJ/umEhLd1y1iHXOVdVXdk52DSmZAMWYuPCl6qc6FjgD8SGvlUolfEyTbPt1LpfD2rVrq35gnEjcfvpG8CPe69evY3JyMnQG3d3d2Lp1K/r7+5FIJDA4OBiW7NLpNBhj+OhHPxq+TiV4pmA+nw9fgiiTgc6RiX34TEvVZmFhAfPz81hYWMDc3Bzm5ubu+JF00FbmBJtVx6l6oxuXp2WiR81cbByrbeaoG0v2XbZO4kgKWr5UKIJaNqIIzyWyokKWOekiF3ERqDITPnKiLlKKzGR9VcdUc1ItPOrYpshbZeBk8xMDAd15FY+qY7LzplJNZ2cnNm3ahCtXrqCrqyvcgTg4OIj5+XkkEgksLi6Gr8vgr3NXVxempqbwP//zP1heXsbNmzfDB7wuLi6iUCiEJctMJhO+8LBYLIbOQsebbG7Uc8G8g3tswW+eZLKS0WyUjssyEIp8+HF0GZGOpimj4s+Z5mTj5KJAxYdtxYWKtsq4AsRxsWRGMq6LzNNTKanqgqt400Fc6LJI0DZbdXVyIk9iO53DpnwX6aicpU6+wXlKhKuK+MXzusygo6MD/f39GB0dDXfp9fb2olQq4cKFC0gmk1i7dm344+XgDcjlchlXr14N7yndunULmUwGIyMj6O7uRrlcxn/9139hdHQUALBt2zZks1kMDg5i48aN6OrqIhlX/rs4H91HbB9kWTJ6JtRKx3W8m8ZS8aiTqUpGKlo6erJzIk2TfuqOqeag4oNKw2dcsIvWqVEKYB8pqM5FjYhk9IJ+ujRcPKaKUmVZAT8O39/G4escgy4IEOelk6kqu9GNL2sjo6eaj2l+qnYy+QdjLi8v4ze/+Q0ymQw2btyIvr4+pFKp8Ldbk5OTYIyFPypes2YNbt68WbVBAkD4SKWJiYlwi31wLwlAuMtwYWEBk5OTVdvhdQGAKcPRHdf9T1kbOh3X0RXPqfiyhU22oMusdDrOrzedI9bBFBTbOCpXJ1pLtNXmDB7ihW9HyMpQ1DnL2qicu4yuqT9/LODRNngwQXQAKoesO6eDTp6yY7LvOgfN/w3uPwWvOJmZmQlLhMEuwuAeWCqVQl9fH6anp8MfOA8PD+PmzZs4c+ZMuMGju7s7/OFvpVIJf0tWqVQwMzMj/REwPz/+rytc6MiuVy2hC0Z07Uw6xv915ctmvaj03BRY1MsFqGS06jdn8LApN1GOUy6uLj2njkVpq4osbUpbpqhLFrG5ZKmqkpuJR/6vqo1qV5puLJMB4Om5ZsN8FmPSqeD8ysoKUqkUisUiJiYmQsfS1dWFdDodbrYInoxx6dKl8AfBFy9exPHjxzE0NISBgQHMz8+jp6cnfJpGsPNveXkZS0tL4VM7TFviTQ7NdH1MMjDJUtbXJFMVr6o2AahrRuVIgvVCnTfVaah0UTYnVSBlCp5UY/Lf43BuYvUhCtq+VChTNFOZyhRJm8aipvIiXCJ7UQlMEaCqVBZ8p8hJ1tYmgzJlc5TMySay1PEh0uK/6xwYtWTCXx8VzwGKxWJVm+ABu1u2bEEymcTFixfDV4V0dXVhaGgIk5OTSKfTGBkZwblz51AsFrG8vIzp6WkMDQ3h6tWr4e/FVlZWwof46gynKaDRzZH/rssAAhom425TJqMYbpUuqXiTZc2qwE90JnHquGmu/PiqtSm7HqagT8erCaq2tgGhDC3vuCiG3kbYLgYwLkS5yOLi1hljnWLazl8XEaqiRJkhEY2HGN3qxqAsPtVx3aJ00QHdvFU0+awraJNIJMLHQo2Pj2N5eTl8j1aQaV69ehWdnZ2YmprCu+++i3K5HL5QslKpIJ1Ohz9GDuSk+92WbSSscn4qg8+fo0TxKgMexXiqeNM5ORX/wXfxvIpOVB1XOSKZ45XNn+K0TGiEXZSh5R2XCJnhVQk77oigUQ5P5AHQZ4+6TEn33cawm+Sqi0J1zkXGk2ruFB4pgY6MlinbVPUJjunai0ZxcnIy/F1XKpXC5s2bMT8/j6tXryKR+P9HRAX3sZaWllAsFjE6OgrGWPjcw5mZGczOzlY9lV2EyZiJvNnqi8phmjIIU1vVeZEXCi1VhhJA97u1eul40Ec1X/GvSI96DXQw9amlLWzbe1wU6CJj2XdbeiKi0g/6qPrxxkQ1lsn56CJAmRFW8SaLSGWZh4ymKpqV9VUZRltaKp5UPOpkaMo4dNdd5DfInoJP8APm4PmFwWaNjo4ODA0Nhe+HWl5exuTkZPjD5nQ6jZ6eHhQKBSSTyTuic5NeiR/V3HneZX1lkPESHFcFXqoxVedN11DHV/CR/WBaNl9xzLh1XNVOBupcdaCsnXqj7RxXlKzHFAXxY9SSvomGqp+sFCAqrmphB32Cv6romD+vG181nm7BqqJTVXuRF1WmJLanGg/+nMlAiHRUxlvkQdVf5C/4TE9P4+TJk5ienkalUkEmk8HHP/5xzM3Nha8VCZxcKpXCRz7ykfC9XoVCAR0dHchms1JdMY1t0hsX+YjylemWydkH/VVG2jUA1V1Pvl2jdFynQzodMzl2Fc86uNpEV7RlqbAZoDOotRxLNrZsocgWAMW58e2o52SLVJfZiXMTv6siUJnxMhkcl/mY5K2bm8iPrHwl8s8buyDyD579Nzc3h8nJyXA3ImO3H8OUSCSwvLyMsbExjI2NoaenB0tLS+GbenUGLvjOl8R0zsmUUchkJeqa7C9PXxyfbxsck/XV8WsKdGwyjUbquIo3SgBAtU0UHa0n2uJ3XCbFr5UTifuCqaJNncKrFqsMKudlilQptFVGWmckosqOIi/RaYvyMjkal3FUEbWqr8iXaNgTif9/CG/wvbOzE+l0GplMJty4ETi1gE4ymQzvfyUSCWQyGdy4cQNr1qzBjRs3wo0cPF/8X5v56kBxOlTY6g11jaiyK1mbZtZx3ZjitbaxNfz5KPOS6c2qfK0JIE+/VcYjTkcTd5RhiqBU50yRnMzA8MbSdmxKVCs7psr8bMfStdMZDj77lLWn8mWav8l4qQy+yvhkMhls2bIlfEty8LT4QqGAubk5lEqlsB//SKVkMonBwUGk02mcOXMmzMSCl1OKhkyVJZnmxOuRCir9oDhJ/rhNWzEAEM/xfymZSCvoODW4MM1FN/8odi8um9nyjou/mKJhrtfYzUpTt1Ao0SG/4ExZhGocU9AgGmtdVKcymPxiVvEpm4vOien4phok2diyeZjaBJsqLl++jJWVFWzYsAEDAwMAblcfOjo6kEwmq56EwRgLdx52dnZiaWmpykCrXuIoyojnT2WQTXPXyUscS+RHdh1sM1oRvK1QZSGtruPiPCnXSsZzs6LlHZdJaWxhivYo45lKCjq4LhgX8HzKFpKLbG0yXVlbk8ExHbPl01WOpkhfB9VcVTpWKpVw8eJF9PX1YXZ2FhMTE1UOKplMYsOGDWG7oFxYqVTCl1DyY/DGTGXQTHJV9ePlKpuLqr2sjcg31Vnp5K8z5O2m4zwPLqDoci2CdwraZleh68URoboIYsRjohFV2UyIk55ozFTnxTY6OYh9+OMBZFG22CcwgjI6OuMpQnbt+PFM81fxThlHxZdqfHFumUwGn/zkJ5HNZpHNZrFu3TpUKhXce++94Xu5JicncePGjZCG+Dgs1TgyHnVtTLJSZbCqPtSsQHX9ZHRUc9I9IqwddVzXn4I4A+240TaOS2UwVMqlA8UxufaNC7bzMbXXGSRVxKiLDgPDRXHgsqhVLIuIi5s/JvJscioieB2RGUCdUVRBp498G1lAxPOTSqWQTCbxwQcfIJvNYmFhAcPDwygUChgfH8fAwAA+8YlPIJPJ4Hd+53cwMDAgNb46hyTOX1fGks1RbGPSC5GeSp9kBl1WLlNBFhio0G46HtVpRQHF6UdFy5cKA8iiPMAtIohSQnIpN8i+xzGOSia6sSjGSdXHZhwZbCI8cW66+ciMhoxnSsRvA35s1f86+ozdfuVJIpHAf//3f6NcLqO3txfnz5/Hhz70IeRyOXR2duL999/H8vIyzpw5E76bi+qkVOObnJZqnnG3sQlCTBmeSk8paCUd5/l1hav9A9SOOU60jeOiXtRaCFE2nmmcKA5WXESqMcVMwbQAZGPoaMn44M+b5K4y5rIMRMa32F/kTee0VbKzySpUchcjaBXvPK+yeQPA0tISrly5gkQiET4lo7+/H9evX8f69esxMzODtWvXYnJysurNxwEdldPSzVE2H9lx2THbLMxlPYqyU2UlVP5EfmTfW0XHXR2Wynbo9FtHi59LLext25QKZTBFcDYRtqqt6jjlwlLoqGjLFqNsbkFb14hMZuz48VTRoTiGbvFReJddR1EGlOhURkdmHFTGX5y/iqbuOw+Z3Hhe+M/KygquX7+O06dP46677sLZs2dRKpUwPj6OUqmEdevWYXBwUCprfh4yefLtZf1V86AYJV1QqWunWieq4MyUXZnWvsyxtJKOqwITylrXXVsbfZbxbcMHFS3vuGycj+15Slvbi6pqozIWrohz7oA6epfRMzlSEx82vLksUr6tLnoUHQeVD9FJyAxqAMoCF53X0tIS3njjDczNzaG7uxulUgmLi4tYWlrCjRs3wnay/rpxRIepa2uav6mvzAmIbU3GNJgnJYtU0VHRDnhpJR13CaLriTj5aHnHZRJGnF6+FWGbWVHa8Q8b1RksHhSl1S1QVQYkRtym6N5U6hH78P1sXlypygpkjkxnIMV58217enrQ3d0dPgLqypUr0qdhqDIpcRzV3ES5UuYvG8fklHTHRT7FB97aQJyrzuDbVCoapeNioNII6HSnFmh5xwWojafOkIltZd+p56KAGim6jm8yOHw7akQkM6YBDVs+dQ5TFamqyn08byZaKuMrKwupjItsHpTxTc5ShMzRJRIJbNu2DVNTU7j77ruxefNm5RZ4kY6tgaVWFUxrL0rELXPcqjYm3kwlN7E9j2bTcWrAybe3gWld8fxFzSxt0BabM2yjN5VD0wlZZvgox0ygto+66HkjzP819aHwwhtTU1/xvMqgy8a04UlHh/+rMua68VZWVu44b1PqVV0DU1TN/18qlXDkyBFks1kAwPnz56VOSyVrFa+2OszPxURLFuDo5Kwy1CJNyjq3qcxQ9LjROh5HIGvT3jaorXUlrC0cFw+KgCmGG7A33tRIVrdIxUWja+/i9KiK6OIoVYZJRdvGMNgYLJEfFR88r67XjxoIiGPyf01BkGwMxlj4vMHFxUWUy2VlCVc2B9PcVE5Ol0XpDLQ4R1Nb0xzEvtQMT5Rh0E7XV+RDzH7qreMqhy7ybRo/Duiuay3Hb3nH5SoYqoOjjG2TbVCdkMnBRHUsNn1sx5IZHFXkrYJKHirDw5+zjZ5tjsucsmjE4lqsMjmK2R5jDOfOnQvPudCkwDbQMRk0FW+67Io/HtDkqwmydjpHoHJAqnayzFLnlHTnZeeoOi7+Vc1fNb5LJmly0CqogryoaHnHBeiVztQnaqYE0EsBKtQyIrIZxyWrMdHT8aFb3KqMQ8eX7jpQDSBFBiZjpQLVuKgyMNl32ZiqtrJ2rtEyxSnoQOHRlMmY1jBFz/i2KicgG0dlkMXzceq47JrHbW9cA2XbbDEq2sJx8aBeSNuIwyXaqCfiiPKpBtqFnsowqQyvzAjqDKuu7COjKdJT8WIjA9V8485wbUppOlActW49mAy5jG/ROFNgc+1M61RsJ86DGqiYnJmMN92cTDoe1zWvFSgyiyvbAtpkV2EURDXWNheiVkpX6+gmbgTRMv9qDQqvYjtx4VOyKh1tXclFpCcra+l4DubLfxf7RXVaumPimFTdEAMD6jl+fJUMxDaqeaiuq6gLFH7Ea6yioeob9LHJum0DF5EnUYb1gOmaNhpt47iohs+2T9BO1TaOiNwGlHIBpTRiom/TnmrEdf35/3XZj0yGsutqw5NrtkrpI7s2It8q5yr7X5YhyCDLLMRymCpjDb6bypWyObo4SlO2Jru+OidjuybF8VVBBT+2ypZQ17iNjuvWuowHG7jYNapeUMdyQVuVCk0GyDa7iuIATHRta8biMZc6Nb/o4pqTzOi4zo3STja26rqK8ooafOjkbzIo4vlgk4WKF7GPrBwma6PiR6bL1PIYVV9cgxd+PIo+UTIfHY/UtWNafzKHYsuTqr0us6bwLqOl0zcTdHxS7WicaJuMS0QcqS7FCLuAUuuNomQmmjqnEWUMm2hT104sjVDKJLIsRmYEVZGymB2osiK+jY4O/79svqpMbGVl5Y4SKp+JqsZXjR3AVCLTzUWWAYj8imVQmXxsHRt/vVTZia2BtylvirzK+sqcKiXgVTllqr7bQGfHbOXmOn7caFvHpYNt9NgoHnjYGO1a8xInTUq0pjJ4qvmqjJxsPPF4sMjFzFSMxCllKl3EboLMgMmcEZWOjk8VAhm4BBKikRdlRil5UTJmSkatm5uJf553fi66a6kLDHVOLeo6dgHFkYuIK9CNgrYqFQL0cpUJjbogKriUzIDqxe9SWlHRi4OW7bgiDzx4nuKMVE282JRPVOU3iixlpUVd1qXTCbE9JXujXHNZlktpJx43BRkqWjJ5yv7X2QiqMzbJw6QDMlnV02GJoOiJ7LrI5kHR06iIlHHt378fiUQCe/bsCY8xxrBv3z4MDw8jm83ikUcewalTp6r6lUolPPPMMxgYGEAul8MTTzyBy5cvR2GlCqYyRbPAhSdK5sXDxblQFq+r04rrOvClKvH68kbJJlsz8SYaPVN2JfKqmgfF2Ltk6HwZT/UxrQ1KVqvKIsRMxcSvSxuV7GQ2gOpsVFkIpQQo40ukIdMN23URtz2Lq1pTL2fs7LiOHDmCf/zHf8R9991Xdfzb3/42XnjhBXzve9/DkSNHUCgU8LnPfQ6zs7Nhmz179uDVV1/FwYMH8dZbb+HWrVvYvXs3KpWK+0w0cM3AZIK3KU/p6AZ8US4uNTU3zZFaWqplJhUlI1JdC2oJSyz3yGiaQIlMxbFk/UxZRRRjH7Wvim+Vc5ZdU921UJVQdXOn6KVY7qX21TleFT9UiFUAPuiRyYhqb2yyRUoQZQqeXGxCLe2Ik+O6desWnnrqKbz44ovo6+sLjzPG8Dd/8zf45je/iS984QsYGRnBSy+9hPn5efz0pz8FABSLRfzgBz/AX//1X+PRRx/Fxz/+cfzkJz/BiRMn8Prrr8czK5iVzRR9A/KIkVrX1kFWP6e2pyDKQouz1OaSPZiyPd5ZqRYvn22IDk00RirDzI9jOzexbGlbkqIaWtVxMSBSzUW1BnRy5duIslOdt5Er317Fk00kLzpEGS+m7Ei35qlZukhT9VoWio7rxjIdj9PeuK6ROODkuL72ta/h8ccfx6OPPlp1/Pz58xgbG8Njjz0WHstkMnj44Yfx9ttvAwCOHj2KpaWlqjbDw8MYGRkJ24golUqYmZmp+thCXMi1jAbiQC0vOmWxUfuZMpyovKhAzXyC/8XsjBJhRi3fUMaRnTONrcvW+PmJ7XSGTWxDzfJlfOmO6RyHLttT8WsDHS88P+I4VB3XZYqiQ3LhV0a7lqg1/SiwdlwHDx7EsWPHsH///jvOjY2NAQCGhoaqjg8NDYXnxsbGkE6nqzI1sY2I/fv3I5/Ph5/NmzeTeKVEgPx3VwNMvcCULI86po4OJaJy4Vll1CiLV8eL7rupvUhfF0WL2ZcqohbLOmJ/FX3byFbVVxdYqXRI5rBUfSnGVDTYOiOu40nVTja+jHcX4+mSAciycVGmFEfH95Mdo8wnio7HCepatK0oxAErx3Xp0iU8++yz+MlPfoKuri5lO9kFphh/VZvnn38exWIx/Fy6dInMs42zsKHFf6dGU6qyVBTeXJxqVAeq491lMekMHAWmcp9qTL5sI3sJo2ksGU3d2GJGpGqrCyxUc1U5FlUWKBo/SlAiOybORXctZPMKjrlkuOK8ZOPy53QGVjd/lbNWXUOxn6wsWA8dbxTqwZOV4zp69CjGx8exY8cOJJNJJJNJHD58GN/97neRTCbDTEvMnMbHx8NzhUIB5XIZU1NTyjYiMpkM1qxZU/WxBWVxUEs0soWgMwAURImedM6JkhlEhUuWBKh5tJGhTTZHoSXLYnR8qQymLlOjzNeFdxl92yzQ1ihSAydddC47R80qVFmzrq1sbP67bJ2bKgOy663LsBqh43E5FFNAWA9YOa5du3bhxIkTOH78ePh54IEH8NRTT+H48eO46667UCgUcOjQobBPuVzG4cOHsXPnTgDAjh07kEqlqtpcu3YNJ0+eDNvEDV6x41i4lKi71mk8D0pWRDlfL6WjyogiQ2oGZAPR8OgejisrL8l4lAVFspIUhTfZODZ9g/Y2pTORV12wxP+lViNEuqqynQiKHvNr3xRE2QQPMplQfmJg4t+mjY2Ox2WTGmk7Alj9ALm3txcjIyNVx3K5HNatWxce37NnD771rW/hnnvuwT333INvfetb6O7uxh//8R8DAPL5PP70T/8Uzz33HNatW4f+/n78xV/8BbZv337HZo84IS5EXbnD1F8H3cLgyyKu9KmwoWdqGxdvMjou14KKuK5p0FakLYvIbXiPkmmIvNnoZtBep4dipqbiSxYUqrIRlf7r1oSMd3EM07xssjcqbzJ6YiYexd5QEaeOR0U9nVfsT874+te/joWFBXz1q1/F1NQUHnzwQbz22mvo7e0N23znO99BMpnEF7/4RSwsLGDXrl340Y9+hM7OzrjZkcKU9suOR734JsMWt6GyMRL1cqgyGVCvRS3gOpZr6UYn54Cuytjxx8RzLsGAio+oMlGVwFTndVmQih9bPXUNOHXBpuikdPRaVcd1uigbp56OK8HqnePFgJmZGeTzeae+UZWGckFdjb1ugdhmT7aKFzeijGlTNjNFtVGi7SjtXJxCVL2xqRzI5GPSP5PTlbWzdaK1zE5csllZf/F/V1qtruNiH1cUi0XrfQur8iG7UUDJwkyLO/hfVYsXj4nKqltAlKwmLqiiasqYrlmLrJ1sQfNtXB2NaUxxLB78fQ++rey6q+jpjvH0ZPqh4kvUD5We8DT4trpMSpUNmvTClJ2Y5kQxmqoyooqG6rrp+LDhqx10vJFou4fsmlCv7ENVkpP9b+qnoqGjUw9E4SXO7KMRMpEZfh1EJyOLknWGSTS8YrRNib5l46vaqrIi0TmZZC9zCLKMj+8rc5g66LJBldxU8xXPB6+YccFq0fFGOLZVmXFFjdzioG2KiF34qIUC1VImOlBLGnGPW0s6KsMafFQ70nQlIlkGpTPgYoakgi67kGVeqv68sxP55PmQOY4oa03mwE1ZbfC/7Dp4Ha/t+LZYlY4L0N9Qpab4OhqmCClqDZkSJVPomBBHCSLKXKOUW+KKSm3KSzZQBR+yspSqdEcdh6qX/HFZhqXL6GT9+fFlzlD8bqpK6DI03Tn+GM8Lz4OuDOh1/M7vjSwhrrpSIQWu6bsNbEuWptKPK11XvuIqubqWVF3oxtnXxLeJjo2cVd9tSl668XlnJAuQVOU/XRYoa6MLDHVO2bacqCqnBqCW/7yOm3W8UVi1GRdwZ7Rnahsn4lAAl6zLdA9CF+WajKYMNnKLU8ZR5GuK9Kn0o8rIVA42ZWZ8uU7Gm1jO48+JGRP/V6d3spKlzPjJxtY5KxWPqvmJPJsyKq/jdjreyGwLWOWOSwZTqSDumrON0Yoyjgo2Cmwqk1Lpq86bnKqJT/FcXNdCxltUUCJuVQakgqzMqPoEtFRORXZMdBYyY68rJcmckTiGzjnKrg+/Lk3z1dHyOl4bR10r+FKhAGp5xba/LvK15UN2Po6yFE/bVIa0UXKXkgRlDFmpitrXRM8E13npjtmUZmyuKcVwi+PZGnsxexL505USZX11c4nDcHodNyNKKbLW8I4L9AukigJd+satFDpacSl43AtFVqaiQraIo8jUxbm70KOU2aKOH1UOrtBlWPx3WVamy9RqBa/jelCz3kbAO67/g6tCuCpRLSKZekRIUaJLEVGiv7iMDqUvdT61lr8qixFBaRMHL42A1/HG6XizOC3A3+OqArU+Tzlea35kUNXP4+QxymKNwgfVcVBgywdf2tL1l0XHUcdW0ee/63RTd8/G6zhtDJs27arjzeS0AO+4lDDda9DdRObPx8WDbHzTorUpQdXCAKj4aTR9UwlEJgPqvQW+r8xp1EIGKpo2909k372O22M16HgzwDsuAVSltr2pajM+NfJ0uTeioxe1DNNsUZkM1GzJ1F6FKPdBVYhLrrY8eB2/E6tRx5txzt5xSWCzcynudvxirbfC2N6MFc/VMjKnoBZllLgMJgViRlCLLM1lE4TXcX1/E404UW8db0anBXjHpUSUlFzWxuXGp63BqoWS6XiIU0ZxIK5rIaLeu9yoWYYLXy7lIK/j0WjEiVbX8bjgHZcCjYgEZTdEo0SD9ajpx4m4NzOoaNiWRlRyjcpL1LnZZnKmY7WG1/HW0vFmlql3XBrU++LJbpbrShvUexBxRYO29zFs+8sWT5T7TSq6tpsWdOdd74Hxc3Odl8loq/QkLrm6wOt4a+h4s8M7rjrARRl1i6JRSmezc0tmlG23++oWY1RjTzlG3UDgAtuSnSyiNhltlbxsjRwFXsft+8vaN4OON3OmFcA7LgJMES3/v00d3yVad80CXZXUNaNQfaf0j+owbK+F6hjlnk2UrDzKDfS4dwiq4HX8TrSzjreC0wK84yLDpCCUkoVoBFxuClNvvMpq2KYyhQ0fsjFsz6va85EshYZsrpS5RUUgU9fFb3u/xvV+ju19JRWPXsftz6vaN6OOt4rTArzjsgKvZDY3lAO47OgyjaU6T919pKMTVZFVZQ+KfILvFKOiizAp2bLNeUo/V7nW6n6OTq66DMXruBntouOt5LQA77iswRsPnXK6KpNuTNfzrjAteptxeZlQSnCqMVXj2zoDarmGSo96XtYmilxl/W366Ayi1/HVqeOtAO+4LGF7I1ZEPW46uyqrKfKLalCp/V2idhfeXMpYJpq247iMFdXR2fTxOm7HRyvqeCs6N++4HBD1xiqVhitqUfeOsmh05ZlGLZpa3JSm3hSvxTgiqNlQlHl7HW99HW9FpwV4x+WMOGvj9YLJaLneRzBBVteX/R9Fpo28HuI9IYpca20wVHLVXYta8lAveB1XoxbBWqPgHVcEtFoE42K0opZkbHZMxV2Tr9e1EHd4udznsgVF91zk6rLDrZngdby2/ZoF3nFFhG2NO2rExe9sjBu1KHVRFqrrTjTK2AFcd8+ZEKVsHHeZjhL1m3YKxuF0vY7rx220jre60wK846o7oihtsHXWlUaU3WdxGdkoET119xX1vE2GpKPrclM/6rgiqNdHNqbuHk8tdgia+nodN49BPR+HjjcjvOOKAa4RYi0iS12EFcW4murjUQyn2F+3vZcyXr3KJy4GP87I13aHq+12aipd05hex+/s3wgdr2UmW294x9UgRNnJpINsEcYVbUW9yR8lmrRtb5JTHDfpXQy+bfmOMn5Ug1oreB2vRjPoeLvAO64YIUY0JiUWa+OUG+46Za7nTjUTZNFqLYyLDKJsqU7KpXwTB+K4x1JPeB2/jVbR8XbKtAJ4x1UDyCJNSpmGcuPYxhi7ljriQC23XVMzDdv6vi5L0hnfdjEK1Hs9tlu9vY67046q4+2imyK846oTAuMXVZFsjHEtFxYFcRoVakRpM4ZNW53xpRiNOA1IrYy1TrcoY3gdbz4db1d4x1UjyBawrHRCpSX7W0u48Ggq+US5p2O6n+R6U97W0FINlVg2crnuqjHiNNZx65LX8ebQ8XYsD/LwjqvGsNkEoKr/ixGobVnAxTDb3oim3s+g0jbRUEFWuqLch6HyQHUaMuNNNeimfnEYJNuNE9TdbrL2snHFY17H6TDpeDs7rADecTU5bIydKtqzWUQmg6Ez4uIx15KTbgyb0kxcZSNbo833c7kWtZKrbgyVXG0CL1d4HW+8jrcavOOqA2Rpu41BsDV2tdiVZbvRwUTHtY1Lmcw2snahFUfk7cpT1HFk/WXX27X8pxvHdFzVxuv4nX3avTzIwzuuBsEUZdlCVYKRjUsdq9kWQRwLs1alHZf+pvnUK5qmytXWWXgdt8dqcj5R4B1XHaFTyig374P+lGO646Z2jV5QrpswTKUfFz7i6G/ayFAvebvKVaRBaeN1XA+Xa7EanZ13XA2AStF09fIoO9+ignozmxoRx8FLHGW0Wi52Cp8mucru59Rq112c9Gzvj3kdl9Nz2cizWuAdVwNhU56xMb61uHnu2s4lyqaUz3i6NjezZbRqAfG6RblOsns7rrxTSqVRdqiJOwS9jssRh46vVqcFeMfV8rApdcSh6KJRszFMcTsUlcGr906rqA5URq9W2UecmyAo9GtRmvU67uEdV4MRd9Rks1vJhQfRqMWxDbnVQXGg1LkHGUs7yLVWGcFq1/HVnGkF8I6rCeCS9tvUv01tbaPFONCIXV9RaEUtn1H71nMnYa1pRZ2L1/E723mndRvecTUR4t5wELXMY6IfBVHuKdR6TFPfWsi13mgWubrQXY067h1WNbzjajJEVVCbLcM2PFB3XZnoxI1WW9BxXou4ESWrrCe8jnt4x9WEMClqrRVZdjNctetMhBgN16K8IYu4G7W4a72lXpxfcMx1WzxlN5v4v45WrZyd1/Ha/OyhXeAdV5OCamDiHpOy9Zh6c1w0BnGBusvMZFTjMDi1LPOotsGLW87rBdGYihsXeCNeD7m6oJV03DstNbzjamLUWnFF+rY7qEzQ0YrjxrWptGPKIOKerypKbtRvjnTQlcpMmy1MRj1uuUZBq+q4d1p6eMfV5IizHBOHQZX9VqmWO+VMRtLlvoQMUbIEkYdaOZY4+ul4lP3wNQ6oHCIlU3YdK0Cr6bjfOUiDd1wtgjgMtKyvrTGxKanYGKY4ymm2NMV7Fa5lv3qUQ008uMJlK7vtPViKQ4+yU1A2lo6fZtVx77Do8I6rhaCLxuI0/LbGmVKq09Hm28Z5U9p0L8xlY0dcTooaWVOvhczo1mrjBFWuNnQo16JdddxnWfbwjqsFoVt0cdwUp25+cKXP/5Wdj+OGt8wYqIy6rDRGiY6jyIWa4VGvhWmLuKs8KZlDve4ZtaOOe4flBu+4WhQqQ1uL7eFxGj0KPds5uIxjKgdRjEoUg+1aLo3D2NmU5UwOUUc7brSbjnun5Q7vuFoY/NZjcTGbShiyklzcCylqJK7qL/IsMwJxZAE2W6J1JU5qWcqlxOYC13t5lHa13MbeLjruS4PR4R1Xm8G2Tq8qJ9V6YcW1w6wZtl1Ttt2bUG9D1gi5RsmgqWXPZtdx77DigXdcbQLbReFSIooT1J1bVEcQx7bnKKhHFmQL3fzi2rJvszmBirhk0Uw67h1WvPCOq80Q9wKJY5dXlHZxzMf1PoTN9uU4tzrX8hrWctcm5XgUOdTK+Ndax73Tih/ecbUhoiwU6j0Lm51/Udq5RK1x3XexidijRveUDRMmQ66at4zPemQDYhXAdreoze+pbPmi0I1Dx73Tqg2842pT8Bs3qO2B+m0Q0PGgG5OSMegi+7hu1Me5s48Kyk5Im7H4ax7nfHi6cWzJtxmb0q4eOu7vZ9UW3nGtAlC3Wdv2ibsdhQdqpmAqY5mi6VpvXjA5nVref5MZ8KgZGMVB1cqQuzqiWui4d1j1gZXj2rdvXxhFBZ9CoRCeZ4xh3759GB4eRjabxSOPPIJTp05V0SiVSnjmmWcwMDCAXC6HJ554ApcvX45nNh5K2NwvcCmRUA29aeu4rI/qXBTnYXJajd6tGOW3bDZypW7VN41JQb030NRbxz3qB+uM695778W1a9fCz4kTJ8Jz3/72t/HCCy/ge9/7Ho4cOYJCoYDPfe5zmJ2dDdvs2bMHr776Kg4ePIi33noLt27dwu7du1GpVOKZkYcSvNOw+Y0SBdTshXc4rhlPLQ1IMzgtHi7ZhC7jiev+X9A37qxFNoYr6qXjPstqAJgF9u7dy+6//37puZWVFVYoFNiBAwfCY4uLiyyfz7Pvf//7jDHGpqenWSqVYgcPHgzbXLlyhXV0dLBf/OIXZD6KxSID4D8RPolE4o6P6nhcHx394FyjeHOdA//dhXfTvKPKtZ7yi3MOUedULz1q9Dpuh0+xWLRxQ4wxxqwzrrNnz2J4eBhbt27Fl770JZw7dw4AcP78eYyNjeGxxx4L22YyGTz88MN4++23AQBHjx7F0tJSVZvh4WGMjIyEbWQolUqYmZmp+nhEA3OMvsU+Nu1U9BkzvxiRwptp/DiQEMpGiYT51So63k3ztuEpahsgmtzEMWxoiX1d5RHlWog0TG1qpWMeZlg5rgcffBA//vGP8W//9m948cUXMTY2hp07d2JiYgJjY2MAgKGhoao+Q0ND4bmxsTGk02n09fUp28iwf/9+5PP58LN582Ybtj00UC1A1aKkGhQbwxOHMQnOi4YrbuNCod/KBk0XXOi+29CKi74LXco5Hd/eYTUHrBzX5z//efzhH/4htm/fjkcffRQ///nPAQAvvfRS2EYWdZkU2NTm+eefR7FYDD+XLl2yYduDAH4xyq5HvRerbTaoylyiGE/dOPx3lzGjZK5xoV4ZkatcbfuY6ETVce+wmgeRtsPncjls374dZ8+eDXcXipnT+Ph4mIUVCgWUy2VMTU0p28iQyWSwZs2aqo9H/LDNvlTnRQPhApdSkUt0HXVMHXRjumauYmZpGjMOHlyvoaps1ygHwPNB5SlYE95pNRciOa5SqYTTp09jw4YN2Lp1KwqFAg4dOhSeL5fLOHz4MHbu3AkA2LFjB1KpVFWba9eu4eTJk2Ebj+YAv1BlWQUP2X0f8Vw9QOExQFQnR2kbl8EWr4WMdtAurntFMhpxGW8KPZ2DroUTkem4d1ZNDJudHM899xx788032blz59g777zDdu/ezXp7e9mFCxcYY4wdOHCA5fN59sorr7ATJ06wJ598km3YsIHNzMyENL7yla+wTZs2sddff50dO3aMffazn2X3338/W15eJvPhdxXW/1OrXVlx7/CK+7zLfJtZRvWUa3A8Lrm68Gs7TqPX2Wr8uOwqTMICly9fxpNPPombN29icHAQn/rUp/DOO+/gwx/+MADg61//OhYWFvDVr34VU1NTePDBB/Haa6+ht7c3pPGd73wHyWQSX/ziF7GwsIBdu3bhRz/6ETo7O21Y8agz2P9F8wnCUxii0I8CU3+X84mE/RuZXeYhjuEij7iuhQgVPZVOiP1UcnWBTi4yfmzGYT7DahkkWAterZmZGeTz+UazsWoRp2GMw2HVA1H5pDqVKOPwfV0dn62h17Vvpmurk38LmsC2QrFYtN63YJVxNQu8ojUWccu/Va5nHHxSaEQZh+/rQse2j6l9s13bZuPHw+2atORDdvlHSHl4eHh4tC5c7HlLlgpXVlZw5swZfOxjH8OlS5f89ngJZmZmsHnzZi8fBbx89PDy0cPLxwyTjBhjmJ2dxfDwMDo67HKoliwVdnR0YOPGjQDgf9dlgJePHl4+enj56OHlY4ZORq57FVqyVOjh4eHhsXrhHZeHh4eHR0uhZR1XJpPB3r17kclkGs1KU8LLRw8vHz28fPTw8jGjljJqyc0ZHh4eHh6rFy2bcXl4eHh4rE54x+Xh4eHh0VLwjsvDw8PDo6XgHZeHh4eHR0uhJR3X3//932Pr1q3o6urCjh078O///u+NZqku+NWvfoXf//3fx/DwMBKJBP75n/+56jxjDPv27cPw8DCy2SweeeQRnDp1qqpNqVTCM888g4GBAeRyOTzxxBO4fPlyHWdRO+zfvx+f+MQn0Nvbi/Xr1+MP/uAPcObMmao2q1lG//AP/4D77rsv/EHoQw89hH/9138Nz69m2ciwf/9+JBIJ7NmzJzy2mmW0b9++8On7wSd4gTBQZ9lYvwilwTh48CBLpVLsxRdfZO+//z579tlnWS6XY6Ojo41mreb4l3/5F/bNb36TvfzyywwAe/XVV6vOHzhwgPX29rKXX36ZnThxgv3RH/2R9H1oGzduZIcOHWLHjh1jv/u7v2v9PrRmxe/93u+xH/7wh+zkyZPs+PHj7PHHH2cf+tCH2K1bt8I2q1lGP/vZz9jPf/5zdubMGXbmzBn2jW98g6VSKXby5EnG2OqWjYh3332Xbdmyhd13333s2WefDY+vZhnt3buX3XvvvezatWvhZ3x8PDxfT9m0nOP65Cc/yb7yla9UHfvoRz/K/vIv/7JBHDUGouNaWVlhhUKBHThwIDy2uLjI8vk8+/73v88YY2x6epqlUil28ODBsM2VK1dYR0cH+8UvflE33uuF8fFxBoAdPnyYMeZlJENfXx/7p3/6Jy8bDrOzs+yee+5hhw4dYg8//HDouFa7jPbu3cvuv/9+6bl6y6alSoXlchlHjx7FY489VnX8sccew9tvv90grpoD58+fx9jYWJVsMpkMHn744VA2R48exdLSUlWb4eFhjIyMtKX8isUiAKC/vx+AlxGPSqWCgwcPYm5uDg899JCXDYevfe1rePzxx/Hoo49WHfcyAs6ePYvh4WFs3boVX/rSl3Du3DkA9ZdNSz1k9+bNm6hUKhgaGqo6PjQ0hLGxsQZx1RwI5i+TzejoaNgmnU6jr6/vjjbtJj/GGP78z/8cn/70pzEyMgLAywgATpw4gYceegiLi4vo6enBq6++io997GOh4VjNsgGAgwcP4tixYzhy5Mgd51a7/jz44IP48Y9/jN/6rd/C9evX8Vd/9VfYuXMnTp06VXfZtJTjCiB7fXyzvGm10XCRTTvK7+mnn8avf/1rvPXWW3ecW80y+shHPoLjx49jenoaL7/8Mr785S/j8OHD4fnVLJtLly7h2WefxWuvvYauri5lu9Uqo89//vPh/9u3b8dDDz2Ebdu24aWXXsKnPvUpAPWTTUuVCgcGBtDZ2XmHdx4fH7/D0682BLt7dLIpFAool8uYmppStmkHPPPMM/jZz36GN954A5s2bQqPexkB6XQad999Nx544AHs378f999/P/72b//Wywa3S1nj4+PYsWMHkskkkskkDh8+jO9+97tIJpPhHFezjHjkcjls374dZ8+erbv+tJTjSqfT2LFjBw4dOlR1/NChQ9i5c2eDuGoObN26FYVCoUo25XIZhw8fDmWzY8cOpFKpqjbXrl3DyZMn20J+jDE8/fTTeOWVV/DLX/4SW7durTrvZXQnGGMolUpeNgB27dqFEydO4Pjx4+HngQcewFNPPYXjx4/jrrvuWvUy4lEqlXD69Gls2LCh/vpjtZWjCRBsh//BD37A3n//fbZnzx6Wy+XYhQsXGs1azTE7O8vee+899t577zEA7IUXXmDvvfde+FOAAwcOsHw+z1555RV24sQJ9uSTT0q3o27atIm9/vrr7NixY+yzn/1sW2zVZYyxP/uzP2P5fJ69+eabVVt25+fnwzarWUbPP/88+9WvfsXOnz/Pfv3rX7NvfOMbrKOjg7322muMsdUtGxX4XYWMrW4ZPffcc+zNN99k586dY++88w7bvXs36+3tDW1vPWXTco6LMcb+7u/+jn34wx9m6XSa/fZv/3a43bnd8cYbbzAAd3y+/OUvM8Zub0ndu3cvKxQKLJPJsM985jPsxIkTVTQWFhbY008/zfr7+1k2m2W7d+9mFy9ebMBs4odMNgDYD3/4w7DNapbRn/zJn4TrZnBwkO3atSt0WoytbtmoIDqu1Syj4HdZqVSKDQ8Psy984Qvs1KlT4fl6ysa/1sTDw8PDo6XQUve4PDw8PDw8vOPy8PDw8GgpeMfl4eHh4dFS8I7Lw8PDw6Ol4B2Xh4eHh0dLwTsuDw8PD4+WgndcHh4eHh4tBe+4PDw8PDxaCt5xeXh4eHi0FLzj8vDw8PBoKXjH5eHh4eHRUvCOy8PDw8OjpfC/rfkOi9V+1tMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -314,7 +316,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzNUlEQVR4nOy9eYxr53ke/hzycN/J4ZAzd5a7L5KuFsuyKsWx3diWEdQ1gv5hAw6CFDWKtE6MCrbh1M0/TtFKcILGbWH8AqQI6iBB6hZI3TiAm1jNchVbXq6uJEu668ydfeFwuO87f39M3lcfzxxySA5nhhx+DzCYGfIs33eW9/neXWk2m01ISEhISEiMCAwnPQAJCQkJCYleIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkcKLE9f/9f/8fzp07B6vViqeffhp///d/f5LDkZCQkJAYAZwYcf3P//k/8eKLL+K3fuu38Oabb+Lnf/7n8Yu/+ItYW1s7qSFJSEhISIwAlJMqsvvss8/ife97H37/93+fP7t27Rp+6Zd+CS+//PJJDElCQkJCYgSgnsRJK5UKbt26hX/7b/9ty+cvvPACXnvttX3bl8tllMtl/r/RaCCRSCAQCEBRlCMfr4SEhITEYNFsNpHNZjE9PQ2DoTfj34kQVywWQ71eRygUavk8FAohEons2/7ll1/Gb//2bx/X8CQkJCQkjgnr6+uYmZnpaZ8TDc7QakvNZlNXg/rqV7+KdDrNP9IPJiEhIXE64HK5et7nRDSuiYkJGI3GfdpVNBrdp4UBgMVigcViOa7hSfwDpBlWYpwhe+weD/qRMyeicZnNZjz99NN45ZVXWj5/5ZVX8Pzzz5/EkCQ0kKQlMe6Q78Dw4kQ0LgD44he/iF/5lV/B+9//fjz33HP4gz/4A6ytreFf/at/dVJDkoB8WSUkRND7ILWv4cKJEddnPvMZxONx/Pt//++xvb2Nxx57DN/73vcwPz9/UkMaa0jCkpBoD0lgw4UTy+M6DDKZDDwez0kP41RAEpaERO8YQbE5tEin03C73T3tI2sVjjEkaUlI9Af57pwsTsxUKHFykC+dhMThIc2HJwdJXGMESVgSEoOHJLDjhzQVjgkkaUlIHC3kO3Z8kBrXKYd8mSQkjg9S+zoeSOI6pZCEJSFxcpAEdrSQpsJTCElaEhLDAfkuHg0kcZ0yyBdFQmK4IN/JwUOaCk8J5MshITG8kKbDwUJqXKcAkrQkJEYD8l0dDKTGNcKQL4GExOhBal+Hh9S4RhSStCQkRhvyHe4fUuMaMciHXULi9EBqX/1BalwjBElaEhKnE/Ld7g2SuEYE8sGWkDjdkO9495DENQKQD7SExHhAvuvdQRLXkEM+yBIS4wX5zh8MGZwxpJAPr4TE+EIGbXSG1LiGEJK0JCQkACkL2kES15BBPqgSEhIipEzYD2kqHBLIh1NCQqIdpOmwFVLjGgJI0pKQkOgGUlbsQRLXCUM+iBISEr1AygxJXCcK+QBKSEj0g3GXHZK4Tgjj/uBJSEgcDuMsQ2RwxjFjnB82CQmJwWJcgzakxnWMkKQlISFxFBg32SKJ65gwbg+WhITE8WKcZIwkrmPAOD1QEhISJ4dxkTWSuI4Y4/IgSUhIDAfGQeZI4jpCjMMDJCEhMXw47bJHEtcR4bQ/OBISEsON0yyDJHEdAU7zAyMhITE6OK2ySBLXgHFaHxQJCYnRxGmUSZK4BojT+IBISEiMPk6bbJLENSCctgdDQkLidOE0yShJXAPAaXogJCQkTi9Oi6ySxHVInJYHQUJCYjxwGmSWJK5D4DQ8ABISEuOHUZddkrgkJCQkJEYKkrj6xKivWCQkJMYboyzDJHH1gVG+4RISEhKEUZVlkrh6xKjeaAkJCQk9jKJMk8TVA0bxBktISEgchFGTbZK4usSo3VgJCQmJXjBKMk4Sl4SEhITESEESVxcYpZWIhISERL8YFVkniesAjMqNlJCQkBgERkHmSeLqgFG4gRISEhKDxrDLPklcEhISEhIjBUlcbTDsKw4JCQmJo8Qwy0BJXDoY5hsmISEhcVwYVlkoiUuDYb1REhISEieBYZSJkrgEDOMNkpCQkDhpDJtslMT1Dxi2GyMhISExTBgmGSmJS0JCQkJipKCe9ACGAcO0kpDYj6O+P81m80iPLyFxWqAoylC8L2NPXJK0jhd61/uk70E352/3sg7DSywhcZwYBvIae+KSODoMI0n1i3bjbvcSn/SLLSFxmjHWxDWqQnSYYTCMn9u0G4JuNpuSzCRODU5a6xpb4pKkdTiI109ey4OhKIoumXX6X0JimHGS5NXz8vjVV1/FP/2n/xTT09NQFAX/5//8n5bvm80mvva1r2F6eho2mw0f+chHcPv27ZZtyuUyvvCFL2BiYgIOhwOf+tSnsLGxcaiJSBw9SPhqfyT6Q7vrKa+rhERn9Exc+XweTzzxBL75zW/qfv87v/M7+L3f+z1885vfxM2bNxEOh/Hxj38c2WyWt3nxxRfxne98B9/+9rfxgx/8ALlcDp/85CdRr9f7n0kPkEKhO5AANRgMMBgMUqgeMbTERdddXnuJYcVJPY9K8xC6nqIo+M53voNf+qVfArCnbU1PT+PFF1/Eb/7mbwLY065CoRC+/vWv49d+7deQTqcRDAbxx3/8x/jMZz4DANja2sLs7Cy+973v4ROf+MSB581kMvB4PH2PWaIzpIAcbkgTo8Sw4TDPYDqdhtvt7mmfgXrSl5eXEYlE8MILL/BnFosFH/7wh/Haa68BAG7duoVqtdqyzfT0NB577DHeRotyuYxMJtPy0w+kMG4PcZUvr9NwQ08zk4sNiZPEcT97AyWuSCQCAAiFQi2fh0Ih/i4SicBsNsPn87XdRouXX34ZHo+Hf2ZnZwc57LGFFHynB9K8KDFOOJLYZb3oqYNenk7bfPWrX0U6neaf9fX1Q49pnCGDAMYD7bQyec8ljgLH+VwNlLjC4TAA7NOcotEoa2HhcBiVSgXJZLLtNlpYLBa43e6WH4neIbWr8YZe4Id8DiRGEQMlrnPnziEcDuOVV17hzyqVCm7cuIHnn38eAPD000/DZDK1bLO9vY13332Xtxk0xvnllL4riU6QUaMSg8RxPTs9JyDncjksLi7y/8vLy3jrrbfg9/sxNzeHF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+HR/72McGN7N/wLi+hFIASfSKds+LjFqU6AXHkZjcM3G9/vrr+Mf/+B/z/1/84hcBAL/6q7+Kb33rW/jKV76CYrGIz3/+80gmk3j22Wfx/e9/Hy6Xi/f5xje+AVVV8elPfxrFYhEf/ehH8a1vfQtGo3EAUxpvSMKSGAT0KqOIwkiSmcRJ4lB5XCeFbvO4xkmAS8KSOE5IEpM4CN0+F/3kcY1trcLTBElaEscNPY2s0Wic1HAkxgynlrhOuyCn+Z32eUqMDqgzgNTGJICj9XWdSuI67cJcalgSwwwZ5CFBOCryOpXEdZoxjv2uJEYXWpOi7EsmMQicOuI6rZqI1LKOFwdd627uRTcCetyEuPgcS5PieOAotK5TR1ynEZK0jhZ613YQ17ufY4yTANe7PuM0f4n+caqI67QJd0lYR4Nhuq7acYj/j5NZTRtsRPMel/mfdgxa6zpVxHVaICMGBwe9sO1RwTib1fQKdUtIEE4NcY2aUOqE0zSXk8Aok1U7jGuknriIGycN9DRikFrXqSCu0yScTstcjhPjpqHqReoRTrNg19NAT/N8TyMGRV6ngrhOAyRp9Y5hJ6xux3XYF3kczWrjOGeJ9zDyxDWsQqsXSNLqHsN8rXoJoRcFbbvP+x2DqJWcdoGuNSUCksSGHYPQukaeuEYdwyyIhwWjrlmJ49er66dHYoMQvnS+cRHoUgsbH8gyDCcISVqdITY2HMbrdNC4xAaeBoMBRqMR58+fh9FobGncqFcNZZBzHvbrOGiI13Uc5juOkMR1ApAvVWeI12cYr1E34xK3ob/NZjNsNhscDgfMZnMLYbV7Ho6CwMbp2aP5jtOcRwGHvRfSVHjMGFZhfNIY9uvSy9j05qIoCi5duoRgMIhGowG/34/XX38d5XKZTVqdbP+DNCGKxxvkMYcd4zjn0wpJXMeIYRfOJ4FRuCaHIS3RTLi6uopMJoMzZ85gcXERzWYTBoMBzWaTfV4Gg6FjX6tB5sKMo09I5oWdDkhT4TFhFAT0cWGUzDeHJS2j0QiLxYLp6Wkmqnw+j3w+33L8XpKmB/0sjaMJERh+k7REe0jiOgbIF2MPoxQg0Os49UiLfiYnJ6GqKiwWC8xmM4rFIhwOB37hF34BqqruE54neY1G6R4NCuMWvHIaIE2FRwz5MozWNehnnO1IC9gzv0WjUdhsNthsNkxOTiKdTmNychIPHz7EI488gp2dHUSjUTQaDTYbduPTGrTfS3vcozj2MGMcTaejCqlxHSFGSWAPGqNofho0adHfNpsNExMTUFUV6XQas7OzcDgcmJycRDweR7VahclkgsvlwszMDMxmc0/jOarrO2r3b1CQGtjwQxLXEWFcH/pRfOn7HetBpEWw2Wy4dOkSVFXFtWvXEI/HkUqlUKvVcO7cOTQaDTzyyCO4evUq6vU6mw+1xzloLEeFUbqXg4S4+JIYLsg7IjEQjCJhAf0LfC1JiZqJVuOKx+N47bXXUCqVcPPmTcTjcQSDQUQiEWxtbcFqtaJQKODixYuo1WqoVCot+w8LeY1zIMM4ap7DDOnjOgKM08utp2GMCgZFWu2CMsRzTE5OwmKxYHd3FwaDAXfu3IHRaEQ8Hufow5/+9KdMWnrjHAafy7j6v4DxnvuwQRLXgDEupDXK8zzMuEWzkVbLVBQFHo8H9Xod5XIZ9XqdP9/e3obRaITRaITdbkc4HEaj0YDRaEQkEkG1WsUzzzyDdDrdccwHCUxFGWyn2U7nURSlY87ZaYS4IJF5YCcHSVwDxCgL824wytoVcLhx62lWBoMBZrOZBZjBYMDMzAwqlQp2dnZQLBZZsNXrdQDgZOR0Oo1IJIJKpcLfbW9vI5fL7RuvWFlD/L/TWI9LoFIC9TgKcKmBnRwkcQ0Ip5m0Rp2wgMGYBbWfWywWTE5OIpPJIBgMolwuI5FIoFgsolarcRUM8RgGgwGlUgnpdBrVahX1ep1D4BcWFvaRgJaEhpG8hsmUedyQ5HUykMEZA8BpJa3T4JA/TMSgnkNe/LxWqyGVSsFms8Hv98Pr9cJsNuORRx6ByWRi7YpyuGw2G65fv456vY5ardax3YhWu9Ob0zDdk3ENnSechndllCA1rkPitD2o46xd0b7t9tczF6qqCpfLBZPJhHK5jKmpKQSDQaiqimq1CoPBAI/Hg2AwiFQqBZ/PB4fD0RI5CLxnStSer9ls6mpP3az0j1PrEs9JGEcNZJy1z+OEJK5DYpQFvIjTQFjAYJKIuz12o9Fgs+DOzg4sFgu2traQyWTYVEircFVV4XA48Oabb6JUKsFoNMLtdmN6ehqrq6tIJBL7HP/ac3fSzCR5DRfG2fd3HJDEdQicFiF/WubR7z4H7d+J2Ii0XC4XFEVBOp2Goijw+/1IJpNQFAWlUgnRaBR2ux21Wo2jCX0+HwwGA1RVhdFobBF0VP6pG+IZRvKi8wLjS16SwI8Okrj6xCibCEedsI7KFNgPms0mqtUqMpkM8vk8DAYDrFYrh7vncjk0Gg3U63WUSiU0m02EQiHU63UUi0UkEglUKhWoqgqr1QpVVRGPx9sKuuPq1zUoDOu4jguSvI4GMjhjjDDqDuRexy0GMfTbRkXvnNooQTouhcRns1lUq1UYjUaoqgq/34/z58/j2Wefhd/vh8lkwtTUFI+LWp/Mzs4iGAzCZrPBaDTysenvg+bfKUDiJO/3uAduAPIaDBpS4+oDoyT4R027GsQ4BzXnTqHwJIjsdjtUVeVgC6PRiImJCVQqFfh8PpTLZXg8HszPz+ONN97g7XZ2dlCr1eB2u6GqKvL5PHZ3d1GtVmE2m1Eul6EoCux2O+r1OoxGI1KpFI/hoKrx7fxhJ7nqH3ftC5DXYFCQxNUHhp0EevHfnCQGObZBE3Qn0qLfBoMBJpMJRqMRjUaD/VLVahWKonDfrXg8jlgshieeeALb29soFotcJT6ZTKJUKkFRFJTLZVSrVdRqNaiqCrvdDrfbjXK5jGQy2dIdmUionQBs10l5WMgLGF/hTc/WuFUdGSQkcfWIYa0UPYya1VGP5SgIuptwePJHeTwe+Hw+FItF+P1+PHz4EAAQjUahqircbjdmZ2exs7ODSCTCGpOqqlwaymKxoFKpoNlsIhwOI5lMIpvNwmAw4PLly3C73dje3uZAD3HFTv+3ywdrF9kmyWs4ICMP+4ckrh4wTKRAOErCGsb5Eg7SiIDehOJB11FLkkajEaFQCEajkcPbrVYrAMDtdiOTycBsNsPv9yOTyUBVVdhsNng8HlSrVeRyOdjtdmxtbcHpdKJQKMDj8XBlDQBIJBKoVqvI5/Ow2+2YmZnBw4cPUavV9hGYiG7mfdLkRWMgnPRYTgrSdNgflOYIXrFMJgOPxwPgeIXrMGlbR2EaG2a0066Ow98oXmvRROh2uznEvVQqwWw2Y35+HnNzc/jJT37CtQypNBQATE9Pw+FwYHl5Gel0Gvl8Hs1mE/l8HlarFc1mEzabDdvb2wAAs9mMUqmEmZkZLC8vI5lMsompU+UNcSXfaVU/LK//uGsene7laQXNNZ1Ow+1297Sv1Li6xLAI9kEK6mGZ00HoFNnncDhQLpfZvwQc/uXv5rrUajUuiFur1VCv11Gv17Gzs4PLly/D6XQCAHw+HwqFAq5cuYKtrS2USiU4HA4+D2ls9XodqVQKiqIgn8+jWCyi0Wggm82i2WxifX2dq82LNRAPgqiRDbNQHIUxHiWk9tkbJHF1iZMW8oPQsE56Dr2im6g+h8PB5ZXI/FUsFg88Zq8rfL2xVKtVpNNpbleiKAoqlQru3bsHAC35WTs7O2g0GojH48hkMigUCmwS9Pv9cDgc2NnZYRKjwrv0O51Oc1komjuNX1VVjmykedFYKWikHTEMg8mQMO7kBchr0C0kcXWBkxL4g9CuRpGsxN9632sj+y5fvozd3V0mA20VCgLlRXm9XmQyGVSr1a4I7KCADafTiXK5DAAolUpYXV2F0WiEyWRCPB5HrVZDNpuF3W5nojCZTGg2myiVSmg0GjAYDKjX6zCbzTCbzchkMkw6ojZJhEU1ENPpNCwWC8LhMBKJBDKZDPvbAoEA4vE4EolEX+HzJwEpuOU16AbD47QZUpxEzhad87DaVTvz2iCOfxQ4aFxa0gKAXC6HnZ0d9j+KNQKpaSMl8FK9QNJQxOThbs6phd1ux8///M8jGAzyOQC0aEpEQJcvX4bf70etVkOxWES1WkWlUmGtrFarwWQywWq1IhgMIhQK8dhpHDRW8rGFQiG4XC4YjUbu/WWz2TAxMYHLly8zGXZzz4fpWRDnOq4Y1nd0WCA1rgNwnA/OUZgDD3r49VZ3x7nS6+Xl1AvQoNYiVqsVjUYDVqsV9Xqd24pcvHgRi4uLyGQycLlcuHjxIhqNBra3t5FKpdg/RZF6er2v2o2lUqlgc3MTlUoF4XAYDocD6+vrAICpqSkUi0UYDAbMz89jcXERVqsVhUKB/WHVahWNRgOxWAwAMDExwbUM/X4/dnd3Wbsi85/D4YDFYkE2m8Xu7i63UVlaWoLFYoHJZIKiKEgkEtjd3UU+n9e9hsOYoKzFuGse0u/VHpK4OuC4SesoCEuMhOy2/5N2+6NAr/PViyS0Wq1sFnS73ajX69wyxGw2I5VKYX19nbWaZrOJnZ0deL1eOJ1O1Go1eL1e7O7uIpVKdTVf0gSMRiPMZjPXJpycnES5XIbb7WY/lcPhgMPhQDQaRaFQQCqV4v5cFBWbTqeRSqXQaDQQiUQQDoeRz+eRzWZbfFp07nA4DJfLheXlZaiqCovFgnQ6DVVVuR9YoVBgk6G4GBqVMHkR/fokTxPGncD1IInrhHGUWhYJ1Q9+8IN49dVXW5oXin6Tg8Y0qAz/fslZbz+j0QiHwwGDwYBqtYpwOIx4PI5Go4GJiQmUSiXYbDbkcjnYbDaUy2UYDAY21ZVKJXi9Xr4m3axuaRFgNptx7do1xGIxTE1Nwe124+HDh0ilUqhUKkxCTqcTLpeLq2GQL4vO4fF4OHqQfiKRCDweD6anp5FIJFoWHoqisKZIY7darS2hxJubm8jlcqjVam3ncpAgHEZBOYxjOk6M+/y1kMTVBkdtXz6qwAvtcRVFwZ07d3D16lVEIhE0m01YrVZsbm625AN1eiFEYSviIIf/QWPtBnrzURQFZrMZjz76KDY2NmAymRCNRnHu3DkUCgXMzc3h/v377M+y2WyIxWLs55qcnMTt27eRyWRgs9ngdrtRKBQ4MvEgE2G9XsfCwgJsNhvW19cRCASgqnuvEhEUABSLRezs7KBYLHLwhtvths1mQzqdxs7ODur1OhqNBvvmLBYLB41MTEwgl8shk8mg2Wxy6H+pVMKHP/xhPHjwgI+pqirW1tb43GSGPAw5Dav2Na6lkiR5vQdJXMeMo9CwxM+1xzeZTADAJYgymQzXxiPBpCes9cyK/Zr2+kU7ElEUBdVqFe+88w6AvVwpk8nEScCUrFupVFCv15HL5WCxWNgkR5oZzY1ajxwkqMVrVqlUMD09jUwmg2AwiEgkwjULycRXLpfZf0XzSKVScDgcnHTcbDZ5+0ajAZPJhFqthocPH7LW7HQ60Wg0MDs7y/lcN27cgMPhgNPpRKVS4Xtqs9lgMpk4JaCbxcUokRcwnGM6Lkjy2oMkrjY4Cm3rqLSsTigUCjAajUgmk7BarahUKmw26xSQoSXAdjXvjgp610r8v16vI5vN4syZM8jn8zCbzUin0zCbzXj11VdRLpfh8/mwtbWFfD7PQRhieLkYji6eo515TWtOJI3p/v37XPVdhNgMkiIYgT2/VqFQ4OPQtsBe1XhxQSH6tSYmJrC7u8tFeL1eL1wuF1KpFNxuN5tB9QJNDoNhI4pxF97jPn9AEpcuRpG09ExqJCjL5TKHYJNANBqNcLlcyGazmJ+fRzQa5UoQBFrtU6CAKMCOO3BDT1NVVRU/93M/h7W1NaytraFcLqNQKHDtv2q1imq1CovF0qLZEGlpybhXbZiiBnO5XEtYvVabFaGqKlwuFxOXdmGgvb7k18rlctjd3UUgEIDVasXu7i42NzeZEOPxOIrFIlwuF1wuFx48eMB+LnF+7RYf3eSydbPdcWHcgzaG7X4cN2Qelw4GTVzHoWnp+YGMRiPnGBWLRbjdbjgcDs4Rmpyc5N9nz56F2+1mQTg9Pc1tNZ577jldwXwcBN/pPM1mE3/913+N27dvI5fLsebl9/uhqipyuRymp6dhs9nw1FNPwePxwG63t+yvPXevEImmHRECYP+Vw+FAtVplf5vP54PZbNY9FmmH1WoVqVSKq8ZPT09z0AdFTJLGlc1msbW1xf28uplfrybgo9S0e8Wwjec4Mc5zlxqXBoN+EA5bmLeb8eidw2QywWazMYF5vV7Mz8+jWCxyZfNsNgubzcY19Gq1Gpcvqtfr8Pv9KJfLePvtt/et1kXtZFDOcu089ASveN5arYZkMglVVREKhaAoCgqFAh48eMA+q2q1CqfTyS1ECoXCocbciUTF76mrsWhCdLlcmJycRLFYRC6Xg9lsxjPPPIO3336b87+0NRdFra1SqSCZTCKdTiOXy6FarUJVVZjNZqytraFYLHKOmHbM3WhUvZbAEud9khhn7WuY7sNxQmpcR4jj8GfpCXcKg/d4PHC73QiHw1zBnAjMZDLB7/dzEVix8oLX60UgEMD09DQHBlBOkN6YuqlA0Wn8olmz07z0/iZhNTc3B5vNxvOkwAwKxEgmkyzYO13Dg8yx4pjF84vjUZS9RGG/3w+j0chVOkqlErLZLAqFAhwOB+x2O+7cuYN8Pg+v17uPsMRjkvZVqVSQy+U4jL5arXJ1DoqY1BJ8N+h39T5MK/5x1UDGcd5S4xIwqAegV6FxmPO0E/D5fJ4rjvv9fly7dg2VSoXNg9VqFclkEuVyGQ6HA16vF9FolAmEBK2iKHC5XKhUKkin012FWGvRznymt32777XCWFxlq6qKxcVFHjMl/6qqikAggFwu1+KrO6hqRC9mWb3vVFXF/Pw8MpkMd0im6hyFQgFTU1Mcrl6tVmE2mzE5OYlYLNbWh0jkFY/HWyJBadzU94vy25xOJzY2NnSJutPY+1m5D9OqX7uoGRcM0z04DkjiGjCOw5/V7X7VahVGoxG5XA737t1jx77X60WpVEIqleLqDwC4Wy/VzqPK5tS512Kx8PE6mdq69a1ot2lnGtRGQIrHVBSFTWii1kfjI83z3r17HFUo7i+SlSi4u4ksbPcZhbP7/X5MTU0hEAhgfX0dJpMJU1NT2N7exmOPPcYRgMVikSthlMvlfWMQx0gRg6Ifk+oWAoDT6YTNZkMkEoHVamUTcLfol7xoX3G8JwVJXqd/zpK4BAyCcI6LtLoJYqAW8bVaraVFfCKRQDweh8Fg4EoPpJ2Qoz8UCqFcLuPhw4dwu90IBAJIJpNIJBJ8vkG8IKIQbmf2FJNy9fYH0EJIBoMBhUIB5XIZ8Xgcfr9/H9Fqz9WNtnXQd+L3BoOBg2FisRhXs6BgivX1dQ7Fz+Vy+3w0ev4avfmLJkQAXPIK2POpUeJztxiE8BsW4hgnQU4YlzlL4hoiDIK0tMKThCWwpwlsb2/DZDK1tIovFArsB6KyQ5VKBYlEggvW7u7uwul0IpPJDEQwieOlSDlK3k0kElzBvdls4vr160gmk7BYLFhcXGzRIPTGQmY1g8GAK1euYHl5ue1YxXGI5KWqKpsV2zn9Oy1Uzpw5A4/HA4/Hg52dHW52mclkYLVaYbFYkEwm4fF4oCgKstksqtUqj7Pb60r7VioV+P1+DvIgTaufIJRBCr+TFqQnff6TwDjMWRLXP+Cw0X/HET1I22lJqp1prlwuo1arYXJykn0qhEqlAofDwblA1WqVBTURHB0rn88jGAxia2tLV3PpJxpNO5dMJoO5uTlsb2/DZrNhamoKLpcLS0tL2NnZQaVSQSwWg8lkautn0/OP/ehHP2JC1I5V738yv50/fx6JRALpdJpLQXWak2jWpJJauVwOs7OzqFQqfP2pezH55K5du8aFeUulkm4uVztQKxUq+BuNRtn0S9rcYaInByn4TlILGxYN8Dgx6Ps3bJDENQAcdRCGeB5tgILe93ovqtfrRS6XQzweh9lsRqVSQTQa5R5RsViMfUDaiDa3280BHeK5ug1m6GZeFC335JNPcrmjbDbbUkeQql+080+JY1EUBdPT01wnkNp76O0LgPOqqNp8rVaD2WyGz+drCZrQGzstWhRlr2L9uXPnOPBlcXERhUKBi/kWCgUu9WQ0GvGTn/wEJpOJfVu9EJff74fT6UQqlYLL5YLZbMbGxgZrWocVXEcl/E6CSCR5nS5I4sLhBO9JaVpak6D2WFpBbjKZWPhT/g/Vxnv22Wdx48YNxOPxFvMYIRqNIhKJ7ItQo6CJfiPRaGxGoxFOpxOlUgnxeBzPPPMMUqkU6vU6lpaWWgSxHlmJ/xOR2O12nDt3Dnfv3mVTqd71Ef8/f/48DAYDtre3WQMqFAqsJWlB5wHA/sN6vY6trS2Ew2FMTk5ia2sLu7u7+8YPgO8F0Jp0fBDoGNSHjMhcW85K71i9CLPjMDkdN6GMgxmNcJrnKonrEDiOQAw9TUIkKvLHUC6VaJIixONxpNNpPsbc3By39gCA1dVVeL1eZLPZlpU/gJ40gF7mrSXher3O0YzBYJDDxiORCFRV5aRdPcKhaEeqFqEoCiYmJlCpVPD444/jpz/9qW4YPP1P2tbu7i7sdjucTifm5+exs7ODZDLJhE/Xi8LRqV6gqqpIpVJsnqP8sWw2i52dnRYy0Wqz4t/dBGOI35XLZWxubrakPXTyyfWD4xR+7QJmjuI82mCY04rTSl6SuPpEJ8d8t/sfBL2kXPJniJpHMBiEy+XC1NQU3njjDeTz+X0rWVqVGwwGpFIpTExMwGazYXNzE++++y6TRjtzVSdTWafv9bbXklaj0eCkXJvNhh//+McwmUxYX1+H2WzG3Nwc1tbW9s2LrhHV/6N8LTIpUjfgmZkZZDIZxGKxllJIosb3wgsv4M6dOyiXy5iZmYHNZsP09DTnXj3++ON4/fXXmTzPnTuHRCLB1UYsFguAvaLGuVwO2WwWRqOxbXsRrdAUtaODriV9T1Uy6Fhakmx3/bs5h3afkxB8Ry10T6tQHwf0ZOd6+eWX8cwzz3Dpml/6pV/C/fv3W7ZpNpv42te+xjXiPvKRj+D27dst25TLZXzhC1/AxMQEHA4HPvWpT2FjY+Pws+kDhyWgfs/Z6TtRqxI/J0c8VQWfmppCMBiEqqrIZDJ48803OXdLz99FyOfzqFarKBaLyGazyOfzSKVSXD3joLF341s7aF89U1+1WsXu7i4ymQw2NzcRi8WQyWSwvb3dEoZP2iWRFvXUun79Oi5cuMBmx8XFRezs7HArEdJEtdqroii4ceMGyuUyrFYrgL2cNo/Hg3PnzsHlcuGNN95gE6vFYkEul+Oox1wuh2vXriEUCrFZkULUtSWcRHMeod3fehAXFtpjif3VBo3jfke05z6q91TvXTttOAkZd9To6Y7duHEDv/7rv44f//jHeOWVV1Cr1fDCCy+w4xsAfud3fge/93u/h29+85u4efMmwuEwPv7xjyObzfI2L774Ir7zne/g29/+Nn7wgx8gl8vhk5/8ZE9Z/ieJwzwI7fYTX852xADsaRjUc+rChQvci4qSWfWOpael5PN5JJNJXrFrBWw/82o3drEklHY+9JtCxWu1Gnw+H4fx+/1+DjzQnoeOa7FY4Pf7udGiqqrcn2tjY4P7cYn7a4sGU5AK+Z0ikQhSqRRSqRSTo6IocLvduHLlCnw+H8LhMHw+HxRFwdbWFpaWltjXpae56l3Xbk2x2nukRS+k1c+zOyzCr9NzPYjjnlactvkpzUMsz3Z3dzE5OYkbN27gQx/6EJrNJqanp/Hiiy/iN3/zNwHsaVehUAhf//rX8Wu/9mtIp9MIBoP44z/+Y3zmM58BAGxtbWF2dhbf+9738IlPfOLA82YyGXg8nr0JDMDP1Osx+l2h6Ql1vc+124jbmUwmeL1ejl6bmJjA8vIyMpkM4vF4i7OfxtpsNllQUykkKo0khslrf4vH0RO8vYZatyNR+o40KI/Hw20/zGYzXC4XarUadwIWzaQOhwMTExNcbJZ6j1FzRTKnUbK1dh52ux0XLlyA0WhEPB6H0WjkvmUulwu7u7tceDgej7NZ8uLFi/D5fLh16xa3hNFqPweRVrfmwYN8MeJx2t2Tg0yVvWDYfEODHMuwzW3QGKbu0XSd0+k03G53T/seSkdOp9MA9sJyAWB5eRmRSAQvvPACb2OxWPDhD38Yr732GgDg1q1bqFarLdtMT0/jscce4220KJfLyGQyLT+DQq+kNYjVajerRlErED+r1+vI5/MoFApIJBIcNUeak6iZWa1W2Gw2Dt6wWCzwer0IhUItnXr7nWMv5kE9jYs+E5ssNptNpNNpDs0n89zZs2d5HuK1K5VKSCaTKBQKKBQKnNR75coV2O12fjn0tFEis5WVFa5uQc9XrVbjfKhisQiv1wuHwwGXywUAWFpaQiqV0q1M0UuQxWGgjRzs1W91GKvBMK3eB6mB6b13pwmnxSza9yyazSa++MUv4oMf/CAee+wxAEAkEgEArptGCIVC/F0kEuH8mHbbaPHyyy9zFQKPx4PZ2dl+h33s6Mcf1M7kRiD/VDqdRjQa5VqCAFoSUt/3vvchHA7D7XbD5XLB6XRypJ6e2akbDbDdXDr9aH1uIqmaTKZ9leX1ou1KpRJUVeXjiWSnKAqbGimROhaLtQRG6C0cCFQaSowepPwo+v7BgwfIZDLI5XJwuVys4VJ7kV78VN1uI87/MMdoh8MI52EjL8KgSOwozJHDgtNAXn3P4Dd+4zfw9ttv43/8j/+x7zvtzdYKDj102uarX/0q0uk0/1BZm8OiH22rH21ET+votE8nsiOB3Ww2kUwmWdBSUAZ9bzQasbm5iStXrnD5IbPZjFwux2ShvQ7ttMKD5t6OsIiggsEgmyjp58yZM+yn8/v9+86lPe4/+kf/CFNTU5iYmIDFYmnRLEulEtcCBPaiBLe3t1kbErfVe2kp6hLYsxA4nU44nU584AMfgMPhAPBeTcBisYjV1VVUKhU23VL0Ih1L/H0YdCKto+qB1guGXTs5LPGcZvIa9Tn1FQ7/hS98Ad/97nfx6quvYmZmhj8Ph8MA9rSqqakp/jwajbIWFg6HuZq3qHVFo1E8//zzuuezWCzsXD9J9EJa4t/dPvx624gkYDQa4ff7YbFYsLu7y4LNYDAgGAwinU4jm82i2WxyUu/y8jIqlQr7d3Z3d2G1WlEsFrmUES0atL8JvQphLQmdOXMG+Xwe29vb3LaeNJd4PM55WKLvikiG+oMtLy/D4/FwPprRaGw5JwnycrnM6QJ0baipZDuNUtTiqOkkaf9Wq5U1OkK9XofRaMTu7i6CwSAURcH9+/ePLbjooCCPXtEuwbpb6GnKw4TDjm/Y59cPRn1OPS23ms0mfuM3fgP/+3//b/zN3/wNzp071/L9uXPnEA6H8corr/BnlUoFN27cYFJ6+umnYTKZWrbZ3t7Gu+++25a4Rgl6pGU2m+F2u7k3EzUXtNlsLDA7aVl2ux3BYBButxtGoxGFQoGDCKjsT6lUYq2GVtHJZLIloq5YLALYWwiIpZNEUx1FLRIx6GldB2mNBDru+vo6crkcAoEA3G43B1NkMhmUSiUkEol9/i6n0wm3281FaCORCDY3N5mAtZodnTcYDGJ3d7dlPHSNqfI9aWx6ZOb3+3nbSCTCEbNiCDqwp9VduHABOzs7WFlZacmBO0q0O8dhNYPDak7Drn0Bg/HrDfP8xgk9aVy//uu/jj/90z/Fn//5n8PlcvGq1OPxcLjwiy++iJdeegmXLl3CpUuX8NJLL8Fut+Ozn/0sb/u5z30OX/rSlxAIBOD3+/HlL38Z169fx8c+9rHBz3BA6FVjEh90m82Ga9eu4c6dO7xaN5vNuHbtGh48eIBEItG2PI/BYEC9XofNZuNIykgkwn2YJicn2QeUTCYBvCeEyuUyvF4v8vk8B3BQcixpIdqxK4qC2dlZZLNZJhQx+rBb0lKUvcoSwWAQlUoFdrsdU1NT8Pl8iEQi2NraYoIgP5TYxJLI6/LlywCAlZWVFsEh+reMRiO3ZiFtUitkqMoFXXvRL2i1WtFoNOByubjlCxER8F6EoBh1abVasbCwgEqlgkKhoOsvFDXIQRHaYbSGbnL0BnEeEcO4ou9X2xiFufWCUda6eiKu3//93wcAfOQjH2n5/L//9/+Of/7P/zkA4Ctf+QqKxSI+//nPI5lM4tlnn8X3v/99jsYCgG984xtQVRWf/vSnUSwW8dGPfhTf+ta39pl/Rgl6pEV/12o1LC4u4vz581zhoNnc64vl8/m4wKwo6LSgcOsrV660tMAIBAJcOFfULoC9UPJarcb+n3bBGMAeEZw5c4YTfVVVhcPhwJkzZ7heoFYYd3M9CoUCLBYLl22iz81mM4LBILLZLGKxGID9hW8tFguy2SxKpRK8Xi/OnDmDd955p+X6qqoKp9PJ5tGJiQkOf0+n03zM2dlZmEwm+P1+RKNRNJtNFItFGAwG+Hw+JvVGo8GVN2hMWhNgs9lENptFJpPpqphtv8R1EgJlEML5JAW8+GwcpAEPgsBGUeifBhwqj+ukMIg8rl7U/l7MY3qmNZfLBZ/Ph8uXL3PpISIUu92OQqHAWpD2uGKwhdlshslk4uoO1WoVJpMJqqrCbrdzNYdAIMACeXFxEcVikcPl9YroUqFY2tdmsyEWi3Hlh0aj0VIoFji4BBRpfSaTiZOkqepEqVSCyWRCIBBALpfD6upqy9ypeK3dbuecKmqISdoQnWtychLve9/7kEgkkM/nEY/HOSiDtCqaFzXITCQS2NraQrVaxezsLIrFIjY3N7mtiFjXUC/kXPsDtCYA610j7TXXE6ra/7XPw0GCuJvv+8Egc396jb4E2vt+B3nuw4jBUc/9OqnxHyaPS9YqPCT0fFPi34qicB7Q6uoq6vU6zGYzRwJSs0a9Y2n9PkQi5MtKp9OwWq2wWq2YmZlhXwsJftqONDEaj7YR4+TkJKxWK/L5PHw+H1wuFzweD959990W7a4XjYvgcrlgsVi4gSKw52sjf1uj0WBNW3x5KHmY5kXllbT5YOVyGZFIBIVCAaVSCeVymZsoUsAHJTEbjUakUink83kYDAaYTKaWfDHtGLTo9QXXu15HYT7UO18/37eDmGMn/u4H2vejm2MNwq9Ez3478jqM2WyUTW7AaI5/9AP6TxDdkBZ9RtXDm80mKpUKd8QVBZk24MBsNsNqtSIUCnGDQKfTiUcffRTT09Mwm82YnJzE3Nwca00Wi4UbE/7sZz9DqVSC0WjE3NwcnnrqKa5mTkRGFSGoKkQ+n4fZbEa9XseFCxcwMTHR4tvq1deXz+cRjUbRaDTgdrsRCAS4nYrX6wWwZ+4UiZXIqV6vY2VlBdVqFevr60ilUhyBSNs1Gg3kcjmkUikmKpHgDIa9LtAbGxscbPHkk0+iXC6jUqmwmdVkMnX94h5EDnq+w4O+GxSOMnhAe38GSSidfgZ1fPILi/Not/1hziNx9JAaVxfoxlShJ5SIfIC9yg0keKn9iHY/cX+j0YiZmRn4fD7k83nO1yqXy3jrrbdgtVrhdDrZRBYMBmG1WnH27FmkUilkMhn4fD6uYUgpBeFwmH1e4rnL5TL7xzY2NjjqkJKEKW+J0MlUKG4nhtyTVkTlmLLZLFf0IIGiDcUnvxiRbSgUYq2Jgka2t7fZxydGS9rtdjYbGgwGLh118+ZN1rTy+TwXHdbO47DaFV0n7XftVv6D0MKOSuvSO474m9AuVP84oR0bXXOn0wmv18tmYlrg6GnS/Vwn8XyjZj4cNa1LEtcRgFZ3V65cwfnz5/HDH/4QAGCz2WC32zkAgjQGvTwaRVHg8XgwNzfHlS7IpEjaGpGUw+FAs9mExWJBKpVCNpuF3W7HI488gjt37nDdv0gkAqfTiYsXLyKVSiEWi8FgMMDj8XBUXT6f59YfuVwOV69e5cr9BwmpdhoF+Ymy2SyTCwDW5BwOB/x+P2KxGKxWK3K5HAqFQou/DNjzVU1OTqJarXLfMBFEUkajEcFgEB6Ph82n4XCYSzRRMV0SLnrVNUS0y3MS56dnCtRuqzVN6ZVr0pJcv6arkxJA3WocRzU+vYUgRbZSFCu18KFxtBPah7mOo0YEwMk+N71ibInrMCp9O21L+9IYDAbcuXOHAyouXryIZDLJ0Whms5mDM/SiChcWFtiXlU6nEQgEoCh7Le0fffRRDlqgiujnzp1DNpuF1WplHxr5uGKxGJvVPB4PnE4nstks5zT5fD5Uq1XuefXYY4/h7t27eP3119lv1i6EXu/66JFcqVTad51IEwsGgwgEAkin0/saYU5OTsJsNuORRx4BAG7oSJGPwWCQUwPeeOMNjgqcnJxk0haL7oqBFHpRgaLPTVEUnr/oi9SSEG0rEhI9A+RrzGazrOmaTCaEw2EsLy8PvB3JQULzuAVUNxaLfjUUvWdN+w4Wi0U4HA6YTCbkcrkWrbydD1I81mHIa9S0r1Ehr7ElrkFBtJWLGoLVasX6+jocDgfsdjsqlQoSiQQXCLbb7ZiYmMDExARisRiWl5dbwq5JYN6+fZuTlmu1GqxWK3w+H+7fvw+LxYJQKASv14twOIxQKISdnR1Eo1FUq1Xcu3cPlUqF6/fVajUO8IjH46jX6xwSfu3aNW4DYjAYsLS0hFwuh7m5OWSzWUQikRahD+i/5OJv8XM9wUBCvlQqYXNzEw6Ho0ULpW1SqRR3Ra5UKnC73ax1mkwmuFwuPPvss7hx40ZLWsDKygr3zuqkMYn3TcwHq9VqXCaLxkOVSfSOQZ+LaR2KonBtTbPZjGQyCVVVMTs7i6tXr2J9fZ21v4MK5vYiVLohr07f9ws9czk11OwU3HFY/5De/mJkK/lXySxMi8duNNzDXqtuTOwSvUESV4/QezlIUJG9XFEUhMNh2O12FlRutxuFQoEFIrBnKiuXyy2CUS9Yo9lscjsNm82GTCaDf/kv/yW++93vcnRePp/H5cuXUavVsLOzA4/Hg0qlAp/PB6vViuXlZTSbTdbsiIRIWL755ptMbgaDAeVymev0mc1mOJ3Olp5fRIKdro1WuyKI5hmDwcCNMYG9VAez2YxKpdKyfTabxfr6Oq+WVVXlZG5F2WsESUEgiqJwUd5cLteizWojNIkwaJxUYsrtdrf4vjweDzY3N1u0K737Rfvv7Ozw+B0OB6rVKgKBADKZDJth4/E45ubmsLKywsccpPbVjcAd1Aq73b03m82w2Wx8LUWtfVDnJYuBxWJBMpnk54eeFbPZjEAggHK5jKmpKfaJii19CJ3KXw3CdEgYVgIbFRPn2OZxdVtcVLuduMJWFAVer5dXcgaDgWvvOZ1OAIDP5+PSTiQE6cWYnZ3F/fv3YbfbWdBSe3nS2ohgKIiByjc5nU68733vw+bmJifhnj17Fuvr68hkMtwahExoCwsLLe1CKNFWD6qqYmZmhhsyEhk2Gg0Eg0FUq1UsLy/rJjVrr5t4f8TPRKF25coVjvID9gS9aEKjxQHN3WKxYHZ2lost0xxjsRhCoRA3oaRWJ+KcKUCF+ntRMjg56qkrt9lsht/vRyqVwubmJkeFir4R+k1zNBqNXJ6rWCxy8V/qFSYKUrPZjEQiwRqxqqoIh8M8HrG/lzaQo9dXttsw9n6DEfQ+J21rZmYGExMTSCaTSKVSSCaTLXM4LBGIxHX27FmUy2Xs7OxwfU4AbJKnnMB6vQ6r1Yp4PM75k71c40GIzGE3Hx5H3y6a/7H34xpXiJpEqVTiMPdsNssC1uVysYmI/qa6e7lcDrFYDLdu3UKhUGB/FxGU3W7nNiRi7cF6vY5yuYx6vY5SqYTbt2+z+ZFMgxRaPjU1hVKpxOY1CnbweDwtZEwah/bljUaj/OJPT0/DZrPBbDbj6tWrvB8JJ1FQGY1GuN3ufb2z9BYARMQUQelwOFj4BwIBTgEgkJbXbDZRLpe5Igf1yTKbzchkMlzaiUyJfr+fE6CdTidmZmZw5syZljGKpsB8Ps95YxaLhUtCAfvJV/tjt9sRCoVw6dIlAHuLgCeeeAKBQAAmk4kDbihKkxYHVP6MmoQe9Oz1+7x2u103P+2OQVotpSIoisJlv7Qtbrodm/Yc2jGTpmQ0GhEIBHghQlaQ+fl5jsylAtOiVq93HQ66TodBP/M+TgzruAjSVNgHxBX2xYsXeXXncrmQSqVQq9WQTqfhcrm47YXFYsH09HRL+SOq9ZjP55FKpdBsNnmlT6tDg8GAj3zkI3j99df5nCaTCcBeFB0l+O7u7rIjGgAHAlQqFayvr8NsNrOQ9Hq9KBQKLQ05aQVosVhgt9tx5swZrK2toVKpYGtrC9lsFmazGW+++Sai0SgTj6i5EQk4nU7Y7XYOBiHNTLtKLpfL3OyRfD103UqlEvsGjUYjV7MgwTQ/P4+FhQWUSiVYLBY0m01YrVbOSyMN9uzZszCZTFhZWeFAje3tbR4LlcVqNpvwer1QFIVTF+gYxWIRoVBIt52OVojW63VcvXoVm5ubcDqd3ArlAx/4AH784x9jbm4OS0tLcDqdCIVC2Nra4n3D4TC2tra44kc7s02/JivR9Cze98NCvK+0GLBarexLajabLYsn0RzX7Xj0BKko/DOZDDY2NriUGCWYO51OKIqC1dVV1q4ajQZrunpj6GXeh7l+4pyGWfsaRkhTYY/biZoFJfbOzs4in89jamoKr7/+Ogdk5HI5OBwOFmBkArp+/Tri8Tj7lbTaDpV3stvtMJvNmJqaQq1Wg6qqSCaTbIqkVvNkr6fgBooWrNVqKBaLKJfLsFqtrMlQQi6Fh4vnplYiTqeTc5xofKqqwu/3Ix6PAwCmpqY4iRfYM4sWCgWEw2GOdqS2KtprSD9OpxNWq5W1q0ajwQQzMTHBfiGxMDCRNRFxuVzGzMwMstksTCYTB5wQOVJVfqp7ODExgc3NTT5GJpNBpVLB7OwsV9zIZDIoFAowm81Ip9MwmUzstxJ9g+I9o2eRIjW9Xi/7C6nlD2kely5dwv3797GwsIBLly5hfX0dLpcLOzs7LeW1xB8RhzW1aY/Tz7FEwqLfZBo/e/YsVlZWeGFBwTSiuVVrqu7FhChqWuL7SCZXqqASDodRLBZ5YVcul1EsFlusDJ2ucTfXZFAidNjMh0c9nsOYCqXG1QdI27h06RKHqScSCdy6dYvNhk6nExaLhZOHFUWB1WpFs9nEnTt3UK1WMT8/j6WlpX0RZcCecHzmmWewubnJScZkXiKzU7VaZVOl1+tFvV7nwrI2mw2PPPIIh4eTJuZ2uxGPx1EsFve9sDSObDbLq2MxMbdSqbC2RYRBJaxMJhMuXLjAzS0jkQiy2SwXvG33AtA4KFGZzEsGg4HzzIA9EkulUhzQQhXzKc+tXC7D5/OxP4kSlIvFIpMehcNns1kAwMzMDFZXV1mobmxs4Mknn8TExATu37+PZDLJC4t0Os3aGT0DYmAGgcLmiVTJ7Od0OjkZ3el04v79+6xl/+xnP2PC9vl8XHRYfN7o/mg/037eK7Qa42GOoygK5+rFYjGOzrRYLJiamkIikWBCoe4S9Xqde/dFIpEWv+lB/lPKy6JC1bVaDS6Xi33D1Dpod3eXA6RSqRS/C3r38CQ0L/E4/Y5h3CCJ6wBoc4qAvRdmdnYW6XQa+Xweb731FgCwyZBeTvJ3Ua0+IidqtEnOfwpNF8+pKAoWFha4CKzD4WBNJB6PM0GROcTpdHJ/K1VVUa1W8eDBAy6wSyawTCaD3d3dfSWntATWrikijY0qd/h8PtYWALA/g45Pn9Fx6X/xs3K5zMQl+ptMJhPMZjMeffRR1jQpXJ2EvsvlQqVSgaqqmJiY4OjHYrGIaDQKg8HA0YZEKvSzsLDAGifN9+bNmzh79ixWV1c5EnBiYgLAHskmk0nYbDYWugQykYkLEDJThUIh5PN5WK1WTExMYGlpicdP461Wq0in00zOeuZB8RqKn5Pg7EbgtSMqRdFPiO4GWl8NLXD8fj8Hq9hsNoTDYUQiEdhsNjx48AAmk4mT8ilARdRmD/IzuVwu1mSBPb8s8F7fudnZWc4RpKT2Wq0Gh8PBC5tO5NULkQySvHq5n0eJQc3pKCCJqw80Gg1sbm7yS0CrzHQ6DQDskyHtgSLMKKKJbP+lUgnBYJD9KcB7pkiqglGpVNiURX4iyssyGo2YnJzExYsXsbm5yblepLHQy0nCoF6vc1sPsa291lzSzcN6/fp11hyJyKgqAZWJKpVKHROXxQWBWGyXQCHvVEsxlUrBbDbD6/XC4XAw+VitVjgcDtRqNUxNTeHNN99EKpXiQJVcLgcA8Hq9mJycxI9+9CPUajUmV5EoisUi7t69y+NLp9Ow2+14/vnnsbS0hEqlwrliFMBBmpXFYmlppbK+vs5pDORX3NjY4PtTq9X4Hokm405+nl58QN1sQ/fOZDLty1EDujfZ0d8GgwF+v5816UuXLiEWi+EDH/gAFhYWsLKygt3dXTYf2mw2GAwGPPXUU1xwupPGJT471DyVTH8+n48jcv1+PxRFYRNUMBjE2toap3asrq5yk9Bh07zoWMNAYMNKXtLH1eO22kgo8m3QZTQYDJibm0OhUMDMzAyWlpZ4NUm18lKpFBOPxWLhRoRaJzf5r8TgBzKPiFqP6BciX9i1a9fw8OFDrhhBGgcJXdF3RcJbm0Ok99LQvH0+HxM2Fe6lcVksFly4cAE//vGPeVUr5k7pHY/mJs6TujxTgAuZLc+ePQuj0Yh0Oo1z584hmUxyHy6qvG82mzngo16vw+PxwGg0olQqsTYlkrqelkmBMERKFGgSCAQ4EIDMYU6nkxcgYhI1mTNpAeJ0OlEoFFAsFvmekSmY7kUnX88gBRlddwoa2t7eZkLv5pxaTYvqQU5OTnLn7YmJCbhcLgSDQWxtbbEZlN4Do9HI+YmRSAThcBhLS0t8PbTmUS1JkpnaaDSyT7HRaHB7Hur2XSwWOdWEom3p/pMJud18e73mgxapg/Jn9oujCo2XPq5jhPbhIf8V8N7qpFAo4MqVKygUCjAajSgUCrDZbFyKiVbYFPVH+4rHoJUnaSvkJ6KcMaPRiNnZWVSrVV7FA+8J/Uwmg/n5eVgsFrz++ut8TovFwiWSqNVIvV7nCEM9rUtPeCYSCRYkyWQSbrcbxWIRNpsNuVwOJpOJx0LmHKriTscQV89+v59TA0RQbUGKsDQajey3KJfLWFpaYt8RlXgql8tIpVIcwELlr6i8FgCO9CTBRfdBO+9wOMzdjsl/mcvlOLDE5XJx4AqVdjp//jzW19dRLBY5lD6fz6NYLHIJLwoMEdMO9KBd8Q5qJS6mAdRqNQSDQdZgFhcXW7RQLUG1G6ei7KWHbG1tMeGTP/XKlSt48OAB/H4/tra2eCFXqVRw+fJl3L9/HwDYR6oN/Gh3PvIl0qJFjMZ1uVw4f/48YrEYVlZWYLPZ8OSTT+LWrVuwWCzw+XxIJBJcLaadabtXDNpXNSh/5mHOP2z6jSSuPtHuRjabex2OM5kMB1HU63UkEgkkEglORNWuotqZK7TnCYVCCAQCXNaJElxppX/27Fns7u6y30dMeiZNi3p4EcGur6+z9tRNMiaNlX43Gg1kMhkuXkoChKqEkJAC3qsZqNVSXS4XHn30Udy6dUvXx0FCVlEUPHjwgJtnkgCjxFPSUKlQcLPZbDGfkqCjih0zMzNoNpt49dVXWzRQQj6fRzab5YAQEYlEoqVZ5fz8PAeGAHuV8cUkV1VVOUCBcopsNhump6fx8OHDlsCPTs9Yt9u020+r5ZL2UavVsL6+vq+Ki/Z87fxvwHsRl1Qs2W63Q1VV3LhxA6qqwuv1Yn19nWtSNhoN/P3f/z2TP52j0/xEa8fExAQHKNH7Zbfb2QxLleBtNhvi8TiWlpbg8Xiwvb3NqSGRSIRN3uL59d7Nk4QM3ngPkri6gPgiif+L5CNGztEqnkKqxWoL2nqE9JuOqbe6Fbfb3t5GMplELpfD1NQUzp07hzt37rSE2z/55JO4f/8+tre3OfiBiMtsNuOxxx7D5uYmKpUKtre3Ua1W4XK5Who80jz0roV2zPSZ2+1GtVrFzMwMj5nC0ClcORAIANir1biyssIhzFarlf10tJ94Tfx+PwCwGRAALly4gHK5zKY2AFw8mIoFE4FRwIjBYMDk5CQXJgaA5eVleL1eDkMn1Go1bG5u6ppQAbT4Canc0Ac+8AGsra2xqZdIiuZI86MmoKFQCOl0ui+Tdy8rcfEZcjgc/CyQwKbO0jabjbc1m81cpiwYDLYUiO5EXmS2s9vt2N3dRTweR7PZhN1u56AN0nJF8yiZ9PQWLloNnVI23G43rFYrWw/IZE3bbW1tYXZ2lgOiVldXub3O4uJiy3OmjX7VLq56NZkdBeHR+3AclS3EcwLDRZiSuAYEvRps2kRS8TstxFWkuA+timnlajAYWmrmRaNRJJNJPn80GuUQ8EqlwkJBHNva2hry+TzcbjcUZa++HnU6Fsm3HdrNgYRzLpfjYsCNRoNrwhWLRZw5cwbAXuV7RVFw9uxZJjaz2YxUKgWTyYRQKIRiscilsp544gmUy2WsrKxwbtU777yDy5cvc1QehcxTAAwRMrAXcUZaRSqVgtvtRqVSwcOHDxGLxTg4RpyjqH2JmoZ4bUg7KZfLSKfTuH37Ngce0KJFVVWuZOLxeNi0S2WdqGJ5PzjIpKaFwWDApUuX0Gw22SxoNBq5VxUVAq7VapidneVF0eXLl7G9vY2HDx/yYkRLMPQMU+FjCkAifx+lUJhMJkxMTHBkpnit9RZG2vmJ2jL5MoE98y/lyFHwVLlcxvb2dov/cWJiAoVCATs7Oy0+2GZzLwGfAkuIrA6jeR2VtkbjHSYyOU7I4Iwu0M7G3+nc7TSndtqU0Whs0SqazSb3lQL2QnsXFxdbwuppZSkKEKvVyoV4xRJJRIomkwkOhwM+nw9Xr17F+fPn8ed//ueIx+Nc3aCb1Zw4F/I92e12hMNhXLp0CbVaraViBWl9drudoywBcLNLMuHR/5OTk8jn89w8k66D2+2G2+3G0tISN6IkYUlJ15QLRKWU7HY7V7una00loIrFIgeqkB8QaNWO25GWCAokocLEZBKlaz81NYVwOIy1tTU25dJ+lA6gNVP2G55+0D2jcmIXLlzA5uYmqtUqLBYLj53uV61W40WF2+2G0+mEzWZDoVBg06bWvK2tK0nzpyAKp9OJ+fl5bGxsoFQqsclb9K0eJJDJJ0rBMRSo02w24fF4uAN4sViEz+eDx+PB8vIyAMDv96PZbCIWiyEej7e8S2azmYspG43GfWkdNJ9+7sVRidnjJK9Ba3kyOOOEoDUhar+jVZv2M6DVyS4GZJDwoEhEh8OBRqOBaDQKu93OLygJWtG8KEa4kVAXI/monBOZHMUSVWazGc8++yxeeeWVtqv/dqYbgtPp5NYoV65cwc7ODlRVxfvf/37cuXMHOzs7nNRL14GizChBlKp77OzscNJ1o9HA6uoq7HY73G43+0joGCQo3W43C0L6LJ/Pc9UE8fp7vV4ufkzEBbxnEtK7r51eXEp4FaM4xWNGo1E0m03WCOl4FPUoXuN2fs/DCChxPnRdc7kcnnnmGVQqFcRiMTidTvj9fmxubsJkMmF2dpYrjAB7z+TS0hLm5ubg9XoRi8X2+SFpXpQsT9qM3W6Hx+NBPp/HgwcP+DroPWud5krnSKfTbH4WtTLq/k0LCapGQj5KbasaMl9TInQul4Pb7cbMzAzu3r3L8zjsfTgqzUuUIyOog/QNSVxdQLuq1H7XSfNqt6/2RaAggkcffRT37t1DtVrlqCyxAgeRjda/RtoWdQgmkhKrn1OIMfkEbt26BavVytU0/vIv/7IrE6HWiU1J1ul0GqFQCAC4LQi1dQHe85mIxxJNMrVaDZOTk2xeczgcTFzAns9pe3ub8+UURcHk5CRHM1IABPlJms292o9Ut1GcG2mWiqJw8jb9LybCtrseekIinU63hMLTGBuNvWK/ZDqkc4hVSbSmMa3/8DDQmtkMBgOnUdy+fZvLgYmJ3xSoQeOlljKNRgPLy8tsdtML4NC7Ptlslv2btFjS85Vpr4f2M/H60AKIyFFcdDSbTTzxxBO4f/8+a1aNRoOLJk9MTPCCplAoIBAIwOVycTdxsSiA1gUwbORFxwaO1g91lOPvFZK4BoCDNC9CJ/IC9lbtqVSK/URnzpxh0qHQ7vPnz+POnTvcY0p8aalIrcfjwfz8PBeTFU1Q2WyWSx7RGKiihLaShghxVaudL62oKdS/VCrh3r17XKH9Jz/5Cee3ibX4RJAPhCIGyUQoEg451WmVTcen454/f54rTzQae80yqeSSqA2QOZFqENI1pG0mJiZgtVqxsrLCq3TxenQiM7o2tI3Yqy0YDMLhcGB7exvnzp3jOo7VapUJQktYh13tazUiMqsGg0FeSFCF/kqlgkgkwgWjd3d3kUwm9+W8iYTRCVprwu7ubsvzqDdXunZaTUIkLT3Nn+4hweVy4cyZM3jw4AHPk/yJVP2fuhhQYYB8Ps+m5QcPHrRt+3MYkhhl8pLENYLoRrPqRvMC9FemlET8+uuvQ1VVeDweJBIJhMNhLpWTyWQ4dF18oWdmZtgfQaHIHo+HAyK0dnoRVGroIFODdvyisKEEUgqKAPbMUYVCgcszWSwW/MIv/AJ+8IMf7HN4k0Ck4reUWErBC3qCCQC3aFleXkY2m0UsFmMBKwpp8n+JvZdEE5XL5cLU1BS2trZamnzabDZ4PB7s7Ozs0xS1f2uh1Zzq9To3tbRarbh69SosFgtisRgHjlDJsE7aVi/CQ8+fSlGc9XqdzarXrl3D7u4uRxBS00eqnUjh5mJSsB7J0jm0BEP3jp5NvfdEPI5o1hWPpz2+CCpsTWZCt9uNmzdv8rvw8OFDNhc2m01uaxIOh+Hz+biAMlXn10uUB/orB6U31373Pclj0/GHgbzGth/XUThYuxH+etuIn4svFr1cTz/9NGZnZ+F0OlnTEnOOqDQUVR6Px+PY2tpic4c2Mk78oRV0J7NNuzmStnbx4kXs7u4im80inU6jWq1ibW0NsVgMHo+HSfVP/uRPsLa2pjuOWq2G+/fvc0UJPXOSKAgpRDuRSCCdTnMEGUUwNpt7hYavXr2Kixcvwu/3s8lSrFdIK20ATHIXL15sqXSiqirOnTvX8gy0u1bae9xoNHD+/HlMTU1xKSyr1Yrbt29zWD91APD7/az5aX9EdPO53nc091KpxA1Ha7Ua7t27h0wmA7vdjk984hOcH0hV3i9evIjHHnuMxyueS/ybNH8tYVFgBlVp1/q1tMfRHqubedG1npiYgMlkQjKZhMvlwjPPPAO73Q6v17vvuVeUvf5piUSCq2lQdG03aDembtHvft0c96iOPSyQGtcRQCtou/leFHZkugD2Ah5effVVRCIRRCIRThYVBScVkwXAxUufffZZNkV18tV0Gls3D3+tVsOPf/zjFv8Qhdc3Gg2sr6/D4XBw6xNx3lqzo2g+EoVWo9HgaMJEIgFVVTE9Pc3V50VzFPCeea5UKmFlZQUTExOYmJhgX5fYH4yqiZDQy+VyKBaLeP755xGNRjkf7+HDh/uuUTtzKn1H86AaeUSMVHQ2EAigVCohFArh7t27KBQKHDCgF7jQTgPrBD3zmqiRUrI4AOzu7uJ//a//xU06KZCHknTFe6WnDVksln1+O7EUUyqVaumBpT2OOD9KYM9kMvued9pfJLlarYaZmRnkcjkuNN1sNrG7u8ukJC74gL0UhsXFRV6A0Vwpp02vHY/2PuhZT3rBUWkwR615nTQkcfWAgwhJb/teyYugqirK5TIikUiL9kGmJNpe9KnQ72azyb2QxOCGdhphO99Bu7lqvxMru5O2RdtEIpF9BCX+rT2+qKmIAQ5utxuXL1/G6uoqcrkcstksN4psNpu4e/duS7AF9ScjfwYVc6Vjiz4og2Gv8WGxWEStVsPu7i5Hm+VyOayuriKRSOiOs51gEMdO5ken08nfORwOriBCJtHJyUmkUin2u1CVCSLnTufTg56ZjUDX12Kx4EMf+hAWFhb42hoMBjYVbm9vo1QqIRKJtAQ+aO+bwWBAKBTitAo6H1U4oWsuCmo97clut/P98/l8ALDPlE37iYsbs9mMmZkZDtOnQJ7d3V3WyOndEO9dtVrle6WqKmZmZmCxWBCNRvfdczp3u3eI3r9eIcmrd0jiOmL0QgBa4qJV+c7ODhqNBlwuV0tHYe1x6G+xIkangAu9/fW0wE45b3pmT5HItATViwmj0XivYnw0GuWW7FSXzuVyoVwu86qchEa1WoXb7WafWSaTwdbWFhfgFYULVWtYXFxkAWiz2QDsaSC1Wg1erxcmkwnLy8ttzb3itVAUhevwkV+HTGYUnq0oCo+dqoHU63VMTk5ifn6eSUTURsTr2WkR0u01fuaZZ9Bs7nWfJsKha2O327naOiXSi+fQ/q+qKvL5PLxeL6xWK0e+1ut1bojaaDSws7Oz7/klUArDc889hzfeeIObTpIGKp5XDIO/cOECSqUSlpaWWroBUBmzUCjUkoyvvWf0nNXrdY6YJPOxHjoRTb+JwaNCXsNChpK4ekSvWtdB+2nJgbajQrrULJKEXKeXgoRbs9nkl3dQYzxovnrbtBtnu1W7FrSipvw0k8mEra0tjkA8d+4c53eJkW7ku6GuyGJelail0vnFhGWbzQav14tUKoVUKoXNzU2cP3+ey2dpiUvP/wbsBQtQ/tPly5extbXF2jMAbGxswOPxwG63c14VmRNzuRxisRjfQ5G8ejXlitdcu/0bb7zBcxY7EwN75upsNoupqSnU63Wsra3tGwv9Tzl0VqsVMzMznPhL3bEdDgfS6TQqlQqCweC+qFIy91Ej0KWlJVgsFl5oUJSpuCAKBoOci7ayssL+wdu3b+8zLZIFoJ0fl4I5Go29mpti54R21xI4uArOQQvGXo/bL4aFbAYJSVzHjHYCWxsC3Gg0uHKEuBLu5vgHoZPA65eYad92ZkHxN9BqStOas8g3oigK55nlcjmOfCOfBvXporB5Oq7BYGChSSYikbS0ZkhgT8O4du0a7ty5w2HbdO3v3bvH2kM7jUv8v9FoIJlMciUUClyh3mzU2oR+AHD+GZnprFYrpy3oEf1hhRCZdSmaUbz2FDZeKBTw+OOPY2VlZV+tPpGoqWCwx+OBx+PhsVutVg7WoRw2aqtDmol4nGq1imAwiEajgQ996EOIxWLs06U5U2mwK1euIJvNIpVKYW1tDalUCoqi6AYjiX/rXbd6vY5yucwBTuLzcthrrEW37+cwk9dRaYc9jaF50iPoA4Mo+UT79rv/YfYVj9HpuFrTkBadbl23prmDxkDQmgv1zIDa7cS/SVjR37TKpVYv5O+hWnKkJVH9QVGA0THERGFRCFLrE0ouFUPctQsACgKwWCzwer2YmprCzZs3OeFbq2UR8R0EqupgsVhw/vx55HI5rK+vo9FocPVyKntlNBoxNTUFRVHYx1Qul7mGYTui7GUlr7c40PsR7xX1yhIXT3ph4l6vFy6XiwNmzGYzKpUKR+tpq4PQvEXt12KxYG5uDsViEWazmRPRqXbiysoKms29kk5PP/00bt26xW1hqLSWuDjRms/b3TftNRTn2Inser0Heuc8aN+jEM39jlmLfnx5emMBZMmnY8VhNJNOxxBf5m7MaQcdm9DuOO1MfJ0+GwRpUyFW8o2IxYUbjQZmZ2e5agg1cdQKH9G0pdWgKAH17bff3qctaK+7x+PhSh3UnZfMdHrEpUU7YqHk5Y2NDeRyOa7JJ1b+oLHb7XZuRZNIJPaRsThu2rebVbSeP0o7Tq3pT8Tk5CS3/aCxasdBBEukTEEuTqcTVqsVu7u7LRqrWOGCSNLr9cJisXDDUOoPt729jdnZ2ZZmpaVSibsLaIMu2pHWQQu/Ttu10zD61WJ6Man3c/xxgCSuQ+AwxKI9DtA+wnAQ5EhjbWe+6MevpTe2TucRQeYoMi01m01uE0KmJYvFws582kf8TecnsiOfGLW8IO2F8rfo+OI1KRaLHPlIZNWpsaMWB5FZs9nkfl7iucVrVavVsLCwgFAoxBGG4vUnstBGxYnX4CB0IrB2958S4ePxOC8stEES4pympqaws7ODYrEIi8WC2dlZzM/P48/+7M/2VaHQlsYqFApYXV3lIBav14t6vY5CoYCVlRXuqUX+Ngr+0CMfvbF1Mu122k68XoMkL3Ff8Ri9EGc/GBQZnrS5UBLXITEo8mp3LFEDO+x5OmmJneYhnvugqvoHmSjFY1HkJJnVqAQT+axIWDYaDa4ETj4hEnraOamqik9+8pNYXl7GwsICt+wIhUK4f/8+R1qKII2PSh1dunQJb7/9dtuSP9rrdtD/Yo8zvf1JCIglusTrTdUfqA1HJ/Kiliq9aGHttiFCdTgcsNlsHFhCbT8I5JejLsaqqiIUCiEWi+Hdd99tuY6i4KRnyWAwcBAG5ZQRcdJzAbxHmg6Ho6VEVidTnvi73Tbdmu4OIq9ujnHQ8dvNadDkNepa3NhWzgAGo4IPymYsHq/d59ogg36Pf9CL3g4HmZ3akZaejwXYa2kyPz/Pgs9sNuPs2bOw2+3cFNDr9eLMmTOYm5tjoaanedFxG40G/uZv/obbsbtcLlitVmxvb7ecW2saooTfarXKeXPt/H9616uTiaobUyNVMBGJicxoZHK7cuUKVFXlz0VTG5kbXS4X56Z167/sBLPZjImJCUxPT+PMmTOcPC2en+Ygmu0oh45IW+vjpDGL5AXsRWOGQiGUy2XuQUfXh9rhKMpert5Bi6h2C7Vu352D7r/2c62vsF+0O84gji0ea5QhNa4hRCfNSPye0OtD2KvmJQqdTufTe+HEz8Qq9qFQCPl8nqumUxdgr9eL+fl5butCpifKDRLD3uk8JpOp5XzUXdjv97MGMjMzg62tLRiNxpbq+jRn0t4oGlFvbuL10e4v/n2QYBSvfzsipCRl6jFGtQ7Fe0HkXiwWoSh7NSupoj7V5eumQaVW6IoLkHK5jImJCezs7HBzUu01EUEE/ODBA90oRGqGSpGh2jmXy2WUSiWOajSbzS1mUnpeqLzXYaC9V3qaSLefaecpnqMdOhGjuHjRG+dBxz4IgzIZnhQkcQ0ABxHNYY7b6ZiiiUNPozno2N1sS6YqcpyLfbBE6Ak90dw1PT2NRCKBWq3GhU3tdjv+7u/+jktc2Ww2JJNJpFIpPPnkkwgEAojH41BVlTvaas061FSwUCjA4XCwkJ2bm+P+ZhaLBYuLi0gkElz6RzsHMj06nU48/fTT+Ou//uuW3DrxerVL6u5VE9YTRiLIV0c5VeVyuUW7om0AMLGZzWYOw08kEi2FcfWgjQIVTY7ke3z33XfxyCOPYHd3F8ViEfV6nVvei75FOoaqqjhz5gyWl5eZaCkYw+PxwGKx4OzZs3j77bc5WvHcuXPY2dnhWpsUKSjmLlKKiOgH1EIkFTEop1vzWC/bETqZD3uVCeTjI+2frpveeQ5LPofZ/6SJb+yJa1A+qpMiL+35RRxmLKI5h1qii3X09LYXqxloP6f8nEQigY2NDS5tJApWCpNWVRWLi4u4c+cO7HY7YrEYzGazbnVy4L0KGzRGqnhPYdlWqxXlchlWq5W1ET3SoKi4eDyOUCiEbDbbUqGefDAUNUfjPQz0VvxE+qVSCWfPnkU6nWZNxu12IxAIoNFocCkjSiB2uVxceFhRFO4m3SmiUrxHDocDc3NzWFpawvT0NFfBiEajePvtt/fVIQRayy7R86KqKgKBAC82xG2mp6cB7JmJA4EAzy0YDCKZTPLipp1ZXOuT0tOExWdD77Ne0I2A7vf9FPenH4vFgunpacRisRbSpu/1wtD7ndsoY+yJa5A4SvLq5bjaF/sgk2M7kwWVKCKBT/4KPd+CouzVE/R6vdztl4579epVDrCYn5/H0tISa24iCZL5x2azcTj0o48+yq1c9AizWq1id3cX4XCYQ7EpcZtMj9TaRa9cljh+YK+0FOUvkYZDcw4EApienubV/09+8pOWa9nJd9hJSxW3oc8mJibgdrths9m4SzQl7xYKBe7SG4lEEAwGkc1mkUgkEIvFeNzaau7ib+0YFGWvNJKqqnjmmWfYl0amWkXZaxFDvdvEfVVV5UoWdN2KxSJX5M9kMkyOxWIRLpcL8XgcTqcTtVoNbrcb1WqVFwR0fQ+CSErtrrve9t0cU/uZ3vH09qXflMNHGn67c9N7FgwG2RRsMplgNpvhcDg4CV3UIvWep341oJPWnPrF2BPXoMnmqMiLjt3rcekhb+fI7nRMMr0Fg0EsLi4CeM/8otUUxLDmmZkZbo1Bq8QLFy7gb//2b1vK6YiJnnScRqPBmk08HsePfvSjlsoYWjQae40hqf4f+U4o8i2TycBsNiMQCOj2WaLzErxeLwAgmUxylQ4AbIKbmZnBq6++ymTSDt36urT+LrouRqMRW1tbiMViLNwrlQqmp6dhsVi4xFGzuVcBHdgL4yfBT5qlOD89LVMkz83NTUxOTsLn82FycpKPSwEaNpuNQ9OJvMiUbLVaMTs7yxre7u4ucrkcTCYTmxWpcDFpi2KB20AggFAoxKWltLl3B0HUALXXVW+x0une6JFDJ9OgdlFAVoqpqSmsr69z/p64v3jdKfDEYrFAVVWuaK9NPdDKlk4LsFEjol4x9sR1FBg28gJaS0p1c8xms8lliog4SMgYjcYWYUCEoaoq5ufnMTk5iWQyiY2NDW4PQcmior9CzwykKAprW6QpEfS0BdqPwtmJyMR6dZSr1c7E2WzuOf2vXbuGcDiMfD6PSCTC1Tuo0sX29jZXS6c5i+WI9H53Cy15r6+vw2g0sq+Heq05HA4uCSU2zqSoTOC9PLSDnhXtd36/H/Pz81yd/erVq6jX69je3obBYODFAGlZIshkSS1iKP+uXC63aHWLi4swmUwIBAJwu91YW1tj/x3dd5EAtIsb7di1ZsFAIABVVTn3LBgMYn19nZ89KgcmHqNbAujGb0VEThGytKCi50RbR5E0LvIDh8NhrK+vY2trizVVgt5Y2j1nvZgPR5HsJHEdEYaRvA5aQWqPSe0hUqkUHA4Hms0m3G43fD4flpaW9tW4oyrgVKaJ9i+VSuzT6lSWh36TL0yPTEXNRJxLrVZDOp1uCSkXV+x6fi3tcShy0Wg0cr6YxWLBpz/9abzyyivY3d1lrYaIS6s5dnr5211/ve8BMCkZDAZ4PB64XC7cv38fXq8XNpsN6XSahX0wGOR9FhYW+BwHnVP8zOFw4Pbt2/B6vVAUBQ8fPsTU1BT3uAqFQi2V1AnUKDQej8PlcmFubo6bm5LZTBSOqqrC6XRidXWVnxHKUdOrqkEmZW2ghWiqpH3z+TweeeQRru5eKBRY61NVFY8//jh++MMfdpWjpzXldrO9wWDgQs2JRAJzc3MwGo1YX1/njgGkyQLvVU2Znp7GtWvX8Oijj+LP//zP4Xa7oSh7SfHie9YreXU79lGDJK4jxCiRVztQJ2DKofL5fBwkIRZKVRQFqVQKgUAAP/3pT2EymeDz+djcRbUltWOg//U+02qIej4No9HItQ2pLuFB9ea0q3RgT0t599132exVLBbhdrtRKpXwV3/1VyiVSnC73QgGg7h79y5sNhtcLhei0SgKhULblhnt0K0ZCgATeTab5dD/crmMRx99FH/7t3/LviPRvClGo7U7rlaDWF5eht1u56Rfq9WKhYUFNnU1Go0Wv4sIKnq8u7sLu93eopWSNk4mT4fD0VJjUByfuA9FVDYaDczMzODevXv7CEdRFMzNzeGDH/wgvvvd76JcLiObzWJiYoIbmFIXbqfTyY0jtc9SN/4rcbHTbnuaKzUvTafT2N7ehtlshtls5uAf8fl2Op3IZDJYXV1FpVKByWTitAEi/nY92Q66x+I2nebYi4Z2mH0GBUlcGFxkYbtjA0dHXv0eu529XDyWwWDAlStXMDk5yU31dnZ2YDabWaiL5r9arYbV1VX4/X48//zz+Ku/+is228XjcV1TnSgE6G+tgBDD0vW0MPKVtCOPdqRIx6ZjFotFDkLx+Xzw+XwcYk7COB6Pcyh/uVzmfCmtP6aXF7rd8yeOkzS9arXKiwHKeZqamoLdbm+pJk/o5tkQtymVStjc3ORqJsB7mvfy8jKbwUgL0JZtIjMyCVxgrxbkI488gsXFRYRCIUQiEdYURYiBMLSAINKJRqP8nUjKVEj5zTff5AofABAOh1Gv11nzKhaLKBaL+66R9tp3MklSFRYqwEyfa9+dQqGASCQCAKwJ1ut1RKPRloovRFqzs7NYWlriFi3Antk2lUrh7Nmz8Pl8ePvtt3mBpB1nN+SlHWs/3w8TJHH9A0aVvOj4gyAvEeRczuVycLlcXJqpUqnwCxQMBmEymZDNZpHP5zkwol6vc2FZgkgq4guiJS3xbyIwrX+OCIfC800mEzweDwd+aM+hnS9BzJmhY83NzXFjx2w2C5vNhlAohGQyiWw2i0KhwASml0Srd55u74WeMBXJixYHZDojk+DW1hY8Hk/LwoBIgEx7nfKetOMgrVXbzoS0CafTCUVRuOGiVpgSsSeTSf5ua2sLFosFa2trsNlsLSZE0kwovYCiWVVVxezsLIxGI37yk5/oBhgZDAYkk0mUy2X4fD5cv34dt2/fhtPpRDgc5qRp0ty0iyet5tXuPaLnw+l0otFosLbo8/lY2xfvlaqqWFlZQTgchtvt5oah2me5WCyyVruzs8OdsSl3slwuw+Vy6RYAaEeyet9p5zvqkMT1DzhK4qLjA8NJXnpal6qqbOoDwN2XRVNHLBaDz+fjF9VoNMLn8yEYDOLtt9/e56cgsiHBKwY26L1M7eZEQo9aowB7YfEul0vXN6Z3jmazCb/fj6mpKaytrWFubo7LC5nNZkxPT2NjY6PFTNZsNjE3NweTyYSbN2/qdtUdlFAQhSDNWXuvqJ6jqqrckFLUSOh6UyIx1fzrBhTkAryXq0WFkR0OB5dcEks6eTweKIrCDR9NJhNXyDcYDMjlciiXy6yZKcpeQ0i3281jp3Pn83k4HA4UCgXk83k2nWlrVNK5SQMk7TuXy7F2Va/X4fF4EI1GW0L521kdtDCZTHjhhRfwxhtvwGq14tq1a8jlcnjw4AHX0FSUvTQFOu7u7i6bR6m9C51LW2Mzn89jamoKJpOJtbDNzU0OuLl79y5/d5CJ8zBmwVHyiUniOkZoNYmjOP4gyIuE4sLCAur1OrebJ3MVAK4D6PV60Ww2kUwmAeyZaKgYayAQgNlsRiaT4ZJOpBlQtGEikTjQF6SdE4VV2+12zMzMYHV1lRtKamvokSlPz5dCPrnz58+zjyiTyaBeryORSEBVVVSrVQ7RrlarWFpagtlsxpNPPonFxcUWAXnYF/4grYvmbrFYWAAbjUbuI6YoChfqVRSFzXrAe4WE25WA0tNm6LyktRERUhsTsRAysEc458+fRz6f5wUE+WsymQxHiNK5XC4XZmZmkMlkOLiE2spYrVY4nU5sbGxwbUQqrksVVoC9gBqbzYZCoYBkMolbt27B4XDA5XIhlUrhzJkzKBaLXKtShFaAt3t3Go0Gbty4AYvFApfLhaeeegoPHz7k3DkyHVLYP127ZrPJgS2iyZt+i+bGQqGAixcvYm1tjcm/Xq+39GwTtUKtHNEuzNrle7Wb+6hBEpeAo9a6xPMAwxO0obfypI6wJAwprJmEF/1NIevk86LqCrOzs2g2mzhz5gwWFha4JX29Xsfs7CwqlQo2NjZazq+Fdh7iijOTyXBVB4oaA97rgBwIBOByubC4uLiv7JH4e3NzE/V6HRcvXsS1a9fwgx/8AEajEbOzs1hfXwcA9meRaZASpSnH7e233x64pqX3N5k2SRMBALfbjYmJCUQiEc4DqtVqUFWVq2yUSiW+f2KpJgIJUlEQtjPLmc1m+Hw+JqR0Os1+JIpAbTb3iuzmcjm43W5YLBb4fD4sLCzAarXizJkzePDgAft9KpUKzp8/D6PRyAEo1WqVG4yWSiWcOXMG9XodqVSKtX9VVXH58mW+j9TKptFoYHl5GQC4RBU9nzTPbu+XmMfn9XrhdDrxyiuvoNFooFKpcO4ZaZV0z8isKj6XdA99Ph9HYjabTUxOTiKfz+Pu3bucBydaIyhxXhy7HunqWU70qqaI+4wqeUniOiGQIG2XGHzYY/dDXuKDL5pkSEgSYZGdP5FIwGq1wuFwcHmhqakpbGxssFCjthaVSgXNZhMWiwXpdBqRSKQlGVk7BvEF1a42gT0hGYvFEA6HuYuyaAay2+3IZDJs6tOSFgBOhDUajVhdXWVTWqFQwN27d1nYUz6N1WplErx37x6H2LerXaiHg3wpnWAwGDA5OcktTkqlEhcNrtfrrIWQ6dBqtcJkMuHChQvI5/OoVqu8GNEzlYmkpWcV8Hq9cLvdOHfuHCKRCIrFIjweD5tMAXA6gdfr5fwkt9uN3d1dmEwmDp64fv067t69i2QyiWq1ijt37qDZbLb02VIUhf2PhUKBNbdYLMaLImpSSX4zqtloMBgwNTUFo9GIjY0NjsZsZ0Zud71pH2puSZVdKpUKAoEAJxmLGrHdboei7OWUXbx4Effv38f29jabp69du4ZYLIbt7W04nU72FVKQj15jTL3FrngPxXeHSrRpLQGir3TUIYlLwFH7ofTQKTH4MOiHvMQIMb0HnI5J1Rs2NzcxNTUFg8GA7e1tnDlzhqPcqMI6lf8hM2Oj0eB8KbENhngOApGWy+VCtVrlaDWRvDKZDGZnZ7mfk9lsRiqV4gRe0TTWjlxoJS9WjSfTJl0Pyl/LZrPsjG+Xk9YJ3ZimOu2rqio2NjZ4ASFWx6D5U9FiMjfdvn0bPp8PmUymxY+kbZhJfbQMBkOLP4iILJVK4fHHH2f/Vz6fRzabhc/nQ6PR4AAF6lpNhFKpVGCxWPhab29vc6QiBfNQknuz+V4ZMFFboMRcMbKOQtupE4Db7W4hrmazyX5K0Rcnaix6fh2995GeX7fbjampKdy+fRtms5lrK9L5LBYLLl26xAu+t956CxMTExwgQ9GZTqcT09PTXFuSKrHovXNa4hHHRlqwmOsVDAZhNBp53mLwjLhvO81tFIhNEtcQ4KgIcxCal3ZVR+Ygv9/PEYVPPPEEFhYWOEk1GAyycDeZTBwpRX4yMhl2Evji5yT0JiYmcPnyZfzsZz9jpziNR1VVfPCDH8Srr77KOUDJZJIFRqc+ZgeZKmdnZ7kFi91uZ+HZLlKv2+ssnuOgbcjss7KyArPZjMnJSY46I0L1+Xxwu92IxWJsvnM4HNjZ2eGOxBQ4kclkOMiG7rPFYkEwGESxWGzxXREajQZee+01WK3WlmjDarUKu93OATdEotRRwGq1wufzIRqNssZKvtNgMIg7d+7ophPQZ41GA7du3YLNZtuXo0f+IfLl0TNar9e5xqLL5UKxWITBYNhXuFbvHdFqNaKmks1mcffuXS4rRlGFVN4M2PPdiaki6+vrbMKu1WrcM21tbQ2rq6ushdL5tO9dJ78n5THSYpC0wjNnzuD8+fO4f/8+dnZ2unrPRgmSuDToR9gP6ryEQZ7/MPPRvjikHe7u7nJJHbvdjps3b8JiscDpdCIajXKgRLO5V/GdTEmKovAqW0si2v9Fs4fP50MkEoHNZsODBw/Yz0TmqEQigYmJCcTjcUxOTiKbzSIWi3FbkGg0yv6EducTzysKh3q9juXlZRbEWiI8DEQBqrcS1gPVTKzVajCbzfB4PLBarajVanA4HDAYDHzNS6USmw/J70UFiElLmJmZQTweh8lkgtPp5FJXeloH3T9KcqZUBKoiT8WRVVVFLpfD3NwcyuUybDYb9/VSlL3Cx8vLy/B4PByJp6oq+7bIvwWghagonFxr+m00Gqwx02dGoxFnz57lZ4UWOT6fjzVrt9vdNjhInL94HUibUxSFq/M3m3slw2ic77zzDsxmM86fP4/Nzc2WgseUwE0VMZrNvcAmOh8F35DWLD4jwHt92uhaEBnSPadIzmazibt378LpdPIzS3MRtVrxmRsljHUH5HY4qZvYq9mpl+P2OoZ2oBwWqls3MTHB+9hsNlSrVeTz+ZZgADIhTUxMYGpqCleuXNlnkmxnIsnlcrh79y4qlQouXLjA/q5yuYx8Po98Pg9F2WuieOnSJRSLRUxOTgIAC0Ba5XczRxKE4jYUwh2NRhGLxdqSltYnof3pdM07QRSgdP0dDgdrgHa7HZOTk6jX64hEIiiXy2yWIhOr0WhEPB5HKpVicycJPrfbjcuXL+ODH/wg+8bEQBwiKe14gD3z4szMDJrNJpsiQ6EQLl26hGw2C6fTife9733wer1MRpFIBIqicDQezcXr9eLatWvw+/1cqUV7X8TrJS4gaJ5idfnFxUWoqgq/34/z589jcnISJpMJMzMz8Pv9eOyxx1rmKP500sK09+uRRx7hLtVEJJVKhaNRzWYzwuEwZmdncf36dVgsFg5iIlIyGAxsnQgGg/D5fPB6vS1jURQFDocDly5dwtzcHMLhMFRV5UR0qtihqiqWlpZQLBaxtbXF7+Hk5CT8fj8vdrrpIj2skBqXDk5K6xLPr7cSP+wx+zmWnrmCPisWi1hbW+N6a2S7JxKLxWL8YiSTSRau+XweVquVzTYHnZvCgt966y3ugEs+nHPnzqFYLCKdTuNHP/oRVFXFw4cPAYBt/NoVejdErkek2moPWjLsBu3uQbv7oygK5/AA7624yVRHgpjMgxMTE3C5XGg2m1heXuaVdTKZ3NcRmUpFUVHhdDoNu90Ok8nEXafPnj2L5eVl9qXRwoG0vGq1itdee62lTBG1oAmFQrBardja2uIIO7vdjrm5ObzxxhsolUoc8EH1GCl3UK+7sWiebFcfksjdYDDwfIhMxMWWqqp45513Dnwn9DQv8XxUFUaMtCVTrlh+jJqaPnjwgANYRA0TACYnJzmidW1tjX2ZIrlQJOaFCxews7ODfD6PQCAAYC/lgczH1OyTfttsNm4+mk6nMTU1xe9KN12yhw2SuNrgpMmLxjBIAut2Tnpkpf2fBEShUIDX6+UovmKxiLm5Oayvr7fk2FDZHrPZjGQy2WIuPMjHJGoPVItOVVXYbDbcvn0bNpsNiUSCzUClUgkmkwmTk5OIxWK80u9Hm+2HnDodq9391F5j+ttoNOLcuXNIpVLst6JEcK/Xi8nJSS6H5HA4sL6+zqYkAl0/kbzpN5myyPxHpZZMJhPOnTuHK1euIBAI4Gc/+xmbFy0WC/dVE89B2gq1jykWi3A4HLDb7byIyGazbDar1Wpctd9gMKBcLnPJIzFQyGq1smZFvivxeupdQ5qL2WxmkovFYqhWq1hdXYXRaOQUB1Gbo/1NJtM+k5pIYBQh6fV64fF4uJeYoiiw2Wy4dOkSFhYWOEHcaDQil8txorXNZsPs7CwikQiSySRbF5xOJ3Z3d3Hx4kVsbGy0kDVdl2QyiXg8jmq1iqmpKe4WQMWGqVSWxWJhDZzSKC5evIhbt27B6XRynqYW2nMOIyRxjQD0hNphjjUozYv+LpfLLKwoLF6sDE8rcGpBf1CwhPacZAqivC9gL8qLqnqUSiVYLBZkMhlecSrKXimhXC7HfoR2gq5baEmlX+j58sTPxc9IUFFH5tnZWSwsLMDv9+Py5cu4d+8el6gCwJoRCR6qHUjH1wokIodKpYJwOIxKpcKRgJlMhgMnZmZmsL6+znUqd3d3YTabMTMzg93dXVitVrhcLtaEaWGTTqdRqVS4ssnu7i4XnSWyovY5sVgMLpcLbrcbjUaDNXYKdadISAqy0LuezWaTidVsNiOdTmNzcxPJZJKJ3+VytZT6CgaD3PeMSI9ayORyuX1dpGnhYbfbOWLQZrOh2WxysvGdO3fY/OdyubgaCPVVo2eactwot0tVVW6fozXRis/G2toa3ve+98Hv9+Odd97h5pOUIC4GExkMBjzzzDPY3NzkxHq9gsWjBElcbTBIshgEBql9dUNeevMX91OUvT5CzeZ79fPcbjcXM6Uw+LNnz8LhcLAgPCiEXM9ER+fTmmyovA9tY7fbWXgUCgWu1qDn0O8HB2mG/RxLT/MSPyPT09mzZ/H222/j4cOHMBqNyOfz+Pu//3s0m02cP38ea2treO6559BsNrGysgK3243nnnsOMzMz+O53v9u2iaZYh5BynXw+H/sHo9Eol8KiROZiscg5TKSFUWPIs2fPolqtYn19nRuCUhQp1d+jyvNXr17F4uIiL2yI6JLJJFRVhcPhwJkzZ7C2tgaPx8OCeGlpqaUnnHhfKYCEBD8Fq4jkQ6a9RqMBi8XCRZSJXK1WK7LZLCYnJzmlQEw7oHOUSiVEIhGoqopSqcTVZKiJJ4WlK4rCfklaWGWzWezs7AAAR9oCwNNPP42HDx9yN/FyuYx4PM75d16vF9lsFoqisLY2MzPDDTrj8Tjy+Ty8Xi82NjZQLpdhNBrx9ttvo16v8z0Rg15GEZK4RgztVuv9HKdfgUumEr/fzxUM7HY7zpw5gzt37rSUIyqVSpiYmIDBYMDGxgZHcfWq+Wi310Y6+v1+AODSR9FoVDdBeFDQG89hrqfesUlQAWCTGkXtLS8vw+FwYG5uDktLS8jn8/jJT36CYDDIgrBUKuHu3bv7Vu3t7v3Ozg6mp6fZ1JTL5VCtVrnRI4EEHvmKSKuq1+tYW1vjWoROpxOBQABbW1scJk8RjcVikUt1URQchbEDe0EfRFY+nw9WqxWhUAiJRIJ9e9rkchoblRIjs6Y29YJ8SgbDXvPG69ev40c/+hE8Hg+uXLnC2iS1GRHztEQUCgVUKhV4PB4Ojrhw4QLP1+/3o1KpYG5uDmtrazAajdzd2GKxoFAocFAJldC6ceMGlxqj60/J1NS8kxZj8XgcVquViTUQCLDPzGKxwOv1MpGVy2XY7XbOA9Q2QB01SOLqgGHwc+lhkOTV6RidvqccHaoar6oqVldX2aQD7AmfZDKJiYkJ9jUcxlzXblsK+PD5fOyM7sYceRhTYadj9XJPDroHpOWIvkFgb1FgNptbOkvH43FO7gWAhYUF9jHq1Wuk84r+KTqfzWbjiD/gPWFJ29dqNayvr3MpLwpESCQSHHhAOXZutxs7OzvIZDLs76RwfjF6UUw8rlQqiMfjnFScz+exsbHBoeJEWiK05Y30kqzpOzHogfKyGo0Gtre3OZF7cnKSzdPtFiZi9RW73Q6LxcLa287ODjweDxKJBK5du8YpAFRj89atW8jlcuxvozHUajU2UZLpk+6B1WqF3W7H1atXOWqx2dwroEz3GQDW19c5ArVer8Pr9bZovWTSHFXiUpojOPJMJsONCY+aWAYZ2XcU0Ms1Ocxx9KANmSWNi+z3Tz75JGKxGCwWC5aXl9mfRCvecrkMv9/PnZAH9cJoTWpkXiLhq3eeQZ+33fe93g+9a0zCVfytKArOnj2L+fl5LC8vswZy/vx5vidvv/02H4dasogBKto5UKTi9PQ00ul0S6h9NptFKpVq0bjoWhPh0PEokdbpdHIuF/mRqFyVzWbD5uYmMplMi2/IaDQimUxybUEiFwpsoC4AVNhWLI9E0EYaHnTvaR4AONiHCkNT+S+qfUgdiSkvjvYnUyCR9dmzZ/n5CwaDaDabePTRR3H16lX81V/9FeLxOCdDf/KTn8S3v/1tNrFvbGwwoWhzBekZIBOt2P3a6XSiVqvBYrGwmZ56ya2trbUsWOjYnfK4ejEhHsbcSOdMp9N8f7uF1LgOwLD5urTQvoz9jrOTdilGeBFIuFSrVUQiEe42K7b6oHwWYM/UNegVnnhvGo0G55DpVeUY9Hm70b4GFUwDvNeQUFEUrK2t4YknnmChX6/XEYvFEAgEWhJXAWBzc5OP1S4QhOazvb3NgqhSqUBVVSYSkThJ8ImaGpEQmQhJO6CE3cnJSXzkIx/Bj3/8YzaNNZtNjswzm83sNxKJp1arwW63o1KpIJ/PM5GIc9Le53b3Xk9DEwNJKGTdbDZzmDnluz366KMwm8344Q9/2JLMS9ecFgakhRL5eTwexONxLCwswOFwcApINBrFH/7hH3L3YzKh0lhEkhHnSvliFNAiFlSmqN16vY6VlRUmv14JfRQgieuUYBDmw04CVxTW4kuVy+W4MjnZ17V+Jb0XpZ+XpZ0mI55H1AyOEocxs7bbvtPcgPf8ebVaDW+99RYikQhf71gs1tIwUbzGYrK3nobebO6VMiLtQdR4xHOL2pXeeEnrKJfLOHv2LO7du8fjm5ycxN/8zd9w1CGNMZ1O49y5czw3KiBMUFUVjUYDHo8HXq8Xq6urbBLTzqGdUO7GVExzpnw2r9eL8+fP491330Wz2cT29jZMJhP7kcrlMqanpzkwhbQ30s7OnTvHnQei0SgKhQISiQSy2SwsFgump6dhMplw+/ZtbppJfim3281FnsVxUvoApXxUKhWuWk/+rEKhwL5FsZSWeH1Gkai06Clt+vd///fx+OOPw+12c9TS//2//5e/bzab+NrXvobp6WnYbDZ85CMfwe3bt1uOUS6X8YUvfAETExNwOBz41Kc+1RLmPIwYpRutJY1+j6H3md7KllbYFAxgs9laNB6R5A5bKkl7HG2E4km8lJ3OdxQaJl2DpaUl9l+Q5pBIJFrqQBIOWkRotyNi0SYsA++ZrIg0SGBbrVYYjUZsbW0hGo0iGo1y4m+5XMbt27extraGlZUV1hYAcCL666+/jq2tLa72TveXtLl4PI5arcZVPURTKuULaolUO+9Ozw5tbzKZ8PTTT6NWq2FlZQV2ux1OpxMAWvKtKDJQURSEw2H4/X74/X7WgKm8FiWGkwYkRmDeuXOH0wDi8Tg8Hg8mJia4Cow4B3GhSOZGukeZTAb37t3jYI5r167tS4E4Cm3rJOViTz6uv/iLv4DRaMTFixcBAH/0R3+E3/3d38Wbb76JRx99FF//+tfxH//jf8S3vvUtXL58Gf/hP/wHvPrqq7h//z5cLhcA4F//63+Nv/iLv8C3vvUtBAIBfOlLX0IikcCtW7d0C3vq4Th9XIRh93Xp4bBj1ttXG5ZuMpkwPT3NeTLiy9FOWB412o37OM8nopuyOnr3StxP/E4U3Np9tBqV3n7t/hbJSO9/Iihg756Sz4XGSRGCAFry6VRVRTAYRDKZZFMmBdE4HA7WskQzr7aqv+jvokARIgIKytnd3eX9taTV7hnUXkuz2Yy5uTlu3WM0GtlMSaXLyH9KY7p06RICgQC3KqHCwsViEcFgEF6vFysrK5iYmOD+Y5RiUCwWW9IFfD4fN8qkAAvteOl+GI1GDm2n4A4CXWdtwEo3xNWt3+qwCzPatx8f16GDM/x+P373d38X/+Jf/AtMT0/jxRdfxG/+5m8C2NOuQqEQvv71r+PXfu3XkE6nEQwG8cd//Mf4zGc+AwDY2trC7Owsvve97+ETn/hEV+c8CeKic40aeQGHC+Bot49oNqKXsNPKftgwqKAW7fHafddPQIdewIbe9gcRmDYQo93+WqKi7+h/m82G+fl5DvYwGAz46Ec/irfffps/E30qtB+1HcnlcvB4PIhEIlxhnxKMqaxXs9nkSEWtn4c6XwN7cmdrawuVSgXz8/PIZrMtplMxOOegZ1EbCDMzM4MzZ87AYrHA7XZjbW2tJcWANF3y73m9Xly6dImTq+mdmJychMPh4PD4Rx55hAsf7+zs4MKFC3C5XPjpT3+KbDbLeWAUPaqNnBTHSdfN7XYz0VNwC72HB5F3N5aVTjhJ4uq7wmK9Xse3v/1t5PN5PPfcc1heXkYkEsELL7zA21gsFnz4wx/Ga6+9BgC4desWqtVqyzbT09N47LHHeBs9lMtlZDKZlh+J7nEYM1q7/UTzAyVpDspcp2f+G7Q5UBSKR21iPIpj65lt223X6fzdEjf51qiBotlshtlsxltvvQWn04lwOIyZmRn289C1JWFbq9W4gzAl/5LApSi42dlZmEwmzM/Pt3RqpjlQXUAA3M/NYDAgmUxygd9gMMgh/NrrdNC1JC1yd3cXDx8+hMFgQLVahcPhQK1WQyAQQCAQaNEKKeT/zTffxPr6OmtOTz31FFdzIV9VoVDA2toaa11bW1u4ffs2k3ilUkE0GuVO4nqmcLoXlJiuqiovDijnT+89GaSJcBjQc3DGO++8g+eeew6lUglOpxPf+c538MgjjzDxhEKhlu1DoRBWV1cB7EWWUetv7TaRSKTtOV9++WX89m//dq9DHTjEB2cUcZjx6+2rfTEOc9yDPtPbRquB9AutlthPxeyD5t/v9en2nNr708v5DtII6TsxBL5arXIrFDL1USIyaUgkSC0WC1wuF5dz2tzc3BfGTrloZrMZ8XgcLpcLhUKBzXPiHKldDQAeB9XqI9+T3rXqNDe6Xn6/n4nh4cOHCAQCyOfzSKfT3L9Ma0qjsZP5jhqcUjUMsVo85bFVq1UOuadrKjZW1fMFU1Qh5eZRq5ZgMAiXy4UHDx7AZrPptvDp5lqMEnomritXruCtt95CKpXCn/3Zn+FXf/VXcePGDf5e+wJ08wIdtM1Xv/pVfPGLX+T/qevtSeA0kBdd736JphN5EfSeg0Gj07kPc39IU6BjHQe6OU+/5KglZG2AhZ6ZkT6jMHeDYa85JyUC0zEzmQysViuq1eq+TryNRgNOpxOhUAgLCwtsGtSGtDcaDYTDYeRyOS7BRIEmoumRxkSFaiuVCiYmJmCz2ThUnppaUgDIQc+d9hnKZDI4d+4ctwNJp9NcwHlra6tlLOJ1Et8pVVWxsLDA10I0iTocDvj9frz11ltcoPratWt48OABd5TWkhb9TQRvt9vhcrkQi8WgKHs1E8lXJgZl0O9OJKa9FsdlJjwseiYus9nMwRnvf//7cfPmTfyX//Jf2K8ViUQwNTXF20ejUdbCqIhnMpls0bqi0Sief/75tuekVuASg0Mnkul234OE6ElBb6V6Esc4DPo930HkRqt2r9eLXC7HWgHw3spf67/0eDyoVqtIpVJQFIVNX1Q/j4IqtPUQqTYlVUYn054Y9agoe6H1CwsLsNvtHBq/vb3N89FqXMlkkkuNAYDH40GjsddMsl6vM3F1o2mIxENm74cPH6LRaHAgCpFiu33pb6p5SMnXpEERoVFuG5U9o4ogOzs78Pl8UBSFtcV2PqlcLgeTyYTLly9zR3GqX/noo4/izp07fZHWqOHQXcSazT1H6Llz5xAOh/HKK6/wd5VKBTdu3GBSevrpp2EymVq22d7exrvvvtuRuIYNJ73aGBQO6zca5uswKJ9YL8fo9zyDJMVOgooqZJjNZly6dAmNRoPNf0ajkUPL/X4/wuEwwuEwAoEA/H4/MpkMR9dR4qtoEqM2G9rrbjAYuFtAs/lePUJtYiyw1+16a2sLd+/eZaIQTWe0rWhSSyQSuH//PtbW1vg8u7u7+9rmtEudEO8t+ZnK5TKq1Sp2d3extrbWMmZxH6PRiJmZGe4yTK1DKpUKLBZLy7i9Xi+q1SpisRii0Sgfk5LHafxUrkxLPuI8EokE3njjDS7zRI0kyV+m98we5fN7EuhJ4/p3/+7f4Rd/8RcxOzuLbDaLb3/72/i7v/s7/OVf/iUURcGLL76Il156CZcuXcKlS5fw0ksvwW6347Of/SyAvZXR5z73OXzpS1/iF+LLX/4yrl+/jo997GNHMkGJg3EY7Uvcf1jNp4c1j4rH6Mf/RfsDnc1yRwU6h9FoxPz8PJrNZksDQe2cSCMjv3MikWiZg/i8lMvlffUARTNkIBDA8vIy76c1g5GmMj09DZfLhZ2dHWSzWY6OE7dvNBoIBoMol8twuVzIZDLI5/PcC+7MmTOYnJzE3bt394WBt4N2LOKzQsSiNQlSwV0KzQfA5a7K5TIHoFDV+2aziXw+z1U0qNFjs9mE3W5vaf3TKVhI/Jx6khEosbtf0ho19ERcOzs7+JVf+RVsb2/D4/Hg8ccfx1/+5V/i4x//OADgK1/5CorFIj7/+c8jmUzi2Wefxfe//33O4QKAb3zjG1BVFZ/+9KdRLBbx0Y9+FN/61re6zuEaFgy7sO4Hh53TsF+TQYxPr/xVN2hHUMfpQ2s0GlhbW4PVasX8/Dx34hUrZTSbe7lF73vf+6AoCra2ttjvIkaOisSgDbEnTU5RFNY+aHutBkW5WZlMBtevX8f9+/f3kZYoiKnbQK1Wg8vlwvr6OmtnGxsbcDgch44U1SMzvd/U+iUYDCKdTre0YqEuCTQPMXBFvE5U9b+bJOGD5qO3XbfXYNTITRbZPST6XYEPMwYVmHDS96YTDqvptLvv7Y6pd75Ox+h0nIO2E4mE/qdtbTYbLBYLLly4gLW1NUxNTWF7e5uFKpVt8ng8sFqt2NnZYdMcaSCimU8ELT4VRYHD4UAoFEKjsdcIk4I3SqUSE43ojzObzZifn0cikUA0Gm0JlwewjyiJcClsXLwmB1Vn6eYeiddO+52YAOxwOHD58mUsLy9zk0uPx4NwOIw33niDgyUURWnpc2a329m82imVpBsC7kR23aAfku82Sfmg8wKyyO6JoN8V+DDjsKbDQR/nKDAI7fIwc+qF4Ho9RrttKNjC6XQiGAwilUohm83C6XSiUqlgamqKqzX4fD7EYjFYrVZODPZ6vUin09xJWHsNyYxGTSkDgQASiQS3v6HOv0BrOSYKBac2J9oxi4KVyEw8Vr+aRi+RnNr7TZGZRPy5XI5NpqVSiZOjaT8idUoRAPbyugC07Y11EKG008RGUBfpGZK4BoDTSF7AYHxD4rEIw0JihyGvXvbVXr9+n5VeiUr7Pwlbqghx7tw5PHz4EJlMhisvUBULqrdnt9u54nggEIDP58PDhw9Z6IrHNplM7BMqFAq4f/8+522S+dBqtaJWq7UEEQB713N9fZ1Jjz53uVyc76T1d4noRWvo5d61W6BQMAtV6xCbloqllkTSowCOs2fPctI0NY2k5pbdzGXQhNXrfsNAjKdP2p4QhuFmHhXamTEOc7xhgV7AQC/79gIijk7fd0tOesfRmrrEv41GI86fP89RhHfu3MHGxgb7n8vlMvL5PJdVstlsOHfuHOdmUdi2XuQaXYdz585BVVWYTCbWvMiHFQwG4fF4uBuvuB+ZHuv1OqampjAzMwOj0chV1L1eb8t10WpWenlP3RR17uW+i2ZCg8EAt9sNh8OBYrHIlS9E86Z4fgC8MMjlclhcXORSUaRlimPvFJjRzn93XKQ1LJAa14Aw7IEJh8Wg56d9YU76uvU7v25Mhgf5DLshLD1CancM+pt+aJUfCoUQi8WQTCaZ/DKZDGq1GoxGI4rFIqxWK9xuN5xOJyYmJpBMJqGqKnez1hKWOBaKqJuYmOA2K9SuI5/Pc0Sdno9MURQu7ZbNZmE2m7mcE+WSUZ6WqHHo/a3FYbR98ZqKvi3yV2nLz7Vb5JH2Wq1WUSgUOI2ASmS1m0M3gRmHIS1JXBKnnryA96pKDHqOw2BKPKzfSgs986A2tFq7Xafj6Pl/9EyDZG4jsx1FryUSCW7ySLUDd3d3Odn2qaeewjvvvIPl5WXMzc2xZlUqlWCxWPChD30I3//+93UrjptMJuTzeXi9XoRCITYp5nI5/u10OjnXShtQAYC7+yqKApfLxWZFg8GA7e3tfVpVN6Qlbq93X7q5BxTUYrPZ2BdH4e8Oh4NNmXpjazQasNlsePLJJxGJRJDNZhGLxVoKEYtRhSK6CYA4buIZFrKTUYUDxlEI9WHEcczzJK5jP/PSi0ajvykCLhgMIpFI8IqdElAPOq72HNrP9L43m80Ih8O8ui8UCpxc7PV6UavVOAlWJGuq96eqKvx+P4LBINbX19Fs7uUhFYvFlorlWkKl8lDPPPMMCoUCtre3ef9mswmLxcJFdbVEQn3dKOrx+eefx/b2Nubm5vDqq68iFouhXC6jUCi0jKEfQdpuAdCucj5VbZ+dnYXP58P6+jpKpRK3FVlfX+exiMnKwHv+b5PJxJqmmBxN23QKNNHDYcV2vwR0FC4DGVU4BBgHrQsYbOBGp3OIOI5rOqj7JxIJkcbFixcRi8W4tQdF6/V6PL3xiec6d+4cpqamEI1GUS6XeVVPBV4B7BP+AJjgSMhSG48zZ87A4XBgcXFxn9YjgipPvPPOO7h27RprFiSYqV+bHprNJleBcDqdWFxchKqqiEajXNqJKsYfhrTaga4dJRdrr2ulUkEqlcITTzyBaDQKYK/0VCqVYrKfnJxEKpVCNBptMRlSsIueGfGo5nMQRlBfaYEkriPAuJAXcLxzPS5zYq9z0poYtT4mUSAajUb22Whbs2uhXfXb7XZYrVYuS6St6qAoe/lTqVSKBer09DQePnzIRCWWS9JDo9HgVvJWqxXJZJKrbFBwgN4YCWazGc1mE0tLSxy0oPWLiddXe52IpKjI7cLCAi5cuIBUKsXJunTNDuvbEQNcbDYbLly4gEQigVgstm8fqsX4wx/+kMeoKAqbXo1GI0cG6mlP7fxXvZLWSWlagzr/oCCJ64gwaH/JMOMk/FNHfc7D3j8SxNPT09yzyW63o1wuY3Nzk0nnoGPQb0XZ67l0+fJlOBwOvPbaa9z9lzQVilSbm5vD+vo60uk0UqkUB0S0E6DaeSeTSXg8HjgcjpYEWb2xaUm+VCpxIe12Alw8FwDWWKxWK8xmM1KpFC5cuMCtRLLZLKamplqqz+uNu1uIY6e/qXklNXQUj0dBGUReBoMBV65cQalU4hqEdK2pYog4rnbzPm5Na1j8U4OADIc/QpyWh6QbdCMUR+3c/R6PmvxZrVb+e3JysqWduhjk0u4HaNVKisUi1tbWsLW1BZ/Ph4sXL7KWYjKZYLFYYDKZmLympqa4K7H2GpH2pP1pNvcqpMfjcSwvL7doaJ3MhOTDmp6exnPPPbdvGz2zIv1Uq1WcOXOGW6BUKhXcvXuXfUmqqiIWi3Ho/mHNa9rtxQWGw+HgUPypqSlYLBbWmKkArs1mQy6Xg9lsbjkGsGdu9fv93M2inZbVj6Z1WE3psO/HIKplDApS4zpCjJPJkHDScx7k+fs9ltFo5CAIp9MJn8+HnZ0dnD17FhsbG/ui0NpBJDCz2QyPx8MmrkAgAKvVinK5DLPZzLXyTCYT4vE48vk8tra22s5LT4hpP6/Vam3nrudjA/ai7O7fv88ap9jbTKtp0N/VahV3796FoijY2Nho0RABYHd3t2V8gxDC4v4ej4drDsbjcfZHUpfnRCKB+fl5rjpPASYejwfT09PI5XKcsA2ACU57rk7+rW7HKrEHSVxHjJMW5CeBYZjzoEyJ/cyl0Wggm81yyDT1WKJkXK0pqt25tL/r9Tp8Ph+mp6fZtJZOpzE/P4/t7W1Uq1XOodIGfnRjIuz0vZZ8tJ8D4GaJ1OSxVCpx00faTwxSoGslolOF9EFr1WQqLJVK2NjYQDweh9Fo5KaW5XKZ+2pls1lYrdaWIsF+vx9erxeFQgFms5kbWVLrl05jP07rxKCJfhggiesYMAyC/LhxEn6vdjjs9e/V31Wv17mK+fb2Nnw+X0sbdwAszOnY7XxepHXVajWcP38eOzs72NnZgclkAgBMTExgdXWVIwapkvvExAQuXLiAu3fvtoTd6wmxTiYgUVsQNUDxmpIZbXp6Gpubm3A6naxp0XcOhwP1eh2ZTIZbcnTrA9P+fdD37bRBPTQaDeTzeSjKXidho9GIUqkEt9vNaQu1Wg0bGxuYnJxEtVqFouzVfMzn89wU0uPxIBgMYmFhAclkkvPoOo3/IAyKbIaNdAYBSVzHBEleJz/vw9yDXsmr0Whgc3MTqqrC5XKhXC4jkUiw36vZbLLWRFUp9IIgxPGurq7CYDBwhXHalpoXlkolHmuj0cDq6uqB7eu76VvVad6UN2a326Eoe4m68XgcpVKJK3JYrVa4XC5MTEzgpz/9KRRF0Y021BtDu/8P0h57mQdtn8lkYDab4XK5YDabW4rg1mo17OzswGKxYGJiAoqiIJVKsWnW4/Hg7t27cDqdmJqaQqFQ4CLGR605tpvToM5xnNpht5DBGceIYXwAjgOD8ksMCv2ufrvdT6tBRKNR1Ot1rnFHtfzsdjvcbjeXNxIbMAL7E2FTqRScTiceeeQRFAoFbqJIVSYAsA8mFotx3lS7Yx6k0bSbjxZkIvR6vVBVFYFAgAvKEjEXi0WsrKzsy/vrNAY9zbCf54j2adeOhb6v1+swGo3IZrPY2triPK1SqcT3y263I5FIIJFIoFKpYHV1Fel0Gna7HaqqIhKJIJPJ8H56qQfH4dcalnftqCCJ65gxTAL8ODGM5NWPAOx1G4/HwwJvbm6OezaZTCaEQiFcv34dPp+vhbzE/ln0Px07Go3i5s2bbBosFotcSkgcQ6lUajFVdUoU7/eeKMpe5XODwcC5TLlcDiaTCaqqwuv14vLlyxxEks1mYbFYEAgEoKpqR0LUEtogI9o6+dAee+wxqKqKRCIBo9HIkaBU/eTMmTMoFotwOp28ICmXy1hdXWWtudFocJURvXN3wmHfkUFfKzrmsEGWfDohHGXFiWHHMM692/G0G7teCLvdbsfVq1c5l4pMerTyp4K05XIZyWSSfVSieU97TKPRCKPRyCa6UCiE3d1dXt2LwQNaU5wo1LrN69Kbo/aHxkQaFgA4nU5Uq1XY7Xbkcjn2HZ09exYzMzP4sz/7M+5XdZCp8ChFlDYAxmg0wuVyIZfL7SMAul9ra2twu90tlUZcLhdqtRoymUzLPdar69gOg9CyBn2tjvL603FlyacRwjj6vAj0MgwTgXV7P9ptp+cDq1QqWFlZgaqqcLvdOH/+PNLpNBwOB7LZLHZ2drC2tgZVVfHoo48iFovB6XQiEokwsZBWozWv0f9EdFqI+4n7Uhdio9G4r6dWOyGlF+WozTcjUxsRtN/vZw2Lek4Vi0Xcv38fKysruoELJ+ULot9ikrEeqHI9AKRSKV5AKMpeUeBSqYRyuczEpdUaR4206LjDCElcJ4hxJi9gOOevR0D9gIiDItUoCs3r9SIajTLhVKtVLnq7vr4ORdkrI0SCyGw2cwKueGxgr8mi0+nkiEXRRyYGelAB20ajgfn5eTx8+BAulwurq6sH+q+014SCSyi6TjRver1ezt1KJpNwOp340Ic+hNdff52bLZpMJiSTSbhcrhbSPSrS6nQMvcWHnqbb7nikNSuKgmq1Cp/Px6W4tO1O+h1jt/uOE2kB0sd14hgmv89JYBjnftCYDrpnorBLpVIoFotoNptc0shgMMDj8eDDH/4waynr6+vI5/PI5/NoNBpwOBy4cOEC50SRn0tVVTgcDjgcDo7O83q9bK5zOBwIBoOwWCz8Ge07OTnJ26dSKW5i2M0z2Gw2uQ+VzWaDyWSCyWTC448/Dp/PB4fDgVKpxERN415dXUW5XOYWJSaTCT6fD9evX2/xc/VyfQ8aZ78/esfRqywifk+5XdTXDIBuzcJBz1M713GD1LiGAMOoeRwnjqrH12FwkObV6Z4pisIlf0grcTqdSCQSHFBRKpXw+uuvw2q1olgsIpfLtdj8S6USwuEwTCYT+1JEzSYUCiGdTiOTyaBQKLBW53a74ff7W4IziLhqtRrm5+dht9uRz+dx5swZ3Lt3jwVuO6e+mEuWyWTg9/vhdrtRLBYRjUY5FJ80SGDPH+RyubCysoJ0Oo1YLIZgMIh79+7BZDLh9u3bXPi3F5Nap/vR6356ZAW8d70OOk+z2cTGxgaA96I+f/7nfx4//OEPO45rWDUs7XmGmRAlcQ0Jxp28hnH+B42p3feUz2QymeB2u5koSFAXi0Vu5nj+/HlkMhmsrKy0lEeq1+vY2tqCwWDA1NQUtre3ubdTpVLZVzaKahZaLBY0Gg34fD4mS6vVylrY/fv3Aexpgjs7OweSljhPGp+qqkilUvB6vVw4mFqaNBoNJjWr1cpdfkulEra3t1GpVLhwrzZvrVdheVTCla5FO3OheH4xcbzRaOCv//qv+e+jIK1hJpPjhCSuIcIwCu/jxDAGbQDd+73EYIp6vY5AIIBSqYRMJtPSyHFrawuNRgOlUolNadqmkhR+XSqVUK1WEQ6H2c9FzRRNJhNqtRrsdjucTidX66DgB4pirFQq8Hg8iMfjaDQaMJlMHOZN5rB289H+n06nW0LeXS4XQqEQ+6vsdjtmZmawuLjIZajIdEg+OCLtfoX6cQlwbeAGoP9uarWgUdWy9M45rJDh8EOIg1Z644BhIy+g/f3QRtl5PB6EQiF4vV5sb28jk8mwbyqbzXJ5pKWlJdZ4xPlSJYpAIACn04l4PI5qtQqv1wuTyYRUKgWr1Qqn08maTSAQgM1mw+3btzk0nsoViWHZ09PTCIfD+OlPf4pCoaBLXO2IgcZHBEQVMYrFIorFIhfltVgs3GuMNDSn0wmn04larYZEIoFisajrM2qHYdM2OhHYQZ91i5MgLDrfcS4MZDj8KYH40Ayb8D4uDKP21U7z0t4vg8GAWq2GBw8esDbldrthtVqRSqVQKBQQiUTYdCgm8lJItphgTPlOVDuPqpZTvUJFUZBIJNgX5na7kclkeCxiYEE0GsXi4uI+DU+cSzuhpTUZUkQkBZQQAVKYPd07qpreaDQQCoVQKpU4YKXbcw4TaQHdBfAc9vgnMedhWyC0g9S4hhzDJLhPCsN2DQ5KQBarXYjfmc1mVKvVFh+KuI/WpEZRgVTvLxQKwWKxMEE5nU7Y7XZUKhXuWry1tQWz2YzNzU2YzWY4nU5sbGxw6w36EX0wNJ5ehRaN/6D9bDYbb0f1GWOxWMcSTqMiQEWMonalxXH23JIa1ynGuPu9gOG7BnqalzhGMXmYBDYAroouJu0SSTkcDlgsFq5UTp87nU4mm93dXdjtdthsNlgsFthsNpw9e5ZNiZOTk3j48CE3rwSAq1evIhKJ8DHJN5XL5Vq6CXej9XT7uRbivA0Gw7G2LjlKDGqcwzLnYRhDt5DENQKQpsPhIy89iGPsRggQyVFE4OzsLDY2NmC1WplUJiYmUCwWoSgKdwPWVsqwWq1IJBLIZrNMcBThVywWEQ6HOUiDit4Ce5YLvXp6gxZgojZBHY+10YRHde5BYpBjGxYNS8QwjeUgyATkEQGtykbp4Ro0hukadNJCtIJaO2ZxHqR1+f1+rKyscPt6aoVCJaMoMENVVaiqCr/fj0qlgs3NTa6cQe3kr1+/DpvNhkqlgp/97Gccan/p0iXY7XYEg0HMzMxwW3rtmDvNS5uQ2+lHnGO7JN5+aiYeF7T3aVDH7LfK/VFimMbSDaTGNWIYBc3jKDFM2me7YA297USIpkJK7F1cXITVasXMzAx8Ph9UVcXOzg4ajQaHsZMW5XK5EI/HeV8KtKA+XfF4nHOryJcEgKMMi8UiEomEbh5Vu/H3I9gOirI7amE5TMJ4GDUsEcM6rnaQwRkjjE4Z/uOAYUkbaHf+TvdHDMwg34/NZoPP54PFYuGKGBSVZzKZuLQTlU1KJpPweDyw2WyYmppCPB7HgwcPYDQaAYDLMFHeGPm+qJZeJ18TMFjfy1FoGMMsukbF/Akcb0CGCBmcMaYYxlJJx4lh0b7aaV5EFu32EfejxOB0Os2V26nqOJFVs9mExWJBrVbD+vo6HA4H0uk0dnd3EY1G8f73vx/xeBybm5sIh8NQFIWbVlI0I4Xqa0127cZ32OvS7vj9HmvYMeyalRajMk4tJHGNOMbddAgMxzVoR14HmRNFwZFOp1uIjso7zc/PQ1VVrK2tcdUKq9WKyclJJJNJAMD169fx8OFDpNNp1Go1JJNJhMNhbG1ttVTIoD5TR6VpHUbTGFUhCgxPZGAvGMUxEyRxnQKIq/dxJbBhuAZ6JNXNuEh4iFoQRSZSIVuqIk/5Xs1mE9vb2zAYDEilUvjJT37CxW4bjQbq9TrMZjNcLhcnI2ubG+oJrn6E2WEF4KgKz1HTrk4TJHGdIgyL6ewkMQzalx4OGpf23olklkwmW5KYZ2dnkc/nsb29zSWW7HZ7iykwnU5jdXUVjUYDRqMRoVCIGyFSJY6DxnHQXLrdvp9zDDNOA2GNsrYFyHD4U4dhDS0+Tpzk/Dudt9txacPFxYoX5J+iqEDyfymKgsnJSVitVt4ukUjA4XDA6/Wy9hUKhTiPS4tunPT9hoiP+nMphvWP8jwIoz5+SVynFKfh5ToMTlJQ9ktenfxNYgTW7du3kU6nUa/XYbFY8NRTTyGfzzOpUbSgqqq4cuUKpqamYDKZEA6HYTQauQRTN2MWBba2HX03GPXnsF+iHmachnlIU+EpxribDk9y/p2CMjqNi/brFKkIvBdqn8/nEYvFkEqlEI/H0Wy+1yOqVqshEolge3sbTqcTlUqF24/oHVNvnIMI0hhFnCaiEnFa5iWJ65RDNDuNa/DGMARuaNGOvETC0iMvMfdLVVUYjUbcvn2bE45JK6IQ+Lt378JutyOZTHLnZa/Xi0qlwhqa3tjGkbBOg++qE04LaQGSuMYKUgM73sCNg0LhaRugPXlR8MXZs2exvLwMYK/JpMViQSgUQqFQQCaT4f1E0x51Pjabzbh//z7q9ToMBkNLqxTtWGR04OnEaSItQBLX2EGS1/FqX/2Ql/Z/h8OBUCiE9fV1NJtNTE1Nwe/3w2AwIJvNsvalKAoTUqPRQKFQ4JB56jhMOV1aQXaY6gmjKhBPmzBvh9M4T0lcYwpRgAPjR2LHqX31q3kRKpUK1tfX4fP5kMvlEIvF2E9Vr9dhMpkQDAZRLpexurraEkxBRNaOpMbNLDgO2pWI00hagIwqHHuctoipXjBsc283FovFgg984AOw2+2wWq0IBAKo1+t49NFHYbfbYbfbEY/HEY1GW46jF7o9rqR1GqMDD8JpnqskLgkA7+UMjRu0Qv4oz9PLeGh7s9kMo9GIhYUF2Gw2lEolTE9PIxwOIxqNIhAI4P3vfz+sVit+7ud+DoFAoGV/8fc4ktY4EtY4QJoKJVpAhXsBaT48iuN32waFSjTVajUoioJ79+6hWq3C6XRiZWUFs7OzcDqdMBgMuHv3Lmq1Gh48eMDdhsX5aIV2v0J8lAT/uJkEtTjtRC2JS2IftA/8OBHYUQdv9EpelUoFW1tb3PrEZDLB7/djZ2cHwF5CstfrRTweRzabRbFY3KdxjRNpnXaB3Q3G4RpIU6FEW4yzmeUo593NccVtKNCiXq9jZ2cHd+7cwfnz57GwsIBKpYJoNIpyuYxAIIDJycmW6MTDktYo3PvjMveOAkbhfg0CkrgkDsS4EthJz1lPcyLz4d/+7d8in8/DarWiVCqhVCoxiemNu9d5jMq9Pul7NEwYp+sgiUuia4zryrZdhN4gjtuN5qX9m347HA44HA4AeyWgtra2UC6XOVerl/O0O+ewQXwGx+057IRxIi1AEpdEnzgqYT7MOCrN86BjidGAJLANBgMuXLiAZDKJCxcuYHZ2lovrnnbSGuYxngTG8ZrI4AyJQ0F8YcYliOMo5nxQRKMY1NFsNlEul3Hz5k2u9L60tNS3eXCYhd44CuVeMK7XRxKXxEAgvkDDVMz2KCFGIAKDIbF2BEbnoqrwjUYD1WoVjUaDaw/2mqc1rAJv3EPZu8GoE9Zhxy6JS2LgOAqBPszQvoRHSWBinh1ts7y8vC+Qo5fxDgskYXWHUSetQUASl8SR4SgE+jBDFLyD0jr1CEy8rlotq5tjDRukIO4e8lrtYeSJS1zZSwwntAIdGA8SG6TptJ1frZMQG1YBJzWr/nBaSGsQcxh54pIYLYybFgYMfs6jKrwkYfWP00Jag8KpIC6pdY0etELstAd0aKP9xLmexnnr5Z9J9IfTVPx6UM/CqSAuQJLXqGPcAzoIozxvSVaDxWm7hoOcz6khLonTgXE3JY6aBipNWEcDeV0741QRl9S6Tg/0TIni79MOreDSzvu4roOe8JQC9ehwWglr0HM6VcQlcXqh9+CPC4kB/b343bZPGfR5JfrDaSWto8ChahW+/PLLUBQFL774In/WbDbxta99DdPT07DZbPjIRz6C27dvt+xXLpfxhS98ARMTE3A4HPjUpz6FjY2Nwwyl5fwSpxdivbpxLrQqXod2P3R9Ov0cdAyJ48Fpfo6PYl59E9fNmzfxB3/wB3j88cdbPv+d3/kd/N7v/R6++c1v4ubNmwiHw/j4xz+ObDbL27z44ov4zne+g29/+9v4wQ9+gFwuh09+8pOo1+v9z0RibEFCWgpciVEDPbsSvaEv4srlcvjlX/5l/Lf/9t/g8/n482azif/8n/8zfuu3fgv/7J/9Mzz22GP4oz/6IxQKBfzpn/4pgL2OrX/4h3+I//Sf/hM+9rGP4amnnsKf/Mmf4J133sH/+3//byCTkoJrPCG1BolRwbg8n0c1v76I69d//dfxT/7JP8HHPvaxls+Xl5cRiUTwwgsv8GcWiwUf/vCH8dprrwEAbt26hWq12rLN9PQ0HnvsMd5Gi3K5jEwm0/JzEE77AyHRGXomMwmJk4bWOnCacZTz6zk449vf/jbeeOMN3Lx5c993kUgEABAKhVo+D4VCWF1d5W3MZnOLpkbb0P5avPzyy/jt3/7tXocqIdECIq/TnvwrMZyQi6fBoSeNa319Hf/m3/wb/Mmf/AmsVmvb7fRaMhwkIDpt89WvfhXpdJp/1tfXuxrvaV/RSPQHaVKUOE6Mox/rqN+nnojr1q1biEajePrpp6GqKlRVxY0bN/Bf/+t/haqqrGlpNadoNMrfhcNhVCoVJJPJtttoYbFY4Ha7W34kJAaBdlGKkswkDgvRLCgxWPREXB/96Efxzjvv4K233uKf97///fjlX/5lvPXWWzh//jzC4TBeeeUV3qdSqeDGjRt4/vnnAQBPP/00TCZTyzbb29t49913eZtBQj40Er1CamQS/UJcBI3rM3Mc8+7Jx+VyufDYY4+1fOZwOBAIBPjzF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+fV+wx6AgK2pI9ItRLsckcXyQi5s9HNc1GHjljK985SsoFov4/Oc/j2QyiWeffRbf//734XK5eJtvfOMbUFUVn/70p1EsFvHRj34U3/rWt2A0Ggc9HAmJgUMUUjLQY3yhLUsmcXxQmiN41TOZDDweT8/7ScEicdSQRHb6IQlLH/1ej3Q63XPcgqxVKCExQLRr7TFuRYJPGyRZDRfGirikr0vipCAKvpOq9C7RO6Tvqjsc9zUaK+ICJHlJnDy0L7n4v8FwqLrXEgPAuOVcHRYnQexjR1yAJC+J4YUoNKVmdvRoZ9qV6A4ndc3GkrgkJEYBBwkFSWT9QZLVYHCS125siUtqXRKjhk4mRkDml3WCNP+dLowtcQGSvCROF/QCCfSe79P4zOut/qU2dXQ46Ws71sQlIXHa0U6gtyOvUSA1SVISY09cUuuSGEe0E/TdEMBRvy+ShIYbw3B/xp64AEleEhK9YBgEl8TJYFjuvUwakZCQkJAYKUji+gcMy0pCQkJCYhgxTDJSEpeAYboxEhISEsOCYZONkrg0GLYbJCEhIXGSGEaZKIlLB8N4oyQkJCSOG8MqCyVxtcGw3jAJCQmJ48Awy0BJXBISEhISIwVJXB0wzCsOCQkJiaPCsMs+SVwHYNhvoISEhMQgMQoyTxJXFxiFGykhISFxWIyKrJPEJSEhISExUpDE1SVGZSUiISEh0Q9GScZJ4uoBo3RjJSQkJLrFqMk2SVw9YtRusISEhEQnjKJMk8TVB0bxRktISEhoMaqyTBJXnxjVGy4hISEBjLYMk8QlISEhITFSkMR1CIzyikVCQmJ8MeqySxLXITHqD4CEhMR44TTILElcA8BpeBAkJCROP06LrJLENSCclgdCQkLidOI0yShJXAPEaXowJCQkTg9Om2ySxDVgnLYHREJCYrRxGmWSJK4jwGl8UCQkJEYPp1UWSeI6IpzWB0ZCQmI0cJplkCSuI8RpfnAkJCSGF6dd9kjiOmKc9gdIQkJiuDAOMkcS1zFgHB4kCQmJk8e4yBpJXMeEcXmgJCQkTgbjJGMkcR0jxunBkpCQOB40m82xky2SuI4Z4/iQSUhIHA3GVZZI4johjOsDJyEhMRiMswyRxHWCGOcHT0JCon+Mu+yQxHXCGPcHUEJCojdImSGJayggH0QJCYluIGXFHtSTHoDEHuiBVBTlhEciISExbJCE1QqpcQ0Z5AMqISEhQsqE/ZDENYSQD6qEhAQgZUE7SFPhkEKaDiUkxheSsDpDalxDDvkAS0iMF+Q7fzAkcY0A5IMsITEekO96d5DENSKQD7SExOmGfMe7hySuEYJ8sCUkTifku90bZHDGiEEGbUhInB5IwuoPUuMaUcgHXkJitCHf4f4hNa4RhtS+JCT+//buLqat8o8D+LcdbYcVG5DJ4ezNqqjZYCR2yiBGpihmGVuMJrrpBYneTIVA3GLcvCgXyyBezGh8WTLN3K56wzBLppMat85lWVx4yQpbCAk4YaE2M9AyhXbCzwv/nD8db5ZB29Pz/SRPspznGXnOd3362zk87dEfFqy7xyuuNMCFQJT6+Cy+pcPClSa4KIhSF9fm0mLhSjNcIESphWty6bFwpSEuFKLUwLW4PLg5I01x4wZR8rBgLa+4rrgaGhpgMplimqIoWr+IoKGhAaqqIjMzE1u3bkV3d3fMz4hEIqitrUVubi7sdjt27tyJwcHBpTkbmoG/+yJKHK63xIj7VuHGjRsxNDSkNb/fr/V99NFHOHz4MD777DNcvnwZiqLghRdewOjoqDamvr4eLS0t8Hg8uHDhAm7duoWqqipMTEwszRnRrLiYiJYX11gCSRzcbrcUFxfP2jc5OSmKokhTU5N2bHx8XBwOhxw5ckREREZGRsRisYjH49HG3LhxQ8xms5w5c+Y/zyMUCgkAtkU2k8nExsa2RC3Z61nvLRQKxVOGREQk7iuu3t5eqKoKp9OJXbt2oa+vDwDQ39+PQCCAyspKbazNZkN5eTkuXrwIAGhra8Pt27djxqiqisLCQm3MbCKRCMLhcEyjxRPeziC6a1xHyRNX4SopKcGJEyfwww8/4OjRowgEAigrK8Mff/yBQCAAAMjLy4v5O3l5eVpfIBCA1WpFdnb2nGNm09jYCIfDobW1a9fGM22aAxcd0eJw7SRXXIVr27ZteOWVV1BUVITnn38ep0+fBgAcP35cG2O6YxebiCy4s22hMfv370coFNLawMBAPNOmefB/jUT/HddLarirz3HZ7XYUFRWht7dX211455VTMBjUrsIURUE0GsXw8PCcY2Zjs9lw3333xTRaWlyQRHPj+kgtd1W4IpEIrl27hvz8fDidTiiKAq/Xq/VHo1H4fD6UlZUBAFwuFywWS8yYoaEhdHV1aWMoubhAif6P6yE1xfUB5H379mHHjh1Yt24dgsEgDh48iHA4jOrqaphMJtTX1+PQoUMoKChAQUEBDh06hHvuuQevv/46AMDhcOCtt97C3r17cf/99yMnJwf79u3Tbj1S6vgvt3iJ0hkLVuqKq3ANDg5i9+7duHnzJlatWoUtW7bg0qVLWL9+PQDg/fffx9jYGN555x0MDw+jpKQEra2tyMrK0n7Gxx9/jIyMDLz66qsYGxtDRUUFvvnmG6xYsWJpz4zumvDbN8iAWLBSn0l0+K8UDofhcDiSPQ1DYhGjdKTDt8G0EQqF4t63oMvvKuSLLHmYPREtpcW8p+jy2+Gnf4UUERHp12Lez3V5q3BychI9PT3YsGEDBgYGuD1+FuFwGGvXrmU+c2A+82M+82M+C1soIxHB6OgoVFWF2RzfNZQubxWazWasXr0aAPi5rgUwn/kxn/kxn/kxn4XNl9Fi9yro8lYhEREZFwsXERHpim4Ll81mg9vths1mS/ZUUhLzmR/zmR/zmR/zWdhyZqTLzRlERGRcur3iIiIiY2LhIiIiXWHhIiIiXWHhIiIiXdFl4friiy/gdDqxcuVKuFwu/Pzzz8meUkKcP38eO3bsgKqqMJlM+Pbbb2P6RQQNDQ1QVRWZmZnYunUruru7Y8ZEIhHU1tYiNzcXdrsdO3fuxODgYALPYvk0NjbiySefRFZWFh544AG89NJL6OnpiRlj5Iy+/PJLbNq0SftAaGlpKb7//nut38jZzKaxsVF7XNMUI2fU0NAAk8kU06YeIAwkOBvRGY/HIxaLRY4ePSpXr16Vuro6sdvtcv369WRPbdl999138uGHH0pzc7MAkJaWlpj+pqYmycrKkubmZvH7/fLaa69Jfn6+hMNhbcyePXtk9erV4vV6pb29XZ599lkpLi6Wv//+O8Fns/RefPFFOXbsmHR1dUlnZ6ds375d1q1bJ7du3dLGGDmjU6dOyenTp6Wnp0d6enrkwIEDYrFYpKurS0SMnc2dfvnlF3nwwQdl06ZNUldXpx03ckZut1s2btwoQ0NDWgsGg1p/IrPRXeF66qmnZM+ePTHHHn/8cfnggw+SNKPkuLNwTU5OiqIo0tTUpB0bHx8Xh8MhR44cERGRkZERsVgs4vF4tDE3btwQs9ksZ86cSdjcEyUYDAoA8fl8IsKMZpOdnS1fffUVs5lmdHRUCgoKxOv1Snl5uVa4jJ6R2+2W4uLiWfsSnY2ubhVGo1G0tbWhsrIy5nhlZSUuXryYpFmlhv7+fgQCgZhsbDYbysvLtWza2tpw+/btmDGqqqKwsDAt8wuFQgCAnJwcAMxouomJCXg8Hvz5558oLS1lNtO8++672L59+4ynsjMjoLe3F6qqwul0YteuXejr6wOQ+Gx09SW7N2/exMTEBPLy8mKO5+XlIRAIJGlWqWHq/GfL5vr169oYq9WK7OzsGWPSLT8RwXvvvYenn34ahYWFAJgRAPj9fpSWlmJ8fBz33nsvWlpasGHDBu2Nw8jZAIDH40F7ezsuX748o8/or5+SkhKcOHECjz76KH7//XccPHgQZWVl6O7uTng2uipcU+58Cq+I8Mm8/7OYbNIxv5qaGly5cgUXLlyY0WfkjB577DF0dnZiZGQEzc3NqK6uhs/n0/qNnM3AwADq6urQ2tqKlStXzjnOqBlt27ZN+3NRURFKS0vx8MMP4/jx49iyZQuAxGWjq1uFubm5WLFixYzqHAwGZ1R6o5na3TNfNoqiIBqNYnh4eM4x6aC2thanTp3C2bNnsWbNGu04MwKsViseeeQRbN68GY2NjSguLsYnn3zCbPDvraxgMAiXy4WMjAxkZGTA5/Ph008/RUZGhnaORs5oOrvdjqKiIvT29ib89aOrwmW1WuFyueD1emOOe71elJWVJWlWqcHpdEJRlJhsotEofD6flo3L5YLFYokZMzQ0hK6urrTIT0RQU1ODkydP4qeffoLT6YzpZ0YziQgikQizAVBRUQG/34/Ozk6tbd68GW+88QY6Ozvx0EMPGT6j6SKRCK5du4b8/PzEv37i2sqRAqa2w3/99ddy9epVqa+vF7vdLr/++muyp7bsRkdHpaOjQzo6OgSAHD58WDo6OrSPAjQ1NYnD4ZCTJ0+K3++X3bt3z7oddc2aNfLjjz9Ke3u7PPfcc2mxVVdE5O233xaHwyHnzp2L2bL7119/aWOMnNH+/fvl/Pnz0t/fL1euXJEDBw6I2WyW1tZWETF2NnOZvqtQxNgZ7d27V86dOyd9fX1y6dIlqaqqkqysLO29N5HZ6K5wiYh8/vnnsn79erFarfLEE09o253T3dmzZwXAjFZdXS0i/25JdbvdoiiK2Gw2eeaZZ8Tv98f8jLGxMampqZGcnBzJzMyUqqoq+e2335JwNktvtmwAyLFjx7QxRs7ozTff1NbNqlWrpKKiQitaIsbOZi53Fi4jZzT1uSyLxSKqqsrLL78s3d3dWn8is+FjTYiISFd09TsuIiIiFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItKVfwA7ta5FL6ZI4QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/nFJREFUeJzs/WmsZMl1H4j/bu779va9qquqq6sXks1Wk0PKEuWRSMEYjaAPAwkQYHgwGkAzsgU0JEEajb/Ihk1CNmBhAMEC/MUcCLDpATwa2oAskbDMTZTI3kh2176+fc33XubLfbv/D+9/DiOjIuLGzcxXy+s8QCIz743lxHa2OHHCcV3XxRjGMIYxjGEMzwkEnjYCYxjDGMYwhjH4gTHjGsMYxjCGMTxXMGZcYxjDGMYwhucKxoxrDGMYwxjG8FzBmHGNYQxjGMMYnisYM64xjGEMYxjDcwVjxjWGMYxhDGN4rmDMuMYwhjGMYQzPFYwZ1xjGMIYxjOG5gjHjGsMYxjCGMTxX8FQZ17/+1/8aFy9eRCwWwxtvvIFvf/vbTxOdMYxhDGMYw3MAT41x/Yf/8B/w1ltv4R//43+M999/Hz/1Uz+Fv/f3/h7W1taeFkpjGMMYxjCG5wCcpxVk99Of/jQ++clP4k/+5E/42bVr1/BLv/RL+NKXvvQ0UBrDGMYwhjE8BxB6GpW2Wi28++67+D/+j/+j7/kXvvAFfPe7330sfbPZRLPZ5P+9Xg+Hh4eYmJiA4zhnju8YxjCGMYxhtOC6Lk5OTjA/P49AwJ/x76kwroODA3S7XczMzPQ9n5mZwc7OzmPpv/SlL+Gf/JN/8qTQG8MYxjCGMTwhWF9fx+Lioq88T9U5Q9aWXNdValC///u/j1KpxJ/xPtgYxjCGMZwPSKfTvvM8FY1rcnISwWDwMe1qb2/vMS0MAKLRKKLR6JNCbwwKGLVJViekPKn8Zwm0bUz4Pcu4nneQ+95rLMb36j55GGRtPBWNKxKJ4I033sDXv/71vudf//rX8dnPfvZpoDQGA+gmltciN72XicmocHoWwHGcPvxUlgUTiO9VaXX5R0F0hylj2PrPIr/c96IwQd9iPhq7Z3l+jeEpaVwA8Fu/9Vv4+3//7+MnfuIn8JnPfAb/5t/8G6ytreF/+9/+t6eF0hgE8JJKvRa3Hy1D1kz8SsnDgKouEadByvACr7Rempqub0wCht+x0OU1lWVKZ4OD6r1NPnE+iultcPXqs7EG9mzCU2Ncv/Irv4JisYh/+k//Kba3t/Hqq6/iz//8z7GysvK0UPrIgy3hsCGCgzAaHTGxJVym37Z42jBjudxBGMaghPys0uhwkvtS1X5VGXK6QQUP2/pU+I+i3cNaBsZwNvDUznENA+VyGdls9mmjca7gWTGN2GoHg2phXpqAzR7IMATxacFZ4+KluXppss9SX5ngOSSXzzyUSiVkMhlfecaxCj/iIJr8BlmUo17INtqVTTrb8m01rkHqfR77dVTlq/b5TDg8KaY17FiM97+eDRgzro8oqBbgMOY9HTxpAnwWddrWa8rrF6dnsV8HgWdNQxnVHB8zsKcLY8b1EYQnueD8mNVs4VkjhjYwakb0rBDNUY6F6Ok3inRPAp6VcfiowZhxfcTAyxRmgmHNLLbu8V7leJngzoJZDluOKc0g+zu2/ToI+ClP59BD36b38n9bRw45nW1fnNUcF3EZw5OBMeP6iMAwewx01sWvi7hfLy+/jM22vGEZnFcdw3r2+WG0o+5XEz6DnhczMSA/zje2YNsXZz3Hx8zrycGYcZ1zsLHF2xAJuQz54Kau3mGl91GACnc/YGrrqHDWHYhV1fWk+vUsxkM1Fn6EkkE1oic1x8d7X08GxozrnIKfBWRrmhlkgY5Kqxkkva5uv2dzbNs6DFEVmZKN1nAWxNHWlOanL2y1M1s4KyY86jk+ZmBnC2PGdQ5hWA3DD4xyn0hV1iD7P4O4rFNdOtxGUa/YRlsHhFGArl9lGKUgYqMdDtLfw47RIDBM2WPmdTYwZlznDHSS46jKlhfxoGWryhm1ycivp6KNhjZMnWIbvfZlRknwRj0nRuUB6ee5Sot+Xub4mHmNHsaM65yATPi9NthtQKUFDVKuTrrXeZfZ5vcCP0xvVA4Oo9TgBgWT194ovO5G6bU5jDb7PM3xselwtDBmXOcARuGxpss7Ci3EtgwdwTBJ4H5gGAl4lHnOmoCZ+tVv3Wc1Fqby/Jb7PM7xMQwHY8b1HIMfKW5Y6fEswK+nno1pyFaLGwRs94pGCbZnlMT3g/arH61mEC89PzAKJjuqtMOAThMbM7DhYMy4nlMYtbuwTdl+6xmFR5nffQxbLW4QOOu9KK86vdoi75/ZmgWH6dezglFoYoOW76eeYeb4mHkNDmPG9RyCaa9CZ8oZtVu6DWHx2lOxqUu3Z2RDlMX9C79S7rCecCYvSdsydWDbr7bzxLZ+Vb/KZeny2JZtk/c8zfEx8xoMxozrOQKdV5pNPoIn4drr5THntwwVE5PLVRGcYUwyw+57+PGSPMs9t2GcWFTpiNiOsn5duo/KHB8zL/8wZlzPCYzS5EVgq7X4zTtqGLUHoS0MqgU8yb550jAqTz7Ts4/qHB8zMHsYM65nHOQJrTNN+NnPsPGu85IGvRbZsIt+VERjWI8zr2cm13oVMdZ924Ctc8aTgFET2fEc/3GdYwbmDWPG9QzDKNxxVe9sXZr97NPI7wZZfH4dBmzKeZqgMieJ5jbxuQ1T8hq3s3TYGRRGWfdHaY6PmZcZxozrGQVRarQ5S6NKZyuh6sr0s09j884LBjFD2Wo8qjyDOA6MwjFBpVEMypRGuYelqnsQZxIvvFVm1fEcH2095x3GjOsZBFkaH2TD2OSx5OXN9KQkdJ0nnq20DAxGYIbp11E5JtgQsEE91mw9HE1g6iOv9g9iKRjPcbMQNoZ+GDOuZwxsJqpfaU0leQ5CMG2lXT9SsfhexRQGNcucxYa7ac9qULxUfT0qkymVJfbrWTkkDKKZ+S1Pho/KHB8zr8dhzLieIbCRsGVpzUaaVkn3XtKojaRtu9B0BEbe77HFQ06jcnjQ9eUw+0CmPSvbcvz26yDmTJNzgqnPxecmJq3rV5UZdVBT43iO96cZQz+EnjYCY1ATRK+FJUvSfusZRbpBwJYw2OKhYya2+f3U5QcHG7AhWoOOma2Z0oYw2/arrVlxPMf94aHT0D7KMNa4njIMahobdOH52Vg/K/CSoM8Kh7Nu26D7SE8KvMxpXvsuozIvjuf4cDiMTYdjxvVUwa95g+AsJ/1Z1091DCuFDlqvCKPYl3na0u+ozZSm97aalle/juf48HP8o868xozrKcGg5iVK74dgiTCKzfdhTBfDbIiPGlR7MF77IqoydOU9CSYom9WG7btRjIXffrUpYzzHH4ePMvMaM66nAGdlAjnLur2kR9uFqZP6B/WkG4VkbGsCMxEzP44gJlz8gKrPRiXJ25rzvMrxC+M5/jh4eUd+FGHMuJ4g+N1oVuX3+v20wM+GtE3+s85nU8YgZrQnORajrmtQwjpKGM9x//mGpSvPI4wZ1zMCo9pvscnzJMwufsodxOV7VHU/yXqfdNl+cRiFqdGmHq9nXmWM5/gYxozrCYBKIrI58+LHPGGqR5VOBcMsGrE9NuX4kab9mq28+uxJSMq2ROusHQXOaixsyh7P8Sc7xz9KmteYcT1FUO0nyIRh1OYJv0TUT31nZS4bts1++mBUEq84ll5u5jZlDYrbKMdCno82ZY/nuL9yB03/UWFYBGPGdcZgs39i83tUXkl+JGo/7024+q1jlODXaWKUBGDYvvZb3iB1DMJAbfON5/iTgWEtCs8jjBnXGYGX2j4s0RrExGTz30u69yNle70f9eJ+UsTCph9VJjXZbDZqxqbK50VsbYjxKPCwgfEc9wbb8s672XDMuJ4AnPVGsW7T2y8hEBfbqE1Mqv9+JXhTmXJ58jM/exNeOJn61a+GZ4JBnSX8CEw6JudVnh/znBcOg+YZz/H+Z4PM8ecVxozrDMCvJD3sRFMRERuip5vwo/YusyH0XiYjFY7D4KBb5OJzrw1+HWERpV3C3ZZQjsrsY8JNTOOlGQw6V8dz/NmY4+dV6xozrhGCTj2XF4mczmbDWzY/eeGhK2uUGoFf8FO3rr9sGZAO5HJobGRiYbMPZqN1+DUXj2ofy6+5y1aDMmll4zn+7M7x8wZjxvWEYNjJM8iemc0i0pmKzmKy2yxgSmdbv+3iNC16v/sBgxB1G3PboHAWJq9BiN54jj/bc/w8wZhxjQAG3Qgdla2fcLB5ZkrjR+K1AVvz0zD7ALryR2Vyk8sdpKyn7fTgB4dRE7jxHFfjMIp6/Y7doHTqWYQx43rOwNY0MmjZo1xgJg1EBhum4AefJyFND6sBDIrjIPlsTXzPAozn+HB1fxRgzLiGhGEmzyjMU7pybImq6fmoNAsb8Cs5jyKdF/jd+DfVrdpHs61zVER7VOPsB8Zz3F9dT2KOnweGN2ZcQ4BJArfZUPWzyGwmm5dHnJfUbSIEJu87uU7bzWRVf3nVbUM4RmGaE73WbBiYqf+oLD+Ey8QMB+1XVdkynl4wnuPnY44/78xrzLgGBBUx8bvx68fMMAxutnlMZiO5TJXnkkikxXdeZXoRoVH1qx/w65xgcsAY1rQnE1ybvQxdWlNfe5kNx3P8fM7x5xHGjGsA8JL0hpGWR42X3zp1i9c27yAb6F6agA78SqaDjsWgC3xUZr9hN9VttS56b0PYx3PcDi/5/bM2x59X5jVmXD7haUiKZ7WBrKpjmLr85pXTmwjCoKYlE5z1WKgI/ZMYf3ksbQntMDh6le0F4zn+9Ob488i8xoxrABhEihnGJq2a2MNKabo6Rr3p63fD3Sutat/BL04y+CFofvvHDzOwNWGZ0orp/eAqm7LGc9xchi0uz+Mcfx5gzLh8wDAT39bMIoJJWjPlM5l7bDfhhwE/+zG6DXEdqPYd/OIk/7YtaxBp20+ZgxA5r3LFbz8EdjzHzXDe5vjzpnWNGZcljHJgbcsaVjJUSVnD7pfY1j1IWhtCrwM/UqnfjXA57TB7Yzamo1EAjb/4/SSJ03iOq9M+y3P8eWJeY8ZlAaMYUFtiN4wrrAw6KWtQs4GtJDuotGuSom3yPinwMqmZnqnG4qy0A5l5PUktZNh04zmuznvW8LwwrzHj8gC/Nm0/5fhJdxZEZxANYtSbvcO262na7P3sSXmZvbzK9IuPilGe9biM57ganrc5/jwwrzHjGgBGxcxsytARID/1qcxTg+6t2NZhSqOrW2VGGeXG9KhhEJOUl6lwkLHwYlKmfh2VQ4hfXFXPxnNcDU9jjj/rzGvMuDQgEyWbyaUjBjb/xQlts+D8bM6r2jHqiWnTV4NsENsSMNNGvQk3v//91i/DWUjqJq1Ct6eiGovxHDfDR22OP8vMa8y4PEBcBCYp1eS5Y5L+VBvnNqYUWyltlBK9bRq/pi/btvjZO1LhovtPRFVF5G0Jgi2R9QMmrUdVnl8TpVzmeI7bp/mozPFnFcaMSwG6BWaSprwWy6BSJYE84Uz5RrGQ/MIw5oxh9kZGIRUSUfU7hn6ZwrBgkriHgfEct4PxHH92YMy4JHgWB0pn7tGBTdpRl2eT91nsW7/glxiOss0i4TmP/Tqe488GeO3DPgswZlxPEAaVAP1KnoPU48dEM4p6vdKOsqxRluF3EQ+LG5l3nhcYz3H7tOdljj8NGDMuAYY1TXill/cBBjH9nJU0JOLmV5odxBzm1RfDSMuDOFTY7LkMCrZEUjdn/PTFMIxuPMcfTy/j9FGd488aMws9bQSeFaBJNspF4lWPbvPdhIPtgrNZaH72FGzKsPkt42lTt1+8/Own2G6ai+A1RiYnBtt0qv6zmZ9e78dz/Nmc437B7xz32986J45nRfsfMy48viHt5Xkzqvr8vhtVHXIa08SWPc5M/WLzexBcbQiT+G3KMyjhtpFc5fdyXToiqiKAKuI/CuFqPMcfhycxx004+BFMBoFByvQSSp42jBmXAmwJz3kBWyIzigWgW6Am6dWPpuG1sPyUKxKUQCCgzGfaB/FiDCqtxKu/R0XgxnNc/c5v272Ykfjfq/5R1f2k8j9N+MjvcdlO6FFLGfJehFz+oPsNg+QbNK8KiBDrPpRGxsHPONia9wYxA6ree0ngqvbp2u5Vv+1+w6g2/sdzfDjQjYWqX0fJJEYpvIhlDpLvacBHmnF5Sdty2lGbUkymLb91DSq1mRiKCkwOBDbEWlWOSeL3Igp+TFIy8VIxwWGdCVQMTH5n6hvb8bNluiYYz3E1+GVuNmMxqJAyaJ0q8BL6/PTN02ZevhnXt771LfyP/+P/iPn5eTiOg//v//v/+t67ros/+IM/wPz8POLxOH7mZ34G169f70vTbDbxm7/5m5icnEQymcQv/uIvYmNjY6iGjBr8TrRBCJ6unicBgywax3EQCAR4IQYCgb7/RKRMfeE18eUyVMROx4D8SIxe5auIuhfomLGOcOr6cNA5YdJuVDCe42rwI9Da1K+bm2fRL6Mei0HWwZMA34yrWq3i4x//OP74j/9Y+f5f/It/gX/1r/4V/viP/xhvv/02Zmdn8fnPfx4nJyec5q233sKf/dmf4Stf+Qq+853voFKp4Bd+4RfQ7XYHb4lPGGQA/Ej3w9RzFjDMBDRpEXId8nt50dqY8byINzEXHXMw4aYqR1W+iKMtMVBpiiomrOojuR02jEzGz1YTtWmLn3fnYY7bgleZqrk+ak3WBIOM35Msb1TguEPoq47j4M/+7M/wS7/0SwBOB21+fh5vvfUWfu/3fg/AqXY1MzODP/zDP8Sv//qvo1QqYWpqCn/6p3+KX/mVXwEAbG1tYWlpCX/+53+On//5n/est1wuI5vNDoo24y6DaaNVl0eV3ya9Hxv1MBvosiOBbbu9TCtnubEr9qMX0fZqz5PcgNaNv2n8BsFVZ+K0mSPjOX42c8LULzb1DYPfqNujM9d7rcVBoVQqIZPJ+Moz0j2uhw8fYmdnB1/4whf4WTQaxec+9zl897vfBQC8++67aLfbfWnm5+fx6quvchoZms0myuVy32dQMEk/JgncZmL4kbBszTQmpmICP1K4jLdoujLh79c0pUqr0mp02ohuL0mFm6pOVV1eWpXKLKlLoxt/0/jJxMrG5CmPkfhfV6f4/KM8x23L1tWnGxtTv5gIvtgGW+FBVfewzEMuT/4vzlOv9E8CRsq4dnZ2AAAzMzN9z2dmZvjdzs4OIpEI8vm8No0MX/rSl5DNZvmztLQ0SrT7YNSTwG/dNs8GLUuXTv74ZUIqwqMjUCoTH32rTF8iMdfVYWJEJs1NfG7D1OV0fgiNF0OSy/drphT/ix9dno/SHB8VqPrUJMjYljcow5LL8oJRjPnTYFIqOBOvQtXg+lGVZfj93/99lEol/qyvr48ML5t0tvC0iIHf+mXCJktUNhqPqhz5na5esSzdnoAunwknuSzdnoeOSdiCrZlMp0Wq0um0SS+tV0yvGleV84dXuSZ4Xub4WdShmmumeWYLtpr2sOA1X/2Czfw+Kxgp45qdnQWAxzSnvb091sJmZ2fRarVwdHSkTSNDNBpFJpPp+4wCvBiZ38G0Yc7DlE95Bp3gKgKnM2t4mWFMGpX43sRYdGV6aRs6s4yuLSamYfNeV79XGpPJSNYqbZig3JemfpI1WJuxt4FnfY4PAraMxzTXRkE7/DCWYRnNKPI9Te1rpIzr4sWLmJ2dxde//nV+1mq18M1vfhOf/exnAQBvvPEGwuFwX5rt7W18+OGHnOYswKaTTYRGhGEYh1+cVGXYLCzdO5OZSCZ0OgKi045VC1uuz4bYmpiaCRf5t6l9XmNoW5bXM7E+uX/lPCripOsP2cyk60/6tmFioyBET3OOA95r09RPur40lSn2p1zmqJivar2NWujweudnvTwJ8B3yqVKp4N69e/z/4cOH+MEPfoBCoYDl5WW89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBQBks1n82q/9Gn77t38bExMTKBQK+J3f+R289tpr+Lmf+7nRtUyApyEZ6AjqWddF4LWQVMTThrmpyvZ6pyO8qrplUBERneQr4m3LWHV1eaWV+0pHbE2mVxWYGJUKTP1mwlvG2TRH/QoNZwGqflRpPV7PbIU71XO/DOSs6Y6uz/2MhW1anbVALmOUDNsEvhnXO++8g7/7d/8u//+t3/otAMA/+Af/AF/+8pfxu7/7u6jX6/iN3/gNHB0d4dOf/jS+9rWvIZ1Oc54/+qM/QigUwi//8i+jXq/jZ3/2Z/HlL38ZwWBwBE16HEa9wGzKsl0sOjxNz7zemQi7H/z9TEAVwzD1u0lStf1v034VDn6JjRfRNI2ZSYBQlWOj4drMYZGh6vDQpbfVYp+VOe73mZ96VGV5jYcNvfFDh2xojGmsTXj5mVd+haqzhKHOcT0t8HOO62l06tMCE1H2IkZ++mkQ5q+rx0bj8tsmv3lN+WXcbBe3TR+pJFe5Pi8w9asXnrp8XjiYzJtPGgbps1HWfV7py7Bt8zMvnvo5rmcNnoSq/iyUSQzLS5Owse/LuKjs/n6kWFVdKtzlenT4yHl1xF+uT2yLKr1NflUb5HJVuHm1wy/IOHrh7lWnqjyViVZOI38GwX9Y8Fu3DmxxkvtBN/6jqs9PnlH369PM7wXnmnENAiZiY0OIdWltJ5XfAfcyD8hpdXZ6FbESicIgzMrLnKBK69eM52UC88LVlN/WfKRrp5eJTWY6Xhqzqg5VubbChqnPbftVbq/tPLSBs9bmBhHGdGvHT11iOX7aqBNGzkrrtMHtaWnc55ZxDTqIpgVqO9lUk3nUk8pxvCNcyAxUNGOp3nuVY6MV6fKIz+X6ZHxspFqTpGurWXoxU11+L6HElkh59ZFJC9aNiVifCWedRiiX6UcAo7moOzvmF85aan+SZj4bxq8Drzl5Vu0YVgg5y/49t4yLQEccvPKYwNb+fxagIgY6hqLSBkQtwq+ErPvWpbVl4CotRaWJiOMoa4l+NBITqPpLZ5rTlasaG106lUBk269eGrFKABDfyYxN7muVhG+jnanaNwgT87tmn4b070egsi1DhqdJbwYBG8F2WDiXNyDrTDd+8tuYibzqNoFcvq1ZSoWf6tsP4aF3fvC3yeu3D/0wFtm0ZmqXaj7YtldHqIeRlG3rMZWrGmO5TTaChq5+Lwal6lcdXnJekybohYMMOhProOvXpi4TjmdJM0ad1wTD9J9K+Bw1nDvG5TWBz2JCq+rzqsfPhFcRHlWbVHV7MStbJi9L7OJ/1QSViYkXI1UxYpUGacov42YiaMMQIBEvHQOR61DhYSpbzGNiSLp+042PPI463OQ65Pr85DFBIBB4TBNUtVnX16p5aVOvqg4v8EqnKu8s6c0wwqaqLFtBxKtNqvk6auZ17hiXCF4SkmkAbCU4v+YTXR6bcrwIvZjHRDy9CKsJP129KiZiIqomPHXEUdcvNv/l5zbpTcTST1m288N2Xtj2q65OL0HGNBds14tNO0xtsMHda574FR51eW3Hxc/6HQQGZQh+rDmqZ36EOpv3o4BzzbhG2cGDLljbsnRMRUU45TJ0jGgQpuqFn8ycVJPbD5EZBD8RvKRBU5+IjEklvZr60ISHWJauTlVer3mhyy/jrfqvymvqK502bUPsbdPK5av6Xkwrw1kSUC+hbpCyhyXog66VJ8FInjScK+cM3WJ9nkBmWuK3ClTESCzLLxARtyEaKgKsA1vir/sv4qMzWYp4qfpR99vUzyqp1qTNiDioylCVZyM5y+3yQzxtmJAKJ50wpSpb1k5NZevap3pm017bNS7PnUHAq8+HKf95o1Ui6Pp2lOZMEc4N45IXJf22kfp0/23fDQM6gmE70CYJWq5H1wYd4ZfL1+Es5vXbTya8TMRMlU7G26sdVL/pPb3zEghkhm9qi06zsZ2Pqnaq8NE9MzFomzki59P9lzVPXRu8wKu9tkxyEGaveycLdqMg0GfJFActw0uAJfCyGMi/h4Vzw7hU4FdC8yJeXmUMMrF0hFYFg046r3c2C0YmasMweRWj9MJDp6k4jvrckA5Xv4RZR5CGFTjEfKrfXiAKKdQHqr6U08llyGZSW2GB8utwH3R92GjtqvaKaWyJ7aAWAi8C7aceP2lGQfgHnZ9+GP6T0BzP3R6XTQeLJg0TmNKoFqpN3ap0w+BhAhXxMtUppvOSlsU88jvZfOQHLxUuYj4vQq8yVfkVSOS8shnMtg1eacRybUGsX9X3fmBQQmirperyes09W/Aqx6u8UWhHNu20pUnDgEnAGqWmo6rXtNbOqv5zoXENQ9SHSaMi0DYqtfzfS1pXLQCThmBjvlCZpXQT0KSxmBanaVF7TWgZF1nKtmEWcp0qnGyIv0rQkcuTx1FmWoR/MBjkdgQCAWVeEy42oMLFNBb0rfotppHr0JWle3ZWc9xPe3XljRq8+meYOlXl6NpsO05e7waxUsnvR8nEnnvG5UWIdGBrTrApd1BiQ5NNRWR1hNdUj4pgek04WybiJdHpJExVP4vt9upX3YK0FRBkvP0wXjm/zjRmElpEZhsMBnHx4kWEQiEtE/YaCxuhRG6fiaDrNDfdmOsYuNwPXszvrOa4V3u9BDa/4JcBjYJJDivc2AqMtnkAvaA4SFk28NwzLhlsO8WLUNmkH1Yi1tWnIzAq8MrvxSBkXGQiMIzk7WUuMS0SmfB49YftuNlI9CoYxHQptiEQCCASiSAejyOZTCIcDivbJ37bMCU/UrypL1VzUjV3bOalPH5Pa46r+tK2TlvwK6jKv89C23saYDsvRgXnbo/LLww7kQeV2GzzqDQGL4lLZcaywdfEDGyIqFf5OuIvl6/Tls6ifttyZfxkTVU1LjLhvHz5MqampuC6LgqFAt555x00m83HcFThq+sLG0lY1p5MWpOpDl17/Zh9dTjq6tHlt53junF7WjAovVFZNs4SRr2OZNAJNLZw7jQuE/hRZ+V0g9p45bQ6bcumfNWE0Zk+bJmTDb5i2SrTn6xh6frZRjqXiZeuveK37TjqmIDcrkG0N1WbxN+BQACrq6u4f/8+crkc7t69q2yjjoGbmIkKVIRdJHwmxmBrEvVr/nsW5rg8z2zAxvQ5SjBZNkx4D4LTIHTNa3z81jUIPPeMS7eIVDCItOq1SGxBtWC8pEr5nUpK9kvQTGBjatItIFnKVRE/+ZnKpdmEg0qSVjE7G5BxUZUnvzeZPnX5A4EAYrEYFhYW4LouAoEA6vU6qtVqX3oV8/YqW8bDixmZtEIaCzGvaSx0a8IWP12+JzHHRWFCbLcJN3EOeLVlUNxE/AYBXb5RCN4mAcm2L4aloSI894zLREh14EdCH2Vn6+ofRJoTF5FOQvPD1CmPV3odrjrmJILoTaerS0c8TZK4CQddO2XmasJFfqcjBCqm5TgOpqamEAqFEIvFEI1GUavVkEql8Hf/7t9FOBw23qumGkMTgTK1Rdcesc915+HENsv9bNOXz/Ic96OF2QpZtulM+UYFprb57bdB6x+kThM894xrELAZhFGptSZNS1z4tpKpipCrCIdYju69CWfbRamSRE2mLRNzMTFEG2ndr2TnpR3oNCyTVib/dl0Xe3t7ODw8RDQaxfT0NKLRKK5cuYIHDx7g2rVrmJ6efoxhyPXKY+JHUjbNDRN4EXNTnzxvc1zV9zZljDLd04BBtNdB5qGqzmHg3DKuYTtnFJ1rWlReexO65zpCbpLWxfc6qVenvdjgJpcvEgA5qoWpHX4Jm6oPvBbgMOZQsQxZAzEx6ng8jqmpKQSDQZRKJSwtLSGZTGJ6ehqHh4fodDoIh8NIp9NYXFx8zOOQ6jSNOb1X9a/fuSwTcdsyzsMcF8t6lhnOqMGrrTpmZTvmo4Zzy7hEMNl4nxToJHQbvAZNo5tgqsmm05TkNDoJTUXEVWn9MkRTOlM7dOBXMlflNRF1VfuTySSuXLmCcDiMa9euoVgs4ujoCJ1OBxcuXEC328XLL7+Ma9euodvtIhQKWRFt8bkfDUz3TGbIcvle8+k8zfFhGP+ToDWjrmOYNaH7f5b98JFgXINKTyqGZytFigtAZ++3MeF4MQwxjQlMBGhQ7UZ+r+tnE7MS6/far5A1WC9irgNbHL3yqgiczEgcx8HBwQG++93votFo4O2330axWMT09DR2dnawvb2NeDyOer2OS5cuodPpoN1uW2k6qrFR9aWX4KBrg1yH3D7ZPCzjdh7m+CAMbBjhyJbe+BEAZYbuRwAw1ecFZ6mxnrtzXDYTXE6ny6N6b0MsVVK4qgy5Xhup0AsnGzOICmcdLl7liGGL5DaIIJevaqet9qDqH1XfqZiiSUL0MxYmoiYSeXo+PT2NSCSC/f19hEIh3LhxA8FgEMViEQAQDAbx/e9/H61WS9lHMvFRtUMlDAxLPLzWiApXU77naY7L9diOhRduXm236SNdXq/nfvvMBIPiOQo4d4zLZhKeZUfbTB7dM9OikheRn3pswISLiI/qvR9p1g9R9TNOsiZAfWciTiairJOa5XRyvMFsNoter4dms4lut8vpt7e3EQwGEQwGEQ6HMTs7i16vh2AwiO3tbRwfH+PNN99EqVTSakjDzgEvzcsEun611eZU/5+XOW4aDxtcBqU3o1wfg8CoyvcjaNjCuWBcug7WEUndBB5EehLz6aRDnQagS6eS8LzaZwuDlCXjpiNc9F6Htyypim1VwTAESsewVHjpCJgqr/iMmBCZX4LBIBYXF9FqtbC3t4darcZpu90ulxsMBnF8fIzd3V1mcL1eD9vb23y+y9QuGU/67ZVmVHNFVZZK23te57g8t20Yngm88nul1+F31lqOLZ6DtGdYOBeMy8/iGqYTvUwNg2opusVrYgKD4m1LpEUgrUIEnUYiS6cqadXLBGPSMsRydQtc1U4V7qb8qj4T0wcCAUSjUUxNTaFcLmN6ehrNZhNHR0eo1+vodDoIBAKP9W8wGESz2USpVEK73WaG1uv1cPfuXfR6PWV/2fSJ+E7XJ/J8smEu4nPTnLZ596zNcZ3WJ5ajm5d+GJipn23Ats+fRTgLHD8SzhmAfu9FBJv3VJb4X/5teibjJKYzleFFuHTl+zFnqLQnsX558asWvC6N6plNP+oIjo5Qm4QYr/GS8ZU/ct52u43j42PE43EUCgXk83lEIhG8/PLLfLA4EAggHo8jFoshmUzi1VdfRafTQbfbfawdItP02x+m/td9q+aGV796CQQ6Yv4sz3FdG3R9Kucztc1La/PS1rzS+GEINnUNW47q3Vkw1o8M47JZePJ73QDpJjstDJPUK0v0KmKlyiuWK096XZ2mhSSnMRFsr3K8TDC69vjNYwsmIqMqU9Unpht2xT6j81fkwj47O8tnthzn1CyYyWRw6dIlZDIZFAoFJJNJLkcVaskLfzmfVx4TM5LHUdVH8nPTXFMxzmdtjuvql/PaCp6i1uY1Ljb4+0kzzLoYFPww6LOCc2EqJNCp717PbCQ2XRrTJPUyN8nPbfGn53IZXiYk08I14WhKa0pv02e29XvlMT33wkOnpajSy+NVr9fR7Xaxt7eHaDSK7e1tlMtldDodvjQyEAggFAohlUrh/fffR7PZRDAYRDabxcLCAh4+fIijo6O+cmWmIgpGcj+ZBCwvQnxWYyHW/bTnuB/tzRY3XXkq2jKsmdAEg9KtpwmjwOlcaVy2i8xWIvcjOZlAlhZVEqw4mCrJ0ws/0zOviUKS4qBgK5V7lTFMWpmpyO90eWXtypZIUZs7nQ52d3dxcnKCZrOJ4+Nj1Ot1FAoFvjCy0Whgd3cXvV4P7XYbvV4PoVAIhUIBABAOh9njkJidWKeXZqUj1Kr0JvBihLYaGZUjx6R8WnPcS2DTpVEJEF71ysKQqtwnyUgGrctLE9fV4yftMHCuNK4nATotSrVwvBaYLCGqJEZVel2dfiRDuRxxkepMSiapWE5jK2GapGS/AoVMaHTt9osj5dFpAO12G6VSCdVqFY7jIBqNYnZ2Fq7rolKpoNfrodvtotFowHVdzMzMoNPpoFaroVgsot1uIxgMIhaLIRQK4fDwkMuWcTOZy2wYgWkcTVqWKu0wY/Qk5rgKb9u0YjobxqrSjuW1LeNii7Oqb8T/w2iUNun8Cj9PQst77jUuv5L9sKBiWvSt0zpEwidPCD+mHBVjJEZjIyXLUqAfSVG3AGVGYKN5eeFrM/HFPlWZpGTcTW0X86rq0f2mD2kWrnt6bcnJyQlarRabCCcmJvDCCy/gzTffRKFQQDgcxvz8POelq0+Wl5cxNTWFeDzeF0mftDAV3ip8qB+92iCmkwmi6rdu7qvKM807Fe46/PzOcR3oBCRdGToria4uuX0qYWIQZmBiWnLdtmX5qVOuy09+EwxLt597jUs3sGddp06KNEmuOqIhl6MyUeikaq82iyZAVf0m6VfOo5P4dG3UjYmKeZvaYyvx6hjxsKBro+M4SCQSCIVCHPEiFAphcnIS7XYb+XwerVYLmUwGFy5cwLvvvot2u41AIIDd3V2022127KjVatjb20O73WbTIXkk0kHl4+NjxsGkeenaIBNi1ZwdRtpWaUuqcmQNX07jd46rhEJVO1XtU9WtYz66ukxMRYe/rYCmK+NJ0LpB1pBpLsllD8O8nnuNi8CLKeie+Xkvp9URD5t6ZMJBeeVv3aLzqkOnYdjkU+Hr1R7V/0EXJT2zwVunbQ27sL3KIU0oEokgFAohFAohGAzyPla73UalUkEikcDBwQEODg7wiU98AsvLy8hkMggEAlhaWuJzXY7joNVqodVqodFoIBQKIZvNYnJyEtlslhmeF246zcJETE3zS/z20p7FvCqiJeKma4ufOe6ltcvtVGkQujbJ69Kk+ZiYtEnoGYVmMiqL06jKGVTo8V2P+6RtbSOAcrmMbDYL4Gw6x0tSEL9tJQyvumwkz0Hwe5bBtl0mIiiXMyoNyyT9h0IhxONxZLNZ5PN51Go1TExM4P79+wDAJsJ0Oo3l5WX2OIxGo3CcUxf5TqeDXq+HVquFk5MTdDodJBIJHB0doVwuIxAI4JVXXkEmk8H29jbu3LnDUTZUTEXVZ/RtywyGnb+6MTJpJF5MzgZHk0ZkYjSDtnUYkNf7s05+bawsfvLL7wCgVCohk8n4wuu5NxXqwKvDTJ1vKwmZJFvTYlGlMREWL9OJF7MahAF6wagYoxduKvMW8HhwXxVefoiCqQ9V2lwwGMT09DRrTBRJAwCy2SzK5TIikQgKhQLK5TJCoRASiQQymQw6nQ4qlQqSySQ2NjaQSqVQq9WQyWTgOA4ajQYAoFgsotPpoFqtIplMYmlpCffv30en09GatFTajzzPdH06CEG3WUeqMTKtE9VzuUzTmrARJAcRNged87r17ke71JU7DE5eeVVp/NCQUTB6HZwrjctWmhpUS9IxKnkhDjtgXsRHfCf/til7UMLk1wRoi4MXEfPSroiJmSR7W/AixMS0wuEwMpkM4vE4ut0ums0mQqEQVlZWsLKygu9973twnFMPw0gkgpmZGQDA/Pw8EokEHj16xJ6IrnvqfRiLxeC6LhKJBLa3twGcuso3m00sLCzg0aNHODw8ZAYlt09lAlOl8+qbQTVfv+WJ71Vt8SNA+knjpSUCT3aOPyva16gZjRedHWtc/3/w0jzkdKq0fpge5VcNkGpx2JgwVDiJ5di2UQemsr3aPEidNtqlScuh36r6A4EAkskkGo0Ger3eY9qEbhz8gmq8SWtyXRfdbhfdbpfPdL344otIpVIAgEKhgEqlgqtXr2Jrawv1eh2JRILxCQaDfIi5VCoBAKrVKmq1Gnq9Hscu3NjYQKfTsZZuVZqV2N/ye68ydfPVpk/9rEfTnDAJcCbGII+/Tqt7WnPcJGzZmNpGJbiOWjsaVLi2gXPFuAjOwgQmT2ovgihOSnlReEmAqgmpM43JZYj/den9MtZBGLBXm2XcdPiqiAk9I8ZFe0aO46DX6/F5KbE88TsQCKDX6xkJtxczBU5jFdJ+VDAYBAB0Oh3cvn0bjnNq8iNXdzqAXCwWcXJygnq9zngWCgWk02lsb2+j2Wzyc8LRdV0cHx8zc5bxCQQCrJnJDIrKEUF+r2unShgT+9+LycjvTHNONf/l8ryYgc3aeJbmuCxkiXjo8g/LDEbF5ExpTM9GpdWdS8Zl6phBOs7PwPgpz0RcVXWbyjdNcFW9KgJhqsvPQvVawCo8dQvWq5xAIICrV69ib2+PmQFFp5DbRwwmn89zdHYVUdf1na7/0+k0Go0GHMdBrVbD2toaO2gcHh6ydkbnsyqVCiKRCDNZgm63i3A4jFQqhZOTE9Yk5Yjx9Mnlcjg+PkYkEsH8/DwODg54Py0ajWJiYgLFYpHDSdlK6DoCacso5Hcma4Hut5+5qXr2PM1x1X+dQDEM4febdxCmpcunm0ODwrlxh1ep2Crwmhxeeei/F9NRTVDVIjIRSVUoIp35R5a05bJE/GxCHNmYLHR5de2Vn6mYkIyfXK78vFKpYG9vj/OQ2zgxDtLIaF+K/lNQXJugqLp2xuNx/PRP/zSmpqa4PAB8v1av18PJyQl6vR6uXLmCiYkJdLtd1Ot1tFotdpsPBoPMtOLxOCYnJzE1NcVnxOT+cZxTz8apqSmkUik+BwYAiUQCExMTePHFF9k936ttOqHHdk3Jc1L+PQixksNF2eChgmdhjpv+m3D2MxdtwJTXtk/99P1ZwrnRuHQTTicV6NR/+b840fyoziaJU1enSfr0kvJMC860eGV8VHiZ/qvMTiKuNn3mxTh0eYhRHR0dIRqNwnVddpaga0UuX76Me/fuoVwuI51O4/Lly+j1etjZ2cHh4SHvTZGbuY75q/Btt9vY3NxEu93GzMwMewkCp04YtVoNgUAAKysruH//PqLRKKrVKtdF93EVi0W4roupqSn2GJycnMTBwQFc1+V7vYBT7S4ajeLk5AQHBweIRqO4du0aHjx4gFgshm63i0AggKOjI+zt7aFSqSjnncnc5tf8o+obr/Re5jdd36ueqeadqh6b+nW4iuXLdfk1qamEZ1N5sjBgu5b9MDm5Xhttys9cGTWcG8alAy+JySafSrrSDZbtBFDV4ZVOLtNLOpQ1CpFgyellAim3S1ev6bdu8du0WdUHMmGKRqMIBoNwXReZTAbdbhfJZBLtdhuRSATHx8dYX19njz/XdbG7u4t8Ps/pcrkc9vb2UCqVHttDMuFBh4/p+pKZmRk0Gg02G3a7XaTTacTjcRwcHKBWq6FUKsFxTqNtpNNpAKceVcfHx3BdFzs7O5idnUW1WsXJycljd3ZRPZlMBo8ePUIoFEI4HEapVGJ3+1AohEajgePj4z4tUDVGqucqAutFnPyMoQ4PU5007iYrijy/bBmY7t2o5rgMOkuN1zO/2qsqnRddshUgTUzYz5oeBp57U+GoVFeddKGSsmxMDPJ7nTmF6pAnqCqPqa06phWPx/GzP/uziEQij8W9k9NTO0STlBwyyoSXjJ/cd6qPDaiISjAYRCqVQiKRQCQSwezsLOLxOFzXxcTEBKLRKOLxOB/sJQ2s2+2iWq2iXq9zRAqxv0w4Ud2RSASvvPIKstksZmdn8dJLL+Hw8BBbW1uoVCpot9vY2dnB0dERAoEAms0m2u02Op1OX3mZTAaRSASu67Lmt7OzA8dxMD8/zyZPwi0QCGBnZwfr6+vIZDKIRqNIJpPIZrPIZrOIx+PY39/H9vY2O4CYNCsRTIRRHEdxHMR8pjGTwc8c1817ej7I+peJrVjeoHPci2ibmLyqzfJvP8zAa0zk33770IspPgl47jWuUXaWjdrr9Z7SmCay+NxL8rR5p/ovfm7duoWXXnoJOzs7cF0XsVgMGxsbjy1InaRnktL84jzoeMn5iHmsr68jEolgf38fFy9eRK1Ww9LSEu7cuYNkMolQKIRYLIZisciMe3p6Gjdu3EC5XEYsFkM2m0WtVutjYjocHMdBp9PBvXv3EI/HsbGxgXw+z16F5BrvOA7HH6zVamg2mwBOmVUsFkOpVGJPQ9oTI6ZITiOTk5OoVqsol8twXRfJZBLNZhPNZhOf+9zncOfOHTiOg3Q6jWAwiPX1dXZKITOkTsgymZ/k92Kf+CFyZzVfVCY10xqU26Ran/I60LV/GA1DpwWqypTrFd/7qcsGRkFD/fbBsArHc8+4dDCIBCBPGLGDdeYFeYGI70wLdxjcVM9EfMTntLlPIYgqlQrq9TprH36kMNV7Lw1lWFAxTcc53dv60Y9+BADI5/MIh8NoNBqIRCJYXFzEw4cP0Wq10O12UavVEI1GcXR0xC7p5LTgui6q1epjZkKdQELj2mq1MDc3h1KphImJCXYQEb0Am80mDg4OOH8gEEC5XEYqleqr13V/7LIeDofR7XZx//591rSSySRc18Xi4iI2NjbQ7XbxjW98A8lkEqlUiuMbOo6DeDyOcDiMnZ0dboeqP1WMSEfodWMi/5bLGcUc1733WmOq8lTM2UZwNJU/DIMwCYQm3LyI/iDr7klpTDbzywbOLePyKwHo8usmlCzB6epWSVCmxa7DySRdiuXKaWq1GoLBIA4PDxGLxdBoNDhEkWhuMS1glUnmLCa5TV/R/263i0qlgvn5edTrdb4TKxKJ4Fvf+hZHZyfzHcUGJO2G2tNsNvv+exE0EVfSmG7fvo12u/3YfCCNR7z2xHVPz2TVajX+L57X2tvb68MhEAjwvtbU1BQODg7QbrcRCoWQz+eRTqdRKpWQTqfR6XRQr9eNB5XlvjbNNZPmIacX3+nq9jPHTflNZdiUo2qLV72qNF6E18TAdevZloHpNGlTPlN6v2NhAhsrzbBwbhmXl0TmVyocZpKJv01EQleuTV0mZtZsNpm4EyEFTj3UyuUyLly4gN3dXVQqlb78gUAA6XS6z1FAxcRUMAhhUvWVKU8wGMRP/uRPYn19Haurq2g2m6jVaqxZ0t6SuI8k4yO2x68ETweMO50O9ykJBGIYKrFMivpOHoeURmRe9Ixge3ubzY4TExOIxWLY39/H1tYWM7disYharYZUKoVsNsvMVAUmE5pqHGR8xDL8zAU/c9xL4zeltWGcfkDHELwYhc1ct7HO6OoQ2+2nbr/v/fabimmNmoE9984ZgH5RAWY1X5d/kA4WCY6KEIhSt6pOU5kq3LwmueOcOjBMTk6yp1k2m0UymcTMzAwSiQSmp6eRTCYxPT2NixcvIpvN8pmnhYUFJJNJpNNp/Hf/3X/XV6+J4cttNy0uFcjlq5iZWPZf/dVf4fr166hWq6hUKgiHw8jlcgiFQqhUKpibm0MikcDrr7+OXC7HZjeZAavaJ39M7ZVNfqp2RSIRJBIJPrtFWlMkEuGyRCZG2mG73cbh4SFOTk4QCAQwNzeHdDqNVqvFHpPkVXlycoKNjQ2+KkXE09SnNuOi+q8j4uK3CWRTpYirV9mmsTGtRy98dDjJhFgEHROXy9LNOx0uch3ib685afPMZowGZThegsowcC40Lr/Shim/PDFN2ppKcpUlDJ2k6cVYTRqVXI/o+UdpI5EIR2oIBoPI5XJYXl5mSX96epqjOWxubqLZbKLT6TDj6na7yOfzaDab+NGPfmTsl2EkPzmtjiGrFnG328Xh4SHC4TCmp6cRCARQr9dx584d3rNqt9tIJpPo9XqIRCJ8rknG2WYBq9qkk7SDwSCi0SharRa3K5PJYHp6GrVaDaFQCJFIBJ/61Kfwwx/+EOvr61yeyPxE4tJqtfjaE/JeJLf8tbU1jnkoa5Y2bZTfm+a4qT/E/6OY47r1ZcpnwtmP1m9qg0lLonrkdOJvFRM0aXMm3GwEb9tnunbYplflHzXTAs6JxgX4k/JU+WQwSTS6RWGSiHT1mOrX4eHFCB3n9IxTNptFOp3G7OwsOp0OGo0GcrkcVlZWEI1Gkc/nkc/nUa/X2XU6Foshn8+jUChgYWEB6XQaruv2nQmS6xLdtm3apmqrrp3ywpdxIEK1srKCWCyGdruNRqPBe1rkiHF4eIh6va7UiLwIrCqtrp30O5lMYmJiou/4QaPRwMnJCWq1GpLJJBKJBK5fv45arYZcLveYqVD8kNNHq9VCuVzmILztdptNuaFQCNPT055tUkn9JoKtSqvKM+gcVz1Xla0j1Cq8ZGYwKrpgwl+3/uXnOmHHJAyq2i4z97MAv2Otyq/K53c8ZDg3jMsP8VHlUz2z7Vx5MEyTSScd2S56G+kKOHXKKBaL2N7eRqPRwLVr1+C6Lqanp5HJZPhamEajwebDUCjUt0dD5qZUKoV0Os1MSocPvRcZmq5/dYxI1S45vZwnGAzi7t27KJfL7GxBGufk5CQ7QpTLZbRaLd8mWL9pQqEQLly4wMFvo9EoQqEQnyGbmppCNpvlcE3hcBjLy8vcnzrzUqfTwcHBAY6Pj/sulez1eigUCnwgO5VKYWFhgV30qRy5P1XPdaAjODrNR5VmGOZhqkeFk0rIUjExL0Jqk9ZkmrPVUG3WtYrO0LeXQKUCv4KG+N5rDPwKK37hXJgKTeBHVZUngJ9OVpk26LkKFxu8VBKYLLHppDzXdTluX6VSwa1btzAxMYGZmRk2AZZKJUSjUWYwS0tL2NvbY1Nhr9dDLBbjIK1EGOk6D7kNOjOibqHaSqwysxTTOs6Pwz6Jh3UJl2g0ikwmg1u3bvW5qtsQC525TJVWhG63i7t372JiYgJzc3MoFArY2Njgg9Lb29t45ZVX2AOw0WjgwYMH3O9iX6q+RZwcx0E4HMbMzAwcx0EymUQ8Hsfu7i5fbNlut5UEW6dpDaI56Yj3MITKdq3oNBrV+Oo0N9OcNPWHbq4PKkgPCn7aZFvWoO9VaWQ8TP1qA+eOcak6aNByKL9u8E3SlIow6BaiaQBNBF5H6Ok7FAohl8uh0+nwfguZzYrFIgDwWadwOIzJyUkcHR0hk8lgdnaWCWo2m8Xk5CQODw9xeHjI3ofyYvEiLl4MV8WgaK+IPCJNREQ8i1WtVtFsNhGLxZDL5Yy4mHBWtUvX7yIEAgFkMhkkEgkcHBywS36j0UAoFML6+jpfX1KpVFg7ks2FqnaKbXDdUycO8iBMJpMcQoocOBzHecxEqsJZRUxsiIs8/qb54CWte+GlYhSqtSozKHE9yulVZalw9RLIVG1RCate7VW1wQtMbdLBILRRN36jYHZ+4NwxLpsO8upo3YS10RJ0eUxSoUnKMxFP3Tuxzk6nw1EbKBQRRRPP5XJ8aWG9XucDunQ1CO0PhcNh7O/vI5lMolwuKwmUbsF7CRGOc+rIMDc3xxrR4eEhQqEQxxd87bXXcHR0hEgkgvv37/e5eesWPn1efPFFPHz4UHnNiW4OUGR5+cyXCnexneL/hYUFZDIZjoXYarX4epNYLIZ6vY7Dw0NmqmTGFNugA3lOVSoVrK6uIp/Pc5BfGkNV9AxVWXKfqIirjYYt//ci0qbnqrbq8tnON1M+W0ZhI0jK70y0Q6eNmPpVVY+XRWdYDViHw6iZkg2cO8ZlAyrJSSZCMmPxMnnZLC65Pvm9zaKjdzLBVBEI8kKjqOOimazdbiORSGBzcxOO47A3Wq/XQ6fTwdbWFqetVquYnJzE5ubmY9dkqIiXafHo2lEul7GysoLt7W3EYjHMz88jlUrh4cOH2NnZQavVQqvV4sgStvA3f/M3fPBYxFnXZ8RIX3jhBRSLRZRKpcdiDJraQhdHbm5uskm13W6zZhsKhThkVCAQwLVr15DJZPisnch0TeC6LjvFkGfh/v4+x6SkQL8m06jYbtUzL8nfL5G31d5068APHqo56FW/11o1mQZN+KnKNgkLOlpiW4euvcMwGC96eFaMUgfnknHZdKJJkpM1BpMko2JapvoHGUgZHxXj072nyZvL5VCpVNh9vNlsYm9vD4VCAd1uFwcHB3ylhkw4yeQlx/LzSwjkPhQ/7XYb1WoVH//4x/HgwQPem0un03x4utPp8GFf3XkpqofOOzUaDTQaDdRqNeMYOY7Tp+XRweV8Ps/Xi5jqonbEYjFcvHgRh4eHaLVauH//PqrVKgsOlUoFJycnAE7NoN///vc5XJXY97K5UDUP6ebko6MjpFIpRCIRbGxs9F3TIrbXBkySvpcg5yXx+2ViMtisHR1+ooCnqttLMBX/y+WJ/03l6jRU+bkXvbHBfdSg6gubPGcF58arUAQbqcxLE/BKq5qwuolpA7rJLL6Tib38XHVBJP0OhULsKi46VwQCAXz2s59FLpfjK0LoQ5rK7u4ubt26xbf1ym2X69K907WVInQ0Gg0cHh7izTffxOLiIhYWFuA4DhN9sU/kqOnix3FOrw65ePEiHMdhE5ypHx3HwQsvvIAXXniBQ2O1Wi2cnJz0ubSLn2AwiHQ6zZdTUhSNra0t5HI5XLt2jaNkiJdL0qfdbqNSqeDo6Ijd2+UIGvJ8oO9er4fj42MOyOs4Tl8dlNaP1K0SkEzvbTVD8dsLj0EFO9Xa0/Whnzq8aIlq/avwMz2X+1pkiDrwMsGqhOlBwSavrk+HqdcE51LjksFGIrGRlnSEWHw3jFnFCzeZGZAzA13ZQZqLjA+ZvKgMOohMUv7q6ioymQxKpRK7i6s0LxNxMDEmU38QnnT4ud1uswv73Nwc78nV6/U+pxCxjeTtSI4IADA5OYl2u43XXnsNb7/9NgcU1knPtI9Hd2UtLy9z3EDS9ETGTcIARek4Ojri/qSD0ScnJ9jZ2Xnskkqx70TCriO0MtDzZrOJzc1NdLtdHB8fo1AoPMb45HaatA3duFF5XuOqIr5eRNgkFHqBlxVDtUZl/GyYma2mMey6UNXjRZdMINOuQcFE12xxGDWcW8blR63VTSDVpNNJpTrmZTKt2JYtfgcCAUSjUZaqA4EApqamkE6nMTc3h3fffZevcad8pDlR/uPjY0xOTvJezIcffsh7LyqGRbjpcNcRNrlNYh6ZgdCh3GQyie9973vseReJRLC8vIzV1VVUq9XHmBYxkEwmg0qlglQqxYwmHA7DcRwsLCygXC7j4OCgzwGC6g8Gg/j85z+PmzdvotlsYmFhAfF4HHNzc3z26rXXXsO7777LGhiZA8l0GY1G4TinV5mQOZCYqRwJQ+5PXZ/rgNLRviT9p6C/Ok3LNIY68Et4dOtON8fF9vjVOrzyy/Wp/ov1mNL6md+m+sVn8repfC/GYYOHKZ1XuX7abtNvw4IvU+GXvvQlvPnmm0in05iensYv/dIv4fbt231pXNfFH/zBH2B+fh7xeBw/8zM/g+vXr/elaTab+M3f/E1MTk4imUziF3/xF9kbalQgD9gweVVqua2kp5Lw5edUhy6fWB8FaSVGRbEIy+Uy3nvvPT67JecTiVmlUuGrME5OTlCtVlljEE1yKm1L9V/VF7q8IsOR+7ndbmNvbw/lchlbW1vY399HuVzG9vY2jo+PAeAxk2A4HGYt6bXXXsMLL7zAZsd79+5hd3cXx8fHHKNQdLmncgDgm9/8JhqNBmKxGBzHwcrKCrLZLC5evIhUKsV9S/d7UVxE2rd6+eWX+SwVmexUTEulxfrRtFQfeqdjWqq+9wsqbcIGbIiYTki0xdWEm279ieWb1qhMuP0KFyrcVGtbfK+iE2IZMrNVpdOV43fsBxFqdALEKMEX4/rmN7+Jf/gP/yH+9m//Fl//+tfR6XTwhS98AdVqldP8i3/xL/Cv/tW/wh//8R/j7bffxuzsLD7/+c/zhjQAvPXWW/izP/szfOUrX8F3vvMdVCoV/MIv/IIvbzFbsJ34KkKrG2x5Iusmkw4XnURKH3E/RU5H0v3i4iIuX76MfD7P7u3k/SaXIROAQCCAarWKw8ND476KaWLK7+QoGSLuqr03uc2uexrZotPp8NmzTqfDV3eEw+G+8sRPJBJBoVDgixbp7BeZ0qrVKmKxWB+uIk7BYJCdVOhM1NbWFo6Pj3F8fIxQKIR4PA7HcZDNZnHlyhXk83lMT0+jUCggGAxia2urz1WfGAn9lpmM6pncdzpGJefxej8smOatLq34X15PJrxUTFw3j1X1mAQoOb+4dnXlm9pj0ib8ajW6vGLfqbQvm7GwSTtqxqLDZWTluUNgvL+/j+npaXzzm9/ET//0T8N1XczPz+Ott97C7/3e7wE41a5mZmbwh3/4h/j1X/91lEolTE1N4U//9E/xK7/yKwCAra0tLC0t4c///M/x8z//8571lstlDlk0ig4Rr5fQLQDxva0kqCpHJ3HavguHwygUCuy9VigUsLq6ilKp9JhnoMz8HOc0skIkEuGArGIIJDnCubhIbcxdKqlW1w4ZL2JIZPar1+sATm86TqfT6Ha7KJVKjB/loSj35BIeCARwdHTEGiWZ0hzH4XNNIr6JRAKXLl1CIBDA4eEhAoEA4vE4Wq0WUqkU9vf3OfDw4eEhgsEgMpkMLl26hEKhgHfeeQcHBwc4OTnpEwBUjEqeGyYGYyMMmRiY2Mc6jU7HJEzzX4eLDZgIveq9TfpB6jWVq9KIdVqP1zPVe795VRqrPDfk9yYcvIQGXVleZQ8ChEupVEImk/GVdyivQtrwLxQKAMBnbr7whS9wmmg0is997nP47ne/CwB499130W63+9LMz8/j1Vdf5TQyNJtNlMvlvo8OdItUByotwZRW1BBUWpr4W6VdyBKgrF2p6hP/k2mqWq3i4OAAt2/fZgIt5iHNLJFIIBQKsRaSy+UwNTXF57VM7ZTBJL2qGJH8kTUvlSbW6/VQKpX6zG2hUAjLy8sc6FfU7prNJt9FVa1WcXx8zB59iUSCGZ2ojYqfZrOJhw8fcnSLk5MT1vxoj4qCEycSCWQyGbiuiwcPHqBUKnFsROofmXmIz21Anjsq6Vs3JiqtTQVe2oVfoc1rzanWgwlkLUN8LjNmGyHSD8GVyzQJkyJeXuPk1WcmfOTf8lrT9Zdcj1dfmWihibGqfp81DMy4XNfFb/3Wb+Hv/J2/g1dffRUA+LrwmZmZvrQzMzP8bmdnh8/H6NLI8KUvfQnZbJY/S0tLfXiIYNvhpnaZNAexXHmgdQtU/C+6cdtMIpVZoN1uo1aroVwu8x6OWDcxrTfeeINvz6VAufPz8+zppmuTSlJXMV45j45ZUfBemanG43FEIpE+d3MCsZ5er8f3Tolpxcsbe70eyuUyn/fa399XholSMc1Wq8XnrrrdLprNZl/opGazibt376JSqaBSqSCTyeDk5AT7+/scysmPgCS3T3wmC0Uq7U18Lpd3FpKxDDqhRcesxfemfhLnOaVVCYm6+WkDuj7T4WHKr8PHZl3L69tLExJ/y3ir+kh874d5yelV/8XnOhp41jAw4/pH/+gf4Uc/+hH+/b//94+985JIVGBK8/u///solUr8obuLqK5Rc32dBGUz6CYwLQgxjfwRn4sXUh4dHaHdbvNNvxRFgYj75uYmrl69ivn5eWSzWb6PipjFIHiKDMyGaUWjUUxNTfFZJ4qGvri4iMXFRbzwwgvI5/NaDcBxTvegPv3pT3PA2lgsxm2kKBF0tYfrnl7BsrW1xdHtxfaIzhki8SDzo+js8alPfYqdOsgzs1ar4dGjR1x2JBJh70UqSwe2zE3sY9XcMzGAQbQL27QEOu1LnBdiHpEJiaBjwqa2yExNLkuFl67NXvNc9U5uky3z9GIsclvkclX1qBimPB42ApP8XNdmGXSCrA0NHpZOD8S4fvM3fxP/6T/9J/y3//bfsLi4yM9nZ2cB4DHNaW9vj7Ww2dlZDkWkSyMDRfgWPyKopD8RTItcRywHmZC6soj4yk4BKkKvw4kY0uTkJObm5voioNPFkHSmiBhYMpnEw4cPUa1WOVbe/v4+X7Mh94H4W+UgIkuJYt+qpEBq0/z8PLuYT01NIR6P4+TkBK57esaMItSL/UPf8XgcmUwGDx8+5Ft+VfgQc2m1WohEIko85EPL8ryhg9CO42BnZwcPHz5kJum6bp/zRq/Xw/7+PqamprC8vMxpTKASsrzyqPrVK63uvw4n05oxMRSdgCVrSipmIadVzXkdMzKtW5u2mUC1nk3WERXz1KUz0QebtPStsyKo2iCvVVOdNu1QtUunsXrlGwZ8MS7XdfGP/tE/wv/7//6/+Ku/+itcvHix7/3FixcxOzuLr3/96/ys1Wrhm9/8Jj772c8CAN544w2Ew+G+NNvb2/jwww85zajBppNsO1+WEr0mNHm9ZTIZZipkPqMbik0LLBAIIJFIYHJyEplMBsFgENVqlWPi5fN5pFIp1Ot1JBIJZnAAcHx8jEqlwoyBHB7oHJiK8BC+KpOmatLLBEm1b7WxsYFKpYKJiQlkMhlMTU0hHA7zHpF4JQkx6XQ6jWw2i0wmA8dxsLu7y1qU67rKe78cx8Hk5CQODg768KP3dJSADizLzBI43a8lxr+7u8uHnmXHi2AwiMuXL2NnZwePHj3SmgtN80pFcFTzSGYEo9C25Hxe46rDT5XWCw9bZi0LJoMwZirHBidV+TZz3yRUmAQAXVqvd3K/yKDCUfXbhhnb4DcsExoEfB1A/of/8B/i3/27f4evfvWrSKfTrFlls1l2F37rrbfwxS9+EVeuXMGVK1fwxS9+EYlEAr/6q7/KaX/t134Nv/3bv42JiQkUCgX8zu/8Dl577TX83M/93Ohb6AGiFGLDiGRJUGXnFX87zqnW8NJLL+HmzZvodrtsQnvppZdw584dHB4eas0OjnPqkJFMJtkxYGdnh81us7OzHNGdtFjxxt18Po9arcZOBJVKBeVy+TG8RRPa8vIyTk5OUCwWEQwG0el0+iJyUL/p+ocgHA5jamoKrVYL8Xgc8/PzyOfz2N7eRr1eZwYuXkciMpp0Oo0rV64AOHX8EftUZFqk7YRCISQSCdTrdX5HZYtRLqLRKI6OjrgNsVgMrusilUrxlS+yW7vsVRkIBHD37l3eb/Ra1F6Cjtx3Ok1e1thsylNJxXJ+PwzKFn8TIdeBKp+ttiNrFrr0fsySYnkmPLw0Yi/cTHlV7+T/XvV7zRWb9IPkt7EUDAK+GNef/MmfAAB+5md+pu/5v/23/xb/8//8PwMAfvd3fxf1eh2/8Ru/gaOjI3z605/G1772NaTTaU7/R3/0RwiFQvjlX/5l1Ot1/OzP/iy+/OUvG/ddzgp0TAdQD55pgaiYluOcHki9f/8+Ll26hG63i729Pbiui8PDQ0xMTPD16yY8KpUKut0uXnzxRXYIAIB8Po/Dw0NEIhEm0JQ/Go2i2+1qHQhkZjE/P4/Dw0MA4Jt05+fn8eDBA65Pt4h1fVGv19k0KQa6JQ/HUqmEYrGoJKLhcJiv+8jlclhcXMQHH3yAXq/HjDYSiSCVSnHk9UKhgHa7jWAwiOPj475LMsPhMCYmJrC3t4der8cMLp/Pc4QMOg/n5dpeLpf73PN1BNmP2cUvsZf7W2SOKiFIl19HZPyajORvlbahYqImBmrDDOV84vEWU1ovDUenQaqYvG49iMKtLfMwpfdiyjowCdm2jNwPyH3nl3F6lu/6mZ3PCIjnuAD1ArTpJC9NS0WkvaQIWSNwHAepVAqFQgEvvvgiyuUyisUiWq0WKpUKkskkewiqpOxgMMgMKRwO85X0APiaD9I0Tk5OEAqFMDk5yQT5/v37fGaLCKwYJshxTs8yAaeMIp/PIx6Po1gsslmu1+sxsbeZLqI2RMwkHA4z/sTM8vk8KpUK1tbW+soOBAJIJpNIJBJ8iWQ2m+Wr68WzWTMzM3j99ddxfHzMWiKFdaJoG4RDNpvFzMwMDg8Psb29jVarhcXFRdTrdWxubrJWKh/Itj1ILL8T55H8TCxTR8zFfI7jPKb1yYRHxxBMz3WEUYW/Lejq1ZWlYrK2Gozp3SD1e71TMS0vbdbmnR/NRMfQVc9VeKveD8IGbOit1ztgsHNcz32sQpUEYcvZdel1DEv1W/yvy0ehlFZXV9HpdBCJRFCr1dBut3F4eMhxBOWySVug/RjybKOzWcfHx+xWvri4iEePHrEpMpFIIJVKsRZLTEQ8oEz1TU9PIxqNolaroVAoIJVKIZfL4YMPPuDwULp+NUnTrusik8mwNyNdJU9XjRCTIFOf2AeNRgOdTgfXrl3Do0ePEA6H4bpun/nPcU7PYe3u7qJarXJEd2LUYhDiTCbDcRop0gtdYeK6rjFOoy3oCKZMTPxK1DomINalqlsl9aqeq3DVCWuq9unwN0n5KnxUeOj+24CuH2WG40fzMGlisqAh51HRBxUeMnjl12k3pj5TCT5+wUarGqWWJcK5vNZEBK9BkRekSVpUgRdDo2elUomji9OliKKWIWtpgUAA4XAYsVgM09PT7MKeSqXwyiuvYG5uDpFIBNPT01haWuI9RnIEqdfr+OEPf4hWq4VgMIiVlRW8/vrrfZ6H9Dk4OOD9rGq1ikgkgm63i8uXL2NycrJvIejaKE5iMU21WsX+/j663S7S6TSb5WjPCQAmJiYec5YAwMy+3W5jbW2NGbWY1nVPzailUon3y2S8Op0ONjY2mMF94hOf4DE4ODhgbVA3jiL40ThN73SCka2G4UUIbfA0aQyqdDLuwzIcVXm6jwofE65yHbQXKp8plNunKksW9OT+9cJXHCud9utF4P1oj16ChkmY8KpfVdYgMGg+gude4/ICr0HxO4CqvCrC7jgOhyECgE6ng+PjY2ZAqijl4u9AIIDFxUUUCgXeo2o0Gmg2m3j//fcRj8eRSqVYg5iamkI0GsWFCxfYbJbP5/kSxkgkgkgkgtnZWfaUEycwaSp0/ouinsfjcYRCoce0Li/zCPUFXTVCDiR05oxMpcFgkE2I5BAh5q/Van0ejjMzMzg+Pua9qGazia2tLdbmxCj48XgcjUaDy0qn0+h0Onj77bc5mka1Wn1Mq1QRP6+FJhMnVT+Z3g2ykL20F1vNzmbemxilDMMSJRtcvN7J32R+zufzPL9t6vGjRajG14tJ2NIccQ7aaKp+6/Sa47q5Mgj99KscqODcMy4v0Nlg5QHRTUAd0wqFQrh69SouXryIv/7rv4bjnO4lxeNxdoAQz2KJnnVURi6Xw/LyMl9XQdoEEdnl5eW+yOeRSISZViKRwLVr13Dr1i2+DmRnZwfpdBqXL1/G8fExDg4OEAgEkMvl4Lou77c1m00EAqc3EF+9ehUbGxt9XnY65kWakjzJXdflyBakAdF7xzmNn1goFPhMV6VSYdd9UWIOh8OYmZlhhiX2veu6fCiYzrtls1k2z87OzuLo6AjNZrPvhmDVJZUqhqACXTrdPJHnEJk9VX1K/0UNUqxLlV7HcMXxMBE9HYMz9YO8Dsica8rj9c6EjxeoGBd5ttK6DIVCysgxKtOhqX55HGQtzraPTWXL5kfb8bOtX4W3Hzz91E3gd0xV8JFlXPJi1klXgH5BiwxL1jSAU8J048YNRKNRRKNRXLp0CcfHxyiXy+j1euxoQZEfZDPX3bt3eS+rVCqhUCjAcRxUKhVcu3YNrVYL2WyW4/ldvHgRJycniEajaDQa7F3nOA6KxSJrGBQCqlwu8z1S2WyWb+QNBAJ45ZVXcOvWLbz77rusfRFzlZms3K86qYy8+MQ0vV4PtVoNU1NTKBQK3Deiez7twV27dg2O47DJlZxSpqam2Gz63nvvMTOanZ1lBthsNplp6YixPCeICIvMTccg5Hz0nyT9YDDI0T2AU2/ImZkZPHr0yHgdiUpIkLUfnbYlPxPziulMc9+WiavS6+aIiUHqyrKpU9XWQCCAWq2GVCqFcDiMSqXS5+RC6VR9YquFiL9tNCwTYZfrVjEvVT02+PjVHv3AKJiRHzh3jGsYSUHHxFQDL08SmXnF43Gsra0hlUohHo+zIwYFCCaCOzExgYODA778UYR2u43r16/zoeJut8uHju/evcsaSDabxezsLGZnZ7G7u4vd3V10Oh3cunUL7Xab4/eJXoXkgk7mwWvXrqHRaGBzcxMA8ODBA1QqFSwvL3NMRCqDmJjcD2Jf+AEy9yUSib74g1Qe3ShADi2ZTIZvGybHi09/+tP4xje+wabZQCCAhw8fIhKJoFqtemomIs7BYJDHjBxLyMmFIn6IeeWygB8T4kAgwLE1Dw4OcHR0hFAohKWlJVy7do3Dl6mi75vKtSFGOnOuKq2NtOyHAIrCG50FVGmduvw68JOf9kHD4TCy2Wyf6bxcLj92U8CwoBMCTNqSitHJ6fz0l5eQbXov1z8oPAkmdi4YlzxhvKRIUxk2k0UsmxYm8GPTn+OcumnTgdZQKIR0Oo16vY54PM4LptvtsrZFeVWmR9d1uYx4PI5SqYT/9X/9X/HVr36V93BqtRpefPFFtNtt7OzsIJvNcrDYWCyGhw8f8gFk8k6kCdrtdvHee+/BdV2OedhsNjm6ejQa5egcZOYjJuYFclvkvnYch6N/AKdHHURvP+rrSqWCzc1Nxi8cDqPT6XDoqm984xt8Pi4YDHJQXgqMK+JDzh3iDcK0jxYOh5HL5ZDNZlGtVtFut+E4pxrp5uamVhKn9sXjceRyOezu7vKzZDKJdruNyclJvhm5VquhWCxiZWUFDx8+7HNIcV3Xqm+9+p36Wuxz3Xv5OYHftSTXQVYF6ktVnSrQ1atbl/l8ng+W011sZBmIRqMoFAp8xdLW1hYikQiHQRPro98mLVaV3g9TNwk+qjpN/W5jojP1n2x9UM3tUTH2UcJzf47LJD2YQKUZ6LQtnQYWCASQzWYxOTnJJjY6DJxKpXhBkSZBC5eI0tLSEm7dusVMIRQKYX9/n/eYiMmRlhONRlmjSKfT+OQnP4nNzU2EQiGkUilcuHABa2trODk5QalU4uvrZ2ZmcOfOHZYyqUzZREVtDQaDWFhYYG+7TqfD+2xTU1PodDp48OBBnzOFqn/lb/lDRO3q1atoNpu8d5dIJLC6utoXlzAYDPJlkLFYDAsLC3xrNkXoKBaLmJ6e5gjvtVqNXeOpzfF4nONllstlPp9G4zk5OcnnxwqFAo6OjrC5uYlyucyMW+wzcV6Q1+fk5CRqtRoajQaq1SqfwSMX/XA4jGg0yhHp6TzezMwM9vf30ev1WLPzugdNB+Jc1mleJul6GIZFfRkIBLCwsIDJyUkcHx/j6OioL2KJV902eJDwmM/nceHCBTQaDV5DzWYTwOlhdxLgms0mWy6KxSKbpsW6gcf3nOX3g4BuTHRmXV3dJpqn6yc5jak+3Zzxws0vc6M6nvh9XM8iDCIZyCYML22Lvh3H4TNJruuyNB2LxZDJZNhElEqlsLi4yHH3KpUKDg4O8O6776JWq6Hb7SISiTCDSiQSyGazSKVSfJWH45w6NZAbfb1ex/Xr13nxtdtt3Lp1C5OTkwgGg5idnWXi3W632SRI8Q5l6ZKIJP3e29tjRjI3N4dYLIZwOIxr165xOlXAYApUK15BoorHSIyLvCwXFxeZwScSCRQKBY6ZSPkpuK0YTDcYDHI093A4jJOTE2SzWT4bRhdvRiIR3hNbWFjA4uJi3/1eVEe5XEatVkMwGESv10M0GkUsFmOGJcdwlAP3xmIxzMzM4MqVK3CcU2eAj33sY5icnGST1crKChPVUCjENzhPTExwLEV5vpkIg4kIijiqypLHTzffVetBLpNArI/2R1utFu/1qeJZqtaajIesqcjzjrTtfD7Pa4nGcXl5mT1zyVxIY2BTn9hvXhqQF8hjIgrHXuZdvxqVnzQ2oBM6nrRGdi5MhbbgZd+l/wReizYYDOLKlSvs4p3JZHB8fIxOp4NSqYR0Os3XXkSjUczPz/N5qUajgZ2dHTaD0d1PkUgEExMTHDEiEAjgJ3/yJ/HOO+/whBcP8qbTaUSjUezt7bEJCjjdiyFCv7q6yowxEokgl8uxG7i8WIi4z8/PY319Hc1mE5ubm3wdynvvvcdmMArWKxJ1Ylzk6XhycsLvZWLYbDaRSqXgui7W19f7+o3Mqp1OB47jsEkvGAxiYmICKysrzJAp1mA8HkcwGESxWESj0UAwGMTFixcRCoXw6NEjDjm1vb3N7Y1Go4xfLpdjYlsul9nc2Gg0MDc3h7W1NU8TVrfbxdWrV7G1tYVUKsXHAD71qU/hb//2b7G0tISHDx8ilUphdnaW9xTJ1X9zc/Ox+9VUfSfPUxNR9aM96daHqQwRN/HSUupHMkHT0Qagf0/PRLRNuNEzEjg2NjYQCoUwNTXFxywo1Nza2hpbHOh+N5PFQFWfX81TJUTQc5FZyf2qm1s2mtQg42xjRpbn15NmVDJ8pEyFKknTC+QJJkrXdLB3cXERtVoNs7OzePfddzlqBbml0/4NxcN77bXXUCwW8f777yvdsWnhJxIJRCIRzM3N8X4O2fCTySSOjo6YgbTbbY6oUSqVmHDU63U0m03E43HWZLrdLhNI0hYJyERJrvEicwuFQpiYmMD+/j4cx8Hs7Cza7TY7elBA37m5Od5je/jwIVqtlnJxkGmNtDly+iDmOzk5iYmJCZTLZfa6dByH8xBxarfbmJ+fx8nJCUcloX1H8rgMBoOoVCpoNBqYmJjA5uYmotEoa2nNZhNLS0vsiUm3TFO8xHA43Bf2SmViFffJyHzlOA4zPgC8d3jlyhXcuXMH9+7dw+XLl7G2toZMJoPd3V0+sC1KtyrpX7YUmOa7/Fz1W8yjEuh0/0WtgUKGraysYHV1Fc1mE5FIhCOlkGcngD4PT8dx+taBiiypCD9pcOTARIGnm80mGo0GZmdnUavV+OhHs9l8LAQalSmaB02M1MvMOgh4mU/lulV5vRib7rmuzLNmDcOYCs+dxmUaJD9MzqvcaDSKK1euoFQqYXJyEnfu3MG7777LjCCVSjERpb0N0npu3LiBVquF5eVlPHz4kBeNCL1eDz/xEz+Bzc1NHB4eolqt8jmliYkJ5HI53lxuNpvI5XLodrtss4/H43j55Zfx3nvv8QWIAJDJZNiLkYij+Ol2u+h0OqydiMSl1+thZ2eHiTOdpSIz3KVLl3B0dIRut4udnZ0+ZiP3I31Xq1UO+0QCAZmXiNgAp0zs6OiIiV+v10MsFsPKygp2dnbQbDZRKBR4P4kOKNO+FGk+1EcAsLi4iLW1NSaq6+vreP311zE5OYnbt29zOC46g0bnf8hcqWuXGJE+Go3CdU/PyJGmnEwmcfv2bRwfH6Pb7eKHP/whut0u6vU68vl837UsfuYkoNbEVGl1GpxOovbKT7/J0YgsC5FIBLFYDLOzszg8PGSGks1msb29jU6nw0x9d3eXbyEwAc0JYlT5fJ4ZIlkgaH83Ho9jf38fwWAQ2WwWx8fHfWcETRYWlSao6i8b854Nw1FpOnJ6lfCgG0OvfCb8RsGYTQx1WDhXjEvHiEwd58W8VO+DwSCWlpZ4P+T999+H4zi80U52dCJckUgEpVIJyWQSwOn9Y3Nzc5iYmMDx8TGKxWLfgUhiYvfu3cPS0hLq9TqSySQfJKZ9LdKCkskkkskkaw4Uk/Du3bssXQJgN+CDgwPepJa1B2KiqsgC4kKJx+NIp9PI5XJYX19HNptlxkOHmEXnCnk8xGdk1hO1FgDMhF599VUcHR0x4w+Hw7zJn06nOazVxMQEUqkU9//+/j4CgQBrMLIn4b1799BqtfrMR9///vdx4cIFDjU1MTGByclJAECtVsPR0RHi8TgfD6D2kMRPTIvOb5FmWqvVEIvFMDk5iYcPH3IAYMK33W6jVCoxc6ZyZclY7EN5bFTvTOtB/jZ5MnpJ6OI7ih85MTHBxz7i8Tjm5uaws7ODeDyO27dvIxQKIRaLsdcl9Z/qcLBcl+OcRkKZnZ1lYWF/fx+u6/J5wYWFBdRqNUxPT6NcLrNnYyKRQLVa5Sgrqj5WEW6xv2zNmjLxtjH7in1uU6Yqr59nJro5DPM6C4ZFcK4Yl06yMaUH/EkGpJVsbW2h0+lwVPZAIIBSqcREjAiluCFMRJKuMWm1Wpiensbx8TFvFAPgfayjoyO0220cHx/zfpV4IDYYDGJ6ehqXLl3C1tYWn5ehfaFqtdq3v9Tr9ZDP57G3t9e3MS0zLbGtOgL52muv4caNG+wuTpdV0h6ZqJHJ+xqiaUmuS6yT3OIPDg5weHjI8QhzuRzvod25c4eJH0nvP/zhD3F0dISJiQnuBzJlTk9P42/+5m9YExNNRq7rotFo4NatW4xnqVRCPB7HT/7kT7InJTmNEH6kVUQiERYoALDHZzKZRC6X43NyIhMlzVclRKjGwYuYes1hFbEj4Yo8GWUTpYlhyeMZCARQKBRQr9fhui6uXLmCYrGIT33qU7h79y57/ZHLOjnkvP7666zhqiwQqvoajUbf/WtkhRDNtOl0mr1Faa83nU5jdXWV54UsYNnQA5VwIPabijnJc16Vn9LQupHng2mMBxHCbdo5KPPS0Y9RMLRzt8dlC7pJBDxORMUoDpRXNFeIgxsIBHDhwgVUKhUsLS3hwYMHvM+SyWTQ6XRYqqa9LLqIUJzsZAYhd3Sqk+z55MFG8ffI/EF7YdeuXcP9+/f7LjokIgWcag/imSGRcFIfiN9y+/P5PDPsXC7H+02Oc+otePnyZfzN3/xNXyR3FZEQCZ78Tf1DDi5ElJaXlxEMBlEul/HCCy/g8PAQk5OT7J1J16aQw0e32+UbqOv1OtbW1tBut5lpqZgG4UXmpmg0yo4mExMT2NjY4HvGiHHSniHt1ZGH6crKCrvfp1IpdtMnc2yxWGQiKh9RkImWbkxU81b3Xp7H8/PziEajbLojoUZVt2ouUJnkmDM9PY2TkxPEYjFMTEzws83NTTaDUuzOYDCITCaDWCyG3d1dzM7O8uF33dwTP+SZSvOQ1mWhUEAsFkMsFmMz7P7+PltEyEQtmpDFtsrM2wZ0AscwxFq1Hm3oFmDWrFS/Vd/0XtZER8GQqMyxO7xPMC1GU3qRwNCekPi/UqngpZdeAgA+v0VSOWljdNaIPJ105jrx+g/XdfvutlpcXGQTYb1eR71eZ62sVCrhwoULeOWVVwCA8XSc09ht5DKeSqXYpCVPVNOH9rKIEZMZstVqoVgsYnV1lbWSxcVFzM/PM4NTxTSkA6Siu7Truuw5SAenaf+Oou3fv38f1WoVBwcHfFllvV7H3t4ee/XV63UcHBzg5OSE97fC4TDHjqRDzGLbSeKniCT7+/solUqoVCpYXV1Fr3d6K/XU1BSSySTC4TCSySTS6TRee+01dsGns3jVahX1eh2NRoPNhOQBqWIUpnlpMieJ72WiKzMtYlztdpsj96+srLAwJmtSKhduWQCp1+vY2tpiQerw8BD7+/scLHpycpL3aunYxJUrV1hDOzw8ZG9am/roPjoAfFBeDGP20ksvYXp6Gq57us/4qU99Cul0GoVCAVeuXMHU1JRSiJXrkeeHiqnLaWVtWAYbhqhqt64MVd0yfnIeOb+qPF27ZDy9YJQ60rkyFfoFWXpQSaQm0ElYu7u7KJfLmJiY4CtCisUiDg8P+SCqaRB1khBweqYqn89jf38f7XYb1WqVI0U4zulNv/SODmE6zo8vIazVajg5OUE8HketVsNLL72E9fV1VCoVTqeT+MU+E6Hb7bIZr9vt8nUsdP6JNsYdx+k7GEpAkvorr7zCnpamxXLnzh3WhAharRb29vY4yjzVQUJCt9vlfSjy+svlclhYWAAAfPvb32bvR/GSx2q1ynuHYt84joOjoyOUSiUAp2bN5eVljnoPnO4pHhwcMLMkRkUm40ajwYep792799jelvjbZGqSx8Yrjagh0Z4kCSEbGxt9EWDk/teZ8Khu0mBJsyTB4Bvf+AafY5Nd07/97W/DdV3W2OXx1rWBgimTQEDrK5FIoNvt4uTkhKOt0OWoDx48QCaTwfb2NkKhELLZLHZ2dvrGXMdo5L7Q0Q6v/PJY6jQzuUzxufxeVa48NmI58reKYXlpcH5h2PwifKQZF/C4lGJSg1Udr5ugFMqJNoEpHRFlEy46icZxHGxtbbFpaXZ2Fi+88AKuX7/OG83VahWvv/467ty5g62tLbiu2xf+JhAI4LXXXsPGxgZarRZ2dnbQbrc5egcFsNW1zbSwM5kM3ypM0jK5lpMmRftO8XictTJiQltbW3Achw8Gu+6Pz4ZRgOFGo8F3Z12+fBnNZhPFYhEnJydIpVIcPJjMcBQVXGTi09PTaDab7DL/8OFD9rYUCRjtZcrMjL7FK1MikQiOjo7wqU99Cmtra3zvE5mpgsEg0uk011kulxGPxzE1NcVR801SuU4jMKXTSf+kYYtXyZCmQ/e6ua6LWCyGarWKaDSK6elpZtQm5kXjl8vlkEqlsLu7y+bBRCKBvb095PN5vihUtCZQX4lmO5mwUh1kJicvQgouTeZ14FRQ2N7extLSEnZ2djA/P4/V1VW2Tty/f/+xS0ypLlW9OoahYx4mZqAaS68x1pWjo08qxqdjRjZt8BKK/JgLh9W+zg3jMk0+1X85L2CeXDb1ib9d12WTkEqzI5DfiWYrYjRE6IkYbm5uslS8t7eH4+NjZkx7e3uo1+vs/EGEgdIDp4cxq9UqE9JYLMb7N2SysZEYZaD9nkqlwjH7yNznuqfeXgsLC3Cc08j3AHDhwgXeK6Nza67rsideKBRCu93Gxz/+cbTbbTx69IjPqv3oRz/C1atXmdhRaKFut4tWq8UMGQD29vbYC5Bs6p1OB/fv38fh4WFfkGORQHlpoPSMTKU3b97kc0viTcxzc3NoNpvIZDLsNEPR4ulbpWnZSv+muS0T2StXrrDpjG4gSKVSHLWDnIGWlpZw48YN9Ho9XLlyBTs7O7h37x5CoVDfbQZUrsjE0+k0a6qk7dK9buQBure3pzySIbdN/h0MBpHL5bC0tIRwOMyhvyKRCJLJJC5fvsxX8TQaDWxvb6NUKnEotUKhgFqtxvVTma7r9u052/Sl/Fz3XtWOQUFkKiZaZcLPi1GbyjDhZQI/WqkXnBvG5SWtmDp1UIblZUbzIjwy08rn8wDAzIO8Bl3XxfLyMu7evYudnZ2+IL3Aj803tHck7ruJDhjkdbi7u8s2/osXL+KrX/0qEysVAdH1lfiMzjrNzs7iypUr6HQ6iEQiePToETqdDrukb25u8j4UcMpQGo0GX7FCEbzpUHWj0UCr1cKdO3fgui6y2SzS6TTvGd28eZOl/IcPH7JXpeu6qNVqHCuS4gKS+Y+ODZCWqdIiZGYlMzBx/KjPDw4O4LouM05K22q1MDc3h0ePHvXta1YqFe53kRipQMfUVIKRiaE9fPgQ6XQamUyGtWTas3PdU5Od67ocuT4cDnNMzWvXrqFareL+/fuPBailuur1Oh48eMDzjsaHHD8uXLiAjY0N5HI5DozsNcfkd2TWJLNvq9ViE/nt27c53Bmd7SONu1AoAACbcx3nx/tk0WgUmUyGI3C0Wi32jBX7XTc2NkxJN066MnRjaYOT3Geq+SOXa2KCfhmNHw3ML5wbxjUs2GhkgHlgxXJ0ZgLxmUysut0um3GazSbb63u9Hvb29pBIJNjdmoghleU4Pw5ESw4bVDYR5Ugkwu7HFJKInCzC4TA+/elP42tf+5rxdlhTP6XTaTSbTWxsbOCll17C7u4uQqEQfuInfgI3btzA7u5un8uz67p8yJgk8kQigYmJCezs7KBWq/F+UK1W4xiOGxsbHBaJ8pHpiIgXHX6t1Wp8nks02eZyOXaWESVs8gi0IQZyGiJ2JHiIe1a0j0IhwWi8yetRpW2p6pR/+yU+jnNqTm61Wjg5OcGbb77JRJ8u9NzY2OBIIhsbGxxSizTUlZUVPigtMy0SYsiMSqbeZDKJTCaDWq2GO3fusGYsCwy6dSO3s1QqsfOPmJ4uUiWvWzJX0jza39/nq2oo/8TEBLrdLubm5nBycoJMJoPFxUXcunWrbz/WSyvRgW5svYRrv9qUDVOVmZYO/DBGHfhRHvzCR4JxeUk5gF2nmgZdV46ozqvqFcttt9t4+eWXcfv2bY5vWCwWea+BTF+lUukxMwGFaqLo6BS4dXt7m4lotVoFcOp9VS6X8d577yEWiyGbzeLw8BB/8Rd/YXWdhow7eUweHx9jZmYGjuOwSYzunyJCQm7fouZCUnmn08H09DRHPaCDqYRTt9tls4/ruhzfjw739no91qKoXDJdyqG1RA/MdDrNezckAJBgoDMZyZo1AHbCkOcBSfUUzYPqII1YBJ32NIxZRcSHmEkqlUK328X169c5hBhp7ORAROa2QCCAtbU1drx4+PBh3/6eCmQt9eTkhPc36eYCU/vFcnTrTTxaIVob6NnHP/5x3Lp1C4eHh31jT276JNBUq1VMTk6yhy1wuucnHjBXacI6QVTXF/JY6ECkF360MLkulVChwtWrHaOYf6OGjwTj0kmjftV720mkSyfXLz4nSZ/iDFYqFSwsLPCCS6VSODg4wKVLl3Djxg2cnJxwGcQYKPpCLpfDysoKtre3+w4x9nqn12XQQVOSjkkbMcWKM0n0tD9FJrdGo4GbN28ycf7+978Px3GwuLiIvb09jnAg90MoFOKIChQaiBgXaQoU5Z72/rrdLod9unz5MjOgbreLw8ND1haoDiKWR0dHAE61UGIk1K7Jycm+O8xEpid+ZBCJpvgBwB5wqVQKW1tbeOGFF/iMHzFIk/TsRTy8pHORiIVCIUxOTvJ+Dh1DaDab2N7eZvf4/f19JuDieTcyn3lpAyJQZAvqJ+pPnXVCV67MLMkELo6h45zGs1xYWOALV+msVrVa5b1TOhIiavUU7eP27dt9lgcbbcimP1QCj47ZiW01CTAqjUosV/VftZ7lOSjj+ywxsHPPuGwXmIk5yeWYmJCXpKSrm4LLvvPOO3xYuVgs8jminZ0dlMtlrK+vP7YxfvHiRbTbbbbbx+NxZDIZuO6p5xt5Fco40EQlJxIvwkh4y4som81yJHfa16nVahyk9vj4GJFIBP/9f//f4zvf+c5jpjjqs8nJSfYsJHOO2KfyQXAKM/Xw4UOcnJygWCz23dJMHovktUhmVrHvWq0WMpkM5ubmsLW1xftNvV6PTZO7u7vsvGHTRzLQ3iJF5I9Go7h69SoikQj29/exv7/PV9aQF6Sp7+V3KgInA6UhE2q32+WwVdeuXcPe3h4zMboKp1qt8gWMdJZOx7S9gIQkirCi6i8vIVKl4dF/umm8XC4jEDi9J+/tt99GJBLhQACi9k59PTMzg0KhwDc1UPBp2fFEtXYH7QcvK48Xk9T1gWptetXlJXjbttVEZ71o6yBw7g8g+9GobNOrBlM2jZjqkvMCYE2ACC85GbTbbbzxxhtYWlpCOp3mg7ii5H98fMwLMR6P4+DggIPzyiGNqB76iOec5HJt8HYcB5cuXcL+/j4f8G21WlhdXcXh4SGy2Sx7zv27f/fvsL6+rtReer0e7ty5w44b4h6IKJ0DYLMjBd4l05PoYu26p+7cL730Eq5cuYJcLsf7IWI/kBROzJKifpD7OpktL1y48FhfyP2j6iPXdXHhwgXMz88jHo/zPuP169f7Io3Mz89jYmKi73C2SsPwkvLFeawi9CQgbWxs8NU3N2/exMnJCZLJJH7+53+e978oyvulS5fw6quv8iWmJtzkQ8MUvoxMpQcHB9roKapySAARY1iq1iqN6eTkJB9NyGQyePPNN5FMJjnSjjj2jnN6NICC/xJzVu3xqnBU9a8IJjpgIvK6tDZrUtdHOlxkbctL4/LbHhUuo4Bzr3HpwEZCUD0H+iexjfnGpG6rJkmr1eKDralUCt/61rewu7uL7e3tvlBNlGdvb48JHh3O/fSnP41Hjx6xx5iO8ch4qDQrHZ6Oc7ovJYZ26na7mJmZQaVSQbfbxfr6OhKJBIrForI+qkckKDLxA8BecIeHhwiFQpibm+M6gB8zfgBsHm02m1hdXUWhUMDk5CS7/Iv3MImmUoruUK/X8ZM/+ZMc07FUKuH+/fuPMXSTxkB9R/tD4hmjqakpdkJpNBqYmZnBjRs3ONiwLtisqj6/ZjZKT2VTdA/XdbG7u4v/5//5f9BsNtnJhxg43WGm0hho7kUikcfMa3TQ23F+vLel6zPxWTQa5QgppqC7VEe328XCwgKbk8PhMJsnG40GrxtxLTQaDdy9exeu67KZMZfLseYuH5S3Wbs6MDEEU3/ozIBiWtW8U2k5tr9t6h6l9jQIfGQZF4HMXEzmCDkPvVMNvGpSqOpWlQ+Ag9Tu7OywJ1qv1+vbDxGJEHmm0eJcXV1lM6FOi1K1SceQTZOUNvBd99TBZHV1lcvY2dlRlq/rO2qDHBYqk8ngypUrWFtbQ6VSwcnJCcLhMFZWVgCAzxs5zmkoIYoCLt5KTYd/RQ2OmGQ0GuVzV8ViEbdv38bk5CTK5TLW1tYeY7w6rVRsI31TeC+6NJOcI8jBgUxwU1NTOD4+5j0+irwvCxNi2bZSsGoOk1b60z/907h37x4ePnzI3natVgu1Wo3DN9GZJ52mQY4yR0dHfQSfzLQkmHjhRvfXtdttPnRONwHIfSyOXygUwtLSEu7fv8/7Vdvb2xyqS3XvHc1X8bD8wsICotEo9vf3ldfLyAScnokCmNwuFY2Rx0JMJ4MNvRHxkOuQNSkTfTOtTxuapsN71HCuGJdKylC9F8G0uL3y0nMbfHR16PLTlfTkGu66Lh/qVO1XEdAG+tbW1mMhjHTtUS0s0wLUlUEgRgdRLVY/C4AIPV2T4bqn3mQUl67ZbHKf0AIl5wLaMyuVSnxxpHzAmkIv3bt3D47jsCkPAF8cSZv4jx49YpxUjEuce3SRJu3rUKipTCbDGjKdX2s0GrzvND09jeXlZayvr/N+jZemJYOJEIn/33zzTQCnB9IPDg76zvElk0m+54ocXnSE13F+7DWZyWQQj8f5uAId8aAraXZ2dvpCeontoP23z372s3jnnXfYOYc0UJFpic40ly5dQqPRwIMHDxAIBHivl4SWqampvpBdqjlGc4E8JkXnJ1X/2momYn/p5rqKZqn62nbMTe90a1gnfKtoga3mdZYa2XPPuFQSgS3TEsGrk3XE1m+ZugkpTxqKQUjRrImAeDFKALynZIOPChdVWlW9Ji2T/quYt5xfhZcoUQeDQcTjcYTDYWxtbfH5mwsXLmBtbY0D2VIdZBJcXFzEyclJX/Rv2ZvNcRyWxslslslk+G6sra0tXLx4Ebu7u8o9QBWzd123LwrI1atXsbm5ydqz4zh8h1kymeQrb8iRpFqtYn9/v885xQ/YCm/vv/8+n52jq+wpLwWAptu36TCyimlFIhFks1mOu0gXYrZaLRwcHCCZTHLkipmZGezt7fXdik0fOix8//59RKNRFjTC4TDq9TqbeOmakk6ng3K5jNXVVeTzeQQCAXz44YePudmvra0ZrQ6ue3qwnQ7Ry+Z4Vd/Kz1R9Y1qr8ljoGIRJU/JTrmlOyGXbCKeqtHL6s4TnnnHZdtIgzEyXVkWY/YLXJKVzVxQ5QjYneC0KsWxVnXI7xGcqhiNL66Y22UxmkTHJZkHxUkk6WFytVjmcFXCq1R0eHuLg4IBvghbLbbfb7Mot3vEk9yPVmUwmce3aNdy4cQPXr1+H4zgs8d+6dasvv4oAylIo3Qfmui4zIXIgoQC09AHAxJmONcTj8T7hw5YAqdKL/SLiSVe7iHt+lI7m3sc+9jGsra31HcyW66YjENlslg92V6tVxGIxlEol9lAkU65qLjnOaVzJqakp9Ho9fO5zn8P+/j7no/6nq26uXr2Kk5MTlEolrK2tsUAgHmoW22ra53Vdl8eaPA917vqEq6oc+b2cTleOrlwTzfKr6ehwlgVynWDupVWa6j4L+Mjcx6WaDDpiLDMpk0ZgU69NWbqydXV4DZtpUdhoiXL7vP6Lz+i56L4uvnMch+9hikajrFFSHrr6otfr8S3RshTsOE5fpH3xOZ0rcxyHL4ykNPI+SzQa5Usg8/k8Zmdn8fbbb/NhYTGPyLi8xoEiekSjUbzwwguoVqt8iJc0xEajAdd12dnEcRzeY2o0Gn1XuYhjpyOEpjFVjZXq2hDxXSAQQCaTYW1H1dfAaaiydDqNubk5PgJBkfFJkxPHTnYYIq1teXmZgyjPzMyg0+kgGo3i8PAQjx49Ys3ok5/8JN577z0Eg0Hs7+/3HThXjY9K2ND1nci0TIzOqxwVmMpTMRA5n1/BUV7rNvPGRB8GbbeubCpjkPu4nnuNyw94DahK8/BSm02TSSe9qMqSJephVW6VRmdqj5+6dITQFi/HOd1Mp/uYqtUqMzmS7BcXF3F0dMQmI/EYAIEcRVzU3NLpNBYWFvCjH/1IKfmKbc9kMhyp4+DggDUGAI9J77LGpnpG5VNIp83NTY5J2Ov1HtNwXPd0T4ki1tNFo3Iaeay8mJhKyxLz6/KJbZmamuLzXmJ54nyiIMF09o20pHQ6jVgshv39/ce0GJlRkqYWiUTYqzYQCHB091wu1xeXMJFIcBxME3NSace69orMzwTyXPdKL689sQ/l8lTamu3a8lqTJk3JBn+vMrxo4iBt0sFHgnF5MRAZdB2sm7Ay05EJjSxFiZNYJWGJ5ZsmjR9moWqjjK/cdtt6dAxfNUHF8ilCPd2fRLEX6fLISCTCUd3FfDJucl/G43Ekk0m+ToXSix6WlL5er2N3d5cJMADGw6sfVbjIjKTT6aBUKj1m7hXTU2DYmZmZPtMY0K+1qu5xsxE8VO90gpvYlxRdolgsspOIaO6T65+dnWVzbjQaxdLSElZWVvAf/+N/fMwNXnQ6cRwHtVoNa2trAE5DktH5v1qtxsGT6ZD76uoqO3/YMiedtiALM35Bnpeqea/rf51m5QdUa0xFl1TPTe0RyzYxrUGE32GZFvARYVwm1VdF+MR8JsJuSqvKo9OwZJxknE3M1Q+otC5V/ab3qnpVhM+EI7WdnC7IrFYqlfgYQKfT6Ys/RxG8xYC4qoUUCoXwP/wP/wMePXqEO3fucBSF6elp3L1797FYiQBY42s2m0in07hy5Qp++MMf9mlGcn1e2o74XLzjTPWe8KGjA2J9jnN691Qmk8Hu7m4f81LNLzK9yniZhCN53IBTxtLpdHDv3j0kk0k+U+W6Lps4xbKbzSZfVRMKhTAzM4ODgwN88MEHyjvoZIJH153EYjFOQxoWxYCkS0lJ0JHbqAM/TI3wMeXRMQMxv01eXVpxfFWCpFyvSkjWtcVrHqjK0DGnUWhOg8Jzz7hG2XkmVVan7aiItpcE4kdCEXEhaVd87rftXuq8DqguEyOz0czED8VUvH//PtrtNu9zbGxsIB6Po9fr9ZmI9vb2mPFQW+R9tG63i//23/4bQqEQQqEQIpEIwuHwY7fcihKy4zjct51OhyPmqxa5DcMS61D1gfxb1M4cp3/viSKrx+NxvPTSS7hz5w6bx8SyKEJFMplkhxRd3aq5qltHkUiEo1HQ+SrRSUYsg7wSHcdBIpHA1tYWM1GZ6esINkW5ODk5QT6f5ytWer0eO68kk0nWqMX+U5Un121Kq1vfKqFU1a9yvSrQlSGWo5t3cptU9evKVTEfm/bqytSBrTA+LDz3jMs0EWSwTednUpgmtB8cvLQ1VX6R+JpwVNUlpvfCXfT88wIVgxOfkafg9PQ0arUaXz1CtwDncjlcuHCBJfDd3V3U63WOPi9v6ruuyzfeUh0UqHhycpIdBchdOhQKcYBdmXm5rss3KsvPdYtRJQl7EVJVn8n5Hec0HFE0GuUoGnRVDY0FHaomgr60tIREIsH3SOkYGNUjMzL6L+4VNptNTE5OYmdnhy8npTQ6LaDX6+Hu3buPmTbFeURXwIhjSVovnc2rVCoc9Z+EDjovRuG9hgFxrHSaDYFOU/Fi/LbCi/yeBCnTfPICk6Agt9cPHfGjuct1jYp5PfeMCzgb26qpk2XmYjMgqoE1aWsqPEz40PtBGKiOURIxIQeJSCTCewsiiOXIGhBw6mE3Pz/P7umzs7PI5XJIJpP4xje+wbfkJpNJjj348Y9/HBMTEygWiwiFQnygWj5MTbfp1ut1xONxdiZYXl5Gp9NBMplELBbDvXv3cHh4yB5oqv4DTh01PvnJT+Kv/uqv+t7J2plu8XotapP5R17giUSCnTYoBqTjnDq20PUbZFrrdruoVCoIh8MccaJYLPKemQ5EpkXj5zinHpvEND788ENcu3YNBwcHHF1ER6AIv4WFBTx69OgxBkeepBcuXMCPfvQj9ia9cOECdnd3EY/HUSwW+aYB+cB9vV5/bB9QBfIaVfW3DejWhm7sxN82a1Gl3dBhdNFU7Rd3E0P20vbOCsYalwG8NBrb5yomIDMfnUSkk87l/zrmp5t0KnVelU5+7qU1yDi7rtsX3JQ87hznx/dIqfpLDIRKQGVMTk6i2+3i+PgY6+vrKJVK7FFI5RFTCYVCuHfvHq5fv85xDslkJONN/U8u8MFgEO12myPSU+DhRqOBWCzGhFJFCMhVvVgsYmpqiqV+qiMSiXD0dDGWnYiXjeSt03hlAtZoNLC8vIxyucxaB0UE6fV6HMqI2pdOpzE9PY3bt28DOL0ss1araYUl+qZxTSQSWF5exsOHD7GwsMCefru7u/jggw/6nFZkRkwCC+1XFgoFbG5u9u1VOo6D+fl5xq1QKHDbKGCyHBhaZd6VPT3ltaBiWl4alaksFajoghcd0IEoOESjUczPz+Pg4ID7RsZFV5+Mj+q/id6onquELRtm6MW0B9UiCc4d49INmFcnqgiIieCrtBXVQKvwUv3WvdfVq0trkuh1E1CVhiQ/cmmm+7GISKkWaSaTQT6fZ/dnKufFF1/kyBTLy8t48OABx58TJWdyFSdHAMdx8Oqrr2J9fb0voC7V57qnHnm7u7uYnZ1FIpHg61QI11wuh+3tbTSbTb6M06Tp7O3tcWBZus2YYicWCgXMz88zzt/73vf6cJHLEvvUDxCjJ49LipNId4dVq1W+pXd3d5djKh4eHmJ/fx+tVguBQIDT68Zc1rZmZmb4xmq6441MtVQ/RRmh8iiyyfT0NFqtFlKpFEd7yefzCIVC7K0ZCAQ4LFSxWEQqlUKn02EPQtLmVOexVH1pmr82xNvmHdVjGkO5PhLWYrEYnz9UlU3po9EoC0okKNJ+pbyPJ4+fiUmr/uvoja7dBKr6TWCraQ4K545xieBXNfVicqr3pgWiw8NGUjFpWTbMWFWmagKbFm0qlcLk5CSmpqbYY0zHmEnbqtVqmJ+fR6fTQaVS4fSXLl3CN77xDWxtbfVdqyLj6boum6kODw/x3e9+lyNj6KTqTqfD8f8c59TBgiJSlMtlRKNR5PP5x/bIqCz6UCRz1z29KoauOyEmUCgUsLCwgG9/+9t8KaKIt+6/CUSHG2oPMcqtrS2+BiSbzaLVamFubo5v8KW69vb2AIAvRKQ9MdExQgUyU9vc3MTs7Czy+TxmZmawv7/PWsDU1BTi8TifnRIFk3g8zu7vdCUNRQshxxpicpOTk3BdF+VymeMQuq7Lda6trfkmarp1SSDuhXmV67WW5bEV6xY/kUgEc3NzWFtb62P2cl2O47DjSSwWQygUwsHBAYcpMwmxcv22GpgOdOlshP5h6h0EzjXjsgUV8wH0xF0nragmj1+pRceUTNKjSQpTaYQ6RiqnpX0V2ggXzUEyIyHJe3l5GdPT0xznj+4JEwmefL2EjAsxGDG6vVe/0cFU2hsQy6/VavxObK9YZygUwssvv4zZ2VmOLE5u3/F4HK1WC1tbW/yc+tGWYenmhSw0UJkbGxsIBoPMfNrtNl81Qh6YxWKRGRVFmVAFk7UlHpOTk1heXkYmk0G73cbVq1c5sr3jOGzKpfEWodvt8n1j3W4Xe3t7aLfbfX0VCARw9+5dFgLS6TSOj4/Z6YOu8hFxpgPpqnWmEsQmJiYQDAZRLBZZEyTm4bqn5l7VdSXyf5UAqVs/Mr50kJr27ehoAfDjyBzi+EciEQQCASwsLDDz3traYoclk4VAhYeJBunw9hLAdTTSBGfFtIAx43oMVBqIajKYzIK697bpvPAS/5sWka4+OZ0qL3BKLOl8FTkDZDIZ5HI5vnae8pCbMnnzUYw6kvyPj49ZuhYJvMrUQXEIbRYc/aaDvqpLMalMlZQq4hCNRnF0dMR7b8Cpeex/+p/+J3z961/nuIh0FYbYn16Rx03PdYSI2kKhl1KpFO7cuYNcLsfmVIogPzU1Bdc9jdZx7949LlfuZ/k3pSPN6caNG8hkMnz1CoVxEuMIEjMR+/7k5AQHBwfIZrNYWVnhQ9eO4/B1MlRnMBhEKpXC2toazxExOoeIO2kkquDIlC4UCvGzWq2Ga9eusYmXbnWm6Pwf+9jH8J3vfKdPm7FZ217rU2Rc8Xgc+XwexWIRS0tLCAaD2NjYYPOzqK3T3uzc3ByuXr2KV199FV/96leRyWTgOKchwGid6dauaV7LYNKqTLTB6/9ZalcqOJeMa5BO9JKsbDUgk8Yjv1f9l3HR1a9LJ7+XNQPdBNVN2nA4jHQ6jWg0yiYdsrvLUnepVEKhUMDbb7+NcDiMfD6Pzc1NHBwc8ELU4akywcjjoGoveRU2m02+cl4sT6UFqSTSZrOJ69evIxaLcVTybDaLRqOBv/zLv0Sj0UAmk8HU1BRu3ryJRCKBdDrNe0CiNqcSdEygEpZE3Hq9HorFIk5OTphIN5tNvPzyy3xmrV6v4+joCPV63Vo7kX8/evSIHVxKpRJ7Y4rX4ySTSaWLPQkb+/v7SCaTffuhdAyh2+0inU4jlUrxBY8yYyWzouM4fG6s1+thYWGBgx3L/bO8vIyf+qmfwle/+lW0Wi2Uy2UUCgW+3Zg0yFQqxUxdbr9q/quYuzhmKiDLQ6FQwNTUFEqlEnZ2dvg8YSKR6Lvni9p5cnLCjJwO29M+I/Ud0B+CTEdjxLJV/eWVV15nNtq7jfA9SjiXjGvYzjNpRrr0qvc6ScivNOOFi45IyQtPp+XoCFkgEMCLL76ImZkZFItFOI7DizCTybAJkZgDXX+Ry+Xw2c9+Fn/5l3/J2g95i4n4ivibzGymfnFdt+86DlX5XmVSueL1IoVCgZk0EZxms4nDw0Pk83n+TyZIk3ZuA17Mi/b5QqEQtre3USwW+czTxMQEYrEYe6GZBARdHxA0Gg2+OkaMXNLtdrG6usrHImQnF9d1+SoeGg8i4tlsFteuXcO9e/cwOzuL7e1tjoYhAjEtCk4shn7a39/n9zIhrdfreP/995FMJjm4Ml3HQnud9Xqd7z+jfDZar7iWyGmHYjPqNLJ6vY6dnR04jsNzntrQ7Xb7wpCl02m+ALNSqeDhw4dwHAcTExMolUq4cOECcrkcPvjgA44ao1vjKu3aRCfEtF40wYYp+aVbw8C5ZFx+VHxVHtUzPx0ua1Oq/CpzhM0727p173RMT05Hm8vVahW1Wg3xeLzvZtxer4epqSlEIhGUy2WW9ElC3tjYYFdyeU+Lrlqn+kVipJMCZZxFd/1oNIpMJsNESl6YJuk4Go1yKCHao6MI5ScnJ4jH47xnV6lUUK1W0Ww2cXBwwERaJuA24DXf5PKoTbTn1Ol02GFmY2MDuVyuz3wn9wMApaZEjJvy0H5ZIBDA6urqY31JRyMogj2dsxLrLBQKbB4mnLa2thCNRrG6usrMRWRsJycn7LovBmBeWlpCIBDA97///b62ifjTrcuFQgGvvvoqrl+/jlQqhdnZWbzzzjt8IFt2CPLSRkUgXEnjpHNmdNkmRXQhDTkcDmN1dRWzs7PcPsojC0v37t1Ds9nE7u4ua6skIJCmL2qi4ryQ8TbRDh09Mmle8lwy0RfT+1FrY+eGcenU2WGkABvmJw+oTssyqexeZZrw1TFpXTrde/l5MBhkUx8AvhMrmUyiWCyy+SqfzwMAE/58Po+pqSn88Ic/5HLE9tN/AH1ExKbtBEREiOiR1pVKpXB0dNTXTipTdfYnl8thbm4Oq6urWF5e5rNikUgE8/Pz2NjY6DOT9Xo9TvfOO+88dpuyzMBM4+e1wHVatPiM9r/oMki6EoXSk5dlIpFAr3d6SaKIrxcREjUn6kNi5rTnKQoLuVyOhRfRxEWCAe3X1Gq1Pjd6mlviHijNNbqzLBQK8dxRRZmncaJ9skqlgpOTE+6nXC7Hl4GKfWgD4XAYn//85/Hee+8hGo3iU5/6FKrVKm7fvo1oNIpQ6JSM0rEB1z29gy0UCqHdbvOBat2cqFQqmJubQygUguOcRkyhM3CdTgc3b95EOBz2FDypL3TtshEKxf8mwVsFXkLzKOHcMC5Z3bXtKBvmYCrbaxLI5YppBmGqXv/FBW3SGFVtEJ91Oh3cuXMH3W6XA7ySpA+cMo90Os33opEzxczMDI6PjwEAhUIB0WgU5XIZx8fH7GRARLHVauHw8FCpFZnGkNyq4/E4FhYWsLq6ylfPE6ElIiDvP4njeHR0hEKhgEuXLqFWq+H4+BjlchndbheHh4ccloguUmy323j48CHC4TA+8YlPsHlHdTO1lzBk004ZXNflixTJuSAUCiGfz2N+fp5d6AkX8m5zHIdd+/0CMW263JPKEhkStavb7eKFF15ArVZjASIcDvOeGXnzUVl09czJyQmmp6fhOA729/f5oHc6nea4laTt0IHrw8NDAEA8HmemfXR0hHfeeQfJZBLpdBpHR0dYXFzk/T95HEwajJiu2+3iW9/6FjOp119/HQ8ePEC5XMbR0RFqtVqfCZDKdl0XlUqFmZbolUtMluqo1Wq4fPkyR8gnpxWau2L/e9EiE30ygdgXXgLWIKBjnIPAuWFcgD1D0IFqsHSMQK7TS8LWaWW69zaSk9czm3wyPvSf9m8cx2G3duoHkVjRvhA5MtBiXFpaguu6WFhYwP3799n0Rndttdttvg5ep6moFiL1C0XG2N/f54jodPCWNsczmQwzF1qMIpPsdDrY2tpCp9PBlStXsLS0hL/+679GIBDA8vIynylynNMoFuTWTLflTkxMYHJyEj/84Q+N/e41DrZjR+fJSBMBTr08Jycnsb29zd5zvV4PoVAImUyGHVfori9T8GDVtwjk6p3P59mFu1wus7NOp9NhoYUiuGcyGc5z7949xONxLC4u4tatW3z+rtPp4OLFi303BNDVNrQ3tbCwwJFXaJ8pEongypUrcN3T4wOpVIojsTx8+BCu6/KcpD1Z0bVep1HIAh8xYApT9l//63/lYxczMzNYXV1lLZO8Lkl4IiZFWmsgEEA+n2dPzF6vh+npaVSrVdy8eZP3scR905OTE+UdbiYhXR5jlRArWgr80A4/wpZN/YPAuWJcg4AXEdH9FtOryrMxCek0ItUzcYGZCLvpuReoJpLrurz3QBJ+Op3mKOqNRoPdf+v1Oubm5rC+vo5QKIRyuYwPP/yQTR7AaZSAUqmE3d1djoYhm69k/MVQUoRHp9NBsVjE3NwcIpEIR3Wg96lUis+hyQyLgMIm0X4OnSOq1Wq4ceMGawh0LXw8HmciffPmTWXZXovRS2OWyxD7IxgMYmZmBul0Gnt7e8xMj4+PWUskwSIWiyEWiyEcDuPSpUt8kaWqH1R9rZqD+XwemUwGFy9e5PNs2Wy276xdqVRCMBhELpdj5pbJZLC/v8/X2Liui4997GO4ceMGjo+PmUm5rtsX3kpcR7VaDcFgEOVymSOJzM3NYX9/H657etaO5gWZTOfn5xEKhbC+vo5IJKIdDxsm3m63+YhHIpFAo9HAxMQE5ufnWSN3XZcdeRzndK/vypUruH37Nra3t+G6p165r7zyCh+YT6VSqNfrHEZMPMZBH69LRWXaQKZj6kuZgenK0r0b1Ko0CIOzhY8847KVIkwDrCrPhkDpypKZn4652jBVlbYi16PqAxUjof+zs7OIRqPY2triK+e3trawuLiIRqOBubk5Ji60p9Fut9n8EY/H+eoQmZDKTCsYDLI7s3hthuM4LIG/+uqraDQaCIVCCIfDKJVKWF9fZ0LmxVioHDGAMDEx0i6z2SzH1qOgwHIcPS8wMQzTM2qv67p8JoiInhitnYgzBSMmQnj9+nXk83kOKUR9R4xX1KRnZmY41BO1j0xcpVIJH/vYx7jsarXK149Q9AfXddmxgK5jabVaHD6s3W5ja2uLzWDiWT/qU9GZx3VPvQwpCoUYQolc26PRKCYmJpBMJtHr9dgs2u12sbGxgU6nw/tPOkuFF/Mi79FcLoeZmRlcv34d0WgUH374YZ/DRTQaZS2wWq3i/fffx9TUFGte3W4XDx48QDKZxOzsLKanp3F4eNjnIq+bM7q5Inp5Oo7DZlcKWeZVrlyejvnoaKCq30y/RwEfOcZlYgIm84ENg/NSp3UMyYt5yWCaUCqcxHyDtonKoYO+hUKBtarXX38dd+/eRaPRwMzMDKamptBsNlGv1xEKhTA5OcleU61Wi/dIdJqQ3NZIJALXdTE5OcmXPJJZjMxToVAIP/VTP4VvfetbfKjz6OiITWckueoYmK6fe70elpaW2HkgkUjw4VYRf53QoQMVoVTlFecnmcCi0Simp6c5CkShUGAGkslkcHBwwAeok8kkdnZ2EI1Gsbi4yFppuVzGwcFB31ynw+M0bqIXInmC/vVf/zVfp0IMpN1us7ed6DACnF5fEovFkMvlOJoGzaNUKoXp6WncuHHjsT4R+7bdbuPtt99GPB5/TGBwnFNzNZmDqWwy6QKnjkX1ep332mTvStVYyRo+4VIqlVCpVJgZ5nI5NBoN7m/XdZFOp/vM5iREkSCVSqUQCoWwurqKtbU1JBIJ7TwQcZHBcRw+fB6LxXB0dMRWhgsXLuDSpUu4ffs2u+bbzHlxfcj0Qq7btG7PUtsCPoKMSzdBZaLh1eleKrGX+q3CRSddeUnlNhPES1tULRYVk3fdU48pcgdPpVL4/ve/j0gkgkQigd3dXRwcHLD5iEI+EbHpdDosHYomENWichyHI43v7OwgHo/zRYrNZhO5XA7RaBTFYhGTk5Mc1b1SqWB/fx/xeJwPCYuETcUsdUSi2+2yQwbFkvNiWqpydAvZltERkHbR6XQQiUQ4gnun00EikUAgEOB9R4obSBpSOBxGtVplh5VAIIDFxUWOvi8eqAbUd24Rwaa9RDpoHo1GEY/HOZJHtVrF0tISms0ma11TU1M4ODjA0tISHjx4gGw2yx6GjnNqim23232u66LQQXNKxInm0PHxMUqlUp+WuLKywpo6efiJMSszmQw7ecggjyONEd2W7TgOmw5JKyS8PvjgA0QiEbzwwgvY3NxEMBhkbTiRSLCmSkdHyMRL/R2NRvvic4pzgyLUkIYq77uGw2Fm7rdu3UIymWQhg+qgWJYkDMlzfxRM5yyZFgDY3Q74HICXqcZkKgLs7LZiOlESM5VhImQqE5nOZKHCxQtX1XMZHxvNQCYUjUaDpdmJiQl+n0gk0G63OTYgLRQyIU1NTXFoG9FNXv6IdVerVd5vunTpEnsLkkZHhGRxcRFXrlxhrc9xHI6VRxvecn2m9oofMncSU1ZFL1eVr6vLFhcCcXy63S5qtRqSySTfy5VIJDA1NYVut4vt7e0+wYBMXBS/j2IDiswpm83i6tWr+Dt/5+8gkUjwfhGNn7jvJc8funvLdV02Rc7OzuLKlSuoVCpIp9P45Cc/iWw2y3VubW3BcRzed0skEohEIozHxMQEotGotr/ksaJbBcQ9IgDsFJTL5fDCCy9genqa8S0UCnjttdf6zgOKDhQm64SIh+M4ePnllzm6DJ3tazab7NwTCoUwOzuLpaUlvPbaa2zaE8t2HIfPyE1PTyOXy/HxAjFdMplkR6K5uTmEw2G+uYGsG6FQCA8ePEC1WuXD5HT0oFAoIJvNIhaLIZVKPRb9xmYees3XJwHnRuPyIsR+CLaOyKvyeanMXnjo6lbVI9ZnwzR1ZXvho5LAxLpJeqvVarw4k8kkHjx4gHQ6Ddc93SwXox0cHR1henqamVEsFutzbtDhSXU1Gg384Ac/4BtwaY/m6tWrfIPy3/7t3yIYDPLBXDpDI2tIqrbJfSuPBQC+nkN+bmKCXnNH1+diGgr947ouu4UTrsFgEAsLCzg4OECtVsPU1BQymQx6vR5WV1e57eTAIXqrUagoivRwfHyMRCKBUCjEt1OvrKzg0aNHHGjXcRzWIIgx/s3f/A27vZMDRbfbxfT0NOLxOLa2ttjDLplMYmVlBe+++y46nQ7y+TzS6TRH5s/n8+zpqRsX6i95TEmLIK2iVCrxwXnaRyMBKhwO44MPPlDOcXl8ZCYm4kKhrojxue7pOcDp6WnWmOgm6kQigTt37rADSygUYguE45zuTdEh+LW1NWxsbHB7CMgT89KlS2xJoIj74rrqdrts7o1EInz2znVPHWCI6d2/f79vfZjmq+7Z04Bzw7gIbM0uXul0gziqgVQxH8JLTKN7pkrv1QY/eKl+U330nIKY5nI5JBIJlEolvvxwfX0dsVgM8Xgc9XqdFxzdoizf62QCMolQBIRKpcKeUx9++CFisRiKxSIKhQKOj49Z+qRQVarLI1V1ejEi0zUTcn9RX+n6UXwv1y/2cSAQwAsvvICjoyPeR6lUKkgkEuwoQEFbE4kE1tfX+dZk0cwmO6kAYEeJQCDAfRqNRvn818WLF/Hiiy9icnISP/jBDziiRiwW43vVCHq9HqLRKJvQXPf0tmK6xZk8BymEluM4rCHS+DabTTx69IjLI4JNTJJMXOJBX92Y0Xm3aDTKeff399Fut1nYIq9Mqk/sf9pXlcN50ScSibCbP0VtIS0qFovh8uXLuHfvHhzH4T3BSqXCHrp0LGBvbw/FYpEZTzKZxP7+Pi5dusROOKJJvdfr4ejoCMViEe12G/Pz82i1Wixw9Ho9xGIxZLNZRCIRPn9J2tzly5fxzjvvIJ1O4+7du4/dcSfPv0HgSTC8c8e4AHv7qlc6sbNFJjPKQVHlUzFNVR4VYTRJ9LYSviq9Ccdms8n7BqlUiu3toVCoLywQES4iQF6MQqyr1Wphc3OT01JYKcdx+C6jcrnMl146zmm8NzJX0QFUG9OcXLfcL3K/6bRoFSOS36nyyWUcHR1hZmYGJycnWF5ext27dzExMYErV67gzp07rB05jtPHpInx6cJrkfBBzwqFAl/kSdeM3Lx5kx1U1tfX+WAwHRReXFzEwcEBm57oYDKVTftArVYL6XQaxWIR29vb7CrfaDT4WESxWEQmk0E6nUav18PBwQEzSiLgdF5KPJsn9yntb4XDYZTLZWxsbODw8JC9DSmALTHHqakpFIvFvuMU5BFJe4KySzo5AE1OTrLTDvDjW7xv3LjBXq7ZbJb3oei8o+u6fD1NoVDgvqdYlKKJTwSaS2tra/jkJz+JQqGADz74gIUOAMwgxZvL33zzTWxubvJ+5s2bN/vWoDhndPNQnKumNWSyeI0KziXjOisQmZdMlFQgamkmExSVo/otliW+U5m4TPn9SFGyNqgi2qJUSpvMtI9BzgGNRgMXLlxgiZs8uvwwD7Gv5D50XZfNM81mk0Mb0b5WuVzmQ6eyR6GXSUTXlzpNmdLq+s5GQFE9c5zTvY+VlRV88MEHuHv3LhznNHrFd77zHbiui4sXL2JtbQ2f/exn4bouHj58iGw2i8985jNYWFjAf/pP/4m1IJ3WSSYuAMjlcmxa293dZccDuh+tVqthYmICc3NzrC3ReayVlRUOtkznyYgxkSZHJryrV6/yAXFiGsfHxzg8PGSiOz8/j/X1dY5dSCZp0j7lOQKANTliMLQfSmbng4MDZqykOSUSCWauhPP09DS77ot3eDmOw4xoe3sboVAIzWaTz6zR4f1sNot0Os3zga79oVuhSVMmK4LrunjjjTdw//59vj6o2WyiWCzy4XqKe+g4Dra3t3F0dISFhQU2F+7v77O348bGBlsfPvjgA3S7XRwdHfFND3LINVumJc71pwXnhnH50RD8lAnotRAv1dqUTyRwMqGzkXzE8uXfuny2aWz6iSTFarXKBGVubg43btzoC1NTr9dZKgXAZhFVe7zwlpkX8GOvMnISmZubw+bmJh/Q9VqgtlqfDQPSzQ+v9lFauRzHcZDP5+E4Dp+roqtNHjx4gFQqheXlZTx8+BCVSgXf+973MDk5iXa7zaGGbt269ZgjjIifWOfOzg7m5+f58DJd8Ei3FYuMwXVdPp90fHzMnqN01ormxMTEBLa3t9HpdDAxMcHaOO3B0WWYZJYjBtHpdJDNZtlrMRaL8ZknMkuqzuiRdk77TmI6SiM6Di0sLOC1117D3/7t3yKTyeCll17iaCyrq6u8X6Qa13q9jna7zcwqGAzi0qVLbBkoFApotVqsrQYCAb7dmM4ykvcgmc6//e1vs4MHBXQOBoMcyxAAe1ceHh4iFotxv5G3aavVQjKZZE2vVquh0WiwQ8/6+rryOIqXpcdmLuto21jjUoCuY8TnJkbgRwvR/TaZEk2qs87EZ5LGVRPNy8Sn0zBkLcqLkdJvilZBcexoQVBMP+A0OOnR0RETOJHQeGmpqraotB0qq1KpcCgd0hBUTMu0GL2ECV1/iuWamL+XQKJqN4WyCofDbM4CwP1PN0u7rouDgwNmEq7r4s6dO7zHKEZGl9tJIaLItEvaK7nYu67LTi4A2AWbIlJUq1UmvHR2jtyyKUTT3t4eyuUyO9aQ04Do0UeChsh80uk0ut0uqtUqNjc3+ZZnMVqHOA/EcSAHHl1/U/y/mzdv8kFo0qDIwWJzcxOO4/SdWxPHqdvtolwu85UndCyk0+lgZ2cH2WwWh4eHeOmll/Do0SNkMhkkEgksLCzgvffeY40VQN++ZKVS4XGjvUM6WpBIJHDt2jWsr69zm0ulUt+1JxsbG3Bdlw/LkxZNQoncfyrwSzN1grwXbRoEHPdp6nsDQrlc5uCuo+bkKqCJpSJoMpgIr837QZ7bmqN0jEAuR1W+nI7s95lMBp/4xCdwcHCAaDSKBw8ecAQKknibzSZf/3B0dPTYgvGa0F6SG+FH5qV6va4kbKa+8apbVacpjdxnXnWpBBnSCuibnl+8eBErKyvc191uFxcvXuTLCn/0ox9xeynosS6CApVNxJRuu6bQRRQgWdS4xOj8hC/tRQGnB37JGUE8PzQzM4N4PI6NjQ2Uy2WEQiHE43G+BkQMWEv9FQ6H+4IzVyoVvttNZsbyR+x7FYh7SOFwGPF4nANDU5gvakMmkwEAjsVIfRcMBrmcUCiEixcv8nGR6elp9Ho9vPLKK7h27Rr+8i//EsVika8A+oVf+AV85StfYRM7mfbkM2xiXRMTE5idnUWpVGIv11QqhU6nwxeg0qH0SqWCR48e9QkoAB47xC2CjQYmC886sFnXwGlEFupfWzgXGpcfMA2GVx4vtVfFCOTybRmFqmyxDpXWpMprqs/EVFV1i+/IHNhut7G7u4t4PM62eFp0dJ4FAHZ2drgsG+atwtPU74SLGP9QfGcq16ZuXZ26eaEbd9N8U/WJHLOP4ip+/OMfRyKRYC3s4OAAExMTbNoiwrS1tWVsC41HIBBgDz/SeEgDI1MZ1U+aBuUjpkq3JyeTSbRaLcTjcQ6GOz09jc997nP43ve+x/jRgWAK2ivGLKRPp9PhK+/pPjSRuMpEVEd4VfNAnCfkMJRMJhGJRFCr1VAoFDjixiuvvIJIJILvfOc7fZrX5OQke7sCp1EywuEwhx4jjevu3btIJpN8tczu7i7+7b/9t/yMPG9FfFVtSaVSvAdHJka63md/fx/hcBidTgcPHz7kfpb7R7ZCyHNQN0d1tM1UljwOo4KPHOMSQaeBmIiQX41FZdqykUJUeJgmlTyJvJisrr0qgqBrT7fbRaVS4cjkFKVAlhZlHG0lYhWY+pgIrq6tcn4/faZjtl4arVyubv54CUQERHTef/997OzssFmWhAYy2clecLr5ROWLcQzFILc2wo2oiYXDYbRaLVy8eBE3b95k0+b09DT+6q/+is13hF+5XMbFixe5vmw2i93dXS6bTHSZTAbZbBarq6scGd+rr+i/PN/E9pNnIR0ZoPNsdGj5+vXr6PV6bEKkPUSKWB8IBDhQM8UjTKfTuHjxIjY3N9HtdrG7u4tqtcrX5kQiESwsLCAcDvOll2SeJPf6mzdvKiOF7OzssFmQvBLpsDJpc7S3ePPmTSUDNPWdHyuBbTkmmjoo+Iqc8Sd/8if42Mc+hkwmg0wmg8985jP4L//lv/Qh8wd/8AeYn59HPB7Hz/zMz+D69et9ZTSbTfzmb/4mJicnkUwm8Yu/+IvY2NgYqhFeIGskJonCloCoBkJHjL00KLlMUUq30QjF96qFqpskJk3GlkFSsFdyBiDTj0rKUxEQr4WkeqZajKrnYh4VEaZnOuFAJbnrQFW+iJtJw7J9Tv1IYahIGyJmcHh42HetvIi/3P+6drqu2yd86MZNnDsUDisYDGJrawt7e3scH4/Cc3344YdYX1/H6uoqawsA2Ank3Xff5byELzGVYDDI5kEKayVqgBTtQ+4723kinncLhUJ444030Ol08OjRI8TjcaRSKQDgIx90IWa5XIbjnN5Bl8/nUSgUeHzoEDcdDH/06BHvZ5VKJbRaLWbsxWIRh4eHyGazmJycxMLCAgfqFfu/2+3i5OQEBwcHHLar0+mgXC7j9u3bODk5QbPZxLVr1x47AiH/Vs0tL4uMKo8KbOb6sBqYrz2u//yf/zOCwSAuX74MAPi//+//G//yX/5LvP/++3jllVfwh3/4h/jn//yf48tf/jJefPFF/LN/9s/wrW99C7dv30Y6nQYA/O//+/+O//yf/zO+/OUvY2JiAr/927+Nw8NDvPvuu4+dWdDBk9jj0g2kjpCbJGcbyVrUfqg8W4nchK/8W6ddqf6LecV8IsEPhUKYn5/H8fEx34UkljWsZDUKsGEQYv979b1pLFRlyAKCiZHJY6aTXIlo69qjEoDEfTK5bF1YJ6rHcRy+lgQAE/l8Ps/OMGI4LPE8HYUbOjo6YmcBIu50kJq0EtG8JRNa2u8iRwrqi1wuh16vh729vce85cSPV5+TxriyssKR5snVXTzPJUbVD4VCuHLlCgqFAp9RI0Zer9cxNTXFmuLk5CQHGqaoFnSOrdPp8IHmZDKJo6MjrK2tKWMJiuNBjiCkbROIsQ5pzpmERnHOymtXN9dNJke5XN07YLA9rqGdMwqFAv7lv/yX+F/+l/8F8/PzeOutt/B7v/d7AE61q5mZGfzhH/4hfv3Xfx2lUglTU1P40z/9U/zKr/wKgFMb/NLSEv78z/8cP//zP29V51kwLi+GQ6CK7aXLS2BT7iDvTURWZjT07UWEvYiy+Js+8pXqcvtV+Mvl+Wn/KEDF1AcBVT+b6jNp0bR/JDMOHc66dKo04n8T46LfcvpAIIB4PI6VlRUcHR1xoN2f+7mfww9/+EOOWCLur9H+FxHkarXKt2mTB5zjnEaWoPN3dLaKnCKojwmfyclJAODQUK1WCysrKzg5OeHbBwCwh6KY3zQ2YjsXFhawsLCAWCyGdDqNtbU13mOjM2FUJt09dvnyZRwcHGBra4sdV6amppBMJvlW6mvXrnHg452dHVy6dAmZTAbf//732VRLh+XFYNQynmJQ4mw2C9d1++7HE7Vlar+JacnPTWlFGmLDuEwwDOMaOMhut9vFV77yFVSrVXzmM5/Bw4cPsbOzgy984QucJhqN4nOf+xy++93vAgDeffddtNvtvjTz8/N49dVXOY0Kms0myuVy38cGZInCBLqFb1OmSQvTlauThGyItooh6d4B6JNgTVqZ6r8OqDzaG5AlZS/8verRSc0qSXwQkM0wfso0CSU2aeX225YnzxN5Dqnw9xIS/NRJETAmJyfZHf8HP/gB0uk0ZmZmsLi42HcUQay70+kgl8shlUox0SOzGkX6X15eZo1HDMUkpqVzgORNGQwGcXR0hJOTE9bsxGtCVETY9MxxTg8o379/H47j9F3ZMjExgYmJiT6c6Fqd999/H2tra+zm/4lPfILNoMSAKLbn3t4eWq0Wtre38eGHH7Km2Ww2+fwhmWtV85OYVzQa5fBZdHWMam54td8LVJr40wbfzhkffPABPvOZz6DRaCCVSuHP/uzP8PLLLzPjmZmZ6UtPV1sDpxuLtAEppyGvMxV86Utfwj/5J//EL6pGLWQQEMsRyxff0XMdEVG98yP922hbKpzov/zMT7/I7RYXh4nx22hfpvdepgaxLt1/FajGQqVBeWm0OlxNY2PCdZDx8NK+VfXYgEi0yFRHBD0ajfJBV3IaIIILgLUBChOVTqeRzWaxtbXFkTyIidE+XTQaxcHBAcf/E83PjuPwRaQUkYIcFAD0hRijdps0C9WzQqHAFoQHDx6wZ2GpVGKmKZvvSGij/Tg620UekBRlgw5nkzegeFkpmU/Fw9jyGAPg2wDokHen08Hk5CQymQzu3LnDHodebaXnujXqRTO91r4OhqXBBL4Z19WrV/GDH/wAx8fH+I//8T/iH/yDf4BvfvOb/H6QReiV5vd///fxW7/1W/y/XC5jaWnJusxRSQriQMoDbkM4ZQJjwllVtmqymJiejgCrmJeqfh3oGLdX+kHKtQWZidm2RZXWRrDww5BMTE6cT/Lc0rVTN+ZeTF7W+FQaoPyM9rXICadarWJ9fZ3TnJyc8H1gkUikb/+n2+3yZZH3799n5wQ6skBl0FUolUoFkUiE71gjpiXOe7rrKxgMotlsYnJykmMKktNEMplkJxU/4Lqn3pUXLlzA9vY2AoEAyuUyB3De2trqY6Kq8SUGf/fuXTZbEt4UoT2fz+MHP/gBB6h+6aWXcOfOHWaQ4t4U5Rf7NJlMcrxIKpcYNu1zyVqaag2qBFjT2jYJp7YwKm3NN+OKRCLsnPETP/ETePvtt/F//V//F+9r7ezsYG5ujtPv7e2xFjY7O4tWq4Wjo6M+rWtvbw+f/exntXVSlGc/MGp1Vied2Gp1OulbR7x05XuVp3ovlmXS+vz2mYqxmpisjZZo0mbEukzt1EmDthqPXI4pnVd7xHxiG3RjPSqJVAXEJEjzoXNRIoj3UgGnWkw2m0W73eZDuXRmieLnESMi8x2VQxc70mFkIqri+SlyRb9z5w4SiQQuXrwI13Wxvb3NOMmEmxyB6G62XC4H1/2x+ZAutJSJv/gt9om4HlqtFl/1QTSnWq323XCsEgAcx+GoGcFg8DHnCLo3KxaL8SHmTqeDSqWCvb095PN5ZpQmfE9OThAOh/Hiiy/ypZ/3799HMBjEyy+/jBs3bvQxLVuhUQVe2tbThKEvknTd07AiFy9exOzsLL7+9a/zu1arhW9+85vMlN544w2Ew+G+NGTnNTGupwmyOUb1XsWIZLCVbrwIrVyfmE4u02aCiQtEXiyqxaN7Jj9XaYS6NprwVGkFqve6xWpqly3o8pn6Wkc4TNqbnE4lKMl12+Ao4plIJBAOh3HlyhU2b1Fd5FpeKBQwMzODubk5TExMoFAooFQqcYBd0ax1fHzM0SxEZwLSlBzH4cO1uv1QSheJRLC1tYWbN2+yc4bsku+6bt+FkYeHh7h9+zbW1tbYRXx/f1+peZjWL/2mfbxOp4P9/X2srq6y27nssRgMBrG4uMgu+tFoFIlEghmU6/7Y5EfMf39/n8/fUT8cHBxgfX2db4PW4eu6p2bKYrGId999F8fHxxyHsF6v48aNG30HuG1Bt27k/iEYVMAdJfjSuP7P//P/xN/7e38PS0tLODk5wVe+8hV84xvfwF/8xV/AcRy89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBXA6eL/2a7+G3/7t3+YF8Tu/8zt47bXX8HM/93MDNWAYCdUmr5dZRqe9qMr3mgAmzUnHGGWm6VWW/E4sS9bIRmEaUOVVMWw/4yjiqCrbpK0NOl9UdcnasghedYj5vIQVm2c28yYUCuHChQtwXRf37t17LHgsOUSkUink83nedy4Wi9xW+WA57U2J/S8yw4mJCQ47JOcn4h+NRjE3N4dMJoOdnR2OJEF7X2KbJicn+XqQUqnEd5OdnJxgfn4eiURCefBW7hfxv9iHhCNpd+JBbLmsYDCIRqMBxzn18CMhnm4Wput8AKBWqyGbzfL9cMQEE4kEGo0GyuUyt1e1TkVcXdflG8gJKACz6uC/3H6xvWK7xTrlek20SYWrCGdhQfDFuHZ3d/H3//7fx/b2NrLZLD72sY/hL/7iL/D5z38eAPC7v/u7qNfr+I3f+A0cHR3h05/+NL72ta/xGS4A+KM/+iOEQiH88i//Mur1On72Z38WX/7yl63PcMlg03FeeQcFE0FU4TMsgVLVZ9t+EyNSTXQvRuA1ieWyvQQA02/5v602Z9tGr7bJ771w8CpH907VVyY8/AgYRIjX1tb4Isjj42M21VHddLbo4sWLAE4tIqT9yAIT/SctgeoR5yY5T4gamMxQ6Nbk1157Dbdv3+6L6i+nbTQamJiY4P0zMhu6rovNzU0OCixrUoSbaUxE/MV+081nCmk2NTWFUqmEUCiEVCqFhYUFviWBNMbj42MOoiuOx/b2tjI2oSyc2TAjU1rd3JLnj81cEhmZTnBTlT1K+EgH2R2U2ItgWgx+ylGlHTSfzX9VXh1zGMUEHITAq9KayhoEp0HLsskrv5cJvI5geJWt0pKAH/el+EzU6uhMVTQa5Rt2Z2dnsb29zftWdAg3k8kgFovxoV4yz8nBbVX1OM6pSXJ2dpbNieQxSAduReIXCARYGywWi9jf3zdG7iDtkbQ9lVblRdZUQpasoaraRc9oLzCZTOLq1at48OABX3KZzWYxMzOD999/n0NyBQIB5HI5ZnaJRAIHBwd9JkixT20Yli6dScuUGaIsSNisR5v+FfHwEhbGQXYtQEWc5ecENoRfNTgqKUYntakmkpxvEObh1RYvnHX9pEvv9c5WM/Ca7IPgYspnqksHNu3TjZmX1igSSJlYy6Ar29TXpBVMTU1x7LxUKoVIJILZ2Vm+DiOfz6NYLPK1KLT/VSqV+vZRVO1wnFPPuomJCRSLRb6sUXSVlw/HUh4dMxe1KNd1eT/NRtvQgdzXqvWmGwPHcfierK2tLVQqFWZSjUYDm5ub7FUo9lEul+P/tVqN9+VMWpL8TMVsqHxVHtO8lNPbMC0ZFxkvE90YFXzkGJcfDct2EOTJbUN0bTQaP0xLlU5HmE0LUs6rMwWoFoDcJjmdzSIx9YOOWdjk0eFq6gcTA7BhemLb5d/ye1MZurbp0ovlix/gx9ePZLNZvPDCC3jw4AG7YB8dHfHFhGJIJrrmvlAoIJ/P4/79+33RIwjo8LHjOKjVarh16xZfOCqe0+p2u313RzmOw/d7UbBZIvrpdJq9E2XmRX2h+vbqRxNDsul3us6EonWIAXHFe+fEcuhG6JWVFY4rSR6I8rktEyMTmb44t3Rak0xHVH1hy8wcRx0x4yyZlAqG9ip8HkEnleiYlm4x+JFWVFKPVz55EXlJk3I6WyZKeUztVL33apMX01cRIK92eTEaE7M25VPhY8LbVJ/pt/hRaWk6nFVlqN7p0gYCAVy6dIldyG/cuIGNjQ3ef261WuxiPjExgXg8josXL/I1GdVqFXt7e32ea2IfuK6LixcvsrMFXUwZDoc5okU2m+VbfeX9HDJDihE4otEo5ufn+7QUeRx0zEz3UY2j2HeyRiGvJcc51bQymQySySRrTXIwXNH8R8+IWd29e5dNinRJpIy3qZ1eOKvmhU0a8bdpnqnqVzFqHXjRMRs49xqXqjNtOteL0NlIcCqtQ5Vf9c6LIJrKsJ08JinM1D5dHbaaiAoX8dsrryqd16KRx0L8bcNERLBtm9i3KkIgj5dXubImJb8Tn4lnsSKRCFZWVjA7O4v9/X2+pdhxHJTLZQ76Wq/XEY/HkcvlkEwmMTk5yWkpQrsqAC7tqbVaLaRSKUxOTuLg4ADNZpM1qGq1isPDw8fuCxNxb7fbODk54UsmKZwTMQqKzq5jVKZx0PWlPJe8hA7a2yoUCmg2mxz9QsRDJuSO47D22m63UavVUC6XUalUEA6HjdqVzHAGWZdye3WCoK58eZ2pyjYJvYPQXy8494xrlCqsTORNg6wjhF4E1i8R0/3X4W7TBhlfFf6mRWRiCCqcVM/9tlFXjokgmZi/CeRxVtUvMy3RYUK8UdurXTLYMD/HOT0TRe7uvV4Pu7u7ODo6QiqV4nNKuVyOrxGJx+P45Cc/iQ8++AAPHjzA0tISm/MajQZisRhef/11fO1rX+vzEAR+HCm+UqmwY0Iul8ODBw9wcnKCer2OSqWCVCrFIY9kbSYQCCCfz2Nubg6O4yCdTnNEjmAwyAeSaU6pmJbNvLEdYzEvRaeIx+PodDoIh8OIRqNwXRepVAqlUqmvL2TcwuEwXn/9dXb139/f78NV7g8V01K1wwS6dopMxlYYtQEvhjlqOHdehX4npinPIGWJOHlpAKMaVB2T8CKMNhKWDohADsKY5Hc2ddrWMYqxVGk0pjJ0mhOVQ6ayw8NDAKd7HeSlZ4uPjJdJ64pGo5iZmeEbhWu1GhzH4Sjt7Xa77woQKicWi7GJb2JiAlNTU1hbW4Pruhw3UIwGIWt45MDx5ptvolarYWtri8NDua7LzJT2g8QyyGkkHo8jGo3iM5/5DHZ2drC8vIxvfetbrMGJOOg0Bpt1oPK8NHljplIpLC8vI5fLYX19Hc1mk/es1tfXuQ6KQyhrXeFwuC8wr4r56hiKjdajS6t6rtJQbdeRbs4Osu4Ih7FXIQbj8CZpYRhGKH7L9dhqJXK5KnxVE07FGGyYhSqPqg5duV59oarbhtnqTBSmOm3feWmZuvp0i12lbUWjUVy+fBnFYhGZTAbb29t8iFTXNlljFM1/KryIeVy8eBFzc3PsOEBaF0W9AKBknBS5gZwsyuUy3/SbTCZxfHysZBT023VdvjTy6tWrKBaLfaY90uBUfUXv6QDvvXv3EA6Hsbu7y/tycuR5lcZgK7zJz8X+Fd/R+1arhVKphI997GPY29uD4zg4PDxkU2Y4HMb09DSOj4+xt7fX127VwWIRDxMTlkHHtMQ5J6dTPdPVoypH7BMdbrq1cVYa13PPuEaluXgR8mHKG5U2YVOOKOXpytQ9UzEW0wRW4Sjj4xf8aGEqZijiqGqHiriZCIQJB1Xd9FxmJnQFPRHgbDbLV9ib+k/8JBIJdiun6AsiHqTxHB8f4/j4GMFgEPPz87h//z5L+XLgWrnNrnvqCk/msKOjIw6Qq2IWYp8C4MPGDx8+ZEaluxjSdfsvtxSZ5vb2NhznNFzU5cuXcXx8jKOjI6OWqtNYxGc6YSwWi+Hy5cs4PDzEwcHBY8yLzqN997vfRSgU4nepVIrPb5GLvuzqr9NwRHxVjMHEjExgomVyXar1IedRlaOrl96b1s0oaPZzz7i8pGAZdJK/iWDaEDFT2TZahzyZVBKpCk8dEfbSBkSwxUnETW633JdyXlO/qEDXB7qxEX+b+trv+NqOvQp/OudDRC+RSKDVamFjY4P3n8RDybpyRMZ15coVJJNJfPe73+V9oXq9jnq9zpcarqysYG1tDaVSiWMMitfTq/pOhKOjI2SzWSSTSY6pp8NNLqPZbKLdbjOT8WIivV4PsVgM4XCY7/iiC2fL5TIODw/xgx/8AHNzcwiHw3zg2MSk5Lp0c1rEIxwOo1Kp8JUoqv6nIwPBYBAvvvgiGo0Gcrkca2PHx8cIhUIIBAKPxTWUcdIxLapT/FbhbWIwqvWnq8umv0SBcBj6qMJ1UHjuGZfcaX60G1umZ0NoVQzEhJtOWpff6/A1MTUdzjr8VRqDXJ6KsarSqAQBlSSmI2iqNuiYlg5MGpWXJOrFKG0gEAggEomwK3gwGEQ2m8XR0VFfgFkVg1XhS59arYbV1VVks1nk83nk83nWrMLhMLuf04WCxWIRd+/efSz6hJdm0m63cXh4iOPj477r4GXc5DZEo1FMT0/j4sWL+Pa3v23sIxGfdruN5eVltFotdhi5desWR+ygKBOZTIbDO+kIsF9BjsZrYWEB1WoVyWSSI9oXCgU2d5LW7Lou33kVDoe5DtIcq9Uq8vk8x1tUMUoV07IRnlRjoGqbqRwvIdAk1HrRxycJzz3jGrbTbLUuem8zeF7ESDdJTczA1E4Zb5mhyWWoGKqXZmezMMSy5fJ1ONuUqXtno4l5MXhZotTVYQuO47Dm0+12+QqRvb09XLhwAZubm317RTq86D89i0QivIEdDAYxMTGBWCyGRqPB5jVyPT84OGDnCFHqVxFRVZ/Jmpmu/WLf0ieZTOLOnTt9z0waB3C6f3Tr1i04jsNalajl7e/vA8BjDFiFv24+mBhCJpNBo9FgN/5YLIZLly7xDcPHx8dYXl7G/v4+R/9oNpvIZrOYn5/na13IhEgMTuwjVR/rmJaKfpgYjQ0DGlTT8gJbBjhqeO4Zl99Okie3LQG1YSCmOsVyTYTAT31ei9OPhmKTT8UATIxZfO6l7Xn91xEjm/zitxdD1rXLjxbmuqcXEiaTSbiuy1oCmZFEgi4TKLnfxN/dbhfZbJbNZtFoFKVSCYuLi9jZ2UGr1eIwS41GQ7l/JjIxWbjxC6rxiMfjcJzTO7sajUbfPVamQL0EotOIDbOVn8uE3ma8ms0mNjY2cHBwwOZdOnd2cnKCdruNcrnMjIzqmJiYQC6XQ61WQyQS4bTi3WMqRiXjrFs7pjSqOSSnNY2pPMdV68Km7/zSrFHBc8+4bIihKv0gzM6mfBNO4juTlOUHF9Uzr0lH71VMx4tp+xEU5IVnIwnr/ttI/TbE12ZuyP/FPDZMi4jW1NQUtre3kcvlmIC32204zo/3tlzX5QjtlF9VT7fbxaVLl7C7u4vd3V2Ew2EEAgFMTExgdXUV9XqdCazrupiYmMDly5dx48aNx8x9VL7MtLz6TzXvROeTubk5bG5usrmN2hkOh5FIJNDr9VAq/f/au7bYuI7z/C25Fy6X1IoUKa4oKZEsuwliykYqJ47VIHYjx0Vg1ShSII3rhwDtS5rYsFAXQZ08SA9FJASo0wZpG9QNEgdBoBfbRYC0qWXEVmoYrlXJaiRZVeVIoq4UJV6WFC+75HL6oJ7T2dFc/plz9sr5gAW558z8889//vlvZ/acYtVuStGwy7IzlZxVbSiGm+87NzcXOt3gVSW9vb3o7OxEpVLB0tISLl++jKGhoXCXZiqVwtzcXPhSyHw+j8HBwfDNx6lUquoxTjp+VetX1kY2V1OGpXKApu+8HHWytHFYcWVjbfnIJ4pxEf+aohMb+rpxVUpEpSlblLqsUTW3QNF0TlZGW/ZdZyhMfKr68bzbGFSKA7ONJHleqKhUKrhy5UoYfZdKJUxOToYZV/BopLVr12JgYCDc8i1eE/776OgolpaWwqi+WCzixo0byOVyoZEtl8thOWt0dPSO18Dz85H9NbWRtUun0+jt7UUicXsDSZDxBW9IzmQy6O3txd133y19Jp+N0+IzN9XmD/Gp8qZ3VAXnZ2dnwyfXB7sjg/PLy8u4fv065ufn0dXVBeD2749mZmYwPj4OADh9+jS6urowPDyMdevWobu7W8q/al66AEyn4yqnZWvXXEBZSxQbYIu2dFwmiFF6vdJbgG4AVQ5FFZGrFj2fKcnoUWmYoFNg0TCpImSxvWjITfzyWRElStQ5RpMz1UGcZ/BG3uDRRUG21N3djTVr1iCdToeZCz9nfj6JRALT09PI5XIYGRkJfxDc3d2N3t7e8EkOwW+Gbt68GWZ5sgBJVZ7ij1FKWMDtezrZbBb9/f1hFhhkWtlsFqlUCgsLC7hw4YL0esoyEtm1Fh2QLGvk5SXrr7pPxtjtTDl4AeTVq1cxMTGB6enpqpdFZrNZTE1NYWpqCqVSCaOjoygWi2G2du3aNczMzIT9dHrPy1m1Tl11XBzXRsdt2pgCX1WbqFiVjgu403nZRNMu0C18U/sA4oLkFdNUytRlZeJ325KgjJZsAcqiSqozsx0zymLRGQORtulaBg9jzeVy4c65wKgXCgVs374dfX19dzgvAHd8Z4xhfHwc//Ef/4GFhYUwkxsbG8Ps7GxVhrG4uKh8XQaFf5vsuKOjA6VSCYlEAnNzc+EOx3w+j3vuuQddXV0olUqYnZ1FJpPBunXrqjYw8LR1eqPjU5d1yOYgC6YYY9i+fTtSqRQmJyerntyeTCaxfv16bNy4EQsLC+jp6QmfPrK4uIjR0dHwWYrB0++D33Xp5Ge6FrY6rgpuTetTB6rT0wXVcdvXtnvkkwq8IaYYeiqtKNBlehQe4+KDOrYpq6I6PFXUL0biqu8yHkVegvYUnkXeTJmmGB3zjoZvE7xkMLivEzwnMIj6gwfZlkqlcKt8sViscjhi1hVsrw9+rLthwwaMj4+HmzHErIJ3ZgCq/vLHebmp5hz8FTPDgJd0Oo1MJgMA4Q9ze3p6wtd3LCwsYMuWLdi0aRNeeeWVqleBiIFd1IDSZo3z67CzsxM9PT3hW595BO8xu3jxYrg1v7OzE8lkEr29vVheXg4fWsz/7MEUtOoCJaqOy+jo1qRJxwNQH0umg86eAG6PfGp7x2UypDqHYOMYXJ2IKmKkQhWByYy/OCcqz5R2umxEJUud49bx4MKPrL+KDoUn3knx/XgnFhi0IPvYtm0bZmZmkMvlwoetBg9tHRkZwfj4OGZnZ3H9+vU7fusV0A+cRnDvKJvNhs/v452R+LDXoH86ncbi4iI6OzsxPz9/h+PSRf3BuHwWGBwLDHgymUQulwu3iQfP6CuXy5iamsLS0hLS6TSuXbumfOagjhcV4grsKDrJBxHB61cKhQIWFxcxPT2N2dnZO540opqPzGFTeTc5RJGuKVuT9XFxXDZ2BfDPKpRCpwgmw2WTlfGG0BTtURSUevF1UaRuTjaZCKUPxQHI5GCah+y8i1xk/W0yMUob2XyDFzEmk0nMzc2Fv+m6detW+JT2SqWCsbExXLp0CR0dHejt7Q03MaTTaSSTyfC3THym09PTg56ennBXHJ8BBe+EAhA6k5WVFWzZsgW/+c1v0NPTg4sXL1bxaor8E4nbPzLu6OgIdyoGr0cJfmQd7JacmppCLpfDZz7zGfznf/4nlpeXUS6XQwfW29uLmZkZ6eYRqtOirDcTHdk14/ur1mbQpqenJ3zcU39/f5htBaVb1Xx0AYJqXFl7VbYqG8cmGBcdnYy2rm+t0Vb3uFQpM0AzrDqaupQ8OKZSdl20o4o4KYZT7EtZHBT6/KLXGTNVGxuFl/FOjbSpxk3FrylK1clVJxt+rtPT0+ETFLLZbOiI8vk8HnnkkfDHrJcuXQo3XFQqFeRyOWzbtg0dHR0ol8thebCjoyO8ZxZExPl8PnQeQfkxk8lU9UkkEhgaGgp/C1YsFpFOp6uMn+kTbLwINlyk02ncd9996O/vRy6XQ6lUQnd3dzju0tISLl68iHK5HL4SJJ1Oo6+vDyMjI1W/iZLJm+p0+DmIOw5NH115VTwvlv6Cx1UFjipw5vzPD6hOSwXd+jM5eN52iTKTOTwTfZsMsNZom4zLFC26ghqp22QMsuOiklGMvclB8nRUfWS0bTMSE30VPZE3XRvZuCINWUQpjm2rCyb9kZ1PJBLhlukgA8rlcpiYmEA+nw+fLXjkyBFkMpnwfVWBHIrFIhYWFrBhwwYkk8nwqe2MMXR2dqKvrw/r16/HzMxM+Ggh/l5L8JLDIOMKypqVSgWFQgG5XA5zc3MYHh4OH61EccTLy8soFovo6+sLnzZx/fr18OWIQVYVZCJr1qzBhQsXwm37g4ODOH36NFKpFN5//32Uy+U7xqAayqjOQJVJBeOq9Jl3qolEApcuXQrbTE9P49Of/jTefvttqeGn2CiTjptomaoA/PGAvyCbptDT8V+PTCtA2zguVZpdT2FGBb9YqBmRqkTC0+P7yNrxx0TjL3NkfBvxmDiWyxxVxkK1KHWGiCJHE2zpJxKJMCvJ5/PIZrNYWFgIDfXc3Fy4W23Lli2YmZnBhQsXQnpBdB88Ib1QKGBsbCx8Zl6pVMLMzEyVbILnFGYyGaysrKC/vx89PT2YmJhAV1cX1q9fj0wmgzNnzqCjowPT09O4fv260WkFYwQZF4DwMUhr165FNpsNH3wb/H5szZo1mJ+fRyaTwezsLFKpFBYXF3Ht2rXwd2j86+3FcagQnYjp2lB0nKcr9lHJBbh9zcvlMn75y19WZXy2c9HpuGxMFS3ZPPlzOtthex0aYWNb3nFFzajqCQqvusyLYohV2RA1K9L9L5uH6NhsnIUsW1JlTFRQeJBBtaD58zL+ZeMyxlCpVNDf34+FhQUUi8VwM0U+n8fVq1fDLeujo6Ph09t5dHZ2YnBwMHwixtDQECYmJpBIJMLsJngxYzabDXcsDgwMYHR0FCsrK8hms6GjyOfzmJiYQKVSQSqVCp0Hb6R0kX3gUGdmZqq2vPf29obZX/BA3M2bN+ODDz7A2NhY+MqP4F5YInH7cVDivS2dsdRlVzIdEq8Tf41M/4t0ed502QyfYVEyI9k4qvPi/yb9VNkOGc+ywNMWjbDBbb+rkAclI9D1tR3LxuiLkC0saolDVFaRno0DlfGl6y8zJCaHoHK4FB4pY5j627RTjRPwm0gkkM/nUSgUkM/nce3aNczOziKZTKK7uxu3bt1CR0cHhoeHce7cufB+CP9eqnQ6jWw2i3Xr1oVZ0/LyMvL5PNLpNKanp9HV1YVcLoeFhQV0dXWFT2o4efJkuOkj2PgRbM1OJBLYsGEDNmzYgHfffTfcVWiT9fDz7OrqCrOrxcXFcC7B77aCLC344XXw2KeJiYmqHY2845RdF935Rui4ajwdbdWcKE5L5qhtoZKTDLY7Cal2VRaUA6t0V6GN0aIawjigc0im8oMYOerai2OZokLKuGIbk7M1GXZZRM+3l/Ftyr5sMz1Rnjw9ajTK95XNMfge7Lo7e/ZsmF2sWbMG2WwW09PTKJfLuH79elXWEZQBgdv3kgLDHpQYGWPhY51SqVS4OSIYb3JyEleuXEFnZyd6e3vDLA9AmFlVKhWMj4/jgw8+kBonPmPQBSaBQwqcY/Bm5YCm+MSOrq6usN/69euxuLiI+fn5KtnLslfxOH9e9b0eOi7yRYn9dTzLaOicKn9ezJQowbIKNg5StoajtLNFW2VccTmeRqS+Oojpf3CM/863dQUlSxSP6ca3oac7R3FQNtl0lKhVXITisUQiUfU7J/54Op2uevq52EcsqQUbLoLnGgZPhQ82a/T09KC7uzv8oW86ncbly5eRyWRw+fJldHV1obu7G1euXAl/WxQ4GNXuO5VcZQj41t3PCTKzYHNJMplEV1cXbt68qX38ks4xNJuOxzGuzlGLDtek6y76rRvf1M92zYvzcMm42mo7vEzJXOkA9Cio1uAXshgpygyprJ/umEhLd1y1iHXOVdVXdk52DSmZAMWYuPCl6qc6FjgD8SGvlUolfEyTbPt1LpfD2rVrq35gnEjcfvpG8CPe69evY3JyMnQG3d3d2Lp1K/r7+5FIJDA4OBiW7NLpNBhj+OhHPxq+TiV4pmA+nw9fgiiTgc6RiX34TEvVZmFhAfPz81hYWMDc3Bzm5ubu+JF00FbmBJtVx6l6oxuXp2WiR81cbByrbeaoG0v2XbZO4kgKWr5UKIJaNqIIzyWyokKWOekiF3ERqDITPnKiLlKKzGR9VcdUc1ItPOrYpshbZeBk8xMDAd15FY+qY7LzplJNZ2cnNm3ahCtXrqCrqyvcgTg4OIj5+XkkEgksLi6Gr8vgr3NXVxempqbwP//zP1heXsbNmzfDB7wuLi6iUCiEJctMJhO+8LBYLIbOQsebbG7Uc8G8g3tswW+eZLKS0WyUjssyEIp8+HF0GZGOpimj4s+Z5mTj5KJAxYdtxYWKtsq4AsRxsWRGMq6LzNNTKanqgqt400Fc6LJI0DZbdXVyIk9iO53DpnwX6aicpU6+wXlKhKuK+MXzusygo6MD/f39GB0dDXfp9fb2olQq4cKFC0gmk1i7dm344+XgDcjlchlXr14N7yndunULmUwGIyMj6O7uRrlcxn/9139hdHQUALBt2zZks1kMDg5i48aN6OrqIhlX/rs4H91HbB9kWTJ6JtRKx3W8m8ZS8aiTqUpGKlo6erJzIk2TfuqOqeag4oNKw2dcsIvWqVEKYB8pqM5FjYhk9IJ+ujRcPKaKUmVZAT8O39/G4escgy4IEOelk6kqu9GNL2sjo6eaj2l+qnYy+QdjLi8v4ze/+Q0ymQw2btyIvr4+pFKp8Ldbk5OTYIyFPypes2YNbt68WbVBAkD4SKWJiYlwi31wLwlAuMtwYWEBk5OTVdvhdQGAKcPRHdf9T1kbOh3X0RXPqfiyhU22oMusdDrOrzedI9bBFBTbOCpXJ1pLtNXmDB7ihW9HyMpQ1DnL2qicu4yuqT9/LODRNngwQXQAKoesO6eDTp6yY7LvOgfN/w3uPwWvOJmZmQlLhMEuwuAeWCqVQl9fH6anp8MfOA8PD+PmzZs4c+ZMuMGju7s7/OFvpVIJf0tWqVQwMzMj/REwPz/+rytc6MiuVy2hC0Z07Uw6xv915ctmvaj03BRY1MsFqGS06jdn8LApN1GOUy6uLj2njkVpq4osbUpbpqhLFrG5ZKmqkpuJR/6vqo1qV5puLJMB4Om5ZsN8FmPSqeD8ysoKUqkUisUiJiYmQsfS1dWFdDodbrYInoxx6dKl8AfBFy9exPHjxzE0NISBgQHMz8+jp6cnfJpGsPNveXkZS0tL4VM7TFviTQ7NdH1MMjDJUtbXJFMVr6o2AahrRuVIgvVCnTfVaah0UTYnVSBlCp5UY/Lf43BuYvUhCtq+VChTNFOZyhRJm8aipvIiXCJ7UQlMEaCqVBZ8p8hJ1tYmgzJlc5TMySay1PEh0uK/6xwYtWTCXx8VzwGKxWJVm+ABu1u2bEEymcTFixfDV4V0dXVhaGgIk5OTSKfTGBkZwblz51AsFrG8vIzp6WkMDQ3h6tWr4e/FVlZWwof46gynKaDRzZH/rssAAhom425TJqMYbpUuqXiTZc2qwE90JnHquGmu/PiqtSm7HqagT8erCaq2tgGhDC3vuCiG3kbYLgYwLkS5yOLi1hljnWLazl8XEaqiRJkhEY2HGN3qxqAsPtVx3aJ00QHdvFU0+awraJNIJMLHQo2Pj2N5eTl8j1aQaV69ehWdnZ2YmprCu+++i3K5HL5QslKpIJ1Ohz9GDuSk+92WbSSscn4qg8+fo0TxKgMexXiqeNM5ORX/wXfxvIpOVB1XOSKZ45XNn+K0TGiEXZSh5R2XCJnhVQk77oigUQ5P5AHQZ4+6TEn33cawm+Sqi0J1zkXGk2ruFB4pgY6MlinbVPUJjunai0ZxcnIy/F1XKpXC5s2bMT8/j6tXryKR+P9HRAX3sZaWllAsFjE6OgrGWPjcw5mZGczOzlY9lV2EyZiJvNnqi8phmjIIU1vVeZEXCi1VhhJA97u1eul40Ec1X/GvSI96DXQw9amlLWzbe1wU6CJj2XdbeiKi0g/6qPrxxkQ1lsn56CJAmRFW8SaLSGWZh4ymKpqV9VUZRltaKp5UPOpkaMo4dNdd5DfInoJP8APm4PmFwWaNjo4ODA0Nhe+HWl5exuTkZPjD5nQ6jZ6eHhQKBSSTyTuic5NeiR/V3HneZX1lkPESHFcFXqoxVedN11DHV/CR/WBaNl9xzLh1XNVOBupcdaCsnXqj7RxXlKzHFAXxY9SSvomGqp+sFCAqrmphB32Cv6romD+vG181nm7BqqJTVXuRF1WmJLanGg/+nMlAiHRUxlvkQdVf5C/4TE9P4+TJk5ienkalUkEmk8HHP/5xzM3Nha8VCZxcKpXCRz7ykfC9XoVCAR0dHchms1JdMY1t0hsX+YjylemWydkH/VVG2jUA1V1Pvl2jdFynQzodMzl2Fc86uNpEV7RlqbAZoDOotRxLNrZsocgWAMW58e2o52SLVJfZiXMTv6siUJnxMhkcl/mY5K2bm8iPrHwl8s8buyDyD579Nzc3h8nJyXA3ImO3H8OUSCSwvLyMsbExjI2NoaenB0tLS+GbenUGLvjOl8R0zsmUUchkJeqa7C9PXxyfbxsck/XV8WsKdGwyjUbquIo3SgBAtU0UHa0n2uJ3XCbFr5UTifuCqaJNncKrFqsMKudlilQptFVGWmckosqOIi/RaYvyMjkal3FUEbWqr8iXaNgTif9/CG/wvbOzE+l0GplMJty4ETi1gE4ymQzvfyUSCWQyGdy4cQNr1qzBjRs3wo0cPF/8X5v56kBxOlTY6g11jaiyK1mbZtZx3ZjitbaxNfz5KPOS6c2qfK0JIE+/VcYjTkcTd5RhiqBU50yRnMzA8MbSdmxKVCs7psr8bMfStdMZDj77lLWn8mWav8l4qQy+yvhkMhls2bIlfEty8LT4QqGAubk5lEqlsB//SKVkMonBwUGk02mcOXMmzMSCl1OKhkyVJZnmxOuRCir9oDhJ/rhNWzEAEM/xfymZSCvoODW4MM1FN/8odi8um9nyjou/mKJhrtfYzUpTt1Ao0SG/4ExZhGocU9AgGmtdVKcymPxiVvEpm4vOien4phok2diyeZjaBJsqLl++jJWVFWzYsAEDAwMAblcfOjo6kEwmq56EwRgLdx52dnZiaWmpykCrXuIoyojnT2WQTXPXyUscS+RHdh1sM1oRvK1QZSGtruPiPCnXSsZzs6LlHZdJaWxhivYo45lKCjq4LhgX8HzKFpKLbG0yXVlbk8ExHbPl01WOpkhfB9VcVTpWKpVw8eJF9PX1YXZ2FhMTE1UOKplMYsOGDWG7oFxYqVTCl1DyY/DGTGXQTHJV9ePlKpuLqr2sjcg31Vnp5K8z5O2m4zwPLqDoci2CdwraZleh68URoboIYsRjohFV2UyIk55ozFTnxTY6OYh9+OMBZFG22CcwgjI6OuMpQnbt+PFM81fxThlHxZdqfHFumUwGn/zkJ5HNZpHNZrFu3TpUKhXce++94Xu5JicncePGjZCG+Dgs1TgyHnVtTLJSZbCqPtSsQHX9ZHRUc9I9IqwddVzXn4I4A+240TaOS2UwVMqlA8UxufaNC7bzMbXXGSRVxKiLDgPDRXHgsqhVLIuIi5s/JvJscioieB2RGUCdUVRBp498G1lAxPOTSqWQTCbxwQcfIJvNYmFhAcPDwygUChgfH8fAwAA+8YlPIJPJ4Hd+53cwMDAgNb46hyTOX1fGks1RbGPSC5GeSp9kBl1WLlNBFhio0G46HtVpRQHF6UdFy5cKA8iiPMAtIohSQnIpN8i+xzGOSia6sSjGSdXHZhwZbCI8cW66+ciMhoxnSsRvA35s1f86+ozdfuVJIpHAf//3f6NcLqO3txfnz5/Hhz70IeRyOXR2duL999/H8vIyzpw5E76bi+qkVOObnJZqnnG3sQlCTBmeSk8paCUd5/l1hav9A9SOOU60jeOiXtRaCFE2nmmcKA5WXESqMcVMwbQAZGPoaMn44M+b5K4y5rIMRMa32F/kTee0VbKzySpUchcjaBXvPK+yeQPA0tISrly5gkQiET4lo7+/H9evX8f69esxMzODtWvXYnJysurNxwEdldPSzVE2H9lx2THbLMxlPYqyU2UlVP5EfmTfW0XHXR2Wynbo9FtHi59LLext25QKZTBFcDYRtqqt6jjlwlLoqGjLFqNsbkFb14hMZuz48VTRoTiGbvFReJddR1EGlOhURkdmHFTGX5y/iqbuOw+Z3Hhe+M/KygquX7+O06dP46677sLZs2dRKpUwPj6OUqmEdevWYXBwUCprfh4yefLtZf1V86AYJV1QqWunWieq4MyUXZnWvsyxtJKOqwITylrXXVsbfZbxbcMHFS3vuGycj+15Slvbi6pqozIWrohz7oA6epfRMzlSEx82vLksUr6tLnoUHQeVD9FJyAxqAMoCF53X0tIS3njjDczNzaG7uxulUgmLi4tYWlrCjRs3wnay/rpxRIepa2uav6mvzAmIbU3GNJgnJYtU0VHRDnhpJR13CaLriTj5aHnHZRJGnF6+FWGbWVHa8Q8b1RksHhSl1S1QVQYkRtym6N5U6hH78P1sXlypygpkjkxnIMV58217enrQ3d0dPgLqypUr0qdhqDIpcRzV3ES5UuYvG8fklHTHRT7FB97aQJyrzuDbVCoapeNioNII6HSnFmh5xwWojafOkIltZd+p56KAGim6jm8yOHw7akQkM6YBDVs+dQ5TFamqyn08byZaKuMrKwupjItsHpTxTc5ShMzRJRIJbNu2DVNTU7j77ruxefNm5RZ4kY6tgaVWFUxrL0rELXPcqjYm3kwlN7E9j2bTcWrAybe3gWld8fxFzSxt0BabM2yjN5VD0wlZZvgox0ygto+66HkjzP819aHwwhtTU1/xvMqgy8a04UlHh/+rMua68VZWVu44b1PqVV0DU1TN/18qlXDkyBFks1kAwPnz56VOSyVrFa+2OszPxURLFuDo5Kwy1CJNyjq3qcxQ9LjROh5HIGvT3jaorXUlrC0cFw+KgCmGG7A33tRIVrdIxUWja+/i9KiK6OIoVYZJRdvGMNgYLJEfFR88r67XjxoIiGPyf01BkGwMxlj4vMHFxUWUy2VlCVc2B9PcVE5Ol0XpDLQ4R1Nb0xzEvtQMT5Rh0E7XV+RDzH7qreMqhy7ybRo/Duiuay3Hb3nH5SoYqoOjjG2TbVCdkMnBRHUsNn1sx5IZHFXkrYJKHirDw5+zjZ5tjsucsmjE4lqsMjmK2R5jDOfOnQvPudCkwDbQMRk0FW+67Io/HtDkqwmydjpHoHJAqnayzFLnlHTnZeeoOi7+Vc1fNb5LJmly0CqogryoaHnHBeiVztQnaqYE0EsBKtQyIrIZxyWrMdHT8aFb3KqMQ8eX7jpQDSBFBiZjpQLVuKgyMNl32ZiqtrJ2rtEyxSnoQOHRlMmY1jBFz/i2KicgG0dlkMXzceq47JrHbW9cA2XbbDEq2sJx8aBeSNuIwyXaqCfiiPKpBtqFnsowqQyvzAjqDKuu7COjKdJT8WIjA9V8485wbUppOlActW49mAy5jG/ROFNgc+1M61RsJ86DGqiYnJmMN92cTDoe1zWvFSgyiyvbAtpkV2EURDXWNheiVkpX6+gmbgTRMv9qDQqvYjtx4VOyKh1tXclFpCcra+l4DubLfxf7RXVaumPimFTdEAMD6jl+fJUMxDaqeaiuq6gLFH7Ea6yioeob9LHJum0DF5EnUYb1gOmaNhpt47iohs+2T9BO1TaOiNwGlHIBpTRiom/TnmrEdf35/3XZj0yGsutqw5NrtkrpI7s2It8q5yr7X5YhyCDLLMRymCpjDb6bypWyObo4SlO2Jru+OidjuybF8VVBBT+2ypZQ17iNjuvWuowHG7jYNapeUMdyQVuVCk0GyDa7iuIATHRta8biMZc6Nb/o4pqTzOi4zo3STja26rqK8ooafOjkbzIo4vlgk4WKF7GPrBwma6PiR6bL1PIYVV9cgxd+PIo+UTIfHY/UtWNafzKHYsuTqr0us6bwLqOl0zcTdHxS7WicaJuMS0QcqS7FCLuAUuuNomQmmjqnEWUMm2hT104sjVDKJLIsRmYEVZGymB2osiK+jY4O/79svqpMbGVl5Y4SKp+JqsZXjR3AVCLTzUWWAYj8imVQmXxsHRt/vVTZia2BtylvirzK+sqcKiXgVTllqr7bQGfHbOXmOn7caFvHpYNt9NgoHnjYGO1a8xInTUq0pjJ4qvmqjJxsPPF4sMjFzFSMxCllKl3EboLMgMmcEZWOjk8VAhm4BBKikRdlRil5UTJmSkatm5uJf553fi66a6kLDHVOLeo6dgHFkYuIK9CNgrYqFQL0cpUJjbogKriUzIDqxe9SWlHRi4OW7bgiDzx4nuKMVE282JRPVOU3iixlpUVd1qXTCbE9JXujXHNZlktpJx43BRkqWjJ5yv7X2QiqMzbJw6QDMlnV02GJoOiJ7LrI5kHR06iIlHHt378fiUQCe/bsCY8xxrBv3z4MDw8jm83ikUcewalTp6r6lUolPPPMMxgYGEAul8MTTzyBy5cvR2GlCqYyRbPAhSdK5sXDxblQFq+r04rrOvClKvH68kbJJlsz8SYaPVN2JfKqmgfF2Ltk6HwZT/UxrQ1KVqvKIsRMxcSvSxuV7GQ2gOpsVFkIpQQo40ukIdMN23URtz2Lq1pTL2fs7LiOHDmCf/zHf8R9991Xdfzb3/42XnjhBXzve9/DkSNHUCgU8LnPfQ6zs7Nhmz179uDVV1/FwYMH8dZbb+HWrVvYvXs3KpWK+0w0cM3AZIK3KU/p6AZ8US4uNTU3zZFaWqplJhUlI1JdC2oJSyz3yGiaQIlMxbFk/UxZRRRjH7Wvim+Vc5ZdU921UJVQdXOn6KVY7qX21TleFT9UiFUAPuiRyYhqb2yyRUoQZQqeXGxCLe2Ik+O6desWnnrqKbz44ovo6+sLjzPG8Dd/8zf45je/iS984QsYGRnBSy+9hPn5efz0pz8FABSLRfzgBz/AX//1X+PRRx/Fxz/+cfzkJz/BiRMn8Prrr8czK5iVzRR9A/KIkVrX1kFWP6e2pyDKQouz1OaSPZiyPd5ZqRYvn22IDk00RirDzI9jOzexbGlbkqIaWtVxMSBSzUW1BnRy5duIslOdt5Er317Fk00kLzpEGS+m7Ei35qlZukhT9VoWio7rxjIdj9PeuK6ROODkuL72ta/h8ccfx6OPPlp1/Pz58xgbG8Njjz0WHstkMnj44Yfx9ttvAwCOHj2KpaWlqjbDw8MYGRkJ24golUqYmZmp+thCXMi1jAbiQC0vOmWxUfuZMpyovKhAzXyC/8XsjBJhRi3fUMaRnTONrcvW+PmJ7XSGTWxDzfJlfOmO6RyHLttT8WsDHS88P+I4VB3XZYqiQ3LhV0a7lqg1/SiwdlwHDx7EsWPHsH///jvOjY2NAQCGhoaqjg8NDYXnxsbGkE6nqzI1sY2I/fv3I5/Ph5/NmzeTeKVEgPx3VwNMvcCULI86po4OJaJy4Vll1CiLV8eL7rupvUhfF0WL2ZcqohbLOmJ/FX3byFbVVxdYqXRI5rBUfSnGVDTYOiOu40nVTja+jHcX4+mSAciycVGmFEfH95Mdo8wnio7HCepatK0oxAErx3Xp0iU8++yz+MlPfoKuri5lO9kFphh/VZvnn38exWIx/Fy6dInMs42zsKHFf6dGU6qyVBTeXJxqVAeq491lMekMHAWmcp9qTL5sI3sJo2ksGU3d2GJGpGqrCyxUc1U5FlUWKBo/SlAiOybORXctZPMKjrlkuOK8ZOPy53QGVjd/lbNWXUOxn6wsWA8dbxTqwZOV4zp69CjGx8exY8cOJJNJJJNJHD58GN/97neRTCbDTEvMnMbHx8NzhUIB5XIZU1NTyjYiMpkM1qxZU/WxBWVxUEs0soWgMwAURImedM6JkhlEhUuWBKh5tJGhTTZHoSXLYnR8qQymLlOjzNeFdxl92yzQ1ihSAydddC47R80qVFmzrq1sbP67bJ2bKgOy663LsBqh43E5FFNAWA9YOa5du3bhxIkTOH78ePh54IEH8NRTT+H48eO46667UCgUcOjQobBPuVzG4cOHsXPnTgDAjh07kEqlqtpcu3YNJ0+eDNvEDV6x41i4lKi71mk8D0pWRDlfL6WjyogiQ2oGZAPR8OgejisrL8l4lAVFspIUhTfZODZ9g/Y2pTORV12wxP+lViNEuqqynQiKHvNr3xRE2QQPMplQfmJg4t+mjY2Ox2WTGmk7Alj9ALm3txcjIyNVx3K5HNatWxce37NnD771rW/hnnvuwT333INvfetb6O7uxh//8R8DAPL5PP70T/8Uzz33HNatW4f+/n78xV/8BbZv337HZo84IS5EXbnD1F8H3cLgyyKu9KmwoWdqGxdvMjou14KKuK5p0FakLYvIbXiPkmmIvNnoZtBep4dipqbiSxYUqrIRlf7r1oSMd3EM07xssjcqbzJ6YiYexd5QEaeOR0U9nVfsT874+te/joWFBXz1q1/F1NQUHnzwQbz22mvo7e0N23znO99BMpnEF7/4RSwsLGDXrl340Y9+hM7OzrjZkcKU9suOR734JsMWt6GyMRL1cqgyGVCvRS3gOpZr6UYn54Cuytjxx8RzLsGAio+oMlGVwFTndVmQih9bPXUNOHXBpuikdPRaVcd1uigbp56OK8HqnePFgJmZGeTzeae+UZWGckFdjb1ugdhmT7aKFzeijGlTNjNFtVGi7SjtXJxCVL2xqRzI5GPSP5PTlbWzdaK1zE5csllZf/F/V1qtruNiH1cUi0XrfQur8iG7UUDJwkyLO/hfVYsXj4nKqltAlKwmLqiiasqYrlmLrJ1sQfNtXB2NaUxxLB78fQ++rey6q+jpjvH0ZPqh4kvUD5We8DT4trpMSpUNmvTClJ2Y5kQxmqoyooqG6rrp+LDhqx10vJFou4fsmlCv7ENVkpP9b+qnoqGjUw9E4SXO7KMRMpEZfh1EJyOLknWGSTS8YrRNib5l46vaqrIi0TmZZC9zCLKMj+8rc5g66LJBldxU8xXPB6+YccFq0fFGOLZVmXFFjdzioG2KiF34qIUC1VImOlBLGnGPW0s6KsMafFQ70nQlIlkGpTPgYoakgi67kGVeqv68sxP55PmQOY4oa03mwE1ZbfC/7Dp4Ha/t+LZYlY4L0N9Qpab4OhqmCClqDZkSJVPomBBHCSLKXKOUW+KKSm3KSzZQBR+yspSqdEcdh6qX/HFZhqXL6GT9+fFlzlD8bqpK6DI03Tn+GM8Lz4OuDOh1/M7vjSwhrrpSIQWu6bsNbEuWptKPK11XvuIqubqWVF3oxtnXxLeJjo2cVd9tSl668XlnJAuQVOU/XRYoa6MLDHVO2bacqCqnBqCW/7yOm3W8UVi1GRdwZ7Rnahsn4lAAl6zLdA9CF+WajKYMNnKLU8ZR5GuK9Kn0o8rIVA42ZWZ8uU7Gm1jO48+JGRP/V6d3spKlzPjJxtY5KxWPqvmJPJsyKq/jdjreyGwLWOWOSwZTqSDumrON0Yoyjgo2Cmwqk1Lpq86bnKqJT/FcXNdCxltUUCJuVQakgqzMqPoEtFRORXZMdBYyY68rJcmckTiGzjnKrg+/Lk3z1dHyOl4bR10r+FKhAGp5xba/LvK15UN2Po6yFE/bVIa0UXKXkgRlDFmpitrXRM8E13npjtmUZmyuKcVwi+PZGnsxexL505USZX11c4nDcHodNyNKKbLW8I4L9AukigJd+satFDpacSl43AtFVqaiQraIo8jUxbm70KOU2aKOH1UOrtBlWPx3WVamy9RqBa/jelCz3kbAO67/g6tCuCpRLSKZekRIUaJLEVGiv7iMDqUvdT61lr8qixFBaRMHL42A1/HG6XizOC3A3+OqArU+Tzlea35kUNXP4+QxymKNwgfVcVBgywdf2tL1l0XHUcdW0ee/63RTd8/G6zhtDJs27arjzeS0AO+4lDDda9DdRObPx8WDbHzTorUpQdXCAKj4aTR9UwlEJgPqvQW+r8xp1EIGKpo2909k372O22M16HgzwDsuAVSltr2pajM+NfJ0uTeioxe1DNNsUZkM1GzJ1F6FKPdBVYhLrrY8eB2/E6tRx5txzt5xSWCzcynudvxirbfC2N6MFc/VMjKnoBZllLgMJgViRlCLLM1lE4TXcX1/E404UW8db0anBXjHpUSUlFzWxuXGp63BqoWS6XiIU0ZxIK5rIaLeu9yoWYYLXy7lIK/j0WjEiVbX8bjgHZcCjYgEZTdEo0SD9ajpx4m4NzOoaNiWRlRyjcpL1LnZZnKmY7WG1/HW0vFmlql3XBrU++LJbpbrShvUexBxRYO29zFs+8sWT5T7TSq6tpsWdOdd74Hxc3Odl8loq/QkLrm6wOt4a+h4s8M7rjrARRl1i6JRSmezc0tmlG23++oWY1RjTzlG3UDgAtuSnSyiNhltlbxsjRwFXsft+8vaN4OON3OmFcA7LgJMES3/v00d3yVad80CXZXUNaNQfaf0j+owbK+F6hjlnk2UrDzKDfS4dwiq4HX8TrSzjreC0wK84yLDpCCUkoVoBFxuClNvvMpq2KYyhQ0fsjFsz6va85EshYZsrpS5RUUgU9fFb3u/xvV+ju19JRWPXsftz6vaN6OOt4rTArzjsgKvZDY3lAO47OgyjaU6T919pKMTVZFVZQ+KfILvFKOiizAp2bLNeUo/V7nW6n6OTq66DMXruBntouOt5LQA77iswRsPnXK6KpNuTNfzrjAteptxeZlQSnCqMVXj2zoDarmGSo96XtYmilxl/W366Ayi1/HVqeOtAO+4LGF7I1ZEPW46uyqrKfKLalCp/V2idhfeXMpYJpq247iMFdXR2fTxOm7HRyvqeCs6N++4HBD1xiqVhitqUfeOsmh05ZlGLZpa3JSm3hSvxTgiqNlQlHl7HW99HW9FpwV4x+WMOGvj9YLJaLneRzBBVteX/R9Fpo28HuI9IYpca20wVHLVXYta8lAveB1XoxbBWqPgHVcEtFoE42K0opZkbHZMxV2Tr9e1EHd4udznsgVF91zk6rLDrZngdby2/ZoF3nFFhG2NO2rExe9sjBu1KHVRFqrrTjTK2AFcd8+ZEKVsHHeZjhL1m3YKxuF0vY7rx220jre60wK846o7oihtsHXWlUaU3WdxGdkoET119xX1vE2GpKPrclM/6rgiqNdHNqbuHk8tdgia+nodN49BPR+HjjcjvOOKAa4RYi0iS12EFcW4murjUQyn2F+3vZcyXr3KJy4GP87I13aHq+12aipd05hex+/s3wgdr2UmW294x9UgRNnJpINsEcYVbUW9yR8lmrRtb5JTHDfpXQy+bfmOMn5Ug1oreB2vRjPoeLvAO64YIUY0JiUWa+OUG+46Za7nTjUTZNFqLYyLDKJsqU7KpXwTB+K4x1JPeB2/jVbR8XbKtAJ4x1UDyCJNSpmGcuPYxhi7ljriQC23XVMzDdv6vi5L0hnfdjEK1Hs9tlu9vY67046q4+2imyK846oTAuMXVZFsjHEtFxYFcRoVakRpM4ZNW53xpRiNOA1IrYy1TrcoY3gdbz4db1d4x1UjyBawrHRCpSX7W0u48Ggq+US5p2O6n+R6U97W0FINlVg2crnuqjHiNNZx65LX8ebQ8XYsD/LwjqvGsNkEoKr/ixGobVnAxTDb3oim3s+g0jbRUEFWuqLch6HyQHUaMuNNNeimfnEYJNuNE9TdbrL2snHFY17H6TDpeDs7rADecTU5bIydKtqzWUQmg6Ez4uIx15KTbgyb0kxcZSNbo833c7kWtZKrbgyVXG0CL1d4HW+8jrcavOOqA2Rpu41BsDV2tdiVZbvRwUTHtY1Lmcw2snahFUfk7cpT1HFk/WXX27X8pxvHdFzVxuv4nX3avTzIwzuuBsEUZdlCVYKRjUsdq9kWQRwLs1alHZf+pvnUK5qmytXWWXgdt8dqcj5R4B1XHaFTyig374P+lGO646Z2jV5QrpswTKUfFz7i6G/ayFAvebvKVaRBaeN1XA+Xa7EanZ13XA2AStF09fIoO9+ignozmxoRx8FLHGW0Wi52Cp8mucru59Rq112c9Gzvj3kdl9Nz2cizWuAdVwNhU56xMb61uHnu2s4lyqaUz3i6NjezZbRqAfG6RblOsns7rrxTSqVRdqiJOwS9jssRh46vVqcFeMfV8rApdcSh6KJRszFMcTsUlcGr906rqA5URq9W2UecmyAo9GtRmvU67uEdV4MRd9Rks1vJhQfRqMWxDbnVQXGg1LkHGUs7yLVWGcFq1/HVnGkF8I6rCeCS9tvUv01tbaPFONCIXV9RaEUtn1H71nMnYa1pRZ2L1/E723mndRvecTUR4t5wELXMY6IfBVHuKdR6TFPfWsi13mgWubrQXY067h1WNbzjajJEVVCbLcM2PFB3XZnoxI1WW9BxXou4ESWrrCe8jnt4x9WEMClqrRVZdjNctetMhBgN16K8IYu4G7W4a72lXpxfcMx1WzxlN5v4v45WrZyd1/Ha/OyhXeAdV5OCamDiHpOy9Zh6c1w0BnGBusvMZFTjMDi1LPOotsGLW87rBdGYihsXeCNeD7m6oJV03DstNbzjamLUWnFF+rY7qEzQ0YrjxrWptGPKIOKerypKbtRvjnTQlcpMmy1MRj1uuUZBq+q4d1p6eMfV5IizHBOHQZX9VqmWO+VMRtLlvoQMUbIEkYdaOZY4+ul4lP3wNQ6oHCIlU3YdK0Cr6bjfOUiDd1wtgjgMtKyvrTGxKanYGKY4ymm2NMV7Fa5lv3qUQ008uMJlK7vtPViKQ4+yU1A2lo6fZtVx77Do8I6rhaCLxuI0/LbGmVKq09Hm28Z5U9p0L8xlY0dcTooaWVOvhczo1mrjBFWuNnQo16JdddxnWfbwjqsFoVt0cdwUp25+cKXP/5Wdj+OGt8wYqIy6rDRGiY6jyIWa4VGvhWmLuKs8KZlDve4ZtaOOe4flBu+4WhQqQ1uL7eFxGj0KPds5uIxjKgdRjEoUg+1aLo3D2NmU5UwOUUc7brSbjnun5Q7vuFoY/NZjcTGbShiyklzcCylqJK7qL/IsMwJxZAE2W6J1JU5qWcqlxOYC13t5lHa13MbeLjruS4PR4R1Xm8G2Tq8qJ9V6YcW1w6wZtl1Ttt2bUG9D1gi5RsmgqWXPZtdx77DigXdcbQLbReFSIooT1J1bVEcQx7bnKKhHFmQL3fzi2rJvszmBirhk0Uw67h1WvPCOq80Q9wKJY5dXlHZxzMf1PoTN9uU4tzrX8hrWctcm5XgUOdTK+Ndax73Tih/ecbUhoiwU6j0Lm51/Udq5RK1x3XexidijRveUDRMmQ66at4zPemQDYhXAdreoze+pbPmi0I1Dx73Tqg2842pT8Bs3qO2B+m0Q0PGgG5OSMegi+7hu1Me5s48Kyk5Im7H4ax7nfHi6cWzJtxmb0q4eOu7vZ9UW3nGtAlC3Wdv2ibsdhQdqpmAqY5mi6VpvXjA5nVref5MZ8KgZGMVB1cqQuzqiWui4d1j1gZXj2rdvXxhFBZ9CoRCeZ4xh3759GB4eRjabxSOPPIJTp05V0SiVSnjmmWcwMDCAXC6HJ554ApcvX45nNh5K2NwvcCmRUA29aeu4rI/qXBTnYXJajd6tGOW3bDZypW7VN41JQb030NRbxz3qB+uM695778W1a9fCz4kTJ8Jz3/72t/HCCy/ge9/7Ho4cOYJCoYDPfe5zmJ2dDdvs2bMHr776Kg4ePIi33noLt27dwu7du1GpVOKZkYcSvNOw+Y0SBdTshXc4rhlPLQ1IMzgtHi7ZhC7jiev+X9A37qxFNoYr6qXjPstqAJgF9u7dy+6//37puZWVFVYoFNiBAwfCY4uLiyyfz7Pvf//7jDHGpqenWSqVYgcPHgzbXLlyhXV0dLBf/OIXZD6KxSID4D8RPolE4o6P6nhcHx394FyjeHOdA//dhXfTvKPKtZ7yi3MOUedULz1q9Dpuh0+xWLRxQ4wxxqwzrrNnz2J4eBhbt27Fl770JZw7dw4AcP78eYyNjeGxxx4L22YyGTz88MN4++23AQBHjx7F0tJSVZvh4WGMjIyEbWQolUqYmZmp+nhEA3OMvsU+Nu1U9BkzvxiRwptp/DiQEMpGiYT51So63k3ztuEpahsgmtzEMWxoiX1d5RHlWog0TG1qpWMeZlg5rgcffBA//vGP8W//9m948cUXMTY2hp07d2JiYgJjY2MAgKGhoao+Q0ND4bmxsTGk02n09fUp28iwf/9+5PP58LN582Ybtj00UC1A1aKkGhQbwxOHMQnOi4YrbuNCod/KBk0XXOi+29CKi74LXco5Hd/eYTUHrBzX5z//efzhH/4htm/fjkcffRQ///nPAQAvvfRS2EYWdZkU2NTm+eefR7FYDD+XLl2yYduDAH4xyq5HvRerbTaoylyiGE/dOPx3lzGjZK5xoV4ZkatcbfuY6ETVce+wmgeRtsPncjls374dZ8+eDXcXipnT+Ph4mIUVCgWUy2VMTU0p28iQyWSwZs2aqo9H/LDNvlTnRQPhApdSkUt0HXVMHXRjumauYmZpGjMOHlyvoaps1ygHwPNB5SlYE95pNRciOa5SqYTTp09jw4YN2Lp1KwqFAg4dOhSeL5fLOHz4MHbu3AkA2LFjB1KpVFWba9eu4eTJk2Ebj+YAv1BlWQUP2X0f8Vw9QOExQFQnR2kbl8EWr4WMdtAurntFMhpxGW8KPZ2DroUTkem4d1ZNDJudHM899xx788032blz59g777zDdu/ezXp7e9mFCxcYY4wdOHCA5fN59sorr7ATJ06wJ598km3YsIHNzMyENL7yla+wTZs2sddff50dO3aMffazn2X3338/W15eJvPhdxXW/1OrXVlx7/CK+7zLfJtZRvWUa3A8Lrm68Gs7TqPX2Wr8uOwqTMICly9fxpNPPombN29icHAQn/rUp/DOO+/gwx/+MADg61//OhYWFvDVr34VU1NTePDBB/Haa6+ht7c3pPGd73wHyWQSX/ziF7GwsIBdu3bhRz/6ETo7O21Y8agz2P9F8wnCUxii0I8CU3+X84mE/RuZXeYhjuEij7iuhQgVPZVOiP1UcnWBTi4yfmzGYT7DahkkWAterZmZGeTz+UazsWoRp2GMw2HVA1H5pDqVKOPwfV0dn62h17Vvpmurk38LmsC2QrFYtN63YJVxNQu8ojUWccu/Va5nHHxSaEQZh+/rQse2j6l9s13bZuPHw+2atORDdvlHSHl4eHh4tC5c7HlLlgpXVlZw5swZfOxjH8OlS5f89ngJZmZmsHnzZi8fBbx89PDy0cPLxwyTjBhjmJ2dxfDwMDo67HKoliwVdnR0YOPGjQDgf9dlgJePHl4+enj56OHlY4ZORq57FVqyVOjh4eHhsXrhHZeHh4eHR0uhZR1XJpPB3r17kclkGs1KU8LLRw8vHz28fPTw8jGjljJqyc0ZHh4eHh6rFy2bcXl4eHh4rE54x+Xh4eHh0VLwjsvDw8PDo6XgHZeHh4eHR0uhJR3X3//932Pr1q3o6urCjh078O///u+NZqku+NWvfoXf//3fx/DwMBKJBP75n/+56jxjDPv27cPw8DCy2SweeeQRnDp1qqpNqVTCM888g4GBAeRyOTzxxBO4fPlyHWdRO+zfvx+f+MQn0Nvbi/Xr1+MP/uAPcObMmao2q1lG//AP/4D77rsv/EHoQw89hH/9138Nz69m2ciwf/9+JBIJ7NmzJzy2mmW0b9++8On7wSd4gTBQZ9lYvwilwTh48CBLpVLsxRdfZO+//z579tlnWS6XY6Ojo41mreb4l3/5F/bNb36TvfzyywwAe/XVV6vOHzhwgPX29rKXX36ZnThxgv3RH/2R9H1oGzduZIcOHWLHjh1jv/u7v2v9PrRmxe/93u+xH/7wh+zkyZPs+PHj7PHHH2cf+tCH2K1bt8I2q1lGP/vZz9jPf/5zdubMGXbmzBn2jW98g6VSKXby5EnG2OqWjYh3332Xbdmyhd13333s2WefDY+vZhnt3buX3XvvvezatWvhZ3x8PDxfT9m0nOP65Cc/yb7yla9UHfvoRz/K/vIv/7JBHDUGouNaWVlhhUKBHThwIDy2uLjI8vk8+/73v88YY2x6epqlUil28ODBsM2VK1dYR0cH+8UvflE33uuF8fFxBoAdPnyYMeZlJENfXx/7p3/6Jy8bDrOzs+yee+5hhw4dYg8//HDouFa7jPbu3cvuv/9+6bl6y6alSoXlchlHjx7FY489VnX8sccew9tvv90grpoD58+fx9jYWJVsMpkMHn744VA2R48exdLSUlWb4eFhjIyMtKX8isUiAKC/vx+AlxGPSqWCgwcPYm5uDg899JCXDYevfe1rePzxx/Hoo49WHfcyAs6ePYvh4WFs3boVX/rSl3Du3DkA9ZdNSz1k9+bNm6hUKhgaGqo6PjQ0hLGxsQZx1RwI5i+TzejoaNgmnU6jr6/vjjbtJj/GGP78z/8cn/70pzEyMgLAywgATpw4gYceegiLi4vo6enBq6++io997GOh4VjNsgGAgwcP4tixYzhy5Mgd51a7/jz44IP48Y9/jN/6rd/C9evX8Vd/9VfYuXMnTp06VXfZtJTjCiB7fXyzvGm10XCRTTvK7+mnn8avf/1rvPXWW3ecW80y+shHPoLjx49jenoaL7/8Mr785S/j8OHD4fnVLJtLly7h2WefxWuvvYauri5lu9Uqo89//vPh/9u3b8dDDz2Ebdu24aWXXsKnPvUpAPWTTUuVCgcGBtDZ2XmHdx4fH7/D0682BLt7dLIpFAool8uYmppStmkHPPPMM/jZz36GN954A5s2bQqPexkB6XQad999Nx544AHs378f999/P/72b//Wywa3S1nj4+PYsWMHkskkkskkDh8+jO9+97tIJpPhHFezjHjkcjls374dZ8+erbv+tJTjSqfT2LFjBw4dOlR1/NChQ9i5c2eDuGoObN26FYVCoUo25XIZhw8fDmWzY8cOpFKpqjbXrl3DyZMn20J+jDE8/fTTeOWVV/DLX/4SW7durTrvZXQnGGMolUpeNgB27dqFEydO4Pjx4+HngQcewFNPPYXjx4/jrrvuWvUy4lEqlXD69Gls2LCh/vpjtZWjCRBsh//BD37A3n//fbZnzx6Wy+XYhQsXGs1azTE7O8vee+899t577zEA7IUXXmDvvfde+FOAAwcOsHw+z1555RV24sQJ9uSTT0q3o27atIm9/vrr7NixY+yzn/1sW2zVZYyxP/uzP2P5fJ69+eabVVt25+fnwzarWUbPP/88+9WvfsXOnz/Pfv3rX7NvfOMbrKOjg7322muMsdUtGxX4XYWMrW4ZPffcc+zNN99k586dY++88w7bvXs36+3tDW1vPWXTco6LMcb+7u/+jn34wx9m6XSa/fZv/3a43bnd8cYbbzAAd3y+/OUvM8Zub0ndu3cvKxQKLJPJsM985jPsxIkTVTQWFhbY008/zfr7+1k2m2W7d+9mFy9ebMBs4odMNgDYD3/4w7DNapbRn/zJn4TrZnBwkO3atSt0WoytbtmoIDqu1Syj4HdZqVSKDQ8Psy984Qvs1KlT4fl6ysa/1sTDw8PDo6XQUve4PDw8PDw8vOPy8PDw8GgpeMfl4eHh4dFS8I7Lw8PDw6Ol4B2Xh4eHh0dLwTsuDw8PD4+WgndcHh4eHh4tBe+4PDw8PDxaCt5xeXh4eHi0FLzj8vDw8PBoKXjH5eHh4eHRUvCOy8PDw8OjpfC/rfkOi9V+1tMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -373,7 +375,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzNUlEQVR4nOy9eYxr53ke/hzycN/J4ZAzd5a7L5KuFsuyKsWx3diWEdQ1gv5hAw6CFDWKtE6MCrbh1M0/TtFKcILGbWH8AqQI6iBB6hZI3TiAm1jNchVbXq6uJEu668ydfeFwuO87f39M3lcfzxxySA5nhhx+DzCYGfIs33eW9/neXWk2m01ISEhISEiMCAwnPQAJCQkJCYleIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkIIlLQkJCQmKkcKLE9f/9f/8fzp07B6vViqeffhp///d/f5LDkZCQkJAYAZwYcf3P//k/8eKLL+K3fuu38Oabb+Lnf/7n8Yu/+ItYW1s7qSFJSEhISIwAlJMqsvvss8/ife97H37/93+fP7t27Rp+6Zd+CS+//PJJDElCQkJCYgSgnsRJK5UKbt26hX/7b/9ty+cvvPACXnvttX3bl8tllMtl/r/RaCCRSCAQCEBRlCMfr4SEhITEYNFsNpHNZjE9PQ2DoTfj34kQVywWQ71eRygUavk8FAohEons2/7ll1/Gb//2bx/X8CQkJCQkjgnr6+uYmZnpaZ8TDc7QakvNZlNXg/rqV7+KdDrNP9IPJiEhIXE64HK5et7nRDSuiYkJGI3GfdpVNBrdp4UBgMVigcViOa7hSfwDpBlWYpwhe+weD/qRMyeicZnNZjz99NN45ZVXWj5/5ZVX8Pzzz5/EkCQ0kKQlMe6Q78Dw4kQ0LgD44he/iF/5lV/B+9//fjz33HP4gz/4A6ytreFf/at/dVJDkoB8WSUkRND7ILWv4cKJEddnPvMZxONx/Pt//++xvb2Nxx57DN/73vcwPz9/UkMaa0jCkpBoD0lgw4UTy+M6DDKZDDwez0kP41RAEpaERO8YQbE5tEin03C73T3tI2sVjjEkaUlI9Af57pwsTsxUKHFykC+dhMThIc2HJwdJXGMESVgSEoOHJLDjhzQVjgkkaUlIHC3kO3Z8kBrXKYd8mSQkjg9S+zoeSOI6pZCEJSFxcpAEdrSQpsJTCElaEhLDAfkuHg0kcZ0yyBdFQmK4IN/JwUOaCk8J5MshITG8kKbDwUJqXKcAkrQkJEYD8l0dDKTGNcKQL4GExOhBal+Hh9S4RhSStCQkRhvyHe4fUuMaMciHXULi9EBqX/1BalwjBElaEhKnE/Ld7g2SuEYE8sGWkDjdkO9495DENQKQD7SExHhAvuvdQRLXkEM+yBIS4wX5zh8MGZwxpJAPr4TE+EIGbXSG1LiGEJK0JCQkACkL2kES15BBPqgSEhIipEzYD2kqHBLIh1NCQqIdpOmwFVLjGgJI0pKQkOgGUlbsQRLXCUM+iBISEr1AygxJXCcK+QBKSEj0g3GXHZK4Tgjj/uBJSEgcDuMsQ2RwxjFjnB82CQmJwWJcgzakxnWMkKQlISFxFBg32SKJ65gwbg+WhITE8WKcZIwkrmPAOD1QEhISJ4dxkTWSuI4Y4/IgSUhIDAfGQeZI4jpCjMMDJCEhMXw47bJHEtcR4bQ/OBISEsON0yyDJHEdAU7zAyMhITE6OK2ySBLXgHFaHxQJCYnRxGmUSZK4BojT+IBISEiMPk6bbJLENSCctgdDQkLidOE0yShJXAPAaXogJCQkTi9Oi6ySxHVInJYHQUJCYjxwGmSWJK5D4DQ8ABISEuOHUZddkrgkJCQkJEYKkrj6xKivWCQkJMYboyzDJHH1gVG+4RISEhKEUZVlkrh6xKjeaAkJCQk9jKJMk8TVA0bxBktISEgchFGTbZK4usSo3VgJCQmJXjBKMk4Sl4SEhITESEESVxcYpZWIhISERL8YFVkniesAjMqNlJCQkBgERkHmSeLqgFG4gRISEhKDxrDLPklcEhISEhIjBUlcbTDsKw4JCQmJo8Qwy0BJXDoY5hsmISEhcVwYVlkoiUuDYb1REhISEieBYZSJkrgEDOMNkpCQkDhpDJtslMT1Dxi2GyMhISExTBgmGSmJS0JCQkJipKCe9ACGAcO0kpDYj6O+P81m80iPLyFxWqAoylC8L2NPXJK0jhd61/uk70E352/3sg7DSywhcZwYBvIae+KSODoMI0n1i3bjbvcSn/SLLSFxmjHWxDWqQnSYYTCMn9u0G4JuNpuSzCRODU5a6xpb4pKkdTiI109ey4OhKIoumXX6X0JimHGS5NXz8vjVV1/FP/2n/xTT09NQFAX/5//8n5bvm80mvva1r2F6eho2mw0f+chHcPv27ZZtyuUyvvCFL2BiYgIOhwOf+tSnsLGxcaiJSBw9SPhqfyT6Q7vrKa+rhERn9Exc+XweTzzxBL75zW/qfv87v/M7+L3f+z1885vfxM2bNxEOh/Hxj38c2WyWt3nxxRfxne98B9/+9rfxgx/8ALlcDp/85CdRr9f7n0kPkEKhO5AANRgMMBgMUqgeMbTERdddXnuJYcVJPY9K8xC6nqIo+M53voNf+qVfArCnbU1PT+PFF1/Eb/7mbwLY065CoRC+/vWv49d+7deQTqcRDAbxx3/8x/jMZz4DANja2sLs7Cy+973v4ROf+MSB581kMvB4PH2PWaIzpIAcbkgTo8Sw4TDPYDqdhtvt7mmfgXrSl5eXEYlE8MILL/BnFosFH/7wh/Haa68BAG7duoVqtdqyzfT0NB577DHeRotyuYxMJtPy0w+kMG4PcZUvr9NwQ08zk4sNiZPEcT97AyWuSCQCAAiFQi2fh0Ih/i4SicBsNsPn87XdRouXX34ZHo+Hf2ZnZwc57LGFFHynB9K8KDFOOJLYZb3oqYNenk7bfPWrX0U6neaf9fX1Q49pnCGDAMYD7bQyec8ljgLH+VwNlLjC4TAA7NOcotEoa2HhcBiVSgXJZLLtNlpYLBa43e6WH4neIbWr8YZe4Id8DiRGEQMlrnPnziEcDuOVV17hzyqVCm7cuIHnn38eAPD000/DZDK1bLO9vY13332Xtxk0xvnllL4riU6QUaMSg8RxPTs9JyDncjksLi7y/8vLy3jrrbfg9/sxNzeHF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+HR/72McGN7N/wLi+hFIASfSKds+LjFqU6AXHkZjcM3G9/vrr+Mf/+B/z/1/84hcBAL/6q7+Kb33rW/jKV76CYrGIz3/+80gmk3j22Wfx/e9/Hy6Xi/f5xje+AVVV8elPfxrFYhEf/ehH8a1vfQtGo3EAUxpvSMKSGAT0KqOIwkiSmcRJ4lB5XCeFbvO4xkmAS8KSOE5IEpM4CN0+F/3kcY1trcLTBElaEscNPY2s0Wic1HAkxgynlrhOuyCn+Z32eUqMDqgzgNTGJICj9XWdSuI67cJcalgSwwwZ5CFBOCryOpXEdZoxjv2uJEYXWpOi7EsmMQicOuI6rZqI1LKOFwdd627uRTcCetyEuPgcS5PieOAotK5TR1ynEZK0jhZ613YQ17ufY4yTANe7PuM0f4n+caqI67QJd0lYR4Nhuq7acYj/j5NZTRtsRPMel/mfdgxa6zpVxHVaICMGBwe9sO1RwTib1fQKdUtIEE4NcY2aUOqE0zSXk8Aok1U7jGuknriIGycN9DRikFrXqSCu0yScTstcjhPjpqHqReoRTrNg19NAT/N8TyMGRV6ngrhOAyRp9Y5hJ6xux3XYF3kczWrjOGeJ9zDyxDWsQqsXSNLqHsN8rXoJoRcFbbvP+x2DqJWcdoGuNSUCksSGHYPQukaeuEYdwyyIhwWjrlmJ49er66dHYoMQvnS+cRHoUgsbH8gyDCcISVqdITY2HMbrdNC4xAaeBoMBRqMR58+fh9FobGncqFcNZZBzHvbrOGiI13Uc5juOkMR1ApAvVWeI12cYr1E34xK3ob/NZjNsNhscDgfMZnMLYbV7Ho6CwMbp2aP5jtOcRwGHvRfSVHjMGFZhfNIY9uvSy9j05qIoCi5duoRgMIhGowG/34/XX38d5XKZTVqdbP+DNCGKxxvkMYcd4zjn0wpJXMeIYRfOJ4FRuCaHIS3RTLi6uopMJoMzZ85gcXERzWYTBoMBzWaTfV4Gg6FjX6tB5sKMo09I5oWdDkhT4TFhFAT0cWGUzDeHJS2j0QiLxYLp6Wkmqnw+j3w+33L8XpKmB/0sjaMJERh+k7REe0jiOgbIF2MPoxQg0Os49UiLfiYnJ6GqKiwWC8xmM4rFIhwOB37hF34BqqruE54neY1G6R4NCuMWvHIaIE2FRwz5MozWNehnnO1IC9gzv0WjUdhsNthsNkxOTiKdTmNychIPHz7EI488gp2dHUSjUTQaDTYbduPTGrTfS3vcozj2MGMcTaejCqlxHSFGSWAPGqNofho0adHfNpsNExMTUFUV6XQas7OzcDgcmJycRDweR7VahclkgsvlwszMDMxmc0/jOarrO2r3b1CQGtjwQxLXEWFcH/pRfOn7HetBpEWw2Wy4dOkSVFXFtWvXEI/HkUqlUKvVcO7cOTQaDTzyyCO4evUq6vU6mw+1xzloLEeFUbqXg4S4+JIYLsg7IjEQjCJhAf0LfC1JiZqJVuOKx+N47bXXUCqVcPPmTcTjcQSDQUQiEWxtbcFqtaJQKODixYuo1WqoVCot+w8LeY1zIMM4ap7DDOnjOgKM08utp2GMCgZFWu2CMsRzTE5OwmKxYHd3FwaDAXfu3IHRaEQ8Hufow5/+9KdMWnrjHAafy7j6v4DxnvuwQRLXgDEupDXK8zzMuEWzkVbLVBQFHo8H9Xod5XIZ9XqdP9/e3obRaITRaITdbkc4HEaj0YDRaEQkEkG1WsUzzzyDdDrdccwHCUxFGWyn2U7nURSlY87ZaYS4IJF5YCcHSVwDxCgL824wytoVcLhx62lWBoMBZrOZBZjBYMDMzAwqlQp2dnZQLBZZsNXrdQDgZOR0Oo1IJIJKpcLfbW9vI5fL7RuvWFlD/L/TWI9LoFIC9TgKcKmBnRwkcQ0Ip5m0Rp2wgMGYBbWfWywWTE5OIpPJIBgMolwuI5FIoFgsolarcRUM8RgGgwGlUgnpdBrVahX1ep1D4BcWFvaRgJaEhpG8hsmUedyQ5HUykMEZA8BpJa3T4JA/TMSgnkNe/LxWqyGVSsFms8Hv98Pr9cJsNuORRx6ByWRi7YpyuGw2G65fv456vY5ardax3YhWu9Ob0zDdk3ENnSechndllCA1rkPitD2o46xd0b7t9tczF6qqCpfLBZPJhHK5jKmpKQSDQaiqimq1CoPBAI/Hg2AwiFQqBZ/PB4fD0RI5CLxnStSer9ls6mpP3az0j1PrEs9JGEcNZJy1z+OEJK5DYpQFvIjTQFjAYJKIuz12o9Fgs+DOzg4sFgu2traQyWTYVEircFVV4XA48Oabb6JUKsFoNMLtdmN6ehqrq6tIJBL7HP/ac3fSzCR5DRfG2fd3HJDEdQicFiF/WubR7z4H7d+J2Ii0XC4XFEVBOp2Goijw+/1IJpNQFAWlUgnRaBR2ux21Wo2jCX0+HwwGA1RVhdFobBF0VP6pG+IZRvKi8wLjS16SwI8Okrj6xCibCEedsI7KFNgPms0mqtUqMpkM8vk8DAYDrFYrh7vncjk0Gg3U63WUSiU0m02EQiHU63UUi0UkEglUKhWoqgqr1QpVVRGPx9sKuuPq1zUoDOu4jguSvI4GMjhjjDDqDuRexy0GMfTbRkXvnNooQTouhcRns1lUq1UYjUaoqgq/34/z58/j2Wefhd/vh8lkwtTUFI+LWp/Mzs4iGAzCZrPBaDTysenvg+bfKUDiJO/3uAduAPIaDBpS4+oDoyT4R027GsQ4BzXnTqHwJIjsdjtUVeVgC6PRiImJCVQqFfh8PpTLZXg8HszPz+ONN97g7XZ2dlCr1eB2u6GqKvL5PHZ3d1GtVmE2m1Eul6EoCux2O+r1OoxGI1KpFI/hoKrx7fxhJ7nqH3ftC5DXYFCQxNUHhp0EevHfnCQGObZBE3Qn0qLfBoMBJpMJRqMRjUaD/VLVahWKonDfrXg8jlgshieeeALb29soFotcJT6ZTKJUKkFRFJTLZVSrVdRqNaiqCrvdDrfbjXK5jGQy2dIdmUionQBs10l5WMgLGF/hTc/WuFUdGSQkcfWIYa0UPYya1VGP5SgIuptwePJHeTwe+Hw+FItF+P1+PHz4EAAQjUahqircbjdmZ2exs7ODSCTCGpOqqlwaymKxoFKpoNlsIhwOI5lMIpvNwmAw4PLly3C73dje3uZAD3HFTv+3ywdrF9kmyWs4ICMP+4ckrh4wTKRAOErCGsb5Eg7SiIDehOJB11FLkkajEaFQCEajkcPbrVYrAMDtdiOTycBsNsPv9yOTyUBVVdhsNng8HlSrVeRyOdjtdmxtbcHpdKJQKMDj8XBlDQBIJBKoVqvI5/Ow2+2YmZnBw4cPUavV9hGYiG7mfdLkRWMgnPRYTgrSdNgflOYIXrFMJgOPxwPgeIXrMGlbR2EaG2a0066Ow98oXmvRROh2uznEvVQqwWw2Y35+HnNzc/jJT37CtQypNBQATE9Pw+FwYHl5Gel0Gvl8Hs1mE/l8HlarFc1mEzabDdvb2wAAs9mMUqmEmZkZLC8vI5lMsompU+UNcSXfaVU/LK//uGsene7laQXNNZ1Ow+1297Sv1Li6xLAI9kEK6mGZ00HoFNnncDhQLpfZvwQc/uXv5rrUajUuiFur1VCv11Gv17Gzs4PLly/D6XQCAHw+HwqFAq5cuYKtrS2USiU4HA4+D2ls9XodqVQKiqIgn8+jWCyi0Wggm82i2WxifX2dq82LNRAPgqiRDbNQHIUxHiWk9tkbJHF1iZMW8oPQsE56Dr2im6g+h8PB5ZXI/FUsFg88Zq8rfL2xVKtVpNNpbleiKAoqlQru3bsHAC35WTs7O2g0GojH48hkMigUCmwS9Pv9cDgc2NnZYRKjwrv0O51Oc1komjuNX1VVjmykedFYKWikHTEMg8mQMO7kBchr0C0kcXWBkxL4g9CuRpGsxN9632sj+y5fvozd3V0mA20VCgLlRXm9XmQyGVSr1a4I7KCADafTiXK5DAAolUpYXV2F0WiEyWRCPB5HrVZDNpuF3W5nojCZTGg2myiVSmg0GjAYDKjX6zCbzTCbzchkMkw6ojZJhEU1ENPpNCwWC8LhMBKJBDKZDPvbAoEA4vE4EolEX+HzJwEpuOU16AbD47QZUpxEzhad87DaVTvz2iCOfxQ4aFxa0gKAXC6HnZ0d9j+KNQKpaSMl8FK9QNJQxOThbs6phd1ux8///M8jGAzyOQC0aEpEQJcvX4bf70etVkOxWES1WkWlUmGtrFarwWQywWq1IhgMIhQK8dhpHDRW8rGFQiG4XC4YjUbu/WWz2TAxMYHLly8zGXZzz4fpWRDnOq4Y1nd0WCA1rgNwnA/OUZgDD3r49VZ3x7nS6+Xl1AvQoNYiVqsVjUYDVqsV9Xqd24pcvHgRi4uLyGQycLlcuHjxIhqNBra3t5FKpdg/RZF6er2v2o2lUqlgc3MTlUoF4XAYDocD6+vrAICpqSkUi0UYDAbMz89jcXERVqsVhUKB/WHVahWNRgOxWAwAMDExwbUM/X4/dnd3Wbsi85/D4YDFYkE2m8Xu7i63UVlaWoLFYoHJZIKiKEgkEtjd3UU+n9e9hsOYoKzFuGse0u/VHpK4OuC4SesoCEuMhOy2/5N2+6NAr/PViyS0Wq1sFnS73ajX69wyxGw2I5VKYX19nbWaZrOJnZ0deL1eOJ1O1Go1eL1e7O7uIpVKdTVf0gSMRiPMZjPXJpycnES5XIbb7WY/lcPhgMPhQDQaRaFQQCqV4v5cFBWbTqeRSqXQaDQQiUQQDoeRz+eRzWZbfFp07nA4DJfLheXlZaiqCovFgnQ6DVVVuR9YoVBgk6G4GBqVMHkR/fokTxPGncD1IInrhHGUWhYJ1Q9+8IN49dVXW5oXin6Tg8Y0qAz/fslZbz+j0QiHwwGDwYBqtYpwOIx4PI5Go4GJiQmUSiXYbDbkcjnYbDaUy2UYDAY21ZVKJXi9Xr4m3axuaRFgNptx7do1xGIxTE1Nwe124+HDh0ilUqhUKkxCTqcTLpeLq2GQL4vO4fF4OHqQfiKRCDweD6anp5FIJFoWHoqisKZIY7darS2hxJubm8jlcqjVam3ncpAgHEZBOYxjOk6M+/y1kMTVBkdtXz6qwAvtcRVFwZ07d3D16lVEIhE0m01YrVZsbm625AN1eiFEYSviIIf/QWPtBnrzURQFZrMZjz76KDY2NmAymRCNRnHu3DkUCgXMzc3h/v377M+y2WyIxWLs55qcnMTt27eRyWRgs9ngdrtRKBQ4MvEgE2G9XsfCwgJsNhvW19cRCASgqnuvEhEUABSLRezs7KBYLHLwhtvths1mQzqdxs7ODur1OhqNBvvmLBYLB41MTEwgl8shk8mg2Wxy6H+pVMKHP/xhPHjwgI+pqirW1tb43GSGPAw5Dav2Na6lkiR5vQdJXMeMo9CwxM+1xzeZTADAJYgymQzXxiPBpCes9cyK/Zr2+kU7ElEUBdVqFe+88w6AvVwpk8nEScCUrFupVFCv15HL5WCxWNgkR5oZzY1ajxwkqMVrVqlUMD09jUwmg2AwiEgkwjULycRXLpfZf0XzSKVScDgcnHTcbDZ5+0ajAZPJhFqthocPH7LW7HQ60Wg0MDs7y/lcN27cgMPhgNPpRKVS4Xtqs9lgMpk4JaCbxcUokRcwnGM6Lkjy2oMkrjY4Cm3rqLSsTigUCjAajUgmk7BarahUKmw26xSQoSXAdjXvjgp610r8v16vI5vN4syZM8jn8zCbzUin0zCbzXj11VdRLpfh8/mwtbWFfD7PQRhieLkYji6eo515TWtOJI3p/v37XPVdhNgMkiIYgT2/VqFQ4OPQtsBe1XhxQSH6tSYmJrC7u8tFeL1eL1wuF1KpFNxuN5tB9QJNDoNhI4pxF97jPn9AEpcuRpG09ExqJCjL5TKHYJNANBqNcLlcyGazmJ+fRzQa5UoQBFrtU6CAKMCOO3BDT1NVVRU/93M/h7W1NaytraFcLqNQKHDtv2q1imq1CovF0qLZEGlpybhXbZiiBnO5XEtYvVabFaGqKlwuFxOXdmGgvb7k18rlctjd3UUgEIDVasXu7i42NzeZEOPxOIrFIlwuF1wuFx48eMB+LnF+7RYf3eSydbPdcWHcgzaG7X4cN2Qelw4GTVzHoWnp+YGMRiPnGBWLRbjdbjgcDs4Rmpyc5N9nz56F2+1mQTg9Pc1tNZ577jldwXwcBN/pPM1mE3/913+N27dvI5fLsebl9/uhqipyuRymp6dhs9nw1FNPwePxwG63t+yvPXevEImmHRECYP+Vw+FAtVplf5vP54PZbNY9FmmH1WoVqVSKq8ZPT09z0AdFTJLGlc1msbW1xf28uplfrybgo9S0e8Wwjec4Mc5zlxqXBoN+EA5bmLeb8eidw2QywWazMYF5vV7Mz8+jWCxyZfNsNgubzcY19Gq1Gpcvqtfr8Pv9KJfLePvtt/et1kXtZFDOcu089ASveN5arYZkMglVVREKhaAoCgqFAh48eMA+q2q1CqfTyS1ECoXCocbciUTF76mrsWhCdLlcmJycRLFYRC6Xg9lsxjPPPIO3336b87+0NRdFra1SqSCZTCKdTiOXy6FarUJVVZjNZqytraFYLHKOmHbM3WhUvZbAEud9khhn7WuY7sNxQmpcR4jj8GfpCXcKg/d4PHC73QiHw1zBnAjMZDLB7/dzEVix8oLX60UgEMD09DQHBlBOkN6YuqlA0Wn8olmz07z0/iZhNTc3B5vNxvOkwAwKxEgmkyzYO13Dg8yx4pjF84vjUZS9RGG/3w+j0chVOkqlErLZLAqFAhwOB+x2O+7cuYN8Pg+v17uPsMRjkvZVqVSQy+U4jL5arXJ1DoqY1BJ8N+h39T5MK/5x1UDGcd5S4xIwqAegV6FxmPO0E/D5fJ4rjvv9fly7dg2VSoXNg9VqFclkEuVyGQ6HA16vF9FolAmEBK2iKHC5XKhUKkin012FWGvRznymt32777XCWFxlq6qKxcVFHjMl/6qqikAggFwu1+KrO6hqRC9mWb3vVFXF/Pw8MpkMd0im6hyFQgFTU1Mcrl6tVmE2mzE5OYlYLNbWh0jkFY/HWyJBadzU94vy25xOJzY2NnSJutPY+1m5D9OqX7uoGRcM0z04DkjiGjCOw5/V7X7VahVGoxG5XA737t1jx77X60WpVEIqleLqDwC4Wy/VzqPK5tS512Kx8PE6mdq69a1ot2lnGtRGQIrHVBSFTWii1kfjI83z3r17HFUo7i+SlSi4u4ksbPcZhbP7/X5MTU0hEAhgfX0dJpMJU1NT2N7exmOPPcYRgMVikSthlMvlfWMQx0gRg6Ifk+oWAoDT6YTNZkMkEoHVamUTcLfol7xoX3G8JwVJXqd/zpK4BAyCcI6LtLoJYqAW8bVaraVFfCKRQDweh8Fg4EoPpJ2Qoz8UCqFcLuPhw4dwu90IBAJIJpNIJBJ8vkG8IKIQbmf2FJNy9fYH0EJIBoMBhUIB5XIZ8Xgcfr9/H9Fqz9WNtnXQd+L3BoOBg2FisRhXs6BgivX1dQ7Fz+Vy+3w0ev4avfmLJkQAXPIK2POpUeJztxiE8BsW4hgnQU4YlzlL4hoiDIK0tMKThCWwpwlsb2/DZDK1tIovFArsB6KyQ5VKBYlEggvW7u7uwul0IpPJDEQwieOlSDlK3k0kElzBvdls4vr160gmk7BYLFhcXGzRIPTGQmY1g8GAK1euYHl5ue1YxXGI5KWqKpsV2zn9Oy1Uzpw5A4/HA4/Hg52dHW52mclkYLVaYbFYkEwm4fF4oCgKstksqtUqj7Pb60r7VioV+P1+DvIgTaufIJRBCr+TFqQnff6TwDjMWRLXP+Cw0X/HET1I22lJqp1prlwuo1arYXJykn0qhEqlAofDwblA1WqVBTURHB0rn88jGAxia2tLV3PpJxpNO5dMJoO5uTlsb2/DZrNhamoKLpcLS0tL2NnZQaVSQSwWg8lkautn0/OP/ehHP2JC1I5V738yv50/fx6JRALpdJpLQXWak2jWpJJauVwOs7OzqFQqfP2pezH55K5du8aFeUulkm4uVztQKxUq+BuNRtn0S9rcYaInByn4TlILGxYN8Dgx6Ps3bJDENQAcdRCGeB5tgILe93ovqtfrRS6XQzweh9lsRqVSQTQa5R5RsViMfUDaiDa3280BHeK5ug1m6GZeFC335JNPcrmjbDbbUkeQql+080+JY1EUBdPT01wnkNp76O0LgPOqqNp8rVaD2WyGz+drCZrQGzstWhRlr2L9uXPnOPBlcXERhUKBi/kWCgUu9WQ0GvGTn/wEJpOJfVu9EJff74fT6UQqlYLL5YLZbMbGxgZrWocVXEcl/E6CSCR5nS5I4sLhBO9JaVpak6D2WFpBbjKZWPhT/g/Vxnv22Wdx48YNxOPxFvMYIRqNIhKJ7ItQo6CJfiPRaGxGoxFOpxOlUgnxeBzPPPMMUqkU6vU6lpaWWgSxHlmJ/xOR2O12nDt3Dnfv3mVTqd71Ef8/f/48DAYDtre3WQMqFAqsJWlB5wHA/sN6vY6trS2Ew2FMTk5ia2sLu7u7+8YPgO8F0Jp0fBDoGNSHjMhcW85K71i9CLPjMDkdN6GMgxmNcJrnKonrEDiOQAw9TUIkKvLHUC6VaJIixONxpNNpPsbc3By39gCA1dVVeL1eZLPZlpU/gJ40gF7mrSXher3O0YzBYJDDxiORCFRV5aRdPcKhaEeqFqEoCiYmJlCpVPD444/jpz/9qW4YPP1P2tbu7i7sdjucTifm5+exs7ODZDLJhE/Xi8LRqV6gqqpIpVJsnqP8sWw2i52dnRYy0Wqz4t/dBGOI35XLZWxubrakPXTyyfWD4xR+7QJmjuI82mCY04rTSl6SuPpEJ8d8t/sfBL2kXPJniJpHMBiEy+XC1NQU3njjDeTz+X0rWVqVGwwGpFIpTExMwGazYXNzE++++y6TRjtzVSdTWafv9bbXklaj0eCkXJvNhh//+McwmUxYX1+H2WzG3Nwc1tbW9s2LrhHV/6N8LTIpUjfgmZkZZDIZxGKxllJIosb3wgsv4M6dOyiXy5iZmYHNZsP09DTnXj3++ON4/fXXmTzPnTuHRCLB1UYsFguAvaLGuVwO2WwWRqOxbXsRrdAUtaODriV9T1Uy6Fhakmx3/bs5h3afkxB8Ry10T6tQHwf0ZOd6+eWX8cwzz3Dpml/6pV/C/fv3W7ZpNpv42te+xjXiPvKRj+D27dst25TLZXzhC1/AxMQEHA4HPvWpT2FjY+Pws+kDhyWgfs/Z6TtRqxI/J0c8VQWfmppCMBiEqqrIZDJ48803OXdLz99FyOfzqFarKBaLyGazyOfzSKVSXD3joLF341s7aF89U1+1WsXu7i4ymQw2NzcRi8WQyWSwvb3dEoZP2iWRFvXUun79Oi5cuMBmx8XFRezs7HArEdJEtdqroii4ceMGyuUyrFYrgL2cNo/Hg3PnzsHlcuGNN95gE6vFYkEul+Oox1wuh2vXriEUCrFZkULUtSWcRHMeod3fehAXFtpjif3VBo3jfke05z6q91TvXTttOAkZd9To6Y7duHEDv/7rv44f//jHeOWVV1Cr1fDCCy+w4xsAfud3fge/93u/h29+85u4efMmwuEwPv7xjyObzfI2L774Ir7zne/g29/+Nn7wgx8gl8vhk5/8ZE9Z/ieJwzwI7fYTX852xADsaRjUc+rChQvci4qSWfWOpael5PN5JJNJXrFrBWw/82o3drEklHY+9JtCxWu1Gnw+H4fx+/1+DjzQnoeOa7FY4Pf7udGiqqrcn2tjY4P7cYn7a4sGU5AK+Z0ikQhSqRRSqRSTo6IocLvduHLlCnw+H8LhMHw+HxRFwdbWFpaWltjXpae56l3Xbk2x2nukRS+k1c+zOyzCr9NzPYjjnlactvkpzUMsz3Z3dzE5OYkbN27gQx/6EJrNJqanp/Hiiy/iN3/zNwHsaVehUAhf//rX8Wu/9mtIp9MIBoP44z/+Y3zmM58BAGxtbWF2dhbf+9738IlPfOLA82YyGXg8nr0JDMDP1Osx+l2h6Ql1vc+124jbmUwmeL1ejl6bmJjA8vIyMpkM4vF4i7OfxtpsNllQUykkKo0khslrf4vH0RO8vYZatyNR+o40KI/Hw20/zGYzXC4XarUadwIWzaQOhwMTExNcbJZ6j1FzRTKnUbK1dh52ux0XLlyA0WhEPB6H0WjkvmUulwu7u7tceDgej7NZ8uLFi/D5fLh16xa3hNFqPweRVrfmwYN8MeJx2t2Tg0yVvWDYfEODHMuwzW3QGKbu0XSd0+k03G53T/seSkdOp9MA9sJyAWB5eRmRSAQvvPACb2OxWPDhD38Yr732GgDg1q1bqFarLdtMT0/jscce4220KJfLyGQyLT+DQq+kNYjVajerRlErED+r1+vI5/MoFApIJBIcNUeak6iZWa1W2Gw2Dt6wWCzwer0IhUItnXr7nWMv5kE9jYs+E5ssNptNpNNpDs0n89zZs2d5HuK1K5VKSCaTKBQKKBQKnNR75coV2O12fjn0tFEis5WVFa5uQc9XrVbjfKhisQiv1wuHwwGXywUAWFpaQiqV0q1M0UuQxWGgjRzs1W91GKvBMK3eB6mB6b13pwmnxSza9yyazSa++MUv4oMf/CAee+wxAEAkEgEArptGCIVC/F0kEuH8mHbbaPHyyy9zFQKPx4PZ2dl+h33s6Mcf1M7kRiD/VDqdRjQa5VqCAFoSUt/3vvchHA7D7XbD5XLB6XRypJ6e2akbDbDdXDr9aH1uIqmaTKZ9leX1ou1KpRJUVeXjiWSnKAqbGimROhaLtQRG6C0cCFQaSowepPwo+v7BgwfIZDLI5XJwuVys4VJ7kV78VN1uI87/MMdoh8MI52EjL8KgSOwozJHDgtNAXn3P4Dd+4zfw9ttv43/8j/+x7zvtzdYKDj102uarX/0q0uk0/1BZm8OiH22rH21ET+votE8nsiOB3Ww2kUwmWdBSUAZ9bzQasbm5iStXrnD5IbPZjFwux2ShvQ7ttMKD5t6OsIiggsEgmyjp58yZM+yn8/v9+86lPe4/+kf/CFNTU5iYmIDFYmnRLEulEtcCBPaiBLe3t1kbErfVe2kp6hLYsxA4nU44nU584AMfgMPhAPBeTcBisYjV1VVUKhU23VL0Ih1L/H0YdCKto+qB1guGXTs5LPGcZvIa9Tn1FQ7/hS98Ad/97nfx6quvYmZmhj8Ph8MA9rSqqakp/jwajbIWFg6HuZq3qHVFo1E8//zzuuezWCzsXD9J9EJa4t/dPvx624gkYDQa4ff7YbFYsLu7y4LNYDAgGAwinU4jm82i2WxyUu/y8jIqlQr7d3Z3d2G1WlEsFrmUES0atL8JvQphLQmdOXMG+Xwe29vb3LaeNJd4PM55WKLvikiG+oMtLy/D4/FwPprRaGw5JwnycrnM6QJ0baipZDuNUtTiqOkkaf9Wq5U1OkK9XofRaMTu7i6CwSAURcH9+/ePLbjooCCPXtEuwbpb6GnKw4TDjm/Y59cPRn1OPS23ms0mfuM3fgP/+3//b/zN3/wNzp071/L9uXPnEA6H8corr/BnlUoFN27cYFJ6+umnYTKZWrbZ3t7Gu+++25a4Rgl6pGU2m+F2u7k3EzUXtNlsLDA7aVl2ux3BYBButxtGoxGFQoGDCKjsT6lUYq2GVtHJZLIloq5YLALYWwiIpZNEUx1FLRIx6GldB2mNBDru+vo6crkcAoEA3G43B1NkMhmUSiUkEol9/i6n0wm3281FaCORCDY3N5mAtZodnTcYDGJ3d7dlPHSNqfI9aWx6ZOb3+3nbSCTCEbNiCDqwp9VduHABOzs7WFlZacmBO0q0O8dhNYPDak7Drn0Bg/HrDfP8xgk9aVy//uu/jj/90z/Fn//5n8PlcvGq1OPxcLjwiy++iJdeegmXLl3CpUuX8NJLL8Fut+Ozn/0sb/u5z30OX/rSlxAIBOD3+/HlL38Z169fx8c+9rHBz3BA6FVjEh90m82Ga9eu4c6dO7xaN5vNuHbtGh48eIBEItG2PI/BYEC9XofNZuNIykgkwn2YJicn2QeUTCYBvCeEyuUyvF4v8vk8B3BQcixpIdqxK4qC2dlZZLNZJhQx+rBb0lKUvcoSwWAQlUoFdrsdU1NT8Pl8iEQi2NraYoIgP5TYxJLI6/LlywCAlZWVFsEh+reMRiO3ZiFtUitkqMoFXXvRL2i1WtFoNOByubjlCxER8F6EoBh1abVasbCwgEqlgkKhoOsvFDXIQRHaYbSGbnL0BnEeEcO4ou9X2xiFufWCUda6eiKu3//93wcAfOQjH2n5/L//9/+Of/7P/zkA4Ctf+QqKxSI+//nPI5lM4tlnn8X3v/99jsYCgG984xtQVRWf/vSnUSwW8dGPfhTf+ta39pl/Rgl6pEV/12o1LC4u4vz581zhoNnc64vl8/m4wKwo6LSgcOsrV660tMAIBAJcOFfULoC9UPJarcb+n3bBGMAeEZw5c4YTfVVVhcPhwJkzZ7heoFYYd3M9CoUCLBYLl22iz81mM4LBILLZLGKxGID9hW8tFguy2SxKpRK8Xi/OnDmDd955p+X6qqoKp9PJ5tGJiQkOf0+n03zM2dlZmEwm+P1+RKNRNJtNFItFGAwG+Hw+JvVGo8GVN2hMWhNgs9lENptFJpPpqphtv8R1EgJlEML5JAW8+GwcpAEPgsBGUeifBhwqj+ukMIg8rl7U/l7MY3qmNZfLBZ/Ph8uXL3PpISIUu92OQqHAWpD2uGKwhdlshslk4uoO1WoVJpMJqqrCbrdzNYdAIMACeXFxEcVikcPl9YroUqFY2tdmsyEWi3Hlh0aj0VIoFji4BBRpfSaTiZOkqepEqVSCyWRCIBBALpfD6upqy9ypeK3dbuecKmqISdoQnWtychLve9/7kEgkkM/nEY/HOSiDtCqaFzXITCQS2NraQrVaxezsLIrFIjY3N7mtiFjXUC/kXPsDtCYA610j7TXXE6ra/7XPw0GCuJvv+8Egc396jb4E2vt+B3nuw4jBUc/9OqnxHyaPS9YqPCT0fFPi34qicB7Q6uoq6vU6zGYzRwJSs0a9Y2n9PkQi5MtKp9OwWq2wWq2YmZlhXwsJftqONDEaj7YR4+TkJKxWK/L5PHw+H1wuFzweD959990W7a4XjYvgcrlgsVi4gSKw52sjf1uj0WBNW3x5KHmY5kXllbT5YOVyGZFIBIVCAaVSCeVymZsoUsAHJTEbjUakUink83kYDAaYTKaWfDHtGLTo9QXXu15HYT7UO18/37eDmGMn/u4H2vejm2MNwq9Ez3478jqM2WyUTW7AaI5/9AP6TxDdkBZ9RtXDm80mKpUKd8QVBZk24MBsNsNqtSIUCnGDQKfTiUcffRTT09Mwm82YnJzE3Nwca00Wi4UbE/7sZz9DqVSC0WjE3NwcnnrqKa5mTkRGFSGoKkQ+n4fZbEa9XseFCxcwMTHR4tvq1deXz+cRjUbRaDTgdrsRCAS4nYrX6wWwZ+4UiZXIqV6vY2VlBdVqFevr60ilUhyBSNs1Gg3kcjmkUikmKpHgDIa9LtAbGxscbPHkk0+iXC6jUqmwmdVkMnX94h5EDnq+w4O+GxSOMnhAe38GSSidfgZ1fPILi/Not/1hziNx9JAaVxfoxlShJ5SIfIC9yg0keKn9iHY/cX+j0YiZmRn4fD7k83nO1yqXy3jrrbdgtVrhdDrZRBYMBmG1WnH27FmkUilkMhn4fD6uYUgpBeFwmH1e4rnL5TL7xzY2NjjqkJKEKW+J0MlUKG4nhtyTVkTlmLLZLFf0IIGiDcUnvxiRbSgUYq2Jgka2t7fZxydGS9rtdjYbGgwGLh118+ZN1rTy+TwXHdbO47DaFV0n7XftVv6D0MKOSuvSO474m9AuVP84oR0bXXOn0wmv18tmYlrg6GnS/Vwn8XyjZj4cNa1LEtcRgFZ3V65cwfnz5/HDH/4QAGCz2WC32zkAgjQGvTwaRVHg8XgwNzfHlS7IpEjaGpGUw+FAs9mExWJBKpVCNpuF3W7HI488gjt37nDdv0gkAqfTiYsXLyKVSiEWi8FgMMDj8XBUXT6f59YfuVwOV69e5cr9BwmpdhoF+Ymy2SyTCwDW5BwOB/x+P2KxGKxWK3K5HAqFQou/DNjzVU1OTqJarXLfMBFEUkajEcFgEB6Ph82n4XCYSzRRMV0SLnrVNUS0y3MS56dnCtRuqzVN6ZVr0pJcv6arkxJA3WocRzU+vYUgRbZSFCu18KFxtBPah7mOo0YEwMk+N71ibInrMCp9O21L+9IYDAbcuXOHAyouXryIZDLJ0Whms5mDM/SiChcWFtiXlU6nEQgEoCh7Le0fffRRDlqgiujnzp1DNpuF1WplHxr5uGKxGJvVPB4PnE4nstks5zT5fD5Uq1XuefXYY4/h7t27eP3119lv1i6EXu/66JFcqVTad51IEwsGgwgEAkin0/saYU5OTsJsNuORRx4BAG7oSJGPwWCQUwPeeOMNjgqcnJxk0haL7oqBFHpRgaLPTVEUnr/oi9SSEG0rEhI9A+RrzGazrOmaTCaEw2EsLy8PvB3JQULzuAVUNxaLfjUUvWdN+w4Wi0U4HA6YTCbkcrkWrbydD1I81mHIa9S0r1Ehr7ElrkFBtJWLGoLVasX6+jocDgfsdjsqlQoSiQQXCLbb7ZiYmMDExARisRiWl5dbwq5JYN6+fZuTlmu1GqxWK3w+H+7fvw+LxYJQKASv14twOIxQKISdnR1Eo1FUq1Xcu3cPlUqF6/fVajUO8IjH46jX6xwSfu3aNW4DYjAYsLS0hFwuh7m5OWSzWUQikRahD+i/5OJv8XM9wUBCvlQqYXNzEw6Ho0ULpW1SqRR3Ra5UKnC73ax1mkwmuFwuPPvss7hx40ZLWsDKygr3zuqkMYn3TcwHq9VqXCaLxkOVSfSOQZ+LaR2KonBtTbPZjGQyCVVVMTs7i6tXr2J9fZ21v4MK5vYiVLohr07f9ws9czk11OwU3HFY/5De/mJkK/lXySxMi8duNNzDXqtuTOwSvUESV4/QezlIUJG9XFEUhMNh2O12FlRutxuFQoEFIrBnKiuXyy2CUS9Yo9lscjsNm82GTCaDf/kv/yW++93vcnRePp/H5cuXUavVsLOzA4/Hg0qlAp/PB6vViuXlZTSbTdbsiIRIWL755ptMbgaDAeVymev0mc1mOJ3Olp5fRIKdro1WuyKI5hmDwcCNMYG9VAez2YxKpdKyfTabxfr6Oq+WVVXlZG5F2WsESUEgiqJwUd5cLteizWojNIkwaJxUYsrtdrf4vjweDzY3N1u0K737Rfvv7Ozw+B0OB6rVKgKBADKZDJth4/E45ubmsLKywsccpPbVjcAd1Aq73b03m82w2Wx8LUWtfVDnJYuBxWJBMpnk54eeFbPZjEAggHK5jKmpKfaJii19CJ3KXw3CdEgYVgIbFRPn2OZxdVtcVLuduMJWFAVer5dXcgaDgWvvOZ1OAIDP5+PSTiQE6cWYnZ3F/fv3YbfbWdBSe3nS2ohgKIiByjc5nU68733vw+bmJifhnj17Fuvr68hkMtwahExoCwsLLe1CKNFWD6qqYmZmhhsyEhk2Gg0Eg0FUq1UsLy/rJjVrr5t4f8TPRKF25coVjvID9gS9aEKjxQHN3WKxYHZ2lost0xxjsRhCoRA3oaRWJ+KcKUCF+ntRMjg56qkrt9lsht/vRyqVwubmJkeFir4R+k1zNBqNXJ6rWCxy8V/qFSYKUrPZjEQiwRqxqqoIh8M8HrG/lzaQo9dXttsw9n6DEfQ+J21rZmYGExMTSCaTSKVSSCaTLXM4LBGIxHX27FmUy2Xs7OxwfU4AbJKnnMB6vQ6r1Yp4PM75k71c40GIzGE3Hx5H3y6a/7H34xpXiJpEqVTiMPdsNssC1uVysYmI/qa6e7lcDrFYDLdu3UKhUGB/FxGU3W7nNiRi7cF6vY5yuYx6vY5SqYTbt2+z+ZFMgxRaPjU1hVKpxOY1CnbweDwtZEwah/bljUaj/OJPT0/DZrPBbDbj6tWrvB8JJ1FQGY1GuN3ufb2z9BYARMQUQelwOFj4BwIBTgEgkJbXbDZRLpe5Igf1yTKbzchkMlzaiUyJfr+fE6CdTidmZmZw5syZljGKpsB8Ps95YxaLhUtCAfvJV/tjt9sRCoVw6dIlAHuLgCeeeAKBQAAmk4kDbihKkxYHVP6MmoQe9Oz1+7x2u103P+2OQVotpSIoisJlv7Qtbrodm/Yc2jGTpmQ0GhEIBHghQlaQ+fl5jsylAtOiVq93HQ66TodBP/M+TgzruAjSVNgHxBX2xYsXeXXncrmQSqVQq9WQTqfhcrm47YXFYsH09HRL+SOq9ZjP55FKpdBsNnmlT6tDg8GAj3zkI3j99df5nCaTCcBeFB0l+O7u7rIjGgAHAlQqFayvr8NsNrOQ9Hq9KBQKLQ05aQVosVhgt9tx5swZrK2toVKpYGtrC9lsFmazGW+++Sai0SgTj6i5EQk4nU7Y7XYOBiHNTLtKLpfL3OyRfD103UqlEvsGjUYjV7MgwTQ/P4+FhQWUSiVYLBY0m01YrVbOSyMN9uzZszCZTFhZWeFAje3tbR4LlcVqNpvwer1QFIVTF+gYxWIRoVBIt52OVojW63VcvXoVm5ubcDqd3ArlAx/4AH784x9jbm4OS0tLcDqdCIVC2Nra4n3D4TC2tra44kc7s02/JivR9Cze98NCvK+0GLBarexLajabLYsn0RzX7Xj0BKko/DOZDDY2NriUGCWYO51OKIqC1dVV1q4ajQZrunpj6GXeh7l+4pyGWfsaRkhTYY/biZoFJfbOzs4in89jamoKr7/+Ogdk5HI5OBwOFmBkArp+/Tri8Tj7lbTaDpV3stvtMJvNmJqaQq1Wg6qqSCaTbIqkVvNkr6fgBooWrNVqKBaLKJfLsFqtrMlQQi6Fh4vnplYiTqeTc5xofKqqwu/3Ix6PAwCmpqY4iRfYM4sWCgWEw2GOdqS2KtprSD9OpxNWq5W1q0ajwQQzMTHBfiGxMDCRNRFxuVzGzMwMstksTCYTB5wQOVJVfqp7ODExgc3NTT5GJpNBpVLB7OwsV9zIZDIoFAowm81Ip9MwmUzstxJ9g+I9o2eRIjW9Xi/7C6nlD2kely5dwv3797GwsIBLly5hfX0dLpcLOzs7LeW1xB8RhzW1aY/Tz7FEwqLfZBo/e/YsVlZWeGFBwTSiuVVrqu7FhChqWuL7SCZXqqASDodRLBZ5YVcul1EsFlusDJ2ucTfXZFAidNjMh0c9nsOYCqXG1QdI27h06RKHqScSCdy6dYvNhk6nExaLhZOHFUWB1WpFs9nEnTt3UK1WMT8/j6WlpX0RZcCecHzmmWewubnJScZkXiKzU7VaZVOl1+tFvV7nwrI2mw2PPPIIh4eTJuZ2uxGPx1EsFve9sDSObDbLq2MxMbdSqbC2RYRBJaxMJhMuXLjAzS0jkQiy2SwXvG33AtA4KFGZzEsGg4HzzIA9EkulUhzQQhXzKc+tXC7D5/OxP4kSlIvFIpMehcNns1kAwMzMDFZXV1mobmxs4Mknn8TExATu37+PZDLJC4t0Os3aGT0DYmAGgcLmiVTJ7Od0OjkZ3el04v79+6xl/+xnP2PC9vl8XHRYfN7o/mg/037eK7Qa42GOoygK5+rFYjGOzrRYLJiamkIikWBCoe4S9Xqde/dFIpEWv+lB/lPKy6JC1bVaDS6Xi33D1Dpod3eXA6RSqRS/C3r38CQ0L/E4/Y5h3CCJ6wBoc4qAvRdmdnYW6XQa+Xweb731FgCwyZBeTvJ3Ua0+IidqtEnOfwpNF8+pKAoWFha4CKzD4WBNJB6PM0GROcTpdHJ/K1VVUa1W8eDBAy6wSyawTCaD3d3dfSWntATWrikijY0qd/h8PtYWALA/g45Pn9Fx6X/xs3K5zMQl+ptMJhPMZjMeffRR1jQpXJ2EvsvlQqVSgaqqmJiY4OjHYrGIaDQKg8HA0YZEKvSzsLDAGifN9+bNmzh79ixWV1c5EnBiYgLAHskmk0nYbDYWugQykYkLEDJThUIh5PN5WK1WTExMYGlpicdP461Wq0in00zOeuZB8RqKn5Pg7EbgtSMqRdFPiO4GWl8NLXD8fj8Hq9hsNoTDYUQiEdhsNjx48AAmk4mT8ilARdRmD/IzuVwu1mSBPb8s8F7fudnZWc4RpKT2Wq0Gh8PBC5tO5NULkQySvHq5n0eJQc3pKCCJqw80Gg1sbm7yS0CrzHQ6DQDskyHtgSLMKKKJbP+lUgnBYJD9KcB7pkiqglGpVNiURX4iyssyGo2YnJzExYsXsbm5yblepLHQy0nCoF6vc1sPsa291lzSzcN6/fp11hyJyKgqAZWJKpVKHROXxQWBWGyXQCHvVEsxlUrBbDbD6/XC4XAw+VitVjgcDtRqNUxNTeHNN99EKpXiQJVcLgcA8Hq9mJycxI9+9CPUajUmV5EoisUi7t69y+NLp9Ow2+14/vnnsbS0hEqlwrliFMBBmpXFYmlppbK+vs5pDORX3NjY4PtTq9X4Hokm405+nl58QN1sQ/fOZDLty1EDujfZ0d8GgwF+v5816UuXLiEWi+EDH/gAFhYWsLKygt3dXTYf2mw2GAwGPPXUU1xwupPGJT471DyVTH8+n48jcv1+PxRFYRNUMBjE2toap3asrq5yk9Bh07zoWMNAYMNKXtLH1eO22kgo8m3QZTQYDJibm0OhUMDMzAyWlpZ4NUm18lKpFBOPxWLhRoRaJzf5r8TgBzKPiFqP6BciX9i1a9fw8OFDrhhBGgcJXdF3RcJbm0Ok99LQvH0+HxM2Fe6lcVksFly4cAE//vGPeVUr5k7pHY/mJs6TujxTgAuZLc+ePQuj0Yh0Oo1z584hmUxyHy6qvG82mzngo16vw+PxwGg0olQqsTYlkrqelkmBMERKFGgSCAQ4EIDMYU6nkxcgYhI1mTNpAeJ0OlEoFFAsFvmekSmY7kUnX88gBRlddwoa2t7eZkLv5pxaTYvqQU5OTnLn7YmJCbhcLgSDQWxtbbEZlN4Do9HI+YmRSAThcBhLS0t8PbTmUS1JkpnaaDSyT7HRaHB7Hur2XSwWOdWEom3p/pMJud18e73mgxapg/Jn9oujCo2XPq5jhPbhIf8V8N7qpFAo4MqVKygUCjAajSgUCrDZbFyKiVbYFPVH+4rHoJUnaSvkJ6KcMaPRiNnZWVSrVV7FA+8J/Uwmg/n5eVgsFrz++ut8TovFwiWSqNVIvV7nCEM9rUtPeCYSCRYkyWQSbrcbxWIRNpsNuVwOJpOJx0LmHKriTscQV89+v59TA0RQbUGKsDQajey3KJfLWFpaYt8RlXgql8tIpVIcwELlr6i8FgCO9CTBRfdBO+9wOMzdjsl/mcvlOLDE5XJx4AqVdjp//jzW19dRLBY5lD6fz6NYLHIJLwoMEdMO9KBd8Q5qJS6mAdRqNQSDQdZgFhcXW7RQLUG1G6ei7KWHbG1tMeGTP/XKlSt48OAB/H4/tra2eCFXqVRw+fJl3L9/HwDYR6oN/Gh3PvIl0qJFjMZ1uVw4f/48YrEYVlZWYLPZ8OSTT+LWrVuwWCzw+XxIJBJcLaadabtXDNpXNSh/5mHOP2z6jSSuPtHuRjabex2OM5kMB1HU63UkEgkkEglORNWuotqZK7TnCYVCCAQCXNaJElxppX/27Fns7u6y30dMeiZNi3p4EcGur6+z9tRNMiaNlX43Gg1kMhkuXkoChKqEkJAC3qsZqNVSXS4XHn30Udy6dUvXx0FCVlEUPHjwgJtnkgCjxFPSUKlQcLPZbDGfkqCjih0zMzNoNpt49dVXWzRQQj6fRzab5YAQEYlEoqVZ5fz8PAeGAHuV8cUkV1VVOUCBcopsNhump6fx8OHDlsCPTs9Yt9u020+r5ZL2UavVsL6+vq+Ki/Z87fxvwHsRl1Qs2W63Q1VV3LhxA6qqwuv1Yn19nWtSNhoN/P3f/z2TP52j0/xEa8fExAQHKNH7Zbfb2QxLleBtNhvi8TiWlpbg8Xiwvb3NqSGRSIRN3uL59d7Nk4QM3ngPkri6gPgiif+L5CNGztEqnkKqxWoL2nqE9JuOqbe6Fbfb3t5GMplELpfD1NQUzp07hzt37rSE2z/55JO4f/8+tre3OfiBiMtsNuOxxx7D5uYmKpUKtre3Ua1W4XK5Who80jz0roV2zPSZ2+1GtVrFzMwMj5nC0ClcORAIANir1biyssIhzFarlf10tJ94Tfx+PwCwGRAALly4gHK5zKY2AFw8mIoFE4FRwIjBYMDk5CQXJgaA5eVleL1eDkMn1Go1bG5u6ppQAbT4Canc0Ac+8AGsra2xqZdIiuZI86MmoKFQCOl0ui+Tdy8rcfEZcjgc/CyQwKbO0jabjbc1m81cpiwYDLYUiO5EXmS2s9vt2N3dRTweR7PZhN1u56AN0nJF8yiZ9PQWLloNnVI23G43rFYrWw/IZE3bbW1tYXZ2lgOiVldXub3O4uJiy3OmjX7VLq56NZkdBeHR+3AclS3EcwLDRZiSuAYEvRps2kRS8TstxFWkuA+timnlajAYWmrmRaNRJJNJPn80GuUQ8EqlwkJBHNva2hry+TzcbjcUZa++HnU6Fsm3HdrNgYRzLpfjYsCNRoNrwhWLRZw5cwbAXuV7RVFw9uxZJjaz2YxUKgWTyYRQKIRiscilsp544gmUy2WsrKxwbtU777yDy5cvc1QehcxTAAwRMrAXcUZaRSqVgtvtRqVSwcOHDxGLxTg4RpyjqH2JmoZ4bUg7KZfLSKfTuH37Ngce0KJFVVWuZOLxeNi0S2WdqGJ5PzjIpKaFwWDApUuX0Gw22SxoNBq5VxUVAq7VapidneVF0eXLl7G9vY2HDx/yYkRLMPQMU+FjCkAifx+lUJhMJkxMTHBkpnit9RZG2vmJ2jL5MoE98y/lyFHwVLlcxvb2dov/cWJiAoVCATs7Oy0+2GZzLwGfAkuIrA6jeR2VtkbjHSYyOU7I4Iwu0M7G3+nc7TSndtqU0Whs0SqazSb3lQL2QnsXFxdbwuppZSkKEKvVyoV4xRJJRIomkwkOhwM+nw9Xr17F+fPn8ed//ueIx+Nc3aCb1Zw4F/I92e12hMNhXLp0CbVaraViBWl9drudoywBcLNLMuHR/5OTk8jn89w8k66D2+2G2+3G0tISN6IkYUlJ15QLRKWU7HY7V7una00loIrFIgeqkB8QaNWO25GWCAokocLEZBKlaz81NYVwOIy1tTU25dJ+lA6gNVP2G55+0D2jcmIXLlzA5uYmqtUqLBYLj53uV61W40WF2+2G0+mEzWZDoVBg06bWvK2tK0nzpyAKp9OJ+fl5bGxsoFQqsclb9K0eJJDJJ0rBMRSo02w24fF4uAN4sViEz+eDx+PB8vIyAMDv96PZbCIWiyEej7e8S2azmYspG43GfWkdNJ9+7sVRidnjJK9Ba3kyOOOEoDUhar+jVZv2M6DVyS4GZJDwoEhEh8OBRqOBaDQKu93OLygJWtG8KEa4kVAXI/monBOZHMUSVWazGc8++yxeeeWVtqv/dqYbgtPp5NYoV65cwc7ODlRVxfvf/37cuXMHOzs7nNRL14GizChBlKp77OzscNJ1o9HA6uoq7HY73G43+0joGCQo3W43C0L6LJ/Pc9UE8fp7vV4ufkzEBbxnEtK7r51eXEp4FaM4xWNGo1E0m03WCOl4FPUoXuN2fs/DCChxPnRdc7kcnnnmGVQqFcRiMTidTvj9fmxubsJkMmF2dpYrjAB7z+TS0hLm5ubg9XoRi8X2+SFpXpQsT9qM3W6Hx+NBPp/HgwcP+DroPWud5krnSKfTbH4WtTLq/k0LCapGQj5KbasaMl9TInQul4Pb7cbMzAzu3r3L8zjsfTgqzUuUIyOog/QNSVxdQLuq1H7XSfNqt6/2RaAggkcffRT37t1DtVrlqCyxAgeRjda/RtoWdQgmkhKrn1OIMfkEbt26BavVytU0/vIv/7IrE6HWiU1J1ul0GqFQCAC4LQi1dQHe85mIxxJNMrVaDZOTk2xeczgcTFzAns9pe3ub8+UURcHk5CRHM1IABPlJms292o9Ut1GcG2mWiqJw8jb9LybCtrseekIinU63hMLTGBuNvWK/ZDqkc4hVSbSmMa3/8DDQmtkMBgOnUdy+fZvLgYmJ3xSoQeOlljKNRgPLy8tsdtML4NC7Ptlslv2btFjS85Vpr4f2M/H60AKIyFFcdDSbTTzxxBO4f/8+a1aNRoOLJk9MTPCCplAoIBAIwOVycTdxsSiA1gUwbORFxwaO1g91lOPvFZK4BoCDNC9CJ/IC9lbtqVSK/URnzpxh0qHQ7vPnz+POnTvcY0p8aalIrcfjwfz8PBeTFU1Q2WyWSx7RGKiihLaShghxVaudL62oKdS/VCrh3r17XKH9Jz/5Cee3ibX4RJAPhCIGyUQoEg451WmVTcen454/f54rTzQae80yqeSSqA2QOZFqENI1pG0mJiZgtVqxsrLCq3TxenQiM7o2tI3Yqy0YDMLhcGB7exvnzp3jOo7VapUJQktYh13tazUiMqsGg0FeSFCF/kqlgkgkwgWjd3d3kUwm9+W8iYTRCVprwu7ubsvzqDdXunZaTUIkLT3Nn+4hweVy4cyZM3jw4AHPk/yJVP2fuhhQYYB8Ps+m5QcPHrRt+3MYkhhl8pLENYLoRrPqRvMC9FemlET8+uuvQ1VVeDweJBIJhMNhLpWTyWQ4dF18oWdmZtgfQaHIHo+HAyK0dnoRVGroIFODdvyisKEEUgqKAPbMUYVCgcszWSwW/MIv/AJ+8IMf7HN4k0Ck4reUWErBC3qCCQC3aFleXkY2m0UsFmMBKwpp8n+JvZdEE5XL5cLU1BS2trZamnzabDZ4PB7s7Ozs0xS1f2uh1Zzq9To3tbRarbh69SosFgtisRgHjlDJsE7aVi/CQ8+fSlGc9XqdzarXrl3D7u4uRxBS00eqnUjh5mJSsB7J0jm0BEP3jp5NvfdEPI5o1hWPpz2+CCpsTWZCt9uNmzdv8rvw8OFDNhc2m01uaxIOh+Hz+biAMlXn10uUB/orB6U31373Pclj0/GHgbzGth/XUThYuxH+etuIn4svFr1cTz/9NGZnZ+F0OlnTEnOOqDQUVR6Px+PY2tpic4c2Mk78oRV0J7NNuzmStnbx4kXs7u4im80inU6jWq1ibW0NsVgMHo+HSfVP/uRPsLa2pjuOWq2G+/fvc0UJPXOSKAgpRDuRSCCdTnMEGUUwNpt7hYavXr2Kixcvwu/3s8lSrFdIK20ATHIXL15sqXSiqirOnTvX8gy0u1bae9xoNHD+/HlMTU1xKSyr1Yrbt29zWD91APD7/az5aX9EdPO53nc091KpxA1Ha7Ua7t27h0wmA7vdjk984hOcH0hV3i9evIjHHnuMxyueS/ybNH8tYVFgBlVp1/q1tMfRHqubedG1npiYgMlkQjKZhMvlwjPPPAO73Q6v17vvuVeUvf5piUSCq2lQdG03aDembtHvft0c96iOPSyQGtcRQCtou/leFHZkugD2Ah5effVVRCIRRCIRThYVBScVkwXAxUufffZZNkV18tV0Gls3D3+tVsOPf/zjFv8Qhdc3Gg2sr6/D4XBw6xNx3lqzo2g+EoVWo9HgaMJEIgFVVTE9Pc3V50VzFPCeea5UKmFlZQUTExOYmJhgX5fYH4yqiZDQy+VyKBaLeP755xGNRjkf7+HDh/uuUTtzKn1H86AaeUSMVHQ2EAigVCohFArh7t27KBQKHDCgF7jQTgPrBD3zmqiRUrI4AOzu7uJ//a//xU06KZCHknTFe6WnDVksln1+O7EUUyqVaumBpT2OOD9KYM9kMvued9pfJLlarYaZmRnkcjkuNN1sNrG7u8ukJC74gL0UhsXFRV6A0Vwpp02vHY/2PuhZT3rBUWkwR615nTQkcfWAgwhJb/teyYugqirK5TIikUiL9kGmJNpe9KnQ72azyb2QxOCGdhphO99Bu7lqvxMru5O2RdtEIpF9BCX+rT2+qKmIAQ5utxuXL1/G6uoqcrkcstksN4psNpu4e/duS7AF9ScjfwYVc6Vjiz4og2Gv8WGxWEStVsPu7i5Hm+VyOayuriKRSOiOs51gEMdO5ken08nfORwOriBCJtHJyUmkUin2u1CVCSLnTufTg56ZjUDX12Kx4EMf+hAWFhb42hoMBjYVbm9vo1QqIRKJtAQ+aO+bwWBAKBTitAo6H1U4oWsuCmo97clut/P98/l8ALDPlE37iYsbs9mMmZkZDtOnQJ7d3V3WyOndEO9dtVrle6WqKmZmZmCxWBCNRvfdczp3u3eI3r9eIcmrd0jiOmL0QgBa4qJV+c7ODhqNBlwuV0tHYe1x6G+xIkangAu9/fW0wE45b3pmT5HItATViwmj0XivYnw0GuWW7FSXzuVyoVwu86qchEa1WoXb7WafWSaTwdbWFhfgFYULVWtYXFxkAWiz2QDsaSC1Wg1erxcmkwnLy8ttzb3itVAUhevwkV+HTGYUnq0oCo+dqoHU63VMTk5ifn6eSUTURsTr2WkR0u01fuaZZ9Bs7nWfJsKha2O327naOiXSi+fQ/q+qKvL5PLxeL6xWK0e+1ut1bojaaDSws7Oz7/klUArDc889hzfeeIObTpIGKp5XDIO/cOECSqUSlpaWWroBUBmzUCjUkoyvvWf0nNXrdY6YJPOxHjoRTb+JwaNCXsNChpK4ekSvWtdB+2nJgbajQrrULJKEXKeXgoRbs9nkl3dQYzxovnrbtBtnu1W7FrSipvw0k8mEra0tjkA8d+4c53eJkW7ku6GuyGJelail0vnFhGWbzQav14tUKoVUKoXNzU2cP3+ey2dpiUvP/wbsBQtQ/tPly5extbXF2jMAbGxswOPxwG63c14VmRNzuRxisRjfQ5G8ejXlitdcu/0bb7zBcxY7EwN75upsNoupqSnU63Wsra3tGwv9Tzl0VqsVMzMznPhL3bEdDgfS6TQqlQqCweC+qFIy91Ej0KWlJVgsFl5oUJSpuCAKBoOci7ayssL+wdu3b+8zLZIFoJ0fl4I5Go29mpti54R21xI4uArOQQvGXo/bL4aFbAYJSVzHjHYCWxsC3Gg0uHKEuBLu5vgHoZPA65eYad92ZkHxN9BqStOas8g3oigK55nlcjmOfCOfBvXporB5Oq7BYGChSSYikbS0ZkhgT8O4du0a7ty5w2HbdO3v3bvH2kM7jUv8v9FoIJlMciUUClyh3mzU2oR+AHD+GZnprFYrpy3oEf1hhRCZdSmaUbz2FDZeKBTw+OOPY2VlZV+tPpGoqWCwx+OBx+PhsVutVg7WoRw2aqtDmol4nGq1imAwiEajgQ996EOIxWLs06U5U2mwK1euIJvNIpVKYW1tDalUCoqi6AYjiX/rXbd6vY5yucwBTuLzcthrrEW37+cwk9dRaYc9jaF50iPoA4Mo+UT79rv/YfYVj9HpuFrTkBadbl23prmDxkDQmgv1zIDa7cS/SVjR37TKpVYv5O+hWnKkJVH9QVGA0THERGFRCFLrE0ouFUPctQsACgKwWCzwer2YmprCzZs3OeFbq2UR8R0EqupgsVhw/vx55HI5rK+vo9FocPVyKntlNBoxNTUFRVHYx1Qul7mGYTui7GUlr7c40PsR7xX1yhIXT3ph4l6vFy6XiwNmzGYzKpUKR+tpq4PQvEXt12KxYG5uDsViEWazmRPRqXbiysoKms29kk5PP/00bt26xW1hqLSWuDjRms/b3TftNRTn2Inser0Heuc8aN+jEM39jlmLfnx5emMBZMmnY8VhNJNOxxBf5m7MaQcdm9DuOO1MfJ0+GwRpUyFW8o2IxYUbjQZmZ2e5agg1cdQKH9G0pdWgKAH17bff3qctaK+7x+PhSh3UnZfMdHrEpUU7YqHk5Y2NDeRyOa7JJ1b+oLHb7XZuRZNIJPaRsThu2rebVbSeP0o7Tq3pT8Tk5CS3/aCxasdBBEukTEEuTqcTVqsVu7u7LRqrWOGCSNLr9cJisXDDUOoPt729jdnZ2ZZmpaVSibsLaIMu2pHWQQu/Ttu10zD61WJ6Man3c/xxgCSuQ+AwxKI9DtA+wnAQ5EhjbWe+6MevpTe2TucRQeYoMi01m01uE0KmJYvFws582kf8TecnsiOfGLW8IO2F8rfo+OI1KRaLHPlIZNWpsaMWB5FZs9nkfl7iucVrVavVsLCwgFAoxBGG4vUnstBGxYnX4CB0IrB2958S4ePxOC8stEES4pympqaws7ODYrEIi8WC2dlZzM/P48/+7M/2VaHQlsYqFApYXV3lIBav14t6vY5CoYCVlRXuqUX+Ngr+0CMfvbF1Mu122k68XoMkL3Ff8Ri9EGc/GBQZnrS5UBLXITEo8mp3LFEDO+x5OmmJneYhnvugqvoHmSjFY1HkJJnVqAQT+axIWDYaDa4ETj4hEnraOamqik9+8pNYXl7GwsICt+wIhUK4f/8+R1qKII2PSh1dunQJb7/9dtuSP9rrdtD/Yo8zvf1JCIglusTrTdUfqA1HJ/Kiliq9aGHttiFCdTgcsNlsHFhCbT8I5JejLsaqqiIUCiEWi+Hdd99tuY6i4KRnyWAwcBAG5ZQRcdJzAbxHmg6Ho6VEVidTnvi73Tbdmu4OIq9ujnHQ8dvNadDkNepa3NhWzgAGo4IPymYsHq/d59ogg36Pf9CL3g4HmZ3akZaejwXYa2kyPz/Pgs9sNuPs2bOw2+3cFNDr9eLMmTOYm5tjoaanedFxG40G/uZv/obbsbtcLlitVmxvb7ecW2saooTfarXKeXPt/H9616uTiaobUyNVMBGJicxoZHK7cuUKVFXlz0VTG5kbXS4X56Z167/sBLPZjImJCUxPT+PMmTOcPC2en+Ygmu0oh45IW+vjpDGL5AXsRWOGQiGUy2XuQUfXh9rhKMpert5Bi6h2C7Vu352D7r/2c62vsF+0O84gji0ea5QhNa4hRCfNSPye0OtD2KvmJQqdTufTe+HEz8Qq9qFQCPl8nqumUxdgr9eL+fl5butCpifKDRLD3uk8JpOp5XzUXdjv97MGMjMzg62tLRiNxpbq+jRn0t4oGlFvbuL10e4v/n2QYBSvfzsipCRl6jFGtQ7Fe0HkXiwWoSh7NSupoj7V5eumQaVW6IoLkHK5jImJCezs7HBzUu01EUEE/ODBA90oRGqGSpGh2jmXy2WUSiWOajSbzS1mUnpeqLzXYaC9V3qaSLefaecpnqMdOhGjuHjRG+dBxz4IgzIZnhQkcQ0ABxHNYY7b6ZiiiUNPozno2N1sS6YqcpyLfbBE6Ak90dw1PT2NRCKBWq3GhU3tdjv+7u/+jktc2Ww2JJNJpFIpPPnkkwgEAojH41BVlTvaas061FSwUCjA4XCwkJ2bm+P+ZhaLBYuLi0gkElz6RzsHMj06nU48/fTT+Ou//uuW3DrxerVL6u5VE9YTRiLIV0c5VeVyuUW7om0AMLGZzWYOw08kEi2FcfWgjQIVTY7ke3z33XfxyCOPYHd3F8ViEfV6nVvei75FOoaqqjhz5gyWl5eZaCkYw+PxwGKx4OzZs3j77bc5WvHcuXPY2dnhWpsUKSjmLlKKiOgH1EIkFTEop1vzWC/bETqZD3uVCeTjI+2frpveeQ5LPofZ/6SJb+yJa1A+qpMiL+35RRxmLKI5h1qii3X09LYXqxloP6f8nEQigY2NDS5tJApWCpNWVRWLi4u4c+cO7HY7YrEYzGazbnVy4L0KGzRGqnhPYdlWqxXlchlWq5W1ET3SoKi4eDyOUCiEbDbbUqGefDAUNUfjPQz0VvxE+qVSCWfPnkU6nWZNxu12IxAIoNFocCkjSiB2uVxceFhRFO4m3SmiUrxHDocDc3NzWFpawvT0NFfBiEajePvtt/fVIQRayy7R86KqKgKBAC82xG2mp6cB7JmJA4EAzy0YDCKZTPLipp1ZXOuT0tOExWdD77Ne0I2A7vf9FPenH4vFgunpacRisRbSpu/1wtD7ndsoY+yJa5A4SvLq5bjaF/sgk2M7kwWVKCKBT/4KPd+CouzVE/R6vdztl4579epVDrCYn5/H0tISa24iCZL5x2azcTj0o48+yq1c9AizWq1id3cX4XCYQ7EpcZtMj9TaRa9cljh+YK+0FOUvkYZDcw4EApienubV/09+8pOWa9nJd9hJSxW3oc8mJibgdrths9m4SzQl7xYKBe7SG4lEEAwGkc1mkUgkEIvFeNzaau7ib+0YFGWvNJKqqnjmmWfYl0amWkXZaxFDvdvEfVVV5UoWdN2KxSJX5M9kMkyOxWIRLpcL8XgcTqcTtVoNbrcb1WqVFwR0fQ+CSErtrrve9t0cU/uZ3vH09qXflMNHGn67c9N7FgwG2RRsMplgNpvhcDg4CV3UIvWep341oJPWnPrF2BPXoMnmqMiLjt3rcekhb+fI7nRMMr0Fg0EsLi4CeM/8otUUxLDmmZkZbo1Bq8QLFy7gb//2b1vK6YiJnnScRqPBmk08HsePfvSjlsoYWjQae40hqf4f+U4o8i2TycBsNiMQCOj2WaLzErxeLwAgmUxylQ4AbIKbmZnBq6++ymTSDt36urT+LrouRqMRW1tbiMViLNwrlQqmp6dhsVi4xFGzuVcBHdgL4yfBT5qlOD89LVMkz83NTUxOTsLn82FycpKPSwEaNpuNQ9OJvMiUbLVaMTs7yxre7u4ucrkcTCYTmxWpcDFpi2KB20AggFAoxKWltLl3B0HUALXXVW+x0une6JFDJ9OgdlFAVoqpqSmsr69z/p64v3jdKfDEYrFAVVWuaK9NPdDKlk4LsFEjol4x9sR1FBg28gJaS0p1c8xms8lliog4SMgYjcYWYUCEoaoq5ufnMTk5iWQyiY2NDW4PQcmior9CzwykKAprW6QpEfS0BdqPwtmJyMR6dZSr1c7E2WzuOf2vXbuGcDiMfD6PSCTC1Tuo0sX29jZXS6c5i+WI9H53Cy15r6+vw2g0sq+Heq05HA4uCSU2zqSoTOC9PLSDnhXtd36/H/Pz81yd/erVq6jX69je3obBYODFAGlZIshkSS1iKP+uXC63aHWLi4swmUwIBAJwu91YW1tj/x3dd5EAtIsb7di1ZsFAIABVVTn3LBgMYn19nZ89KgcmHqNbAujGb0VEThGytKCi50RbR5E0LvIDh8NhrK+vY2trizVVgt5Y2j1nvZgPR5HsJHEdEYaRvA5aQWqPSe0hUqkUHA4Hms0m3G43fD4flpaW9tW4oyrgVKaJ9i+VSuzT6lSWh36TL0yPTEXNRJxLrVZDOp1uCSkXV+x6fi3tcShy0Wg0cr6YxWLBpz/9abzyyivY3d1lrYaIS6s5dnr5211/ve8BMCkZDAZ4PB64XC7cv38fXq8XNpsN6XSahX0wGOR9FhYW+BwHnVP8zOFw4Pbt2/B6vVAUBQ8fPsTU1BT3uAqFQi2V1AnUKDQej8PlcmFubo6bm5LZTBSOqqrC6XRidXWVnxHKUdOrqkEmZW2ghWiqpH3z+TweeeQRru5eKBRY61NVFY8//jh++MMfdpWjpzXldrO9wWDgQs2JRAJzc3MwGo1YX1/njgGkyQLvVU2Znp7GtWvX8Oijj+LP//zP4Xa7oSh7SfHie9YreXU79lGDJK4jxCiRVztQJ2DKofL5fBwkIRZKVRQFqVQKgUAAP/3pT2EymeDz+djcRbUltWOg//U+02qIej4No9HItQ2pLuFB9ea0q3RgT0t599132exVLBbhdrtRKpXwV3/1VyiVSnC73QgGg7h79y5sNhtcLhei0SgKhULblhnt0K0ZCgATeTab5dD/crmMRx99FH/7t3/LviPRvClGo7U7rlaDWF5eht1u56Rfq9WKhYUFNnU1Go0Wv4sIKnq8u7sLu93eopWSNk4mT4fD0VJjUByfuA9FVDYaDczMzODevXv7CEdRFMzNzeGDH/wgvvvd76JcLiObzWJiYoIbmFIXbqfTyY0jtc9SN/4rcbHTbnuaKzUvTafT2N7ehtlshtls5uAf8fl2Op3IZDJYXV1FpVKByWTitAEi/nY92Q66x+I2nebYi4Z2mH0GBUlcGFxkYbtjA0dHXv0eu529XDyWwWDAlStXMDk5yU31dnZ2YDabWaiL5r9arYbV1VX4/X48//zz+Ku/+is228XjcV1TnSgE6G+tgBDD0vW0MPKVtCOPdqRIx6ZjFotFDkLx+Xzw+XwcYk7COB6Pcyh/uVzmfCmtP6aXF7rd8yeOkzS9arXKiwHKeZqamoLdbm+pJk/o5tkQtymVStjc3ORqJsB7mvfy8jKbwUgL0JZtIjMyCVxgrxbkI488gsXFRYRCIUQiEdYURYiBMLSAINKJRqP8nUjKVEj5zTff5AofABAOh1Gv11nzKhaLKBaL+66R9tp3MklSFRYqwEyfa9+dQqGASCQCAKwJ1ut1RKPRloovRFqzs7NYWlriFi3Antk2lUrh7Nmz8Pl8ePvtt3mBpB1nN+SlHWs/3w8TJHH9A0aVvOj4gyAvEeRczuVycLlcXJqpUqnwCxQMBmEymZDNZpHP5zkwol6vc2FZgkgq4guiJS3xbyIwrX+OCIfC800mEzweDwd+aM+hnS9BzJmhY83NzXFjx2w2C5vNhlAohGQyiWw2i0KhwASml0Srd55u74WeMBXJixYHZDojk+DW1hY8Hk/LwoBIgEx7nfKetOMgrVXbzoS0CafTCUVRuOGiVpgSsSeTSf5ua2sLFosFa2trsNlsLSZE0kwovYCiWVVVxezsLIxGI37yk5/oBhgZDAYkk0mUy2X4fD5cv34dt2/fhtPpRDgc5qRp0ty0iyet5tXuPaLnw+l0otFosLbo8/lY2xfvlaqqWFlZQTgchtvt5oah2me5WCyyVruzs8OdsSl3slwuw+Vy6RYAaEeyet9p5zvqkMT1DzhK4qLjA8NJXnpal6qqbOoDwN2XRVNHLBaDz+fjF9VoNMLn8yEYDOLtt9/e56cgsiHBKwY26L1M7eZEQo9aowB7YfEul0vXN6Z3jmazCb/fj6mpKaytrWFubo7LC5nNZkxPT2NjY6PFTNZsNjE3NweTyYSbN2/qdtUdlFAQhSDNWXuvqJ6jqqrckFLUSOh6UyIx1fzrBhTkAryXq0WFkR0OB5dcEks6eTweKIrCDR9NJhNXyDcYDMjlciiXy6yZKcpeQ0i3281jp3Pn83k4HA4UCgXk83k2nWlrVNK5SQMk7TuXy7F2Va/X4fF4EI1GW0L521kdtDCZTHjhhRfwxhtvwGq14tq1a8jlcnjw4AHX0FSUvTQFOu7u7i6bR6m9C51LW2Mzn89jamoKJpOJtbDNzU0OuLl79y5/d5CJ8zBmwVHyiUniOkZoNYmjOP4gyIuE4sLCAur1OrebJ3MVAK4D6PV60Ww2kUwmAeyZaKgYayAQgNlsRiaT4ZJOpBlQtGEikTjQF6SdE4VV2+12zMzMYHV1lRtKamvokSlPz5dCPrnz58+zjyiTyaBeryORSEBVVVSrVQ7RrlarWFpagtlsxpNPPonFxcUWAXnYF/4grYvmbrFYWAAbjUbuI6YoChfqVRSFzXrAe4WE25WA0tNm6LyktRERUhsTsRAysEc458+fRz6f5wUE+WsymQxHiNK5XC4XZmZmkMlkOLiE2spYrVY4nU5sbGxwbUQqrksVVoC9gBqbzYZCoYBkMolbt27B4XDA5XIhlUrhzJkzKBaLXKtShFaAt3t3Go0Gbty4AYvFApfLhaeeegoPHz7k3DkyHVLYP127ZrPJgS2iyZt+i+bGQqGAixcvYm1tjcm/Xq+39GwTtUKtHNEuzNrle7Wb+6hBEpeAo9a6xPMAwxO0obfypI6wJAwprJmEF/1NIevk86LqCrOzs2g2mzhz5gwWFha4JX29Xsfs7CwqlQo2NjZazq+Fdh7iijOTyXBVB4oaA97rgBwIBOByubC4uLiv7JH4e3NzE/V6HRcvXsS1a9fwgx/8AEajEbOzs1hfXwcA9meRaZASpSnH7e233x64pqX3N5k2SRMBALfbjYmJCUQiEc4DqtVqUFWVq2yUSiW+f2KpJgIJUlEQtjPLmc1m+Hw+JqR0Os1+JIpAbTb3iuzmcjm43W5YLBb4fD4sLCzAarXizJkzePDgAft9KpUKzp8/D6PRyAEo1WqVG4yWSiWcOXMG9XodqVSKtX9VVXH58mW+j9TKptFoYHl5GQC4RBU9nzTPbu+XmMfn9XrhdDrxyiuvoNFooFKpcO4ZaZV0z8isKj6XdA99Ph9HYjabTUxOTiKfz+Pu3bucBydaIyhxXhy7HunqWU70qqaI+4wqeUniOiGQIG2XGHzYY/dDXuKDL5pkSEgSYZGdP5FIwGq1wuFwcHmhqakpbGxssFCjthaVSgXNZhMWiwXpdBqRSKQlGVk7BvEF1a42gT0hGYvFEA6HuYuyaAay2+3IZDJs6tOSFgBOhDUajVhdXWVTWqFQwN27d1nYUz6N1WplErx37x6H2LerXaiHg3wpnWAwGDA5OcktTkqlEhcNrtfrrIWQ6dBqtcJkMuHChQvI5/OoVqu8GNEzlYmkpWcV8Hq9cLvdOHfuHCKRCIrFIjweD5tMAXA6gdfr5fwkt9uN3d1dmEwmDp64fv067t69i2QyiWq1ijt37qDZbLb02VIUhf2PhUKBNbdYLMaLImpSSX4zqtloMBgwNTUFo9GIjY0NjsZsZ0Zud71pH2puSZVdKpUKAoEAJxmLGrHdboei7OWUXbx4Effv38f29jabp69du4ZYLIbt7W04nU72FVKQj15jTL3FrngPxXeHSrRpLQGir3TUIYlLwFH7ofTQKTH4MOiHvMQIMb0HnI5J1Rs2NzcxNTUFg8GA7e1tnDlzhqPcqMI6lf8hM2Oj0eB8KbENhngOApGWy+VCtVrlaDWRvDKZDGZnZ7mfk9lsRiqV4gRe0TTWjlxoJS9WjSfTJl0Pyl/LZrPsjG+Xk9YJ3ZimOu2rqio2NjZ4ASFWx6D5U9FiMjfdvn0bPp8PmUymxY+kbZhJfbQMBkOLP4iILJVK4fHHH2f/Vz6fRzabhc/nQ6PR4AAF6lpNhFKpVGCxWPhab29vc6QiBfNQknuz+V4ZMFFboMRcMbKOQtupE4Db7W4hrmazyX5K0Rcnaix6fh2995GeX7fbjampKdy+fRtms5lrK9L5LBYLLl26xAu+t956CxMTExwgQ9GZTqcT09PTXFuSKrHovXNa4hHHRlqwmOsVDAZhNBp53mLwjLhvO81tFIhNEtcQ4KgIcxCal3ZVR+Ygv9/PEYVPPPEEFhYWOEk1GAyycDeZTBwpRX4yMhl2Evji5yT0JiYmcPnyZfzsZz9jpziNR1VVfPCDH8Srr77KOUDJZJIFRqc+ZgeZKmdnZ7kFi91uZ+HZLlKv2+ssnuOgbcjss7KyArPZjMnJSY46I0L1+Xxwu92IxWJsvnM4HNjZ2eGOxBQ4kclkOMiG7rPFYkEwGESxWGzxXREajQZee+01WK3WlmjDarUKu93OATdEotRRwGq1wufzIRqNssZKvtNgMIg7d+7ophPQZ41GA7du3YLNZtuXo0f+IfLl0TNar9e5xqLL5UKxWITBYNhXuFbvHdFqNaKmks1mcffuXS4rRlGFVN4M2PPdiaki6+vrbMKu1WrcM21tbQ2rq6ushdL5tO9dJ78n5THSYpC0wjNnzuD8+fO4f/8+dnZ2unrPRgmSuDToR9gP6ryEQZ7/MPPRvjikHe7u7nJJHbvdjps3b8JiscDpdCIajXKgRLO5V/GdTEmKovAqW0si2v9Fs4fP50MkEoHNZsODBw/Yz0TmqEQigYmJCcTjcUxOTiKbzSIWi3FbkGg0yv6EducTzysKh3q9juXlZRbEWiI8DEQBqrcS1gPVTKzVajCbzfB4PLBarajVanA4HDAYDHzNS6USmw/J70UFiElLmJmZQTweh8lkgtPp5FJXeloH3T9KcqZUBKoiT8WRVVVFLpfD3NwcyuUybDYb9/VSlL3Cx8vLy/B4PByJp6oq+7bIvwWghagonFxr+m00Gqwx02dGoxFnz57lZ4UWOT6fjzVrt9vdNjhInL94HUibUxSFq/M3m3slw2ic77zzDsxmM86fP4/Nzc2WgseUwE0VMZrNvcAmOh8F35DWLD4jwHt92uhaEBnSPadIzmazibt378LpdPIzS3MRtVrxmRsljHUH5HY4qZvYq9mpl+P2OoZ2oBwWqls3MTHB+9hsNlSrVeTz+ZZgADIhTUxMYGpqCleuXNlnkmxnIsnlcrh79y4qlQouXLjA/q5yuYx8Po98Pg9F2WuieOnSJRSLRUxOTgIAC0Ba5XczRxKE4jYUwh2NRhGLxdqSltYnof3pdM07QRSgdP0dDgdrgHa7HZOTk6jX64hEIiiXy2yWIhOr0WhEPB5HKpVicycJPrfbjcuXL+ODH/wg+8bEQBwiKe14gD3z4szMDJrNJpsiQ6EQLl26hGw2C6fTife9733wer1MRpFIBIqicDQezcXr9eLatWvw+/1cqUV7X8TrJS4gaJ5idfnFxUWoqgq/34/z589jcnISJpMJMzMz8Pv9eOyxx1rmKP500sK09+uRRx7hLtVEJJVKhaNRzWYzwuEwZmdncf36dVgsFg5iIlIyGAxsnQgGg/D5fPB6vS1jURQFDocDly5dwtzcHMLhMFRV5UR0qtihqiqWlpZQLBaxtbXF7+Hk5CT8fj8vdrrpIj2skBqXDk5K6xLPr7cSP+wx+zmWnrmCPisWi1hbW+N6a2S7JxKLxWL8YiSTSRau+XweVquVzTYHnZvCgt966y3ugEs+nHPnzqFYLCKdTuNHP/oRVFXFw4cPAYBt/NoVejdErkek2moPWjLsBu3uQbv7oygK5/AA7624yVRHgpjMgxMTE3C5XGg2m1heXuaVdTKZ3NcRmUpFUVHhdDoNu90Ok8nEXafPnj2L5eVl9qXRwoG0vGq1itdee62lTBG1oAmFQrBardja2uIIO7vdjrm5ObzxxhsolUoc8EH1GCl3UK+7sWiebFcfksjdYDDwfIhMxMWWqqp45513Dnwn9DQv8XxUFUaMtCVTrlh+jJqaPnjwgANYRA0TACYnJzmidW1tjX2ZIrlQJOaFCxews7ODfD6PQCAAYC/lgczH1OyTfttsNm4+mk6nMTU1xe9KN12yhw2SuNrgpMmLxjBIAut2Tnpkpf2fBEShUIDX6+UovmKxiLm5Oayvr7fk2FDZHrPZjGQy2WIuPMjHJGoPVItOVVXYbDbcvn0bNpsNiUSCzUClUgkmkwmTk5OIxWK80u9Hm+2HnDodq9391F5j+ttoNOLcuXNIpVLst6JEcK/Xi8nJSS6H5HA4sL6+zqYkAl0/kbzpN5myyPxHpZZMJhPOnTuHK1euIBAI4Gc/+xmbFy0WC/dVE89B2gq1jykWi3A4HLDb7byIyGazbDar1Wpctd9gMKBcLnPJIzFQyGq1smZFvivxeupdQ5qL2WxmkovFYqhWq1hdXYXRaOQUB1Gbo/1NJtM+k5pIYBQh6fV64fF4uJeYoiiw2Wy4dOkSFhYWOEHcaDQil8txorXNZsPs7CwikQiSySRbF5xOJ3Z3d3Hx4kVsbGy0kDVdl2QyiXg8jmq1iqmpKe4WQMWGqVSWxWJhDZzSKC5evIhbt27B6XRynqYW2nMOIyRxjQD0hNphjjUozYv+LpfLLKwoLF6sDE8rcGpBf1CwhPacZAqivC9gL8qLqnqUSiVYLBZkMhlecSrKXimhXC7HfoR2gq5baEmlX+j58sTPxc9IUFFH5tnZWSwsLMDv9+Py5cu4d+8el6gCwJoRCR6qHUjH1wokIodKpYJwOIxKpcKRgJlMhgMnZmZmsL6+znUqd3d3YTabMTMzg93dXVitVrhcLtaEaWGTTqdRqVS4ssnu7i4XnSWyovY5sVgMLpcLbrcbjUaDNXYKdadISAqy0LuezWaTidVsNiOdTmNzcxPJZJKJ3+VytZT6CgaD3PeMSI9ayORyuX1dpGnhYbfbOWLQZrOh2WxysvGdO3fY/OdyubgaCPVVo2eactwot0tVVW6fozXRis/G2toa3ve+98Hv9+Odd97h5pOUIC4GExkMBjzzzDPY3NzkxHq9gsWjBElcbTBIshgEBql9dUNeevMX91OUvT5CzeZ79fPcbjcXM6Uw+LNnz8LhcLAgPCiEXM9ER+fTmmyovA9tY7fbWXgUCgWu1qDn0O8HB2mG/RxLT/MSPyPT09mzZ/H222/j4cOHMBqNyOfz+Pu//3s0m02cP38ea2treO6559BsNrGysgK3243nnnsOMzMz+O53v9u2iaZYh5BynXw+H/sHo9Eol8KiROZiscg5TKSFUWPIs2fPolqtYn19nRuCUhQp1d+jyvNXr17F4uIiL2yI6JLJJFRVhcPhwJkzZ7C2tgaPx8OCeGlpqaUnnHhfKYCEBD8Fq4jkQ6a9RqMBi8XCRZSJXK1WK7LZLCYnJzmlQEw7oHOUSiVEIhGoqopSqcTVZKiJJ4WlK4rCfklaWGWzWezs7AAAR9oCwNNPP42HDx9yN/FyuYx4PM75d16vF9lsFoqisLY2MzPDDTrj8Tjy+Ty8Xi82NjZQLpdhNBrx9ttvo16v8z0Rg15GEZK4RgztVuv9HKdfgUumEr/fzxUM7HY7zpw5gzt37rSUIyqVSpiYmIDBYMDGxgZHcfWq+Wi310Y6+v1+AODSR9FoVDdBeFDQG89hrqfesUlQAWCTGkXtLS8vw+FwYG5uDktLS8jn8/jJT36CYDDIgrBUKuHu3bv7Vu3t7v3Ozg6mp6fZ1JTL5VCtVrnRI4EEHvmKSKuq1+tYW1vjWoROpxOBQABbW1scJk8RjcVikUt1URQchbEDe0EfRFY+nw9WqxWhUAiJRIJ9e9rkchoblRIjs6Y29YJ8SgbDXvPG69ev40c/+hE8Hg+uXLnC2iS1GRHztEQUCgVUKhV4PB4Ojrhw4QLP1+/3o1KpYG5uDmtrazAajdzd2GKxoFAocFAJldC6ceMGlxqj60/J1NS8kxZj8XgcVquViTUQCLDPzGKxwOv1MpGVy2XY7XbOA9Q2QB01SOLqgGHwc+lhkOTV6RidvqccHaoar6oqVldX2aQD7AmfZDKJiYkJ9jUcxlzXblsK+PD5fOyM7sYceRhTYadj9XJPDroHpOWIvkFgb1FgNptbOkvH43FO7gWAhYUF9jHq1Wuk84r+KTqfzWbjiD/gPWFJ29dqNayvr3MpLwpESCQSHHhAOXZutxs7OzvIZDLs76RwfjF6UUw8rlQqiMfjnFScz+exsbHBoeJEWiK05Y30kqzpOzHogfKyGo0Gtre3OZF7cnKSzdPtFiZi9RW73Q6LxcLa287ODjweDxKJBK5du8YpAFRj89atW8jlcuxvozHUajU2UZLpk+6B1WqF3W7H1atXOWqx2dwroEz3GQDW19c5ArVer8Pr9bZovWTSHFXiUpojOPJMJsONCY+aWAYZ2XcU0Ms1Ocxx9KANmSWNi+z3Tz75JGKxGCwWC5aXl9mfRCvecrkMv9/PnZAH9cJoTWpkXiLhq3eeQZ+33fe93g+9a0zCVfytKArOnj2L+fl5LC8vswZy/vx5vidvv/02H4dasogBKto5UKTi9PQ00ul0S6h9NptFKpVq0bjoWhPh0PEokdbpdHIuF/mRqFyVzWbD5uYmMplMi2/IaDQimUxybUEiFwpsoC4AVNhWLI9E0EYaHnTvaR4AONiHCkNT+S+qfUgdiSkvjvYnUyCR9dmzZ/n5CwaDaDabePTRR3H16lX81V/9FeLxOCdDf/KTn8S3v/1tNrFvbGwwoWhzBekZIBOt2P3a6XSiVqvBYrGwmZ56ya2trbUsWOjYnfK4ejEhHsbcSOdMp9N8f7uF1LgOwLD5urTQvoz9jrOTdilGeBFIuFSrVUQiEe42K7b6oHwWYM/UNegVnnhvGo0G55DpVeUY9Hm70b4GFUwDvNeQUFEUrK2t4YknnmChX6/XEYvFEAgEWhJXAWBzc5OP1S4QhOazvb3NgqhSqUBVVSYSkThJ8ImaGpEQmQhJO6CE3cnJSXzkIx/Bj3/8YzaNNZtNjswzm83sNxKJp1arwW63o1KpIJ/PM5GIc9Le53b3Xk9DEwNJKGTdbDZzmDnluz366KMwm8344Q9/2JLMS9ecFgakhRL5eTwexONxLCwswOFwcApINBrFH/7hH3L3YzKh0lhEkhHnSvliFNAiFlSmqN16vY6VlRUmv14JfRQgieuUYBDmw04CVxTW4kuVy+W4MjnZ17V+Jb0XpZ+XpZ0mI55H1AyOEocxs7bbvtPcgPf8ebVaDW+99RYikQhf71gs1tIwUbzGYrK3nobebO6VMiLtQdR4xHOL2pXeeEnrKJfLOHv2LO7du8fjm5ycxN/8zd9w1CGNMZ1O49y5czw3KiBMUFUVjUYDHo8HXq8Xq6urbBLTzqGdUO7GVExzpnw2r9eL8+fP491330Wz2cT29jZMJhP7kcrlMqanpzkwhbQ30s7OnTvHnQei0SgKhQISiQSy2SwsFgump6dhMplw+/ZtbppJfim3281FnsVxUvoApXxUKhWuWk/+rEKhwL5FsZSWeH1Gkai06Clt+vd///fx+OOPw+12c9TS//2//5e/bzab+NrXvobp6WnYbDZ85CMfwe3bt1uOUS6X8YUvfAETExNwOBz41Kc+1RLmPIwYpRutJY1+j6H3md7KllbYFAxgs9laNB6R5A5bKkl7HG2E4km8lJ3OdxQaJl2DpaUl9l+Q5pBIJFrqQBIOWkRotyNi0SYsA++ZrIg0SGBbrVYYjUZsbW0hGo0iGo1y4m+5XMbt27extraGlZUV1hYAcCL666+/jq2tLa72TveXtLl4PI5arcZVPURTKuULaolUO+9Ozw5tbzKZ8PTTT6NWq2FlZQV2ux1OpxMAWvKtKDJQURSEw2H4/X74/X7WgKm8FiWGkwYkRmDeuXOH0wDi8Tg8Hg8mJia4Cow4B3GhSOZGukeZTAb37t3jYI5r167tS4E4Cm3rJOViTz6uv/iLv4DRaMTFixcBAH/0R3+E3/3d38Wbb76JRx99FF//+tfxH//jf8S3vvUtXL58Gf/hP/wHvPrqq7h//z5cLhcA4F//63+Nv/iLv8C3vvUtBAIBfOlLX0IikcCtW7d0C3vq4Th9XIRh93Xp4bBj1ttXG5ZuMpkwPT3NeTLiy9FOWB412o37OM8nopuyOnr3StxP/E4U3Np9tBqV3n7t/hbJSO9/Iihg756Sz4XGSRGCAFry6VRVRTAYRDKZZFMmBdE4HA7WskQzr7aqv+jvokARIgIKytnd3eX9taTV7hnUXkuz2Yy5uTlu3WM0GtlMSaXLyH9KY7p06RICgQC3KqHCwsViEcFgEF6vFysrK5iYmOD+Y5RiUCwWW9IFfD4fN8qkAAvteOl+GI1GDm2n4A4CXWdtwEo3xNWt3+qwCzPatx8f16GDM/x+P373d38X/+Jf/AtMT0/jxRdfxG/+5m8C2NOuQqEQvv71r+PXfu3XkE6nEQwG8cd//Mf4zGc+AwDY2trC7Owsvve97+ETn/hEV+c8CeKic40aeQGHC+Bot49oNqKXsNPKftgwqKAW7fHafddPQIdewIbe9gcRmDYQo93+WqKi7+h/m82G+fl5DvYwGAz46Ec/irfffps/E30qtB+1HcnlcvB4PIhEIlxhnxKMqaxXs9nkSEWtn4c6XwN7cmdrawuVSgXz8/PIZrMtplMxOOegZ1EbCDMzM4MzZ87AYrHA7XZjbW2tJcWANF3y73m9Xly6dImTq+mdmJychMPh4PD4Rx55hAsf7+zs4MKFC3C5XPjpT3+KbDbLeWAUPaqNnBTHSdfN7XYz0VNwC72HB5F3N5aVTjhJ4uq7wmK9Xse3v/1t5PN5PPfcc1heXkYkEsELL7zA21gsFnz4wx/Ga6+9BgC4desWqtVqyzbT09N47LHHeBs9lMtlZDKZlh+J7nEYM1q7/UTzAyVpDspcp2f+G7Q5UBSKR21iPIpj65lt223X6fzdEjf51qiBotlshtlsxltvvQWn04lwOIyZmRn289C1JWFbq9W4gzAl/5LApSi42dlZmEwmzM/Pt3RqpjlQXUAA3M/NYDAgmUxygd9gMMgh/NrrdNC1JC1yd3cXDx8+hMFgQLVahcPhQK1WQyAQQCAQaNEKKeT/zTffxPr6OmtOTz31FFdzIV9VoVDA2toaa11bW1u4ffs2k3ilUkE0GuVO4nqmcLoXlJiuqiovDijnT+89GaSJcBjQc3DGO++8g+eeew6lUglOpxPf+c538MgjjzDxhEKhlu1DoRBWV1cB7EWWUetv7TaRSKTtOV9++WX89m//dq9DHTjEB2cUcZjx6+2rfTEOc9yDPtPbRquB9AutlthPxeyD5t/v9en2nNr708v5DtII6TsxBL5arXIrFDL1USIyaUgkSC0WC1wuF5dz2tzc3BfGTrloZrMZ8XgcLpcLhUKBzXPiHKldDQAeB9XqI9+T3rXqNDe6Xn6/n4nh4cOHCAQCyOfzSKfT3L9Ma0qjsZP5jhqcUjUMsVo85bFVq1UOuadrKjZW1fMFU1Qh5eZRq5ZgMAiXy4UHDx7AZrPptvDp5lqMEnomritXruCtt95CKpXCn/3Zn+FXf/VXcePGDf5e+wJ08wIdtM1Xv/pVfPGLX+T/qevtSeA0kBdd736JphN5EfSeg0Gj07kPc39IU6BjHQe6OU+/5KglZG2AhZ6ZkT6jMHeDYa85JyUC0zEzmQysViuq1eq+TryNRgNOpxOhUAgLCwtsGtSGtDcaDYTDYeRyOS7BRIEmoumRxkSFaiuVCiYmJmCz2ThUnppaUgDIQc+d9hnKZDI4d+4ctwNJp9NcwHlra6tlLOJ1Et8pVVWxsLDA10I0iTocDvj9frz11ltcoPratWt48OABd5TWkhb9TQRvt9vhcrkQi8WgKHs1E8lXJgZl0O9OJKa9FsdlJjwseiYus9nMwRnvf//7cfPmTfyX//Jf2K8ViUQwNTXF20ejUdbCqIhnMpls0bqi0Sief/75tuekVuASg0Mnkul234OE6ElBb6V6Esc4DPo930HkRqt2r9eLXC7HWgHw3spf67/0eDyoVqtIpVJQFIVNX1Q/j4IqtPUQqTYlVUYn054Y9agoe6H1CwsLsNvtHBq/vb3N89FqXMlkkkuNAYDH40GjsddMsl6vM3F1o2mIxENm74cPH6LRaHAgCpFiu33pb6p5SMnXpEERoVFuG5U9o4ogOzs78Pl8UBSFtcV2PqlcLgeTyYTLly9zR3GqX/noo4/izp07fZHWqOHQXcSazT1H6Llz5xAOh/HKK6/wd5VKBTdu3GBSevrpp2EymVq22d7exrvvvtuRuIYNJ73aGBQO6zca5uswKJ9YL8fo9zyDJMVOgooqZJjNZly6dAmNRoPNf0ajkUPL/X4/wuEwwuEwAoEA/H4/MpkMR9dR4qtoEqM2G9rrbjAYuFtAs/lePUJtYiyw1+16a2sLd+/eZaIQTWe0rWhSSyQSuH//PtbW1vg8u7u7+9rmtEudEO8t+ZnK5TKq1Sp2d3extrbWMmZxH6PRiJmZGe4yTK1DKpUKLBZLy7i9Xi+q1SpisRii0Sgfk5LHafxUrkxLPuI8EokE3njjDS7zRI0kyV+m98we5fN7EuhJ4/p3/+7f4Rd/8RcxOzuLbDaLb3/72/i7v/s7/OVf/iUURcGLL76Il156CZcuXcKlS5fw0ksvwW6347Of/SyAvZXR5z73OXzpS1/iF+LLX/4yrl+/jo997GNHMkGJg3EY7Uvcf1jNp4c1j4rH6Mf/RfsDnc1yRwU6h9FoxPz8PJrNZksDQe2cSCMjv3MikWiZg/i8lMvlffUARTNkIBDA8vIy76c1g5GmMj09DZfLhZ2dHWSzWY6OE7dvNBoIBoMol8twuVzIZDLI5/PcC+7MmTOYnJzE3bt394WBt4N2LOKzQsSiNQlSwV0KzQfA5a7K5TIHoFDV+2aziXw+z1U0qNFjs9mE3W5vaf3TKVhI/Jx6khEosbtf0ho19ERcOzs7+JVf+RVsb2/D4/Hg8ccfx1/+5V/i4x//OADgK1/5CorFIj7/+c8jmUzi2Wefxfe//33O4QKAb3zjG1BVFZ/+9KdRLBbx0Y9+FN/61re6zuEaFgy7sO4Hh53TsF+TQYxPr/xVN2hHUMfpQ2s0GlhbW4PVasX8/Dx34hUrZTSbe7lF73vf+6AoCra2ttjvIkaOisSgDbEnTU5RFNY+aHutBkW5WZlMBtevX8f9+/f3kZYoiKnbQK1Wg8vlwvr6OmtnGxsbcDgch44U1SMzvd/U+iUYDCKdTre0YqEuCTQPMXBFvE5U9b+bJOGD5qO3XbfXYNTITRbZPST6XYEPMwYVmHDS96YTDqvptLvv7Y6pd75Ox+h0nIO2E4mE/qdtbTYbLBYLLly4gLW1NUxNTWF7e5uFKpVt8ng8sFqt2NnZYdMcaSCimU8ELT4VRYHD4UAoFEKjsdcIk4I3SqUSE43ojzObzZifn0cikUA0Gm0JlwewjyiJcClsXLwmB1Vn6eYeiddO+52YAOxwOHD58mUsLy9zk0uPx4NwOIw33niDgyUURWnpc2a329m82imVpBsC7kR23aAfku82Sfmg8wKyyO6JoN8V+DDjsKbDQR/nKDAI7fIwc+qF4Ho9RrttKNjC6XQiGAwilUohm83C6XSiUqlgamqKqzX4fD7EYjFYrVZODPZ6vUin09xJWHsNyYxGTSkDgQASiQS3v6HOv0BrOSYKBac2J9oxi4KVyEw8Vr+aRi+RnNr7TZGZRPy5XI5NpqVSiZOjaT8idUoRAPbyugC07Y11EKG008RGUBfpGZK4BoDTSF7AYHxD4rEIw0JihyGvXvbVXr9+n5VeiUr7Pwlbqghx7tw5PHz4EJlMhisvUBULqrdnt9u54nggEIDP58PDhw9Z6IrHNplM7BMqFAq4f/8+522S+dBqtaJWq7UEEQB713N9fZ1Jjz53uVyc76T1d4noRWvo5d61W6BQMAtV6xCbloqllkTSowCOs2fPctI0NY2k5pbdzGXQhNXrfsNAjKdP2p4QhuFmHhXamTEOc7xhgV7AQC/79gIijk7fd0tOesfRmrrEv41GI86fP89RhHfu3MHGxgb7n8vlMvL5PJdVstlsOHfuHOdmUdi2XuQaXYdz585BVVWYTCbWvMiHFQwG4fF4uBuvuB+ZHuv1OqampjAzMwOj0chV1L1eb8t10WpWenlP3RR17uW+i2ZCg8EAt9sNh8OBYrHIlS9E86Z4fgC8MMjlclhcXORSUaRlimPvFJjRzn93XKQ1LJAa14Aw7IEJh8Wg56d9YU76uvU7v25Mhgf5DLshLD1CancM+pt+aJUfCoUQi8WQTCaZ/DKZDGq1GoxGI4rFIqxWK9xuN5xOJyYmJpBMJqGqKnez1hKWOBaKqJuYmOA2K9SuI5/Pc0Sdno9MURQu7ZbNZmE2m7mcE+WSUZ6WqHHo/a3FYbR98ZqKvi3yV2nLz7Vb5JH2Wq1WUSgUOI2ASmS1m0M3gRmHIS1JXBKnnryA96pKDHqOw2BKPKzfSgs986A2tFq7Xafj6Pl/9EyDZG4jsx1FryUSCW7ySLUDd3d3Odn2qaeewjvvvIPl5WXMzc2xZlUqlWCxWPChD30I3//+93UrjptMJuTzeXi9XoRCITYp5nI5/u10OjnXShtQAYC7+yqKApfLxWZFg8GA7e3tfVpVN6Qlbq93X7q5BxTUYrPZ2BdH4e8Oh4NNmXpjazQasNlsePLJJxGJRJDNZhGLxVoKEYtRhSK6CYA4buIZFrKTUYUDxlEI9WHEcczzJK5jP/PSi0ajvykCLhgMIpFI8IqdElAPOq72HNrP9L43m80Ih8O8ui8UCpxc7PV6UavVOAlWJGuq96eqKvx+P4LBINbX19Fs7uUhFYvFlorlWkKl8lDPPPMMCoUCtre3ef9mswmLxcJFdbVEQn3dKOrx+eefx/b2Nubm5vDqq68iFouhXC6jUCi0jKEfQdpuAdCucj5VbZ+dnYXP58P6+jpKpRK3FVlfX+exiMnKwHv+b5PJxJqmmBxN23QKNNHDYcV2vwR0FC4DGVU4BBgHrQsYbOBGp3OIOI5rOqj7JxIJkcbFixcRi8W4tQdF6/V6PL3xiec6d+4cpqamEI1GUS6XeVVPBV4B7BP+AJjgSMhSG48zZ87A4XBgcXFxn9YjgipPvPPOO7h27RprFiSYqV+bHprNJleBcDqdWFxchKqqiEajXNqJKsYfhrTaga4dJRdrr2ulUkEqlcITTzyBaDQKYK/0VCqVYrKfnJxEKpVCNBptMRlSsIueGfGo5nMQRlBfaYEkriPAuJAXcLxzPS5zYq9z0poYtT4mUSAajUb22Whbs2uhXfXb7XZYrVYuS6St6qAoe/lTqVSKBer09DQePnzIRCWWS9JDo9HgVvJWqxXJZJKrbFBwgN4YCWazGc1mE0tLSxy0oPWLiddXe52IpKjI7cLCAi5cuIBUKsXJunTNDuvbEQNcbDYbLly4gEQigVgstm8fqsX4wx/+kMeoKAqbXo1GI0cG6mlP7fxXvZLWSWlagzr/oCCJ64gwaH/JMOMk/FNHfc7D3j8SxNPT09yzyW63o1wuY3Nzk0nnoGPQb0XZ67l0+fJlOBwOvPbaa9z9lzQVilSbm5vD+vo60uk0UqkUB0S0E6DaeSeTSXg8HjgcjpYEWb2xaUm+VCpxIe12Alw8FwDWWKxWK8xmM1KpFC5cuMCtRLLZLKamplqqz+uNu1uIY6e/qXklNXQUj0dBGUReBoMBV65cQalU4hqEdK2pYog4rnbzPm5Na1j8U4OADIc/QpyWh6QbdCMUR+3c/R6PmvxZrVb+e3JysqWduhjk0u4HaNVKisUi1tbWsLW1BZ/Ph4sXL7KWYjKZYLFYYDKZmLympqa4K7H2GpH2pP1pNvcqpMfjcSwvL7doaJ3MhOTDmp6exnPPPbdvGz2zIv1Uq1WcOXOGW6BUKhXcvXuXfUmqqiIWi3Ho/mHNa9rtxQWGw+HgUPypqSlYLBbWmKkArs1mQy6Xg9lsbjkGsGdu9fv93M2inZbVj6Z1WE3psO/HIKplDApS4zpCjJPJkHDScx7k+fs9ltFo5CAIp9MJn8+HnZ0dnD17FhsbG/ui0NpBJDCz2QyPx8MmrkAgAKvVinK5DLPZzLXyTCYT4vE48vk8tra22s5LT4hpP6/Vam3nrudjA/ai7O7fv88ap9jbTKtp0N/VahV3796FoijY2Nho0RABYHd3t2V8gxDC4v4ej4drDsbjcfZHUpfnRCKB+fl5rjpPASYejwfT09PI5XKcsA2ACU57rk7+rW7HKrEHSVxHjJMW5CeBYZjzoEyJ/cyl0Wggm81yyDT1WKJkXK0pqt25tL/r9Tp8Ph+mp6fZtJZOpzE/P4/t7W1Uq1XOodIGfnRjIuz0vZZ8tJ8D4GaJ1OSxVCpx00faTwxSoGslolOF9EFr1WQqLJVK2NjYQDweh9Fo5KaW5XKZ+2pls1lYrdaWIsF+vx9erxeFQgFms5kbWVLrl05jP07rxKCJfhggiesYMAyC/LhxEn6vdjjs9e/V31Wv17mK+fb2Nnw+X0sbdwAszOnY7XxepHXVajWcP38eOzs72NnZgclkAgBMTExgdXWVIwapkvvExAQuXLiAu3fvtoTd6wmxTiYgUVsQNUDxmpIZbXp6Gpubm3A6naxp0XcOhwP1eh2ZTIZbcnTrA9P+fdD37bRBPTQaDeTzeSjKXidho9GIUqkEt9vNaQu1Wg0bGxuYnJxEtVqFouzVfMzn89wU0uPxIBgMYmFhAclkkvPoOo3/IAyKbIaNdAYBSVzHBEleJz/vw9yDXsmr0Whgc3MTqqrC5XKhXC4jkUiw36vZbLLWRFUp9IIgxPGurq7CYDBwhXHalpoXlkolHmuj0cDq6uqB7eu76VvVad6UN2a326Eoe4m68XgcpVKJK3JYrVa4XC5MTEzgpz/9KRRF0Y021BtDu/8P0h57mQdtn8lkYDab4XK5YDabW4rg1mo17OzswGKxYGJiAoqiIJVKsWnW4/Hg7t27cDqdmJqaQqFQ4CLGR605tpvToM5xnNpht5DBGceIYXwAjgOD8ksMCv2ufrvdT6tBRKNR1Ot1rnFHtfzsdjvcbjeXNxIbMAL7E2FTqRScTiceeeQRFAoFbqJIVSYAsA8mFotx3lS7Yx6k0bSbjxZkIvR6vVBVFYFAgAvKEjEXi0WsrKzsy/vrNAY9zbCf54j2adeOhb6v1+swGo3IZrPY2triPK1SqcT3y263I5FIIJFIoFKpYHV1Fel0Gna7HaqqIhKJIJPJ8H56qQfH4dcalnftqCCJ65gxTAL8ODGM5NWPAOx1G4/HwwJvbm6OezaZTCaEQiFcv34dPp+vhbzE/ln0Px07Go3i5s2bbBosFotcSkgcQ6lUajFVdUoU7/eeKMpe5XODwcC5TLlcDiaTCaqqwuv14vLlyxxEks1mYbFYEAgEoKpqR0LUEtogI9o6+dAee+wxqKqKRCIBo9HIkaBU/eTMmTMoFotwOp28ICmXy1hdXWWtudFocJURvXN3wmHfkUFfKzrmsEGWfDohHGXFiWHHMM692/G0G7teCLvdbsfVq1c5l4pMerTyp4K05XIZyWSSfVSieU97TKPRCKPRyCa6UCiE3d1dXt2LwQNaU5wo1LrN69Kbo/aHxkQaFgA4nU5Uq1XY7Xbkcjn2HZ09exYzMzP4sz/7M+5XdZCp8ChFlDYAxmg0wuVyIZfL7SMAul9ra2twu90tlUZcLhdqtRoymUzLPdar69gOg9CyBn2tjvL603FlyacRwjj6vAj0MgwTgXV7P9ptp+cDq1QqWFlZgaqqcLvdOH/+PNLpNBwOB7LZLHZ2drC2tgZVVfHoo48iFovB6XQiEokwsZBWozWv0f9EdFqI+4n7Uhdio9G4r6dWOyGlF+WozTcjUxsRtN/vZw2Lek4Vi0Xcv38fKysruoELJ+ULot9ikrEeqHI9AKRSKV5AKMpeUeBSqYRyuczEpdUaR4206LjDCElcJ4hxJi9gOOevR0D9gIiDItUoCs3r9SIajTLhVKtVLnq7vr4ORdkrI0SCyGw2cwKueGxgr8mi0+nkiEXRRyYGelAB20ajgfn5eTx8+BAulwurq6sH+q+014SCSyi6TjRver1ezt1KJpNwOp340Ic+hNdff52bLZpMJiSTSbhcrhbSPSrS6nQMvcWHnqbb7nikNSuKgmq1Cp/Px6W4tO1O+h1jt/uOE2kB0sd14hgmv89JYBjnftCYDrpnorBLpVIoFotoNptc0shgMMDj8eDDH/4waynr6+vI5/PI5/NoNBpwOBy4cOEC50SRn0tVVTgcDjgcDo7O83q9bK5zOBwIBoOwWCz8Ge07OTnJ26dSKW5i2M0z2Gw2uQ+VzWaDyWSCyWTC448/Dp/PB4fDgVKpxERN415dXUW5XOYWJSaTCT6fD9evX2/xc/VyfQ8aZ78/esfRqywifk+5XdTXDIBuzcJBz1M713GD1LiGAMOoeRwnjqrH12FwkObV6Z4pisIlf0grcTqdSCQSHFBRKpXw+uuvw2q1olgsIpfLtdj8S6USwuEwTCYT+1JEzSYUCiGdTiOTyaBQKLBW53a74ff7W4IziLhqtRrm5+dht9uRz+dx5swZ3Lt3jwVuO6e+mEuWyWTg9/vhdrtRLBYRjUY5FJ80SGDPH+RyubCysoJ0Oo1YLIZgMIh79+7BZDLh9u3bXPi3F5Nap/vR6356ZAW8d70OOk+z2cTGxgaA96I+f/7nfx4//OEPO45rWDUs7XmGmRAlcQ0Jxp28hnH+B42p3feUz2QymeB2u5koSFAXi0Vu5nj+/HlkMhmsrKy0lEeq1+vY2tqCwWDA1NQUtre3ubdTpVLZVzaKahZaLBY0Gg34fD4mS6vVylrY/fv3Aexpgjs7OweSljhPGp+qqkilUvB6vVw4mFqaNBoNJjWr1cpdfkulEra3t1GpVLhwrzZvrVdheVTCla5FO3OheH4xcbzRaOCv//qv+e+jIK1hJpPjhCSuIcIwCu/jxDAGbQDd+73EYIp6vY5AIIBSqYRMJtPSyHFrawuNRgOlUolNadqmkhR+XSqVUK1WEQ6H2c9FzRRNJhNqtRrsdjucTidX66DgB4pirFQq8Hg8iMfjaDQaMJlMHOZN5rB289H+n06nW0LeXS4XQqEQ+6vsdjtmZmawuLjIZajIdEg+OCLtfoX6cQlwbeAGoP9uarWgUdWy9M45rJDh8EOIg1Z644BhIy+g/f3QRtl5PB6EQiF4vV5sb28jk8mwbyqbzXJ5pKWlJdZ4xPlSJYpAIACn04l4PI5qtQqv1wuTyYRUKgWr1Qqn08maTSAQgM1mw+3btzk0nsoViWHZ09PTCIfD+OlPf4pCoaBLXO2IgcZHBEQVMYrFIorFIhfltVgs3GuMNDSn0wmn04larYZEIoFisajrM2qHYdM2OhHYQZ91i5MgLDrfcS4MZDj8KYH40Ayb8D4uDKP21U7z0t4vg8GAWq2GBw8esDbldrthtVqRSqVQKBQQiUTYdCgm8lJItphgTPlOVDuPqpZTvUJFUZBIJNgX5na7kclkeCxiYEE0GsXi4uI+DU+cSzuhpTUZUkQkBZQQAVKYPd07qpreaDQQCoVQKpU4YKXbcw4TaQHdBfAc9vgnMedhWyC0g9S4hhzDJLhPCsN2DQ5KQBarXYjfmc1mVKvVFh+KuI/WpEZRgVTvLxQKwWKxMEE5nU7Y7XZUKhXuWry1tQWz2YzNzU2YzWY4nU5sbGxw6w36EX0wNJ5ehRaN/6D9bDYbb0f1GWOxWMcSTqMiQEWMonalxXH23JIa1ynGuPu9gOG7BnqalzhGMXmYBDYAroouJu0SSTkcDlgsFq5UTp87nU4mm93dXdjtdthsNlgsFthsNpw9e5ZNiZOTk3j48CE3rwSAq1evIhKJ8DHJN5XL5Vq6CXej9XT7uRbivA0Gw7G2LjlKDGqcwzLnYRhDt5DENQKQpsPhIy89iGPsRggQyVFE4OzsLDY2NmC1WplUJiYmUCwWoSgKdwPWVsqwWq1IJBLIZrNMcBThVywWEQ6HOUiDit4Ce5YLvXp6gxZgojZBHY+10YRHde5BYpBjGxYNS8QwjeUgyATkEQGtykbp4Ro0hukadNJCtIJaO2ZxHqR1+f1+rKyscPt6aoVCJaMoMENVVaiqCr/fj0qlgs3NTa6cQe3kr1+/DpvNhkqlgp/97Gccan/p0iXY7XYEg0HMzMxwW3rtmDvNS5uQ2+lHnGO7JN5+aiYeF7T3aVDH7LfK/VFimMbSDaTGNWIYBc3jKDFM2me7YA297USIpkJK7F1cXITVasXMzAx8Ph9UVcXOzg4ajQaHsZMW5XK5EI/HeV8KtKA+XfF4nHOryJcEgKMMi8UiEomEbh5Vu/H3I9gOirI7amE5TMJ4GDUsEcM6rnaQwRkjjE4Z/uOAYUkbaHf+TvdHDMwg34/NZoPP54PFYuGKGBSVZzKZuLQTlU1KJpPweDyw2WyYmppCPB7HgwcPYDQaAYDLMFHeGPm+qJZeJ18TMFjfy1FoGMMsukbF/Akcb0CGCBmcMaYYxlJJx4lh0b7aaV5EFu32EfejxOB0Os2V26nqOJFVs9mExWJBrVbD+vo6HA4H0uk0dnd3EY1G8f73vx/xeBybm5sIh8NQFIWbVlI0I4Xqa0127cZ32OvS7vj9HmvYMeyalRajMk4tJHGNOMbddAgMxzVoR14HmRNFwZFOp1uIjso7zc/PQ1VVrK2tcdUKq9WKyclJJJNJAMD169fx8OFDpNNp1Go1JJNJhMNhbG1ttVTIoD5TR6VpHUbTGFUhCgxPZGAvGMUxEyRxnQKIq/dxJbBhuAZ6JNXNuEh4iFoQRSZSIVuqIk/5Xs1mE9vb2zAYDEilUvjJT37CxW4bjQbq9TrMZjNcLhcnI2ubG+oJrn6E2WEF4KgKz1HTrk4TJHGdIgyL6ewkMQzalx4OGpf23olklkwmW5KYZ2dnkc/nsb29zSWW7HZ7iykwnU5jdXUVjUYDRqMRoVCIGyFSJY6DxnHQXLrdvp9zDDNOA2GNsrYFyHD4U4dhDS0+Tpzk/Dudt9txacPFxYoX5J+iqEDyfymKgsnJSVitVt4ukUjA4XDA6/Wy9hUKhTiPS4tunPT9hoiP+nMphvWP8jwIoz5+SVynFKfh5ToMTlJQ9ktenfxNYgTW7du3kU6nUa/XYbFY8NRTTyGfzzOpUbSgqqq4cuUKpqamYDKZEA6HYTQauQRTN2MWBba2HX03GPXnsF+iHmachnlIU+EpxribDk9y/p2CMjqNi/brFKkIvBdqn8/nEYvFkEqlEI/H0Wy+1yOqVqshEolge3sbTqcTlUqF24/oHVNvnIMI0hhFnCaiEnFa5iWJ65RDNDuNa/DGMARuaNGOvETC0iMvMfdLVVUYjUbcvn2bE45JK6IQ+Lt378JutyOZTHLnZa/Xi0qlwhqa3tjGkbBOg++qE04LaQGSuMYKUgM73sCNg0LhaRugPXlR8MXZs2exvLwMYK/JpMViQSgUQqFQQCaT4f1E0x51Pjabzbh//z7q9ToMBkNLqxTtWGR04OnEaSItQBLX2EGS1/FqX/2Ql/Z/h8OBUCiE9fV1NJtNTE1Nwe/3w2AwIJvNsvalKAoTUqPRQKFQ4JB56jhMOV1aQXaY6gmjKhBPmzBvh9M4T0lcYwpRgAPjR2LHqX31q3kRKpUK1tfX4fP5kMvlEIvF2E9Vr9dhMpkQDAZRLpexurraEkxBRNaOpMbNLDgO2pWI00hagIwqHHuctoipXjBsc283FovFgg984AOw2+2wWq0IBAKo1+t49NFHYbfbYbfbEY/HEY1GW46jF7o9rqR1GqMDD8JpnqskLgkA7+UMjRu0Qv4oz9PLeGh7s9kMo9GIhYUF2Gw2lEolTE9PIxwOIxqNIhAI4P3vfz+sVit+7ud+DoFAoGV/8fc4ktY4EtY4QJoKJVpAhXsBaT48iuN32waFSjTVajUoioJ79+6hWq3C6XRiZWUFs7OzcDqdMBgMuHv3Lmq1Gh48eMDdhsX5aIV2v0J8lAT/uJkEtTjtRC2JS2IftA/8OBHYUQdv9EpelUoFW1tb3PrEZDLB7/djZ2cHwF5CstfrRTweRzabRbFY3KdxjRNpnXaB3Q3G4RpIU6FEW4yzmeUo593NccVtKNCiXq9jZ2cHd+7cwfnz57GwsIBKpYJoNIpyuYxAIIDJycmW6MTDktYo3PvjMveOAkbhfg0CkrgkDsS4EthJz1lPcyLz4d/+7d8in8/DarWiVCqhVCoxiemNu9d5jMq9Pul7NEwYp+sgiUuia4zryrZdhN4gjtuN5qX9m347HA44HA4AeyWgtra2UC6XOVerl/O0O+ewQXwGx+057IRxIi1AEpdEnzgqYT7MOCrN86BjidGAJLANBgMuXLiAZDKJCxcuYHZ2lovrnnbSGuYxngTG8ZrI4AyJQ0F8YcYliOMo5nxQRKMY1NFsNlEul3Hz5k2u9L60tNS3eXCYhd44CuVeMK7XRxKXxEAgvkDDVMz2KCFGIAKDIbF2BEbnoqrwjUYD1WoVjUaDaw/2mqc1rAJv3EPZu8GoE9Zhxy6JS2LgOAqBPszQvoRHSWBinh1ts7y8vC+Qo5fxDgskYXWHUSetQUASl8SR4SgE+jBDFLyD0jr1CEy8rlotq5tjDRukIO4e8lrtYeSJS1zZSwwntAIdGA8SG6TptJ1frZMQG1YBJzWr/nBaSGsQcxh54pIYLYybFgYMfs6jKrwkYfWP00Jag8KpIC6pdY0etELstAd0aKP9xLmexnnr5Z9J9IfTVPx6UM/CqSAuQJLXqGPcAzoIozxvSVaDxWm7hoOcz6khLonTgXE3JY6aBipNWEcDeV0741QRl9S6Tg/0TIni79MOreDSzvu4roOe8JQC9ehwWglr0HM6VcQlcXqh9+CPC4kB/b343bZPGfR5JfrDaSWto8ChahW+/PLLUBQFL774In/WbDbxta99DdPT07DZbPjIRz6C27dvt+xXLpfxhS98ARMTE3A4HPjUpz6FjY2Nwwyl5fwSpxdivbpxLrQqXod2P3R9Ov0cdAyJ48Fpfo6PYl59E9fNmzfxB3/wB3j88cdbPv+d3/kd/N7v/R6++c1v4ubNmwiHw/j4xz+ObDbL27z44ov4zne+g29/+9v4wQ9+gFwuh09+8pOo1+v9z0RibEFCWgpciVEDPbsSvaEv4srlcvjlX/5l/Lf/9t/g8/n482azif/8n/8zfuu3fgv/7J/9Mzz22GP4oz/6IxQKBfzpn/4pgL2OrX/4h3+I//Sf/hM+9rGP4amnnsKf/Mmf4J133sH/+3//byCTkoJrPCG1BolRwbg8n0c1v76I69d//dfxT/7JP8HHPvaxls+Xl5cRiUTwwgsv8GcWiwUf/vCH8dprrwEAbt26hWq12rLN9PQ0HnvsMd5Gi3K5jEwm0/JzEE77AyHRGXomMwmJk4bWOnCacZTz6zk449vf/jbeeOMN3Lx5c993kUgEABAKhVo+D4VCWF1d5W3MZnOLpkbb0P5avPzyy/jt3/7tXocqIdECIq/TnvwrMZyQi6fBoSeNa319Hf/m3/wb/Mmf/AmsVmvb7fRaMhwkIDpt89WvfhXpdJp/1tfXuxrvaV/RSPQHaVKUOE6Mox/rqN+nnojr1q1biEajePrpp6GqKlRVxY0bN/Bf/+t/haqqrGlpNadoNMrfhcNhVCoVJJPJtttoYbFY4Ha7W34kJAaBdlGKkswkDgvRLCgxWPREXB/96Efxzjvv4K233uKf97///fjlX/5lvPXWWzh//jzC4TBeeeUV3qdSqeDGjRt4/vnnAQBPP/00TCZTyzbb29t49913eZtBQj40Er1CamQS/UJcBI3rM3Mc8+7Jx+VyufDYY4+1fOZwOBAIBPjzF198ES+99BIuXbqES5cu4aWXXoLdbsdnP/tZAIDH48HnPvc5fOlLX0IgEIDf78eXv/xlXL9+fV+wx6AgK2pI9ItRLsckcXyQi5s9HNc1GHjljK985SsoFov4/Oc/j2QyiWeffRbf//734XK5eJtvfOMbUFUVn/70p1EsFvHRj34U3/rWt2A0Ggc9HAmJgUMUUjLQY3yhLUsmcXxQmiN41TOZDDweT8/7ScEicdSQRHb6IQlLH/1ej3Q63XPcgqxVKCExQLRr7TFuRYJPGyRZDRfGirikr0vipCAKvpOq9C7RO6Tvqjsc9zUaK+ICJHlJnDy0L7n4v8FwqLrXEgPAuOVcHRYnQexjR1yAJC+J4YUoNKVmdvRoZ9qV6A4ndc3GkrgkJEYBBwkFSWT9QZLVYHCS125siUtqXRKjhk4mRkDml3WCNP+dLowtcQGSvCROF/QCCfSe79P4zOut/qU2dXQ46Ws71sQlIXHa0U6gtyOvUSA1SVISY09cUuuSGEe0E/TdEMBRvy+ShIYbw3B/xp64AEleEhK9YBgEl8TJYFjuvUwakZCQkJAYKUji+gcMy0pCQkJCYhgxTDJSEpeAYboxEhISEsOCYZONkrg0GLYbJCEhIXGSGEaZKIlLB8N4oyQkJCSOG8MqCyVxtcGw3jAJCQmJ48Awy0BJXBISEhISIwVJXB0wzCsOCQkJiaPCsMs+SVwHYNhvoISEhMQgMQoyTxJXFxiFGykhISFxWIyKrJPEJSEhISExUpDE1SVGZSUiISEh0Q9GScZJ4uoBo3RjJSQkJLrFqMk2SVw9YtRusISEhEQnjKJMk8TVB0bxRktISEhoMaqyTBJXnxjVGy4hISEBjLYMk8QlISEhITFSkMR1CIzyikVCQmJ8MeqySxLXITHqD4CEhMR44TTILElcA8BpeBAkJCROP06LrJLENSCclgdCQkLidOI0yShJXAPEaXowJCQkTg9Om2ySxDVgnLYHREJCYrRxGmWSJK4jwGl8UCQkJEYPp1UWSeI6IpzWB0ZCQmI0cJplkCSuI8RpfnAkJCSGF6dd9kjiOmKc9gdIQkJiuDAOMkcS1zFgHB4kCQmJk8e4yBpJXMeEcXmgJCQkTgbjJGMkcR0jxunBkpCQOB40m82xky2SuI4Z4/iQSUhIHA3GVZZI4johjOsDJyEhMRiMswyRxHWCGOcHT0JCon+Mu+yQxHXCGPcHUEJCojdImSGJayggH0QJCYluIGXFHtSTHoDEHuiBVBTlhEciISExbJCE1QqpcQ0Z5AMqISEhQsqE/ZDENYSQD6qEhAQgZUE7SFPhkEKaDiUkxheSsDpDalxDDvkAS0iMF+Q7fzAkcY0A5IMsITEekO96d5DENSKQD7SExOmGfMe7hySuEYJ8sCUkTifku90bZHDGiEEGbUhInB5IwuoPUuMaUcgHXkJitCHf4f4hNa4RhtS+JCT+//buLqat8o8D+LcdbYcVG5DJ4ezNqqjZYCR2yiBGpihmGVuMJrrpBYneTIVA3GLcvCgXyyBezGh8WTLN3K56wzBLppMat85lWVx4yQpbCAk4YaE2M9AyhXbCzwv/nD8db5ZB29Pz/SRPspznGXnOd3362zk87dEfFqy7xyuuNMCFQJT6+Cy+pcPClSa4KIhSF9fm0mLhSjNcIESphWty6bFwpSEuFKLUwLW4PLg5I01x4wZR8rBgLa+4rrgaGhpgMplimqIoWr+IoKGhAaqqIjMzE1u3bkV3d3fMz4hEIqitrUVubi7sdjt27tyJwcHBpTkbmoG/+yJKHK63xIj7VuHGjRsxNDSkNb/fr/V99NFHOHz4MD777DNcvnwZiqLghRdewOjoqDamvr4eLS0t8Hg8uHDhAm7duoWqqipMTEwszRnRrLiYiJYX11gCSRzcbrcUFxfP2jc5OSmKokhTU5N2bHx8XBwOhxw5ckREREZGRsRisYjH49HG3LhxQ8xms5w5c+Y/zyMUCgkAtkU2k8nExsa2RC3Z61nvLRQKxVOGREQk7iuu3t5eqKoKp9OJXbt2oa+vDwDQ39+PQCCAyspKbazNZkN5eTkuXrwIAGhra8Pt27djxqiqisLCQm3MbCKRCMLhcEyjxRPeziC6a1xHyRNX4SopKcGJEyfwww8/4OjRowgEAigrK8Mff/yBQCAAAMjLy4v5O3l5eVpfIBCA1WpFdnb2nGNm09jYCIfDobW1a9fGM22aAxcd0eJw7SRXXIVr27ZteOWVV1BUVITnn38ep0+fBgAcP35cG2O6YxebiCy4s22hMfv370coFNLawMBAPNOmefB/jUT/HddLarirz3HZ7XYUFRWht7dX211455VTMBjUrsIURUE0GsXw8PCcY2Zjs9lw3333xTRaWlyQRHPj+kgtd1W4IpEIrl27hvz8fDidTiiKAq/Xq/VHo1H4fD6UlZUBAFwuFywWS8yYoaEhdHV1aWMoubhAif6P6yE1xfUB5H379mHHjh1Yt24dgsEgDh48iHA4jOrqaphMJtTX1+PQoUMoKChAQUEBDh06hHvuuQevv/46AMDhcOCtt97C3r17cf/99yMnJwf79u3Tbj1S6vgvt3iJ0hkLVuqKq3ANDg5i9+7duHnzJlatWoUtW7bg0qVLWL9+PQDg/fffx9jYGN555x0MDw+jpKQEra2tyMrK0n7Gxx9/jIyMDLz66qsYGxtDRUUFvvnmG6xYsWJpz4zumvDbN8iAWLBSn0l0+K8UDofhcDiSPQ1DYhGjdKTDt8G0EQqF4t63oMvvKuSLLHmYPREtpcW8p+jy2+Gnf4UUERHp12Lez3V5q3BychI9PT3YsGEDBgYGuD1+FuFwGGvXrmU+c2A+82M+82M+C1soIxHB6OgoVFWF2RzfNZQubxWazWasXr0aAPi5rgUwn/kxn/kxn/kxn4XNl9Fi9yro8lYhEREZFwsXERHpim4Ll81mg9vths1mS/ZUUhLzmR/zmR/zmR/zWdhyZqTLzRlERGRcur3iIiIiY2LhIiIiXWHhIiIiXWHhIiIiXdFl4friiy/gdDqxcuVKuFwu/Pzzz8meUkKcP38eO3bsgKqqMJlM+Pbbb2P6RQQNDQ1QVRWZmZnYunUruru7Y8ZEIhHU1tYiNzcXdrsdO3fuxODgYALPYvk0NjbiySefRFZWFh544AG89NJL6OnpiRlj5Iy+/PJLbNq0SftAaGlpKb7//nut38jZzKaxsVF7XNMUI2fU0NAAk8kU06YeIAwkOBvRGY/HIxaLRY4ePSpXr16Vuro6sdvtcv369WRPbdl999138uGHH0pzc7MAkJaWlpj+pqYmycrKkubmZvH7/fLaa69Jfn6+hMNhbcyePXtk9erV4vV6pb29XZ599lkpLi6Wv//+O8Fns/RefPFFOXbsmHR1dUlnZ6ds375d1q1bJ7du3dLGGDmjU6dOyenTp6Wnp0d6enrkwIEDYrFYpKurS0SMnc2dfvnlF3nwwQdl06ZNUldXpx03ckZut1s2btwoQ0NDWgsGg1p/IrPRXeF66qmnZM+ePTHHHn/8cfnggw+SNKPkuLNwTU5OiqIo0tTUpB0bHx8Xh8MhR44cERGRkZERsVgs4vF4tDE3btwQs9ksZ86cSdjcEyUYDAoA8fl8IsKMZpOdnS1fffUVs5lmdHRUCgoKxOv1Snl5uVa4jJ6R2+2W4uLiWfsSnY2ubhVGo1G0tbWhsrIy5nhlZSUuXryYpFmlhv7+fgQCgZhsbDYbysvLtWza2tpw+/btmDGqqqKwsDAt8wuFQgCAnJwcAMxouomJCXg8Hvz5558oLS1lNtO8++672L59+4ynsjMjoLe3F6qqwul0YteuXejr6wOQ+Gx09SW7N2/exMTEBPLy8mKO5+XlIRAIJGlWqWHq/GfL5vr169oYq9WK7OzsGWPSLT8RwXvvvYenn34ahYWFAJgRAPj9fpSWlmJ8fBz33nsvWlpasGHDBu2Nw8jZAIDH40F7ezsuX748o8/or5+SkhKcOHECjz76KH7//XccPHgQZWVl6O7uTng2uipcU+58Cq+I8Mm8/7OYbNIxv5qaGly5cgUXLlyY0WfkjB577DF0dnZiZGQEzc3NqK6uhs/n0/qNnM3AwADq6urQ2tqKlStXzjnOqBlt27ZN+3NRURFKS0vx8MMP4/jx49iyZQuAxGWjq1uFubm5WLFixYzqHAwGZ1R6o5na3TNfNoqiIBqNYnh4eM4x6aC2thanTp3C2bNnsWbNGu04MwKsViseeeQRbN68GY2NjSguLsYnn3zCbPDvraxgMAiXy4WMjAxkZGTA5/Ph008/RUZGhnaORs5oOrvdjqKiIvT29ib89aOrwmW1WuFyueD1emOOe71elJWVJWlWqcHpdEJRlJhsotEofD6flo3L5YLFYokZMzQ0hK6urrTIT0RQU1ODkydP4qeffoLT6YzpZ0YziQgikQizAVBRUQG/34/Ozk6tbd68GW+88QY6Ozvx0EMPGT6j6SKRCK5du4b8/PzEv37i2sqRAqa2w3/99ddy9epVqa+vF7vdLr/++muyp7bsRkdHpaOjQzo6OgSAHD58WDo6OrSPAjQ1NYnD4ZCTJ0+K3++X3bt3z7oddc2aNfLjjz9Ke3u7PPfcc2mxVVdE5O233xaHwyHnzp2L2bL7119/aWOMnNH+/fvl/Pnz0t/fL1euXJEDBw6I2WyW1tZWETF2NnOZvqtQxNgZ7d27V86dOyd9fX1y6dIlqaqqkqysLO29N5HZ6K5wiYh8/vnnsn79erFarfLEE09o253T3dmzZwXAjFZdXS0i/25JdbvdoiiK2Gw2eeaZZ8Tv98f8jLGxMampqZGcnBzJzMyUqqoq+e2335JwNktvtmwAyLFjx7QxRs7ozTff1NbNqlWrpKKiQitaIsbOZi53Fi4jZzT1uSyLxSKqqsrLL78s3d3dWn8is+FjTYiISFd09TsuIiIiFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItIVFi4iItKVfwA7ta5FL6ZI4QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/nFJREFUeJzs/WmsZMl1H4j/bu779va9qquqq6sXks1Wk0PKEuWRSMEYjaAPAwkQYHgwGkAzsgU0JEEajb/Ihk1CNmBhAMEC/MUcCLDpATwa2oAskbDMTZTI3kh2176+fc33XubLfbv/D+9/DiOjIuLGzcxXy+s8QCIz743lxHa2OHHCcV3XxRjGMIYxjGEMzwkEnjYCYxjDGMYwhjH4gTHjGsMYxjCGMTxXMGZcYxjDGMYwhucKxoxrDGMYwxjG8FzBmHGNYQxjGMMYnisYM64xjGEMYxjDcwVjxjWGMYxhDGN4rmDMuMYwhjGMYQzPFYwZ1xjGMIYxjOG5gjHjGsMYxjCGMTxX8FQZ17/+1/8aFy9eRCwWwxtvvIFvf/vbTxOdMYxhDGMYw3MAT41x/Yf/8B/w1ltv4R//43+M999/Hz/1Uz+Fv/f3/h7W1taeFkpjGMMYxjCG5wCcpxVk99Of/jQ++clP4k/+5E/42bVr1/BLv/RL+NKXvvQ0UBrDGMYwhjE8BxB6GpW2Wi28++67+D/+j/+j7/kXvvAFfPe7330sfbPZRLPZ5P+9Xg+Hh4eYmJiA4zhnju8YxjCGMYxhtOC6Lk5OTjA/P49AwJ/x76kwroODA3S7XczMzPQ9n5mZwc7OzmPpv/SlL+Gf/JN/8qTQG8MYxjCGMTwhWF9fx+Lioq88T9U5Q9aWXNdValC///u/j1KpxJ/xPtgYxjCGMZwPSKfTvvM8FY1rcnISwWDwMe1qb2/vMS0MAKLRKKLR6JNCbwwKGLVJViekPKn8Zwm0bUz4Pcu4nneQ+95rLMb36j55GGRtPBWNKxKJ4I033sDXv/71vudf//rX8dnPfvZpoDQGA+gmltciN72XicmocHoWwHGcPvxUlgUTiO9VaXX5R0F0hylj2PrPIr/c96IwQd9iPhq7Z3l+jeEpaVwA8Fu/9Vv4+3//7+MnfuIn8JnPfAb/5t/8G6ytreF/+9/+t6eF0hgE8JJKvRa3Hy1D1kz8SsnDgKouEadByvACr7Rempqub0wCht+x0OU1lWVKZ4OD6r1NPnE+iultcPXqs7EG9mzCU2Ncv/Irv4JisYh/+k//Kba3t/Hqq6/iz//8z7GysvK0UPrIgy3hsCGCgzAaHTGxJVym37Z42jBjudxBGMaghPys0uhwkvtS1X5VGXK6QQUP2/pU+I+i3cNaBsZwNvDUznENA+VyGdls9mmjca7gWTGN2GoHg2phXpqAzR7IMATxacFZ4+KluXppss9SX5ngOSSXzzyUSiVkMhlfecaxCj/iIJr8BlmUo17INtqVTTrb8m01rkHqfR77dVTlq/b5TDg8KaY17FiM97+eDRgzro8oqBbgMOY9HTxpAnwWddrWa8rrF6dnsV8HgWdNQxnVHB8zsKcLY8b1EYQnueD8mNVs4VkjhjYwakb0rBDNUY6F6Ok3inRPAp6VcfiowZhxfcTAyxRmgmHNLLbu8V7leJngzoJZDluOKc0g+zu2/ToI+ClP59BD36b38n9bRw45nW1fnNUcF3EZw5OBMeP6iMAwewx01sWvi7hfLy+/jM22vGEZnFcdw3r2+WG0o+5XEz6DnhczMSA/zje2YNsXZz3Hx8zrycGYcZ1zsLHF2xAJuQz54Kau3mGl91GACnc/YGrrqHDWHYhV1fWk+vUsxkM1Fn6EkkE1oic1x8d7X08GxozrnIKfBWRrmhlkgY5Kqxkkva5uv2dzbNs6DFEVmZKN1nAWxNHWlOanL2y1M1s4KyY86jk+ZmBnC2PGdQ5hWA3DD4xyn0hV1iD7P4O4rFNdOtxGUa/YRlsHhFGArl9lGKUgYqMdDtLfw47RIDBM2WPmdTYwZlznDHSS46jKlhfxoGWryhm1ycivp6KNhjZMnWIbvfZlRknwRj0nRuUB6ee5Sot+Xub4mHmNHsaM65yATPi9NthtQKUFDVKuTrrXeZfZ5vcCP0xvVA4Oo9TgBgWT194ovO5G6bU5jDb7PM3xselwtDBmXOcARuGxpss7Ci3EtgwdwTBJ4H5gGAl4lHnOmoCZ+tVv3Wc1Fqby/Jb7PM7xMQwHY8b1HIMfKW5Y6fEswK+nno1pyFaLGwRs94pGCbZnlMT3g/arH61mEC89PzAKJjuqtMOAThMbM7DhYMy4nlMYtbuwTdl+6xmFR5nffQxbLW4QOOu9KK86vdoi75/ZmgWH6dezglFoYoOW76eeYeb4mHkNDmPG9RyCaa9CZ8oZtVu6DWHx2lOxqUu3Z2RDlMX9C79S7rCecCYvSdsydWDbr7bzxLZ+Vb/KZeny2JZtk/c8zfEx8xoMxozrOQKdV5pNPoIn4drr5THntwwVE5PLVRGcYUwyw+57+PGSPMs9t2GcWFTpiNiOsn5duo/KHB8zL/8wZlzPCYzS5EVgq7X4zTtqGLUHoS0MqgU8yb550jAqTz7Ts4/qHB8zMHsYM65nHOQJrTNN+NnPsPGu85IGvRbZsIt+VERjWI8zr2cm13oVMdZ924Ctc8aTgFET2fEc/3GdYwbmDWPG9QzDKNxxVe9sXZr97NPI7wZZfH4dBmzKeZqgMieJ5jbxuQ1T8hq3s3TYGRRGWfdHaY6PmZcZxozrGQVRarQ5S6NKZyuh6sr0s09j884LBjFD2Wo8qjyDOA6MwjFBpVEMypRGuYelqnsQZxIvvFVm1fEcH2095x3GjOsZBFkaH2TD2OSx5OXN9KQkdJ0nnq20DAxGYIbp11E5JtgQsEE91mw9HE1g6iOv9g9iKRjPcbMQNoZ+GDOuZwxsJqpfaU0leQ5CMG2lXT9SsfhexRQGNcucxYa7ac9qULxUfT0qkymVJfbrWTkkDKKZ+S1Pho/KHB8zr8dhzLieIbCRsGVpzUaaVkn3XtKojaRtu9B0BEbe77HFQ06jcnjQ9eUw+0CmPSvbcvz26yDmTJNzgqnPxecmJq3rV5UZdVBT43iO96cZQz+EnjYCY1ATRK+FJUvSfusZRbpBwJYw2OKhYya2+f3U5QcHG7AhWoOOma2Z0oYw2/arrVlxPMf94aHT0D7KMNa4njIMahobdOH52Vg/K/CSoM8Kh7Nu26D7SE8KvMxpXvsuozIvjuf4cDiMTYdjxvVUwa95g+AsJ/1Z1091DCuFDlqvCKPYl3na0u+ozZSm97aalle/juf48HP8o868xozrKcGg5iVK74dgiTCKzfdhTBfDbIiPGlR7MF77IqoydOU9CSYom9WG7btRjIXffrUpYzzHH4ePMvMaM66nAGdlAjnLur2kR9uFqZP6B/WkG4VkbGsCMxEzP44gJlz8gKrPRiXJ25rzvMrxC+M5/jh4eUd+FGHMuJ4g+N1oVuX3+v20wM+GtE3+s85nU8YgZrQnORajrmtQwjpKGM9x//mGpSvPI4wZ1zMCo9pvscnzJMwufsodxOV7VHU/yXqfdNl+cRiFqdGmHq9nXmWM5/gYxozrCYBKIrI58+LHPGGqR5VOBcMsGrE9NuX4kab9mq28+uxJSMq2ROusHQXOaixsyh7P8Sc7xz9KmteYcT1FUO0nyIRh1OYJv0TUT31nZS4bts1++mBUEq84ll5u5jZlDYrbKMdCno82ZY/nuL9yB03/UWFYBGPGdcZgs39i83tUXkl+JGo/7024+q1jlODXaWKUBGDYvvZb3iB1DMJAbfON5/iTgWEtCs8jjBnXGYGX2j4s0RrExGTz30u69yNle70f9eJ+UsTCph9VJjXZbDZqxqbK50VsbYjxKPCwgfEc9wbb8s672XDMuJ4AnPVGsW7T2y8hEBfbqE1Mqv9+JXhTmXJ58jM/exNeOJn61a+GZ4JBnSX8CEw6JudVnh/znBcOg+YZz/H+Z4PM8ecVxozrDMCvJD3sRFMRERuip5vwo/YusyH0XiYjFY7D4KBb5OJzrw1+HWERpV3C3ZZQjsrsY8JNTOOlGQw6V8dz/NmY4+dV6xozrhGCTj2XF4mczmbDWzY/eeGhK2uUGoFf8FO3rr9sGZAO5HJobGRiYbMPZqN1+DUXj2ofy6+5y1aDMmll4zn+7M7x8wZjxvWEYNjJM8iemc0i0pmKzmKy2yxgSmdbv+3iNC16v/sBgxB1G3PboHAWJq9BiN54jj/bc/w8wZhxjQAG3Qgdla2fcLB5ZkrjR+K1AVvz0zD7ALryR2Vyk8sdpKyn7fTgB4dRE7jxHFfjMIp6/Y7doHTqWYQx43rOwNY0MmjZo1xgJg1EBhum4AefJyFND6sBDIrjIPlsTXzPAozn+HB1fxRgzLiGhGEmzyjMU7pybImq6fmoNAsb8Cs5jyKdF/jd+DfVrdpHs61zVER7VOPsB8Zz3F9dT2KOnweGN2ZcQ4BJArfZUPWzyGwmm5dHnJfUbSIEJu87uU7bzWRVf3nVbUM4RmGaE73WbBiYqf+oLD+Ey8QMB+1XVdkynl4wnuPnY44/78xrzLgGBBUx8bvx68fMMAxutnlMZiO5TJXnkkikxXdeZXoRoVH1qx/w65xgcsAY1rQnE1ybvQxdWlNfe5kNx3P8fM7x5xHGjGsA8JL0hpGWR42X3zp1i9c27yAb6F6agA78SqaDjsWgC3xUZr9hN9VttS56b0PYx3PcDi/5/bM2x59X5jVmXD7haUiKZ7WBrKpjmLr85pXTmwjCoKYlE5z1WKgI/ZMYf3ksbQntMDh6le0F4zn+9Ob488i8xoxrABhEihnGJq2a2MNKabo6Rr3p63fD3Sutat/BL04y+CFofvvHDzOwNWGZ0orp/eAqm7LGc9xchi0uz+Mcfx5gzLh8wDAT39bMIoJJWjPlM5l7bDfhhwE/+zG6DXEdqPYd/OIk/7YtaxBp20+ZgxA5r3LFbz8EdjzHzXDe5vjzpnWNGZcljHJgbcsaVjJUSVnD7pfY1j1IWhtCrwM/UqnfjXA57TB7Yzamo1EAjb/4/SSJ03iOq9M+y3P8eWJeY8ZlAaMYUFtiN4wrrAw6KWtQs4GtJDuotGuSom3yPinwMqmZnqnG4qy0A5l5PUktZNh04zmuznvW8LwwrzHj8gC/Nm0/5fhJdxZEZxANYtSbvcO262na7P3sSXmZvbzK9IuPilGe9biM57ganrc5/jwwrzHjGgBGxcxsytARID/1qcxTg+6t2NZhSqOrW2VGGeXG9KhhEJOUl6lwkLHwYlKmfh2VQ4hfXFXPxnNcDU9jjj/rzGvMuDQgEyWbyaUjBjb/xQlts+D8bM6r2jHqiWnTV4NsENsSMNNGvQk3v//91i/DWUjqJq1Ct6eiGovxHDfDR22OP8vMa8y4PEBcBCYp1eS5Y5L+VBvnNqYUWyltlBK9bRq/pi/btvjZO1LhovtPRFVF5G0Jgi2R9QMmrUdVnl8TpVzmeI7bp/mozPFnFcaMSwG6BWaSprwWy6BSJYE84Uz5RrGQ/MIw5oxh9kZGIRUSUfU7hn6ZwrBgkriHgfEct4PxHH92YMy4JHgWB0pn7tGBTdpRl2eT91nsW7/glxiOss0i4TmP/Tqe488GeO3DPgswZlxPEAaVAP1KnoPU48dEM4p6vdKOsqxRluF3EQ+LG5l3nhcYz3H7tOdljj8NGDMuAYY1TXill/cBBjH9nJU0JOLmV5odxBzm1RfDSMuDOFTY7LkMCrZEUjdn/PTFMIxuPMcfTy/j9FGd488aMws9bQSeFaBJNspF4lWPbvPdhIPtgrNZaH72FGzKsPkt42lTt1+8/Own2G6ai+A1RiYnBtt0qv6zmZ9e78dz/Nmc437B7xz32986J45nRfsfMy48viHt5Xkzqvr8vhtVHXIa08SWPc5M/WLzexBcbQiT+G3KMyjhtpFc5fdyXToiqiKAKuI/CuFqPMcfhycxx004+BFMBoFByvQSSp42jBmXAmwJz3kBWyIzigWgW6Am6dWPpuG1sPyUKxKUQCCgzGfaB/FiDCqtxKu/R0XgxnNc/c5v272Ykfjfq/5R1f2k8j9N+MjvcdlO6FFLGfJehFz+oPsNg+QbNK8KiBDrPpRGxsHPONia9wYxA6ree0ngqvbp2u5Vv+1+w6g2/sdzfDjQjYWqX0fJJEYpvIhlDpLvacBHmnF5Sdty2lGbUkymLb91DSq1mRiKCkwOBDbEWlWOSeL3Igp+TFIy8VIxwWGdCVQMTH5n6hvb8bNluiYYz3E1+GVuNmMxqJAyaJ0q8BL6/PTN02ZevhnXt771LfyP/+P/iPn5eTiOg//v//v/+t67ros/+IM/wPz8POLxOH7mZ34G169f70vTbDbxm7/5m5icnEQymcQv/uIvYmNjY6iGjBr8TrRBCJ6unicBgywax3EQCAR4IQYCgb7/RKRMfeE18eUyVMROx4D8SIxe5auIuhfomLGOcOr6cNA5YdJuVDCe42rwI9Da1K+bm2fRL6Mei0HWwZMA34yrWq3i4x//OP74j/9Y+f5f/It/gX/1r/4V/viP/xhvv/02Zmdn8fnPfx4nJyec5q233sKf/dmf4Stf+Qq+853voFKp4Bd+4RfQ7XYHb4lPGGQA/Ej3w9RzFjDMBDRpEXId8nt50dqY8byINzEXHXMw4aYqR1W+iKMtMVBpiiomrOojuR02jEzGz1YTtWmLn3fnYY7bgleZqrk+ak3WBIOM35Msb1TguEPoq47j4M/+7M/wS7/0SwBOB21+fh5vvfUWfu/3fg/AqXY1MzODP/zDP8Sv//qvo1QqYWpqCn/6p3+KX/mVXwEAbG1tYWlpCX/+53+On//5n/est1wuI5vNDoo24y6DaaNVl0eV3ya9Hxv1MBvosiOBbbu9TCtnubEr9qMX0fZqz5PcgNaNv2n8BsFVZ+K0mSPjOX42c8LULzb1DYPfqNujM9d7rcVBoVQqIZPJ+Moz0j2uhw8fYmdnB1/4whf4WTQaxec+9zl897vfBQC8++67aLfbfWnm5+fx6quvchoZms0myuVy32dQMEk/JgncZmL4kbBszTQmpmICP1K4jLdoujLh79c0pUqr0mp02ohuL0mFm6pOVV1eWpXKLKlLoxt/0/jJxMrG5CmPkfhfV6f4/KM8x23L1tWnGxtTv5gIvtgGW+FBVfewzEMuT/4vzlOv9E8CRsq4dnZ2AAAzMzN9z2dmZvjdzs4OIpEI8vm8No0MX/rSl5DNZvmztLQ0SrT7YNSTwG/dNs8GLUuXTv74ZUIqwqMjUCoTH32rTF8iMdfVYWJEJs1NfG7D1OV0fgiNF0OSy/drphT/ix9dno/SHB8VqPrUJMjYljcow5LL8oJRjPnTYFIqOBOvQtXg+lGVZfj93/99lEol/qyvr48ML5t0tvC0iIHf+mXCJktUNhqPqhz5na5esSzdnoAunwknuSzdnoeOSdiCrZlMp0Wq0um0SS+tV0yvGleV84dXuSZ4Xub4WdShmmumeWYLtpr2sOA1X/2Czfw+Kxgp45qdnQWAxzSnvb091sJmZ2fRarVwdHSkTSNDNBpFJpPp+4wCvBiZ38G0Yc7DlE95Bp3gKgKnM2t4mWFMGpX43sRYdGV6aRs6s4yuLSamYfNeV79XGpPJSNYqbZig3JemfpI1WJuxt4FnfY4PAraMxzTXRkE7/DCWYRnNKPI9Te1rpIzr4sWLmJ2dxde//nV+1mq18M1vfhOf/exnAQBvvPEGwuFwX5rt7W18+OGHnOYswKaTTYRGhGEYh1+cVGXYLCzdO5OZSCZ0OgKi045VC1uuz4bYmpiaCRf5t6l9XmNoW5bXM7E+uX/lPCripOsP2cyk60/6tmFioyBET3OOA95r09RPur40lSn2p1zmqJivar2NWujweudnvTwJ8B3yqVKp4N69e/z/4cOH+MEPfoBCoYDl5WW89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBQBks1n82q/9Gn77t38bExMTKBQK+J3f+R289tpr+Lmf+7nRtUyApyEZ6AjqWddF4LWQVMTThrmpyvZ6pyO8qrplUBERneQr4m3LWHV1eaWV+0pHbE2mVxWYGJUKTP1mwlvG2TRH/QoNZwGqflRpPV7PbIU71XO/DOSs6Y6uz/2MhW1anbVALmOUDNsEvhnXO++8g7/7d/8u//+t3/otAMA/+Af/AF/+8pfxu7/7u6jX6/iN3/gNHB0d4dOf/jS+9rWvIZ1Oc54/+qM/QigUwi//8i+jXq/jZ3/2Z/HlL38ZwWBwBE16HEa9wGzKsl0sOjxNz7zemQi7H/z9TEAVwzD1u0lStf1v034VDn6JjRfRNI2ZSYBQlWOj4drMYZGh6vDQpbfVYp+VOe73mZ96VGV5jYcNvfFDh2xojGmsTXj5mVd+haqzhKHOcT0t8HOO62l06tMCE1H2IkZ++mkQ5q+rx0bj8tsmv3lN+WXcbBe3TR+pJFe5Pi8w9asXnrp8XjiYzJtPGgbps1HWfV7py7Bt8zMvnvo5rmcNnoSq/iyUSQzLS5Owse/LuKjs/n6kWFVdKtzlenT4yHl1xF+uT2yLKr1NflUb5HJVuHm1wy/IOHrh7lWnqjyViVZOI38GwX9Y8Fu3DmxxkvtBN/6jqs9PnlH369PM7wXnmnENAiZiY0OIdWltJ5XfAfcyD8hpdXZ6FbESicIgzMrLnKBK69eM52UC88LVlN/WfKRrp5eJTWY6Xhqzqg5VubbChqnPbftVbq/tPLSBs9bmBhHGdGvHT11iOX7aqBNGzkrrtMHtaWnc55ZxDTqIpgVqO9lUk3nUk8pxvCNcyAxUNGOp3nuVY6MV6fKIz+X6ZHxspFqTpGurWXoxU11+L6HElkh59ZFJC9aNiVifCWedRiiX6UcAo7moOzvmF85aan+SZj4bxq8Drzl5Vu0YVgg5y/49t4yLQEccvPKYwNb+fxagIgY6hqLSBkQtwq+ErPvWpbVl4CotRaWJiOMoa4l+NBITqPpLZ5rTlasaG106lUBk269eGrFKABDfyYxN7muVhG+jnanaNwgT87tmn4b070egsi1DhqdJbwYBG8F2WDiXNyDrTDd+8tuYibzqNoFcvq1ZSoWf6tsP4aF3fvC3yeu3D/0wFtm0ZmqXaj7YtldHqIeRlG3rMZWrGmO5TTaChq5+Lwal6lcdXnJekybohYMMOhProOvXpi4TjmdJM0ad1wTD9J9K+Bw1nDvG5TWBz2JCq+rzqsfPhFcRHlWbVHV7MStbJi9L7OJ/1QSViYkXI1UxYpUGacov42YiaMMQIBEvHQOR61DhYSpbzGNiSLp+042PPI463OQ65Pr85DFBIBB4TBNUtVnX16p5aVOvqg4v8EqnKu8s6c0wwqaqLFtBxKtNqvk6auZ17hiXCF4SkmkAbCU4v+YTXR6bcrwIvZjHRDy9CKsJP129KiZiIqomPHXEUdcvNv/l5zbpTcTST1m288N2Xtj2q65OL0HGNBds14tNO0xtsMHda574FR51eW3Hxc/6HQQGZQh+rDmqZ36EOpv3o4BzzbhG2cGDLljbsnRMRUU45TJ0jGgQpuqFn8ycVJPbD5EZBD8RvKRBU5+IjEklvZr60ISHWJauTlVer3mhyy/jrfqvymvqK502bUPsbdPK5av6Xkwrw1kSUC+hbpCyhyXog66VJ8FInjScK+cM3WJ9nkBmWuK3ClTESCzLLxARtyEaKgKsA1vir/sv4qMzWYp4qfpR99vUzyqp1qTNiDioylCVZyM5y+3yQzxtmJAKJ50wpSpb1k5NZevap3pm017bNS7PnUHAq8+HKf95o1Ui6Pp2lOZMEc4N45IXJf22kfp0/23fDQM6gmE70CYJWq5H1wYd4ZfL1+Es5vXbTya8TMRMlU7G26sdVL/pPb3zEghkhm9qi06zsZ2Pqnaq8NE9MzFomzki59P9lzVPXRu8wKu9tkxyEGaveycLdqMg0GfJFActw0uAJfCyGMi/h4Vzw7hU4FdC8yJeXmUMMrF0hFYFg046r3c2C0YmasMweRWj9MJDp6k4jvrckA5Xv4RZR5CGFTjEfKrfXiAKKdQHqr6U08llyGZSW2GB8utwH3R92GjtqvaKaWyJ7aAWAi8C7aceP2lGQfgHnZ9+GP6T0BzP3R6XTQeLJg0TmNKoFqpN3ap0w+BhAhXxMtUppvOSlsU88jvZfOQHLxUuYj4vQq8yVfkVSOS8shnMtg1eacRybUGsX9X3fmBQQmirperyes09W/Aqx6u8UWhHNu20pUnDgEnAGqWmo6rXtNbOqv5zoXENQ9SHSaMi0DYqtfzfS1pXLQCThmBjvlCZpXQT0KSxmBanaVF7TWgZF1nKtmEWcp0qnGyIv0rQkcuTx1FmWoR/MBjkdgQCAWVeEy42oMLFNBb0rfotppHr0JWle3ZWc9xPe3XljRq8+meYOlXl6NpsO05e7waxUsnvR8nEnnvG5UWIdGBrTrApd1BiQ5NNRWR1hNdUj4pgek04WybiJdHpJExVP4vt9upX3YK0FRBkvP0wXjm/zjRmElpEZhsMBnHx4kWEQiEtE/YaCxuhRG6fiaDrNDfdmOsYuNwPXszvrOa4V3u9BDa/4JcBjYJJDivc2AqMtnkAvaA4SFk28NwzLhlsO8WLUNmkH1Yi1tWnIzAq8MrvxSBkXGQiMIzk7WUuMS0SmfB49YftuNlI9CoYxHQptiEQCCASiSAejyOZTCIcDivbJ37bMCU/UrypL1VzUjV3bOalPH5Pa46r+tK2TlvwK6jKv89C23saYDsvRgXnbo/LLww7kQeV2GzzqDQGL4lLZcaywdfEDGyIqFf5OuIvl6/Tls6ifttyZfxkTVU1LjLhvHz5MqampuC6LgqFAt555x00m83HcFThq+sLG0lY1p5MWpOpDl17/Zh9dTjq6tHlt53junF7WjAovVFZNs4SRr2OZNAJNLZw7jQuE/hRZ+V0g9p45bQ6bcumfNWE0Zk+bJmTDb5i2SrTn6xh6frZRjqXiZeuveK37TjqmIDcrkG0N1WbxN+BQACrq6u4f/8+crkc7t69q2yjjoGbmIkKVIRdJHwmxmBrEvVr/nsW5rg8z2zAxvQ5SjBZNkx4D4LTIHTNa3z81jUIPPeMS7eIVDCItOq1SGxBtWC8pEr5nUpK9kvQTGBjatItIFnKVRE/+ZnKpdmEg0qSVjE7G5BxUZUnvzeZPnX5A4EAYrEYFhYW4LouAoEA6vU6qtVqX3oV8/YqW8bDixmZtEIaCzGvaSx0a8IWP12+JzHHRWFCbLcJN3EOeLVlUNxE/AYBXb5RCN4mAcm2L4aloSI894zLREh14EdCH2Vn6+ofRJoTF5FOQvPD1CmPV3odrjrmJILoTaerS0c8TZK4CQddO2XmasJFfqcjBCqm5TgOpqamEAqFEIvFEI1GUavVkEql8Hf/7t9FOBw23qumGkMTgTK1Rdcesc915+HENsv9bNOXz/Ic96OF2QpZtulM+UYFprb57bdB6x+kThM894xrELAZhFGptSZNS1z4tpKpipCrCIdYju69CWfbRamSRE2mLRNzMTFEG2ndr2TnpR3oNCyTVib/dl0Xe3t7ODw8RDQaxfT0NKLRKK5cuYIHDx7g2rVrmJ6efoxhyPXKY+JHUjbNDRN4EXNTnzxvc1zV9zZljDLd04BBtNdB5qGqzmHg3DKuYTtnFJ1rWlReexO65zpCbpLWxfc6qVenvdjgJpcvEgA5qoWpHX4Jm6oPvBbgMOZQsQxZAzEx6ng8jqmpKQSDQZRKJSwtLSGZTGJ6ehqHh4fodDoIh8NIp9NYXFx8zOOQ6jSNOb1X9a/fuSwTcdsyzsMcF8t6lhnOqMGrrTpmZTvmo4Zzy7hEMNl4nxToJHQbvAZNo5tgqsmm05TkNDoJTUXEVWn9MkRTOlM7dOBXMlflNRF1VfuTySSuXLmCcDiMa9euoVgs4ujoCJ1OBxcuXEC328XLL7+Ma9euodvtIhQKWRFt8bkfDUz3TGbIcvle8+k8zfFhGP+ToDWjrmOYNaH7f5b98JFgXINKTyqGZytFigtAZ++3MeF4MQwxjQlMBGhQ7UZ+r+tnE7MS6/far5A1WC9irgNbHL3yqgiczEgcx8HBwQG++93votFo4O2330axWMT09DR2dnawvb2NeDyOer2OS5cuodPpoN1uW2k6qrFR9aWX4KBrg1yH3D7ZPCzjdh7m+CAMbBjhyJbe+BEAZYbuRwAw1ecFZ6mxnrtzXDYTXE6ny6N6b0MsVVK4qgy5Xhup0AsnGzOICmcdLl7liGGL5DaIIJevaqet9qDqH1XfqZiiSUL0MxYmoiYSeXo+PT2NSCSC/f19hEIh3LhxA8FgEMViEQAQDAbx/e9/H61WS9lHMvFRtUMlDAxLPLzWiApXU77naY7L9diOhRduXm236SNdXq/nfvvMBIPiOQo4d4zLZhKeZUfbTB7dM9OikheRn3pswISLiI/qvR9p1g9R9TNOsiZAfWciTiairJOa5XRyvMFsNoter4dms4lut8vpt7e3EQwGEQwGEQ6HMTs7i16vh2AwiO3tbRwfH+PNN99EqVTSakjDzgEvzcsEun611eZU/5+XOW4aDxtcBqU3o1wfg8CoyvcjaNjCuWBcug7WEUndBB5EehLz6aRDnQagS6eS8LzaZwuDlCXjpiNc9F6Htyypim1VwTAESsewVHjpCJgqr/iMmBCZX4LBIBYXF9FqtbC3t4darcZpu90ulxsMBnF8fIzd3V1mcL1eD9vb23y+y9QuGU/67ZVmVHNFVZZK23te57g8t20Yngm88nul1+F31lqOLZ6DtGdYOBeMy8/iGqYTvUwNg2opusVrYgKD4m1LpEUgrUIEnUYiS6cqadXLBGPSMsRydQtc1U4V7qb8qj4T0wcCAUSjUUxNTaFcLmN6ehrNZhNHR0eo1+vodDoIBAKP9W8wGESz2USpVEK73WaG1uv1cPfuXfR6PWV/2fSJ+E7XJ/J8smEu4nPTnLZ596zNcZ3WJ5ajm5d+GJipn23Ats+fRTgLHD8SzhmAfu9FBJv3VJb4X/5teibjJKYzleFFuHTl+zFnqLQnsX558asWvC6N6plNP+oIjo5Qm4QYr/GS8ZU/ct52u43j42PE43EUCgXk83lEIhG8/PLLfLA4EAggHo8jFoshmUzi1VdfRafTQbfbfawdItP02x+m/td9q+aGV796CQQ6Yv4sz3FdG3R9Kucztc1La/PS1rzS+GEINnUNW47q3Vkw1o8M47JZePJ73QDpJjstDJPUK0v0KmKlyiuWK096XZ2mhSSnMRFsr3K8TDC69vjNYwsmIqMqU9Unpht2xT6j81fkwj47O8tnthzn1CyYyWRw6dIlZDIZFAoFJJNJLkcVaskLfzmfVx4TM5LHUdVH8nPTXFMxzmdtjuvql/PaCp6i1uY1Ljb4+0kzzLoYFPww6LOCc2EqJNCp717PbCQ2XRrTJPUyN8nPbfGn53IZXiYk08I14WhKa0pv02e29XvlMT33wkOnpajSy+NVr9fR7Xaxt7eHaDSK7e1tlMtldDodvjQyEAggFAohlUrh/fffR7PZRDAYRDabxcLCAh4+fIijo6O+cmWmIgpGcj+ZBCwvQnxWYyHW/bTnuB/tzRY3XXkq2jKsmdAEg9KtpwmjwOlcaVy2i8xWIvcjOZlAlhZVEqw4mCrJ0ws/0zOviUKS4qBgK5V7lTFMWpmpyO90eWXtypZIUZs7nQ52d3dxcnKCZrOJ4+Nj1Ot1FAoFvjCy0Whgd3cXvV4P7XYbvV4PoVAIhUIBABAOh9njkJidWKeXZqUj1Kr0JvBihLYaGZUjx6R8WnPcS2DTpVEJEF71ysKQqtwnyUgGrctLE9fV4yftMHCuNK4nATotSrVwvBaYLCGqJEZVel2dfiRDuRxxkepMSiapWE5jK2GapGS/AoVMaHTt9osj5dFpAO12G6VSCdVqFY7jIBqNYnZ2Fq7rolKpoNfrodvtotFowHVdzMzMoNPpoFaroVgsot1uIxgMIhaLIRQK4fDwkMuWcTOZy2wYgWkcTVqWKu0wY/Qk5rgKb9u0YjobxqrSjuW1LeNii7Oqb8T/w2iUNun8Cj9PQst77jUuv5L9sKBiWvSt0zpEwidPCD+mHBVjJEZjIyXLUqAfSVG3AGVGYKN5eeFrM/HFPlWZpGTcTW0X86rq0f2mD2kWrnt6bcnJyQlarRabCCcmJvDCCy/gzTffRKFQQDgcxvz8POelq0+Wl5cxNTWFeDzeF0mftDAV3ip8qB+92iCmkwmi6rdu7qvKM807Fe46/PzOcR3oBCRdGToria4uuX0qYWIQZmBiWnLdtmX5qVOuy09+EwxLt597jUs3sGddp06KNEmuOqIhl6MyUeikaq82iyZAVf0m6VfOo5P4dG3UjYmKeZvaYyvx6hjxsKBro+M4SCQSCIVCHPEiFAphcnIS7XYb+XwerVYLmUwGFy5cwLvvvot2u41AIIDd3V2022127KjVatjb20O73WbTIXkk0kHl4+NjxsGkeenaIBNi1ZwdRtpWaUuqcmQNX07jd46rhEJVO1XtU9WtYz66ukxMRYe/rYCmK+NJ0LpB1pBpLsllD8O8nnuNi8CLKeie+Xkvp9URD5t6ZMJBeeVv3aLzqkOnYdjkU+Hr1R7V/0EXJT2zwVunbQ27sL3KIU0oEokgFAohFAohGAzyPla73UalUkEikcDBwQEODg7wiU98AsvLy8hkMggEAlhaWuJzXY7joNVqodVqodFoIBQKIZvNYnJyEtlslhmeF246zcJETE3zS/z20p7FvCqiJeKma4ufOe6ltcvtVGkQujbJ69Kk+ZiYtEnoGYVmMiqL06jKGVTo8V2P+6RtbSOAcrmMbDYL4Gw6x0tSEL9tJQyvumwkz0Hwe5bBtl0mIiiXMyoNyyT9h0IhxONxZLNZ5PN51Go1TExM4P79+wDAJsJ0Oo3l5WX2OIxGo3CcUxf5TqeDXq+HVquFk5MTdDodJBIJHB0doVwuIxAI4JVXXkEmk8H29jbu3LnDUTZUTEXVZ/RtywyGnb+6MTJpJF5MzgZHk0ZkYjSDtnUYkNf7s05+bawsfvLL7wCgVCohk8n4wuu5NxXqwKvDTJ1vKwmZJFvTYlGlMREWL9OJF7MahAF6wagYoxduKvMW8HhwXxVefoiCqQ9V2lwwGMT09DRrTBRJAwCy2SzK5TIikQgKhQLK5TJCoRASiQQymQw6nQ4qlQqSySQ2NjaQSqVQq9WQyWTgOA4ajQYAoFgsotPpoFqtIplMYmlpCffv30en09GatFTajzzPdH06CEG3WUeqMTKtE9VzuUzTmrARJAcRNged87r17ke71JU7DE5eeVVp/NCQUTB6HZwrjctWmhpUS9IxKnkhDjtgXsRHfCf/til7UMLk1wRoi4MXEfPSroiJmSR7W/AixMS0wuEwMpkM4vE4ut0ums0mQqEQVlZWsLKygu9973twnFMPw0gkgpmZGQDA/Pw8EokEHj16xJ6IrnvqfRiLxeC6LhKJBLa3twGcuso3m00sLCzg0aNHODw8ZAYlt09lAlOl8+qbQTVfv+WJ71Vt8SNA+knjpSUCT3aOPyva16gZjRedHWtc/3/w0jzkdKq0fpge5VcNkGpx2JgwVDiJ5di2UQemsr3aPEidNtqlScuh36r6A4EAkskkGo0Ger3eY9qEbhz8gmq8SWtyXRfdbhfdbpfPdL344otIpVIAgEKhgEqlgqtXr2Jrawv1eh2JRILxCQaDfIi5VCoBAKrVKmq1Gnq9Hscu3NjYQKfTsZZuVZqV2N/ye68ydfPVpk/9rEfTnDAJcCbGII+/Tqt7WnPcJGzZmNpGJbiOWjsaVLi2gXPFuAjOwgQmT2ovgihOSnlReEmAqgmpM43JZYj/den9MtZBGLBXm2XcdPiqiAk9I8ZFe0aO46DX6/F5KbE88TsQCKDX6xkJtxczBU5jFdJ+VDAYBAB0Oh3cvn0bjnNq8iNXdzqAXCwWcXJygnq9zngWCgWk02lsb2+j2Wzyc8LRdV0cHx8zc5bxCQQCrJnJDIrKEUF+r2unShgT+9+LycjvTHNONf/l8ryYgc3aeJbmuCxkiXjo8g/LDEbF5ExpTM9GpdWdS8Zl6phBOs7PwPgpz0RcVXWbyjdNcFW9KgJhqsvPQvVawCo8dQvWq5xAIICrV69ib2+PmQFFp5DbRwwmn89zdHYVUdf1na7/0+k0Go0GHMdBrVbD2toaO2gcHh6ydkbnsyqVCiKRCDNZgm63i3A4jFQqhZOTE9Yk5Yjx9Mnlcjg+PkYkEsH8/DwODg54Py0ajWJiYgLFYpHDSdlK6DoCacso5Hcma4Hut5+5qXr2PM1x1X+dQDEM4febdxCmpcunm0ODwrlxh1ep2Crwmhxeeei/F9NRTVDVIjIRSVUoIp35R5a05bJE/GxCHNmYLHR5de2Vn6mYkIyfXK78vFKpYG9vj/OQ2zgxDtLIaF+K/lNQXJugqLp2xuNx/PRP/zSmpqa4PAB8v1av18PJyQl6vR6uXLmCiYkJdLtd1Ot1tFotdpsPBoPMtOLxOCYnJzE1NcVnxOT+cZxTz8apqSmkUik+BwYAiUQCExMTePHFF9k936ttOqHHdk3Jc1L+PQixksNF2eChgmdhjpv+m3D2MxdtwJTXtk/99P1ZwrnRuHQTTicV6NR/+b840fyoziaJU1enSfr0kvJMC860eGV8VHiZ/qvMTiKuNn3mxTh0eYhRHR0dIRqNwnVddpaga0UuX76Me/fuoVwuI51O4/Lly+j1etjZ2cHh4SHvTZGbuY75q/Btt9vY3NxEu93GzMwMewkCp04YtVoNgUAAKysruH//PqLRKKrVKtdF93EVi0W4roupqSn2GJycnMTBwQFc1+V7vYBT7S4ajeLk5AQHBweIRqO4du0aHjx4gFgshm63i0AggKOjI+zt7aFSqSjnncnc5tf8o+obr/Re5jdd36ueqeadqh6b+nW4iuXLdfk1qamEZ1N5sjBgu5b9MDm5Xhttys9cGTWcG8alAy+JySafSrrSDZbtBFDV4ZVOLtNLOpQ1CpFgyellAim3S1ev6bdu8du0WdUHMmGKRqMIBoNwXReZTAbdbhfJZBLtdhuRSATHx8dYX19njz/XdbG7u4t8Ps/pcrkc9vb2UCqVHttDMuFBh4/p+pKZmRk0Gg02G3a7XaTTacTjcRwcHKBWq6FUKsFxTqNtpNNpAKceVcfHx3BdFzs7O5idnUW1WsXJycljd3ZRPZlMBo8ePUIoFEI4HEapVGJ3+1AohEajgePj4z4tUDVGqucqAutFnPyMoQ4PU5007iYrijy/bBmY7t2o5rgMOkuN1zO/2qsqnRddshUgTUzYz5oeBp57U+GoVFeddKGSsmxMDPJ7nTmF6pAnqCqPqa06phWPx/GzP/uziEQij8W9k9NTO0STlBwyyoSXjJ/cd6qPDaiISjAYRCqVQiKRQCQSwezsLOLxOFzXxcTEBKLRKOLxOB/sJQ2s2+2iWq2iXq9zRAqxv0w4Ud2RSASvvPIKstksZmdn8dJLL+Hw8BBbW1uoVCpot9vY2dnB0dERAoEAms0m2u02Op1OX3mZTAaRSASu67Lmt7OzA8dxMD8/zyZPwi0QCGBnZwfr6+vIZDKIRqNIJpPIZrPIZrOIx+PY39/H9vY2O4CYNCsRTIRRHEdxHMR8pjGTwc8c1817ej7I+peJrVjeoHPci2ibmLyqzfJvP8zAa0zk33770IspPgl47jWuUXaWjdrr9Z7SmCay+NxL8rR5p/ovfm7duoWXXnoJOzs7cF0XsVgMGxsbjy1InaRnktL84jzoeMn5iHmsr68jEolgf38fFy9eRK1Ww9LSEu7cuYNkMolQKIRYLIZisciMe3p6Gjdu3EC5XEYsFkM2m0WtVutjYjocHMdBp9PBvXv3EI/HsbGxgXw+z16F5BrvOA7HH6zVamg2mwBOmVUsFkOpVGJPQ9oTI6ZITiOTk5OoVqsol8twXRfJZBLNZhPNZhOf+9zncOfOHTiOg3Q6jWAwiPX1dXZKITOkTsgymZ/k92Kf+CFyZzVfVCY10xqU26Ran/I60LV/GA1DpwWqypTrFd/7qcsGRkFD/fbBsArHc8+4dDCIBCBPGLGDdeYFeYGI70wLdxjcVM9EfMTntLlPIYgqlQrq9TprH36kMNV7Lw1lWFAxTcc53dv60Y9+BADI5/MIh8NoNBqIRCJYXFzEw4cP0Wq10O12UavVEI1GcXR0xC7p5LTgui6q1epjZkKdQELj2mq1MDc3h1KphImJCXYQEb0Am80mDg4OOH8gEEC5XEYqleqr13V/7LIeDofR7XZx//591rSSySRc18Xi4iI2NjbQ7XbxjW98A8lkEqlUiuMbOo6DeDyOcDiMnZ0dboeqP1WMSEfodWMi/5bLGcUc1733WmOq8lTM2UZwNJU/DIMwCYQm3LyI/iDr7klpTDbzywbOLePyKwHo8usmlCzB6epWSVCmxa7DySRdiuXKaWq1GoLBIA4PDxGLxdBoNDhEkWhuMS1glUnmLCa5TV/R/263i0qlgvn5edTrdb4TKxKJ4Fvf+hZHZyfzHcUGJO2G2tNsNvv+exE0EVfSmG7fvo12u/3YfCCNR7z2xHVPz2TVajX+L57X2tvb68MhEAjwvtbU1BQODg7QbrcRCoWQz+eRTqdRKpWQTqfR6XRQr9eNB5XlvjbNNZPmIacX3+nq9jPHTflNZdiUo2qLV72qNF6E18TAdevZloHpNGlTPlN6v2NhAhsrzbBwbhmXl0TmVyocZpKJv01EQleuTV0mZtZsNpm4EyEFTj3UyuUyLly4gN3dXVQqlb78gUAA6XS6z1FAxcRUMAhhUvWVKU8wGMRP/uRPYn19Haurq2g2m6jVaqxZ0t6SuI8k4yO2x68ETweMO50O9ykJBGIYKrFMivpOHoeURmRe9Ixge3ubzY4TExOIxWLY39/H1tYWM7disYharYZUKoVsNsvMVAUmE5pqHGR8xDL8zAU/c9xL4zeltWGcfkDHELwYhc1ct7HO6OoQ2+2nbr/v/fabimmNmoE9984ZgH5RAWY1X5d/kA4WCY6KEIhSt6pOU5kq3LwmueOcOjBMTk6yp1k2m0UymcTMzAwSiQSmp6eRTCYxPT2NixcvIpvN8pmnhYUFJJNJpNNp/Hf/3X/XV6+J4cttNy0uFcjlq5iZWPZf/dVf4fr166hWq6hUKgiHw8jlcgiFQqhUKpibm0MikcDrr7+OXC7HZjeZAavaJ39M7ZVNfqp2RSIRJBIJPrtFWlMkEuGyRCZG2mG73cbh4SFOTk4QCAQwNzeHdDqNVqvFHpPkVXlycoKNjQ2+KkXE09SnNuOi+q8j4uK3CWRTpYirV9mmsTGtRy98dDjJhFgEHROXy9LNOx0uch3ib685afPMZowGZThegsowcC40Lr/Shim/PDFN2ppKcpUlDJ2k6cVYTRqVXI/o+UdpI5EIR2oIBoPI5XJYXl5mSX96epqjOWxubqLZbKLT6TDj6na7yOfzaDab+NGPfmTsl2EkPzmtjiGrFnG328Xh4SHC4TCmp6cRCARQr9dx584d3rNqt9tIJpPo9XqIRCJ8rknG2WYBq9qkk7SDwSCi0SharRa3K5PJYHp6GrVaDaFQCJFIBJ/61Kfwwx/+EOvr61yeyPxE4tJqtfjaE/JeJLf8tbU1jnkoa5Y2bZTfm+a4qT/E/6OY47r1ZcpnwtmP1m9qg0lLonrkdOJvFRM0aXMm3GwEb9tnunbYplflHzXTAs6JxgX4k/JU+WQwSTS6RWGSiHT1mOrX4eHFCB3n9IxTNptFOp3G7OwsOp0OGo0GcrkcVlZWEI1Gkc/nkc/nUa/X2XU6Foshn8+jUChgYWEB6XQaruv2nQmS6xLdtm3apmqrrp3ywpdxIEK1srKCWCyGdruNRqPBe1rkiHF4eIh6va7UiLwIrCqtrp30O5lMYmJiou/4QaPRwMnJCWq1GpLJJBKJBK5fv45arYZcLveYqVD8kNNHq9VCuVzmILztdptNuaFQCNPT055tUkn9JoKtSqvKM+gcVz1Xla0j1Cq8ZGYwKrpgwl+3/uXnOmHHJAyq2i4z97MAv2Otyq/K53c8ZDg3jMsP8VHlUz2z7Vx5MEyTSScd2S56G+kKOHXKKBaL2N7eRqPRwLVr1+C6Lqanp5HJZPhamEajwebDUCjUt0dD5qZUKoV0Os1MSocPvRcZmq5/dYxI1S45vZwnGAzi7t27KJfL7GxBGufk5CQ7QpTLZbRaLd8mWL9pQqEQLly4wMFvo9EoQqEQnyGbmppCNpvlcE3hcBjLy8vcnzrzUqfTwcHBAY6Pj/sulez1eigUCnwgO5VKYWFhgV30qRy5P1XPdaAjODrNR5VmGOZhqkeFk0rIUjExL0Jqk9ZkmrPVUG3WtYrO0LeXQKUCv4KG+N5rDPwKK37hXJgKTeBHVZUngJ9OVpk26LkKFxu8VBKYLLHppDzXdTluX6VSwa1btzAxMYGZmRk2AZZKJUSjUWYwS0tL2NvbY1Nhr9dDLBbjIK1EGOk6D7kNOjOibqHaSqwysxTTOs6Pwz6Jh3UJl2g0ikwmg1u3bvW5qtsQC525TJVWhG63i7t372JiYgJzc3MoFArY2Njgg9Lb29t45ZVX2AOw0WjgwYMH3O9iX6q+RZwcx0E4HMbMzAwcx0EymUQ8Hsfu7i5fbNlut5UEW6dpDaI56Yj3MITKdq3oNBrV+Oo0N9OcNPWHbq4PKkgPCn7aZFvWoO9VaWQ8TP1qA+eOcak6aNByKL9u8E3SlIow6BaiaQBNBF5H6Ok7FAohl8uh0+nwfguZzYrFIgDwWadwOIzJyUkcHR0hk8lgdnaWCWo2m8Xk5CQODw9xeHjI3ofyYvEiLl4MV8WgaK+IPCJNREQ8i1WtVtFsNhGLxZDL5Yy4mHBWtUvX7yIEAgFkMhkkEgkcHBywS36j0UAoFML6+jpfX1KpVFg7ks2FqnaKbXDdUycO8iBMJpMcQoocOBzHecxEqsJZRUxsiIs8/qb54CWte+GlYhSqtSozKHE9yulVZalw9RLIVG1RCate7VW1wQtMbdLBILRRN36jYHZ+4NwxLpsO8upo3YS10RJ0eUxSoUnKMxFP3Tuxzk6nw1EbKBQRRRPP5XJ8aWG9XucDunQ1CO0PhcNh7O/vI5lMolwuKwmUbsF7CRGOc+rIMDc3xxrR4eEhQqEQxxd87bXXcHR0hEgkgvv37/e5eesWPn1efPFFPHz4UHnNiW4OUGR5+cyXCnexneL/hYUFZDIZjoXYarX4epNYLIZ6vY7Dw0NmqmTGFNugA3lOVSoVrK6uIp/Pc5BfGkNV9AxVWXKfqIirjYYt//ci0qbnqrbq8tnON1M+W0ZhI0jK70y0Q6eNmPpVVY+XRWdYDViHw6iZkg2cO8ZlAyrJSSZCMmPxMnnZLC65Pvm9zaKjdzLBVBEI8kKjqOOimazdbiORSGBzcxOO47A3Wq/XQ6fTwdbWFqetVquYnJzE5ubmY9dkqIiXafHo2lEul7GysoLt7W3EYjHMz88jlUrh4cOH2NnZQavVQqvV4sgStvA3f/M3fPBYxFnXZ8RIX3jhBRSLRZRKpcdiDJraQhdHbm5uskm13W6zZhsKhThkVCAQwLVr15DJZPisnch0TeC6LjvFkGfh/v4+x6SkQL8m06jYbtUzL8nfL5G31d5068APHqo56FW/11o1mQZN+KnKNgkLOlpiW4euvcMwGC96eFaMUgfnknHZdKJJkpM1BpMko2JapvoHGUgZHxXj072nyZvL5VCpVNh9vNlsYm9vD4VCAd1uFwcHB3ylhkw4yeQlx/LzSwjkPhQ/7XYb1WoVH//4x/HgwQPem0un03x4utPp8GFf3XkpqofOOzUaDTQaDdRqNeMYOY7Tp+XRweV8Ps/Xi5jqonbEYjFcvHgRh4eHaLVauH//PqrVKgsOlUoFJycnAE7NoN///vc5XJXY97K5UDUP6ebko6MjpFIpRCIRbGxs9F3TIrbXBkySvpcg5yXx+2ViMtisHR1+ooCnqttLMBX/y+WJ/03l6jRU+bkXvbHBfdSg6gubPGcF58arUAQbqcxLE/BKq5qwuolpA7rJLL6Tib38XHVBJP0OhULsKi46VwQCAXz2s59FLpfjK0LoQ5rK7u4ubt26xbf1ym2X69K907WVInQ0Gg0cHh7izTffxOLiIhYWFuA4DhN9sU/kqOnix3FOrw65ePEiHMdhE5ypHx3HwQsvvIAXXniBQ2O1Wi2cnJz0ubSLn2AwiHQ6zZdTUhSNra0t5HI5XLt2jaNkiJdL0qfdbqNSqeDo6Ijd2+UIGvJ8oO9er4fj42MOyOs4Tl8dlNaP1K0SkEzvbTVD8dsLj0EFO9Xa0/Whnzq8aIlq/avwMz2X+1pkiDrwMsGqhOlBwSavrk+HqdcE51LjksFGIrGRlnSEWHw3jFnFCzeZGZAzA13ZQZqLjA+ZvKgMOohMUv7q6ioymQxKpRK7i6s0LxNxMDEmU38QnnT4ud1uswv73Nwc78nV6/U+pxCxjeTtSI4IADA5OYl2u43XXnsNb7/9NgcU1knPtI9Hd2UtLy9z3EDS9ETGTcIARek4Ojri/qSD0ScnJ9jZ2Xnskkqx70TCriO0MtDzZrOJzc1NdLtdHB8fo1AoPMb45HaatA3duFF5XuOqIr5eRNgkFHqBlxVDtUZl/GyYma2mMey6UNXjRZdMINOuQcFE12xxGDWcW8blR63VTSDVpNNJpTrmZTKt2JYtfgcCAUSjUZaqA4EApqamkE6nMTc3h3fffZevcad8pDlR/uPjY0xOTvJezIcffsh7LyqGRbjpcNcRNrlNYh6ZgdCh3GQyie9973vseReJRLC8vIzV1VVUq9XHmBYxkEwmg0qlglQqxYwmHA7DcRwsLCygXC7j4OCgzwGC6g8Gg/j85z+PmzdvotlsYmFhAfF4HHNzc3z26rXXXsO7777LGhiZA8l0GY1G4TinV5mQOZCYqRwJQ+5PXZ/rgNLRviT9p6C/Ok3LNIY68Et4dOtON8fF9vjVOrzyy/Wp/ov1mNL6md+m+sVn8repfC/GYYOHKZ1XuX7abtNvw4IvU+GXvvQlvPnmm0in05iensYv/dIv4fbt231pXNfFH/zBH2B+fh7xeBw/8zM/g+vXr/elaTab+M3f/E1MTk4imUziF3/xF9kbalQgD9gweVVqua2kp5Lw5edUhy6fWB8FaSVGRbEIy+Uy3nvvPT67JecTiVmlUuGrME5OTlCtVlljEE1yKm1L9V/VF7q8IsOR+7ndbmNvbw/lchlbW1vY399HuVzG9vY2jo+PAeAxk2A4HGYt6bXXXsMLL7zAZsd79+5hd3cXx8fHHKNQdLmncgDgm9/8JhqNBmKxGBzHwcrKCrLZLC5evIhUKsV9S/d7UVxE2rd6+eWX+SwVmexUTEulxfrRtFQfeqdjWqq+9wsqbcIGbIiYTki0xdWEm279ieWb1qhMuP0KFyrcVGtbfK+iE2IZMrNVpdOV43fsBxFqdALEKMEX4/rmN7+Jf/gP/yH+9m//Fl//+tfR6XTwhS98AdVqldP8i3/xL/Cv/tW/wh//8R/j7bffxuzsLD7/+c/zhjQAvPXWW/izP/szfOUrX8F3vvMdVCoV/MIv/IIvbzFbsJ34KkKrG2x5Iusmkw4XnURKH3E/RU5H0v3i4iIuX76MfD7P7u3k/SaXIROAQCCAarWKw8ND476KaWLK7+QoGSLuqr03uc2uexrZotPp8NmzTqfDV3eEw+G+8sRPJBJBoVDgixbp7BeZ0qrVKmKxWB+uIk7BYJCdVOhM1NbWFo6Pj3F8fIxQKIR4PA7HcZDNZnHlyhXk83lMT0+jUCggGAxia2urz1WfGAn9lpmM6pncdzpGJefxej8smOatLq34X15PJrxUTFw3j1X1mAQoOb+4dnXlm9pj0ib8ajW6vGLfqbQvm7GwSTtqxqLDZWTluUNgvL+/j+npaXzzm9/ET//0T8N1XczPz+Ott97C7/3e7wE41a5mZmbwh3/4h/j1X/91lEolTE1N4U//9E/xK7/yKwCAra0tLC0t4c///M/x8z//8571lstlDlk0ig4Rr5fQLQDxva0kqCpHJ3HavguHwygUCuy9VigUsLq6ilKp9JhnoMz8HOc0skIkEuGArGIIJDnCubhIbcxdKqlW1w4ZL2JIZPar1+sATm86TqfT6Ha7KJVKjB/loSj35BIeCARwdHTEGiWZ0hzH4XNNIr6JRAKXLl1CIBDA4eEhAoEA4vE4Wq0WUqkU9vf3OfDw4eEhgsEgMpkMLl26hEKhgHfeeQcHBwc4OTnpEwBUjEqeGyYGYyMMmRiY2Mc6jU7HJEzzX4eLDZgIveq9TfpB6jWVq9KIdVqP1zPVe795VRqrPDfk9yYcvIQGXVleZQ8ChEupVEImk/GVdyivQtrwLxQKAMBnbr7whS9wmmg0is997nP47ne/CwB499130W63+9LMz8/j1Vdf5TQyNJtNlMvlvo8OdItUByotwZRW1BBUWpr4W6VdyBKgrF2p6hP/k2mqWq3i4OAAt2/fZgIt5iHNLJFIIBQKsRaSy+UwNTXF57VM7ZTBJL2qGJH8kTUvlSbW6/VQKpX6zG2hUAjLy8sc6FfU7prNJt9FVa1WcXx8zB59iUSCGZ2ojYqfZrOJhw8fcnSLk5MT1vxoj4qCEycSCWQyGbiuiwcPHqBUKnFsROofmXmIz21Anjsq6Vs3JiqtTQVe2oVfoc1rzanWgwlkLUN8LjNmGyHSD8GVyzQJkyJeXuPk1WcmfOTf8lrT9Zdcj1dfmWihibGqfp81DMy4XNfFb/3Wb+Hv/J2/g1dffRUA+LrwmZmZvrQzMzP8bmdnh8/H6NLI8KUvfQnZbJY/S0tLfXiIYNvhpnaZNAexXHmgdQtU/C+6cdtMIpVZoN1uo1aroVwu8x6OWDcxrTfeeINvz6VAufPz8+zppmuTSlJXMV45j45ZUfBemanG43FEIpE+d3MCsZ5er8f3Tolpxcsbe70eyuUyn/fa399XholSMc1Wq8XnrrrdLprNZl/opGazibt376JSqaBSqSCTyeDk5AT7+/scysmPgCS3T3wmC0Uq7U18Lpd3FpKxDDqhRcesxfemfhLnOaVVCYm6+WkDuj7T4WHKr8PHZl3L69tLExJ/y3ir+kh874d5yelV/8XnOhp41jAw4/pH/+gf4Uc/+hH+/b//94+985JIVGBK8/u///solUr8obuLqK5Rc32dBGUz6CYwLQgxjfwRn4sXUh4dHaHdbvNNvxRFgYj75uYmrl69ivn5eWSzWb6PipjFIHiKDMyGaUWjUUxNTfFZJ4qGvri4iMXFRbzwwgvI5/NaDcBxTvegPv3pT3PA2lgsxm2kKBF0tYfrnl7BsrW1xdHtxfaIzhki8SDzo+js8alPfYqdOsgzs1ar4dGjR1x2JBJh70UqSwe2zE3sY9XcMzGAQbQL27QEOu1LnBdiHpEJiaBjwqa2yExNLkuFl67NXvNc9U5uky3z9GIsclvkclX1qBimPB42ApP8XNdmGXSCrA0NHpZOD8S4fvM3fxP/6T/9J/y3//bfsLi4yM9nZ2cB4DHNaW9vj7Ww2dlZDkWkSyMDRfgWPyKopD8RTItcRywHmZC6soj4yk4BKkKvw4kY0uTkJObm5voioNPFkHSmiBhYMpnEw4cPUa1WOVbe/v4+X7Mh94H4W+UgIkuJYt+qpEBq0/z8PLuYT01NIR6P4+TkBK57esaMItSL/UPf8XgcmUwGDx8+5Ft+VfgQc2m1WohEIko85EPL8ryhg9CO42BnZwcPHz5kJum6bp/zRq/Xw/7+PqamprC8vMxpTKASsrzyqPrVK63uvw4n05oxMRSdgCVrSipmIadVzXkdMzKtW5u2mUC1nk3WERXz1KUz0QebtPStsyKo2iCvVVOdNu1QtUunsXrlGwZ8MS7XdfGP/tE/wv/7//6/+Ku/+itcvHix7/3FixcxOzuLr3/96/ys1Wrhm9/8Jj772c8CAN544w2Ew+G+NNvb2/jwww85zajBppNsO1+WEr0mNHm9ZTIZZipkPqMbik0LLBAIIJFIYHJyEplMBsFgENVqlWPi5fN5pFIp1Ot1JBIJZnAAcHx8jEqlwoyBHB7oHJiK8BC+KpOmatLLBEm1b7WxsYFKpYKJiQlkMhlMTU0hHA7zHpF4JQkx6XQ6jWw2i0wmA8dxsLu7y1qU67rKe78cx8Hk5CQODg768KP3dJSADizLzBI43a8lxr+7u8uHnmXHi2AwiMuXL2NnZwePHj3SmgtN80pFcFTzSGYEo9C25Hxe46rDT5XWCw9bZi0LJoMwZirHBidV+TZz3yRUmAQAXVqvd3K/yKDCUfXbhhnb4DcsExoEfB1A/of/8B/i3/27f4evfvWrSKfTrFlls1l2F37rrbfwxS9+EVeuXMGVK1fwxS9+EYlEAr/6q7/KaX/t134Nv/3bv42JiQkUCgX8zu/8Dl577TX83M/93Ohb6AGiFGLDiGRJUGXnFX87zqnW8NJLL+HmzZvodrtsQnvppZdw584dHB4eas0OjnPqkJFMJtkxYGdnh81us7OzHNGdtFjxxt18Po9arcZOBJVKBeVy+TG8RRPa8vIyTk5OUCwWEQwG0el0+iJyUL/p+ocgHA5jamoKrVYL8Xgc8/PzyOfz2N7eRr1eZwYuXkciMpp0Oo0rV64AOHX8EftUZFqk7YRCISQSCdTrdX5HZYtRLqLRKI6OjrgNsVgMrusilUrxlS+yW7vsVRkIBHD37l3eb/Ra1F6Cjtx3Ok1e1thsylNJxXJ+PwzKFn8TIdeBKp+ttiNrFrr0fsySYnkmPLw0Yi/cTHlV7+T/XvV7zRWb9IPkt7EUDAK+GNef/MmfAAB+5md+pu/5v/23/xb/8//8PwMAfvd3fxf1eh2/8Ru/gaOjI3z605/G1772NaTTaU7/R3/0RwiFQvjlX/5l1Ot1/OzP/iy+/OUvG/ddzgp0TAdQD55pgaiYluOcHki9f/8+Ll26hG63i729Pbiui8PDQ0xMTPD16yY8KpUKut0uXnzxRXYIAIB8Po/Dw0NEIhEm0JQ/Go2i2+1qHQhkZjE/P4/Dw0MA4Jt05+fn8eDBA65Pt4h1fVGv19k0KQa6JQ/HUqmEYrGoJKLhcJiv+8jlclhcXMQHH3yAXq/HjDYSiSCVSnHk9UKhgHa7jWAwiOPj475LMsPhMCYmJrC3t4der8cMLp/Pc4QMOg/n5dpeLpf73PN1BNmP2cUvsZf7W2SOKiFIl19HZPyajORvlbahYqImBmrDDOV84vEWU1ovDUenQaqYvG49iMKtLfMwpfdiyjowCdm2jNwPyH3nl3F6lu/6mZ3PCIjnuAD1ArTpJC9NS0WkvaQIWSNwHAepVAqFQgEvvvgiyuUyisUiWq0WKpUKkskkewiqpOxgMMgMKRwO85X0APiaD9I0Tk5OEAqFMDk5yQT5/v37fGaLCKwYJshxTs8yAaeMIp/PIx6Po1gsslmu1+sxsbeZLqI2RMwkHA4z/sTM8vk8KpUK1tbW+soOBAJIJpNIJBJ8iWQ2m+Wr68WzWTMzM3j99ddxfHzMWiKFdaJoG4RDNpvFzMwMDg8Psb29jVarhcXFRdTrdWxubrJWKh/Itj1ILL8T55H8TCxTR8zFfI7jPKb1yYRHxxBMz3WEUYW/Lejq1ZWlYrK2Gozp3SD1e71TMS0vbdbmnR/NRMfQVc9VeKveD8IGbOit1ztgsHNcz32sQpUEYcvZdel1DEv1W/yvy0ehlFZXV9HpdBCJRFCr1dBut3F4eMhxBOWySVug/RjybKOzWcfHx+xWvri4iEePHrEpMpFIIJVKsRZLTEQ8oEz1TU9PIxqNolaroVAoIJVKIZfL4YMPPuDwULp+NUnTrusik8mwNyNdJU9XjRCTIFOf2AeNRgOdTgfXrl3Do0ePEA6H4bpun/nPcU7PYe3u7qJarXJEd2LUYhDiTCbDcRop0gtdYeK6rjFOoy3oCKZMTPxK1DomINalqlsl9aqeq3DVCWuq9unwN0n5KnxUeOj+24CuH2WG40fzMGlisqAh51HRBxUeMnjl12k3pj5TCT5+wUarGqWWJcK5vNZEBK9BkRekSVpUgRdDo2elUomji9OliKKWIWtpgUAA4XAYsVgM09PT7MKeSqXwyiuvYG5uDpFIBNPT01haWuI9RnIEqdfr+OEPf4hWq4VgMIiVlRW8/vrrfZ6H9Dk4OOD9rGq1ikgkgm63i8uXL2NycrJvIejaKE5iMU21WsX+/j663S7S6TSb5WjPCQAmJiYec5YAwMy+3W5jbW2NGbWY1nVPzailUon3y2S8Op0ONjY2mMF94hOf4DE4ODhgbVA3jiL40ThN73SCka2G4UUIbfA0aQyqdDLuwzIcVXm6jwofE65yHbQXKp8plNunKksW9OT+9cJXHCud9utF4P1oj16ChkmY8KpfVdYgMGg+gude4/ICr0HxO4CqvCrC7jgOhyECgE6ng+PjY2ZAqijl4u9AIIDFxUUUCgXeo2o0Gmg2m3j//fcRj8eRSqVYg5iamkI0GsWFCxfYbJbP5/kSxkgkgkgkgtnZWfaUEycwaSp0/ouinsfjcYRCoce0Li/zCPUFXTVCDiR05oxMpcFgkE2I5BAh5q/Van0ejjMzMzg+Pua9qGazia2tLdbmxCj48XgcjUaDy0qn0+h0Onj77bc5mka1Wn1Mq1QRP6+FJhMnVT+Z3g2ykL20F1vNzmbemxilDMMSJRtcvN7J32R+zufzPL9t6vGjRajG14tJ2NIccQ7aaKp+6/Sa47q5Mgj99KscqODcMy4v0Nlg5QHRTUAd0wqFQrh69SouXryIv/7rv4bjnO4lxeNxdoAQz2KJnnVURi6Xw/LyMl9XQdoEEdnl5eW+yOeRSISZViKRwLVr13Dr1i2+DmRnZwfpdBqXL1/G8fExDg4OEAgEkMvl4Lou77c1m00EAqc3EF+9ehUbGxt9XnY65kWakjzJXdflyBakAdF7xzmNn1goFPhMV6VSYdd9UWIOh8OYmZlhhiX2veu6fCiYzrtls1k2z87OzuLo6AjNZrPvhmDVJZUqhqACXTrdPJHnEJk9VX1K/0UNUqxLlV7HcMXxMBE9HYMz9YO8Dsica8rj9c6EjxeoGBd5ttK6DIVCysgxKtOhqX55HGQtzraPTWXL5kfb8bOtX4W3Hzz91E3gd0xV8JFlXPJi1klXgH5BiwxL1jSAU8J048YNRKNRRKNRXLp0CcfHxyiXy+j1euxoQZEfZDPX3bt3eS+rVCqhUCjAcRxUKhVcu3YNrVYL2WyW4/ldvHgRJycniEajaDQa7F3nOA6KxSJrGBQCqlwu8z1S2WyWb+QNBAJ45ZVXcOvWLbz77rusfRFzlZms3K86qYy8+MQ0vV4PtVoNU1NTKBQK3Deiez7twV27dg2O47DJlZxSpqam2Gz63nvvMTOanZ1lBthsNplp6YixPCeICIvMTccg5Hz0nyT9YDDI0T2AU2/ImZkZPHr0yHgdiUpIkLUfnbYlPxPziulMc9+WiavS6+aIiUHqyrKpU9XWQCCAWq2GVCqFcDiMSqXS5+RC6VR9YquFiL9tNCwTYZfrVjEvVT02+PjVHv3AKJiRHzh3jGsYSUHHxFQDL08SmXnF43Gsra0hlUohHo+zIwYFCCaCOzExgYODA778UYR2u43r16/zoeJut8uHju/evcsaSDabxezsLGZnZ7G7u4vd3V10Oh3cunUL7Xab4/eJXoXkgk7mwWvXrqHRaGBzcxMA8ODBA1QqFSwvL3NMRCqDmJjcD2Jf+AEy9yUSib74g1Qe3ShADi2ZTIZvGybHi09/+tP4xje+wabZQCCAhw8fIhKJoFqtemomIs7BYJDHjBxLyMmFIn6IeeWygB8T4kAgwLE1Dw4OcHR0hFAohKWlJVy7do3Dl6mi75vKtSFGOnOuKq2NtOyHAIrCG50FVGmduvw68JOf9kHD4TCy2Wyf6bxcLj92U8CwoBMCTNqSitHJ6fz0l5eQbXov1z8oPAkmdi4YlzxhvKRIUxk2k0UsmxYm8GPTn+OcumnTgdZQKIR0Oo16vY54PM4LptvtsrZFeVWmR9d1uYx4PI5SqYT/9X/9X/HVr36V93BqtRpefPFFtNtt7OzsIJvNcrDYWCyGhw8f8gFk8k6kCdrtdvHee+/BdV2OedhsNjm6ejQa5egcZOYjJuYFclvkvnYch6N/AKdHHURvP+rrSqWCzc1Nxi8cDqPT6XDoqm984xt8Pi4YDHJQXgqMK+JDzh3iDcK0jxYOh5HL5ZDNZlGtVtFut+E4pxrp5uamVhKn9sXjceRyOezu7vKzZDKJdruNyclJvhm5VquhWCxiZWUFDx8+7HNIcV3Xqm+9+p36Wuxz3Xv5OYHftSTXQVYF6ktVnSrQ1atbl/l8ng+W011sZBmIRqMoFAp8xdLW1hYikQiHQRPro98mLVaV3g9TNwk+qjpN/W5jojP1n2x9UM3tUTH2UcJzf47LJD2YQKUZ6LQtnQYWCASQzWYxOTnJJjY6DJxKpXhBkSZBC5eI0tLSEm7dusVMIRQKYX9/n/eYiMmRlhONRlmjSKfT+OQnP4nNzU2EQiGkUilcuHABa2trODk5QalU4uvrZ2ZmcOfOHZYyqUzZREVtDQaDWFhYYG+7TqfD+2xTU1PodDp48OBBnzOFqn/lb/lDRO3q1atoNpu8d5dIJLC6utoXlzAYDPJlkLFYDAsLC3xrNkXoKBaLmJ6e5gjvtVqNXeOpzfF4nONllstlPp9G4zk5OcnnxwqFAo6OjrC5uYlyucyMW+wzcV6Q1+fk5CRqtRoajQaq1SqfwSMX/XA4jGg0yhHp6TzezMwM9vf30ev1WLPzugdNB+Jc1mleJul6GIZFfRkIBLCwsIDJyUkcHx/j6OioL2KJV902eJDwmM/nceHCBTQaDV5DzWYTwOlhdxLgms0mWy6KxSKbpsW6gcf3nOX3g4BuTHRmXV3dJpqn6yc5jak+3Zzxws0vc6M6nvh9XM8iDCIZyCYML22Lvh3H4TNJruuyNB2LxZDJZNhElEqlsLi4yHH3KpUKDg4O8O6776JWq6Hb7SISiTCDSiQSyGazSKVSfJWH45w6NZAbfb1ex/Xr13nxtdtt3Lp1C5OTkwgGg5idnWXi3W632SRI8Q5l6ZKIJP3e29tjRjI3N4dYLIZwOIxr165xOlXAYApUK15BoorHSIyLvCwXFxeZwScSCRQKBY6ZSPkpuK0YTDcYDHI093A4jJOTE2SzWT4bRhdvRiIR3hNbWFjA4uJi3/1eVEe5XEatVkMwGESv10M0GkUsFmOGJcdwlAP3xmIxzMzM4MqVK3CcU2eAj33sY5icnGST1crKChPVUCjENzhPTExwLEV5vpkIg4kIijiqypLHTzffVetBLpNArI/2R1utFu/1qeJZqtaajIesqcjzjrTtfD7Pa4nGcXl5mT1zyVxIY2BTn9hvXhqQF8hjIgrHXuZdvxqVnzQ2oBM6nrRGdi5MhbbgZd+l/wReizYYDOLKlSvs4p3JZHB8fIxOp4NSqYR0Os3XXkSjUczPz/N5qUajgZ2dHTaD0d1PkUgEExMTHDEiEAjgJ3/yJ/HOO+/whBcP8qbTaUSjUezt7bEJCjjdiyFCv7q6yowxEokgl8uxG7i8WIi4z8/PY319Hc1mE5ubm3wdynvvvcdmMArWKxJ1Ylzk6XhycsLvZWLYbDaRSqXgui7W19f7+o3Mqp1OB47jsEkvGAxiYmICKysrzJAp1mA8HkcwGESxWESj0UAwGMTFixcRCoXw6NEjDjm1vb3N7Y1Go4xfLpdjYlsul9nc2Gg0MDc3h7W1NU8TVrfbxdWrV7G1tYVUKsXHAD71qU/hb//2b7G0tISHDx8ilUphdnaW9xTJ1X9zc/Ox+9VUfSfPUxNR9aM96daHqQwRN/HSUupHMkHT0Qagf0/PRLRNuNEzEjg2NjYQCoUwNTXFxywo1Nza2hpbHOh+N5PFQFWfX81TJUTQc5FZyf2qm1s2mtQg42xjRpbn15NmVDJ8pEyFKknTC+QJJkrXdLB3cXERtVoNs7OzePfddzlqBbml0/4NxcN77bXXUCwW8f777yvdsWnhJxIJRCIRzM3N8X4O2fCTySSOjo6YgbTbbY6oUSqVmHDU63U0m03E43HWZLrdLhNI0hYJyERJrvEicwuFQpiYmMD+/j4cx8Hs7Cza7TY7elBA37m5Od5je/jwIVqtlnJxkGmNtDly+iDmOzk5iYmJCZTLZfa6dByH8xBxarfbmJ+fx8nJCUcloX1H8rgMBoOoVCpoNBqYmJjA5uYmotEoa2nNZhNLS0vsiUm3TFO8xHA43Bf2SmViFffJyHzlOA4zPgC8d3jlyhXcuXMH9+7dw+XLl7G2toZMJoPd3V0+sC1KtyrpX7YUmOa7/Fz1W8yjEuh0/0WtgUKGraysYHV1Fc1mE5FIhCOlkGcngD4PT8dx+taBiiypCD9pcOTARIGnm80mGo0GZmdnUavV+OhHs9l8LAQalSmaB02M1MvMOgh4mU/lulV5vRib7rmuzLNmDcOYCs+dxmUaJD9MzqvcaDSKK1euoFQqYXJyEnfu3MG7777LjCCVSjERpb0N0npu3LiBVquF5eVlPHz4kBeNCL1eDz/xEz+Bzc1NHB4eolqt8jmliYkJ5HI53lxuNpvI5XLodrtss4/H43j55Zfx3nvv8QWIAJDJZNiLkYij+Ol2u+h0OqydiMSl1+thZ2eHiTOdpSIz3KVLl3B0dIRut4udnZ0+ZiP3I31Xq1UO+0QCAZmXiNgAp0zs6OiIiV+v10MsFsPKygp2dnbQbDZRKBR4P4kOKNO+FGk+1EcAsLi4iLW1NSaq6+vreP311zE5OYnbt29zOC46g0bnf8hcqWuXGJE+Go3CdU/PyJGmnEwmcfv2bRwfH6Pb7eKHP/whut0u6vU68vl837UsfuYkoNbEVGl1GpxOovbKT7/J0YgsC5FIBLFYDLOzszg8PGSGks1msb29jU6nw0x9d3eXbyEwAc0JYlT5fJ4ZIlkgaH83Ho9jf38fwWAQ2WwWx8fHfWcETRYWlSao6i8b854Nw1FpOnJ6lfCgG0OvfCb8RsGYTQx1WDhXjEvHiEwd58W8VO+DwSCWlpZ4P+T999+H4zi80U52dCJckUgEpVIJyWQSwOn9Y3Nzc5iYmMDx8TGKxWLfgUhiYvfu3cPS0hLq9TqSySQfJKZ9LdKCkskkkskkaw4Uk/Du3bssXQJgN+CDgwPepJa1B2KiqsgC4kKJx+NIp9PI5XJYX19HNptlxkOHmEXnCnk8xGdk1hO1FgDMhF599VUcHR0x4w+Hw7zJn06nOazVxMQEUqkU9//+/j4CgQBrMLIn4b1799BqtfrMR9///vdx4cIFDjU1MTGByclJAECtVsPR0RHi8TgfD6D2kMRPTIvOb5FmWqvVEIvFMDk5iYcPH3IAYMK33W6jVCoxc6ZyZclY7EN5bFTvTOtB/jZ5MnpJ6OI7ih85MTHBxz7i8Tjm5uaws7ODeDyO27dvIxQKIRaLsdcl9Z/qcLBcl+OcRkKZnZ1lYWF/fx+u6/J5wYWFBdRqNUxPT6NcLrNnYyKRQLVa5Sgrqj5WEW6xv2zNmjLxtjH7in1uU6Yqr59nJro5DPM6C4ZFcK4Yl06yMaUH/EkGpJVsbW2h0+lwVPZAIIBSqcREjAiluCFMRJKuMWm1Wpiensbx8TFvFAPgfayjoyO0220cHx/zfpV4IDYYDGJ6ehqXLl3C1tYWn5ehfaFqtdq3v9Tr9ZDP57G3t9e3MS0zLbGtOgL52muv4caNG+wuTpdV0h6ZqJHJ+xqiaUmuS6yT3OIPDg5weHjI8QhzuRzvod25c4eJH0nvP/zhD3F0dISJiQnuBzJlTk9P42/+5m9YExNNRq7rotFo4NatW4xnqVRCPB7HT/7kT7InJTmNEH6kVUQiERYoALDHZzKZRC6X43NyIhMlzVclRKjGwYuYes1hFbEj4Yo8GWUTpYlhyeMZCARQKBRQr9fhui6uXLmCYrGIT33qU7h79y57/ZHLOjnkvP7666zhqiwQqvoajUbf/WtkhRDNtOl0mr1Faa83nU5jdXWV54UsYNnQA5VwIPabijnJc16Vn9LQupHng2mMBxHCbdo5KPPS0Y9RMLRzt8dlC7pJBDxORMUoDpRXNFeIgxsIBHDhwgVUKhUsLS3hwYMHvM+SyWTQ6XRYqqa9LLqIUJzsZAYhd3Sqk+z55MFG8ffI/EF7YdeuXcP9+/f7LjokIgWcag/imSGRcFIfiN9y+/P5PDPsXC7H+02Oc+otePnyZfzN3/xNXyR3FZEQCZ78Tf1DDi5ElJaXlxEMBlEul/HCCy/g8PAQk5OT7J1J16aQw0e32+UbqOv1OtbW1tBut5lpqZgG4UXmpmg0yo4mExMT2NjY4HvGiHHSniHt1ZGH6crKCrvfp1IpdtMnc2yxWGQiKh9RkImWbkxU81b3Xp7H8/PziEajbLojoUZVt2ouUJnkmDM9PY2TkxPEYjFMTEzws83NTTaDUuzOYDCITCaDWCyG3d1dzM7O8uF33dwTP+SZSvOQ1mWhUEAsFkMsFmMz7P7+PltEyEQtmpDFtsrM2wZ0AscwxFq1Hm3oFmDWrFS/Vd/0XtZER8GQqMyxO7xPMC1GU3qRwNCekPi/UqngpZdeAgA+v0VSOWljdNaIPJ105jrx+g/XdfvutlpcXGQTYb1eR71eZ62sVCrhwoULeOWVVwCA8XSc09ht5DKeSqXYpCVPVNOH9rKIEZMZstVqoVgsYnV1lbWSxcVFzM/PM4NTxTSkA6Siu7Truuw5SAenaf+Oou3fv38f1WoVBwcHfFllvV7H3t4ee/XV63UcHBzg5OSE97fC4TDHjqRDzGLbSeKniCT7+/solUqoVCpYXV1Fr3d6K/XU1BSSySTC4TCSySTS6TRee+01dsGns3jVahX1eh2NRoPNhOQBqWIUpnlpMieJ72WiKzMtYlztdpsj96+srLAwJmtSKhduWQCp1+vY2tpiQerw8BD7+/scLHpycpL3aunYxJUrV1hDOzw8ZG9am/roPjoAfFBeDGP20ksvYXp6Gq57us/4qU99Cul0GoVCAVeuXMHU1JRSiJXrkeeHiqnLaWVtWAYbhqhqt64MVd0yfnIeOb+qPF27ZDy9YJQ60rkyFfoFWXpQSaQm0ElYu7u7KJfLmJiY4CtCisUiDg8P+SCqaRB1khBweqYqn89jf38f7XYb1WqVI0U4zulNv/SODmE6zo8vIazVajg5OUE8HketVsNLL72E9fV1VCoVTqeT+MU+E6Hb7bIZr9vt8nUsdP6JNsYdx+k7GEpAkvorr7zCnpamxXLnzh3WhAharRb29vY4yjzVQUJCt9vlfSjy+svlclhYWAAAfPvb32bvR/GSx2q1ynuHYt84joOjoyOUSiUAp2bN5eVljnoPnO4pHhwcMLMkRkUm40ajwYep792799jelvjbZGqSx8Yrjagh0Z4kCSEbGxt9EWDk/teZ8Khu0mBJsyTB4Bvf+AafY5Nd07/97W/DdV3W2OXx1rWBgimTQEDrK5FIoNvt4uTkhKOt0OWoDx48QCaTwfb2NkKhELLZLHZ2dvrGXMdo5L7Q0Q6v/PJY6jQzuUzxufxeVa48NmI58reKYXlpcH5h2PwifKQZF/C4lGJSg1Udr5ugFMqJNoEpHRFlEy46icZxHGxtbbFpaXZ2Fi+88AKuX7/OG83VahWvv/467ty5g62tLbiu2xf+JhAI4LXXXsPGxgZarRZ2dnbQbrc5egcFsNW1zbSwM5kM3ypM0jK5lpMmRftO8XictTJiQltbW3Achw8Gu+6Pz4ZRgOFGo8F3Z12+fBnNZhPFYhEnJydIpVIcPJjMcBQVXGTi09PTaDab7DL/8OFD9rYUCRjtZcrMjL7FK1MikQiOjo7wqU99Cmtra3zvE5mpgsEg0uk011kulxGPxzE1NcVR801SuU4jMKXTSf+kYYtXyZCmQ/e6ua6LWCyGarWKaDSK6elpZtQm5kXjl8vlkEqlsLu7y+bBRCKBvb095PN5vihUtCZQX4lmO5mwUh1kJicvQgouTeZ14FRQ2N7extLSEnZ2djA/P4/V1VW2Tty/f/+xS0ypLlW9OoahYx4mZqAaS68x1pWjo08qxqdjRjZt8BKK/JgLh9W+zg3jMk0+1X85L2CeXDb1ib9d12WTkEqzI5DfiWYrYjRE6IkYbm5uslS8t7eH4+NjZkx7e3uo1+vs/EGEgdIDp4cxq9UqE9JYLMb7N2SysZEYZaD9nkqlwjH7yNznuqfeXgsLC3Cc08j3AHDhwgXeK6Nza67rsideKBRCu93Gxz/+cbTbbTx69IjPqv3oRz/C1atXmdhRaKFut4tWq8UMGQD29vbYC5Bs6p1OB/fv38fh4WFfkGORQHlpoPSMTKU3b97kc0viTcxzc3NoNpvIZDLsNEPR4ulbpWnZSv+muS0T2StXrrDpjG4gSKVSHLWDnIGWlpZw48YN9Ho9XLlyBTs7O7h37x5CoVDfbQZUrsjE0+k0a6qk7dK9buQBure3pzySIbdN/h0MBpHL5bC0tIRwOMyhvyKRCJLJJC5fvsxX8TQaDWxvb6NUKnEotUKhgFqtxvVTma7r9u052/Sl/Fz3XtWOQUFkKiZaZcLPi1GbyjDhZQI/WqkXnBvG5SWtmDp1UIblZUbzIjwy08rn8wDAzIO8Bl3XxfLyMu7evYudnZ2+IL3Aj803tHck7ruJDhjkdbi7u8s2/osXL+KrX/0qEysVAdH1lfiMzjrNzs7iypUr6HQ6iEQiePToETqdDrukb25u8j4UcMpQGo0GX7FCEbzpUHWj0UCr1cKdO3fgui6y2SzS6TTvGd28eZOl/IcPH7JXpeu6qNVqHCuS4gKS+Y+ODZCWqdIiZGYlMzBx/KjPDw4O4LouM05K22q1MDc3h0ePHvXta1YqFe53kRipQMfUVIKRiaE9fPgQ6XQamUyGtWTas3PdU5Od67ocuT4cDnNMzWvXrqFareL+/fuPBailuur1Oh48eMDzjsaHHD8uXLiAjY0N5HI5DozsNcfkd2TWJLNvq9ViE/nt27c53Bmd7SONu1AoAACbcx3nx/tk0WgUmUyGI3C0Wi32jBX7XTc2NkxJN066MnRjaYOT3Geq+SOXa2KCfhmNHw3ML5wbxjUs2GhkgHlgxXJ0ZgLxmUysut0um3GazSbb63u9Hvb29pBIJNjdmoghleU4Pw5ESw4bVDYR5Ugkwu7HFJKInCzC4TA+/elP42tf+5rxdlhTP6XTaTSbTWxsbOCll17C7u4uQqEQfuInfgI3btzA7u5un8uz67p8yJgk8kQigYmJCezs7KBWq/F+UK1W4xiOGxsbHBaJ8pHpiIgXHX6t1Wp8nks02eZyOXaWESVs8gi0IQZyGiJ2JHiIe1a0j0IhwWi8yetRpW2p6pR/+yU+jnNqTm61Wjg5OcGbb77JRJ8u9NzY2OBIIhsbGxxSizTUlZUVPigtMy0SYsiMSqbeZDKJTCaDWq2GO3fusGYsCwy6dSO3s1QqsfOPmJ4uUiWvWzJX0jza39/nq2oo/8TEBLrdLubm5nBycoJMJoPFxUXcunWrbz/WSyvRgW5svYRrv9qUDVOVmZYO/DBGHfhRHvzCR4JxeUk5gF2nmgZdV46ozqvqFcttt9t4+eWXcfv2bY5vWCwWea+BTF+lUukxMwGFaqLo6BS4dXt7m4lotVoFcOp9VS6X8d577yEWiyGbzeLw8BB/8Rd/YXWdhow7eUweHx9jZmYGjuOwSYzunyJCQm7fouZCUnmn08H09DRHPaCDqYRTt9tls4/ruhzfjw739no91qKoXDJdyqG1RA/MdDrNezckAJBgoDMZyZo1AHbCkOcBSfUUzYPqII1YBJ32NIxZRcSHmEkqlUK328X169c5hBhp7ORAROa2QCCAtbU1drx4+PBh3/6eCmQt9eTkhPc36eYCU/vFcnTrTTxaIVob6NnHP/5x3Lp1C4eHh31jT276JNBUq1VMTk6yhy1wuucnHjBXacI6QVTXF/JY6ECkF360MLkulVChwtWrHaOYf6OGjwTj0kmjftV720mkSyfXLz4nSZ/iDFYqFSwsLPCCS6VSODg4wKVLl3Djxg2cnJxwGcQYKPpCLpfDysoKtre3+w4x9nqn12XQQVOSjkkbMcWKM0n0tD9FJrdGo4GbN28ycf7+978Px3GwuLiIvb09jnAg90MoFOKIChQaiBgXaQoU5Z72/rrdLod9unz5MjOgbreLw8ND1haoDiKWR0dHAE61UGIk1K7Jycm+O8xEpid+ZBCJpvgBwB5wqVQKW1tbeOGFF/iMHzFIk/TsRTy8pHORiIVCIUxOTvJ+Dh1DaDab2N7eZvf4/f19JuDieTcyn3lpAyJQZAvqJ+pPnXVCV67MLMkELo6h45zGs1xYWOALV+msVrVa5b1TOhIiavUU7eP27dt9lgcbbcimP1QCj47ZiW01CTAqjUosV/VftZ7lOSjj+ywxsHPPuGwXmIk5yeWYmJCXpKSrm4LLvvPOO3xYuVgs8jminZ0dlMtlrK+vP7YxfvHiRbTbbbbbx+NxZDIZuO6p5xt5Fco40EQlJxIvwkh4y4som81yJHfa16nVahyk9vj4GJFIBP/9f//f4zvf+c5jpjjqs8nJSfYsJHOO2KfyQXAKM/Xw4UOcnJygWCz23dJMHovktUhmVrHvWq0WMpkM5ubmsLW1xftNvV6PTZO7u7vsvGHTRzLQ3iJF5I9Go7h69SoikQj29/exv7/PV9aQF6Sp7+V3KgInA6UhE2q32+WwVdeuXcPe3h4zMboKp1qt8gWMdJZOx7S9gIQkirCi6i8vIVKl4dF/umm8XC4jEDi9J+/tt99GJBLhQACi9k59PTMzg0KhwDc1UPBp2fFEtXYH7QcvK48Xk9T1gWptetXlJXjbttVEZ71o6yBw7g8g+9GobNOrBlM2jZjqkvMCYE2ACC85GbTbbbzxxhtYWlpCOp3mg7ii5H98fMwLMR6P4+DggIPzyiGNqB76iOec5HJt8HYcB5cuXcL+/j4f8G21WlhdXcXh4SGy2Sx7zv27f/fvsL6+rtReer0e7ty5w44b4h6IKJ0DYLMjBd4l05PoYu26p+7cL730Eq5cuYJcLsf7IWI/kBROzJKifpD7OpktL1y48FhfyP2j6iPXdXHhwgXMz88jHo/zPuP169f7Io3Mz89jYmKi73C2SsPwkvLFeawi9CQgbWxs8NU3N2/exMnJCZLJJH7+53+e978oyvulS5fw6quv8iWmJtzkQ8MUvoxMpQcHB9roKapySAARY1iq1iqN6eTkJB9NyGQyePPNN5FMJjnSjjj2jnN6NICC/xJzVu3xqnBU9a8IJjpgIvK6tDZrUtdHOlxkbctL4/LbHhUuo4Bzr3HpwEZCUD0H+iexjfnGpG6rJkmr1eKDralUCt/61rewu7uL7e3tvlBNlGdvb48JHh3O/fSnP41Hjx6xx5iO8ch4qDQrHZ6Oc7ovJYZ26na7mJmZQaVSQbfbxfr6OhKJBIrForI+qkckKDLxA8BecIeHhwiFQpibm+M6gB8zfgBsHm02m1hdXUWhUMDk5CS7/Iv3MImmUoruUK/X8ZM/+ZMc07FUKuH+/fuPMXSTxkB9R/tD4hmjqakpdkJpNBqYmZnBjRs3ONiwLtisqj6/ZjZKT2VTdA/XdbG7u4v/5//5f9BsNtnJhxg43WGm0hho7kUikcfMa3TQ23F+vLel6zPxWTQa5QgppqC7VEe328XCwgKbk8PhMJsnG40GrxtxLTQaDdy9exeu67KZMZfLseYuH5S3Wbs6MDEEU3/ozIBiWtW8U2k5tr9t6h6l9jQIfGQZF4HMXEzmCDkPvVMNvGpSqOpWlQ+Ag9Tu7OywJ1qv1+vbDxGJEHmm0eJcXV1lM6FOi1K1SceQTZOUNvBd99TBZHV1lcvY2dlRlq/rO2qDHBYqk8ngypUrWFtbQ6VSwcnJCcLhMFZWVgCAzxs5zmkoIYoCLt5KTYd/RQ2OmGQ0GuVzV8ViEbdv38bk5CTK5TLW1tYeY7w6rVRsI31TeC+6NJOcI8jBgUxwU1NTOD4+5j0+irwvCxNi2bZSsGoOk1b60z/907h37x4ePnzI3natVgu1Wo3DN9GZJ52mQY4yR0dHfQSfzLQkmHjhRvfXtdttPnRONwHIfSyOXygUwtLSEu7fv8/7Vdvb2xyqS3XvHc1X8bD8wsICotEo9vf3ldfLyAScnokCmNwuFY2Rx0JMJ4MNvRHxkOuQNSkTfTOtTxuapsN71HCuGJdKylC9F8G0uL3y0nMbfHR16PLTlfTkGu66Lh/qVO1XEdAG+tbW1mMhjHTtUS0s0wLUlUEgRgdRLVY/C4AIPV2T4bqn3mQUl67ZbHKf0AIl5wLaMyuVSnxxpHzAmkIv3bt3D47jsCkPAF8cSZv4jx49YpxUjEuce3SRJu3rUKipTCbDGjKdX2s0GrzvND09jeXlZayvr/N+jZemJYOJEIn/33zzTQCnB9IPDg76zvElk0m+54ocXnSE13F+7DWZyWQQj8f5uAId8aAraXZ2dvpCeontoP23z372s3jnnXfYOYc0UJFpic40ly5dQqPRwIMHDxAIBHivl4SWqampvpBdqjlGc4E8JkXnJ1X/2momYn/p5rqKZqn62nbMTe90a1gnfKtoga3mdZYa2XPPuFQSgS3TEsGrk3XE1m+ZugkpTxqKQUjRrImAeDFKALynZIOPChdVWlW9Ji2T/quYt5xfhZcoUQeDQcTjcYTDYWxtbfH5mwsXLmBtbY0D2VIdZBJcXFzEyclJX/Rv2ZvNcRyWxslslslk+G6sra0tXLx4Ebu7u8o9QBWzd123LwrI1atXsbm5ydqz4zh8h1kymeQrb8iRpFqtYn9/v885xQ/YCm/vv/8+n52jq+wpLwWAptu36TCyimlFIhFks1mOu0gXYrZaLRwcHCCZTHLkipmZGezt7fXdik0fOix8//59RKNRFjTC4TDq9TqbeOmakk6ng3K5jNXVVeTzeQQCAXz44YePudmvra0ZrQ6ue3qwnQ7Ry+Z4Vd/Kz1R9Y1qr8ljoGIRJU/JTrmlOyGXbCKeqtHL6s4TnnnHZdtIgzEyXVkWY/YLXJKVzVxQ5QjYneC0KsWxVnXI7xGcqhiNL66Y22UxmkTHJZkHxUkk6WFytVjmcFXCq1R0eHuLg4IBvghbLbbfb7Mot3vEk9yPVmUwmce3aNdy4cQPXr1+H4zgs8d+6dasvv4oAylIo3Qfmui4zIXIgoQC09AHAxJmONcTj8T7hw5YAqdKL/SLiSVe7iHt+lI7m3sc+9jGsra31HcyW66YjENlslg92V6tVxGIxlEol9lAkU65qLjnOaVzJqakp9Ho9fO5zn8P+/j7no/6nq26uXr2Kk5MTlEolrK2tsUAgHmoW22ra53Vdl8eaPA917vqEq6oc+b2cTleOrlwTzfKr6ehwlgVynWDupVWa6j4L+Mjcx6WaDDpiLDMpk0ZgU69NWbqydXV4DZtpUdhoiXL7vP6Lz+i56L4uvnMch+9hikajrFFSHrr6otfr8S3RshTsOE5fpH3xOZ0rcxyHL4ykNPI+SzQa5Usg8/k8Zmdn8fbbb/NhYTGPyLi8xoEiekSjUbzwwguoVqt8iJc0xEajAdd12dnEcRzeY2o0Gn1XuYhjpyOEpjFVjZXq2hDxXSAQQCaTYW1H1dfAaaiydDqNubk5PgJBkfFJkxPHTnYYIq1teXmZgyjPzMyg0+kgGo3i8PAQjx49Ys3ok5/8JN577z0Eg0Hs7+/3HThXjY9K2ND1nci0TIzOqxwVmMpTMRA5n1/BUV7rNvPGRB8GbbeubCpjkPu4nnuNyw94DahK8/BSm02TSSe9qMqSJephVW6VRmdqj5+6dITQFi/HOd1Mp/uYqtUqMzmS7BcXF3F0dMQmI/EYAIEcRVzU3NLpNBYWFvCjH/1IKfmKbc9kMhyp4+DggDUGAI9J77LGpnpG5VNIp83NTY5J2Ov1HtNwXPd0T4ki1tNFo3Iaeay8mJhKyxLz6/KJbZmamuLzXmJ54nyiIMF09o20pHQ6jVgshv39/ce0GJlRkqYWiUTYqzYQCHB091wu1xeXMJFIcBxME3NSace69orMzwTyXPdKL689sQ/l8lTamu3a8lqTJk3JBn+vMrxo4iBt0sFHgnF5MRAZdB2sm7Ay05EJjSxFiZNYJWGJ5ZsmjR9moWqjjK/cdtt6dAxfNUHF8ilCPd2fRLEX6fLISCTCUd3FfDJucl/G43Ekk0m+ToXSix6WlL5er2N3d5cJMADGw6sfVbjIjKTT6aBUKj1m7hXTU2DYmZmZPtMY0K+1qu5xsxE8VO90gpvYlxRdolgsspOIaO6T65+dnWVzbjQaxdLSElZWVvAf/+N/fMwNXnQ6cRwHtVoNa2trAE5DktH5v1qtxsGT6ZD76uoqO3/YMiedtiALM35Bnpeqea/rf51m5QdUa0xFl1TPTe0RyzYxrUGE32GZFvARYVwm1VdF+MR8JsJuSqvKo9OwZJxknE3M1Q+otC5V/ab3qnpVhM+EI7WdnC7IrFYqlfgYQKfT6Ys/RxG8xYC4qoUUCoXwP/wP/wMePXqEO3fucBSF6elp3L1797FYiQBY42s2m0in07hy5Qp++MMf9mlGcn1e2o74XLzjTPWe8KGjA2J9jnN691Qmk8Hu7m4f81LNLzK9yniZhCN53IBTxtLpdHDv3j0kk0k+U+W6Lps4xbKbzSZfVRMKhTAzM4ODgwN88MEHyjvoZIJH153EYjFOQxoWxYCkS0lJ0JHbqAM/TI3wMeXRMQMxv01eXVpxfFWCpFyvSkjWtcVrHqjK0DGnUWhOg8Jzz7hG2XkmVVan7aiItpcE4kdCEXEhaVd87rftXuq8DqguEyOz0czED8VUvH//PtrtNu9zbGxsIB6Po9fr9ZmI9vb2mPFQW+R9tG63i//23/4bQqEQQqEQIpEIwuHwY7fcihKy4zjct51OhyPmqxa5DcMS61D1gfxb1M4cp3/viSKrx+NxvPTSS7hz5w6bx8SyKEJFMplkhxRd3aq5qltHkUiEo1HQ+SrRSUYsg7wSHcdBIpHA1tYWM1GZ6esINkW5ODk5QT6f5ytWer0eO68kk0nWqMX+U5Un121Kq1vfKqFU1a9yvSrQlSGWo5t3cptU9evKVTEfm/bqytSBrTA+LDz3jMs0EWSwTednUpgmtB8cvLQ1VX6R+JpwVNUlpvfCXfT88wIVgxOfkafg9PQ0arUaXz1CtwDncjlcuHCBJfDd3V3U63WOPi9v6ruuyzfeUh0UqHhycpIdBchdOhQKcYBdmXm5rss3KsvPdYtRJQl7EVJVn8n5Hec0HFE0GuUoGnRVDY0FHaomgr60tIREIsH3SOkYGNUjMzL6L+4VNptNTE5OYmdnhy8npTQ6LaDX6+Hu3buPmTbFeURXwIhjSVovnc2rVCoc9Z+EDjovRuG9hgFxrHSaDYFOU/Fi/LbCi/yeBCnTfPICk6Agt9cPHfGjuct1jYp5PfeMCzgb26qpk2XmYjMgqoE1aWsqPEz40PtBGKiOURIxIQeJSCTCewsiiOXIGhBw6mE3Pz/P7umzs7PI5XJIJpP4xje+wbfkJpNJjj348Y9/HBMTEygWiwiFQnygWj5MTbfp1ut1xONxdiZYXl5Gp9NBMplELBbDvXv3cHh4yB5oqv4DTh01PvnJT+Kv/uqv+t7J2plu8XotapP5R17giUSCnTYoBqTjnDq20PUbZFrrdruoVCoIh8MccaJYLPKemQ5EpkXj5zinHpvEND788ENcu3YNBwcHHF1ER6AIv4WFBTx69OgxBkeepBcuXMCPfvQj9ia9cOECdnd3EY/HUSwW+aYB+cB9vV5/bB9QBfIaVfW3DejWhm7sxN82a1Gl3dBhdNFU7Rd3E0P20vbOCsYalwG8NBrb5yomIDMfnUSkk87l/zrmp5t0KnVelU5+7qU1yDi7rtsX3JQ87hznx/dIqfpLDIRKQGVMTk6i2+3i+PgY6+vrKJVK7FFI5RFTCYVCuHfvHq5fv85xDslkJONN/U8u8MFgEO12myPSU+DhRqOBWCzGhFJFCMhVvVgsYmpqiqV+qiMSiXD0dDGWnYiXjeSt03hlAtZoNLC8vIxyucxaB0UE6fV6HMqI2pdOpzE9PY3bt28DOL0ss1araYUl+qZxTSQSWF5exsOHD7GwsMCefru7u/jggw/6nFZkRkwCC+1XFgoFbG5u9u1VOo6D+fl5xq1QKHDbKGCyHBhaZd6VPT3ltaBiWl4alaksFajoghcd0IEoOESjUczPz+Pg4ID7RsZFV5+Mj+q/id6onquELRtm6MW0B9UiCc4d49INmFcnqgiIieCrtBXVQKvwUv3WvdfVq0trkuh1E1CVhiQ/cmmm+7GISKkWaSaTQT6fZ/dnKufFF1/kyBTLy8t48OABx58TJWdyFSdHAMdx8Oqrr2J9fb0voC7V57qnHnm7u7uYnZ1FIpHg61QI11wuh+3tbTSbTb6M06Tp7O3tcWBZus2YYicWCgXMz88zzt/73vf6cJHLEvvUDxCjJ49LipNId4dVq1W+pXd3d5djKh4eHmJ/fx+tVguBQIDT68Zc1rZmZmb4xmq6441MtVQ/RRmh8iiyyfT0NFqtFlKpFEd7yefzCIVC7K0ZCAQ4LFSxWEQqlUKn02EPQtLmVOexVH1pmr82xNvmHdVjGkO5PhLWYrEYnz9UlU3po9EoC0okKNJ+pbyPJ4+fiUmr/uvoja7dBKr6TWCraQ4K545xieBXNfVicqr3pgWiw8NGUjFpWTbMWFWmagKbFm0qlcLk5CSmpqbYY0zHmEnbqtVqmJ+fR6fTQaVS4fSXLl3CN77xDWxtbfVdqyLj6boum6kODw/x3e9+lyNj6KTqTqfD8f8c59TBgiJSlMtlRKNR5PP5x/bIqCz6UCRz1z29KoauOyEmUCgUsLCwgG9/+9t8KaKIt+6/CUSHG2oPMcqtrS2+BiSbzaLVamFubo5v8KW69vb2AIAvRKQ9MdExQgUyU9vc3MTs7Czy+TxmZmawv7/PWsDU1BTi8TifnRIFk3g8zu7vdCUNRQshxxpicpOTk3BdF+VymeMQuq7Lda6trfkmarp1SSDuhXmV67WW5bEV6xY/kUgEc3NzWFtb62P2cl2O47DjSSwWQygUwsHBAYcpMwmxcv22GpgOdOlshP5h6h0EzjXjsgUV8wH0xF0nragmj1+pRceUTNKjSQpTaYQ6RiqnpX0V2ggXzUEyIyHJe3l5GdPT0xznj+4JEwmefL2EjAsxGDG6vVe/0cFU2hsQy6/VavxObK9YZygUwssvv4zZ2VmOLE5u3/F4HK1WC1tbW/yc+tGWYenmhSw0UJkbGxsIBoPMfNrtNl81Qh6YxWKRGRVFmVAFk7UlHpOTk1heXkYmk0G73cbVq1c5sr3jOGzKpfEWodvt8n1j3W4Xe3t7aLfbfX0VCARw9+5dFgLS6TSOj4/Z6YOu8hFxpgPpqnWmEsQmJiYQDAZRLBZZEyTm4bqn5l7VdSXyf5UAqVs/Mr50kJr27ehoAfDjyBzi+EciEQQCASwsLDDz3traYoclk4VAhYeJBunw9hLAdTTSBGfFtIAx43oMVBqIajKYzIK697bpvPAS/5sWka4+OZ0qL3BKLOl8FTkDZDIZ5HI5vnae8pCbMnnzUYw6kvyPj49ZuhYJvMrUQXEIbRYc/aaDvqpLMalMlZQq4hCNRnF0dMR7b8Cpeex/+p/+J3z961/nuIh0FYbYn16Rx03PdYSI2kKhl1KpFO7cuYNcLsfmVIogPzU1Bdc9jdZx7949LlfuZ/k3pSPN6caNG8hkMnz1CoVxEuMIEjMR+/7k5AQHBwfIZrNYWVnhQ9eO4/B1MlRnMBhEKpXC2toazxExOoeIO2kkquDIlC4UCvGzWq2Ga9eusYmXbnWm6Pwf+9jH8J3vfKdPm7FZ217rU2Rc8Xgc+XwexWIRS0tLCAaD2NjYYPOzqK3T3uzc3ByuXr2KV199FV/96leRyWTgOKchwGid6dauaV7LYNKqTLTB6/9ZalcqOJeMa5BO9JKsbDUgk8Yjv1f9l3HR1a9LJ7+XNQPdBNVN2nA4jHQ6jWg0yiYdsrvLUnepVEKhUMDbb7+NcDiMfD6Pzc1NHBwc8ELU4akywcjjoGoveRU2m02+cl4sT6UFqSTSZrOJ69evIxaLcVTybDaLRqOBv/zLv0Sj0UAmk8HU1BRu3ryJRCKBdDrNe0CiNqcSdEygEpZE3Hq9HorFIk5OTphIN5tNvPzyy3xmrV6v4+joCPV63Vo7kX8/evSIHVxKpRJ7Y4rX4ySTSaWLPQkb+/v7SCaTffuhdAyh2+0inU4jlUrxBY8yYyWzouM4fG6s1+thYWGBgx3L/bO8vIyf+qmfwle/+lW0Wi2Uy2UUCgW+3Zg0yFQqxUxdbr9q/quYuzhmKiDLQ6FQwNTUFEqlEnZ2dvg8YSKR6Lvni9p5cnLCjJwO29M+I/Ud0B+CTEdjxLJV/eWVV15nNtq7jfA9SjiXjGvYzjNpRrr0qvc6ScivNOOFi45IyQtPp+XoCFkgEMCLL76ImZkZFItFOI7DizCTybAJkZgDXX+Ry+Xw2c9+Fn/5l3/J2g95i4n4ivibzGymfnFdt+86DlX5XmVSueL1IoVCgZk0EZxms4nDw0Pk83n+TyZIk3ZuA17Mi/b5QqEQtre3USwW+czTxMQEYrEYe6GZBARdHxA0Gg2+OkaMXNLtdrG6usrHImQnF9d1+SoeGg8i4tlsFteuXcO9e/cwOzuL7e1tjoYhAjEtCk4shn7a39/n9zIhrdfreP/995FMJjm4Ml3HQnud9Xqd7z+jfDZar7iWyGmHYjPqNLJ6vY6dnR04jsNzntrQ7Xb7wpCl02m+ALNSqeDhw4dwHAcTExMolUq4cOECcrkcPvjgA44ao1vjKu3aRCfEtF40wYYp+aVbw8C5ZFx+VHxVHtUzPx0ua1Oq/CpzhM0727p173RMT05Hm8vVahW1Wg3xeLzvZtxer4epqSlEIhGUy2WW9ElC3tjYYFdyeU+Lrlqn+kVipJMCZZxFd/1oNIpMJsNESl6YJuk4Go1yKCHao6MI5ScnJ4jH47xnV6lUUK1W0Ww2cXBwwERaJuA24DXf5PKoTbTn1Ol02GFmY2MDuVyuz3wn9wMApaZEjJvy0H5ZIBDA6urqY31JRyMogj2dsxLrLBQKbB4mnLa2thCNRrG6usrMRWRsJycn7LovBmBeWlpCIBDA97///b62ifjTrcuFQgGvvvoqrl+/jlQqhdnZWbzzzjt8IFt2CPLSRkUgXEnjpHNmdNkmRXQhDTkcDmN1dRWzs7PcPsojC0v37t1Ds9nE7u4ua6skIJCmL2qi4ryQ8TbRDh09Mmle8lwy0RfT+1FrY+eGcenU2WGkABvmJw+oTssyqexeZZrw1TFpXTrde/l5MBhkUx8AvhMrmUyiWCyy+SqfzwMAE/58Po+pqSn88Ic/5HLE9tN/AH1ExKbtBEREiOiR1pVKpXB0dNTXTipTdfYnl8thbm4Oq6urWF5e5rNikUgE8/Pz2NjY6DOT9Xo9TvfOO+88dpuyzMBM4+e1wHVatPiM9r/oMki6EoXSk5dlIpFAr3d6SaKIrxcREjUn6kNi5rTnKQoLuVyOhRfRxEWCAe3X1Gq1Pjd6mlviHijNNbqzLBQK8dxRRZmncaJ9skqlgpOTE+6nXC7Hl4GKfWgD4XAYn//85/Hee+8hGo3iU5/6FKrVKm7fvo1oNIpQ6JSM0rEB1z29gy0UCqHdbvOBat2cqFQqmJubQygUguOcRkyhM3CdTgc3b95EOBz2FDypL3TtshEKxf8mwVsFXkLzKOHcMC5Z3bXtKBvmYCrbaxLI5YppBmGqXv/FBW3SGFVtEJ91Oh3cuXMH3W6XA7ySpA+cMo90Os33opEzxczMDI6PjwEAhUIB0WgU5XIZx8fH7GRARLHVauHw8FCpFZnGkNyq4/E4FhYWsLq6ylfPE6ElIiDvP4njeHR0hEKhgEuXLqFWq+H4+BjlchndbheHh4ccloguUmy323j48CHC4TA+8YlPsHlHdTO1lzBk004ZXNflixTJuSAUCiGfz2N+fp5d6AkX8m5zHIdd+/0CMW263JPKEhkStavb7eKFF15ArVZjASIcDvOeGXnzUVl09czJyQmmp6fhOA729/f5oHc6nea4laTt0IHrw8NDAEA8HmemfXR0hHfeeQfJZBLpdBpHR0dYXFzk/T95HEwajJiu2+3iW9/6FjOp119/HQ8ePEC5XMbR0RFqtVqfCZDKdl0XlUqFmZbolUtMluqo1Wq4fPkyR8gnpxWau2L/e9EiE30ygdgXXgLWIKBjnIPAuWFcgD1D0IFqsHSMQK7TS8LWaWW69zaSk9czm3wyPvSf9m8cx2G3duoHkVjRvhA5MtBiXFpaguu6WFhYwP3799n0Rndttdttvg5ep6moFiL1C0XG2N/f54jodPCWNsczmQwzF1qMIpPsdDrY2tpCp9PBlStXsLS0hL/+679GIBDA8vIynylynNMoFuTWTLflTkxMYHJyEj/84Q+N/e41DrZjR+fJSBMBTr08Jycnsb29zd5zvV4PoVAImUyGHVfori9T8GDVtwjk6p3P59mFu1wus7NOp9NhoYUiuGcyGc5z7949xONxLC4u4tatW3z+rtPp4OLFi303BNDVNrQ3tbCwwJFXaJ8pEongypUrcN3T4wOpVIojsTx8+BCu6/KcpD1Z0bVep1HIAh8xYApT9l//63/lYxczMzNYXV1lLZO8Lkl4IiZFWmsgEEA+n2dPzF6vh+npaVSrVdy8eZP3scR905OTE+UdbiYhXR5jlRArWgr80A4/wpZN/YPAuWJcg4AXEdH9FtOryrMxCek0ItUzcYGZCLvpuReoJpLrurz3QBJ+Op3mKOqNRoPdf+v1Oubm5rC+vo5QKIRyuYwPP/yQTR7AaZSAUqmE3d1djoYhm69k/MVQUoRHp9NBsVjE3NwcIpEIR3Wg96lUis+hyQyLgMIm0X4OnSOq1Wq4ceMGawh0LXw8HmciffPmTWXZXovRS2OWyxD7IxgMYmZmBul0Gnt7e8xMj4+PWUskwSIWiyEWiyEcDuPSpUt8kaWqH1R9rZqD+XwemUwGFy9e5PNs2Wy276xdqVRCMBhELpdj5pbJZLC/v8/X2Liui4997GO4ceMGjo+PmUm5rtsX3kpcR7VaDcFgEOVymSOJzM3NYX9/H657etaO5gWZTOfn5xEKhbC+vo5IJKIdDxsm3m63+YhHIpFAo9HAxMQE5ufnWSN3XZcdeRzndK/vypUruH37Nra3t+G6p165r7zyCh+YT6VSqNfrHEZMPMZBH69LRWXaQKZj6kuZgenK0r0b1Ko0CIOzhY8847KVIkwDrCrPhkDpypKZn4652jBVlbYi16PqAxUjof+zs7OIRqPY2triK+e3trawuLiIRqOBubk5Ji60p9Fut9n8EY/H+eoQmZDKTCsYDLI7s3hthuM4LIG/+uqraDQaCIVCCIfDKJVKWF9fZ0LmxVioHDGAMDEx0i6z2SzH1qOgwHIcPS8wMQzTM2qv67p8JoiInhitnYgzBSMmQnj9+nXk83kOKUR9R4xX1KRnZmY41BO1j0xcpVIJH/vYx7jsarXK149Q9AfXddmxgK5jabVaHD6s3W5ja2uLzWDiWT/qU9GZx3VPvQwpCoUYQolc26PRKCYmJpBMJtHr9dgs2u12sbGxgU6nw/tPOkuFF/Mi79FcLoeZmRlcv34d0WgUH374YZ/DRTQaZS2wWq3i/fffx9TUFGte3W4XDx48QDKZxOzsLKanp3F4eNjnIq+bM7q5Inp5Oo7DZlcKWeZVrlyejvnoaKCq30y/RwEfOcZlYgIm84ENg/NSp3UMyYt5yWCaUCqcxHyDtonKoYO+hUKBtarXX38dd+/eRaPRwMzMDKamptBsNlGv1xEKhTA5OcleU61Wi/dIdJqQ3NZIJALXdTE5OcmXPJJZjMxToVAIP/VTP4VvfetbfKjz6OiITWckueoYmK6fe70elpaW2HkgkUjw4VYRf53QoQMVoVTlFecnmcCi0Simp6c5CkShUGAGkslkcHBwwAeok8kkdnZ2EI1Gsbi4yFppuVzGwcFB31ynw+M0bqIXInmC/vVf/zVfp0IMpN1us7ed6DACnF5fEovFkMvlOJoGzaNUKoXp6WncuHHjsT4R+7bdbuPtt99GPB5/TGBwnFNzNZmDqWwy6QKnjkX1ep332mTvStVYyRo+4VIqlVCpVJgZ5nI5NBoN7m/XdZFOp/vM5iREkSCVSqUQCoWwurqKtbU1JBIJ7TwQcZHBcRw+fB6LxXB0dMRWhgsXLuDSpUu4ffs2u+bbzHlxfcj0Qq7btG7PUtsCPoKMSzdBZaLh1eleKrGX+q3CRSddeUnlNhPES1tULRYVk3fdU48pcgdPpVL4/ve/j0gkgkQigd3dXRwcHLD5iEI+EbHpdDosHYomENWichyHI43v7OwgHo/zRYrNZhO5XA7RaBTFYhGTk5Mc1b1SqWB/fx/xeJwPCYuETcUsdUSi2+2yQwbFkvNiWqpydAvZltERkHbR6XQQiUQ4gnun00EikUAgEOB9R4obSBpSOBxGtVplh5VAIIDFxUWOvi8eqAbUd24Rwaa9RDpoHo1GEY/HOZJHtVrF0tISms0ma11TU1M4ODjA0tISHjx4gGw2yx6GjnNqim23232u66LQQXNKxInm0PHxMUqlUp+WuLKywpo6efiJMSszmQw7ecggjyONEd2W7TgOmw5JKyS8PvjgA0QiEbzwwgvY3NxEMBhkbTiRSLCmSkdHyMRL/R2NRvvic4pzgyLUkIYq77uGw2Fm7rdu3UIymWQhg+qgWJYkDMlzfxRM5yyZFgDY3Q74HICXqcZkKgLs7LZiOlESM5VhImQqE5nOZKHCxQtX1XMZHxvNQCYUjUaDpdmJiQl+n0gk0G63OTYgLRQyIU1NTXFoG9FNXv6IdVerVd5vunTpEnsLkkZHhGRxcRFXrlxhrc9xHI6VRxvecn2m9oofMncSU1ZFL1eVr6vLFhcCcXy63S5qtRqSySTfy5VIJDA1NYVut4vt7e0+wYBMXBS/j2IDiswpm83i6tWr+Dt/5+8gkUjwfhGNn7jvJc8funvLdV02Rc7OzuLKlSuoVCpIp9P45Cc/iWw2y3VubW3BcRzed0skEohEIozHxMQEotGotr/ksaJbBcQ9IgDsFJTL5fDCCy9genqa8S0UCnjttdf6zgOKDhQm64SIh+M4ePnllzm6DJ3tazab7NwTCoUwOzuLpaUlvPbaa2zaE8t2HIfPyE1PTyOXy/HxAjFdMplkR6K5uTmEw2G+uYGsG6FQCA8ePEC1WuXD5HT0oFAoIJvNIhaLIZVKPRb9xmYees3XJwHnRuPyIsR+CLaOyKvyeanMXnjo6lbVI9ZnwzR1ZXvho5LAxLpJeqvVarw4k8kkHjx4gHQ6Ddc93SwXox0cHR1henqamVEsFutzbtDhSXU1Gg384Ac/4BtwaY/m6tWrfIPy3/7t3yIYDPLBXDpDI2tIqrbJfSuPBQC+nkN+bmKCXnNH1+diGgr947ouu4UTrsFgEAsLCzg4OECtVsPU1BQymQx6vR5WV1e57eTAIXqrUagoivRwfHyMRCKBUCjEt1OvrKzg0aNHHGjXcRzWIIgx/s3f/A27vZMDRbfbxfT0NOLxOLa2ttjDLplMYmVlBe+++y46nQ7y+TzS6TRH5s/n8+zpqRsX6i95TEmLIK2iVCrxwXnaRyMBKhwO44MPPlDOcXl8ZCYm4kKhrojxue7pOcDp6WnWmOgm6kQigTt37rADSygUYguE45zuTdEh+LW1NWxsbHB7CMgT89KlS2xJoIj74rrqdrts7o1EInz2znVPHWCI6d2/f79vfZjmq+7Z04Bzw7gIbM0uXul0gziqgVQxH8JLTKN7pkrv1QY/eKl+U330nIKY5nI5JBIJlEolvvxwfX0dsVgM8Xgc9XqdFxzdoizf62QCMolQBIRKpcKeUx9++CFisRiKxSIKhQKOj49Z+qRQVarLI1V1ejEi0zUTcn9RX+n6UXwv1y/2cSAQwAsvvICjoyPeR6lUKkgkEuwoQEFbE4kE1tfX+dZk0cwmO6kAYEeJQCDAfRqNRvn818WLF/Hiiy9icnISP/jBDziiRiwW43vVCHq9HqLRKJvQXPf0tmK6xZk8BymEluM4rCHS+DabTTx69IjLI4JNTJJMXOJBX92Y0Xm3aDTKeff399Fut1nYIq9Mqk/sf9pXlcN50ScSibCbP0VtIS0qFovh8uXLuHfvHhzH4T3BSqXCHrp0LGBvbw/FYpEZTzKZxP7+Pi5dusROOKJJvdfr4ejoCMViEe12G/Pz82i1Wixw9Ho9xGIxZLNZRCIRPn9J2tzly5fxzjvvIJ1O4+7du4/dcSfPv0HgSTC8c8e4AHv7qlc6sbNFJjPKQVHlUzFNVR4VYTRJ9LYSviq9Ccdms8n7BqlUiu3toVCoLywQES4iQF6MQqyr1Wphc3OT01JYKcdx+C6jcrnMl146zmm8NzJX0QFUG9OcXLfcL3K/6bRoFSOS36nyyWUcHR1hZmYGJycnWF5ext27dzExMYErV67gzp07rB05jtPHpInx6cJrkfBBzwqFAl/kSdeM3Lx5kx1U1tfX+WAwHRReXFzEwcEBm57oYDKVTftArVYL6XQaxWIR29vb7CrfaDT4WESxWEQmk0E6nUav18PBwQEzSiLgdF5KPJsn9yntb4XDYZTLZWxsbODw8JC9DSmALTHHqakpFIvFvuMU5BFJe4KySzo5AE1OTrLTDvDjW7xv3LjBXq7ZbJb3oei8o+u6fD1NoVDgvqdYlKKJTwSaS2tra/jkJz+JQqGADz74gIUOAMwgxZvL33zzTWxubvJ+5s2bN/vWoDhndPNQnKumNWSyeI0KziXjOisQmZdMlFQgamkmExSVo/otliW+U5m4TPn9SFGyNqgi2qJUSpvMtI9BzgGNRgMXLlxgiZs8uvwwD7Gv5D50XZfNM81mk0Mb0b5WuVzmQ6eyR6GXSUTXlzpNmdLq+s5GQFE9c5zTvY+VlRV88MEHuHv3LhznNHrFd77zHbiui4sXL2JtbQ2f/exn4bouHj58iGw2i8985jNYWFjAf/pP/4m1IJ3WSSYuAMjlcmxa293dZccDuh+tVqthYmICc3NzrC3ReayVlRUOtkznyYgxkSZHJryrV6/yAXFiGsfHxzg8PGSiOz8/j/X1dY5dSCZp0j7lOQKANTliMLQfSmbng4MDZqykOSUSCWauhPP09DS77ot3eDmOw4xoe3sboVAIzWaTz6zR4f1sNot0Os3zga79oVuhSVMmK4LrunjjjTdw//59vj6o2WyiWCzy4XqKe+g4Dra3t3F0dISFhQU2F+7v77O348bGBlsfPvjgA3S7XRwdHfFND3LINVumJc71pwXnhnH50RD8lAnotRAv1dqUTyRwMqGzkXzE8uXfuny2aWz6iSTFarXKBGVubg43btzoC1NTr9dZKgXAZhFVe7zwlpkX8GOvMnISmZubw+bmJh/Q9VqgtlqfDQPSzQ+v9lFauRzHcZDP5+E4Dp+roqtNHjx4gFQqheXlZTx8+BCVSgXf+973MDk5iXa7zaGGbt269ZgjjIifWOfOzg7m5+f58DJd8Ei3FYuMwXVdPp90fHzMnqN01ormxMTEBLa3t9HpdDAxMcHaOO3B0WWYZJYjBtHpdJDNZtlrMRaL8ZknMkuqzuiRdk77TmI6SiM6Di0sLOC1117D3/7t3yKTyeCll17iaCyrq6u8X6Qa13q9jna7zcwqGAzi0qVLbBkoFApotVqsrQYCAb7dmM4ykvcgmc6//e1vs4MHBXQOBoMcyxAAe1ceHh4iFotxv5G3aavVQjKZZE2vVquh0WiwQ8/6+rryOIqXpcdmLuto21jjUoCuY8TnJkbgRwvR/TaZEk2qs87EZ5LGVRPNy8Sn0zBkLcqLkdJvilZBcexoQVBMP+A0OOnR0RETOJHQeGmpqraotB0qq1KpcCgd0hBUTMu0GL2ECV1/iuWamL+XQKJqN4WyCofDbM4CwP1PN0u7rouDgwNmEq7r4s6dO7zHKEZGl9tJIaLItEvaK7nYu67LTi4A2AWbIlJUq1UmvHR2jtyyKUTT3t4eyuUyO9aQ04Do0UeChsh80uk0ut0uqtUqNjc3+ZZnMVqHOA/EcSAHHl1/U/y/mzdv8kFo0qDIwWJzcxOO4/SdWxPHqdvtolwu85UndCyk0+lgZ2cH2WwWh4eHeOmll/Do0SNkMhkkEgksLCzgvffeY40VQN++ZKVS4XGjvUM6WpBIJHDt2jWsr69zm0ulUt+1JxsbG3Bdlw/LkxZNQoncfyrwSzN1grwXbRoEHPdp6nsDQrlc5uCuo+bkKqCJpSJoMpgIr837QZ7bmqN0jEAuR1W+nI7s95lMBp/4xCdwcHCAaDSKBw8ecAQKknibzSZf/3B0dPTYgvGa0F6SG+FH5qV6va4kbKa+8apbVacpjdxnXnWpBBnSCuibnl+8eBErKyvc191uFxcvXuTLCn/0ox9xeynosS6CApVNxJRuu6bQRRQgWdS4xOj8hC/tRQGnB37JGUE8PzQzM4N4PI6NjQ2Uy2WEQiHE43G+BkQMWEv9FQ6H+4IzVyoVvttNZsbyR+x7FYh7SOFwGPF4nANDU5gvakMmkwEAjsVIfRcMBrmcUCiEixcv8nGR6elp9Ho9vPLKK7h27Rr+8i//EsVika8A+oVf+AV85StfYRM7mfbkM2xiXRMTE5idnUWpVGIv11QqhU6nwxeg0qH0SqWCR48e9QkoAB47xC2CjQYmC886sFnXwGlEFupfWzgXGpcfMA2GVx4vtVfFCOTybRmFqmyxDpXWpMprqs/EVFV1i+/IHNhut7G7u4t4PM62eFp0dJ4FAHZ2drgsG+atwtPU74SLGP9QfGcq16ZuXZ26eaEbd9N8U/WJHLOP4ip+/OMfRyKRYC3s4OAAExMTbNoiwrS1tWVsC41HIBBgDz/SeEgDI1MZ1U+aBuUjpkq3JyeTSbRaLcTjcQ6GOz09jc997nP43ve+x/jRgWAK2ivGLKRPp9PhK+/pPjSRuMpEVEd4VfNAnCfkMJRMJhGJRFCr1VAoFDjixiuvvIJIJILvfOc7fZrX5OQke7sCp1EywuEwhx4jjevu3btIJpN8tczu7i7+7b/9t/yMPG9FfFVtSaVSvAdHJka63md/fx/hcBidTgcPHz7kfpb7R7ZCyHNQN0d1tM1UljwOo4KPHOMSQaeBmIiQX41FZdqykUJUeJgmlTyJvJisrr0qgqBrT7fbRaVS4cjkFKVAlhZlHG0lYhWY+pgIrq6tcn4/faZjtl4arVyubv54CUQERHTef/997OzssFmWhAYy2clecLr5ROWLcQzFILc2wo2oiYXDYbRaLVy8eBE3b95k0+b09DT+6q/+is13hF+5XMbFixe5vmw2i93dXS6bTHSZTAbZbBarq6scGd+rr+i/PN/E9pNnIR0ZoPNsdGj5+vXr6PV6bEKkPUSKWB8IBDhQM8UjTKfTuHjxIjY3N9HtdrG7u4tqtcrX5kQiESwsLCAcDvOll2SeJPf6mzdvKiOF7OzssFmQvBLpsDJpc7S3ePPmTSUDNPWdHyuBbTkmmjoo+Iqc8Sd/8if42Mc+hkwmg0wmg8985jP4L//lv/Qh8wd/8AeYn59HPB7Hz/zMz+D69et9ZTSbTfzmb/4mJicnkUwm8Yu/+IvY2NgYqhFeIGskJonCloCoBkJHjL00KLlMUUq30QjF96qFqpskJk3GlkFSsFdyBiDTj0rKUxEQr4WkeqZajKrnYh4VEaZnOuFAJbnrQFW+iJtJw7J9Tv1IYahIGyJmcHh42HetvIi/3P+6drqu2yd86MZNnDsUDisYDGJrawt7e3scH4/Cc3344YdYX1/H6uoqawsA2Ank3Xff5byELzGVYDDI5kEKayVqgBTtQ+4723kinncLhUJ444030Ol08OjRI8TjcaRSKQDgIx90IWa5XIbjnN5Bl8/nUSgUeHzoEDcdDH/06BHvZ5VKJbRaLWbsxWIRh4eHyGazmJycxMLCAgfqFfu/2+3i5OQEBwcHHLar0+mgXC7j9u3bODk5QbPZxLVr1x47AiH/Vs0tL4uMKo8KbOb6sBqYrz2u//yf/zOCwSAuX74MAPi//+//G//yX/5LvP/++3jllVfwh3/4h/jn//yf48tf/jJefPFF/LN/9s/wrW99C7dv30Y6nQYA/O//+/+O//yf/zO+/OUvY2JiAr/927+Nw8NDvPvuu4+dWdDBk9jj0g2kjpCbJGcbyVrUfqg8W4nchK/8W6ddqf6LecV8IsEPhUKYn5/H8fEx34UkljWsZDUKsGEQYv979b1pLFRlyAKCiZHJY6aTXIlo69qjEoDEfTK5bF1YJ6rHcRy+lgQAE/l8Ps/OMGI4LPE8HYUbOjo6YmcBIu50kJq0EtG8JRNa2u8iRwrqi1wuh16vh729vce85cSPV5+TxriyssKR5snVXTzPJUbVD4VCuHLlCgqFAp9RI0Zer9cxNTXFmuLk5CQHGqaoFnSOrdPp8IHmZDKJo6MjrK2tKWMJiuNBjiCkbROIsQ5pzpmERnHOymtXN9dNJke5XN07YLA9rqGdMwqFAv7lv/yX+F/+l/8F8/PzeOutt/B7v/d7AE61q5mZGfzhH/4hfv3Xfx2lUglTU1P40z/9U/zKr/wKgFMb/NLSEv78z/8cP//zP29V51kwLi+GQ6CK7aXLS2BT7iDvTURWZjT07UWEvYiy+Js+8pXqcvtV+Mvl+Wn/KEDF1AcBVT+b6jNp0bR/JDMOHc66dKo04n8T46LfcvpAIIB4PI6VlRUcHR1xoN2f+7mfww9/+EOOWCLur9H+FxHkarXKt2mTB5zjnEaWoPN3dLaKnCKojwmfyclJAODQUK1WCysrKzg5OeHbBwCwh6KY3zQ2YjsXFhawsLCAWCyGdDqNtbU13mOjM2FUJt09dvnyZRwcHGBra4sdV6amppBMJvlW6mvXrnHg452dHVy6dAmZTAbf//732VRLh+XFYNQynmJQ4mw2C9d1++7HE7Vlar+JacnPTWlFGmLDuEwwDOMaOMhut9vFV77yFVSrVXzmM5/Bw4cPsbOzgy984QucJhqN4nOf+xy++93vAgDeffddtNvtvjTz8/N49dVXOY0Kms0myuVy38cGZInCBLqFb1OmSQvTlauThGyItooh6d4B6JNgTVqZ6r8OqDzaG5AlZS/8verRSc0qSXwQkM0wfso0CSU2aeX225YnzxN5Dqnw9xIS/NRJETAmJyfZHf8HP/gB0uk0ZmZmsLi42HcUQay70+kgl8shlUox0SOzGkX6X15eZo1HDMUkpqVzgORNGQwGcXR0hJOTE9bsxGtCVETY9MxxTg8o379/H47j9F3ZMjExgYmJiT6c6Fqd999/H2tra+zm/4lPfILNoMSAKLbn3t4eWq0Wtre38eGHH7Km2Ww2+fwhmWtV85OYVzQa5fBZdHWMam54td8LVJr40wbfzhkffPABPvOZz6DRaCCVSuHP/uzP8PLLLzPjmZmZ6UtPV1sDpxuLtAEppyGvMxV86Utfwj/5J//EL6pGLWQQEMsRyxff0XMdEVG98yP922hbKpzov/zMT7/I7RYXh4nx22hfpvdepgaxLt1/FajGQqVBeWm0OlxNY2PCdZDx8NK+VfXYgEi0yFRHBD0ajfJBV3IaIIILgLUBChOVTqeRzWaxtbXFkTyIidE+XTQaxcHBAcf/E83PjuPwRaQUkYIcFAD0hRijdps0C9WzQqHAFoQHDx6wZ2GpVGKmKZvvSGij/Tg620UekBRlgw5nkzegeFkpmU/Fw9jyGAPg2wDokHen08Hk5CQymQzu3LnDHodebaXnujXqRTO91r4OhqXBBL4Z19WrV/GDH/wAx8fH+I//8T/iH/yDf4BvfvOb/H6QReiV5vd///fxW7/1W/y/XC5jaWnJusxRSQriQMoDbkM4ZQJjwllVtmqymJiejgCrmJeqfh3oGLdX+kHKtQWZidm2RZXWRrDww5BMTE6cT/Lc0rVTN+ZeTF7W+FQaoPyM9rXICadarWJ9fZ3TnJyc8H1gkUikb/+n2+3yZZH3799n5wQ6skBl0FUolUoFkUiE71gjpiXOe7rrKxgMotlsYnJykmMKktNEMplkJxU/4Lqn3pUXLlzA9vY2AoEAyuUyB3De2trqY6Kq8SUGf/fuXTZbEt4UoT2fz+MHP/gBB6h+6aWXcOfOHWaQ4t4U5Rf7NJlMcrxIKpcYNu1zyVqaag2qBFjT2jYJp7YwKm3NN+OKRCLsnPETP/ETePvtt/F//V//F+9r7ezsYG5ujtPv7e2xFjY7O4tWq4Wjo6M+rWtvbw+f/exntXVSlGc/MGp1Vied2Gp1OulbR7x05XuVp3ovlmXS+vz2mYqxmpisjZZo0mbEukzt1EmDthqPXI4pnVd7xHxiG3RjPSqJVAXEJEjzoXNRIoj3UgGnWkw2m0W73eZDuXRmieLnESMi8x2VQxc70mFkIqri+SlyRb9z5w4SiQQuXrwI13Wxvb3NOMmEmxyB6G62XC4H1/2x+ZAutJSJv/gt9om4HlqtFl/1QTSnWq323XCsEgAcx+GoGcFg8DHnCLo3KxaL8SHmTqeDSqWCvb095PN5ZpQmfE9OThAOh/Hiiy/ypZ/3799HMBjEyy+/jBs3bvQxLVuhUQVe2tbThKEvknTd07AiFy9exOzsLL7+9a/zu1arhW9+85vMlN544w2Ew+G+NGTnNTGupwmyOUb1XsWIZLCVbrwIrVyfmE4u02aCiQtEXiyqxaN7Jj9XaYS6NprwVGkFqve6xWpqly3o8pn6Wkc4TNqbnE4lKMl12+Ao4plIJBAOh3HlyhU2b1Fd5FpeKBQwMzODubk5TExMoFAooFQqcYBd0ax1fHzM0SxEZwLSlBzH4cO1uv1QSheJRLC1tYWbN2+yc4bsku+6bt+FkYeHh7h9+zbW1tbYRXx/f1+peZjWL/2mfbxOp4P9/X2srq6y27nssRgMBrG4uMgu+tFoFIlEghmU6/7Y5EfMf39/n8/fUT8cHBxgfX2db4PW4eu6p2bKYrGId999F8fHxxyHsF6v48aNG30HuG1Bt27k/iEYVMAdJfjSuP7P//P/xN/7e38PS0tLODk5wVe+8hV84xvfwF/8xV/AcRy89dZb+OIXv4grV67gypUr+OIXv4hEIoFf/dVfBXA6eL/2a7+G3/7t3+YF8Tu/8zt47bXX8HM/93MDNWAYCdUmr5dZRqe9qMr3mgAmzUnHGGWm6VWW/E4sS9bIRmEaUOVVMWw/4yjiqCrbpK0NOl9UdcnasghedYj5vIQVm2c28yYUCuHChQtwXRf37t17LHgsOUSkUink83nedy4Wi9xW+WA57U2J/S8yw4mJCQ47JOcn4h+NRjE3N4dMJoOdnR2OJEF7X2KbJicn+XqQUqnEd5OdnJxgfn4eiURCefBW7hfxv9iHhCNpd+JBbLmsYDCIRqMBxzn18CMhnm4Wput8AKBWqyGbzfL9cMQEE4kEGo0GyuUyt1e1TkVcXdflG8gJKACz6uC/3H6xvWK7xTrlek20SYWrCGdhQfDFuHZ3d/H3//7fx/b2NrLZLD72sY/hL/7iL/D5z38eAPC7v/u7qNfr+I3f+A0cHR3h05/+NL72ta/xGS4A+KM/+iOEQiH88i//Mur1On72Z38WX/7yl63PcMlg03FeeQcFE0FU4TMsgVLVZ9t+EyNSTXQvRuA1ieWyvQQA02/5v602Z9tGr7bJ771w8CpH907VVyY8/AgYRIjX1tb4Isjj42M21VHddLbo4sWLAE4tIqT9yAIT/SctgeoR5yY5T4gamMxQ6Nbk1157Dbdv3+6L6i+nbTQamJiY4P0zMhu6rovNzU0OCixrUoSbaUxE/MV+081nCmk2NTWFUqmEUCiEVCqFhYUFviWBNMbj42MOoiuOx/b2tjI2oSyc2TAjU1rd3JLnj81cEhmZTnBTlT1K+EgH2R2U2ItgWgx+ylGlHTSfzX9VXh1zGMUEHITAq9KayhoEp0HLsskrv5cJvI5geJWt0pKAH/el+EzU6uhMVTQa5Rt2Z2dnsb29zftWdAg3k8kgFovxoV4yz8nBbVX1OM6pSXJ2dpbNieQxSAduReIXCARYGywWi9jf3zdG7iDtkbQ9lVblRdZUQpasoaraRc9oLzCZTOLq1at48OABX3KZzWYxMzOD999/n0NyBQIB5HI5ZnaJRAIHBwd9JkixT20Yli6dScuUGaIsSNisR5v+FfHwEhbGQXYtQEWc5ecENoRfNTgqKUYntakmkpxvEObh1RYvnHX9pEvv9c5WM/Ca7IPgYspnqksHNu3TjZmX1igSSJlYy6Ar29TXpBVMTU1x7LxUKoVIJILZ2Vm+DiOfz6NYLPK1KLT/VSqV+vZRVO1wnFPPuomJCRSLRb6sUXSVlw/HUh4dMxe1KNd1eT/NRtvQgdzXqvWmGwPHcfierK2tLVQqFWZSjUYDm5ub7FUo9lEul+P/tVqN9+VMWpL8TMVsqHxVHtO8lNPbMC0ZFxkvE90YFXzkGJcfDct2EOTJbUN0bTQaP0xLlU5HmE0LUs6rMwWoFoDcJjmdzSIx9YOOWdjk0eFq6gcTA7BhemLb5d/ye1MZurbp0ovlix/gx9ePZLNZvPDCC3jw4AG7YB8dHfHFhGJIJrrmvlAoIJ/P4/79+33RIwjo8LHjOKjVarh16xZfOCqe0+p2u313RzmOw/d7UbBZIvrpdJq9E2XmRX2h+vbqRxNDsul3us6EonWIAXHFe+fEcuhG6JWVFY4rSR6I8rktEyMTmb44t3Rak0xHVH1hy8wcRx0x4yyZlAqG9ip8HkEnleiYlm4x+JFWVFKPVz55EXlJk3I6WyZKeUztVL33apMX01cRIK92eTEaE7M25VPhY8LbVJ/pt/hRaWk6nFVlqN7p0gYCAVy6dIldyG/cuIGNjQ3ef261WuxiPjExgXg8josXL/I1GdVqFXt7e32ea2IfuK6LixcvsrMFXUwZDoc5okU2m+VbfeX9HDJDihE4otEo5ufn+7QUeRx0zEz3UY2j2HeyRiGvJcc51bQymQySySRrTXIwXNH8R8+IWd29e5dNinRJpIy3qZ1eOKvmhU0a8bdpnqnqVzFqHXjRMRs49xqXqjNtOteL0NlIcCqtQ5Vf9c6LIJrKsJ08JinM1D5dHbaaiAoX8dsrryqd16KRx0L8bcNERLBtm9i3KkIgj5dXubImJb8Tn4lnsSKRCFZWVjA7O4v9/X2+pdhxHJTLZQ76Wq/XEY/HkcvlkEwmMTk5yWkpQrsqAC7tqbVaLaRSKUxOTuLg4ADNZpM1qGq1isPDw8fuCxNxb7fbODk54UsmKZwTMQqKzq5jVKZx0PWlPJe8hA7a2yoUCmg2mxz9QsRDJuSO47D22m63UavVUC6XUalUEA6HjdqVzHAGWZdye3WCoK58eZ2pyjYJvYPQXy8494xrlCqsTORNg6wjhF4E1i8R0/3X4W7TBhlfFf6mRWRiCCqcVM/9tlFXjokgmZi/CeRxVtUvMy3RYUK8UdurXTLYMD/HOT0TRe7uvV4Pu7u7ODo6QiqV4nNKuVyOrxGJx+P45Cc/iQ8++AAPHjzA0tISm/MajQZisRhef/11fO1rX+vzEAR+HCm+UqmwY0Iul8ODBw9wcnKCer2OSqWCVCrFIY9kbSYQCCCfz2Nubg6O4yCdTnNEjmAwyAeSaU6pmJbNvLEdYzEvRaeIx+PodDoIh8OIRqNwXRepVAqlUqmvL2TcwuEwXn/9dXb139/f78NV7g8V01K1wwS6dopMxlYYtQEvhjlqOHdehX4npinPIGWJOHlpAKMaVB2T8CKMNhKWDohADsKY5Hc2ddrWMYqxVGk0pjJ0mhOVQ6ayw8NDAKd7HeSlZ4uPjJdJ64pGo5iZmeEbhWu1GhzH4Sjt7Xa77woQKicWi7GJb2JiAlNTU1hbW4Pruhw3UIwGIWt45MDx5ptvolarYWtri8NDua7LzJT2g8QyyGkkHo8jGo3iM5/5DHZ2drC8vIxvfetbrMGJOOg0Bpt1oPK8NHljplIpLC8vI5fLYX19Hc1mk/es1tfXuQ6KQyhrXeFwuC8wr4r56hiKjdajS6t6rtJQbdeRbs4Osu4Ih7FXIQbj8CZpYRhGKH7L9dhqJXK5KnxVE07FGGyYhSqPqg5duV59oarbhtnqTBSmOm3feWmZuvp0i12lbUWjUVy+fBnFYhGZTAbb29t8iFTXNlljFM1/KryIeVy8eBFzc3PsOEBaF0W9AKBknBS5gZwsyuUy3/SbTCZxfHysZBT023VdvjTy6tWrKBaLfaY90uBUfUXv6QDvvXv3EA6Hsbu7y/tycuR5lcZgK7zJz8X+Fd/R+1arhVKphI997GPY29uD4zg4PDxkU2Y4HMb09DSOj4+xt7fX127VwWIRDxMTlkHHtMQ5J6dTPdPVoypH7BMdbrq1cVYa13PPuEaluXgR8mHKG5U2YVOOKOXpytQ9UzEW0wRW4Sjj4xf8aGEqZijiqGqHiriZCIQJB1Xd9FxmJnQFPRHgbDbLV9ib+k/8JBIJdiun6AsiHqTxHB8f4/j4GMFgEPPz87h//z5L+XLgWrnNrnvqCk/msKOjIw6Qq2IWYp8C4MPGDx8+ZEaluxjSdfsvtxSZ5vb2NhznNFzU5cuXcXx8jKOjI6OWqtNYxGc6YSwWi+Hy5cs4PDzEwcHBY8yLzqN997vfRSgU4nepVIrPb5GLvuzqr9NwRHxVjMHEjExgomVyXar1IedRlaOrl96b1s0oaPZzz7i8pGAZdJK/iWDaEDFT2TZahzyZVBKpCk8dEfbSBkSwxUnETW633JdyXlO/qEDXB7qxEX+b+trv+NqOvQp/OudDRC+RSKDVamFjY4P3n8RDybpyRMZ15coVJJNJfPe73+V9oXq9jnq9zpcarqysYG1tDaVSiWMMitfTq/pOhKOjI2SzWSSTSY6pp8NNLqPZbKLdbjOT8WIivV4PsVgM4XCY7/iiC2fL5TIODw/xgx/8AHNzcwiHw3zg2MSk5Lp0c1rEIxwOo1Kp8JUoqv6nIwPBYBAvvvgiGo0Gcrkca2PHx8cIhUIIBAKPxTWUcdIxLapT/FbhbWIwqvWnq8umv0SBcBj6qMJ1UHjuGZfcaX60G1umZ0NoVQzEhJtOWpff6/A1MTUdzjr8VRqDXJ6KsarSqAQBlSSmI2iqNuiYlg5MGpWXJOrFKG0gEAggEomwK3gwGEQ2m8XR0VFfgFkVg1XhS59arYbV1VVks1nk83nk83nWrMLhMLuf04WCxWIRd+/efSz6hJdm0m63cXh4iOPj477r4GXc5DZEo1FMT0/j4sWL+Pa3v23sIxGfdruN5eVltFotdhi5desWR+ygKBOZTIbDO+kIsF9BjsZrYWEB1WoVyWSSI9oXCgU2d5LW7Lou33kVDoe5DtIcq9Uq8vk8x1tUMUoV07IRnlRjoGqbqRwvIdAk1HrRxycJzz3jGrbTbLUuem8zeF7ESDdJTczA1E4Zb5mhyWWoGKqXZmezMMSy5fJ1ONuUqXtno4l5MXhZotTVYQuO47Dm0+12+QqRvb09XLhwAZubm317RTq86D89i0QivIEdDAYxMTGBWCyGRqPB5jVyPT84OGDnCFHqVxFRVZ/Jmpmu/WLf0ieZTOLOnTt9z0waB3C6f3Tr1i04jsNalajl7e/vA8BjDFiFv24+mBhCJpNBo9FgN/5YLIZLly7xDcPHx8dYXl7G/v4+R/9oNpvIZrOYn5/na13IhEgMTuwjVR/rmJaKfpgYjQ0DGlTT8gJbBjhqeO4Zl99Okie3LQG1YSCmOsVyTYTAT31ei9OPhmKTT8UATIxZfO6l7Xn91xEjm/zitxdD1rXLjxbmuqcXEiaTSbiuy1oCmZFEgi4TKLnfxN/dbhfZbJbNZtFoFKVSCYuLi9jZ2UGr1eIwS41GQ7l/JjIxWbjxC6rxiMfjcJzTO7sajUbfPVamQL0EotOIDbOVn8uE3ma8ms0mNjY2cHBwwOZdOnd2cnKCdruNcrnMjIzqmJiYQC6XQ61WQyQS4bTi3WMqRiXjrFs7pjSqOSSnNY2pPMdV68Km7/zSrFHBc8+4bIihKv0gzM6mfBNO4juTlOUHF9Uzr0lH71VMx4tp+xEU5IVnIwnr/ttI/TbE12ZuyP/FPDZMi4jW1NQUtre3kcvlmIC32204zo/3tlzX5QjtlF9VT7fbxaVLl7C7u4vd3V2Ew2EEAgFMTExgdXUV9XqdCazrupiYmMDly5dx48aNx8x9VL7MtLz6TzXvROeTubk5bG5usrmN2hkOh5FIJNDr9VAq/f/au7bYuI7z/C25Fy6X1IoUKa4oKZEsuwliykYqJ47VIHYjx0Vg1ShSII3rhwDtS5rYsFAXQZ08SA9FJASo0wZpG9QNEgdBoBfbRYC0qWXEVmoYrlXJaiRZVeVIoq4UJV6WFC+75HL6oJ7T2dFc/plz9sr5gAW558z8889//vlvZ/acYtVuStGwy7IzlZxVbSiGm+87NzcXOt3gVSW9vb3o7OxEpVLB0tISLl++jKGhoXCXZiqVwtzcXPhSyHw+j8HBwfDNx6lUquoxTjp+VetX1kY2V1OGpXKApu+8HHWytHFYcWVjbfnIJ4pxEf+aohMb+rpxVUpEpSlblLqsUTW3QNF0TlZGW/ZdZyhMfKr68bzbGFSKA7ONJHleqKhUKrhy5UoYfZdKJUxOToYZV/BopLVr12JgYCDc8i1eE/776OgolpaWwqi+WCzixo0byOVyoZEtl8thOWt0dPSO18Dz85H9NbWRtUun0+jt7UUicXsDSZDxBW9IzmQy6O3txd133y19Jp+N0+IzN9XmD/Gp8qZ3VAXnZ2dnwyfXB7sjg/PLy8u4fv065ufn0dXVBeD2749mZmYwPj4OADh9+jS6urowPDyMdevWobu7W8q/al66AEyn4yqnZWvXXEBZSxQbYIu2dFwmiFF6vdJbgG4AVQ5FFZGrFj2fKcnoUWmYoFNg0TCpImSxvWjITfzyWRElStQ5RpMz1UGcZ/BG3uDRRUG21N3djTVr1iCdToeZCz9nfj6JRALT09PI5XIYGRkJfxDc3d2N3t7e8EkOwW+Gbt68GWZ5sgBJVZ7ij1FKWMDtezrZbBb9/f1hFhhkWtlsFqlUCgsLC7hw4YL0esoyEtm1Fh2QLGvk5SXrr7pPxtjtTDl4AeTVq1cxMTGB6enpqpdFZrNZTE1NYWpqCqVSCaOjoygWi2G2du3aNczMzIT9dHrPy1m1Tl11XBzXRsdt2pgCX1WbqFiVjgu403nZRNMu0C18U/sA4oLkFdNUytRlZeJ325KgjJZsAcqiSqozsx0zymLRGQORtulaBg9jzeVy4c65wKgXCgVs374dfX19dzgvAHd8Z4xhfHwc//Ef/4GFhYUwkxsbG8Ps7GxVhrG4uKh8XQaFf5vsuKOjA6VSCYlEAnNzc+EOx3w+j3vuuQddXV0olUqYnZ1FJpPBunXrqjYw8LR1eqPjU5d1yOYgC6YYY9i+fTtSqRQmJyerntyeTCaxfv16bNy4EQsLC+jp6QmfPrK4uIjR0dHwWYrB0++D33Xp5Ge6FrY6rgpuTetTB6rT0wXVcdvXtnvkkwq8IaYYeiqtKNBlehQe4+KDOrYpq6I6PFXUL0biqu8yHkVegvYUnkXeTJmmGB3zjoZvE7xkMLivEzwnMIj6gwfZlkqlcKt8sViscjhi1hVsrw9+rLthwwaMj4+HmzHErIJ3ZgCq/vLHebmp5hz8FTPDgJd0Oo1MJgMA4Q9ze3p6wtd3LCwsYMuWLdi0aRNeeeWVqleBiIFd1IDSZo3z67CzsxM9PT3hW595BO8xu3jxYrg1v7OzE8lkEr29vVheXg4fWsz/7MEUtOoCJaqOy+jo1qRJxwNQH0umg86eAG6PfGp7x2UypDqHYOMYXJ2IKmKkQhWByYy/OCcqz5R2umxEJUud49bx4MKPrL+KDoUn3knx/XgnFhi0IPvYtm0bZmZmkMvlwoetBg9tHRkZwfj4OGZnZ3H9+vU7fusV0A+cRnDvKJvNhs/v452R+LDXoH86ncbi4iI6OzsxPz9/h+PSRf3BuHwWGBwLDHgymUQulwu3iQfP6CuXy5iamsLS0hLS6TSuXbumfOagjhcV4grsKDrJBxHB61cKhQIWFxcxPT2N2dnZO540opqPzGFTeTc5RJGuKVuT9XFxXDZ2BfDPKpRCpwgmw2WTlfGG0BTtURSUevF1UaRuTjaZCKUPxQHI5GCah+y8i1xk/W0yMUob2XyDFzEmk0nMzc2Fv+m6detW+JT2SqWCsbExXLp0CR0dHejt7Q03MaTTaSSTyfC3THym09PTg56ennBXHJ8BBe+EAhA6k5WVFWzZsgW/+c1v0NPTg4sXL1bxaor8E4nbPzLu6OgIdyoGr0cJfmQd7JacmppCLpfDZz7zGfznf/4nlpeXUS6XQwfW29uLmZkZ6eYRqtOirDcTHdk14/ur1mbQpqenJ3zcU39/f5htBaVb1Xx0AYJqXFl7VbYqG8cmGBcdnYy2rm+t0Vb3uFQpM0AzrDqaupQ8OKZSdl20o4o4KYZT7EtZHBT6/KLXGTNVGxuFl/FOjbSpxk3FrylK1clVJxt+rtPT0+ETFLLZbOiI8vk8HnnkkfDHrJcuXQo3XFQqFeRyOWzbtg0dHR0ol8thebCjoyO8ZxZExPl8PnQeQfkxk8lU9UkkEhgaGgp/C1YsFpFOp6uMn+kTbLwINlyk02ncd9996O/vRy6XQ6lUQnd3dzju0tISLl68iHK5HL4SJJ1Oo6+vDyMjI1W/iZLJm+p0+DmIOw5NH115VTwvlv6Cx1UFjipw5vzPD6hOSwXd+jM5eN52iTKTOTwTfZsMsNZom4zLFC26ghqp22QMsuOiklGMvclB8nRUfWS0bTMSE30VPZE3XRvZuCINWUQpjm2rCyb9kZ1PJBLhlukgA8rlcpiYmEA+nw+fLXjkyBFkMpnwfVWBHIrFIhYWFrBhwwYkk8nwqe2MMXR2dqKvrw/r16/HzMxM+Ggh/l5L8JLDIOMKypqVSgWFQgG5XA5zc3MYHh4OH61EccTLy8soFovo6+sLnzZx/fr18OWIQVYVZCJr1qzBhQsXwm37g4ODOH36NFKpFN5//32Uy+U7xqAayqjOQJVJBeOq9Jl3qolEApcuXQrbTE9P49Of/jTefvttqeGn2CiTjptomaoA/PGAvyCbptDT8V+PTCtA2zguVZpdT2FGBb9YqBmRqkTC0+P7yNrxx0TjL3NkfBvxmDiWyxxVxkK1KHWGiCJHE2zpJxKJMCvJ5/PIZrNYWFgIDfXc3Fy4W23Lli2YmZnBhQsXQnpBdB88Ib1QKGBsbCx8Zl6pVMLMzEyVbILnFGYyGaysrKC/vx89PT2YmJhAV1cX1q9fj0wmgzNnzqCjowPT09O4fv260WkFYwQZF4DwMUhr165FNpsNH3wb/H5szZo1mJ+fRyaTwezsLFKpFBYXF3Ht2rXwd2j86+3FcagQnYjp2lB0nKcr9lHJBbh9zcvlMn75y19WZXy2c9HpuGxMFS3ZPPlzOtthex0aYWNb3nFFzajqCQqvusyLYohV2RA1K9L9L5uH6NhsnIUsW1JlTFRQeJBBtaD58zL+ZeMyxlCpVNDf34+FhQUUi8VwM0U+n8fVq1fDLeujo6Ph09t5dHZ2YnBwMHwixtDQECYmJpBIJMLsJngxYzabDXcsDgwMYHR0FCsrK8hms6GjyOfzmJiYQKVSQSqVCp0Hb6R0kX3gUGdmZqq2vPf29obZX/BA3M2bN+ODDz7A2NhY+MqP4F5YInH7cVDivS2dsdRlVzIdEq8Tf41M/4t0ed502QyfYVEyI9k4qvPi/yb9VNkOGc+ywNMWjbDBbb+rkAclI9D1tR3LxuiLkC0saolDVFaRno0DlfGl6y8zJCaHoHK4FB4pY5j627RTjRPwm0gkkM/nUSgUkM/nce3aNczOziKZTKK7uxu3bt1CR0cHhoeHce7cufB+CP9eqnQ6jWw2i3Xr1oVZ0/LyMvL5PNLpNKanp9HV1YVcLoeFhQV0dXWFT2o4efJkuOkj2PgRbM1OJBLYsGEDNmzYgHfffTfcVWiT9fDz7OrqCrOrxcXFcC7B77aCLC344XXw2KeJiYmqHY2845RdF935Rui4ajwdbdWcKE5L5qhtoZKTDLY7Cal2VRaUA6t0V6GN0aIawjigc0im8oMYOerai2OZokLKuGIbk7M1GXZZRM+3l/Ftyr5sMz1Rnjw9ajTK95XNMfge7Lo7e/ZsmF2sWbMG2WwW09PTKJfLuH79elXWEZQBgdv3kgLDHpQYGWPhY51SqVS4OSIYb3JyEleuXEFnZyd6e3vDLA9AmFlVKhWMj4/jgw8+kBonPmPQBSaBQwqcY/Bm5YCm+MSOrq6usN/69euxuLiI+fn5KtnLslfxOH9e9b0eOi7yRYn9dTzLaOicKn9ezJQowbIKNg5StoajtLNFW2VccTmeRqS+Oojpf3CM/863dQUlSxSP6ca3oac7R3FQNtl0lKhVXITisUQiUfU7J/54Op2uevq52EcsqQUbLoLnGgZPhQ82a/T09KC7uzv8oW86ncbly5eRyWRw+fJldHV1obu7G1euXAl/WxQ4GNXuO5VcZQj41t3PCTKzYHNJMplEV1cXbt68qX38ks4xNJuOxzGuzlGLDtek6y76rRvf1M92zYvzcMm42mo7vEzJXOkA9Cio1uAXshgpygyprJ/umEhLd1y1iHXOVdVXdk52DSmZAMWYuPCl6qc6FjgD8SGvlUolfEyTbPt1LpfD2rVrq35gnEjcfvpG8CPe69evY3JyMnQG3d3d2Lp1K/r7+5FIJDA4OBiW7NLpNBhj+OhHPxq+TiV4pmA+nw9fgiiTgc6RiX34TEvVZmFhAfPz81hYWMDc3Bzm5ubu+JF00FbmBJtVx6l6oxuXp2WiR81cbByrbeaoG0v2XbZO4kgKWr5UKIJaNqIIzyWyokKWOekiF3ERqDITPnKiLlKKzGR9VcdUc1ItPOrYpshbZeBk8xMDAd15FY+qY7LzplJNZ2cnNm3ahCtXrqCrqyvcgTg4OIj5+XkkEgksLi6Gr8vgr3NXVxempqbwP//zP1heXsbNmzfDB7wuLi6iUCiEJctMJhO+8LBYLIbOQsebbG7Uc8G8g3tswW+eZLKS0WyUjssyEIp8+HF0GZGOpimj4s+Z5mTj5KJAxYdtxYWKtsq4AsRxsWRGMq6LzNNTKanqgqt400Fc6LJI0DZbdXVyIk9iO53DpnwX6aicpU6+wXlKhKuK+MXzusygo6MD/f39GB0dDXfp9fb2olQq4cKFC0gmk1i7dm344+XgDcjlchlXr14N7yndunULmUwGIyMj6O7uRrlcxn/9139hdHQUALBt2zZks1kMDg5i48aN6OrqIhlX/rs4H91HbB9kWTJ6JtRKx3W8m8ZS8aiTqUpGKlo6erJzIk2TfuqOqeag4oNKw2dcsIvWqVEKYB8pqM5FjYhk9IJ+ujRcPKaKUmVZAT8O39/G4escgy4IEOelk6kqu9GNL2sjo6eaj2l+qnYy+QdjLi8v4ze/+Q0ymQw2btyIvr4+pFKp8Ldbk5OTYIyFPypes2YNbt68WbVBAkD4SKWJiYlwi31wLwlAuMtwYWEBk5OTVdvhdQGAKcPRHdf9T1kbOh3X0RXPqfiyhU22oMusdDrOrzedI9bBFBTbOCpXJ1pLtNXmDB7ihW9HyMpQ1DnL2qicu4yuqT9/LODRNngwQXQAKoesO6eDTp6yY7LvOgfN/w3uPwWvOJmZmQlLhMEuwuAeWCqVQl9fH6anp8MfOA8PD+PmzZs4c+ZMuMGju7s7/OFvpVIJf0tWqVQwMzMj/REwPz/+rytc6MiuVy2hC0Z07Uw6xv915ctmvaj03BRY1MsFqGS06jdn8LApN1GOUy6uLj2njkVpq4osbUpbpqhLFrG5ZKmqkpuJR/6vqo1qV5puLJMB4Om5ZsN8FmPSqeD8ysoKUqkUisUiJiYmQsfS1dWFdDodbrYInoxx6dKl8AfBFy9exPHjxzE0NISBgQHMz8+jp6cnfJpGsPNveXkZS0tL4VM7TFviTQ7NdH1MMjDJUtbXJFMVr6o2AahrRuVIgvVCnTfVaah0UTYnVSBlCp5UY/Lf43BuYvUhCtq+VChTNFOZyhRJm8aipvIiXCJ7UQlMEaCqVBZ8p8hJ1tYmgzJlc5TMySay1PEh0uK/6xwYtWTCXx8VzwGKxWJVm+ABu1u2bEEymcTFixfDV4V0dXVhaGgIk5OTSKfTGBkZwblz51AsFrG8vIzp6WkMDQ3h6tWr4e/FVlZWwof46gynKaDRzZH/rssAAhom425TJqMYbpUuqXiTZc2qwE90JnHquGmu/PiqtSm7HqagT8erCaq2tgGhDC3vuCiG3kbYLgYwLkS5yOLi1hljnWLazl8XEaqiRJkhEY2HGN3qxqAsPtVx3aJ00QHdvFU0+awraJNIJMLHQo2Pj2N5eTl8j1aQaV69ehWdnZ2YmprCu+++i3K5HL5QslKpIJ1Ohz9GDuSk+92WbSSscn4qg8+fo0TxKgMexXiqeNM5ORX/wXfxvIpOVB1XOSKZ45XNn+K0TGiEXZSh5R2XCJnhVQk77oigUQ5P5AHQZ4+6TEn33cawm+Sqi0J1zkXGk2ruFB4pgY6MlinbVPUJjunai0ZxcnIy/F1XKpXC5s2bMT8/j6tXryKR+P9HRAX3sZaWllAsFjE6OgrGWPjcw5mZGczOzlY9lV2EyZiJvNnqi8phmjIIU1vVeZEXCi1VhhJA97u1eul40Ec1X/GvSI96DXQw9amlLWzbe1wU6CJj2XdbeiKi0g/6qPrxxkQ1lsn56CJAmRFW8SaLSGWZh4ymKpqV9VUZRltaKp5UPOpkaMo4dNdd5DfInoJP8APm4PmFwWaNjo4ODA0Nhe+HWl5exuTkZPjD5nQ6jZ6eHhQKBSSTyTuic5NeiR/V3HneZX1lkPESHFcFXqoxVedN11DHV/CR/WBaNl9xzLh1XNVOBupcdaCsnXqj7RxXlKzHFAXxY9SSvomGqp+sFCAqrmphB32Cv6romD+vG181nm7BqqJTVXuRF1WmJLanGg/+nMlAiHRUxlvkQdVf5C/4TE9P4+TJk5ienkalUkEmk8HHP/5xzM3Nha8VCZxcKpXCRz7ykfC9XoVCAR0dHchms1JdMY1t0hsX+YjylemWydkH/VVG2jUA1V1Pvl2jdFynQzodMzl2Fc86uNpEV7RlqbAZoDOotRxLNrZsocgWAMW58e2o52SLVJfZiXMTv6siUJnxMhkcl/mY5K2bm8iPrHwl8s8buyDyD579Nzc3h8nJyXA3ImO3H8OUSCSwvLyMsbExjI2NoaenB0tLS+GbenUGLvjOl8R0zsmUUchkJeqa7C9PXxyfbxsck/XV8WsKdGwyjUbquIo3SgBAtU0UHa0n2uJ3XCbFr5UTifuCqaJNncKrFqsMKudlilQptFVGWmckosqOIi/RaYvyMjkal3FUEbWqr8iXaNgTif9/CG/wvbOzE+l0GplMJty4ETi1gE4ymQzvfyUSCWQyGdy4cQNr1qzBjRs3wo0cPF/8X5v56kBxOlTY6g11jaiyK1mbZtZx3ZjitbaxNfz5KPOS6c2qfK0JIE+/VcYjTkcTd5RhiqBU50yRnMzA8MbSdmxKVCs7psr8bMfStdMZDj77lLWn8mWav8l4qQy+yvhkMhls2bIlfEty8LT4QqGAubk5lEqlsB//SKVkMonBwUGk02mcOXMmzMSCl1OKhkyVJZnmxOuRCir9oDhJ/rhNWzEAEM/xfymZSCvoODW4MM1FN/8odi8um9nyjou/mKJhrtfYzUpTt1Ao0SG/4ExZhGocU9AgGmtdVKcymPxiVvEpm4vOien4phok2diyeZjaBJsqLl++jJWVFWzYsAEDAwMAblcfOjo6kEwmq56EwRgLdx52dnZiaWmpykCrXuIoyojnT2WQTXPXyUscS+RHdh1sM1oRvK1QZSGtruPiPCnXSsZzs6LlHZdJaWxhivYo45lKCjq4LhgX8HzKFpKLbG0yXVlbk8ExHbPl01WOpkhfB9VcVTpWKpVw8eJF9PX1YXZ2FhMTE1UOKplMYsOGDWG7oFxYqVTCl1DyY/DGTGXQTHJV9ePlKpuLqr2sjcg31Vnp5K8z5O2m4zwPLqDoci2CdwraZleh68URoboIYsRjohFV2UyIk55ozFTnxTY6OYh9+OMBZFG22CcwgjI6OuMpQnbt+PFM81fxThlHxZdqfHFumUwGn/zkJ5HNZpHNZrFu3TpUKhXce++94Xu5JicncePGjZCG+Dgs1TgyHnVtTLJSZbCqPtSsQHX9ZHRUc9I9IqwddVzXn4I4A+240TaOS2UwVMqlA8UxufaNC7bzMbXXGSRVxKiLDgPDRXHgsqhVLIuIi5s/JvJscioieB2RGUCdUVRBp498G1lAxPOTSqWQTCbxwQcfIJvNYmFhAcPDwygUChgfH8fAwAA+8YlPIJPJ4Hd+53cwMDAgNb46hyTOX1fGks1RbGPSC5GeSp9kBl1WLlNBFhio0G46HtVpRQHF6UdFy5cKA8iiPMAtIohSQnIpN8i+xzGOSia6sSjGSdXHZhwZbCI8cW66+ciMhoxnSsRvA35s1f86+ozdfuVJIpHAf//3f6NcLqO3txfnz5/Hhz70IeRyOXR2duL999/H8vIyzpw5E76bi+qkVOObnJZqnnG3sQlCTBmeSk8paCUd5/l1hav9A9SOOU60jeOiXtRaCFE2nmmcKA5WXESqMcVMwbQAZGPoaMn44M+b5K4y5rIMRMa32F/kTee0VbKzySpUchcjaBXvPK+yeQPA0tISrly5gkQiET4lo7+/H9evX8f69esxMzODtWvXYnJysurNxwEdldPSzVE2H9lx2THbLMxlPYqyU2UlVP5EfmTfW0XHXR2Wynbo9FtHi59LLext25QKZTBFcDYRtqqt6jjlwlLoqGjLFqNsbkFb14hMZuz48VTRoTiGbvFReJddR1EGlOhURkdmHFTGX5y/iqbuOw+Z3Hhe+M/KygquX7+O06dP46677sLZs2dRKpUwPj6OUqmEdevWYXBwUCprfh4yefLtZf1V86AYJV1QqWunWieq4MyUXZnWvsyxtJKOqwITylrXXVsbfZbxbcMHFS3vuGycj+15Slvbi6pqozIWrohz7oA6epfRMzlSEx82vLksUr6tLnoUHQeVD9FJyAxqAMoCF53X0tIS3njjDczNzaG7uxulUgmLi4tYWlrCjRs3wnay/rpxRIepa2uav6mvzAmIbU3GNJgnJYtU0VHRDnhpJR13CaLriTj5aHnHZRJGnF6+FWGbWVHa8Q8b1RksHhSl1S1QVQYkRtym6N5U6hH78P1sXlypygpkjkxnIMV58217enrQ3d0dPgLqypUr0qdhqDIpcRzV3ES5UuYvG8fklHTHRT7FB97aQJyrzuDbVCoapeNioNII6HSnFmh5xwWojafOkIltZd+p56KAGim6jm8yOHw7akQkM6YBDVs+dQ5TFamqyn08byZaKuMrKwupjItsHpTxTc5ShMzRJRIJbNu2DVNTU7j77ruxefNm5RZ4kY6tgaVWFUxrL0rELXPcqjYm3kwlN7E9j2bTcWrAybe3gWld8fxFzSxt0BabM2yjN5VD0wlZZvgox0ygto+66HkjzP819aHwwhtTU1/xvMqgy8a04UlHh/+rMua68VZWVu44b1PqVV0DU1TN/18qlXDkyBFks1kAwPnz56VOSyVrFa+2OszPxURLFuDo5Kwy1CJNyjq3qcxQ9LjROh5HIGvT3jaorXUlrC0cFw+KgCmGG7A33tRIVrdIxUWja+/i9KiK6OIoVYZJRdvGMNgYLJEfFR88r67XjxoIiGPyf01BkGwMxlj4vMHFxUWUy2VlCVc2B9PcVE5Ol0XpDLQ4R1Nb0xzEvtQMT5Rh0E7XV+RDzH7qreMqhy7ybRo/Duiuay3Hb3nH5SoYqoOjjG2TbVCdkMnBRHUsNn1sx5IZHFXkrYJKHirDw5+zjZ5tjsucsmjE4lqsMjmK2R5jDOfOnQvPudCkwDbQMRk0FW+67Io/HtDkqwmydjpHoHJAqnayzFLnlHTnZeeoOi7+Vc1fNb5LJmly0CqogryoaHnHBeiVztQnaqYE0EsBKtQyIrIZxyWrMdHT8aFb3KqMQ8eX7jpQDSBFBiZjpQLVuKgyMNl32ZiqtrJ2rtEyxSnoQOHRlMmY1jBFz/i2KicgG0dlkMXzceq47JrHbW9cA2XbbDEq2sJx8aBeSNuIwyXaqCfiiPKpBtqFnsowqQyvzAjqDKuu7COjKdJT8WIjA9V8485wbUppOlActW49mAy5jG/ROFNgc+1M61RsJ86DGqiYnJmMN92cTDoe1zWvFSgyiyvbAtpkV2EURDXWNheiVkpX6+gmbgTRMv9qDQqvYjtx4VOyKh1tXclFpCcra+l4DubLfxf7RXVaumPimFTdEAMD6jl+fJUMxDaqeaiuq6gLFH7Ea6yioeob9LHJum0DF5EnUYb1gOmaNhpt47iohs+2T9BO1TaOiNwGlHIBpTRiom/TnmrEdf35/3XZj0yGsutqw5NrtkrpI7s2It8q5yr7X5YhyCDLLMRymCpjDb6bypWyObo4SlO2Jru+OidjuybF8VVBBT+2ypZQ17iNjuvWuowHG7jYNapeUMdyQVuVCk0GyDa7iuIATHRta8biMZc6Nb/o4pqTzOi4zo3STja26rqK8ooafOjkbzIo4vlgk4WKF7GPrBwma6PiR6bL1PIYVV9cgxd+PIo+UTIfHY/UtWNafzKHYsuTqr0us6bwLqOl0zcTdHxS7WicaJuMS0QcqS7FCLuAUuuNomQmmjqnEWUMm2hT104sjVDKJLIsRmYEVZGymB2osiK+jY4O/79svqpMbGVl5Y4SKp+JqsZXjR3AVCLTzUWWAYj8imVQmXxsHRt/vVTZia2BtylvirzK+sqcKiXgVTllqr7bQGfHbOXmOn7caFvHpYNt9NgoHnjYGO1a8xInTUq0pjJ4qvmqjJxsPPF4sMjFzFSMxCllKl3EboLMgMmcEZWOjk8VAhm4BBKikRdlRil5UTJmSkatm5uJf553fi66a6kLDHVOLeo6dgHFkYuIK9CNgrYqFQL0cpUJjbogKriUzIDqxe9SWlHRi4OW7bgiDzx4nuKMVE282JRPVOU3iixlpUVd1qXTCbE9JXujXHNZlktpJx43BRkqWjJ5yv7X2QiqMzbJw6QDMlnV02GJoOiJ7LrI5kHR06iIlHHt378fiUQCe/bsCY8xxrBv3z4MDw8jm83ikUcewalTp6r6lUolPPPMMxgYGEAul8MTTzyBy5cvR2GlCqYyRbPAhSdK5sXDxblQFq+r04rrOvClKvH68kbJJlsz8SYaPVN2JfKqmgfF2Ltk6HwZT/UxrQ1KVqvKIsRMxcSvSxuV7GQ2gOpsVFkIpQQo40ukIdMN23URtz2Lq1pTL2fs7LiOHDmCf/zHf8R9991Xdfzb3/42XnjhBXzve9/DkSNHUCgU8LnPfQ6zs7Nhmz179uDVV1/FwYMH8dZbb+HWrVvYvXs3KpWK+0w0cM3AZIK3KU/p6AZ8US4uNTU3zZFaWqplJhUlI1JdC2oJSyz3yGiaQIlMxbFk/UxZRRRjH7Wvim+Vc5ZdU921UJVQdXOn6KVY7qX21TleFT9UiFUAPuiRyYhqb2yyRUoQZQqeXGxCLe2Ik+O6desWnnrqKbz44ovo6+sLjzPG8Dd/8zf45je/iS984QsYGRnBSy+9hPn5efz0pz8FABSLRfzgBz/AX//1X+PRRx/Fxz/+cfzkJz/BiRMn8Prrr8czK5iVzRR9A/KIkVrX1kFWP6e2pyDKQouz1OaSPZiyPd5ZqRYvn22IDk00RirDzI9jOzexbGlbkqIaWtVxMSBSzUW1BnRy5duIslOdt5Er317Fk00kLzpEGS+m7Ei35qlZukhT9VoWio7rxjIdj9PeuK6ROODkuL72ta/h8ccfx6OPPlp1/Pz58xgbG8Njjz0WHstkMnj44Yfx9ttvAwCOHj2KpaWlqjbDw8MYGRkJ24golUqYmZmp+thCXMi1jAbiQC0vOmWxUfuZMpyovKhAzXyC/8XsjBJhRi3fUMaRnTONrcvW+PmJ7XSGTWxDzfJlfOmO6RyHLttT8WsDHS88P+I4VB3XZYqiQ3LhV0a7lqg1/SiwdlwHDx7EsWPHsH///jvOjY2NAQCGhoaqjg8NDYXnxsbGkE6nqzI1sY2I/fv3I5/Ph5/NmzeTeKVEgPx3VwNMvcCULI86po4OJaJy4Vll1CiLV8eL7rupvUhfF0WL2ZcqohbLOmJ/FX3byFbVVxdYqXRI5rBUfSnGVDTYOiOu40nVTja+jHcX4+mSAciycVGmFEfH95Mdo8wnio7HCepatK0oxAErx3Xp0iU8++yz+MlPfoKuri5lO9kFphh/VZvnn38exWIx/Fy6dInMs42zsKHFf6dGU6qyVBTeXJxqVAeq491lMekMHAWmcp9qTL5sI3sJo2ksGU3d2GJGpGqrCyxUc1U5FlUWKBo/SlAiOybORXctZPMKjrlkuOK8ZOPy53QGVjd/lbNWXUOxn6wsWA8dbxTqwZOV4zp69CjGx8exY8cOJJNJJJNJHD58GN/97neRTCbDTEvMnMbHx8NzhUIB5XIZU1NTyjYiMpkM1qxZU/WxBWVxUEs0soWgMwAURImedM6JkhlEhUuWBKh5tJGhTTZHoSXLYnR8qQymLlOjzNeFdxl92yzQ1ihSAydddC47R80qVFmzrq1sbP67bJ2bKgOy663LsBqh43E5FFNAWA9YOa5du3bhxIkTOH78ePh54IEH8NRTT+H48eO46667UCgUcOjQobBPuVzG4cOHsXPnTgDAjh07kEqlqtpcu3YNJ0+eDNvEDV6x41i4lKi71mk8D0pWRDlfL6WjyogiQ2oGZAPR8OgejisrL8l4lAVFspIUhTfZODZ9g/Y2pTORV12wxP+lViNEuqqynQiKHvNr3xRE2QQPMplQfmJg4t+mjY2Ox2WTGmk7Alj9ALm3txcjIyNVx3K5HNatWxce37NnD771rW/hnnvuwT333INvfetb6O7uxh//8R8DAPL5PP70T/8Uzz33HNatW4f+/n78xV/8BbZv337HZo84IS5EXbnD1F8H3cLgyyKu9KmwoWdqGxdvMjou14KKuK5p0FakLYvIbXiPkmmIvNnoZtBep4dipqbiSxYUqrIRlf7r1oSMd3EM07xssjcqbzJ6YiYexd5QEaeOR0U9nVfsT874+te/joWFBXz1q1/F1NQUHnzwQbz22mvo7e0N23znO99BMpnEF7/4RSwsLGDXrl340Y9+hM7OzrjZkcKU9suOR734JsMWt6GyMRL1cqgyGVCvRS3gOpZr6UYn54Cuytjxx8RzLsGAio+oMlGVwFTndVmQih9bPXUNOHXBpuikdPRaVcd1uigbp56OK8HqnePFgJmZGeTzeae+UZWGckFdjb1ugdhmT7aKFzeijGlTNjNFtVGi7SjtXJxCVL2xqRzI5GPSP5PTlbWzdaK1zE5csllZf/F/V1qtruNiH1cUi0XrfQur8iG7UUDJwkyLO/hfVYsXj4nKqltAlKwmLqiiasqYrlmLrJ1sQfNtXB2NaUxxLB78fQ++rey6q+jpjvH0ZPqh4kvUD5We8DT4trpMSpUNmvTClJ2Y5kQxmqoyooqG6rrp+LDhqx10vJFou4fsmlCv7ENVkpP9b+qnoqGjUw9E4SXO7KMRMpEZfh1EJyOLknWGSTS8YrRNib5l46vaqrIi0TmZZC9zCLKMj+8rc5g66LJBldxU8xXPB6+YccFq0fFGOLZVmXFFjdzioG2KiF34qIUC1VImOlBLGnGPW0s6KsMafFQ70nQlIlkGpTPgYoakgi67kGVeqv68sxP55PmQOY4oa03mwE1ZbfC/7Dp4Ha/t+LZYlY4L0N9Qpab4OhqmCClqDZkSJVPomBBHCSLKXKOUW+KKSm3KSzZQBR+yspSqdEcdh6qX/HFZhqXL6GT9+fFlzlD8bqpK6DI03Tn+GM8Lz4OuDOh1/M7vjSwhrrpSIQWu6bsNbEuWptKPK11XvuIqubqWVF3oxtnXxLeJjo2cVd9tSl668XlnJAuQVOU/XRYoa6MLDHVO2bacqCqnBqCW/7yOm3W8UVi1GRdwZ7Rnahsn4lAAl6zLdA9CF+WajKYMNnKLU8ZR5GuK9Kn0o8rIVA42ZWZ8uU7Gm1jO48+JGRP/V6d3spKlzPjJxtY5KxWPqvmJPJsyKq/jdjreyGwLWOWOSwZTqSDumrON0Yoyjgo2Cmwqk1Lpq86bnKqJT/FcXNdCxltUUCJuVQakgqzMqPoEtFRORXZMdBYyY68rJcmckTiGzjnKrg+/Lk3z1dHyOl4bR10r+FKhAGp5xba/LvK15UN2Po6yFE/bVIa0UXKXkgRlDFmpitrXRM8E13npjtmUZmyuKcVwi+PZGnsxexL505USZX11c4nDcHodNyNKKbLW8I4L9AukigJd+satFDpacSl43AtFVqaiQraIo8jUxbm70KOU2aKOH1UOrtBlWPx3WVamy9RqBa/jelCz3kbAO67/g6tCuCpRLSKZekRIUaJLEVGiv7iMDqUvdT61lr8qixFBaRMHL42A1/HG6XizOC3A3+OqArU+Tzlea35kUNXP4+QxymKNwgfVcVBgywdf2tL1l0XHUcdW0ee/63RTd8/G6zhtDJs27arjzeS0AO+4lDDda9DdRObPx8WDbHzTorUpQdXCAKj4aTR9UwlEJgPqvQW+r8xp1EIGKpo2909k372O22M16HgzwDsuAVSltr2pajM+NfJ0uTeioxe1DNNsUZkM1GzJ1F6FKPdBVYhLrrY8eB2/E6tRx5txzt5xSWCzcynudvxirbfC2N6MFc/VMjKnoBZllLgMJgViRlCLLM1lE4TXcX1/E404UW8db0anBXjHpUSUlFzWxuXGp63BqoWS6XiIU0ZxIK5rIaLeu9yoWYYLXy7lIK/j0WjEiVbX8bjgHZcCjYgEZTdEo0SD9ajpx4m4NzOoaNiWRlRyjcpL1LnZZnKmY7WG1/HW0vFmlql3XBrU++LJbpbrShvUexBxRYO29zFs+8sWT5T7TSq6tpsWdOdd74Hxc3Odl8loq/QkLrm6wOt4a+h4s8M7rjrARRl1i6JRSmezc0tmlG23++oWY1RjTzlG3UDgAtuSnSyiNhltlbxsjRwFXsft+8vaN4OON3OmFcA7LgJMES3/v00d3yVad80CXZXUNaNQfaf0j+owbK+F6hjlnk2UrDzKDfS4dwiq4HX8TrSzjreC0wK84yLDpCCUkoVoBFxuClNvvMpq2KYyhQ0fsjFsz6va85EshYZsrpS5RUUgU9fFb3u/xvV+ju19JRWPXsftz6vaN6OOt4rTArzjsgKvZDY3lAO47OgyjaU6T919pKMTVZFVZQ+KfILvFKOiizAp2bLNeUo/V7nW6n6OTq66DMXruBntouOt5LQA77iswRsPnXK6KpNuTNfzrjAteptxeZlQSnCqMVXj2zoDarmGSo96XtYmilxl/W366Ayi1/HVqeOtAO+4LGF7I1ZEPW46uyqrKfKLalCp/V2idhfeXMpYJpq247iMFdXR2fTxOm7HRyvqeCs6N++4HBD1xiqVhitqUfeOsmh05ZlGLZpa3JSm3hSvxTgiqNlQlHl7HW99HW9FpwV4x+WMOGvj9YLJaLneRzBBVteX/R9Fpo28HuI9IYpca20wVHLVXYta8lAveB1XoxbBWqPgHVcEtFoE42K0opZkbHZMxV2Tr9e1EHd4udznsgVF91zk6rLDrZngdby2/ZoF3nFFhG2NO2rExe9sjBu1KHVRFqrrTjTK2AFcd8+ZEKVsHHeZjhL1m3YKxuF0vY7rx220jre60wK846o7oihtsHXWlUaU3WdxGdkoET119xX1vE2GpKPrclM/6rgiqNdHNqbuHk8tdgia+nodN49BPR+HjjcjvOOKAa4RYi0iS12EFcW4murjUQyn2F+3vZcyXr3KJy4GP87I13aHq+12aipd05hex+/s3wgdr2UmW294x9UgRNnJpINsEcYVbUW9yR8lmrRtb5JTHDfpXQy+bfmOMn5Ug1oreB2vRjPoeLvAO64YIUY0JiUWa+OUG+46Za7nTjUTZNFqLYyLDKJsqU7KpXwTB+K4x1JPeB2/jVbR8XbKtAJ4x1UDyCJNSpmGcuPYxhi7ljriQC23XVMzDdv6vi5L0hnfdjEK1Hs9tlu9vY67046q4+2imyK846oTAuMXVZFsjHEtFxYFcRoVakRpM4ZNW53xpRiNOA1IrYy1TrcoY3gdbz4db1d4x1UjyBawrHRCpSX7W0u48Ggq+US5p2O6n+R6U97W0FINlVg2crnuqjHiNNZx65LX8ebQ8XYsD/LwjqvGsNkEoKr/ixGobVnAxTDb3oim3s+g0jbRUEFWuqLch6HyQHUaMuNNNeimfnEYJNuNE9TdbrL2snHFY17H6TDpeDs7rADecTU5bIydKtqzWUQmg6Ez4uIx15KTbgyb0kxcZSNbo833c7kWtZKrbgyVXG0CL1d4HW+8jrcavOOqA2Rpu41BsDV2tdiVZbvRwUTHtY1Lmcw2snahFUfk7cpT1HFk/WXX27X8pxvHdFzVxuv4nX3avTzIwzuuBsEUZdlCVYKRjUsdq9kWQRwLs1alHZf+pvnUK5qmytXWWXgdt8dqcj5R4B1XHaFTyig374P+lGO646Z2jV5QrpswTKUfFz7i6G/ayFAvebvKVaRBaeN1XA+Xa7EanZ13XA2AStF09fIoO9+ignozmxoRx8FLHGW0Wi52Cp8mucru59Rq112c9Gzvj3kdl9Nz2cizWuAdVwNhU56xMb61uHnu2s4lyqaUz3i6NjezZbRqAfG6RblOsns7rrxTSqVRdqiJOwS9jssRh46vVqcFeMfV8rApdcSh6KJRszFMcTsUlcGr906rqA5URq9W2UecmyAo9GtRmvU67uEdV4MRd9Rks1vJhQfRqMWxDbnVQXGg1LkHGUs7yLVWGcFq1/HVnGkF8I6rCeCS9tvUv01tbaPFONCIXV9RaEUtn1H71nMnYa1pRZ2L1/E723mndRvecTUR4t5wELXMY6IfBVHuKdR6TFPfWsi13mgWubrQXY067h1WNbzjajJEVVCbLcM2PFB3XZnoxI1WW9BxXou4ESWrrCe8jnt4x9WEMClqrRVZdjNctetMhBgN16K8IYu4G7W4a72lXpxfcMx1WzxlN5v4v45WrZyd1/Ha/OyhXeAdV5OCamDiHpOy9Zh6c1w0BnGBusvMZFTjMDi1LPOotsGLW87rBdGYihsXeCNeD7m6oJV03DstNbzjamLUWnFF+rY7qEzQ0YrjxrWptGPKIOKerypKbtRvjnTQlcpMmy1MRj1uuUZBq+q4d1p6eMfV5IizHBOHQZX9VqmWO+VMRtLlvoQMUbIEkYdaOZY4+ul4lP3wNQ6oHCIlU3YdK0Cr6bjfOUiDd1wtgjgMtKyvrTGxKanYGKY4ymm2NMV7Fa5lv3qUQ008uMJlK7vtPViKQ4+yU1A2lo6fZtVx77Do8I6rhaCLxuI0/LbGmVKq09Hm28Z5U9p0L8xlY0dcTooaWVOvhczo1mrjBFWuNnQo16JdddxnWfbwjqsFoVt0cdwUp25+cKXP/5Wdj+OGt8wYqIy6rDRGiY6jyIWa4VGvhWmLuKs8KZlDve4ZtaOOe4flBu+4WhQqQ1uL7eFxGj0KPds5uIxjKgdRjEoUg+1aLo3D2NmU5UwOUUc7brSbjnun5Q7vuFoY/NZjcTGbShiyklzcCylqJK7qL/IsMwJxZAE2W6J1JU5qWcqlxOYC13t5lHa13MbeLjruS4PR4R1Xm8G2Tq8qJ9V6YcW1w6wZtl1Ttt2bUG9D1gi5RsmgqWXPZtdx77DigXdcbQLbReFSIooT1J1bVEcQx7bnKKhHFmQL3fzi2rJvszmBirhk0Uw67h1WvPCOq80Q9wKJY5dXlHZxzMf1PoTN9uU4tzrX8hrWctcm5XgUOdTK+Ndax73Tih/ecbUhoiwU6j0Lm51/Udq5RK1x3XexidijRveUDRMmQ66at4zPemQDYhXAdreoze+pbPmi0I1Dx73Tqg2842pT8Bs3qO2B+m0Q0PGgG5OSMegi+7hu1Me5s48Kyk5Im7H4ax7nfHi6cWzJtxmb0q4eOu7vZ9UW3nGtAlC3Wdv2ibsdhQdqpmAqY5mi6VpvXjA5nVref5MZ8KgZGMVB1cqQuzqiWui4d1j1gZXj2rdvXxhFBZ9CoRCeZ4xh3759GB4eRjabxSOPPIJTp05V0SiVSnjmmWcwMDCAXC6HJ554ApcvX45nNh5K2NwvcCmRUA29aeu4rI/qXBTnYXJajd6tGOW3bDZypW7VN41JQb030NRbxz3qB+uM695778W1a9fCz4kTJ8Jz3/72t/HCCy/ge9/7Ho4cOYJCoYDPfe5zmJ2dDdvs2bMHr776Kg4ePIi33noLt27dwu7du1GpVOKZkYcSvNOw+Y0SBdTshXc4rhlPLQ1IMzgtHi7ZhC7jiev+X9A37qxFNoYr6qXjPstqAJgF9u7dy+6//37puZWVFVYoFNiBAwfCY4uLiyyfz7Pvf//7jDHGpqenWSqVYgcPHgzbXLlyhXV0dLBf/OIXZD6KxSID4D8RPolE4o6P6nhcHx394FyjeHOdA//dhXfTvKPKtZ7yi3MOUedULz1q9Dpuh0+xWLRxQ4wxxqwzrrNnz2J4eBhbt27Fl770JZw7dw4AcP78eYyNjeGxxx4L22YyGTz88MN4++23AQBHjx7F0tJSVZvh4WGMjIyEbWQolUqYmZmp+nhEA3OMvsU+Nu1U9BkzvxiRwptp/DiQEMpGiYT51So63k3ztuEpahsgmtzEMWxoiX1d5RHlWog0TG1qpWMeZlg5rgcffBA//vGP8W//9m948cUXMTY2hp07d2JiYgJjY2MAgKGhoao+Q0ND4bmxsTGk02n09fUp28iwf/9+5PP58LN582Ybtj00UC1A1aKkGhQbwxOHMQnOi4YrbuNCod/KBk0XXOi+29CKi74LXco5Hd/eYTUHrBzX5z//efzhH/4htm/fjkcffRQ///nPAQAvvfRS2EYWdZkU2NTm+eefR7FYDD+XLl2yYduDAH4xyq5HvRerbTaoylyiGE/dOPx3lzGjZK5xoV4ZkatcbfuY6ETVce+wmgeRtsPncjls374dZ8+eDXcXipnT+Ph4mIUVCgWUy2VMTU0p28iQyWSwZs2aqo9H/LDNvlTnRQPhApdSkUt0HXVMHXRjumauYmZpGjMOHlyvoaps1ygHwPNB5SlYE95pNRciOa5SqYTTp09jw4YN2Lp1KwqFAg4dOhSeL5fLOHz4MHbu3AkA2LFjB1KpVFWba9eu4eTJk2Ebj+YAv1BlWQUP2X0f8Vw9QOExQFQnR2kbl8EWr4WMdtAurntFMhpxGW8KPZ2DroUTkem4d1ZNDJudHM899xx788032blz59g777zDdu/ezXp7e9mFCxcYY4wdOHCA5fN59sorr7ATJ06wJ598km3YsIHNzMyENL7yla+wTZs2sddff50dO3aMffazn2X3338/W15eJvPhdxXW/1OrXVlx7/CK+7zLfJtZRvWUa3A8Lrm68Gs7TqPX2Wr8uOwqTMICly9fxpNPPombN29icHAQn/rUp/DOO+/gwx/+MADg61//OhYWFvDVr34VU1NTePDBB/Haa6+ht7c3pPGd73wHyWQSX/ziF7GwsIBdu3bhRz/6ETo7O21Y8agz2P9F8wnCUxii0I8CU3+X84mE/RuZXeYhjuEij7iuhQgVPZVOiP1UcnWBTi4yfmzGYT7DahkkWAterZmZGeTz+UazsWoRp2GMw2HVA1H5pDqVKOPwfV0dn62h17Vvpmurk38LmsC2QrFYtN63YJVxNQu8ojUWccu/Va5nHHxSaEQZh+/rQse2j6l9s13bZuPHw+2atORDdvlHSHl4eHh4tC5c7HlLlgpXVlZw5swZfOxjH8OlS5f89ngJZmZmsHnzZi8fBbx89PDy0cPLxwyTjBhjmJ2dxfDwMDo67HKoliwVdnR0YOPGjQDgf9dlgJePHl4+enj56OHlY4ZORq57FVqyVOjh4eHhsXrhHZeHh4eHR0uhZR1XJpPB3r17kclkGs1KU8LLRw8vHz28fPTw8jGjljJqyc0ZHh4eHh6rFy2bcXl4eHh4rE54x+Xh4eHh0VLwjsvDw8PDo6XgHZeHh4eHR0uhJR3X3//932Pr1q3o6urCjh078O///u+NZqku+NWvfoXf//3fx/DwMBKJBP75n/+56jxjDPv27cPw8DCy2SweeeQRnDp1qqpNqVTCM888g4GBAeRyOTzxxBO4fPlyHWdRO+zfvx+f+MQn0Nvbi/Xr1+MP/uAPcObMmao2q1lG//AP/4D77rsv/EHoQw89hH/9138Nz69m2ciwf/9+JBIJ7NmzJzy2mmW0b9++8On7wSd4gTBQZ9lYvwilwTh48CBLpVLsxRdfZO+//z579tlnWS6XY6Ojo41mreb4l3/5F/bNb36TvfzyywwAe/XVV6vOHzhwgPX29rKXX36ZnThxgv3RH/2R9H1oGzduZIcOHWLHjh1jv/u7v2v9PrRmxe/93u+xH/7wh+zkyZPs+PHj7PHHH2cf+tCH2K1bt8I2q1lGP/vZz9jPf/5zdubMGXbmzBn2jW98g6VSKXby5EnG2OqWjYh3332Xbdmyhd13333s2WefDY+vZhnt3buX3XvvvezatWvhZ3x8PDxfT9m0nOP65Cc/yb7yla9UHfvoRz/K/vIv/7JBHDUGouNaWVlhhUKBHThwIDy2uLjI8vk8+/73v88YY2x6epqlUil28ODBsM2VK1dYR0cH+8UvflE33uuF8fFxBoAdPnyYMeZlJENfXx/7p3/6Jy8bDrOzs+yee+5hhw4dYg8//HDouFa7jPbu3cvuv/9+6bl6y6alSoXlchlHjx7FY489VnX8sccew9tvv90grpoD58+fx9jYWJVsMpkMHn744VA2R48exdLSUlWb4eFhjIyMtKX8isUiAKC/vx+AlxGPSqWCgwcPYm5uDg899JCXDYevfe1rePzxx/Hoo49WHfcyAs6ePYvh4WFs3boVX/rSl3Du3DkA9ZdNSz1k9+bNm6hUKhgaGqo6PjQ0hLGxsQZx1RwI5i+TzejoaNgmnU6jr6/vjjbtJj/GGP78z/8cn/70pzEyMgLAywgATpw4gYceegiLi4vo6enBq6++io997GOh4VjNsgGAgwcP4tixYzhy5Mgd51a7/jz44IP48Y9/jN/6rd/C9evX8Vd/9VfYuXMnTp06VXfZtJTjCiB7fXyzvGm10XCRTTvK7+mnn8avf/1rvPXWW3ecW80y+shHPoLjx49jenoaL7/8Mr785S/j8OHD4fnVLJtLly7h2WefxWuvvYauri5lu9Uqo89//vPh/9u3b8dDDz2Ebdu24aWXXsKnPvUpAPWTTUuVCgcGBtDZ2XmHdx4fH7/D0682BLt7dLIpFAool8uYmppStmkHPPPMM/jZz36GN954A5s2bQqPexkB6XQad999Nx544AHs378f999/P/72b//Wywa3S1nj4+PYsWMHkskkkskkDh8+jO9+97tIJpPhHFezjHjkcjls374dZ8+erbv+tJTjSqfT2LFjBw4dOlR1/NChQ9i5c2eDuGoObN26FYVCoUo25XIZhw8fDmWzY8cOpFKpqjbXrl3DyZMn20J+jDE8/fTTeOWVV/DLX/4SW7durTrvZXQnGGMolUpeNgB27dqFEydO4Pjx4+HngQcewFNPPYXjx4/jrrvuWvUy4lEqlXD69Gls2LCh/vpjtZWjCRBsh//BD37A3n//fbZnzx6Wy+XYhQsXGs1azTE7O8vee+899t577zEA7IUXXmDvvfde+FOAAwcOsHw+z1555RV24sQJ9uSTT0q3o27atIm9/vrr7NixY+yzn/1sW2zVZYyxP/uzP2P5fJ69+eabVVt25+fnwzarWUbPP/88+9WvfsXOnz/Pfv3rX7NvfOMbrKOjg7322muMsdUtGxX4XYWMrW4ZPffcc+zNN99k586dY++88w7bvXs36+3tDW1vPWXTco6LMcb+7u/+jn34wx9m6XSa/fZv/3a43bnd8cYbbzAAd3y+/OUvM8Zub0ndu3cvKxQKLJPJsM985jPsxIkTVTQWFhbY008/zfr7+1k2m2W7d+9mFy9ebMBs4odMNgDYD3/4w7DNapbRn/zJn4TrZnBwkO3atSt0WoytbtmoIDqu1Syj4HdZqVSKDQ8Psy984Qvs1KlT4fl6ysa/1sTDw8PDo6XQUve4PDw8PDw8vOPy8PDw8GgpeMfl4eHh4dFS8I7Lw8PDw6Ol4B2Xh4eHh0dLwTsuDw8PD4+WgndcHh4eHh4tBe+4PDw8PDxaCt5xeXh4eHi0FLzj8vDw8PBoKXjH5eHh4eHRUvCOy8PDw8OjpfC/rfkOi9V+1tMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -406,7 +408,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 27, "id": "75e97201-addd-4c53-ad4b-18cb72dc3d6f", "metadata": {}, "outputs": [], @@ -452,24 +454,37 @@ " plt.ylabel('Time (s)')\n", " plt.xlabel('Implementation')\n", " plt.tight_layout()\n", - " plt.show()" + " plt.show()\n", + " print(df.groupby('method').median())" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 28, "id": "6bc150f2-b82d-4d0a-9520-16be1077454c", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuhElEQVR4nOzdd3wUxf/H8fel0xJKQughIBB676Kg0qQKSBQEsSF+UUHEnwIqiiJ2KVJE/IogQhBQUDrSoiCdgCJITRBSSICEkp75/ZFvVo4EDCfkCLyej8c94GZnZ2cvt7f72ZmdsRljjAAAAAAAwDVzcXYFAAAAAADIrwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQD/2syZM2Wz2a74Wr9+vbOrmCvffPONxo8fn+Mym82mN954I0/rc7XP9PLPd8CAAapYsWKe1u9md+zYMdlsNn344YdO2X7WcXHs2DGnbP9627Rpk9544w2dPXvW4TKWLVt2xeOoYsWKGjBggMNlA4CzuDm7AgCAW8eXX36poKCgbOk1atRwQm2u3TfffKPffvtNQ4cOzbZs8+bNKleuXJ7WZ/PmzXbv33rrLa1bt05r1661S69Ro4bKly+vIUOG5GX1cJvZtGmT3nzzTQ0YMEBFixZ1qIxly5Zp8uTJOQbW3333nby9vf9dJQHACQiqAQDXTa1atdSoUSNnV+OGaNasmdO36efnJxcXlxzrcrsGI4mJifLy8pLNZnN2VfAv1a9f39lVAACH0P0bAJBn5s2bJ5vNpk8//dQuffTo0XJ1ddXq1auttO3bt6tr164qXry4vLy8VL9+fc2fPz9bmSdOnNDAgQNVvnx5eXh4qEyZMurVq5eio6MlXbkL7vr16+26prdu3VpLly5VeHi4XdfqLDl1//7tt9/UrVs3FStWTF5eXqpXr56++uqrHLczd+5cjRo1SmXKlJG3t7fuu+8+HThw4Fo/wivKqfu3zWbTs88+qy+//FLVqlVTgQIF1KhRI/36668yxuiDDz5QYGCgChcurHvuuUeHDh3KVu6aNWt07733ytvbWwULFlTLli31008//WN9svb766+/1rBhw1SqVCkVKFBAd999t3bt2pUtf27+3ll/y1WrVunxxx+Xn5+fChYsqOTk5Fx/TlllrF27Vk899ZRKlCghb29v9e/fXxcuXFBUVJR69+6tokWLqnTp0ho+fLhSU1Ot9bO6lL///vsaO3asKlSoIC8vLzVq1ChXn4uUu8/0jTfekM1m0549e/Tggw/Kx8dHxYsX17Bhw5SWlqYDBw6oQ4cOKlKkiCpWrKj3338/23YSEhI0fPhwBQYGysPDQ2XLltXQoUN14cIFu3xZ35PZs2erevXqKliwoOrWrasff/zRrj4vvfSSJCkwMDDbox0hISFq166dSpcurQIFCqh69ep65ZVX7LY1YMAATZ482dpm1ivr2Myp+3dERIQeeeQRlSxZUp6enqpevbo++ugjZWRkZPubfPjhh/r444+t73Tz5s3166+/5upvAgD/BkE1AOC6SU9PV1pamt0rPT3dWv7QQw9p0KBBevHFF7V9+3ZJ0tq1a/X2229r5MiRatu2rSRp3bp1atmypc6ePatp06Zp8eLFqlevnoKDgzVz5kyrvBMnTqhx48b67rvvNGzYMC1fvlzjx4+Xj4+Pzpw5c011nzJlilq2bKlSpUpp8+bN1utKDhw4oBYtWuj333/XxIkTtWjRItWoUUMDBgzIMcAZOXKkwsPDNWPGDE2fPl0HDx5Uly5d7D6fG+HHH3/UjBkz9O6772ru3Lk6d+6cOnXqpBdffFG//PKLPv30U02fPl379u1Tz549ZYyx1v3666/Vrl07eXt766uvvtL8+fNVvHhxtW/fPtcB5MiRI3XkyBHNmDFDM2bM0MmTJ9W6dWsdOXLEypPbv3eWxx9/XO7u7po9e7YWLFggd3f3a/5cnnzySfn4+GjevHl69dVX9c033+ipp55Sp06dVLduXS1YsECPPvqoPvroI02aNCnb+p9++qlWrFih8ePH6+uvv5aLi4s6dux41e+MdO2fae/evVW3bl0tXLhQTz31lD755BO98MIL6t69uzp16qTvvvtO99xzj15++WUtWrTIWu/ixYu6++679dVXX+n555/X8uXL9fLLL2vmzJnq2rWr3d9ZkpYuXapPP/1UY8aM0cKFC1W8eHE98MAD1t/pySef1HPPPSdJWrRokXV8NGjQQJJ08OBB3X///friiy+0YsUKDR06VPPnz1eXLl2sbbz22mvq1auXJNkdY6VLl87xszp16pRatGihVatW6a233tKSJUt03333afjw4Xr22Wez5Z88ebJWr16t8ePHa86cObpw4YLuv/9+xcfHX/VvAgD/mgEA4F/68ssvjaQcX66urnZ5k5KSTP369U1gYKDZt2+f8ff3N3fffbdJS0uz8gQFBZn69eub1NRUu3U7d+5sSpcubdLT040xxjz++OPG3d3d7Nu37x/rdvToUbv0devWGUlm3bp1VlqnTp1MQEBAjuVIMqNHj7beP/TQQ8bT09NERETY5evYsaMpWLCgOXv2rN127r//frt88+fPN5LM5s2br1j3yz366KOmUKFCV1x2ed0lmVKlSpnz589bad9//72RZOrVq2cyMjKs9PHjxxtJZs+ePcYYYy5cuGCKFy9uunTpYldmenq6qVu3rmnSpMlV65q13w0aNLDbzrFjx4y7u7t58sknrbTc/r2z/pb9+/e/6razHD161EgyH3zwgZWWVcZzzz1nl7d79+5Gkvn444/t0uvVq2caNGiQrcwyZcqYxMREKz0hIcEUL17c3Hfffdm2lfXdu5bPdPTo0UaS+eijj7LVR5JZtGiRlZaammr8/PxMjx49rLRx48YZFxcXs23bNrv1FyxYYCSZZcuWWWmSjL+/v0lISLDSoqKijIuLixk3bpyV9sEHH+R4LF0uIyPDpKammg0bNhhJJiwszFo2ePBgc6XLz4CAAPPoo49a71955RUjyWzZssUu3zPPPGNsNps5cOCAMebvv0nt2rXtfke2bt1qJJm5c+detb4A8G/RUg0AuG5mzZqlbdu22b22bNlil8fT01Pz589XXFycGjRoIGOM5s6dK1dXV0nSoUOHtH//fvXt21eS7Fq977//fkVGRlrdppcvX642bdqoevXqebujymxhv/fee1W+fHm79AEDBujixYvZWiy7du1q975OnTqSpPDw8BtazzZt2qhQoULW+6zPqmPHjnbd27PSs+qzadMmnT59Wo8++qjd3yAjI0MdOnTQtm3bsnUjzkmfPn3sthMQEKAWLVpo3bp1kq7t752lZ8+ejnwUdjp37mz3Pmv/O3XqlC09p79Rjx495OXlZb0vUqSIunTpoo0bN16x94Ejn2lO9bTZbOrYsaOV5ubmpjvuuMOunj/++KNq1aqlevXq2W2rffv2OY7I36ZNGxUpUsR67+/vr5IlS+b6+3nkyBH16dNHpUqVkqurq9zd3XX33XdLkv74449clXG5tWvXqkaNGmrSpIld+oABA2SMyTZgX6dOnazfESnvjjEAYKAyAMB1U7169VwNVHbHHXeoVatWWrp0qZ555hm77p9Zz0IPHz5cw4cPz3H92NhYSZndQ/N6RO4scXFxOXZbLVOmjLX8UiVKlLB77+npKSlzoK0bqXjx4nbvPTw8rpqelJQk6e+/Q1Z33ZycPn3aLmDPSalSpXJMCwsLs9tObv7eWa7UXfhaXMvnkvWZXOpK+5WSkqLz58/Lx8cn23JHPtOc6lOwYEG7gD4rPSEhwW5bhw4dumLX+Ms/08u/n1LmdzQ338/z58+rVatW8vLy0ttvv62qVauqYMGCOn78uHr06OHwdzwuLi7HaeJutmMMAAiqAQB5bsaMGVq6dKmaNGmiTz/9VMHBwWratKkkydfXV5I0YsQI9ejRI8f1q1WrJilzNOy//vrrqtvKCj4uH8zq8qDiWpUoUUKRkZHZ0k+ePCnp7/3Ir7LqP2nSpCuOfO7v7/+P5URFReWYlhUAXcvfO8vNMNL3lfbLw8NDhQsXznGd6/WZ5oavr68KFCig//73v1ety/Wwdu1anTx5UuvXr7dapyX9q/mspVv/GANw6yCoBgDkqb179+r5559X//799fnnn6tFixYKDg7Wrl27VKxYMVWrVk1VqlRRWFiY3nnnnauW1bFjR82ePVsHDhzIFnhlyWrp2rNnj12eJUuWZMub25Y5Sbr33nv13Xff6eTJk1bLmZTZBb5gwYJOmYLremrZsqWKFi2qffv25TgoVG7NnTtXw4YNswLh8PBwbdq0Sf3795eka/p730wWLVqkDz74wLppc+7cOf3www9q1aqVXRfkS12vzzQ3OnfurHfeeUclSpRQYGDgdSnzSi2/WX/brOVZPvvss6uWUaBAgatu795779W4ceO0c+dOa0A0KfMYs9lsatOmzbXvBADcAATVAIDr5rffflNaWlq29MqVK8vPz08XLlxQ7969FRgYqClTpsjDw0Pz589XgwYN9Nhjj+n777+XlHkx3rFjR7Vv314DBgxQ2bJldfr0af3xxx/auXOnvv32W0nSmDFjtHz5ct11110aOXKkateurbNnz2rFihUaNmyYgoKC1LhxY1WrVk3Dhw9XWlqaihUrpu+++04///xztnrWrl1bixYt0tSpU9WwYUO5uLhcsTv76NGj9eOPP6pNmzZ6/fXXVbx4cc2ZM0dLly7V+++/n2P33/ykcOHCmjRpkh599FGdPn1avXr1UsmSJXXq1CmFhYXp1KlTmjp16j+WExMTowceeEBPPfWU4uPjNXr0aHl5eWnEiBFWntz+vW8mrq6uatu2rYYNG6aMjAy99957SkhI0JtvvnnFda7XZ5obQ4cO1cKFC3XXXXfphRdeUJ06dZSRkaGIiAitWrVKL774otU7JLdq164tSZowYYIeffRRubu7q1q1amrRooWKFSumQYMGafTo0XJ3d9ecOXOsLv45lfHee++pY8eOcnV1VZ06dazu95d64YUXNGvWLHXq1EljxoxRQECAli5dqilTpuiZZ55R1apVHfhkAOD6I6gGAFw3jz32WI7pn3/+uZ588kkNGjRIERER2rZtm/XcaKVKlTRjxgw9+OCDGj9+vIYOHao2bdpo69atGjt2rIYOHaozZ86oRIkSqlGjhnr37m2VW7ZsWW3dulWjR4/Wu+++q7i4OPn5+enOO++0nkV1dXXVDz/8oGeffVaDBg2Sp6enHnroIX366afZBqUaMmSIfv/9d40cOVLx8fEyxmSbeihLtWrVtGnTJo0cOVKDBw9WYmKiqlevri+//DLbXLv51SOPPKIKFSro/fff19NPP61z586pZMmSqlevXq738Z133tG2bdv02GOPKSEhQU2aNNG8efNUuXJlK09u/943k2effVZJSUl6/vnnFRMTo5o1a2rp0qVq2bLlVde7Hp9pbhQqVEihoaF69913NX36dB09elQFChRQhQoVdN999+X4rPI/ad26tUaMGKGvvvpKn3/+uTIyMrRu3TprjvcXX3xRjzzyiAoVKqRu3bopJCTEroVZyhy47pdfftGUKVM0ZswYGWN09OjRHOvj5+enTZs2acSIERoxYoQSEhJUqVIlvf/++xo2bJiDnwwAXH82c6WrBQAAAAetX79ebdq00bfffnvVgbnym2PHjikwMFAffPDBFQdWAwDcXphSCwAAAAAABxFUAwAAAADgILp/AwAAAADgIFqqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBzFMNZWRk6OTJkypSpIhsNpuzqwMAAAAATmeM0blz51SmTBm5uFy5PZqgGjp58qTKly/v7GoAAAAAwE3n+PHjKleu3BWXE1RDRYoUkZT5ZfH29nZybQAAAADA+RISElS+fHkrXroSgmpYXb69vb0JqgEAAADgEv/0iCwDlQEAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBbs6uAAAAjtq/f79CQ0MVExOjkiVLqlWrVgoKCnJ2tQAAwG2ElmoAQL60f/9+zZs3TydOnFBqaqpOnDihkJAQ7d+/39lVAwAAtxFaqgEA/1pSUpIiIiLydJsLFixQXFxcjum9e/fO07rcKBUqVJCXl5ezqwEAAK6CoBoA8K9FRERo4MCBebrN8PBwGWOypdtsNq1ZsyZP63KjTJ8+XVWrVnV2NQAAwFUQVAMA/rUKFSpo+vTpebrN+fPnKzo6Olu6v7//FVuqw8PDNXbsWI0aNUoBAQE3uor/WoUKFZxdBQAA8A8IqgEA/5qXl1eet6j26tVLISEhdq3VNptNvXr1+se6BAQE0AIMAACuCwYqAwDkS0FBQQoODlbZsmXl4eGhsmXLKjg4mNG/AQBAnqKlGgCQbwUFBRFEAwAAp6KlGgAAAAAABxFUAwAAAADgIIJqAAAAAAAcRFANAAAAAICDCKoBAAAAAHAQQTUAAAAAAA4iqAYAAAAAwEEE1QAAAAAAOIigGgAAAAAABxFUO8GUKVMUGBgoLy8vNWzYUKGhoVfM+/PPP6tly5YqUaKEChQooKCgIH3yySfZ8i1cuFA1atSQp6enatSooe++++5G7gIAAAAAQATVeS4kJERDhw7VqFGjtGvXLrVq1UodO3ZUREREjvkLFSqkZ599Vhs3btQff/yhV199Va+++qqmT59u5dm8ebOCg4PVr18/hYWFqV+/furdu7e2bNmSV7sFAAAAALclmzHGOLsSt5OmTZuqQYMGmjp1qpVWvXp1de/eXePGjctVGT169FChQoU0e/ZsSVJwcLASEhK0fPlyK0+HDh1UrFgxzZ079x/LS0hIkI+Pj+Lj4+Xt7X2NewQA+ceff/6pgQMHavr06apataqzqwMAAG5iuY2TaKnOQykpKdqxY4fatWtnl96uXTtt2rQpV2Xs2rVLmzZt0t13322lbd68OVuZ7du3z3WZAAAAAADHuDm7AreT2NhYpaeny9/f3y7d399fUVFRV123XLlyOnXqlNLS0vTGG2/oySeftJZFRUVdU5nJyclKTk623ickJFzrrgAAAAAAREu1U9hsNrv3xphsaZcLDQ3V9u3bNW3aNI0fPz5bt+5rKXPcuHHy8fGxXuXLl3dgLwAAAAAAtFTnIV9fX7m6umZrQY6JicnW0ny5wMBASVLt2rUVHR2tN954Qw8//LAkqVSpUtdU5ogRIzRs2DDrfUJCAoE1AAAAADiAluo85OHhoYYNG2r16tV26atXr1aLFi1yXY4xxq77dvPmzbOVuWrVqiuW6enpKW9vb7sXAAAAAODa0VKdx4YNG6Z+/fqpUaNGat68uaZPn66IiAgNGjRIUmYr8okTJzRr1ixJ0uTJk1WhQgUFBQVJypy3+sMPP9Rzzz1nlTlkyBDdddddeu+999StWzctXrxYa9as0c8//5z3OwgAAAAAtxGC6jwWHBysuLg4jRkzRpGRkapVq5aWLVumgIAASVJkZKTdnNUZGRkaMWKEjh49Kjc3N1WuXFnvvvuunn76aStPixYtNG/ePL366qt67bXXVLlyZYWEhKhp06Z5vn8AcCPt379foaGhiomJUcmSJdWqVSvrpuPNVCYAALh9ME81mKcaQL6wf/9+zZs3zy7NZrMpODg410Hw5fNUX48yAQDArSm3cRIt1QBwk4uOjlZ8fLyzq+F0CxYsUFxcXI7pvXv3zlUZ4eHhdv9ejzJvdz4+Pv842CYAALcyWqpBSzVwE4uOjtYj/forNSX5nzPf4sLDw5XTKctms1mP0NwMZd5u3D089fXsWQTWAIBbDi3VAHALiI+PV2pKshIr3a0MLx9nV8epjH5VyoXsLfYehXx0oUazm6bM24lLUrx0ZIPi4+MJqgEAty2CagDIBzK8fJRRyNfZ1XCqQpUaKOXAFl3asGyzZaY7+tnciDIBAMDthXmqAQD5gleJMipWrak8ihSTi6ubPIoUU7FqTeVVosxNVSYAALi90FINAMg3vEqUue4B740oEwAA3D5oqQYAAAAAwEEE1QAAAAAAOIju3wCAW05S3EmdP/GnUi8myL2gtwqXrUoXbwAAcEPQUg0AuKUkxZ3U6f1blHLujEx6ulLOndGZA1uUFHfS2VUDAAC3IFqqASAfcEk86+wq5BsXjuyULfVijukFvTycUKNbF99LAAAIqgEgXyhwdKOzq5BvxIaHy+PSiaf/xxZrUyHFOKFGAADgVkZQDQD5QGLgXcooUNTZ1cgXjH5VyoX4bOkehXx0oUYzJ9To1uWSeJYbPgCA2x5BNQDkAxkFiiqjkK+zq5EvFKrUQCkHtujSxmqbLTOdzxAAAFxvDFQGALileJUoo2LVmsqjSDG5uLrJo0gxFavWlNG/AQDADUFLNQDgluNVogxBNAAAyBO0VAMAAAAA4CCCagAAAAAAHERQDQAAAACAg3imGgBw20mKO6nzJ/5U6sUEuRf0VuGyVXkGGwAAOISgGgBwW0mKO6nT+7coLfGcUhLilJGarPjDu+Rbp418KtdzdvUAAEA+Q/dvAMBt5fyJP5WWeE6JsX8pPSVRxmQoLTlRsXvWKSnupLOrBwAA8hlaqgEgH3BJind2FW4ZaWejlHomUrb0VLv0jKR0XTiyUwW9PJxUs/yH7yUAAATVAHBT8/HxkbuHp3Rkg7OrcssofDZSF85Gy/WydFdXV9nCt6mQYpxSr/zK3cNTPj4+zq4GAABOQ1ANADcxf39/fT17luLjaRG8HsLDwzVq1CgVL15c6enpVrrNZlOVKlUUFBSk3r17O7GG+Y+Pj4/8/f2dXQ0AAJyGoBoAbnL+/v4ELddRwYIF1adPH/3444+6cOGCChYsqICAAPn5+alXr16qWrWqs6sIAADyEYJqAMBtp3Xr1rrrrrsUGhqqU6dOyc/PT61atVJQUJCzqwYAAPIZgmoAwG0pKCiIIBoAAPxrTKkFAAAAAICDCKoBAAAAAHAQQTUAAAAAAA4iqAYAAAAAwEEE1QAAAAAAOIigGgAAAAAABzGlFgAg39q/f79CQ0MVExOjkiVLMtc0AADIc7RUAwDypf3792vevHk6ceKEUlNTdeLECYWEhGj//v3OrhoAALiN0FINAPjXkpKSFBERkafbXLBggeLi4nJM7927d47rhIeH2/17s6tQoYK8vLycXQ0AAHAVNmOMcXYl4FwJCQny8fFRfHy8vL29nV0dAPnQn3/+qYEDB+bpNsPDw5XTKcxmsykgICBP63KjTJ8+XVWrVnV2NQAAuC3lNk6ipRoA8K9VqFBB06dPz9Ntzp8/X9HR0dnS/f39r9hSnd9UqFDB2VUAAAD/gKAaAPCveXl55XmLaq9evRQSEmLXWm2z2dSrVy9adwEAQJ5hoDIAQL4UFBSk4OBglS1bVh4eHipbtqyCg4MZ/RsAAOQpWqoBAPlWUFAQQTQAAHAqWqoBAAAAAHAQQTUAAAAAAA4iqAYAAAAAwEEE1QAAAAAAOIigGgAAAAAABxFUAwAAAADgIIJqAAAAAAAcRFANAAAAAICDCKoBAAAAAHAQQTUAAAAAAA4iqHaCKVOmKDAwUF5eXmrYsKFCQ0OvmHfRokVq27at/Pz85O3trebNm2vlypV2eWbOnCmbzZbtlZSUdKN3BQAAAABuawTVeSwkJERDhw7VqFGjtGvXLrVq1UodO3ZUREREjvk3btyotm3batmyZdqxY4fatGmjLl26aNeuXXb5vL29FRkZaffy8vLKi10CAAAAgNuWzRhjnF2J20nTpk3VoEEDTZ061UqrXr26unfvrnHjxuWqjJo1ayo4OFivv/66pMyW6qFDh+rs2bMO1SkhIUE+Pj6Kj4+Xt7e3Q2UAAAAAwK0kt3ESLdV5KCUlRTt27FC7du3s0tu1a6dNmzblqoyMjAydO3dOxYsXt0s/f/68AgICVK5cOXXu3DlbSzYAAAAA4PojqM5DsbGxSk9Pl7+/v126v7+/oqKiclXGRx99pAsXLqh3795WWlBQkGbOnKklS5Zo7ty58vLyUsuWLXXw4MEcy0hOTlZCQoLdCwAAAABw7dycXYHbkc1ms3tvjMmWlpO5c+fqjTfe0OLFi1WyZEkrvVmzZmrWrJn1vmXLlmrQoIEmTZqkiRMnZitn3LhxevPNN//FHgAAAAAAJFqq85Svr69cXV2ztUrHxMRka72+XEhIiJ544gnNnz9f991331Xzuri4qHHjxldsqR4xYoTi4+Ot1/Hjx69tRwAAAAAAkgiq85SHh4caNmyo1atX26WvXr1aLVq0uOJ6c+fO1YABA/TNN9+oU6dO/7gdY4x2796t0qVL57jc09NT3t7edi8AAAAAwLWj+3ceGzZsmPr166dGjRqpefPmmj59uiIiIjRo0CBJma3IJ06c0KxZsyRlBtT9+/fXhAkT1KxZM6uVu0CBAvLx8ZEkvfnmm2rWrJmqVKmihIQETZw4Ubt379bkyZOds5MAAAAAcJsgqM5jwcHBiouL05gxYxQZGalatWpp2bJlCggIkCRFRkbazVn92WefKS0tTYMHD9bgwYOt9EcffVQzZ86UJJ09e1YDBw5UVFSUfHx8VL9+fW3cuFFNmjTJ030DAAAAgNsN81SDeaoBAAAA4DLMUw0AAAAAwA1GUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKodoIpU6YoMDBQXl5eatiwoUJDQ6+Yd9GiRWrbtq38/Pzk7e2t5s2ba+XKldnyLVy4UDVq1JCnp6dq1Kih77777kbuAgAAAABABNV5LiQkREOHDtWoUaO0a9cutWrVSh07dlRERESO+Tdu3Ki2bdtq2bJl2rFjh9q0aaMuXbpo165dVp7NmzcrODhY/fr1U1hYmPr166fevXtry5YtebVbAAAAAHBbshljjLMrcTtp2rSpGjRooKlTp1pp1atXV/fu3TVu3LhclVGzZk0FBwfr9ddflyQFBwcrISFBy5cvt/J06NBBxYoV09y5c/+xvISEBPn4+Cg+Pl7e3t7XuEcAAAAAcOvJbZxES3UeSklJ0Y4dO9SuXTu79Hbt2mnTpk25KiMjI0Pnzp1T8eLFrbTNmzdnK7N9+/ZXLDM5OVkJCQl2LwAAAADAtSOozkOxsbFKT0+Xv7+/Xbq/v7+ioqJyVcZHH32kCxcuqHfv3lZaVFTUNZU5btw4+fj4WK/y5ctf454AAAAAACSCaqew2Wx2740x2dJyMnfuXL3xxhsKCQlRyZIlHS5zxIgRio+Pt17Hjx+/xj0AAAAAAEiSm7MrcDvx9fWVq6trthbkmJiYbC3NlwsJCdETTzyhb7/9Vvfdd5/dslKlSl1TmZ6envL09HRgDwAAAAAAl6KlOg95eHioYcOGWr16tV366tWr1aJFiyuuN3fuXA0YMEDffPONOnXqlG158+bNs5W5atWqq5YJAAAAAPj3aKnOY8OGDVO/fv3UqFEjNW/eXNOnT1dERIQGDRokKbNr9okTJzRr1ixJmQF1//79NWHCBDVr1sxqkS5QoIB8fHwkSUOGDNFdd92l9957T926ddPixYu1Zs0a/fzzz87ZSQAAAAC4TdBSnceCg4M1fvx4jRkzRvXq1dPGjRu1bNkyBQQESJIiIyPt5qz+7LPPlJaWpsGDB6t06dLWa8iQIVaeFi1aaN68efryyy9Vp04dzZw5UyEhIWratGme7x8AAAAA3E6YpxrMUw0AAAAAl2GeagAAAAAAbjCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBbs6uQH5x/PhxHTt2TBcvXpSfn59q1qwpT09PZ1cLAAAAAOBEBNVXER4ermnTpmnu3Lk6fvy4jDHWMg8PD7Vq1UoDBw5Uz5495eJCoz8AAAAA3G6IBK9gyJAhql27tg4ePKgxY8bo999/V3x8vFJSUhQVFaVly5bpzjvv1GuvvaY6depo27Ztzq4yAAAAACCP0VJ9BR4eHjp8+LD8/PyyLStZsqTuuece3XPPPRo9erSWLVum8PBwNW7c2Ak1BQAAAAA4i81c2qcZt6WEhAT5+PgoPj5e3t7ezq4OAAAAADhdbuMkun/nQmJioi5evGi9Dw8P1/jx47Vy5Uon1goAAAAA4GwE1bnQrVs3zZo1S5J09uxZNW3aVB999JG6d++uqVOnOrl2AAAAAABnIajOhZ07d6pVq1aSpAULFsjf31/h4eGaNWuWJk6c6OTaAQAAAACchaA6Fy5evKgiRYpIklatWqUePXrIxcVFzZo1U3h4uJNrBwAAAABwFoLqXLjjjjv0/fff6/jx41q5cqXatWsnSYqJiWFgLwAAAAC4jRFU58Lrr7+u4cOHq2LFimratKmaN28uKbPVun79+k6uHQAAAADAWZhSK5eioqIUGRmpunXrysUl817E1q1b5e3traCgICfX7t9hSi0AAAAAsJfbOMktD+uUr5UqVUqlSpWyS2vSpImTagMAAAAAuBnQ/fsKBg0apOPHj+cqb0hIiObMmXODawQAAAAAuNnQUn0Ffn5+qlWrllq0aKGuXbuqUaNGKlOmjLy8vHTmzBnt27dPP//8s+bNm6eyZctq+vTpzq4yAAAAACCP8Uz1VcTExOiLL77QvHnz9Ntvv9ktK1KkiO677z4NHDjQGg08v+KZagAAAACwl9s4iaA6l86ePavw8HAlJibK19dXlStXls1mc3a1rguCagAAAACwx0Bl11nRokVVtGhRZ1cDAAAAAHATYaAyAAAAAAAcRFANAAAAAICDCKoBAAAAAHAQQTUAAAAAAA4iqM6ltLQ0rVmzRp999pnOnTsnSTp58qTOnz/v5JoBAAAAAJyF0b9zITw8XB06dFBERISSk5PVtm1bFSlSRO+//76SkpI0bdo0Z1cRAAAAAOAEtFTnwpAhQ9SoUSOdOXNGBQoUsNIfeOAB/fTTT06sGQAAAADAmWipzoWff/5Zv/zyizw8POzSAwICdOLECSfVCgAAAADgbLRU50JGRobS09Ozpf/1118qUqSIE2oEAAAAALgZEFTnQtu2bTV+/Hjrvc1m0/nz5zV69Gjdf//9zqsYAAAAAMCpbMYY4+xK3OxOnjypNm3ayNXVVQcPHlSjRo108OBB+fr6auPGjSpZsqSzq/ivJCQkyMfHR/Hx8fL29nZ2dQAAAADA6XIbJ/FMdS6UKVNGu3fv1ty5c7Vz505lZGToiSeeUN++fe0GLgMAAAAA3F5oqQYt1QAAAABwGVqqr7MTJ07ol19+UUxMjDIyMuyWPf/8806qFQAAAADAmQiqc+HLL7/UoEGD5OHhoRIlSshms1nLbDYbQTUAAAAA3Kbo/p0L5cuX16BBgzRixAi5uNx6A6bT/RsAAAAA7OU2Trr1IsQb4OLFi3rooYduyYAaAAAAAOA4osRceOKJJ/Ttt986uxoAAAAAgJsM3b9zIT09XZ07d1ZiYqJq164td3d3u+Uff/yxk2p2fdD9GwAAAADsMfr3dfTOO+9o5cqVqlatmiRlG6gMAAAAAHB7ovt3Lnz88cf673//qz/++EPr16/XunXrrNfatWuvubwpU6YoMDBQXl5eatiwoUJDQ6+YNzIyUn369FG1atXk4uKioUOHZsszc+ZM2Wy2bK+kpKRrrhsAAAAAIPcIqnPB09NTLVu2vC5lhYSEaOjQoRo1apR27dqlVq1aqWPHjoqIiMgxf3Jysvz8/DRq1CjVrVv3iuV6e3srMjLS7uXl5XVd6gwAAAAAyBlBdS4MGTJEkyZNui5lffzxx3riiSf05JNPqnr16ho/frzKly+vqVOn5pi/YsWKmjBhgvr37y8fH58rlmuz2VSqVCm7FwAAAADgxuKZ6lzYunWr1q5dqx9//FE1a9bMNlDZokWLclVOSkqKduzYoVdeecUuvV27dtq0adO/quP58+cVEBCg9PR01atXT2+99Zbq16+fY97k5GQlJydb7xMSEv7VtgEAAADgdkVQnQtFixZVjx49/nU5sbGxSk9Pl7+/v126v7+/oqKiHC43KChIM2fOVO3atZWQkKAJEyaoZcuWCgsLU5UqVbLlHzdunN58802HtwcAAAAAyERQnQtffvnldS3v8hHDjTH/ahTxZs2aqVmzZtb7li1bqkGDBpo0aZImTpyYLf+IESM0bNgw631CQoLKly/v8PYBAAAA4HZFUJ2HfH195erqmq1VOiYmJlvr9b/h4uKixo0b6+DBgzku9/T0lKen53XbHgAAAADcrgiqr6BBgwb66aefVKxYMdWvX/+qLck7d+7MVZkeHh5q2LChVq9erQceeMBKX716tbp16/av65zFGKPdu3erdu3a161MAAAAAEB2BNVX0K1bN6s1t3v37tet3GHDhqlfv35q1KiRmjdvrunTpysiIkKDBg2SlNk1+8SJE5o1a5a1zu7duyVlDkZ26tQp7d69Wx4eHqpRo4Yk6c0331SzZs1UpUoVJSQkaOLEidq9e7cmT5583eoNAAAAAMiOoPoKRo8erccff1wTJkzQ6NGjr1u5wcHBiouL05gxYxQZGalatWpp2bJlCggIkCRFRkZmm7P60lG8d+zYoW+++UYBAQE6duyYJOns2bMaOHCgoqKi5OPjo/r162vjxo1q0qTJdas3AAAAACA7mzHGOLsSNytXV1dFRkaqZMmSzq7KDZWQkCAfHx/Fx8fL29vb2dUBAAAAAKfLbZzkkod1yne43wAAAAAAuBqC6n/wb6a6AgAAAADc2nim+h9UrVr1HwPr06dP51FtAAAAAAA3E4Lqf/Dmm2/Kx8fH2dUAAAAAANyECKr/wUMPPXTLD1QGAAAAAHAMz1RfBc9TAwAAAACuhqD6Khj9GwAAAABwNXT/voqMjAxnVwEAAAAAcBOjpRoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQ7QRTpkxRYGCgvLy81LBhQ4WGhl4xb2RkpPr06aNq1arJxcVFQ4cOzTHfwoULVaNGDXl6eqpGjRr67rvvblDtAQAAAABZCKrzWEhIiIYOHapRo0Zp165datWqlTp27KiIiIgc8ycnJ8vPz0+jRo1S3bp1c8yzefNmBQcHq1+/fgoLC1O/fv3Uu3dvbdmy5UbuCgAAAADc9mzGGOPsStxOmjZtqgYNGmjq1KlWWvXq1dW9e3eNGzfuquu2bt1a9erV0/jx4+3Sg4ODlZCQoOXLl1tpHTp0ULFixTR37tx/rFNCQoJ8fHwUHx8vb2/va9shAAAAALgF5TZOoqU6D6WkpGjHjh1q166dXXq7du20adMmh8vdvHlztjLbt2//r8oEAAAAAPwzN2dX4HYSGxur9PR0+fv726X7+/srKirK4XKjoqKuqczk5GQlJydb7xMSEhzeNgAAAADczmipdgKbzWb33hiTLe1Gljlu3Dj5+PhYr/Lly/+rbQMAAADA7YqgOg/5+vrK1dU1WwtyTExMtpbma1GqVKlrKnPEiBGKj4+3XsePH3d42wAAAABwOyOozkMeHh5q2LChVq9ebZe+evVqtWjRwuFymzdvnq3MVatWXbFMT09PeXt7270AAAAAANeOZ6rz2LBhw9SvXz81atRIzZs31/Tp0xUREaFBgwZJymxFPnHihGbNmmWts3v3bknS+fPnderUKe3evVseHh6qUaOGJGnIkCG666679N5776lbt25avHix1qxZo59//jnP9w8AAAAAbicE1XksODhYcXFxGjNmjCIjI1WrVi0tW7ZMAQEBkqTIyMhsc1bXr1/f+v+OHTv0zTffKCAgQMeOHZMktWjRQvPmzdOrr76q1157TZUrV1ZISIiaNm2aZ/sFAAAAALcj5qkG81QDAAAAwGWYpxoAAAAAgBuMoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQDQAAAACAgwiqAQAAAABwEEE1AAAAAAAOIqgGAAAAAMBBBNUAAAAAADiIoBoAAAAAAAcRVAMAAAAA4CCCagAAAAAAHERQ7QRTpkxRYGCgvLy81LBhQ4WGhl41/4YNG9SwYUN5eXmpUqVKmjZtmt3ymTNnymazZXslJSXdyN0AAAAAgNseQXUeCwkJ0dChQzVq1Cjt2rVLrVq1UseOHRUREZFj/qNHj+r+++9Xq1attGvXLo0cOVLPP/+8Fi5caJfP29tbkZGRdi8vL6+82CUAAAAAuG3ZjDHG2ZW4nTRt2lQNGjTQ1KlTrbTq1aure/fuGjduXLb8L7/8spYsWaI//vjDShs0aJDCwsK0efNmSZkt1UOHDtXZs2cdqlNCQoJ8fHwUHx8vb29vh8oAAAAAgFtJbuMkWqrzUEpKinbs2KF27drZpbdr106bNm3KcZ3Nmzdny9++fXtt375dqampVtr58+cVEBCgcuXKqXPnztq1a9f13wEAAAAAgB2C6jwUGxur9PR0+fv726X7+/srKioqx3WioqJyzJ+WlqbY2FhJUlBQkGbOnKklS5Zo7ty58vLyUsuWLXXw4MEcy0xOTlZCQoLdCwAAAABw7QiqncBms9m9N8ZkS/un/JemN2vWTI888ojq1q2rVq1aaf78+apataomTZqUY3njxo2Tj4+P9Spfvvy/2R0AAAAAuG0RVOchX19fubq6ZmuVjomJydYanaVUqVI55ndzc1OJEiVyXMfFxUWNGze+Ykv1iBEjFB8fb72OHz/uwN4AAAAAAAiq85CHh4caNmyo1atX26WvXr1aLVq0yHGd5s2bZ8u/atUqNWrUSO7u7jmuY4zR7t27Vbp06RyXe3p6ytvb2+4FAAAAALh2BNV5bNiwYZoxY4b++9//6o8//tALL7ygiIgIDRo0SFJmK3L//v2t/IMGDVJ4eLiGDRumP/74Q//973/1xRdfaPjw4VaeN998UytXrtSRI0e0e/duPfHEE9q9e7dVJgAAAADgxnBzdgVuN8HBwYqLi9OYMWMUGRmpWrVqadmyZQoICJAkRUZG2s1ZHRgYqGXLlumFF17Q5MmTVaZMGU2cOFE9e/a08pw9e1YDBw5UVFSUfHx8VL9+fW3cuFFNmjTJ8/0DAAAAgNsJ81SDeaoBAAAA4DLMUw0AAAAAwA1GUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAggmoAAAAAABxEUA0AAAAAgIMIqgEAAAAAcBBBNQAAAAAADiKoBgAAAADAQQTVAAAAAAA4iKAaAAAAAAAHEVQDAAAAAOAgN2dXAMA/S09P1549e3T69GkVL15cderUkaurq7OrBQAAANz2CKqBm9zGjRs1ZcoURUVFWWmlSpXSf/7zH911111OrBkAAAAAgmrgBtm/f79CQ0MVExOjkiVLqlWrVgoKCrqmMjZu3KjRo0erefPmeu211xQYGKijR49qzpw5Gj16tN58800CawAAAMCJbMYY4+xKwLkSEhLk4+Oj+Ph4eXt7O7s6t4T9+/dr3rx5dmk2m03BwcG5DqzT09PVt29fVapUSW+//bZcXP4eAiEjI0Ovvvqqjh49qq+//pqu4AAAAMB1lts4iYHKgBsgNDQ0W5oxJsf0K9mzZ4+ioqLUt29fu4BaklxcXNS3b19FRkZqz5492dbdv3+/Pv/8c40dO1aff/659u/ff+07AQAAAOAfEVQDN0BMTEyO6adOncp1GadPn5YkBQYG5rg8Kz0rX5asVvITJ04oNTVVJ06cUEhICIE1AAAAcAPwTDVua0lJSYqIiLju5RpjFBcXly3d399ff/75Z67KuHjxoqTM56orVaqUbfnhw4etfJeWuWDBghy3vWDBAvXu3TtX274eKlSoIC8vrzzbHgAAAOAMPFON2/qZ6j///FMDBw687uVevHgxx9bqkiVLqmDBgtd9e5cKDw9XToe1zWZTQEDADd32paZPn66qVavm2fYAAACA6ym3cRIt1bitVahQQdOnT78hZR8+fFg7duyw5pZu2LChKleufE1l7Ny5U5999plq166t+vXr66uvvtKjjz6qXbt2ae/evXr66afVoEEDu3Xmz5+v6OjobGX5+/vneUs1AAAAcKujpRo3rKU6Ojpa8fHx162829XOnTv17bff2nXp9vX1Va9evbIF1FJmML98+XK71mqbzaaOHTtec1B/q/Px8ZG/v7+zqwEAAICbUG7jJIJq3JCgOjo6Wo/066/UlOTrUh6u7OLFi4qPj1dKSoo8PDzk4+MjSdnSChYsmGPeG90d/Wbm7uGpr2fPIrAGAABANnT/hlPFx8crNSVZiZXuVoaXj7Ork68lnonW+cijSk08L/cChVW4dKAKFPO3lp0+tFtp7u5KST6r9PMpijx/Wl7FS8m9aGW5Fygs99KBMsX8Ffu/vPIuJklKlnTeSMVK17PKu524JMVLRzYoPj6eoBoAAAAOY0ot3Fh0hPhXsoLmlAvxMhnpSrkQrzOHdivxTOYz0+cjjyot8bwST0cpPSVJGanJSkqIU8LxA0q9EG+X/3zk0Wzlm/+VcVviuwkAAIDrgJZq3FAFjm50dhXytYTISHkkZ+9Cn5pwTL6lSys2PFzpCQlyTU+XJKUlJ8vFGClVSo/cr4JFilj5bSkp8shpVPBYmwop53m1AQAAAFwdLdW4IXx8fOTm7uHsauR7KSkpV0338PBQ+v8CaknW4GQuLi526VnPUOfkSum3Azf3v59BBwAAABxBSzVuCH9/f835evZNP/p3cnKyoqKinF2NK1q2bJliY2Ozpfv6+ur+++9XRESEZsyYoQsXLkiSTp8+rdTUVPn4+Kh48eKqUqWKlb9WrVrasGFDtlHB77777hsy/VWpUqXk6el53cu9nhj9GwAAXA/79+9XaGioYmJiVLJkSbVq1UpBQUF2y+fPn6+dO3dKypx61NfXV66urjnmz225uDkw+jdu2JRa+Pf279+vkJCQbIFwcHCw9YO6bNkyTZs2TRcuXFBGRoYuXLigggULqlatWvL19bXLn/XDfOrUKfn5+fHDDAAA8C/t379f8+bNs0u7/Prr008/1W+//SZJiouL08mTJ1WgQAFVqVJFNWvWlJ+fn931XW7KzcpD0H3jMKUWco2g+uaWm0D40jxpaWmSJDc3NwJnAEC2FrLy5cvLz8/vH1vIgMsdOnRIR4/e3AOcpqam5tjL70Zav369zpw5ky29WLFiat26tdavX69du3YpMTFRKSkpiomJUUZGhlxcXFS4cGEVLVpU5cqVU4UKFdS6detcl3vy5Elt2bIl2/KmTZuqTJky13Ufpcyej+7u7te93OspMDBQd9xxx3Urj6AauUZQDQDArSmrhWzr1q06e/asLl68qKSkJBUvXlxly5aVzWZT4cKF1alTJ7m4uORZaxeta/nTkCFDFBYW5uxq3HTCw8OVU0hls9kUEBCg8PBwnT17VsYYJScnKzU11crj5uYmLy8vubq6ytvbWwEBAbkuNzIyUsk5DGjr6emp0qVLX6e9y1/q1q2rCRMmXLfymKcaAADgf6Kjo2/LcT6WLVum0NBQq9zExESlpqbq3Llzio+Pl7+/v06cOKGdO3eqQYMG8vHxsQLeGzXmRkREhNavX2+9v9HbY4yP6+e555676Vuqjx8/rlmzZuXpNj08PHIMbrMGg/Xw8LAGkb38kT4Xl8xxo9PT07MNHvtP5f7TgLbXW//+/VW+fPkbUvb1EhgY6JTt0lINWqoBALe06Oho9X2kn9JSb8yF5s0sPDxc0dHRysjIkCSlpaVZ/3d1dVWhQoWUnJwsY4wKFSqkIv+bilG6ca1dtK5l5+buoTlfz84XgfXNLikpSREREXm6zcOHD2v58uXZAuaOHTuqcuXKOnz4sObMmaODBw8qJiZGFy9eVGJiogoUKKCSJUuqQIECKly4sF566SVVrlw51+XOnz9f0dHR2erj7++v3r17X/f9rFChgry8vK57uTczWqoBAAD+J+OSaQZvJ7mZNtEYI5vNZgXbWW5Ua1det67lB7fr9/NG8PLyUtWqVfN0m1WrVlVgYOAVx8DJWj5//nxt3LhRJ06ckLe3twoWLCgXFxcVKlRIgwYNUseOHa+p3F69euU4oG2vXr3y/DO43dFSDVqqAQC3vP379+v48ePOrsZV3YgBlk6ePKmvvvpKp06dkpTZxfTChQvWAEm+vr46e/asChYsKB8fH1WsWNFaN2swpOvtnwZfut7yw+BK5cuX55ny28j1nI2FmV1uLAYqQ64RVAMAcOtatmyZPvzwQ508eVKS5O7urvPnz8vf319+fn7y9vbWyZMnVbNmTfn6+krKPm3P9ZSb6SIB4GZAUI1cI6gGAODWdnlrVtmyZXXixIkrvs+r0b9pXQNwMyOoRq4RVAMAAACAvdzGSS55WCcAAAAAAG4pBNUAAAAAADiIoNoJpkyZosDAQHl5ealhw4YKDQ29av4NGzaoYcOG8vLyUqVKlTRt2rRseRYuXKgaNWrI09NTNWrU0HfffXejqg8AAAAA+B+C6jwWEhKioUOHatSoUdq1a5datWqljh07XnGS+qNHj+r+++9Xq1attGvXLo0cOVLPP/+8Fi5caOXZvHmzgoOD1a9fP4WFhalfv37q3bu3tmzZkle7BQAAAAC3JQYqy2NNmzZVgwYNNHXqVCutevXq6t69u8aNG5ct/8svv6wlS5bojz/+sNIGDRqksLAwbd68WZIUHByshIQELV++3MrToUMHFStWTHPnzv3HOjFQGQAAAADYY6Cym1BKSop27Nihdu3a2aW3a9dOmzZtynGdzZs3Z8vfvn17bd++XampqVfNc6UyAQAAAADXh5uzK3A7iY2NVXp6uvz9/e3S/f39FRUVleM6UVFROeZPS0tTbGysSpcufcU8VyozOTlZycnJ1vuEhARHdgcAAAAAbnu0VDuBzWaze2+MyZb2T/kvT7+WMseNGycfHx/rVb58+WuqPwAAAAAgE0F1HvL19ZWrq2u2FuSYmJhsLc1ZSpUqlWN+Nzc3lShR4qp5rlTmiBEjFB8fb72OHz/u6C4BAAAAwG2NoDoPeXh4qGHDhlq9erVd+urVq9WiRYsc12nevHm2/KtWrVKjRo3k7u5+1TxXKtPT01Pe3t52LwAAAADAteOZ6jw2bNgw9evXT40aNVLz5s01ffp0RUREaNCgQZIyW5FPnDihWbNmScoc6fvTTz/VsGHD9NRTT2nz5s364osv7Eb1HjJkiO666y6999576tatmxYvXqw1a9bo559/dso+AgAAAMDtgqA6jwUHBysuLk5jxoxRZGSkatWqpWXLlikgIECSFBkZaTdndWBgoJYtW6YXXnhBkydPVpkyZTRx4kT17NnTytOiRQvNmzdPr776ql577TVVrlxZISEhatq0aZ7vHwAAAADcTpinGsxTDQAAAACXyW2cREs1rNHEmVoLAAAAADJlxUf/1A5NUA2dO3dOkphaCwAAAAAuc+7cOfn4+FxxOd2/oYyMDJ08eVJFihS56nzZcK6EhASVL19ex48fp5s+4CCOI+Df4zgCrg+OpZufMUbnzp1TmTJl5OJy5YmzaKmGXFxcVK5cOWdXA7nENGjAv8dxBPx7HEfA9cGxdHO7Wgt1FuapBgAAAADAQQTVAAAAAAA4iKAayCc8PT01evRoeXp6OrsqQL7FcQT8exxHwPXBsXTrYKAyAAAAAAAcREs1AAAAAAAOIqgGAAAAAMBBBNXATYSnMQAANwPORwCQewTVwE0iNDRUNpvN2dUA8q1Tp05px44dkqSMjAwn1wbIv3bu3Knz5887uxpAvpaWlqbIyEhnVwN5hKAauAmcOHFCwcHB+vDDDxUdHS2JVgLgWiQnJ+vrr79Wz549tX37drm4cHoDHLFt2za98soreuGFF5SYmCiJ8xGQG+np6XbvX3jhBT322GPasGGDk2qEvMTo34CTGWNks9m0du1aTZw4Ub6+vpoxY4azqwXkS8OGDVNYWJhee+01tW7d2tnVAfKNrHORJB07dkyPPPKI6tevr0mTJjm5ZsDNK6tX1KU3co8cOaJKlSopIyNDb775ppYuXapJkyapefPmdscZbi0E1YATZN3NdHV1tUvfuXOnmjVrpjlz5qhHjx7ZlgPIZIxRenq63NzcrPc2m02nT5/Wq6++ql9++UUbN26Uj4+Pk2sK3NyudD5at26dHn30UY0cOVKDBg1yRtWAm1ZGRoZdIH3w4EFNmzZNX3/9tdzd3fX777/Lx8dHycnJeuqpp3TixAktWLBAxYoVc2KtcSPRPw5wAldXV7m6uiopKUn79+9XWlqaJKlBgwbq37+/vvjiC+vZUADZ2Ww2K6A+dOiQoqKiJEnFixfX2LFjFRkZqenTpyslJcWZ1QRuelnno8TERO3bt0/JycmSpDZt2mjQoEF65513tH//fifXEri5uLi46Ny5c3r//fd1xx13qEaNGjp06JAKFy6sypUrq2DBgpIkT09PDRs2TNHR0froo4+cXGvcSATVQB7K6ia0YcMG3XfffSpTpow++OAD7du3z8ozcOBAXbhwQT/88IOzqgnc9OLj4/XGG2+oXLly6tq1q5YtW6akpCRJUrFixRQcHKyVK1dq7969Tq4pcHPK6qi4ceNG3XfffSpdurTGjRunP//808rz4osvKikpSUuXLlVqaqqzqgo43blz5zRw4EAlJCTIGKNnn31WRYsW1dy5c62gefHixSpQoIB69uwpd3d3qxdIvXr19Nhjj+nzzz9XfHy8k/cENwpBNfAvXOvTEy4uLgoLC9PQoUMVFBSk1atXa9iwYfLz87PyNGnSRNWrV9fu3bt16tSp611l4KZijHFoEKSxY8fqxx9/1EcffaRFixbpzjvvlKurq3UR06dPH506dUq7d+++zjUGbk7XehzZbDYdOXJEQ4YMUZUqVbR+/Xr93//9n0qXLi0ps1u4p6en7r//fq1atYrzEW5riYmJ2rhxo6Kjo2Wz2dSzZ08dPnxYu3bt0n/+8x8VL15cixYtUmRkpB588EEZY+weqejbt6/OnTun9evXO28ncEO5ObsCQH5jjFFGRoZcXV2vebCJtLQ0ffjhh/Ly8tJbb72V7dmarGd06tSpo/379ysiIsIu4AZuFRkZGbLZbA4N2PLLL7/oiy++0EcffaTg4OAc8zRv3lwuLi6KjIxUeno64xPglvRvzkeSNGLECHl6emrs2LEqXry43bKs8h566CE99NBD16W+QH61Zs0aVa5cWb6+vpIyH4+Q/r6ZZbPZtGrVKjVr1ky+vr7ZjsdSpUqpZcuWWrJkibp165btmWzkf/w1gVzIGhRJyvzhzLpA//bbb/Xqq6/qyJEjuSrHzc1Nmzdv1oMPPqhixYpZP8aXz6nbokUL7d+/X0WKFLmOewE4V1YAIGX22rDZbDp8+LBeeeUVLViwIFfrS9KZM2eUlJSkAQMG2C3LWp41RkFQUJDCwsLk6urKvNW4ZVztfPT4449b02D9UxkZGRmKiYlR48aNVbx4cavMy0czbtSokZKSkmipxm0jPT092/FQtmxZbdmyJVtjSFbwnJiYqOXLl6tTp05yd3fPds5JS0tT8+bNrccrCKhvPfxFgVy49MJlzZo16tSpk7y8vBQcHKxPPvlEZcuWzVU5qampqly5sn755RfrvfT3j2vWv7Vr11ZycrLOnDlzvXcFcBqbzSYXFxedPn1ab7/9tsqVK6dq1arp/fff12+//Sbp6l1Ysy5ebDabvL29tWnTJkmZF0CXtnpnDWDWpEkTHT9+XBIXMLh1XH4+6ty5s9zd3RUcHKyZM2fm6plNm82mc+fOqVSpUtYxklVm1rGSdSxevHhRjRs3thv7A7gVZX3nswbvS09Pt4JjY4yKFi1qHQdZebNmnlixYoUuXLigrl27Sso8ji49n7m5ucnNzU0VK1ZUQkJCXu4W8ghXGUAuhIeHa+DAgSpWrJh69eql0qVLa+fOneratasee+wxeXp65qocm82mLl26aNmyZYqPj5eHh4ekzB/l0NBQnTx50tpey5YtGbkYt4SsC4vZs2erYcOGKlmypL777jt98MEHWr58ucqXL291475aF9ascgICAlSjRg1Nnz5d0t/BwMmTJxUaGmrlj4+PV4sWLayWa+BWcPjwYT399NMqWrSoevfuLT8/P+3fv199+vTRI488olKlSlmtbFfj4+OjevXqKSIiQtu2bbPS09PTtX37dh07dkxSZgtbWlqa6tSpc6N2CbgpZJ1/Vq1apS5duqhevXpatmyZpMzjonTp0tq+fbsk+27fkjR//nw1bdpU5cqVy1Ze1oj6aWlpio2Nlbe3N72nbkEE1UAuTJgwQTExMZo9e7ZOnz6tGTNmyNvbW1u3blWrVq1yXY6bm5seeeQRVahQQcHBwZo7d67Cw8P1/vvva9KkSfrrr78kZXYj+vPPP1W/fv0btUtAnrHZbNq7d68+//xzdenSRUeOHNGOHTv08MMPa+XKlfL391elSpVyVY6U2a370Ucf1Zw5c/Tmm29q165d2rBhg55//nlt2rRJ586dk5R5c8oYIzc3N4cGQwNuJlnf4c8//1zh4eH65ptvFBsbqy+//FJFihTR6tWr1aFDB0nZ55y+XNYFfbdu3eTv76/HH39cISEhOnz4sD744AO9/vrrVmtaiRIldOLECWuKICC/u7QF+nKffPKJHn/8cVWuXFkjRoywHsOrWbOm3NzcrBklLu3RcebMGf3000/q16+fVU54eLhGjBihdu3aadeuXZIyp3zMGieH3lO3IAPgijIyMowxxqSlpWVLmzFjhvHz8zPnz5+/5vK2bNligoODTfXq1U3x4sVNzZo1zddff23S09ONMcbExcWZyZMnm4sXL16vXQFuKunp6SYxMdEEBQWZt956yxjz9/GRW2PHjjVNmzY1gYGBxsfHxwwYMMAcPnzYWr506VLzyy+/XNd6A86SdXxknScuNXv2bOPn52diY2OvudyoqCjTpUsXU6tWLVOsWDFTq1YtM3PmTOu8d/ToUTNv3jwTHx//73YAuMkkJibavf/tt99MiRIlzOeff55j/sGDB5t27dqZ3bt3G2OMSUlJMcYYM2fOHFO3bl1z9OhRM2XKFNOwYUPj4uJiGjZsaL766itr/WnTppnNmzffoL2Bs9mM4fY94IjWrVurVq1a+vTTT3NcnpuRHXfv3q2SJUuqTJkydunJyclyc3NjxGLcksz/nkFbt26dHnjgAW3btk1VqlS5Yr7LXXpsxcfH68iRIzn26rhw4YIKFSp0/XcAuElkHSNt27ZVuXLl9OWXX+Z43FzpfHRp3v3798vb2zvb+SglJUUuLi7WWAVAfmH+N4Bl1vPNNptNGRkZ+uqrr/T555+rcOHCatq0qf7v//5PRYoU0ffff6/Bgwdr9+7d8vPzs9ZJTU2Vu7u7Nm7cqLfeeks1atTQhAkTlJGRoYyMDD3yyCOaP3++3NzcVKZMGT355JMaPHhwtkHNzpw5ky0Ntw76HgAOOHz4sA4cOKB27dpJyj56t5S7rj316tVTmTJllJGRYfcMnKenJwE1bllZF/E//PCD6tWrd8Wu31d6vvrSY8vb29sKqNPS0uyORQJq3OpsNpsOHjyo/fv3q3v37lba5a50Pro0b1BQUI7nIw8PDwJq5EtZg2Nm/V+SRo8erY8//lgdOnTQo48+qpCQEL344ouKjY1VXFycihcvrsOHD0v6+5ELd3d3SZkzszz22GP6/PPPtX//futmk7e3t0aOHKnff/9dx44d06uvvqpixYrZjSIuiYD6FkdQjdvO5T9y17quJK1YsUIeHh7q0qWLUlNTc7yI+emnn7R8+fJclevi4kIQjXzDGPOvBv9KS0tTenq6fvjhB3Xu3Fmurq7WSPiXOnfunMaNG3fVsi499tzc3HhODfnKvzkfZdm+fbsyMjJ09913S8r5Ju8vv/yiGTNmWNu8Gs5HyI+u9L1+7bXXNGvWLEnStm3btHjxYk2dOlWvv/66+vbtqyeeeELffPONFi1apDZt2igpKckauC/rfBIdHa3IyEi5ubmpT58+6tGjh0aNGqUffvhBkjR9+nS9/fbbqlKlinV+NMZYo4jj9sDVB247WT9ySUlJWrdunWJjYyVdfSqfS9eVpFmzZqlnz56y2Wxyd3e3ugf9/PPPCg8PlyRrsBcp54scIL+y2WxWy9Xvv/9uTW2VGxkZGXJzc9NPP/2k2NhY9ezZU9LfLQGHDh3S5s2bZYzR7t27NWrUKK1cuVJS7o5RID/JOh8lJiZq/fr1ioiIkJS773rWja1p06apQ4cOKlq0qKTMQCA1NVU//fST4uLilJiYqClTpmjy5MnWNoFbzeXf66wge+nSpdq6daskadeuXbLZbKpcubKeeeYZlS5dWuPHj9egQYPUunVrVapUSS1atNCMGTM0f/58JSQk6MyZM3rvvfe0aNEiq+zx48erWbNmmjx5ss6fP29tLyMjwzo/Xm0mC9yaCKpxy8p6lubS95K0ZcsWtW/fXn5+fnr99de1ceNGSVefyudSe/bs0V9//aU+ffpIkjZt2qTHHntMRYoU0RNPPKGYmBgZY9SiRQu1bNlSEqM8Iv/K6YbQ+fPn9e6776p8+fJq3769vv32W0VFReWqvKxjYf78+WrdurUCAwN15swZTZ48WQ0aNFDVqlX1448/ymazqXDhwmrXrp01RQkXKcivLj8fZfn111/VsWNH+fn5acyYMfr1118l5e677ubmpn379unQoUN68sknJWWej/r376/ixYurV69eOnHihAoUKKBixYqpY8eO13engJvI3r17NWTIEP3000+SMoPs06dPq0KFCtYI3lWqVNHevXtVrVo1xcTEaMqUKTp06JA+/PBDVa1aVZL0/vvvq1mzZnr22WfVunVrlStXTqGhoXbjfvj6+uqll17SqFGjrF5Wrq6uXOvd5nhIBrecSwemuJTNZtPJkyf18ssvq1q1anr//ffl7++vixcv5rpcm82mNWvWKCkpSfPmzdMDDzygmJgYde7cWatWrdJdd91lt71evXpd130D8krWwEY5XSTMnDlTISEheu+993Tvvffq4sWL1kVLbpw9e1br169XnTp11LVrVy1fvlwVK1bU008/rQ0bNlhlVahQQZUqVdIdd9xx3fYLyEtXOh9JUkJCgl555RVVrlxZv/76q/z8/K75sYrQ0FDFx8drwYIF6t27t06dOqXOnTtr+fLluvPOO618derUYUos3JKyrs08PDz0xx9/aP369dqxY4fc3Nys56PbtGkjKXMMjipVqqhXr14aO3asVcbZs2e1dOlSVapUSc2bN9enn36q5557Tr/++qtatWqlatWq5bjta5lSFbc+gmrcMrJ+WLNex48f14oVK1SxYkW1bdtWUuadzB07duiHH35QkSJFdPHiRZUqVSpbGTnJGjXyp59+0pkzZ7R9+3a99957Vot1lqxRIl977bUbt7PADZYVBPz444+KjY3VXXfdpUqVKlnzcdaqVUt9+vRRWlqa/P39r6nsPXv26MiRI5Kkjh07av/+/apcubK1PD09XTabTSVKlNCUKVOu304BeezS89HixYtVp04dNWnSRF5eXlq+fLmio6M1ceJE1apV65pGq886Vy1atEgXL17Ub7/9dtXz0cCBA2/E7gE3VHp6+j8+rpB1zVatWjV98803atiwoYYPH64XX3xR5cuXl6+vrzXwWPXq1fXwww9r4sSJqly5stq3b68LFy7o888/186dO60xPNzd3VWrVi3VqlVLUubxlpGRwaMTuCqm1EK+lVMAnJaWpkOHDmndunV6/fXXVa5cOR09elQjRozQ8OHDtXnzZg0ePFhly5aVr6+vSpQoobNnz6p+/fp6/vnnr1iu9HfL3bZt21SzZk27u/5paWk5tupdLUgHbgaXfkez/h8REaHo6GiNHj1a27ZtU5kyZRQfH69169YpICBAQ4YM0fr161W7dm0VKlTIei70iSeeUIMGDewuhK40vc/evXtVt25du7Ss562vVkfgZpTTdzQlJUXHjx/XqlWrNGbMGHl7e+vixYvq0qWLpkyZovXr12vUqFFyc3NT+fLlVbx4ccXGxqp58+YaPHiwXFxcrjgVVlpamtzc3HTkyBH5+/vbBeOcj5CfpKenKzIyUuXKlbOeSXYkgM06VhYuXKhPPvlEDRo00MSJE/XAAw+oUqVK+uijj6x8//nPf7R+/XoVLFhQf/zxh5o1a6ZXXnlF7du3tyszK0TiuEFu0Pkf+U7W4BM5/cgNGDBAwcHBWrVqlZYvX65du3bpP//5j0JCQrR06VLdeeedeuedd+Tt7W21UKenp+ull16ynsOx2WyKioqyWtKytpd1gdK4cWMVLFjQbtTWK406zA8xbkbGmByPI5vNpsOHD6tGjRp65ZVXdOeddyoiIkIrV66Uu7u73nnnHV24cEHjxo1Tp06drDltU1JSFBYWpieeeELS3wPGbNu2LcdjwGazWQF11iipV5sHl+MIN5NL2yKudj564YUXVL16dYWGhmr58uX6/fff9fbbb2vGjBnasGGDWrdurXHjxikgIEAVKlRQ4cKFlZKSonHjxumrr76SlHneiYmJ0e7duyX9PcZB1rFSqVIlFSpUiPMR8qU///xT7dq105w5cyRlft9tNptcXV2Vnp6ur776Ss8995xWrFihM2fOSLrywK9Z3/nu3btr+PDhmjp1qtauXatDhw4pMDBQ0t83nKZNm6bVq1fr3XffVWRkpNatW5ctoJb+7mkC5IoBblLbtm0zlSpVMlFRUTku37lzp5k3b57566+/rLR58+aZYsWKmYcffthKi42NNffee6955pln7NbPyMiw/l+yZEnz/vvvG2OMOXLkiGnSpIlVxqX5gPwkNTXVDBgwwDz33HM5Lk9KSjLffvut+emnn0xaWpqVfv/995uCBQuajRs3WmmTJk0yDRo0MKtXr862DWOMmTVrlvHy8jLx8fHGGGM++eQTU758ebNly5brvVtAntu5c6cJCAgwx44dy3H59u3bzZw5c8yhQ4estD///NPYbDbTu3dvu7xBQUHmueeeM+fOnctWzoULF0yjRo3M0KFDjTHGxMXFmdq1a5tBgwZdx70BnCM9Pd3MmzfP9OjRw0q79BrOmMzz0tSpU025cuVMrVq1TLdu3UylSpVMly5dcrWNrGu2Z555xrRr187YbDbz0ksvWdvPSVpamt05EHAELdW4KZgcnkKoVq2axo4dm+15za1bt6p27drWXf62bdtq0qRJkqR7771XVapUkYeHh5W/RIkSql+/vg4cOKCwsDBJ0l9//aXIyEjFxsZq9OjRqlatmjUyaqlSpVS5cmVrkBfuUiI/MJeMLpz1r5ubm/r27avnnnvOLm9ycrJGjBihYsWK6bXXXtNjjz2mfv36aefOnZIyn3P29fW1GzTpgQceUGJiojV/Z0pKio4ePapz585p06ZN+uKLL/Tyyy9bj0VUrlxZ5cqVs+btBPKLS1vCsr67JUqU0OTJkxUQEGA3H+727dtVr149tWnTRhMnTlSTJk00Z84cJSUlqUqVKqpcubIKFiyoxMREq6y+fftqzZo1OnbsmCTp6NGjiomJUVRUlMaPHy+bzaann35aklS8eHGVKlVK5cuXz1Y3IL9xcXHRiRMntGPHDu3atUuSVLZsWR07dsy6Pjtz5oxOnz6td999V3v37tX333+vn376ST/++KOWL1/+j+eTrOWvv/669Ux0UFCQtf2cMJ80rgeCatwUsgLXrPn+jDEqUqSIHnroIbsL+4sXL+qTTz5RjRo1dOTIEf3www/q3r27hg0bpl27dsnX11eNGzdWZGSk9u7da61333336eLFi9qyZYsyMjI0a9YsPfLII6pSpYq+++47Pffcc6pVq5YyMjJUoEABxcbGqmLFinn6GQD/RlY3tYSEBEl/d0u97777VKVKFV24cMHKu2HDBi1evFhz5szR77//rvHjxysmJkZDhgyRJD344IMyxmjv3r3WRXzZsmVVt25dbd++XdHR0dq+fbvefPNNNW3aVB07dlTVqlX11FNPWd1S69Wrp5SUFBUrVowbU8hXsi684+Pjre9uhQoV1KlTJ6WmptpdfH/wwQeqVq2aDh8+rJUrV+qRRx7Ru+++q2+++UaS1K9fP61bt07R0dFWWY899phOnjypPXv2SJJmzJihRx55REFBQQoJCdHw4cNVrVo16xhu2rSpChcubFc3ID/JyMiwvs+tW7dWxYoVNX/+fEnSsWPH1K9fP73zzjuSMhs2evToob59++rw4cN6/vnnrdG7Q0JCrHPclWQdI6VKldKYMWOUkZGhxx9//EbtGvA3J7WQA3Z27Nhh7rnnHjNt2jQrLSkpyYSFhZkCBQqYffv2GWOMOXPmjPH09DQ//vijlS85Odncdddd5qGHHjLGGLNs2TJTr1498/nnn1t5Lly4YDp06GA6d+5skpOTTVhYmJk1a5Y5cuSIXT2yuv8kJycbY+j6jfzl5ZdfNl27drW+v1ldsR999FHTrl07K9+YMWNMlSpV7NZdvny5cXNzM3v37jXGGNOlSxfTvXt3ExERYeUJCQkxZcuWNQsWLDBpaWlm4cKFZsWKFTd6t4A8deTIEVO1alXzzTffWGkZGRlmz549pmjRoiY0NNQYY8zBgwdNlSpVzNSpU618MTExZsCAAaZVq1bGGGOio6ONzWYz3377rd02mjZtajp06GCSkpLM3r17zZw5c8zRo0dzrA/dUnErSUhIMM8//7xp3LixlTZ8+HBzzz33mIMHD1ppK1asMLVq1TJdu3Y1q1atMp999pnx9vY2YWFhVyw7IyMjx+Ml6zEl4EbiliduCjVq1JCPj49++OEH9evXTx4eHlqzZo2qVq2qwoULa+nSpZIyp8S64447lJSUJCmzNc7Dw0N9+/bV8uXLJUn33HOPfH19tXPnTqt1rmDBgrrnnnt01113KTU1VXXq1FG/fv0UGBhodwc1qwXCw8PDGoUSuNllfX9r1aqlkydPaujQoQoICFD79u2VlpamZs2a6ZdffrGOm0OHDqlu3bo6d+6cVUb9+vVVs2ZNzZo1S1JmF9V9+/Zp3759Vp7OnTurTZs2qlChglxdXdWjRw9rcJf09PQcu6bSXRX5TWBgoHx8fLRo0SI9/PDDcnFx0ffff69SpUopKCjIOkZOnz6tlJQUlStXzlq3RIkSatmypU6cOKHDhw+rZMmSatasmb7//nurJ5YkDR48WPXq1VNGRoY1PV3FihXtzkdZXF1deYQCN60jR47ok08+sd7n9Jt/+vRp9e/fX1FRUSpSpIgaN26sc+fOWdd2zZs318WLF7VmzRpJUmxsrMaNG6dmzZpp9uzZatu2rSpWrGj1OLx8Pves80/WIGdZzCWPQgE3GkE18lROFwyStG/fPm3btk3Lli1TXFyc1q5dq44dO8rLy0t9+vSxLmLKli2rEiVKWN3msn48S5curYIFC+rIkSPy9PRU/fr1tX79emvEVEl66aWX9NJLL9lNPWL+N+pwTs/S0M0ONyNjTLYLCpvNJmOMtm3bph07dmjBggV67rnntGTJErm5ual9+/Zyd3e3uqQGBgYqJiZGf/zxh1VG4cKFVbZsWev47NWrl6KiovTTTz8pJSVFUubNqdmzZ6tx48Z29ZEyj8WcjhmOI9ysrnQ++v333/XXX39p4cKFOnv2rNatW6cHHnhA3t7e6tKli3744QdJUpMmTZSWlqbff//dumHl4uKiAgUKyMfHR4mJiZIyu3t/8803ioiIsLbRr18/jRs3TgUKFJD095gIVzofcYMXN6vffvvN7qZt1m/+pcdWfHy8vv/+e2v8m7p166pixYpatGiRJKlFixYqXbq0NmzYIEny9fXV7t271aRJE3l7e0uSvvvuO2VkZGjatGk6e/asJFnnwqzzT0xMjMaOHas+ffooMTGR4wZ5iqsd5KmsC4bU1FT99ttvVkuyt7e3hg0bpmbNmqldu3a68847rYv1/v3767ffftPWrVtVqVIl1a5dW8uXL7drQZs/f75q1aolX19fSZkXMW+//baaNGlit/2MjAy7O/784CK/sdls1l33Q4cO6fjx49Y0JF27dlXPnj3VrFkzPfzww/Lz85OUeTOqY8eOmjFjhiSpZ8+eiouL07fffmuVe/z4cf3yyy9q1aqVpMyLlMmTJ+uJJ56wG/hPsr9Y4hhCfpV1PkpJSdHu3but85Gfn5/effddlS5dWg899JDuvvtuSZKnp6datWql9PR0LViwQFLmAH7ffvutfv31V6vcrVu3Kj09XVWrVpUkPfXUU5oxY4b1Psul5yOm7kF+1bVrVy1YsEBeXl6SpLNnz6pHjx4aMWKEladMmTIaNGiQNXVWtWrV1LhxY23btk1nz55VqVKlVK9ePYWHh1vHUpcuXTRixAg99thjatGihYwx2rJli0aNGmVd67m5uSkjI0NfffWVWrRooTvuuEPLli1Thw4daJ1G3nNOr3PcDtLT07M9k7xp0ybTrVs34+3tberVq2fatm1rtm/fbozJfI65T58+pmvXriYxMdEY8/czzTVq1DDPP/+8McaYsLAw07FjR+Pn52fefPNNM2DAABMYGGj3/Btwq7j8+bCEhATz0UcfmcDAQFOqVClTv359M2bMGJOQkGCMMea7774z9evXNzNnzrRbb8mSJcbFxcWavuTTTz81xYoVM927dzdjxowxdevWNV27djWnTp3Kmx0D8lBGRka289HmzZut81HNmjVN06ZNzb59+6xpd9q1a2d69+5tTpw4Ya0TFRVlunTpYjp06GCMMebQoUPmwQcfNN7e3ubtt982ffv2NeXKlTMhISF22wZuZdu2bTODBw82xhhz7tw5M2jQIBMUFGSXZ+3atcZms5mdO3caYzLPVbVr1zZffvmlMcaYNWvWmNatW5u3337bGJM5HsGUKVNMhw4dzNtvv23OnDljV15MTIx56qmnjIeHh6lVq5Z544037J7JBvIaLdW47sz/7rxntZ6FhYVpz549iouL0yuvvKLy5ctrzZo1mjdvngoVKqQ33nhDJ0+elIeHhxo2bKjo6Gj9/PPPkv7u2tO/f38tWbJECQkJqlOnjmbPnq2XXnpJGzZsUGJioubMmaOHH344x3oA+VlWz45169bp3LlzWrBggRYuXKg33nhDO3fu1ODBg7VkyRJNnz5dUuaYAoULF9a2bdus7nhSZlfVChUqWI9SDB48WHPmzFHZsmW1YsUK9enTR3PnzrVaALLwTDTyM3NZS/DOnTt14MABnTx5Uh999JFKlCihDRs2aOnSpfL19dXIkSOtmSN69+6tXbt22T0m4efnp/vvv1/bt2/XuXPnVLlyZU2bNk2vvvqqNm/erLS0NM2bN0+9e/e21qEFGre68+fPa8qUKQoLC1PhwoXVtWtXnTx5Ulu3brXy1KxZUw0aNNCnn34qSapdu7aCgoKs56qbNWumwoULa9WqVUpKSlLJkiX1zDPPaPny5Ro1apSKFi0q6e+eUomJiWrQoIHWrl2rsLAwjR49WnfccUfe7jhwKScH9bgFZN3Vv9SpU6dMRESE6devnylevLg1EnfWHUljjAkPDzfdunUzPj4+1qjfW7duNffcc48ZOXKkXXnHjh0zNpvNLFq06MbtCOAkObWiGWPMn3/+aUJDQ03x4sVNp06dzOHDh01YWJjZtGmTMSbz2Js7d67x9/c39957r9Wi9uKLL9r1AsnK+9xzz5lixYrZbePyUVFpVUN+ltP5KDo62kRGRpphw4YZm81mvvnmG3P8+HGzevVqK//x48dNr169jJ+fn5kwYYIxxpjz58+bwMBA88EHH5iUlBSrvJ07d5qiRYua999/P292CnCyfxqBPiMjw1SrVs2MGDHCGJN5fdeiRQvz5JNPWnnS09PN0KFDTfHixa209957z/j7+5sDBw4YY4xZuXJljqN7p6WlcW7CTY+Wajgs625hTgMRBQQEKDg4WEWKFFFYWJiefPJJSdKAAQO0Y8cO3XnnnWrUqJGSkpJUv359LVy4UJLUqFEj1axZU4sXL9aePXu0fPlyLVy4UAEBAXr66aetASsurwetaciPMjIyrBFLL2/N+vbbb1WtWjVNmDBBkydP1o8//qhKlSqpTp06atSokd58802VK1dOY8eOVYsWLRQbG6uffvpJUuYzbnFxcfrqq6904sQJvfvuu4qLi1OfPn3Uu3dvawAlKfOZNGOMdTzTqob86Erno3Pnzql9+/Zq1qyZUlJSFBERoYcfflilS5fWfffdp507d6pNmzaqV6+e0tLSVL58eW3evFnR0dEqVKiQ7r77bi1YsEBr167V8uXLNWPGDNWvX1/PPvusqlSpkmM9OB/hVpCenp5tZhRzhR6ANptNvXv3VkhIiJKSklSqVCl16tRJS5YssfIYY3To0CGdOXNGK1askCTVq1dPDz74oJWnXbt2qlOnTrbyXV1dOTfh5ufkoB75yJXuEq5evdrMnj3b/PXXX9bd/FdeecXYbDYzadIkY8zfdznPnTtn2rdvbwYPHmw9+zJs2DBTpkwZa37cTZs2me7du5tSpUoZV1dX89FHH3GHEre0kydPmv/+979m3bp1Vsvx6dOnTYUKFUy1atXMyZMnjTF/t8LNnz/f1KlTx+q5cfr0aVO6dGkzaNAgq8xPPvnEVK9e3fj4+Jg77rgj25zswK1oxYoVZtasWebQoUPGmMxzz6RJk4zNZrNaoLOkpKSY7t27m8cee8zK/+qrr5oKFSqY1atXG2OM2bFjh3nkkUdMyZIljbe3t3nxxRfzdoeAPJSenp6t91JKSoqZMmWK6d69u1m2bNkV1z1w4IBxcXExP/30kzHGmD179phixYqZZ555xhw+fNgsWLDAPPXUU6ZJkybm6aefvmI5XO8hvyKoRjZJSUnW/48fP2727t2b7UfWGGMWLlxoypQpY8qWLWtatmxpateubSZOnGiMMea3334zNpvNzJ07126dzZs3G39/f7N8+XJjTGbX0+7duxsXFxczfPhwK19cXJz5/fffs23zn7ogATeLS7+rGzduNOfPn8+WJzY21vTt29d4eXmZli1bmsDAQNO/f3/z22+/GWOM6dOnj2nQoIE5d+6ctU5iYqJ5/PHHTdu2ba2Lj9WrVxtfX19Tu3Ztu65zv//+uzWAWZaMjIwcu8gCN6Pk5GTr/8ePHzfbtm2zW551DHz//femQoUKpnTp0qZDhw6maNGiJiQkxGRkZJh9+/aZAgUKWINZZh2ba9asMVWqVDHz5883xmQeWz169DC+vr7mpZdesrYRHx9vdU+9FOcj3Mp+/PFH06lTJ+Pj42OqVatmxo4da06fPn3VdZo2bWoef/xx6/3nn39u6tSpY7y9va0B/C5cuJBtPY4l3Aro/g07nTp10ujRo63uod26ddPIkSPl5uam6OhorV27VpIUERGhCRMmaOTIkfrrr7/0888/a+jQoXrxxRf1119/qWbNmqpYsaLd3IVS5sBjgYGBmj9/vv766y9NmDBBBQoU0DPPPGPXZa548eKqUaOGtU6WnObvBG4m27ZtU4kSJazBjX777Tfdfffd+uuvvyRJ69at04kTJyRJc+fO1V9//aU9e/bo559/1o8//qiEhAS98sorkjLnst2zZ4+1riR5eXnJy8tLZ86c0ffff68dO3bom2++UdeuXVW/fn2dP3/eylujRg0VKVLErhufzWZj7mjkC8HBwXrmmWckSSkpKXr55ZfVp08fSdJff/2llStXymazKSEhQZ988omeeeYZnTx5UsuXL9fIkSM1duxYrVixQtWrV9edd96pkJAQSX93Ya1cubLS09O1evVq/fnnn5o+fbr8/PzUvHlzFS9eXBcvXpSUOeVj1nRYaWlpdnOzA7eS7du3a9CgQfL399fTTz+tcuXKaeXKldq/f79GjhypYsWKWdeHJoeu4I899piWLFmimJgYSdKTTz6pJUuWaO3atTp+/Lh69+6tggULWvOyZ+FYwi3BqSE9nC4iIsJMnTrVHDt2zBhjzKpVq+zuRM6cOdP4+PiYqlWrGpvNZh577DFjTOYdzGbNmhljMlvb3n33XRMUFGRsNpv54YcfjDHGjB071lSoUMEcPXrUKi8pKclMnz7dVK1a1RQtWtTUqFHDrFq1KseWcCC/mDdvntX7wpjMqUOM+bu7dpUqVUydOnWMl5eXqVixovnll19MQkKC6dq1qzX11YoVK0yPHj2Ml5eXueeee0xiYqJJTU01ZcuWNe+8845deTt27DD9+/c3pUuXNgULFjTDhg0z0dHRebnLwHV37Ngx895775n4+HhjTOaAYJdO8bZ48WLj6elpnWuGDBli0tLSzKxZs0zbtm2NMcZERkaaDz/80FSoUMGULFnSzJkzxxiTeS7z8vKyWsmyWrgnTJhgmjRpYry9vU2VKlVMaGio3aBkQH6Xnp6eq5bg6OhoU758edO5c2ezePFiu2VhYWHm8ccfN3Xq1DELFy68YhlRUVGmQIECVu+Py9EijVsZQfVtKuuC4rPPPjOtW7c2xhi7C4no6GiTlpZmKlWqZGw2m+nevbs1v60xxowYMcLUqVPHtGjRwhQuXNi0aNHCfPbZZyYyMtLKc+rUKePu7p7jD/Aff/xhwsPD7dJymtcayA/q1KljFixYYIz5+/GJuLg4Y0xmIGCz2UyRIkXMd999Z7een5+fadeunSlTpowpU6aMefrpp82vv/5ql+fFF1809evXt+Zuz5KWlmZ27dqVrS5ctCC/yfrd37Bhg6lcuXK25VFRUcYYY+68805js9lMhw4d7LqFf/7556ZAgQKmdevWpnDhwubOO+8006ZNs7vRdOzYMVOyZElrBopLb+SGh4ebiIgIu21yPsKtaMuWLVddfmnX7KioKPPmm2+aKlWqmOLFi5sHHnjA/PDDD1e86ZR1vHTq1MkEBwcbYzgf4fZCH8DbVNYoikWKFLG6V7u7u0uSOnbsqGeffVapqak6fPiwevbsqfPnz6tQoULW+u3bt9fevXtVq1Yt7d69W7/88osGDhyoUqVKae/evYqLi5Ovr68CAwM1ffp0XbhwwW77QUFBqlChgt2ow1nzWgP5SWxsrAICApSamipJ8vT01P79++Xr66v169era9eu+vPPP5WcnCwvLy9Jfz/S0KpVK23dulUTJ07UkSNHNG3aNDVt2lTnzp3Ttm3bJEl9+/bV7t27tWPHDrvturq6ql69elZ5hi6pyKeyfvf37t2rFi1a6Ny5c9ayfv366YEHHpAkfffddxoxYoQOHjwoDw8P69xRv3592Ww2BQUFae/evQoNDdXTTz+tkiVL6uDBg4qIiFBAQICaNWumd955R1LmqPdZKlSooPLly3M+Qr5ncuiSvWPHDj3wwAPWvM87d+684voFCxbU1KlT1bJlS91xxx1avXq1/u///k9//PGHFi1apM6dO1vXipfLOl4qV66s8PBwSZyPcHshqL6N5DTNx+7du1WjRg2dP3/e+jG+8847dfjwYesi/umnn9aGDRu0f/9+a727775bZcuWlaenp4oXL26lb926VePHj7d+tKdMmaLnn3/eLiC/lM1m40cX+Ya57DkwKfNZz4MHDyowMNDKExQUpNKlS2v16tVKSkrSHXfcoVatWumLL76Q9PcFfa9evZSamqoSJUrI09NTUuYUQP/973+1ePFinT9/XvXr19ekSZNUvXr1K9bLzc2NAAD5yqXP+Wf9e+rUKUVFRdnd7H3ggQe0d+9eHTt2TL6+vurcubOOHj2q7du3W+eOKlWqqFatWjpz5ox8fHysbWzatEkTJkzQkSNHJEmvvvqqPvrooyvWifMR8iNjjHV9d/l54MCBA3rhhRdUuHBh/fDDD/rvf/+rYsWKXbGshIQELVy4UG3atNGuXbsUGhqqJ598UiVLlsxVXebMmaOQkBA9/vjjju8QkE8RVN8Gsn5sLx2cKOsipkiRItq5c6cKFy5spfXv31/R0dHas2ePJOm+++6Tt7e3Vq5cqdTUVCvf22+/rdDQULVs2VJvvfWW7r//fnXp0kVubm4KCgqSJN177726//7782xfgRvhSvNJG2NUpkwZxcbGKiIiQpKUnJwsSXr00Ue1YMECnTp1SpL0+OOPa8WKFdagY8YYPfzww+rUqZN69+6tJ554Qi+88IIaNGigzz77TPXr17datgcPHmx38wrIr7LOR66urnJ1dZUxxgpkq1Wrpr1790r6+8ZTx44d5eXlpe+//16SVLNmTTVs2FCfffaZpMybWt7e3nr//fe1c+dONWvWTG+99ZY6duyoBx54QOfPn1flypUlSY0bN1aXLl3ycneBGybrBm/W4JNxcXFasGCBdu/ebeXZsmWLdu/erdmzZ6tp06aqVauWdQM4J97e3lq9erXefvtt3XHHHbmuS9Zx7evrqzlz5uipp55ybKeAfIyg+jaQFUyvWbNGc+bMUUxMjHUR06hRI4WFhSk1NVVubm5KT09X+fLlVatWLW3cuNEKFB5++GEtWbJE0dHR1rqPPvqovvzySz366KPasmWLqlSpoo0bN+qzzz5T+fLlre3n1EIO5CcuLi5ycXFRVFSUpk+frl9++UXx8fHWyMONGzfWsmXLJP3d3W3QoEE6ePCgwsLCJEldunSRu7u7lS8rOJ81a5YmTpyoIkWK6MiRIxo9erT27dunnj172nVR5ThCfpV1I1b6+3y0fPly9e7dW/fff79iY2MlZT464evraz36kJ6ergIFCqhnz56aM2eO0tPT5e3trYcffljff/+90tLS5OHhISmz99QPP/ygJ554QmFhYapatapCQ0M1c+ZMu/NRTt1jgfzg8u9u1jnkzz//1JdffqkKFSro1VdfVefOnfXll19KksqUKSNXV1cNHz5czz33nN544w299NJLWrp06RW340ivp6zjun379rr33nuveX3gVmAznGFuGcaYbD+GR44ckaenpx5++GH9+eef8vb2louLi1auXKmAgADt27dPrVq10uTJk/XQQw8pKSlJXl5e+uqrrzR27FhNnjxZbdu21YEDB9SwYUM9/vjj8vX11Q8//KBly5bJz88vx3oYY5i2B7eMuLg4DR8+XN9++62CgoKUkZEhLy8vLV++XIULF9Ybb7yhJUuWaOfOnXJ1dVV6erpcXV1Vp04dNWrUSJMmTVKhQoU0cOBArVixQs8//7y2bNmiChUqWN1RMzIysvUmoSsqbjVxcXEaMGCAtm/frt69eysgIEAdO3ZU9erVtWnTJo0YMUIdO3bUK6+8Yh0Tv/76q1q2bKkdO3aoXr16OnHihO644w499thj8vHxUVhYmF599VW1aNEi2/Y4HyG/S09Pz/EZ/6SkJOsZ6Zo1a+rFF19UzZo19cQTTyg8PFwfffSRmjZtqo8//lgrVqxQlSpVdOHCBUVERGjPnj1atmyZmjRp4qS9Am49nGXyuUsHVrn8BzcmJkZ33HGHnnrqKXXs2FEnT57UggUL5Onpqddee01S5l3Me+65R1OnTpX092BlvXr1Unp6unbv3q3k5GRVq1ZNn376qQ4cOKA1a9bomWeekZ+fn13rWXp6utVFlgsY3Myy5p+9mku70C1btkwHDhzQli1btH37dm3dulXx8fH6v//7P6WlpalZs2a6ePGiFi9eLEnWoGVPP/20Vq1aZXX5fvvtt9WzZ099/fXXKlGihJ599llJsi76Lz2eCaiR31z6bOelFi9erBdffFGJiYlaunSpjhw5ot27d2vChAkaNmyYNV5A7dq1FRgYqA0bNig1NdU6Jpo1a6YqVapowYIFkqSyZcvqq6++0l9//aXQ0FA98sgjatGihV1LHucj5DfLly9X27ZtFRUVZZfu6uoqm82mgwcPauXKldYjRl5eXqpVq5ZOnDihUqVKqWHDhvLy8tKLL74oT09PzZ8/X5L0wgsvaNWqVfr44481c+ZMrV27VqdPn862HQD/Ut4MMg5H5XZKj7S0NPP999+brVu32k2J0LdvX+Pu7m42bNhgpS1YsMAULlzY/Pnnn8YYY9asWWNsNpv55Zdf7Lb54IMPmiZNmpgDBw4YYzKnGGH+TuR3d999txk2bNhV86xevdrYbDaTkJBgjDGmbt261tRwS5YsMU8++aSx2WzmkUceMbGxsSY6Otr069fPNG7c2Bjz93zSFy9eNDabzUybNs1Ku3QqIOBWlnW+GDlypKlWrZoxxpgZM2YYDw8Pc+zYMbN06VKzcuVKExYWZmJjY40xxnz77bemWrVqZvbs2caYv6fkGTlypClcuLA1h/Wl5QP5Tdb5wJi/r7nCw8PNtGnTsl33bdy40dSrV88ULlzYVKlSxdx1113WPNA7duwwdevWNf/5z3+s/ElJSeb55583rVq1so6X6Ohoc+bMGXPu3DkzduxYc/fdd1vXgACuD27f3sTCw8Nls9ms7ms5tQBcvHhRr7/+ury9vTV06FD17dtXDz/8sCIjIyVlPsfp4uKi0qVLW+t0795dLi4uWrFihYwxuvfee9WtWzd9+OGH2rt3r9XiPXjwYD344IMqV66cpMxnZtzd3ZWRkWH3jByQn3z66ad67733rPdxcXHW6MCXpjVu3FjR0dGSMp/1fPvttxUYGKinn35aLi4uCg0N1axZs1SiRAmVLFlSr732mvbu3avZs2dbx0eBAgU0YsQI1a1b12oty3oGNC0tjeekkS8ZY+ymccty9uxZvfHGG3r77bclZQ42ZoyRj4+PypQpo9TUVPXq1UvNmjVTrVq19O677+qtt95So0aN9MQTTygiIkK9evVSt27dNHr0aMXGxlo9Np588km98MIL1vEjifMR8q2s88Gl13YVKlTQ008/LZvNZqWdP39eEydOVNWqVXX8+HHNnj1blStX1lNPPaW4uDjVq1dPjRo10tGjR3X69GlJmeerxo0b6+LFi9qwYYMSExP1xRdfqEePHgoICNBXX32lwYMHX9NAZABywYkBPa7ixx9/NDabzRw5ciTH5Vl3OdevX28qV65slixZYs6fP29Wrlxpqlevbvr06WNSUlLMxYsXjY+Pj/nss8+MMX/fEe3fv7+5++67zZkzZ4z5//buPaDm+3/g+PN00U03IRKFlMiQS/Qtyi13y6USmc3mvtjcZmYb5rrNhtnG3O9hzG3uRO4ltynlfls0akJFdT6/P/qdz7cj9sXcDq/HXzrncz6X9Dmf9+v9fr1fb0VRTp48qURERCjNmzdXRwaEeF3l5uYqV69eVRRFUQIDAxU/Pz/l4MGD6vvz5s1TPD09lYyMDCUtLU3p2bOn4uDgoPz+++/KnTt31O3+/vtv5dSpU0pmZqaiKIoyfvx4pWXLlsq0adNe7AUJ8ZKkpqaq/753754yduxYxcTERNm5c6eSk5OjKIqi9OjRQwkPD1eysrIURVGUGzduKKmpqUpSUpJy7tw5JT4+XilatKiybt06RVHy78+AgADlvffeU86fP//Cr0mI5+3QoUOKr6+vEh0drb6m1WqVrVu3Km5ubmqG4MmTJxWNRqPEx8er2+Xl5SklS5ZURo8erSiKosyePVupU6eOsmrVKnWb5ORkJSgoSAkNDVUURVF27typfPfdd8qJEydexOUJ8UaSkepXjPL/Pf+urq54eXmxaNEiAK5evcr333/Pjz/+SHp6OkZGRuTl5bFhwwZKlChBYGAgVlZWNGvWjIEDB5KUlMSWLVuwsLCgdevWLFiwgNzcXHUUulevXuzevZvExEQAqlSpwvTp00lNTeWHH34gPT0dyC+epEgtO2GAHjaSptOqVSu6du0KwPfff4+zszORkZHq6ICLiwsXL17EzMwMe3t7fH190Wq1WFpaqmuu379/n2nTphEVFaV+7uOPP6ZHjx78+OOP/PHHH+rxZCRNGLIH/37//vtvJkyYgKenJwEBAbz33nskJiZSpEgRPv30U959911GjhzJqlWrAChZsiTnz5/H3NycvLw8HBwcKFGiBO7u7pQvX57s7GwcHBwoU6YMkD+HdMGCBdy+fZupU6eSlZUFPHydeCEMUYkSJShatCgzZ86kX79+VKxYkb1791K7dm3Onj2rrhqRmpqKo6OjmrFx7949jIyMCAsLU5eZ8/X1xcHBgejoaHX/lSpVwsfHBw8PD+7fv09AQAADBw7Ey8tLr3aHEOLZkaD6JdM1EA4dOsT58+fVoLds2bI0btyYJUuWcP78eRo2bMjSpUuZNGkS7du359y5cxgbG3Py5EnKlSunrmcL+V+wdnZ27NmzB4AePXoQHx9PcnKy3jZBQUHqF3VeXh7W1tasXr2aBg0a6K1t/TTLKwjxspmYmKDRaDhz5gwJCQl674WHh3Ps2DGuXbvGW2+9xYQJEzh79iyfffYZmZmZZGZmUqVKFfWeCQ4OpmPHjrRv357OnTszbNgwvLy8WLJkCRUrVsTCwgLIT+1u3749CxcupEiRInpr8gphSAoGr8bGxty/f5/U1FTS0tL46KOPWLduHcOGDWPChAlcunSJXr16cfHiRQC+/PJL6tevz0cffcSVK1fQaDSUKFGCnJwcjI2NuXHjBrNnz2b8+PG0a9eOVq1aER4erhYsg/xn4IwZM+jUqZNamOnBdeKFeNU9OD1B90xISUlh//79LFu2jPPnzzNt2jTq1q2LnZ0dfn5+REVFoSgKlpaWVKpUic2bNwP/fZbUrVuXq1evotVqqVy5Mi4uLuzYsYMLFy6oxxo1ahSjRo1Sp0zoOqU0Go08k4R4DiSofol0X27x8fE0aNBAHdnauHEjVlZWtGjRgr/++ovu3bszbtw4Dh48yIwZM8jIyFCX4WnevDkxMTHcvHlT3a+Xlxc3btxQl7vy9/cHYN68eXrH37hxo7qcgu4Ltly5ctSsWRMHB4fneu1CPCsPm5ecnZ3N9OnT8fDwwM/Pj86dOxMeHq4GCu3atSMnJ0ddM9rFxYWJEyeyadMmZs6ciampKbdu3aJEiRIoioKNjQ3Tp09n9uzZFCtWjNOnTzNixAgSEhLo0qVLoerCtWrVwt3dXaoOC4NSMDNJF7ympaUxf/58danFe/fu0bx5c1avXk337t1p06YNwcHBHDlyhO3btwP5q0pMmjSJMmXK8M0337B+/Xrc3NzU1SXMzMzIzc1l8+bNVKxYkX379jFu3Di9zmEAe3t76tevj52d3Yv7JQjxDBkZGantq3PnzqnPBCsrK/r27YuHhwe9evWiZcuW6rOsd+/ebNmyhTNnzlC1alU8PDxYtmwZkN9ZDBAVFYWfnx93794FoEOHDowYMUKvfg4UvqelU0qI5+jFZ5yLh6levbpSpUoVxd7eXp0/c/HiRaVZs2ZKpUqV1CqnOTk5yrhx4xQbGxtFURQlIyNDMTMzUyZPnqzO9Tx16pRia2urLFmyRN3/ihUr9Obk6OjmvAlhaB5VGV+r1Sq//fab0qJFC2XatGlKamqqcvDgQaVs2bLKqFGj1L/5sLAwJTAwUL237t+/ryxYsECxs7NTRo4cqVhZWSnZ2dnqfnV1DApWbVUURWoQCIP34N/0yZMnlZiYGKV3796Km5ubEhkZqezYsUPJyclRcnJylLy8PCUlJUXp37+/4uDgoHh6eirOzs5K586dlevXr6v7OXDggPLBBx8oGo1G6dChg6Io/71vdfOrdbRa7WOvdiHEqygvL6/Q33B8fLwSGhqqODo6Kt7e3kqfPn3Uec2XLl1SgoODlU6dOqmf1zE3N1drcxw6dEhxdXVV6tSpo0yfPl2JjIxUKlSooKxfv/4FXZkQ4nHIMMoLojwwD0xRFDIyMti1axezZ8/mypUrXL58mdGjR6PVaqlZsyaOjo785z//ITU1Ve3hNzExoWnTpty7d4/169djbW3N4MGDmTZtGuHh4UyZMoWQkBACAwNp1aqVeryOHTtSs2bNQuel6/UUwtDoetx37NjBzJkzuXHjhvp6sWLFGDduHP3796dYsWKkpaWRk5PDunXrOHv2LADvvvsue/bsUSt/m5qaEhERQWhoKOPHj8fExEQvlU43wiDrSYvXifL/a6RnZGSQnJzMO++8Q+PGjTly5AiVK1fm8uXLGBsbExAQgImJCSYmJhgZGfHtt9+SkJDA4sWLSUhIYOTIkWzevFlvmpGPjw+ff/45Li4uWFtbk5OTo963ulHpgutJyyiaMEQPTpc7ffo0ly9fJjk5mQEDBmBlZcXy5cv54osvuHz5Mp988gkAzs7O1K1blz/++IPLly9jZGSkTnVo3bo1q1atIi0tjTp16rBy5UoaNmzIzJkzOX36NLNmzdJr40HhdqYQ4sWSoPoFKdhYUP4/7XvOnDmEhYXRo0cPdu3ahZ2dHZaWlup2ZmZmakNm3bp16utubm4EBAQwc+ZMAIYNG8bPP/+Mra0tS5cuJSQkhPnz52NjY6N3DrJ8j3hdXLp0iYSEBMLCwggLC2PSpEm8/fbb6ryzevXqUaNGDb777jvc3NwYOHAgXbt2JT4+nri4OHUpuVKlSqnFXnT3x2effcaUKVPYtGkTHh4eDz2+zEkThkb5/2WwHqTRaMjIyMDDw4PIyEgsLS2JjY3lww8/pF69elhZWVGxYkU0Gg05OTkAHDt2jOXLlxMaGkpQUBCKopCcnMz9+/fZvXu3ul1OTg7Ozs5Ur14dc3NzdQmsgoyNjWWahDAoDwavRkZGZGVlcebMGSIiIqhfvz579uyhdOnShIaGMnv2bBo0aEDNmjWxtLRk06ZNHDx4EI1GQ82aNbGysmLt2rVAfrsPIDIykujoaHVaYK1atfj66685cuQIv//+O4GBgYXOSzqlhHi55En2jD3YcNF9+cbHx7N37169bYsUKUL58uXJzMykatWqVK5cma1bt3Lt2jV1G3d3d+rXr8/s2bPV/dna2tK+fXvWr19Pbm4u1tbWNGvWjF9++YUDBw4wYsQIbGxsHvrFL4ShO3z4MG+//TahoaFUrFiR1NRUli9fjp2dnVprwNTUlN27d7Nw4UKGDx/O4cOH+frrr/Hy8mLTpk2kp6djbGxMq1atmDx5MtnZ2er94ezsTN++falXr97LvEwhnimNRqNmJsXHx/Pnn3+qzwgbGxuaNWvGli1bqFOnDs7OzkB+BeFGjRoRFRUF/PcZ4unpSXp6OlevXuXGjRvs3buXjIwMXF1dOXv2LHfu3AFQM6y0Wq36XJTnkDBUuuykB4PXa9eu4ebmxpAhQ7CxseHo0aN06tQJa2tr+vXrx8GDBwkICKBGjRr89ddfVKhQgenTpwNQrVo1qlevzowZM8jKymL37t1s374df39//P391XtIR6PRkJeXJ9W7hXgFydPtGdH1vhdsuOhS2rRaLZ988gndu3fn3Llz6hfyuXPncHR0VBs2nTt3Jj4+Xl3mCvKXXWjVqhX79u3j7t27aopcw4YN6du3L2lpaeq2uh5O3VJC0mspDM3jZFOUL1+eunXrcvHiRTp37gyAt7c3Xbp0ITExkQMHDgCwcOFCjI2NCQsLw8rKiv3793PlyhW1AAzAwIED+fzzz9XqqE96LkIYimvXrjF8+HBKlSpFmzZtaNWqFaNHj1Yb5x07dsTe3l7vXrC3t6dNmzZqpXxjY2NycnIoUqQIkZGR/Prrr3h6etK0aVP8/PyIjo5m9uzZ2NvbA/kj1T179mTPnj288847L+W6hXhc/yt9WpeddOjQIdavX092djZarZZSpUrh7e3NmjVr8Pf3x9nZWW1/Xbt2jS+//JIqVaoQGxvLjh07aNKkCVu3bgXyi/p169YNRVHw8PAgICCApKQkAHbt2kX9+vUfeh6SKSXEq0eC6mdE1/t++/Ztxo8fT/369fnss884duwYRkZGLF26FDc3N3r37q2m8xQvXpzk5GR13dtOnTqRm5tLbGysul9jY2Pq1atHWloaCxYsUF/38PDghx9+oGTJkoXORbeUkBCGpuAo1qMaOMWKFaN+/fpoNBp1RAygevXqVKhQQb1PGjRoQHx8PCtWrODQoUPMnTuXyZMnY21trY6aeXh40K9fv4eOnsmImnhdaLVali9fzuHDh5k1axbHjx9n8ODBLFy4kEWLFgHQsmVLihUrRnJyMtnZ2UB+J7G3tzdOTk4sXLhQ3RfkL5sVFRXF/PnzycrKolu3buqqEQWXkitatChLlizBz8/vRV+2EI9F9zzQaDSkp6erna4PWrp0KeXKlSM4OJgRI0bQokULVq9eDeRX3y5WrJg6uKFrgyUlJbF582Y+/vhjKlSoQFZWFgkJCVy/fl2t6N2gQQNWrVrFypUr0Wq19O3bt9C5CSFefdJqfEY2b97MnDlzGDt2LFu2bCEgIIANGzbQuXNnNm/ejIODA1OmTEGj0TB06FAgv8Hh4uKiLolQtGhRmjZtypIlSxgzZgzNmjVj2LBh1KhRgw0bNtC1a9dCgYakAAlDVHCZDx1FUYiKiuLDDz9UszwepPtMjRo1qFWrFsuXL1ffK1++PP7+/uzatQuAiIgIunbtyqRJk2jUqBG3bt0iODiYM2fO4Ovrq7dPKfAiDNXjZFQoioKPjw8//vgjrVu3BuDu3btcvXqVjRs3qsXIAgMDiYmJUdebhvzl5vz8/Jg8eTLw34woExMTqlatSsuWLQH9Z1HBon6TJ0+mefPmz+ZihXiGbt++TdeuXRk/fjyQf5/Url2bX375RX1fV8jyzJkzzJkzh48++oirV6+ye/duAgIC6NmzJwDBwcFYWVlx+vRpcnNz1Xvg/v37uLq6snr1atLS0pg1axaurq60bt1abwClUqVK6hKnBQNpKSYrhOGQoPpf0jVo4uLieP/994mJiWHhwoWMHz+eXbt2UaFCBb777juysrJwd3fn+++/Jz4+nqlTpxIbG4uDgwOWlpZqYZfhw4cTEhLCb7/9hpOTk5oyFxQUhLW1daFAQ1KAhCHSVUnV0U1XWLhwIRkZGWqF7QfpPuPu7k6tWrXYtWuXeu9YWFjg6+vLtWvX1DmgM2fOZP369dy+fZuoqCi1eF/BRotUHRaG7HGyO4yNjfHx8cHR0ZEBAwbg6enJggULaN26NQkJCcTHxwP5HVEXLlzgxIkT6metra3p0KEDvXv3Vu+1gnTHlGeRMDTW1ta0adOGPn36qB25bdu2Zf369dSuXRtbW1t++uknAGJiYkhPT+ejjz7i9u3bLFiwgJUrV5KRkcHBgwextbWlfv367N69mytXrqjHqFOnDl27dmX69Om4uLgwY8YMwsLC+PXXX9UaIDq6e0kCaSEMkwTV/+BxRq90jfEBAwZgbGxM2bJl1SIvdnZ2dO7cmZs3b7J9+3Ygv8DL1KlT2bJlC+vXryclJUVvHraLiwvDhg3j8OHDzJs3jypVqjynqxPixXhY+tr169fp0qULc+fO1Xu9QoUKap2Af7r/LCws8PHxITc3l40bN6qve3p60qVLF2xtbYH8UbVKlSqpxV10nWDSaBGG5mmzO3TbASxbtoyYmBhWrFjBnj17+OWXXzhz5gyHDx8GwN/fH4ANGzaQkZGhfr558+Z88cUXhYomgVQcFoYtNDSU4sWLk5GRwY0bN1izZg1JSUm4uLhw8eJFvv76ayC/4r21tTVNmjShTJkyzJs3jx49enDmzBl8fHwA6Nq1K6dOnSIhIUHdv52dHaNHjyYqKopDhw7xxx9/0Lx5c7USfsF7Wu4lIQybBNUPKLj+7ON8weka60WLFqVBgwakpaVx8+ZN9X1vb29MTU3VwhOQXxDmww8/RKPRYGNjQ1ZWlt6xdD3+BYMAIQxJwb9bXQB74sQJ/vzzTyB/qoOTkxOff/45a9euRaPRcO/ePbKzsylRogR5eXmPnNOsa4RUr14da2trtTI+5KeAT5069aHpprJ0jzBkT5vdAfnPqczMTH799Vdq1Kihzm9eu3YtpqamxMTEcPToUSB/rnREREShJRllmoR4HWVmZqpzpIsXL87evXvx9vambNmy2NnZqdu5urpy4MABnJyciIuL49ChQwwcOBAXFxdOnToF5K8tfefOHTZt2kRWVpbecXx8fPD09NRrYz54TwshDJu0MKFQT6EuqF27di1r164lMzPzsfbTs2dP9u3bp1e9u3Tp0hw/frzQiHNQUBCtWrXC2NgYCwuLhwbPEgQIQ6X7u/37779ZtWoV9vb2NGnShLZt27JgwQKsrKz4+uuvad26NZ9++inHjx/HzMyMy5cvY2dnh7Gx8SM7lHSNkIoVKzJ06FC++OKLQttIrQFhyJ51doeiKFhaWmJnZ0dCQgKrV69m27Zt7Ny5ky5dulC+fHm16vc777xDo0aNCu1DpkmI15GlpSXFihXjwoULHD16lNKlS9O2bVuio6P12nKtWrXC2dmZsmXL4u7urrYT4+Li+Pzzz9XAevjw4bRt2xYLC4tCx9J1hMlUCSFeT29sxKZrfDy49JRWq2XChAnY2tryySefMHLkSN5++211+YOHNdZ1X5ChoaEoisLYsWM5dOgQubm5LF26lNKlS6sp4QU5OjqqAbsEz8IQFex1LygzM5NBgwYRGhrKsmXL+Pnnn4mJiaFatWp89NFHasr2xIkTKV++PIMGDeLUqVN4eXlx9uxZ4NGZIlqtlpycHIyMjGjbti3e3t6FtpFGizA0zzO7Q7fvwYMHU7lyZfr3709oaCiVKlXim2++Yc6cOXodv5IhJd4kHTt2JCUlRS0c1rVrV27cuKHWGtBqtVSqVIlevXoxd+5cWrZsydSpUwkJCSE4OBgHBwesra2B/KmATZo0eehxpFNKiNfbGxvJ6b7cNBoNSUlJTJ06lStXrnDs2DFWrVrFokWLSEhIYMeOHVSrVk2t8PioxrpuZKFbt25s3ryZb775Bl9fXwYMGMAHH3yg12AxMjLi6NGjbNy4kdDQ0Od8pUI8W1qtVm9ddt09ER8fr75uaWmJiYkJsbGxmJmZERoairu7OzNmzKBp06aMGzcOABsbG6ZOnUrRokV57733+PPPP/Hw8CAvL69Qqqtu/XUjIyN1buft27df5KUL8dw8z+wO3T1au3ZtZs2axa5du7h58yaffvoplpaWgH4gLZ284k3SqFEj7OzsiI+P586dO7i6ulK1alX27dvHn3/+qd4PgwcPZsaMGXh5eREVFUXRokVZt24dP/30E2XKlFH3J5lSQryZ3pgnZ8EGg1arJTMzk02bNrFu3TpatWpFXFwcd+/eZf369VSqVIk2bdqQlJTEhAkTWLRoEbdu3eLy5cuP3L/uSzciIgITExPeffddxo4dS3Z2NkOHDtULxlNTU4mMjMTNzY1mzZo9v4sW4hkpmNlhZGSk1+geP348tra2tGjRgvfff1/t3W/RogXW1tbY29sD+fddkSJF6N27N/v37+fGjRtA/jzoyZMnk5OTw9KlS7G1tcXY2FhtmOgCbN3664mJifTr1w9nZ2fWrVsn8zyFQXlZ2R26jl8TExM8PDwA1I4qkEBavLnMzMzw9fUlMTFRrS3QpUsX9u7dy88//8zUqVNp0aIFAG3atGHSpEns3buXOXPmUKNGDUC/jSmZUkK8mV7bp+iDDW1dg+H69evqSHHLli356quvmDhxIgsWLMDDw4N9+/aRkpJC9erVqVu3LidPnmT69OlcuHCBsmXLPvJ4uiIxvr6+2NnZsX//fpo2bYqRkRE5OTl651OiRAl27drFpk2bKFWq1PP5BQjxDBXM7EhMTGTUqFGsX7+e+Ph4Ll++zM6dO/n555/5448/GDt2LAA1a9akXr16nDt3jqysLPUedHV1xc7OTq04nJubqwbW7u7unD9/HvjvPWtsbMzNmzeZOHEinp6e+Pr6kpKSwrfffkvHjh0lpU688l6F7A5dSnnB7A5dR5UQb7o2bdpw584d9bkUGhpKZGQka9asYeHChQQGBgL6bcuCxWSlU0oI8dp+CzzYULhz5w516tTh22+/JTc3F19fXzw9Pbl+/Tr169dXt/Px8SE6OpoOHTpw7tw5fv/9dzp27EjRokXVEbgH5eXl6TVoIiIiWLx4MZcuXQLA1NRU73yk4It41T04knb37l2io6NZs2YNQUFB/PbbbwwaNIiQkBCcnJzw9vYmODiYAQMGsGPHDs6fP4+trS21a9cmOTmZ6OhodV/79u3D0tKS4sWLA/+dP+rv74+rqyuVK1cG/nsPjxs3DicnJ9auXUtkZCSJiYmsWrWK0NBQtbiSEK8aye4QwnD4+Pjg4ODA1q1bSU1NxczMjMjISPbu3UtsbCxDhw4F9NuWUkxWCFHQa/Ft8LBUuosXL7J37171vaJFi1KpUiWSk5M5ffo0kN8zmZeXp1fdOywsDCsrK4oXL46Dg4P6+oYNG/jhhx/UFPDc3Fx138bGxhgbG5OamsrWrVsZNGgQGRkZZGdnP7drFuJ50o2k6Ua11q1bR6NGjfjpp59Yvnw5R44cYejQoVy8eFFNf4P8JeScnZ2ZNWsWAAEBAZiYmNC3b1++/fZb9T7y8fGhVq1ahY6blJSkBso5OTkAhISEcPz4cfbu3UufPn0ku0MYBMnuEMKwBAcH07RpU6ysrID8e7do0aJ60yeEEOJRDDaoLrhm5sPmr0RGRjJkyBAuXryovhYWFsbp06c5duwYAL179+bq1at6a0hXrlyZAQMG8NVXX9GmTRvGjBmDv78/ffr0wc3NTV2708TERD3u4sWLadCgAW5ubkycOJHixYvz119/4e7u/tyuX4jn6datW5QqVYolS5agKAqtWrWifPny3Lt3Ty26FxISgq+vL1FRUernypUrR7NmzVi5ciWQH2T7+vpiaWnJ6dOnGTNmDJ6ennz33Xd6x7t58yatW7fG2NhYXUNXV4zMzc1NnQMqxKtKsjuEMGy9e/dmwIABalCtU3D6hBBCPIrBBtUFU6gXLlzIxx9/zNatW9VR5/fee4+//vpLb53BFi1aYGFhweHDh9UKj1WqVOG3334jKytL3W7UqFHMmjWLatWqsWvXLho3bkx8fDyffvoptra2AMTExNC+fXuKFSvG6NGjadiwIQcPHmTbtm3SaBGvtIdldpw9e5aTJ08C+R1Wtra2VKhQgT179nDz5k2sra3x9/cnMzNT/fsuWrQoYWFhrFmzRh1VtrKyokmTJly7do2YmBiMjY3x9vamVKlSNGzYkAMHDjB79uxCS8wVKVKEihUr8ttvvz10iSwhXnWS3SGE4dNqtTI9QgjxVAw2qE5KSmLdunX079+fL774gpMnTxIeHs6AAQMAaNeuHUZGRuzbt08NmE1NTalfvz4xMTFqCnjPnj3ZtGkTV65cUfdtbGxMy5YtGTt2LNu2bePLL7+kZMmSakGK5ORkJk+ejKWlJWvXruXkyZPqCJwQr6L/ldnRoUMHBg4cyO3bt9XOql69erFz5061snD37t2Jj4/XqzTcpEkTjIyMWLNmjbovd3d3KleuzIEDBwBo0qQJpqam6s85OTmFlv6xtrZmypQpeHl5PeMrF+LFkOwOIQyfkZGRTI8QQjwVgwyqU1NT6devH/379yclJYUjR46wadMmpk2bxpIlS5g/fz4AQUFBxMTEcO7cOfWzjRs35uTJk+qyCT169ODq1ascOnSo0HF0X6x5eXlqsRmAihUrsnz5chYtWoSfn5+kBYlXXsHMjkWLFjF06FB27NihjmwNGjSIo0ePqsX1IH+6RFZWFgcPHiQ3N5eAgACcnJzUxj9A2bJladCggTonFPKLKEVHRzNkyBAgP8guX768muJqamoqxV2EQZHsDiGEEEL8E4Ns2ZYsWZLGjRuTmppK8+bNsbW1RaPREBYWRnh4ONOnTwega9eu/Pnnn+zcuRPIT+tZvXo1Wq2WLVu2cP36daysrNixYwfh4eGPPJ6xsXGhio+6EQEhDEFSUhK///47Q4YM4csvv+TYsWN07NiRmTNnAvkV62/fvs3u3bvV5X/MzMxo0KABv/32G6mpqQCEh4ezcuVK7t69C4C5uTk9e/akWbNmekuLWFhY6BV3CQ4OZvjw4Tg5Ob2EqxfiyUl2hxBCCCEe10sPqnVraT4uXcPC398fFxcXteqpbiShU6dOxMXFkZmZSd26dQkMDGTs2LEMHjyY8PBwSpUqxZdffkn79u1xcHBAq9USEBAg6T7itZWamkrfvn3p27cv6enpHD16lM2bNxMSEsKyZcv0lvNZsWIF6enp6khyUFAQx48f59SpUwB07txZL9MDoHXr1kycOLHQ6HPB4i7NmjUjPDwcMzOzF3DFQvx7kt0hhBBCiMf1wp7SaWlpDBkyhL///lvvdd1amoA6GvZPdA2LmjVr4u3tzbFjx7h3757eSEKZMmX4448/ABgzZgwjRowgLi4OCwsLevfuzZAhQ+jUqRMmJibSUBGvvZIlS9KkSRPS0tJo1KgRRYsWBVCzM9auXQtA//79iYuL4+DBgwBkZWXx+++/k5aWxsaNG8nMzOStt95i06ZN+Pr66h1DiruI141kdwghhBDicT3XiDIjI4OUlBQAsrOzSUhI4N69e3rbXLp0iY8//hgXFxeCg4Pp16+f2vP/qEa6oihYWVlRr149Dh06xKJFi9TRg7Vr1+Lq6oqXlxdarZZSpUrRv39/oqOjmTt3LuXLlwcolEonhCF42swOPz8/XFxc1DRUgBo1auDu7s6+ffvQarU0btyYOnXqMGDAAEaPHs27775LQEAAI0eOpFatWpibmwP5o84PZnZIcRfxOpHsDiGEEEI8iecaVLu7uzNmzBju3buHk5MTGzZswNHRUX3/7NmzREREcO7cOSZOnMjQoUOJjY3ls88+IzMz85GNdF2w3ahRI5ycnBgyZAjvv/8+DRs2ZOHChURERGBpaVmowZKXl6c3MiDEq+pZZ3Z4e3tTrVo1jhw5onZs2djYUKdOHdLT09m+fTsA06ZNo1u3bqxZswZzc3M6derEqFGjCAsLk3tGvDEku0MIIYQQT+K5tJJ1o8bvvvsuu3bt4q+//gLgypUrdOjQgcuXLwPg6upKy5YtWbVqFWFhYbRr145q1aqxZcsWtm7dCjy86qqucV+1alV8fHyoXbs2/v7+dOnShcTERHr27PnQ8zI2NpbAQLyynndmR506dfjzzz/Zu3ev+p6Pjw8ajYalS5cCUKVKFUaOHMnhw4eZN28eZcuWBR5+HwphCCS7QwghhBDP2zOPMBVFUStj9+nTh8TERDXtzcbGhtWrV7Nx40YgP8gdNmwY586do2PHjjg4OHDgwAEcHR1ZsmRJ/gk+IgjWarVoNBp8fHy4e/cuxYsXp2fPnjg5OckIgDBIzzuzo2HDhlhbW7Nt2zb1PS8vL9555x26dOlS6HMFMzseVv1YiFeJZHcIIYQQ4mV54if+7du3iYuLAx4+eqXRaEhPTyc7O5ty5crh5eXFqlWruHv3LjY2NnTr1o3FixerIwd3795l+PDhmJub8/vvv3Py5En8/f2Ji4sjJSUFjUZTKEAuWMylcePG2NnZqYG6VquVEQBhUF5UZkfNmjWxt7cnOjpaDTxMTU3p168fjRs3LvQ5yewQrzrJ7hBCCCHEq+CJWsy3bt2ie/fu6vIgDxu9+v777wkKCuLw4cMAfPDBB2zYsIGrV68C0K1bN/bt20dycjIAx48fZ8uWLXTv3h0fHx8gP5i4dOkSK1asAP4790wXSBsZGVGkSBEgf63OUqVKcebMGVJTUyUIEAblRWd2DBkyhCVLlmBnZ1fofSEMjWR3CCGEEOJV8EQRqK2tLXPnzmXChAnqa3v37lVH0gDq1KnD7du3SUxMBOD999/nxo0bHDhwQF0TunTp0mpgfvv2bb05aosXL8bExISWLVuqwYVu5FmXwrd7927Cw8MxMjJiyZIljBgxgi1btlCyZMl/9csQ4ll7VTI7dA39OnXq4OrqWug8pDNKGBLJ7hBCCCHEq+SJnv6KomBjY0NCQgI7duzgwoUL+Pv76/Xi/+c//8HR0ZGDBw9y/fp1LCwsCAwMZMWKFWRkZGBkZERoaChLlixBURTq1q1LUFAQP//8M05OTgwdOpSQkBAWLFjAnDlzgPzA49SpUwwePBhnZ2dCQkKwtLRk27Zt9OnThwoVKsiogHjlvEqZHboOqWvXrkm9AWHQJLtDCCGEEK+aJwqqNRoN9+7d49NPP2XkyJG4urqqo2QFi8M0b96c48ePc/LkSQD69evH9u3bOX/+PADdu3cnOTmZXbt2YWdnx1dffcXixYuJiori6tWrhISEYGtrq+5v586dVKlShdOnTzN58mROnz7NrFmzaNSokRosCPGqeRUzO+bMmSNzPcUrTbI7hBBCCGFonnik2szMjKZNm5Kbm8uJEycIDw9n9+7d6kgaQIcOHUhJSeHYsWMABAcHY2ZmRnR0NLm5uVStWhUPDw/1fYDAwEAaNmwIFG5IBQYGcvXqVdasWUNISAjW1tZPfcFCvCivYmbHsGHDpCNKvLIku0MIIYQQhuiJR6oB/P39sbCwYOXKlYSEhHDz5k3i4+PV7SpVqoSpqSn79+/n4sWLQP6an7/88gsZGRkAxMfHM2DAAL396xouD2tIlS5d+klOVYiX7lXM7JBpEuJVJtkdQgghhDBET5W/9tZbb1GlShViYmKwtrZWR99OnToFwJYtW7h//z6xsbEcOHAAgB9//JGVK1dSrFgxACwsLArNSZNlsMTrRDI7hHgykt0hhBBCCEP0xEG1bjTZ19eXW7duER0dzaBBg0hISKBXr16MGzeO7777jrFjx9K5c2fq1q0LgLOzM1WqVNE/uMxJE68xyewQ4slIdocQQgghDNETR7W6QMHPz4+SJUvy66+/UrduXWbNmkXJkiXZvHkzwcHBREREMG7cOMqXL6/3OSHeNJLZIcTjkewOIYQQQhgijfIvKrAMGzaMffv2MXPmTDw9PcnOzsbc3Fx9X1EUFEWREWnxxlIUBY1Gw6JFi/juu++YOHEiNjY2dO/enRIlShAUFERMTAydO3fm1KlTfPDBB5QvX179nBBvouPHjxMZGUnDhg0ZOHAgVatW5fPPP6d3797qNhUrVqRWrVp8/fXXuLi40KZNG86ePcuePXsoVqwYWVlZWFhY6O1X7ishhBBCPA9PFe3q4vAGDRqg0WiIjY0FwNzcHEVR1FEAjUYjAbV4o0lmhxBPTrI7hBBCCGFInqr6iq5h4uPjw7Vr17h7967eezIHTQh9rq6uvPXWW+zbt4/ExER8fX3x9vaWzA4hHqAbTfb19eXgwYNq3Y7u3bvTq1cvNbtj7NixnDp1Sq9ux4NBs9xLQgghhHgRnrrFodVqWbt2LTdv3qR27drP8pyEeK1IZocQj0+yO4QQQghhaP7VOiEXLlxg3Lhx1KpV61mdjxCvHcnsEOLJSXaHEEIIIQzFUwfVRkZGjB49+lmeixCvLcnsEOLx6VLAGzRowP79+4mNjcXT01PN7tBqtRgbG6PRaGSEWgghhBAvnXTvC/GCSGaHEI9HsjuEEEIIYUj+Vfq3EOLxSGaHEE9GsjuEEEIIYShkpFoIIcQrSbI7hBBCCGEINIquNLEQQgghhBBCCCGeiIxUCyGEEEIIIYQQT0mCaiGEEEIIIYQQ4ilJUC2EEEIIIYQQQjwlCaqFEEIIIYQQQoinJEG1EEIIIYQQQgjxlCSoFkIIIcQjzZs3Dzs7u5d9Gi9F9+7defvtt1/2aQghhHjFSVAthBBCGCgJ+vRFR0ej0Wj4+++/n+hzFy5cQKPRcPToUb3Xp0yZwrx5857Z+QkhhHg9mbzsExBCCCGEeBXZ2tq+7FMQQghhAGSkWgghhHgNBAQE8OGHHzJw4EDs7e1xdHRk5syZ3L17l3fffRdra2sqVqzIxo0b1c/oRnY3bNhA9erVMTc3x8fHhxMnTvzjsdatW0etWrUwNzenQoUKjBo1itzcXPV9jUbDjBkzaN26NZaWlnh6erJ//37OnDlDQEAAVlZW1K9fn7Nnzz7xfmfNmkVwcDCWlpZUqlSJtWvXAvmjzYGBgQDY29uj0Wjo3r07AJs2bcLPzw87OzscHBxo3bq13rHLly8PQM2aNdFoNAQEBACFMwHu3btHZGQkJUuWxNzcHD8/P2JjYwv9Prdv307t2rWxtLTE19eXpKSk//XfJ4QQwoBJUC2EEEK8JubPn0/x4sU5dOgQH374IX369KFTp074+voSHx9PUFAQERERZGZm6n1uyJAhfPPNN8TGxlKyZEnatm1LTk7OQ4+xefNmunbtSmRkJAkJCcyYMYN58+YxduxYve3GjBlDt27dOHr0KJUrVyY8PJxevXoxfPhw4uLiAOjfv/8T73fUqFGEhIRw/PhxWrZsSZcuXUhLS6Ns2bL8+uuvACQlJZGSksKUKVMAuHv3Lh9//DGxsbFs374dIyMjgoOD0Wq1ABw6dAiAbdu2kZKSwqpVqx567UOHDuXXX39l/vz5xMfH4+bmRlBQEGlpaXrbjRgxgm+//Za4uDhMTEx47733Hv2fJoQQwvApQgghhDBI77zzjtKuXTtFURSlYcOGip+fn/pebm6uYmVlpURERKivpaSkKICyf/9+RVEUZefOnQqgLFu2TN3m5s2bioWFhRIVFaUoiqLMnTtXsbW1Vd/39/dXxo0bp3ceCxcuVEqXLq3+DCifffaZ+vP+/fsVQJk9e7b62tKlSxVzc/N/td87d+4oGo1G2bhxo971pKenP+I3li81NVUBlBMnTiiKoijnz59XAOXIkSN62xX8/d65c0cxNTVVFi9erL5///59xcnJSZk0aZLe8bdt26Zus2HDBgVQsrKy/vGchBBCGC6ZUy2EEEK8Jt566y3138bGxjg4OFCtWjX1NUdHRwBSU1P1Ple/fn3138WKFcPDw4PExMSHHuPw4cPExsbqjSDn5eWRnZ1NZmYmlpaWhc5Fd9wHzyU7O5uMjAxsbGyear9WVlZYW1sXup4HnT17lpEjR3LgwAFu3LihjlBfunQJLy+vf/xswX3k5OTwn//8R33N1NSUunXrFvpdFTzH0qVLA/m/83Llyj3WsYQQQhgWCaqFEEKI14SpqanezxqNRu81jUYDoAaV/0S37YO0Wi2jRo2iffv2hd4zNzd/6Lno9vVP5/I0+9Xt539dT5s2bShbtiy//PILTk5OaLVavLy8uH///j9+riBFUfTOu+DrD772tL9zIYQQhkmCaiGEEOINd+DAAXUUNT09neTkZCpXrvzQbb29vUlKSsLNze2ZnsOz2G+RIkWA/BFunZs3b5KYmMiMGTPw9/cHYM+ePf/zcw9yc3OjSJEi7Nmzh/DwcABycnKIi4tj4MCBT33OQgghDJ8E1UIIIcQbbvTo0Tg4OODo6MiIESMoXrz4I9e//vzzz2ndujVly5alU6dOGBkZcfz4cU6cOMFXX3311OfwLPbr4uKCRqNh/fr1tGzZEgsLC+zt7XFwcGDmzJmULl2aS5cu8cknn+h9rmTJklhYWLBp0yacnZ0xNzcvtJyWlZUVffr0YciQIRQrVoxy5coxadIkMjMz6dGjx1NftxBCCMMn1b+FEEKIN9yECRMYMGAAtWrVIiUlhbVr16qjtw8KCgpi/fr1bN26lTp16lCvXj0mT56Mi4vLvzqHZ7HfMmXKMGrUKD755BMcHR3p378/RkZGLFu2jMOHD+Pl5cVHH33E119/rfc5ExMTpk6dyowZM3BycqJdu3YP3f+ECRPo0KEDEREReHt7c+bMGTZv3oy9vf2/unYhhBCGTaPoJgkJIYQQ4o0SHR1NYGAg6enp2NnZvezTEUIIIQySjFQLIYQQQgghhBBPSYJqIYQQQgghhBDiKUn6txBCCCGEEEII8ZRkpFoIIYQQQgghhHhKElQLIYQQQgghhBBPSYJqIYQQQgghhBDiKUlQLYQQQgghhBBCPCUJqoUQQgghhBBCiKckQbUQQgghhBBCCPGUJKgWQgghhBBCCCGekgTVQgghhBBCCCHEU5KgWgghhBBCCCGEeEr/B1gOIUiXdTalAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAArDtJREFUeJzs3Xd4VEXDxuFn02kJgYRQE0Lv0qsIWEBAEAVBARGw4YsizVcBFUURRX3FQhGwoUgRUEE6UkRA6UXpLaGkkABJID2Z7498e2RNwLACm8Dvvq5ckNlT5mxycs6zM2fGZowxAgAAAAAAV83N1RUAAAAAACC/IlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMA/rUvv/xSNpvtsl9r1651dRVz5dtvv9WECRNyfM1ms+m11167ofW50nv69/e3b9++Kl++/A2tX153/Phx2Ww2vffeey7Zv/28OH78uEv2f61t3LhRr732ms6fP+/0NpYsWXLZ86h8+fLq27ev09sGAFfxcHUFAAA3jy+++ELVqlXLVl6jRg0X1Obqffvtt/rjjz80ePDgbK9t2rRJZcuWvaH12bRpk8P3b7zxhtasWaPVq1c7lNeoUUPlypXT888/fyOrh1vMxo0b9frrr6tv374qWrSoU9tYsmSJJk6cmGOw/v777+Xr6/vvKgkALkCoBgBcM7Vq1VLDhg1dXY3romnTpi7fZ2BgoNzc3HKsy60aRpKSkuTj4yObzebqquBfqlevnqurAABOofs3AOCGmT17tmw2mz755BOH8tGjR8vd3V0rV660yrZu3arOnTurWLFi8vHxUb169TR37txs2zx16pSeeuoplStXTl5eXipdurS6deumqKgoSZfvgrt27VqHrumtW7fW4sWLFRYW5tC12i6n7t9//PGH7r//fvn7+8vHx0d169bVV199leN+Zs2apVGjRql06dLy9fXV3XffrQMHDlztW3hZOXX/ttlsevbZZ/XFF1+oatWqKlCggBo2bKjffvtNxhi9++67Cg0NVeHChXXnnXfq8OHD2ba7atUq3XXXXfL19VXBggXVokUL/fzzz/9YH/txf/PNNxo6dKhKliypAgUKqFWrVtqxY0e25XPz87b/LFesWKH+/fsrMDBQBQsWVEpKSq7fJ/s2Vq9erSeffFLFixeXr6+v+vTpo4sXLyoyMlLdu3dX0aJFVapUKQ0fPlxpaWnW+vYu5ePHj9fYsWMVHBwsHx8fNWzYMFfvi5S79/S1116TzWbT7t279dBDD8nPz0/FihXT0KFDlZ6ergMHDujee+9VkSJFVL58eY0fPz7bfuLj4zV8+HCFhobKy8tLZcqU0eDBg3Xx4kWH5ey/J19//bWqV6+uggUL6rbbbtNPP/3kUJ8XXnhBkhQaGprt0Y45c+aobdu2KlWqlAoUKKDq1avrpZdecthX3759NXHiRGuf9i/7uZlT9+/w8HD17t1bJUqUkLe3t6pXr673339fmZmZ2X4m7733nv73v/9Zv9PNmjXTb7/9lqufCQD8G4RqAMA1k5GRofT0dIevjIwM6/WHH35YAwYM0LBhw7R161ZJ0urVq/Xmm29q5MiRuueeeyRJa9asUYsWLXT+/HlNmTJFP/74o+rWrasePXroyy+/tLZ36tQpNWrUSN9//72GDh2qpUuXasKECfLz89O5c+euqu6TJk1SixYtVLJkSW3atMn6upwDBw6oefPm+vPPP/XRRx9pwYIFqlGjhvr27ZtjwBk5cqTCwsI0ffp0TZ06VYcOHVKnTp0c3p/r4aefftL06dP19ttva9asWUpISFDHjh01bNgwbdiwQZ988ommTp2qvXv3qmvXrjLGWOt+8803atu2rXx9ffXVV19p7ty5KlasmNq1a5frADly5EgdPXpU06dP1/Tp03X69Gm1bt1aR48etZbJ7c/brn///vL09NTXX3+tefPmydPT86rflyeeeEJ+fn6aPXu2Xn75ZX377bd68skn1bFjR912222aN2+eHnvsMb3//vv6+OOPs63/ySefaNmyZZowYYK++eYbubm5qX379lf8nZGu/j3t3r27brvtNs2fP19PPvmkPvjgAw0ZMkRdunRRx44d9f333+vOO+/Uiy++qAULFljrJSYmqlWrVvrqq680aNAgLV26VC+++KK+/PJLde7c2eHnLEmLFy/WJ598ojFjxmj+/PkqVqyYHnjgAevn9MQTT+i5556TJC1YsMA6P+rXry9JOnTokDp06KDPPvtMy5Yt0+DBgzV37lx16tTJ2scrr7yibt26SZLDOVaqVKkc36szZ86oefPmWrFihd544w0tXLhQd999t4YPH65nn3022/ITJ07UypUrNWHCBM2cOVMXL15Uhw4dFBcXd8WfCQD8awYAgH/piy++MJJy/HJ3d3dYNjk52dSrV8+EhoaavXv3mqCgINOqVSuTnp5uLVOtWjVTr149k5aW5rDufffdZ0qVKmUyMjKMMcb079/feHp6mr179/5j3Y4dO+ZQvmbNGiPJrFmzxirr2LGjCQkJyXE7kszo0aOt7x9++GHj7e1twsPDHZZr3769KViwoDl//rzDfjp06OCw3Ny5c40ks2nTpsvW/e8ee+wxU6hQocu+9ve6SzIlS5Y0Fy5csMp++OEHI8nUrVvXZGZmWuUTJkwwkszu3buNMcZcvHjRFCtWzHTq1MlhmxkZGea2224zjRs3vmJd7cddv359h/0cP37ceHp6mieeeMIqy+3P2/6z7NOnzxX3bXfs2DEjybz77rtWmX0bzz33nMOyXbp0MZLM//73P4fyunXrmvr162fbZunSpU1SUpJVHh8fb4oVK2buvvvubPuy/+5dzXs6evRoI8m8//772eojySxYsMAqS0tLM4GBgebBBx+0ysaNG2fc3NzMli1bHNafN2+ekWSWLFlilUkyQUFBJj4+3iqLjIw0bm5uZty4cVbZu+++m+O59HeZmZkmLS3NrFu3zkgyu3btsl4bOHCgudztZ0hIiHnssces71966SUjyfz+++8Oyz3zzDPGZrOZAwcOGGP++pnUrl3b4e/I5s2bjSQza9asK9YXAP4tWqoBANfMjBkztGXLFoev33//3WEZb29vzZ07V7Gxsapfv76MMZo1a5bc3d0lSYcPH9b+/fvVq1cvSXJo9e7QoYMiIiKsbtNLly5VmzZtVL169Rt7oMpqYb/rrrtUrlw5h/K+ffsqMTExW4tl586dHb6vU6eOJCksLOy61rNNmzYqVKiQ9b39vWrfvr1D93Z7ub0+Gzdu1NmzZ/XYY485/AwyMzN17733asuWLdm6EeekZ8+eDvsJCQlR8+bNtWbNGklX9/O269q1qzNvhYP77rvP4Xv78Xfs2DFbeU4/owcffFA+Pj7W90WKFFGnTp30yy+/XLb3gTPvaU71tNlsat++vVXm4eGhSpUqOdTzp59+Uq1atVS3bl2HfbVr1y7HEfnbtGmjIkWKWN8HBQWpRIkSuf79PHr0qHr27KmSJUvK3d1dnp6eatWqlSRp3759udrG361evVo1atRQ48aNHcr79u0rY0y2Afs6duxo/R2Rbtw5BgAMVAYAuGaqV6+eq4HKKlWqpJYtW2rx4sV65plnHLp/2p+FHj58uIYPH57j+jExMZKyuofe6BG57WJjY3Pstlq6dGnr9UsVL17c4Xtvb29JWQNtXU/FihVz+N7Ly+uK5cnJyZL++jnYu+vm5OzZsw6BPSclS5bMsWzXrl0O+8nNz9vuct2Fr8bVvC/29+RSlzuu1NRUXbhwQX5+ftled+Y9zak+BQsWdAj09vL4+HiHfR0+fPiyXeP//p7+/fdTyvodzc3v54ULF9SyZUv5+PjozTffVJUqVVSwYEGdOHFCDz74oNO/47GxsTlOE5fXzjEAIFQDAG646dOna/HixWrcuLE++eQT9ejRQ02aNJEkBQQESJJGjBihBx98MMf1q1atKilrNOyTJ09ecV/28PH3waz+HiquVvHixRUREZGt/PTp05L+Oo78yl7/jz/++LIjnwcFBf3jdiIjI3Msswegq/l52+WFkb4vd1xeXl4qXLhwjutcq/c0NwICAlSgQAF9/vnnV6zLtbB69WqdPn1aa9eutVqnJf2r+aylm/8cA3DzIFQDAG6oPXv2aNCgQerTp4+mTZum5s2bq0ePHtqxY4f8/f1VtWpVVa5cWbt27dJbb711xW21b99eX3/9tQ4cOJAteNnZW7p2797tsMzChQuzLZvbljlJuuuuu/T999/r9OnTVsuZlNUFvmDBgi6ZgutaatGihYoWLaq9e/fmOChUbs2aNUtDhw61gnBYWJg2btyoPn36SNJV/bzzkgULFujdd9+1PrRJSEjQokWL1LJlS4cuyJe6Vu9pbtx333166623VLx4cYWGhl6TbV6u5df+s7W/bvfpp59ecRsFChS44v7uuusujRs3Ttu3b7cGRJOyzjGbzaY2bdpc/UEAwHVAqAYAXDN//PGH0tPTs5VXrFhRgYGBunjxorp3767Q0FBNmjRJXl5emjt3rurXr69+/frphx9+kJR1M96+fXu1a9dOffv2VZkyZXT27Fnt27dP27dv13fffSdJGjNmjJYuXao77rhDI0eOVO3atXX+/HktW7ZMQ4cOVbVq1dSoUSNVrVpVw4cPV3p6uvz9/fX999/r119/zVbP2rVra8GCBZo8ebIaNGggNze3y3ZnHz16tH766Se1adNGr776qooVK6aZM2dq8eLFGj9+fI7df/OTwoUL6+OPP9Zjjz2ms2fPqlu3bipRooTOnDmjXbt26cyZM5o8efI/bic6OloPPPCAnnzyScXFxWn06NHy8fHRiBEjrGVy+/POS9zd3XXPPfdo6NChyszM1DvvvKP4+Hi9/vrrl13nWr2nuTF48GDNnz9fd9xxh4YMGaI6deooMzNT4eHhWrFihYYNG2b1Dsmt2rVrS5I+/PBDPfbYY/L09FTVqlXVvHlz+fv7a8CAARo9erQ8PT01c+ZMq4t/Ttt455131L59e7m7u6tOnTpW9/tLDRkyRDNmzFDHjh01ZswYhYSEaPHixZo0aZKeeeYZValSxYl3BgCuPUI1AOCa6devX47l06ZN0xNPPKEBAwYoPDxcW7ZssZ4brVChgqZPn66HHnpIEyZM0ODBg9WmTRtt3rxZY8eO1eDBg3Xu3DkVL15cNWrUUPfu3a3tlilTRps3b9bo0aP19ttvKzY2VoGBgbr99tutZ1Hd3d21aNEiPfvssxowYIC8vb318MMP65NPPsk2KNXzzz+vP//8UyNHjlRcXJyMMdmmHrKrWrWqNm7cqJEjR2rgwIFKSkpS9erV9cUXX2Sbaze/6t27t4KDgzV+/Hg9/fTTSkhIUIkSJVS3bt1cH+Nbb72lLVu2qF+/foqPj1fjxo01e/ZsVaxY0Vomtz/vvOTZZ59VcnKyBg0apOjoaNWsWVOLFy9WixYtrrjetXhPc6NQoUJav3693n77bU2dOlXHjh1TgQIFFBwcrLvvvjvHZ5X/SevWrTVixAh99dVXmjZtmjIzM7VmzRprjvdhw4apd+/eKlSokO6//37NmTPHoYVZyhq4bsOGDZo0aZLGjBkjY4yOHTuWY30CAwO1ceNGjRgxQiNGjFB8fLwqVKig8ePHa+jQoU6+MwBw7dnM5e4WAAAAnLR27Vq1adNG33333RUH5spvjh8/rtDQUL377ruXHVgNAHBrYUotAAAAAACcRKgGAAAAAMBJdP8GAAAAAMBJtFQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CTmqYYyMzN1+vRpFSlSRDabzdXVAQAAAACXM8YoISFBpUuXlpvb5dujCdXQ6dOnVa5cOVdXAwAAAADynBMnTqhs2bKXfZ1QDRUpUkRS1i+Lr6+vi2sDAAAAAK4XHx+vcuXKWXnpcgjVsLp8+/r6EqoBAAAA4BL/9IgsA5UBAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE7ycHUFAADIS/bv36/169crOjpaJUqUUMuWLVWtWjVXVwsAAORRtFQDAPD/9u/fr9mzZ+vUqVNKS0vTqVOnNGfOHO3fv9/VVQMAAHkULdUAgH8tOTlZ4eHhrq7GvzZv3jzFxsbmWN69e/cbXp/g4GD5+Pjc8P0CAIDcI1QDAP618PBwPfXUU66uxr8WFhYmY0y2cpvNplWrVt3w+kydOlVVqlS54fsFAAC5R6gGAPxrwcHBmjp1qqur8Y/CwsI0duxYjRo1SiEhIdlenzt3rqKiorKVBwUFuaylGgAA5G2EagDAv+bj45OnWlT/abCxkJCQHOvbrVs3zZkzx6G12mazqVu3bnnq+AAAQN5hMzn1c8MtJT4+Xn5+foqLi5Ovr6+rqwMA/4p9sLFL2Ww29ejRQ25uburdu7c6d+4sm82WY+C2B/IzZ84oMDCQ0b8BALhF5TYn0VINALiprF+/PluZMUbr169X2bJlFR0draioKBUvXtwa3btHjx5WcK5WrRohGgAA5BqhGgDyuKioKMXFxbm6GvnG3r17lZ6enq08Pj5ee/fulSSdP3/e4TVXje59M/Dz81NQUJCrqwEAgMsQqgEgD4uKilLvR/soLTXF1VXJNyIiIpSSkv398vb2VmpqqqTsrdmuGt37ZuDp5a1vvp5BsAYA3LII1QCQh8XFxSktNUVJFVop08fP1dXJFzxLRenC4Z26dMAQm6TCleoqJeKYUi9mb/X3KuSnizWa3rA63izckuOko+sUFxdHqAYA3LII1QCQD2T6+CmzUICrq5EveBcKUNEC/rpw6qDSExPkUbCICpepIu/ipWUK+Cv1wO+6dIjOjKQEKS1dp/ZslGdBXxUuU0U+xUu77gAAAEC+QqgGANx0fIqXzjEY+xQvLf+qTazAbUyGjLIGMlNGhlITzuncgd/lX7UJwRoAAOQKoRoA8gG3pPOursJNo6CPlwpWrCVJOrP3N8nDXUpLdFjm4tHtKujj5Yrq5Sv8XgIAQKgGgHyhwLFfXF0Fl0lMTFRcXJxSU1Pl5eUlPz8/FSxY8JpsOyYsTF6X9gX/f7YYmwop+prsAwAA3NwI1QCQDySF3qHMAkVdXY0bLulclM4e3in5+kuSUiRdMJJ/qboq4P/vB8Yy+o2By/4Ft6Tzt/QHPgAASIRqAMgXMgsUvSUHKks48oeMp2OrtJGUcPaMvMvW/NfbL1ShfraBy2y2rPJb8f0GAABXz83VFQAA4HLSEuNzLE9PTLgm27cPXOZVxF9u7h7yKuLPIGUAAOCq0FINAMizPAv6KjXhXLZyj4JFrtk+LjdSOAAAQG4QqgEgH3BLzv7c762gSLFAnTt7SpcOJWaTVKRYFbldjHFVtfD/btXfSwAALkWoBoA8zM/PT55e3tLRda6uiksUklTQ9tfo33YXYw4q7RqPBA7neHp5y8/Pz9XVAADAZQjVAJCHBQUF6ZuvZygujhbBI0eOaMmSJQ5lNptN7du3V8WKFXO1jbCwMI0dO1ajRo1SSEjI9ajmLcfPz09BQf9+JHYAAPIrQjUA5HFBQUGEFknr1q1T8eLFs5WfPHlS7du3v6pthYSEqEqVKteqagAA4BbG6N8AgHwhOjo6x/IzZ87c4JoAAAD8hVANAMgXSpQokWN5YGDgDa4JAADAXwjVAIB8oWXLlrLZbA5lNptNLVu2dFGNAAAACNUAgHyiWrVq6tGjh8qUKSMvLy+VKVNGPXr0ULVq1VxdNQAAcAtjoDIAQL5RrVq1PBOi9+/fr/Xr1ys6OlolSpRQy5Yt80zdAADAjUNLNQAAV2n//v2aPXu2Tp06pbS0NJ06dUpz5szR/v37XV01AABwg9FS7QKTJk3Su+++q4iICNWsWVMTJky47DOBERERGjZsmLZt26ZDhw5p0KBBmjBhQrbl5s+fr1deeUVHjhxRxYoVNXbsWD3wwAPX+UgAIEtycrLCw8NdXY1/FBYW5vCvs+bNm6fY2Ngcy7t37/6vtn2p4OBg+fj4XLPtAQCAa49QfYPNmTNHgwcP1qRJk9SiRQt9+umnat++vfbu3avg4OBsy6ekpCgwMFCjRo3SBx98kOM2N23apB49euiNN97QAw88oO+//17du3fXr7/+qiZNmlzvQwIAhYeH66mnnnJ1NXJt7Nix/2r9sLAwGWOyldtsNq1atepfbftSU6dOZT5tAADyOJvJ6a4A102TJk1Uv359TZ482SqrXr26unTponHjxl1x3datW6tu3brZWqp79Oih+Ph4LV261Cq799575e/vr1mzZv1jneLj4+Xn56e4uDj5+vpe3QEBgPJPS/W1MnfuXEVFRWUrDwoKoqUaAICbRG5zEi3VN1Bqaqq2bduml156yaG8bdu22rhxo9Pb3bRpk4YMGeJQ1q5duxy7iUtZrd8pKSnW9/Hx8U7vGwAkycfH55ZqUe3WrZvmzJnj0Fpts9nUrVu3W+p9AAAADFR2Q8XExCgjI0NBQUEO5UFBQYqMjHR6u5GRkVe1zXHjxsnPz8/6KleunNP7BoBbEdN7AQAAO1qqXcBmszl8b4zJVnY9tzlixAgNHTrU+j4+Pp5gDQBXKS9N7wUAAFyHUH0DBQQEyN3dPVsLcnR0dLaW5qtRsmTJq9qmt7e3vL29nd4fAAAAACAL3b9vIC8vLzVo0EArV650KF+5cqWaN2/u9HabNWuWbZsrVqz4V9sEAAAAAPwzWqpvsKFDh+rRRx9Vw4YN1axZM02dOlXh4eEaMGCApKyu2adOndKMGTOsdXbu3ClJunDhgs6cOaOdO3fKy8tLNWrUkCQ9//zzuuOOO/TOO+/o/vvv148//qhVq1bp119/veHHBwAAAAC3EkL1DdajRw/FxsZqzJgxioiIUK1atbRkyRKFhIRIkiIiIrJNS1OvXj3r/9u2bdO3336rkJAQHT9+XJLUvHlzzZ49Wy+//LJeeeUVVaxYUXPmzGGOagAAAAC4zpinGsxTDQAAAAB/k9ucxDPVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVLjBp0iSFhobKx8dHDRo00Pr166+4/Lp169SgQQP5+PioQoUKmjJlSrZlJkyYoKpVq6pAgQIqV66chgwZouTk5Ot1CAAAAAAAEapvuDlz5mjw4MEaNWqUduzYoZYtW6p9+/YKDw/Pcfljx46pQ4cOatmypXbs2KGRI0dq0KBBmj9/vrXMzJkz9dJLL2n06NHat2+fPvvsM82ZM0cjRoy4UYcFAAAAALckmzHGuLoSt5ImTZqofv36mjx5slVWvXp1denSRePGjcu2/IsvvqiFCxdq3759VtmAAQO0a9cubdq0SZL07LPPat++ffr555+tZYYNG6bNmzf/Yyu4JMXHx8vPz09xcXHy9fX9N4cHAAAAADeF3OYkWqpvoNTUVG3btk1t27Z1KG/btq02btyY4zqbNm3Ktny7du20detWpaWlSZJuv/12bdu2TZs3b5YkHT16VEuWLFHHjh1z3GZKSori4+MdvgAAAAAAV8/D1RW4lcTExCgjI0NBQUEO5UFBQYqMjMxxncjIyByXT09PV0xMjEqVKqWHH35YZ86c0e233y5jjNLT0/XMM8/opZdeynGb48aN0+uvv35tDgoAAAAAbmG0VLuAzWZz+N4Yk63sn5a/tHzt2rUaO3asJk2apO3bt2vBggX66aef9MYbb+S4vREjRiguLs76OnHixL85HAAAAAC4ZdFSfQMFBATI3d09W6t0dHR0ttZou5IlS+a4vIeHh4oXLy5JeuWVV/Too4/qiSeekCTVrl1bFy9e1FNPPaVRo0bJzc3xsxNvb295e3tfq8MCAAAAgFsWLdU3kJeXlxo0aKCVK1c6lK9cuVLNmzfPcZ1mzZplW37FihVq2LChPD09JUmJiYnZgrO7u7uMMWIcOgAAAAC4fgjVN9jQoUM1ffp0ff7559q3b5+GDBmi8PBwDRgwQFJW1+w+ffpYyw8YMEBhYWEaOnSo9u3bp88//1yfffaZhg8fbi3TqVMnTZ48WbNnz9axY8e0cuVKvfLKK+rcubPc3d1v+DECAAAAwK2C7t83WI8ePRQbG6sxY8YoIiJCtWrV0pIlSxQSEiJJioiIcJizOjQ0VEuWLNGQIUM0ceJElS5dWh999JG6du1qLfPyyy/LZrPp5Zdf1qlTpxQYGKhOnTpp7NixN/z4AAAAAOBWwjzVYJ5qAAAAAPgb5qkGAAAAAOA6I1QDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE7ycHUF8osTJ07o+PHjSkxMVGBgoGrWrClvb29XVwsAAAAA4EKE6isICwvTlClTNGvWLJ04cULGGOs1Ly8vtWzZUk899ZS6du0qNzca/QEAAADgVkMSvIznn39etWvX1qFDhzRmzBj9+eefiouLU2pqqiIjI7VkyRLdfvvteuWVV1SnTh1t2bLF1VUGAAAAANxgtFRfhpeXl44cOaLAwMBsr5UoUUJ33nmn7rzzTo0ePVpLlixRWFiYGjVq5IKaAgAAAABcxWYu7dOMW1J8fLz8/PwUFxcnX19fV1cHAAAAAFwutzmJ7t+5kJSUpMTEROv7sLAwTZgwQcuXL3dhrQAAAAAArkaozoX7779fM2bMkCSdP39eTZo00fvvv68uXbpo8uTJLq4dAAAAAMBVCNW5sH37drVs2VKSNG/ePAUFBSksLEwzZszQRx995OLaAQAAAABchVCdC4mJiSpSpIgkacWKFXrwwQfl5uampk2bKiwszMW1AwAAAAC4CqE6FypVqqQffvhBJ06c0PLly9W2bVtJUnR0NAN7AQAAAMAtjFCdC6+++qqGDx+u8uXLq0mTJmrWrJmkrFbrevXqubh2AAAAAABXYUqtXIqMjFRERIRuu+02ubllfRaxefNm+fr6qlq1ai6u3b/DlFoAAAAA4Ci3OcnjBtYpXytZsqRKlizpUNa4cWMX1QYAAAAAkBfQ/fsyBgwYoBMnTuRq2Tlz5mjmzJnXuUYAAAAAgLyGUH0ZgYGBqlWrltq3b6/Jkydry5YtOnXqlGJjY3X48GEtXLhQ//3vfxUcHKwJEyaoTp06ud72pEmTFBoaKh8fHzVo0EDr16+/4vLr1q1TgwYN5OPjowoVKmjKlCnZljl//rwGDhyoUqVKycfHR9WrV9eSJUuu+rgBAAAAALlH9+/LeOONN/Tcc8/ps88+05QpU/THH384vF6kSBHdfffdmj59ujUaeG7MmTNHgwcP1qRJk9SiRQt9+umnat++vfbu3avg4OBsyx87dkwdOnTQk08+qW+++UYbNmzQf/7zHwUGBqpr166SpNTUVN1zzz0qUaKE5s2bp7Jly+rEiRPWNGAAAAAAgOuDgcpy6fz58woLC1NSUpICAgJUsWJF2Wy2q95OkyZNVL9+fU2ePNkqq169urp06aJx48ZlW/7FF1/UwoULtW/fPqtswIAB2rVrlzZt2iRJmjJlit59913t379fnp6eV10nBioDAAAAAEe5zUl0/86lokWL6rbbblPTpk1VqVIlpwJ1amqqtm3blq1lu23bttq4cWOO62zatCnb8u3atdPWrVuVlpYmSVq4cKGaNWumgQMHKigoSLVq1dJbb72ljIyMq64jAAAAACD36P59A8XExCgjI0NBQUEO5UFBQYqMjMxxncjIyByXT09PV0xMjEqVKqWjR49q9erV6tWrl5YsWaJDhw5p4MCBSk9P16uvvpptmykpKUpJSbG+j4+PvwZHBwAAAAC3HlqqXeDvrdzGmCu2fOe0/KXlmZmZKlGihKZOnaoGDRro4Ycf1qhRoxy6mF9q3Lhx8vPzs77KlSv3bw4HAAAAAG5ZhOobKCAgQO7u7tlapaOjo7O1RtuVLFkyx+U9PDxUvHhxSVKpUqVUpUoVubu7W8tUr15dkZGRSk1NzbbNESNGKC4uzvrK7dRhAAAAAABHhOobyMvLSw0aNNDKlSsdyleuXKnmzZvnuE6zZs2yLb9ixQo1bNjQGpSsRYsWOnz4sDIzM61lDh48qFKlSsnLyyvbNr29veXr6+vwBQAAAAC4eoTqXEpPT9eqVav06aefKiEhQZJ0+vRpXbhw4aq2M3ToUE2fPl2ff/659u3bpyFDhig8PFwDBgyQlNWK3KdPH2v5AQMGKCwsTEOHDtW+ffv0+eef67PPPtPw4cOtZZ555hnFxsbq+eef18GDB7V48WK99dZbGjhw4DU4cgAAAADA5TBQWS6EhYXp3nvvVXh4uFJSUnTPPfeoSJEiGj9+vJKTkzVlypRcb6tHjx6KjY3VmDFjFBERoVq1amnJkiUKCQmRJEVERCg8PNxaPjQ0VEuWLNGQIUM0ceJElS5dWh999JE1R7UklStXTitWrNCQIUNUp04dlSlTRs8//7xefPHFa/cmAAAAAACyYZ7qXOjSpYuKFCmizz77TMWLF9euXbtUoUIFrVu3Tk888YQOHTrk6ir+K8xTDQAAAACOcpuTaKnOhV9//VUbNmzI9nxySEiITp065aJaAQAAAABcjWeqcyEzM1MZGRnZyk+ePKkiRYq4oEYAAAAAgLyAUJ0L99xzjyZMmGB9b7PZdOHCBY0ePVodOnRwXcUAAAAAAC7FM9W5cPr0abVp00bu7u46dOiQGjZsqEOHDikgIEC//PKLSpQo4eoq/is8Uw0AAAAAjnim+hoqXbq0du7cqVmzZmn79u3KzMzU448/rl69eqlAgQKurh4AAAAAwEVoqQYt1QAAAADwN7RUX2OnTp3Shg0bFB0drczMTIfXBg0a5KJaAQAAAABciVCdC1988YUGDBggLy8vFS9eXDabzXrNZrMRqgEAAADgFkX371woV66cBgwYoBEjRsjN7eYbMJ3u3wAAAADgKLc56eZLiNdBYmKiHn744ZsyUAMAAAAAnEdKzIXHH39c3333naurAQAAAADIY+j+nQsZGRm67777lJSUpNq1a8vT09Ph9f/9738uqtm1QfdvAAAAAHDE6N/X0FtvvaXly5eratWqkpRtoDIAAAAAwK2JUJ0L//vf//T555+rb9++rq4KAAAAACAP4ZnqXPD29laLFi1cXQ0AAAAAQB5DqM6F559/Xh9//LGrqwEAAAAAyGPo/p0Lmzdv1urVq/XTTz+pZs2a2QYqW7BggYtqBgAAAABwJUJ1LhQtWlQPPvigq6sBAAAAAMhjCNW58MUXX7i6CgAAAACAPIhnqgEAAAAAcBIt1ZdRv359/fzzz/L391e9evWuOB/19u3bb2DNAAAAAAB5BaH6Mu6//355e3tLkrp06eLaygAAAAAA8iSbMca4uhJ5Vf/+/fXhhx+qSJEirq7KdRUfHy8/Pz/FxcXJ19fX1dUBAAAAAJfLbU7imeor+Oqrr5SUlOTqagAAAAAA8ihC9RXQiA8AAAAAuBJC9T+40gBlAAAAAIBbGwOV/YMqVar8Y7A+e/bsDaoNAAAAACAvIVT/g9dff11+fn6urgYAAAAAIA8iVP+Dhx9+WCVKlHB1NQAAAAAAeRDPVF8Bz1MDAAAAAK6EUH0FjP4NAAAAALgSun9fQWZmpqurAAAAAADIw2ipBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqHaBSZMmKTQ0VD4+PmrQoIHWr19/xeXXrVunBg0ayMfHRxUqVNCUKVMuu+zs2bNls9nUpUuXa1xrAAAAAMDfEapvsDlz5mjw4MEaNWqUduzYoZYtW6p9+/YKDw/Pcfljx46pQ4cOatmypXbs2KGRI0dq0KBBmj9/frZlw8LCNHz4cLVs2fJ6HwYAAAAAQJLNGGNcXYlbSZMmTVS/fn1NnjzZKqtevbq6dOmicePGZVv+xRdf1MKFC7Vv3z6rbMCAAdq1a5c2bdpklWVkZKhVq1bq16+f1q9fr/Pnz+uHH37IVZ3i4+Pl5+enuLg4+fr6On9wAAAAAHCTyG1OoqX6BkpNTdW2bdvUtm1bh/K2bdtq48aNOa6zadOmbMu3a9dOW7duVVpamlU2ZswYBQYG6vHHH//HeqSkpCg+Pt7hCwAAAABw9QjVN1BMTIwyMjIUFBTkUB4UFKTIyMgc14mMjMxx+fT0dMXExEiSNmzYoM8++0zTpk3LVT3GjRsnPz8/66tcuXJOHA0AAAAAgFDtAjabzeF7Y0y2sn9a3l6ekJCg3r17a9q0aQoICMjV/keMGKG4uDjr68SJE1d5BAAAAAAASfJwdQVuJQEBAXJ3d8/WKh0dHZ2tNdquZMmSOS7v4eGh4sWL688//9Tx48fVqVMn6/XMzExJkoeHhw4cOKCKFSs6rO/t7S1vb+9rcUgAAAAAcEujpfoG8vLyUoMGDbRy5UqH8pUrV6p58+Y5rtOsWbNsy69YsUINGzaUp6enqlWrpj179mjnzp3WV+fOndWmTRvt3LmTrt0AAAAAcB3RUn2DDR06VI8++qgaNmyoZs2aaerUqQoPD9eAAQMkZXXNPnXqlGbMmCEpa6TvTz75REOHDtWTTz6pTZs26bPPPtOsWbMkST4+PqpVq5bDPooWLSpJ2coBAAAAANcWofoG69Gjh2JjYzVmzBhFRESoVq1aWrJkiUJCQiRJERERDnNWh4aGasmSJRoyZIgmTpyo0qVL66OPPlLXrl1ddQgAAAAAgP/HPNVgnmoAAAAA+BvmqQYAAAAA4DojVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlS7wKRJkxQaGiofHx81aNBA69evv+Ly69atU4MGDeTj46MKFSpoypQpDq9PmzZNLVu2lL+/v/z9/XX33Xdr8+bN1/MQAAAAAAAiVN9wc+bM0eDBgzVq1Cjt2LFDLVu2VPv27RUeHp7j8seOHVOHDh3UsmVL7dixQyNHjtSgQYM0f/58a5m1a9fqkUce0Zo1a7Rp0yYFBwerbdu2OnXq1I06LAAAAAC4JdmMMcbVlbiVNGnSRPXr19fkyZOtsurVq6tLly4aN25ctuVffPFFLVy4UPv27bPKBgwYoF27dmnTpk057iMjI0P+/v765JNP1KdPn3+sU3x8vPz8/BQXFydfX18njgoAAAAAbi65zUm0VN9Aqamp2rZtm9q2betQ3rZtW23cuDHHdTZt2pRt+Xbt2mnr1q1KS0vLcZ3ExESlpaWpWLFi16biAAAAAIAcebi6AreSmJgYZWRkKCgoyKE8KChIkZGROa4TGRmZ4/Lp6emKiYlRqVKlsq3z0ksvqUyZMrr77rtz3GZKSopSUlKs7+Pj46/2UAAAAAAAoqXaJWw2m8P3xphsZf+0fE7lkjR+/HjNmjVLCxYskI+PT47bGzdunPz8/KyvcuXKXe0hAAAAAABEqL6hAgIC5O7unq1VOjo6OltrtF3JkiVzXN7Dw0PFixd3KH/vvff01ltvacWKFapTp85l6zFixAjFxcVZXydOnHDyiAAAAADg1kaovoG8vLzUoEEDrVy50qF85cqVat68eY7rNGvWLNvyK1asUMOGDeXp6WmVvfvuu3rjjTe0bNkyNWzY8Ir18Pb2lq+vr8MXAAAAAODqEapvsKFDh2r69On6/PPPtW/fPg0ZMkTh4eEaMGCApKxW5EtH7B4wYIDCwsI0dOhQ7du3T59//rk+++wzDR8+3Fpm/Pjxevnll/X555+rfPnyioyMVGRkpC5cuHDDjw8AAAAAbiUMVHaD9ejRQ7GxsRozZowiIiJUq1YtLVmyRCEhIZKkiIgIhzmrQ0NDtWTJEg0ZMkQTJ05U6dKl9dFHH6lr167WMpMmTVJqaqq6devmsK/Ro0frtddeuyHHBQAAAAC3IuapBvNUAwAAAMDfME81AAAAAADXGaEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnebi6AsDNav/+/Vq/fr2io6NVokQJtWzZUtWqVXN1tQAAAABcQ7RUA9fB/v37NXv2bJ06dUppaWk6deqU5syZo/3797u6agAAAACuIVqqcUtLTk5WeHj4Nd/uvHnzFBsbm2N59+7dL7vekSNHtG3bNsXGxqp48eJq0KCBKlaseM3rdyMEBwfLx8fH1dUAAAAAriubMca4uhJwrfj4ePn5+SkuLk6+vr6urs4NdfDgQT311FPXfLthYWHK6dSy2WwKCQnJcZ3ExERFR0dnKy9RooQKFix4zet4vU2dOlVVqlRxdTUAAAAAp+Q2J9FSjVtacHCwpk6des23O3fuXEVFRWUrDwoKumxL9T+tExYWprFjx2rUqFGXDeZ5SXBwsKurAAAAAFx3hGpcN1FRUYqLi3N1NVyiQYMGWrp0qUNrtc1mU4MGDS67Tk7dxSXp7NmzudpnXus6fj261V9rfn5+CgoKcnU1AAAAkI/R/RvXpft3VFSUej/aR2mpKddke/lRYmKi4uLilJqaKi8vL/n5+V2xG3dERIQuXLig5ORkZWRkyN3dXT4+PipcuLBKlSr1j/u6mbqO3yieXt765usZBGsAAABkQ/dvuFRcXJzSUlOUVKGVMn38XF0dl7n01DOSLl5h2cxCexW/c63knTW4V4akNNlUsFJLXQyp4bBs0rkoXYg4prSkC/IsUFhpipcJ9M+2zeiCfgqs0fSK6xYuFaoC/rdeqHRLjpOOrlNcXByhGgAAAE5jSi1cX3SEyLW0i/Eq4F9S7l4+srm5yd3LRz7+JZV2Md5huaRzUTp7eKdSL8bJZGYo9WKcEk4fUXpS9siennThH9c9d3inks5lf5b7psfvJgAAAK4BWqpxXRU49ourq5BvxISFqaAxKij9/5mZJl24KNvFUyqkv7p2x0dEyCvFsVu9Z1KCMpLOqmCRIg7l3t7eKrQ3Mcd109LSrK7m6eE7FRISQldxAACAGyAjI0O7d+/W2bNnVaxYMdWpU0fu7u6urhacRKjGdeHn5ycPTy+lp6W6uir5hpeXl1JSsj+D7uXl5fB9amr299THx0eJiYnZyv38HLve29dNS0vTxYsXHcqjo6NvuWewPTy9sr1HAAAA19Mvv/yiSZMmKTIy0iorWbKk/vOf/+iOO+5wYc3gLAYqw3Wbpzo/jP6dkpLi8AfNlcLDw7Vu3bpsI4a3atVKwcHBioiI0Oeff64KFSooLS0t2/pubm4qVqyY4uLi5Ofnp1q1amWb1mrJkiWKiYnRoUOHHEJ4wYIFVblyZQUEBKhDhw7X5HhKliwpb2/va7Kt64XRvwEAwLW2f/9+rV+/3mqwaNmypapVqyYpK1CPHj1azZo1U69evRQaGqpjx45p5syZ2rRpk15//XWCdR6S25xEqMZ1C9X5wcGDB/XUU0+5uhqW3IwY/m9G+rave/78eYfyQoUKydPTUzab7ZrNgT116lRVqVLlmmwLAAAgP9i/f79mz57tUGaz2dSjRw9VrlxZvXr1UoUKFfTmm2/Kze2v4a0yMzP18ssv69ixY/rmm2/oCp5HMPo3kAvBwcGaOnWqq6tx1exzUtufw7maOamPHDmiTz/9VFFRUSpQoIBKly4tf/+skcODgoLUvXv3a1LHv7eSAwAA3OzWr1+frcwYo/Xr1yspKUmRkZF65ZVXHAK1lNXjsFevXho4cKB2796tevXq3agq4xogVOOW5uPjky9bU6tUqaL27ds7vW5oaKjmzJmTrat5t27d8uX7AQAAcD1d2qU7IyNDkuTu7p6te3dOvQkl6cyZMzp79qwkKTQ0NMdl7OX25a7UjRx5C6EauAVVq1ZNPXr00Pr163XmzBkFBgbyhxoAACAHl3bpPnTokLZs2aK0tDSVL19epUuX1qJFi1ShQgXVrFnTCtx/FxgYqGLFikmSjh07ppo1a2Zb5tixY0pMTNTatWu1aNEiHTlyRCEhIQoICNCpU6c0Z84c9ejRg/u1PIhnqnFLP1MNAACA3Nm/f79OnDjh6mpcUVpammJiYq7pNteuXatz584pISFBf/zxh9LT0x1e9/X1lZ+fn8qXL6+EhARJUpG/TXPapEkTlSpVSt999538/f11zz33ZNvPvHnztH//ftWoUUNhYWFKSkqSzWZTmTJlrO35+/urdevW1/T4cisgIECenp4u2XdulStX7pp+6MBAZcg1QjUAAACuJCoqSo880lOZmTm3xN7MwsLCZIxRQkKCw5SkGRkZcnd3l81mk4+PjzVNp81mk5eX1xUHns1JRESENb3qpYPKuru7W6H6Wg4qezNyc3PXrFnfXrPZXRioDAAAAMA14+bufkuGai8vL6WkpCgjI0Nubm7KzMx0eN0Yk23gsVKlSl31flJTU63/u7u7W13JL92fl5fXVW/3VuLmolHTCdUAAACQxMBIuLygoCDN/OZrxcXFuboqV5SSkqLIyMhrus3w8HCtW7dOBw8e1NmzZ7O9B56enqpfv77VUh0QEKAOHTpccZuZmZk6ceKELly4oMKFC6tcuXJatmyZ1XU9Li7OaiEvWLCgKleuLJvNplatWrlshpWSJUvK29vbJfvOLT8/v2vWSn016P4Nun8DAIArzq/7T8H634Rxgjzyg/3792vu3Llat26d1XKclJSkc+fOqWHDhqpcubKk3J8zl9vHpbOzxMTEKDw8XBUrVlSNGjU4N1yAZ6qRa4RqAABcLzk5WeHh4S7b/9y5cxUVFZWtPCgoSN27d7/sekeOHNGSJUscymw2m9q3b6+KFStecZ//Zt3cCg4Olo+PzzXZFmD/EMg+e0qZMmV06tSpazabyt+3T5B2LUI1co1QDQC42UVFReX5bqthYWEaO3asS/ef023hPw2MdOngSpfy9vb+x+dK/826uTVq1Kg8P7CTq7qsArgyBioDAABQVqDu/WgfpaVmD2+3msTERMXFxV12VOKEhARlZmbKzc1NPj4+8vT0/MeBkS4dXCk35ddq3dxy5QcVueXp5a1vvp5BsAbyKUI1AAC4qcXFxSktNUVJFVop08fP1dW5YZLORelCxDGlJV2QZ4HC8izkq4sXT0i+/pKkFEkXjORfqq4k6WJMmlJT/hrBOFU2FShcUoVrt9BF/+xhz77984qVlCmvwkXlUaCw9bpXIT9drNH0inU0+k2pF7P3IMjNujcLt+Q46eg6xcXFEaqBfIpQDQAAbgm2lAS53SJPvSWdj9G5Y39a36elXFTc0Z3yKugnDx/H+XIvhmct5+nhIZtvMaVcjFNmeprc3D3l5emhQj7eUtL5y27fy9tHyefPKDn5ggoULSEPn4Ky2SRf/4py+9t6f+frH6CzcVG69MeS23VvFrbUC66uAoB/iVANAABuan5+fnJzc5fPqe2ursoNcz4iQp5/f1Y5IU7pF2NVoEgRx/I4myTJ0xh5SirgLsldklJlOx+mAsd+ueL2PSV5uqcpOTlZGTEXVbR48axu5ef2SueuXM8Cknw8k7J3Sc/FujcTNzd3azomAPkPoRoAANzUgoKCNGnSRJ04ccLVVbmiiIgIff7559dkWzk9k+zm5qaMjIxs5fZnpnMaMOxyz1P/ffuenp7y9PSUzWa76gHGChYs6PBc97XWv3//azbo2fVSrlw5un4D+RihGgAA3PSqVauW56elSU5OVtOm1+Y54pymxzp37pxOnz6tmjVrWmX26askaenSpQ6jf19paitnp99yBabUAnC9MaUWmFILAICbzP79+zVnzpxsIblRo0aXnVP3aubHvdz2e/Tokec/vACA3GKeauQaoRoAgJvP1YTkvLh9AHA1QjVyjVANAAAAAI5ym5PcLvsKAAAAAAC4IkI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJA9XVwCuZ4yRJMXHx7u4JgAAAACQN9jzkT0vXQ6hGkpISJAklStXzsU1AQAAAIC8JSEhQX5+fpd93Wb+KXbjppeZmanTp0+rSJEistlsrq4OLiM+Pl7lypXTiRMn5Ovr6+rqAPkS5xHw73EeAdcG51LeZ4xRQkKCSpcuLTe3yz85TUs15ObmprJly7q6GsglX19f/vAC/xLnEfDvcR4B1wbnUt52pRZqOwYqAwAAAADASYRqAAAAAACcRKgG8glvb2+NHj1a3t7erq4KkG9xHgH/HucRcG1wLt08GKgMAAAAAAAn0VINAAAAAICTCNUAAAAAADiJUA3kITyNAQDIC7geAUDuEaqBPGL9+vWy2WyurgaQb505c0bbtm2TJGVmZrq4NkD+tX37dl24cMHV1QDytfT0dEVERLi6GrhBCNVAHnDq1Cn16NFD7733nqKioiTRSgBcjZSUFH3zzTfq2rWrtm7dKjc3Lm+AM7Zs2aKXXnpJQ4YMUVJSkiSuR0BuZGRkOHw/ZMgQ9evXT+vWrXNRjXAjMfo34GLGGNlsNq1evVofffSRAgICNH36dFdXC8iXhg4dql27dumVV15R69atXV0dIN+wX4sk6fjx4+rdu7fq1aunjz/+2MU1A/Iue6+oSz/IPXr0qCpUqKDMzEy9/vrrWrx4sT7++GM1a9bM4TzDzYVQDbiA/dNMd3d3h/Lt27eradOmmjlzph588MFsrwPIYoxRRkaGPDw8rO9tNpvOnj2rl19+WRs2bNAvv/wiPz8/F9cUyNsudz1as2aNHnvsMY0cOVIDBgxwRdWAPCszM9MhSB86dEhTpkzRN998I09PT/3555/y8/NTSkqKnnzySZ06dUrz5s2Tv7+/C2uN64n+cYALuLu7y93dXcnJydq/f7/S09MlSfXr11efPn302WefWc+GAsjOZrNZgfrw4cOKjIyUJBUrVkxjx45VRESEpk6dqtTUVFdWE8jz7NejpKQk7d27VykpKZKkNm3aaMCAAXrrrbe0f/9+F9cSyFvc3NyUkJCg8ePHq1KlSqpRo4YOHz6swoULq2LFiipYsKAkydvbW0OHDlVUVJTef/99F9ca1xOhGriB7N2E1q1bp7vvvlulS5fWu+++q71791rLPPXUU7p48aIWLVrkqmoCeV5cXJxee+01lS1bVp07d9aSJUuUnJwsSfL391ePHj20fPly7dmzx8U1BfIme0fFX375RXfffbdKlSqlcePG6eDBg9Yyw4YNU3JyshYvXqy0tDRXVRVwuYSEBD311FOKj4+XMUbPPvusihYtqlmzZlmh+ccff1SBAgXUtWtXeXp6Wr1A6tatq379+mnatGmKi4tz8ZHgeiFUA//C1T494ebmpl27dmnw4MGqVq2aVq5cqaFDhyowMNBapnHjxqpevbp27typM2fOXOsqA3mKMcapQZDGjh2rn376Se+//74WLFig22+/Xe7u7tZNTM+ePXXmzBnt3LnzGtcYyJuu9jyy2Ww6evSonn/+eVWuXFlr167Vf//7X5UqVUpSVrdwb29vdejQQStWrOB6hFtaUlKSfvnlF0VFRclms6lr1646cuSIduzYof/85z8qVqyYFixYoIiICD300EMyxjg8UtGrVy8lJCRo7dq1rjsIXFcerq4AkN8YY5SZmSl3d/erHmwiPT1d7733nnx8fPTGG29ke7bG/oxOnTp1tH//foWHhzsEbuBmkZmZKZvN5tSALRs2bNBnn32m999/Xz169MhxmWbNmsnNzU0RERHKyMhgfALclP7N9UiSRowYIW9vb40dO1bFihVzeM2+vYcfflgPP/zwNakvkF+tWrVKFStWVEBAgKSsxyOkvz7MstlsWrFihZo2baqAgIBs52PJkiXVokULLVy4UPfff3+2Z7KR//HTBHLBPiiSlPWH036D/t133+nll1/W0aNHc7UdDw8Pbdq0SQ899JD8/f2tP8Z/n1O3efPm2r9/v4oUKXINjwJwLXsAkLJ6bdhsNh05ckQvvfSS5s2bl6v1JencuXNKTk5W3759HV6zv24fo6BatWratWuX3N3dmbcaN40rXY/69+9vTYP1T9vIzMxUdHS0GjVqpGLFilnb/Ptoxg0bNlRycjIt1bhlZGRkZDsfypQpo99//z1bY4g9PCclJWnp0qXq2LGjPD09s11z0tPT1axZM+vxCgL1zYefKJALl964rFq1Sh07dpSPj4969OihDz74QGXKlMnVdtLS0lSxYkVt2LDB+l7664+r/d/atWsrJSVF586du9aHAriMzWaTm5ubzp49qzfffFNly5ZV1apVNX78eP3xxx+SrtyF1X7zYrPZ5Ovrq40bN0rKugG6tNXbPoBZ48aNdeLECUncwODm8ffr0X333SdPT0/16NFDX375Za6e2bTZbEpISFDJkiWtc8S+Tfu5Yj8XExMT1ahRI4exP4Cbkf133j54X0ZGhhWOjTEqWrSodR7Yl7XPPLFs2TJdvHhRnTt3lpR1Hl16PfPw8JCHh4fKly+v+Pj4G3lYuEG4ywByISwsTE899ZT8/f3VrVs3lSpVStu3b1fnzp3Vr18/eXt752o7NptNnTp10pIlSxQXFycvLy9JWX+U169fr9OnT1v7a9GiBSMX46Zgv7H4+uuv1aBBA5UoUULff/+93n33XS1dulTlypWzunFfqQurfTshISGqUaOGpk6dKumvMHD69GmtX7/eWj4uLk7Nmze3Wq6Bm8GRI0f09NNPq2jRourevbsCAwO1f/9+9ezZU71791bJkiWtVrYr8fPzU926dRUeHq4tW7ZY5RkZGdq6dauOHz8uKauFLT09XXXq1LlehwTkCfbrz4oVK9SpUyfVrVtXS5YskZR1XpQqVUpbt26V5NjtW5Lmzp2rJk2aqGzZstm2Zx9RPz09XTExMfL19aX31E2IUA3kwocffqjo6Gh9/fXXOnv2rKZPny5fX19t3rxZLVu2zPV2PDw81Lt3bwUHB6tHjx6aNWuWwsLCNH78eH388cc6efKkpKxuRAcPHlS9evWu1yEBN4zNZtOePXs0bdo0derUSUePHtW2bdv0yCOPaPny5QoKClKFChVytR0pq1v3Y489ppkzZ+r111/Xjh07tG7dOg0aNEgbN25UQkKCpKwPp4wx8vDwcGowNCAvsf8OT5s2TWFhYfr2228VExOjL774QkWKFNHKlSt17733Sso+5/Tf2W/o77//fgUFBal///6aM2eOjhw5onfffVevvvqq1ZpWvHhxnTp1ypoiCMjvLm2B/rsPPvhA/fv3V8WKFTVixAjrMbyaNWvKw8PDmlHi0h4d586d088//6xHH33U2k5YWJhGjBihtm3baseOHZKypny0j5ND76mbkAFwWZmZmcYYY9LT07OVTZ8+3QQGBpoLFy5c9fZ+//1306NHD1O9enVTrFgxU7NmTfPNN9+YjIwMY4wxsbGxZuLEiSYxMfFaHQqQp2RkZJikpCRTrVo188Ybbxhj/jo/cmvs2LGmSZMmJjQ01Pj5+Zm+ffuaI0eOWK8vXrzYbNiw4ZrWG3AV+/lhv05c6uuvvzaBgYEmJibmqrcbGRlpOnXqZGrVqmX8/f1NrVq1zJdffmld944dO2Zmz55t4uLi/t0BAHlMUlKSw/d//PGHKV68uJk2bVqOyw8cONC0bdvW7Ny50xhjTGpqqjHGmJkzZ5rbbrvNHDt2zEyaNMk0aNDAuLm5mQYNGpivvvrKWn/KlClm06ZN1+lo4Go2Y/j4HnBG69atVatWLX3yySc5vp6bkR137typEiVKqHTp0g7lKSkp8vDwYMRi3JTM/z+DtmbNGj3wwAPasmWLKleufNnl/u7ScysuLk5Hjx7NsVfHxYsXVahQoWt/AEAeYT9H7rnnHpUtW1ZffPFFjufN5a5Hly67f/9++fr6Zrsepaamys3NzRqrAMgvzP8PYGl/vtlmsykzM1NfffWVpk2bpsKFC6tJkyb673//qyJFiuiHH37QwIEDtXPnTgUGBlrrpKWlydPTU7/88oveeOMN1ahRQx9++KEyMzOVmZmp3r17a+7cufLw8FDp0qX1xBNPaODAgdkGNTt37ly2Mtw86HsAOOHIkSM6cOCA2rZtKyn76N1S7rr21K1bV6VLl1ZmZqbDM3De3t4Eaty07DfxixYtUt26dS/b9ftyz1dfem75+vpagTo9Pd3hXCRQ42Zns9l06NAh7d+/X126dLHK/u5y16NLl61WrVqO1yMvLy8CNfIl++CY9v9L0ujRo/W///1P9957rx577DHNmTNHw4YNU0xMjGJjY1WsWDEdOXJE0l+PXHh6ekrKmpmlX79+mjZtmvbv32992OTr66uRI0fqzz//1PHjx/Xyyy/L39/fYRRxSQTqmxyhGrecv/+Ru9p1JWnZsmXy8vJSp06dlJaWluNNzM8//6ylS5fmartubm6EaOQbxph/NfhXenq6MjIytGjRIt13331yd3e3RsK/VEJCgsaNG3fFbV167nl4ePCcGvKVf3M9stu6dasyMzPVqlUrSTl/yLthwwZNnz7d2ueVcD1CfnS53+tXXnlFM2bMkCRt2bJFP/74oyZPnqxXX31VvXr10uOPP65vv/1WCxYsUJs2bZScnGwN3Ge/nkRFRSkiIkIeHh7q2bOnHnzwQY0aNUqLFi2SJE2dOlVvvvmmKleubF0fjTHWKOK4NXD3gVuO/Y9ccnKy1qxZo5iYGElXnsrn0nUlacaMGeratatsNps8PT2t7kG//vqrwsLCJMka7EXK+SYHyK9sNpvVcvXnn39aU1vlRmZmpjw8PPTzzz8rJiZGXbt2lfRXS8Dhw4e1adMmGWO0c+dOjRo1SsuXL5eUu3MUyE/s16OkpCStXbtW4eHhknL3u27/YGvKlCm69957VbRoUUlZQSAtLU0///yzYmNjlZSUpEmTJmnixInWPoGbzd9/r+0he/Hixdq8ebMkaceOHbLZbKpYsaKeeeYZlSpVShMmTNCAAQPUunVrVahQQc2bN9f06dM1d+5cxcfH69y5c3rnnXe0YMECa9sTJkxQ06ZNNXHiRF24cMHaX2ZmpnV9vNJMFrg5Eapx07I/S3Pp95L0+++/q127dgoMDNSrr76qX375RdKVp/K51O7du3Xy5En17NlTkrRx40b169dPRYoU0eOPP67o6GgZY9S8eXO1aNFCEqM8Iv/K6QOhCxcu6O2331a5cuXUrl07fffdd4qMjMzV9uznwty5c9W6dWuFhobq3LlzmjhxourXr68qVarop59+ks1mU+HChdW2bVtrihJuUpBf/f16ZPfbb7+pffv2CgwM1JgxY/Tbb79Jyt3vuoeHh/bu3avDhw/riSeekJR1PerTp4+KFSumbt266dSpUypQoID8/f3Vvn37a3tQQB6yZ88ePf/88/r5558lZYXss2fPKjg42BrBu3LlytqzZ4+qVq2q6OhoTZo0SYcPH9Z7772nKlWqSJLGjx+vpk2b6tlnn1Xr1q1VtmxZrV+/3mHcj4CAAL3wwgsaNWqU1cvK3d2de71bHA/J4KZz6cAUl7LZbDp9+rRefPFFVa1aVePHj1dQUJASExNzvV2bzaZVq1YpOTlZs2fP1gMPPKDo6Gjdd999WrFihe644w6H/XXr1u2aHhtwo9gHNsrpJuHLL7/UnDlz9M477+iuu+5SYmKiddOSG+fPn9fatWtVp04dde7cWUuXLlX58uX19NNPa926dda2goODVaFCBVWqVOmaHRdwI13ueiRJ8fHxeumll1SxYkX99ttvCgwMvOrHKtavX6+4uDjNmzdP3bt315kzZ3Tfffdp6dKluv32263l6tSpw5RYuCnZ7828vLy0b98+rV27Vtu2bZOHh4f1fHSbNm0kZY3BUblyZXXr1k1jx461tnH+/HktXrxYFSpUULNmzfTJJ5/oueee02+//aaWLVuqatWqOe77aqZUxc2PUI2bhv0Pq/3rxIkTWrZsmcqXL6977rlHUtYnmdu2bdOiRYtUpEgRJSYmqmTJktm2kRP7qJE///yzzp07p61bt+qdd96xWqzt7KNEvvLKK9fvYIHrzB4CfvrpJ8XExOiOO+5QhQoVrPk4a9WqpZ49eyo9PV1BQUFXte3du3fr6NGjkqT27dtr//79qlixovV6RkaGbDabihcvrkmTJl27gwJusEuvRz/++KPq1Kmjxo0by8fHR0uXLlVUVJQ++ugj1apV66pGq7dfqxYsWKDExET98ccfV7wePfXUU9fj8IDrKiMj4x8fV7Dfs1WtWlXffvutGjRooOHDh2vYsGEqV66cAgICrIHHqlevrkceeUQfffSRKlasqHbt2unixYuaNm2atm/fbo3h4enpqVq1aqlWrVqSss63zMxMHp3AFTGlFvKtnAJwenq6Dh8+rDVr1ujVV19V2bJldezYMY0YMULDhw/Xpk2bNHDgQJUpU0YBAQEqXry4zp8/r3r16mnQoEGX3a70V8vdli1bVLNmTYdP/dPT03Ns1btSSAfygkt/R+3/Dw8PV1RUlEaPHq0tW7aodOnSiouL05o1axQSEqLnn39ea9euVe3atVWoUCHrudDHH39c9evXd7gRutz0Pnv27NFtt93mUGZ/3vpKdQTyopx+R1NTU3XixAmtWLFCY8aMka+vrxITE9WpUydNmjRJa9eu1ahRo+Th4aFy5cqpWLFiiomJUbNmzTRw4EC5ublddiqs9PR0eXh46OjRowoKCnII41yPkJ9kZGQoIiJCZcuWtZ5JdibA2s+V+fPn64MPPlD9+vX10Ucf6YEHHlCFChX0/vvvW8v95z//0dq1a1WwYEHt27dPTZs21UsvvaR27do5bNMekThvkBt0/ke+Yx98Iqc/cn379lWPHj20YsUKLV26VDt27NB//vMfzZkzR4sXL9btt9+ut956S76+vlYLdUZGhl544QXrORybzabIyEirJc2+P/sNSqNGjVSwYEGHUVsvN+owf4iRFxljcjyPbDabjhw5oho1auill17S7bffrvDwcC1fvlyenp566623dPHiRY0bN04dO3a05rRNTU3Vrl279Pjjj0v6a8CYLVu25HgO2Gw2K1DbR0m90jy4nEfISy5ti7jS9WjIkCGqXr261q9fr6VLl+rPP//Um2++qenTp2vdunVq3bq1xo0bp5CQEAUHB6tw4cJKTU3VuHHj9NVXX0nKuu5ER0dr586dkv4a48B+rlSoUEGFChXieoR86eDBg2rbtq1mzpwpKev33Wazyd3dXRkZGfrqq6/03HPPadmyZTp37pykyw/8av+d79Kli4YPH67Jkydr9erVOnz4sEJDQyX99YHTlClTtHLlSr399tuKiIjQmjVrsgVq6a+eJkCuGCCP2rJli6lQoYKJjIzM8fXt27eb2bNnm5MnT1pls2fPNv7+/uaRRx6xymJiYsxdd91lnnnmGYf1MzMzrf+XKFHCjB8/3hhjzNGjR03jxo2tbVy6HJCfpKWlmb59+5rnnnsux9eTk5PNd999Z37++WeTnp5ulXfo0MEULFjQ/PLLL1bZxx9/bOrXr29WrlyZbR/GGDNjxgzj4+Nj4uLijDHGfPDBB6ZcuXLm999/v9aHBdxw27dvNyEhIeb48eM5vr5161Yzc+ZMc/jwYavs4MGDxmazme7duzssW61aNfPcc8+ZhISEbNu5ePGiadiwoRk8eLAxxpjY2FhTu3ZtM2DAgGt4NIBrZGRkmNmzZ5sHH3zQKrv0Hs6YrOvS5MmTTdmyZU2tWrXM/fffbypUqGA6deqUq33Y79meeeYZ07ZtW2Oz2cwLL7xg7T8n6enpDtdAwBm0VCNPMDk8hVC1alWNHTs22/OamzdvVu3ata1P+e+55x59/PHHkqS77rpLlStXlpeXl7V88eLFVa9ePR04cEC7du2SJJ08eVIRERGKiYnR6NGjVbVqVWtk1JIlS6pixYrWIC98Son8wFwyurD9Xw8PD/Xq1UvPPfecw7IpKSkaMWKE/P399corr6hfv3569NFHtX37dklZzzkHBAQ4DJr0wAMPKCkpyZq/MzU1VceOHVNCQoI2btyozz77TC+++KL1WETFihVVtmxZa95OIL+4tCXM/rtbvHhxTZw4USEhIQ7z4W7dulV169ZVmzZt9NFHH6lx48aaOXOmkpOTVblyZVWsWFEFCxZUUlKSta1evXpp1apVOn78uCTp2LFjio6OVmRkpCZMmCCbzaann35aklSsWDGVLFlS5cqVy1Y3IL9xc3PTqVOntG3bNu3YsUOSVKZMGR0/fty6Pzt37pzOnj2rt99+W3v27NEPP/ygn3/+WT/99JOWLl36j9cT++uvvvqq9Ux0tWrVrP3nhPmkcS0QqpEn2IOrfb4/Y4yKFCmihx9+2OHGPjExUR988IFq1Kiho0ePatGiRerSpYuGDh2qHTt2KCAgQI0aNVJERIT27NljrXf33XcrMTFRv//+uzIzMzVjxgz17t1blStX1vfff6/nnntOtWrVUmZmpgoUKKCYmBiVL1/+hr4HwL9h76YWHx8v6a9uqXfffbcqV66sixcvWsuuW7dOP/74o2bOnKk///xTEyZMUHR0tJ5//nlJ0kMPPSRjjPbs2WPdxJcpU0a33Xabtm7dqqioKG3dulWvv/66mjRpovbt26tKlSp68sknrW6pdevWVWpqqvz9/flgCvmK/cY7Li7O+t0NDg5Wx44dlZaW5nDz/e6776pq1ao6cuSIli9frt69e+vtt9/Wt99+K0l69NFHtWbNGkVFRVnb6tevn06fPq3du3dLkqZPn67evXurWrVqmjNnjoYPH66qVata53CTJk1UuHBhh7oB+UlmZqb1+9y6dWuVL19ec+fOlSQdP35cjz76qN566y1JWQ0bDz74oHr16qUjR45o0KBB1ujdc+bMsa5xl2M/R0qWLKkxY8YoMzNT/fv3v16HBvzFRS3kgINt27aZO++800yZMsUqS05ONrt27TIFChQwe/fuNcYYc+7cOePt7W1++ukna7mUlBRzxx13mIcfftgYY8ySJUtM3bp1zbRp06xlLl68aO69915z3333mZSUFLNr1y4zY8YMc/ToUYd62Lv/pKSkGGPo+o385cUXXzSdO3e2fn/tXbEfe+wx07ZtW2u5MWPGmMqVKzusu3TpUuPh4WH27NljjDGmU6dOpkuXLiY8PNxaZs6cOaZMmTJm3rx5Jj093cyfP98sW7bseh8WcEMdPXrUVKlSxXz77bdWWWZmptm9e7cpWrSoWb9+vTHGmEOHDpnKlSubyZMnW8tFR0ebvn37mpYtWxpjjImKijI2m8189913Dvto0qSJuffee01ycrLZs2ePmTlzpjl27FiO9aFbKm4m8fHxZtCgQaZRo0ZW2fDhw82dd95pDh06ZJUtW7bM1KpVy3Tu3NmsWLHCfPrpp8bX19fs2rXrstvOzMzM8XyxP6YEXE985Ik8oUaNGvLz89OiRYv06KOPysvLS6tWrVKVKlVUuHBhLV68WFLWlFiVKlVScnKypKzWOC8vL/Xq1UtLly6VJN15550KCAjQ9u3brda5ggUL6s4779Qdd9yhtLQ01alTR48++qhCQ0MdPkG1t0B4eXlZo1ACeZ3997dWrVo6ffq0Bg8erJCQELVr107p6elq2rSpNmzYYJ03hw8f1m233aaEhARrG/Xq1VPNmjU1Y8YMSVldVPfu3au9e/day9x3331q06aNgoOD5e7urgcffNAa3CUjIyPHrql0V0V+ExoaKj8/Py1YsECPPPKI3Nzc9MMPP6hkyZKqVq2adY6cPXtWqampKlu2rLVu8eLF1aJFC506dUpHjhxRiRIl1LRpU/3www9WTyxJGjhwoOrWravMzExrerry5cs7XI/s3N3deYQCedbRo0f1wQcfWN/n9Df/7Nmz6tOnjyIjI1WkSBE1atRICQkJ1r1ds2bNlJiYqFWrVkmSYmJiNG7cODVt2lRff/217rnnHpUvX97qcfj3+dzt1x/7IGd25pJHoYDrjVCNGyqnGwZJ2rt3r7Zs2aIlS5YoNjZWq1evVvv27eXj46OePXtaNzFlypRR8eLFrW5z9j+epUqVUsGCBXX06FF5e3urXr16Wrt2rTViqiS98MILeuGFFxymHjH/P+pwTs/S0M0OeZExJtsNhc1mkzFGW7Zs0bZt2zRv3jw999xzWrhwoTw8PNSuXTt5enpaXVJDQ0MVHR2tffv2WdsoXLiwypQpY52f3bp1U2RkpH7++WelpqZKyvpw6uuvv1ajRo0c6iNlnYs5nTOcR8irLnc9+vPPP3Xy5EnNnz9f58+f15o1a/TAAw/I19dXnTp10qJFiyRJjRs3Vnp6uv7880/rAys3NzcVKFBAfn5+SkpKkpTV3fvbb79VeHi4tY9HH31U48aNU4ECBST9NSbC5a5HfMCLvOqPP/5w+NDW/jf/0nMrLi5OP/zwgzX+zW233aby5ctrwYIFkqTmzZurVKlSWrdunSQpICBAO3fuVOPGjeXr6ytJ+v7775WZmakpU6bo/PnzkmRdC+3Xn+joaI0dO1Y9e/ZUUlIS5w1uKO52cEPZbxjS0tL0xx9/WC3Jvr6+Gjp0qJo2baq2bdvq9ttvt27W+/Tpoz/++EObN29WhQoVVLt2bS1dutShBW3u3LmqVauWAgICJGXdxLz55ptq3Lixw/4zMzMdPvHnDy7yG5vNZn3qfvjwYZ04ccKahqRz587q2rWrmjZtqkceeUSBgYGSsj6Mat++vaZPny5J6tq1q2JjY/Xdd99Z2z1x4oQ2bNigli1bSsq6SZk4caIef/xxh4H/JMebJc4h5Ff261Fqaqp27txpXY8CAwP19ttvq1SpUnr44YfVqlUrSZK3t7datmypjIwMzZs3T1LWAH7fffedfvvtN2u7mzdvVkZGhqpUqSJJevLJJzV9+nTre7tLr0dM3YP8qnPnzpo3b558fHwkSefPn9eDDz6oESNGWMuULl1aAwYMsKbOqlq1qho1aqQtW7bo/PnzKlmypOrWrauwsDDrXOrUqZNGjBihfv36qXnz5jLG6Pfff9eoUaOsez0PDw9lZmbqq6++UvPmzVWpUiUtWbJE9957L63TuPFc0+sct4KMjIxszyRv3LjR3H///cbX19fUrVvX3HPPPWbr1q3GmKznmHv27Gk6d+5skpKSjDF/PdNco0YNM2jQIGOMMbt27TLt27c3gYGB5vXXXzd9+/Y1oaGhDs+/ATeLvz8fFh8fb95//30TGhpqSpYsaerVq2fGjBlj4uPjjTHGfP/996ZevXrmyy+/dFhv4cKFxs3NzZq+5JNPPjH+/v6mS5cuZsyYMea2224znTt3NmfOnLkxBwbcQJmZmdmuR5s2bbKuRzVr1jRNmjQxe/futabdadu2renevbs5deqUtU5kZKTp1KmTuffee40xxhw+fNg89NBDxtfX17z55pumV69epmzZsmbOnDkO+wZuZlu2bDEDBw40xhiTkJBgBgwYYKpVq+awzOrVq43NZjPbt283xmRdq2rXrm2++OILY4wxq1atMq1btzZvvvmmMSZrPIJJkyaZe++917z55pvm3LlzDtuLjo42Tz75pPHy8jK1atUyr732msMz2cCNRks1rjnz/5+821vPdu3apd27dys2NlYvvfSSypUrp1WrVmn27NkqVKiQXnvtNZ0+fVpeXl5q0KCBoqKi9Ouvv0r6q2tPnz59tHDhQsXHx6tOnTr6+uuv9cILL2jdunVKSkrSzJkz9cgjj+RYDyA/s/fsWLNmjRISEjRv3jzNnz9fr732mrZv366BAwdq4cKFmjp1qqSsMQUKFy6sLVu2WN3xpKyuqsHBwdajFAMHDtTMmTNVpkwZLVu2TD179tSsWbOsFgA7nolGfmb+1hK8fft2HThwQKdPn9b777+v4sWLa926dVq8eLECAgI0cuRIa+aI7t27a8eOHQ6PSQQGBqpDhw7aunWrEhISVLFiRU2ZMkUvv/yyNm3apPT0dM2ePVvdu3e31qEFGje7CxcuaNKkSdq1a5cKFy6szp076/Tp09q8ebO1TM2aNVW/fn198sknkqTatWurWrVq1nPVTZs2VeHChbVixQolJyerRIkSeuaZZ7R06VKNGjVKRYsWlfRXT6mkpCTVr19fq1ev1q5duzR69GhVqlTpxh44cCkXh3rcBOyf6l/qzJkzJjw83Dz66KOmWLFi1kjc9k8kjTEmLCzM3H///cbPz88a9Xvz5s3mzjvvNCNHjnTY3vHjx43NZjMLFiy4fgcCuEhOrWjGGHPw4EGzfv16U6xYMdOxY0dz5MgRs2vXLrNx40ZjTNa5N2vWLBMUFGTuuusuq0Vt2LBhDr1A7Ms+99xzxt/f32Effx8VlVY15Gc5XY+ioqJMRESEGTp0qLHZbObbb781J06cMCtXrrSWP3HihOnWrZsJDAw0H374oTHGmAsXLpjQ0FDz7rvvmtTUVGt727dvN0WLFjXjx4+/MQcFuNg/jUCfmZlpqlatakaMGGGMybq/a968uXniiSesZTIyMszgwYNNsWLFrLJ33nnHBAUFmQMHDhhjjFm+fHmOo3unp6dzbUKeR0s1nGb/tDCngYhCQkLUo0cPFSlSRLt27dITTzwhSerbt6+2bdum22+/XQ0bNlRycrLq1aun+fPnS5IaNmyomjVr6scff9Tu3bu1dOlSzZ8/XyEhIXr66aetASv+Xg9a05AfZWZmWiOW/r0167vvvlPVqlX14YcfauLEifrpp59UoUIF1alTRw0bNtTrr7+usmXLauzYsWrevLliYmL0888/S8p6xi02NlZfffWVTp06pbfffluxsbHq2bOnunfvbg2gJGU9k2aMsc5nWtWQH13uepSQkKB27dqpadOmSk1NVXh4uB555BGVKlVKd999t7Zv3642bdqobt26Sk9PV7ly5bRp0yZFRUWpUKFCatWqlebNm6fVq1dr6dKlmj59uurVq6dnn31WlStXzrEeXI9wM8jIyMg2M4q5TA9Am82m7t27a86cOUpOTlbJkiXVsWNHLVy40FrGGKPDhw/r3LlzWrZsmSSpbt26euihh6xl2rZtqzp16mTbvru7O9cm5H0uDvXIRy73KeHKlSvN119/bU6ePGl9mv/SSy8Zm81mPv74Y2PMX59yJiQkmHbt2pmBAwdaz74MHTrUlC5d2pofd+PGjaZLly6mZMmSxt3d3bz//vt8Qomb2unTp83nn39u1qxZY7Ucnz171gQHB5uqVaua06dPG2P+aoWbO3euqVOnjtVz4+zZs6ZUqVJmwIAB1jY/+OADU716dePn52cqVaqUbU524Ga0bNkyM2PGDHP48GFjTNa15+OPPzY2m81qgbZLTU01Xbp0Mf369bOWf/nll01wcLBZuXKlMcaYbdu2md69e5sSJUoYX19fM2zYsBt7QMANlJGRka33Umpqqpk0aZLp0qWLWbJkyWXXPXDggHFzczM///yzMcaY3bt3G39/f/PMM8+YI0eOmHnz5pknn3zSNG7c2Dz99NOX3Q73e8ivCNXIJjk52fr/iRMnzJ49e7L9kTXGmPnz55vSpUubMmXKmBYtWpjatWubjz76yBhjzB9//GFsNpuZNWuWwzqbNm0yQUFBZunSpcaYrK6nXbp0MW5ubmb48OHWcrGxsebPP//Mts9/6oIE5BWX/q7+8ssv5sKFC9mWiYmJMb169TI+Pj6mRYsWJjQ01PTp08f88ccfxhhjevbsaerXr28SEhKsdZKSkkz//v3NPffcY918rFy50gQEBJjatWs7dJ37888/rQHM7DIzM3PsIgvkRSkpKdb/T5w4YbZs2eLwuv0c+OGHH0xwcLApVaqUuffee03RokXNnDlzTGZmptm7d68pUKCANZil/dxctWqVqVy5spk7d64xJuvcevDBB01AQIB54YUXrH3ExcVZ3VMvxfUIN7OffvrJdOzY0fj5+ZmqVauasWPHmrNnz15xnSZNmpj+/ftb30+bNs3UqVPH+Pr6WgP4Xbx4Mdt6nEu4GdD9Gw46duyo0aNHW91D77//fo0cOVIeHh6KiorS6tWrJUnh4eH68MMPNXLkSJ08eVK//vqrBg8erGHDhunkyZOqWbOmypcv7zB3oZQ18FhoaKjmzp2rkydP6sMPP1SBAgX0zDPPOHSZK1asmGrUqGGtY5fT/J1AXrJlyxYVL17cGtzojz/+UKtWrXTy5ElJ0po1a3Tq1ClJ0qxZs3Ty5Ent3r1bv/76q3766SfFx8frpZdekpQ1l+3u3butdSXJx8dHPj4+OnfunH744Qdt27ZN3377rTp37qx69erpwoUL1rI1atRQkSJFHLrx2Ww25o5GvtCjRw8988wzkqTU1FS9+OKL6tmzpyTp5MmTWr58uWw2m+Lj4/XBBx/omWee0enTp7V06VKNHDlSY8eO1bJly1S9enXdfvvtmjNnjqS/urBWrFhRGRkZWrlypQ4ePKipU6cqMDBQzZo1U7FixZSYmCgpa8pH+3RY6enpDnOzAzeTrVu3asCAAQoKCtLTTz+tsmXLavny5dq/f79Gjhwpf39/6/7Q5NAVvF+/flq4cKGio6MlSU888YQWLlyo1atX68SJE+revbsKFixozctux7mEm4JLIz1cLjw83EyePNkcP37cGGPMihUrHD6J/PLLL42fn5+pUqWKsdlspl+/fsaYrE8wmzZtaozJam17++23TbVq1YzNZjOLFi0yxhgzduxYExwcbI4dO2ZtLzk52UydOtVUqVLFFC1a1NSoUcOsWLEix5ZwIL+YPXu21fvCmKypQ4z5q7t25cqVTZ06dYyPj48pX7682bBhg4mPjzedO3e2pr5atmyZefDBB42Pj4+58847TVJSkklLSzNlypQxb731lsP2tm3bZvr06WNKlSplChYsaIYOHWqioqJu5CED19zx48fNO++8Y+Li4owxWQOCXTrF248//mi8vb2ta83zzz9v0tPTzYwZM8w999xjjDEmIiLCvPfeeyY4ONiUKFHCzJw50xiTdS3z8fGxWsnsLdwffvihady4sfH19TWVK1c269evdxiUDMjvMjIyctUSHBUVZcqVK2fuu+8+8+OPPzq8tmvXLtO/f39Tp04dM3/+/MtuIzIy0hQoUMDq/fF3tEjjZkaovkXZbyg+/fRT07p1a2OMcbiRiIqKMunp6aZChQrGZrOZLl26WPPbGmPMiBEjTJ06dUzz5s1N4cKFTfPmzc2nn35qIiIirGXOnDljPD09c/wDvG/fPhMWFuZQltO81kB+UKdOHTNv3jxjzF+PT8TGxhpjsoKAzWYzRYoUMd9//73DeoGBgaZt27amdOnSpnTp0ubpp582v/32m8Myw4YNM/Xq1bPmbrdLT083O3bsyFYXblqQ39j/7q9bt85UrFgx2+uRkZHGGGNuv/12Y7PZzL333uvQLXzatGmmQIECpnXr1qZw4cLm9ttvN1OmTHH4oOn48eOmRIkS1gwUl36QGxYWZsLDwx32yfUIN6Pff//9iq9f2jU7MjLSvP7666Zy5cqmWLFi5oEHHjCLFi267IdO9vOlY8eOpkePHsYYrke4tdAH8BZlH0WxSJEiVvdqT09PSVL79u317LPPKi0tTUeOHFHXrl114cIFFSpUyFq/Xbt22rNnj2rVqqWdO3dqw4YNeuqpp1SyZEnt2bNHsbGxCggIUGhoqKZOnaqLFy867L9atWoKDg52GHXYPq81kJ/ExMQoJCREaWlpkiRvb2/t379fAQEBWrt2rTp37qyDBw8qJSVFPj4+kv56pKFly5bavHmzPvroIx09elRTpkxRkyZNlJCQoC1btkiSevXqpZ07d2rbtm0O+3V3d1fdunWt7Rm6pCKfsv/d37Nnj5o3b66EhATrtUcffVQPPPCAJOn777/XiBEjdOjQIXl5eVnXjnr16slms6latWras2eP1q9fr6efflolSpTQoUOHFB4erpCQEDVt2lRvvfWWpKxR7+2Cg4NVrlw5rkfI90wOXbK3bdumBx54wJr3efv27Zddv2DBgpo8ebJatGihSpUqaeXKlfrvf/+rffv2acGCBbrvvvuse8W/s58vFStWVFhYmCSuR7i1EKpvITlN87Fz507VqFFDFy5csP4Y33777Tpy5Ih1E//0009r3bp12r9/v7Veq1atVKZMGXl7e6tYsWJW+ebNmzVhwgTrj/akSZM0aNAgh0B+KZvNxh9d5Bvmb8+BSVnPeh46dEihoaHWMtWqVVOpUqW0cuVKJScnq1KlSmrZsqU+++wzSX/d0Hfr1k1paWkqXry4vL29JWVNAfT555/rxx9/1IULF1SvXj19/PHHql69+mXr5eHhQQBAvnLpc/72f8+cOaPIyEiHD3sfeOAB7dmzR8ePH1dAQIDuu+8+HTt2TFu3brWuHZUrV1atWrV07tw5+fn5WfvYuHGjPvzwQx09elSS9PLLL+v999+/bJ24HiE/MsZY93d/vw4cOHBAQ4YMUeHChbVo0SJ9/vnn8vf3v+y24uPjNX/+fLVp00Y7duzQ+vXr9cQTT6hEiRK5qsvMmTM1Z84c9e/f3/kDAvIpQvUtwP7H9tLBiew3MUWKFNH27dtVuHBhq6xPnz6KiorS7t27JUl33323fH19tXz5cqWlpVnLvfnmm1q/fr1atGihN954Qx06dFCnTp3k4eGhatWqSZLuuusudejQ4YYdK3A9XG4+aWOMSpcurZiYGIWHh0uSUlJSJEmPPfaY5s2bpzNnzkiS+vfvr2XLllmDjhlj9Mgjj6hjx47q3r27Hn/8cQ0ZMkT169fXp59+qnr16lkt2wMHDnT48ArIr+zXI3d3d7m7u8sYYwXZqlWras+ePZL++uCpffv28vHx0Q8//CBJqlmzpho0aKBPP/1UUtaHWr6+vho/fry2b9+upk2b6o033lD79u31wAMP6MKFC6pYsaIkqVGjRurUqdONPFzgurF/wGsffDI2Nlbz5s3Tzp07rWV+//137dy5U19//bWaNGmiWrVqWR8A58TX11crV67Um2++qUqVKuW6LvbzOiAgQDNnztSTTz7p3EEB+Rih+hZgD9OrVq3SzJkzFR0dbd3ENGzYULt27VJaWpo8PDyUkZGhcuXKqVatWvrll1+soPDII49o4cKFioqKstZ97LHH9MUXX+ixxx7T77//rsqVK+uXX37Rp59+qnLlyln7z6mFHMhP3Nzc5ObmpsjISE2dOlUbNmxQXFycNfJwo0aNtGTJEkl/dXcbMGCADh06pF27dkmSOnXqJE9PT2s5ezifMWOGPvroIxUpUkRHjx7V6NGjtXfvXnXt2tWhiyrnEfIr+wex0l/Xo6VLl6p79+7q0KGDYmJiJGU9OhEQEGA9+pCRkaECBQqoa9eumjlzpjIyMuTr66tHHnlEP/zwg9LT0+Xl5SUpq/fUokWL9Pjjj2vXrl2qUqWK1q9fry+//NLhepRT91ggP/j77679GnLw4EF98cUXCg4O1ssvv6z77rtPX3zxhSSpdOnScnd31/Dhw/Xcc8/ptdde0wsvvKDFixdfdj/O9Hqyn9ft2rXTXXfdddXrAzcDm+EKc9MwxmT7Y3j06FF5e3vrkUce0cGDB+Xr6ys3NzctX75cISEh2rt3r1q2bKmJEyfq4YcfVnJysnx8fPTVV19p7Nixmjhxou655x4dOHBADRo0UP/+/RUQEKBFixZpyZIlCgwMzLEexhim7cFNIzY2VsOHD9d3332natWqKTMzUz4+Plq6dKkKFy6s1157TQsXLtT27dvl7u6ujIwMubu7q06dOmrYsKE+/vhjFSpUSE899ZSWLVumQYMG6ffff1dwcLDVHTUzMzNbbxK6ouJmExsbq759+2rr1q3q3r27QkJC1L59e1WvXl0bN27UiBEj1L59e7300kvWOfHbb7+pRYsW2rZtm+rWratTp06pUqVK6tevn/z8/LRr1y69/PLLat68ebb9cT1CfpeRkZHjM/7JycnWM9I1a9bUsGHDVLNmTT3++OMKCwvT+++/ryZNmuh///ufli1bpsqVK+vixYsKDw/X7t27tWTJEjVu3NhFRwXcfLjK5HOXDqzy9z+40dHRqlSpkp588km1b99ep0+f1rx58+Tt7a1XXnlFUtanmHfeeacmT54s6a/Byrp166aMjAzt3LlTKSkpqlq1qj755BMdOHBAq1at0jPPPKPAwECH1rOMjAyriyw3MMjL7PPPXsmlXeiWLFmiAwcO6Pfff9fWrVu1efNmxcXF6b///a/S09PVtGlTJSYm6scff5Qka9Cyp59+WitWrLC6fL/55pvq2rWrvvnmGxUvXlzPPvusJFk3/ZeezwRq5DeXPtt5qR9//FHDhg1TUlKSFi9erKNHj2rnzp368MMPNXToUGu8gNq1ays0NFTr1q1TWlqadU40bdpUlStX1rx58yRJZcqU0VdffaWTJ09q/fr16t27t5o3b+7Qksf1CPnN0qVLdc899ygyMtKh3N3dXTabTYcOHdLy5cutR4x8fHxUq1YtnTp1SiVLllSDBg3k4+OjYcOGydvbW3PnzpUkDRkyRCtWrND//vc/ffnll1q9erXOnj2bbT8A/qUbM8g4nJXbKT3S09PNDz/8YDZv3uwwJUKvXr2Mp6enWbdunVU2b948U7hwYXPw4EFjjDGrVq0yNpvNbNiwwWGfDz30kGncuLE5cOCAMSZrihHm70R+16pVKzN06NArLrNy5Upjs9lMfHy8McaY2267zZoabuHCheaJJ54wNpvN9O7d28TExJioqCjz6KOPmkaNGhlj/ppPOjEx0dhsNjNlyhSr7NKpgICbmf16MXLkSFO1alVjjDHTp083Xl5e5vjx42bx4sVm+fLlZteuXSYmJsYYY8x3331nqlatar7++mtjzF9T8owcOdIULlzYmsP60u0D+Y39emDMX/dcYWFhZsqUKdnu+3755RdTt25dU7hwYVO5cmVzxx13WPNAb9u2zdx2223mP//5j7V8cnKyGTRokGnZsqV1vkRFRZlz586ZhIQEM3bsWNOqVSvrHhDAtcHHt3lYWFiYbDab1X0tpxaAxMREvfrqq/L19dXgwYPVq1cvPfLII4qIiJCU9Rynm5ubSpUqZa3TpUsXubm5admyZTLG6K677tL999+v9957T3v27LFavAcOHKiHHnpIZcuWlZT1zIynp6cyMzMdnpED8pNPPvlE77zzjvV9bGysNTrwpWWNGjVSVFSUpKxnPd98802Fhobq6aeflpubm9avX68ZM2aoePHiKlGihF555RXt2bNHX3/9tXV+FChQQCNGjNBtt91mtZbZnwFNT0/nOWnkS8YYh2nc7M6fP6/XXntNb775pqSswcaMMfLz81Pp0qWVlpambt26qWnTpqpVq5befvttvfHGG2rYsKEef/xxhYeHq1u3brr//vs1evRoxcTEWD02nnjiCQ0ZMsQ6fyRxPUK+Zb8eXHpvFxwcrKefflo2m80qu3Dhgj766CNVqVJFJ06c0Ndff62KFSvqySefVGxsrOrWrauGDRvq2LFjOnv2rKSs61WjRo2UmJiodevWKSkpSZ999pkefPBBhYSE6KuvvtLAgQOvaiAyALngwkCPK/jpp5+MzWYzR48ezfF1+6eca9euNRUrVjQLFy40Fy5cMMuXLzfVq1c3PXv2NKmpqSYxMdH4+fmZTz/91Bjz1yeiffr0Ma1atTLnzp0zxhjz559/mkcffdTce++9VssAcLNKT083p06dMsYY06ZNG3P77beb33//3Xr9yy+/NNWrVzfx8fHm7Nmz5qmnnjLFixc3S5YsMRcuXLCWO3/+vNm/f79JTEw0xhgzbtw406FDB/Pxxx/f2AMCXCQ6Otr6f0pKihk7dqzx8PAwa9asMWlpacYYYx5//HHTs2dPk5SUZIwxJiYmxkRHR5sDBw6Yo0ePmu3bt5vChQubRYsWGWOyzs/WrVub/v37m2PHjt3wYwKut82bN5vmzZubtWvXWmWZmZlm5cqVplKlSlYPwT///NPYbDazfft2a7mMjAxTokQJM2bMGGOMMZ999plp1KiRWbBggbXMwYMHTbt27UyPHj2MMcasWbPGfPDBB2bPnj034vCAWxIt1XmM+f9P/suXL69atWrpm2++kSSdOnVKEyZM0KRJk3Tu3Dm5ubkpIyNDixcvVmBgoNq0aaNChQqpbdu2Gjx4sA4cOKAVK1aoQIECuu+++zRjxgylp6dbrdBPP/20fvnlF+3bt0+SVKNGDU2cOFHR0dH65JNPdO7cOUlZgycZxrJDPpRTS5pdx44d1bt3b0nShAkTVLZsWQ0aNMhqHQgJCVFYWJi8vb3l7++v5s2bKzMzUwULFrTmXE9NTdXHH3+sOXPmWOsNHTpUjz/+uCZNmqQ//vjD2h8tacjP/v77e/78eb399tuqXr26Wrdurf79+2vf/7V334E1nu0Dx78ngwzZCDGSECJEESOSJsSMrTGSCFE67Aa1qqotarf60tfbUnvvEVGxQ+xErApiz5ASFTJIcp7fH/md580R+qKUw/X5q855zjNO85znvu77uq/71CkKFSrEl19+Sffu3Rk5ciRr1qwBoHjx4ly8eBEzMzNyc3NxcHCgWLFiVKxYEVdXV7KysnBwcKBUqVJA3hzSBQsWcP/+faZNm0ZmZibw5HXihTBExYoVo0iRIsycOZO+fftSvnx59u7dS61atTh//ry6akRKSgqOjo5qxsbDhw8xMjIiNDRUXWbO19cXBwcHYmJi1P1XqFABb29v3N3defToEQEBAQwYMABPT0+92h1CiJdHgurXTNdAOHToEBcvXlSD3jJlytCoUSOWLFnCxYsXqV+/PkuXLmXSpEm0a9eOCxcuYGxszMmTJylbtqy6ni3k/cDa2tqyZ88eAD7++GMSEhJISkrS2yYwMFD9oc7NzcXKyoq1a9dSr149vbWtX2R5BSFeNxMTEzQaDefOnSMxMVHvvbCwMI4dO8bNmzd57733mDBhAufPn+err74iIyODjIwMKleurN4zQUFBdOjQgXbt2tGpUyeGDRuGp6cnS5YsoXz58pibmwN5qd3t2rVj4cKFFCpUSG9NXiEMSf7g1djYmEePHpGSkkJqaioDBw5kw4YNDBs2jAkTJnDlyhV69uzJ5cuXAfj222/x8fFh4MCBXLt2DY1GQ7FixcjOzsbY2Jjbt28ze/Zsxo8fT9u2bWnZsiVhYWFqwTLIewbOmDGDjh07qoWZHl8nXog33ePTE3TPhOTkZPbv38+yZcu4ePEiP/30E3Xq1MHW1hY/Pz+WL1+OoihYWFhQoUIFNm/eDPz3WVKnTh2uX7+OVqulUqVKODs7s2PHDi5duqQea9SoUYwaNUqdMqHrlNJoNPJMEuIVkKD6NdL9uCUkJFCvXj11ZGvTpk1YWlrSvHlz/vjjD7p168a4ceM4ePAgM2bMIC0tTV2Gp1mzZsTGxnLnzh11v56enty+fVtd7srf3x+AefPm6R1/06ZN6nIKuh/YsmXLUqNGDRwcHF7ptQvxsjxpXnJWVhbTp0/H3d0dPz8/OnXqRFhYmBootG3bluzsbHXNaGdnZyZOnEh0dDQzZ87E1NSUe/fuUaxYMRRFwdramunTpzN79mzs7e05e/YsI0aMIDExkc6dOxeoLlyzZk0qVqwoVYeFQcmfmaQLXlNTU5k/f7661OLDhw9p1qwZa9eupVu3brRu3ZqgoCCOHDnC9u3bgbxVJSZNmkSpUqX4/vvviYqKws3NTV1donDhwuTk5LB582bKly/Pvn37GDdunF7nMICdnR0+Pj7Y2tr+c1+CEC+RkZGR2r66cOGC+kywtLSkT58+uLu707NnT1q0aKE+y3r16sWWLVs4d+4cVapUwd3dnWXLlgF5ncUAy5cvx8/Pj/T0dADat2/PiBEj9OrnQMF7WjqlhHiF/vmMc/Ek1apVUypXrqzY2dmp82cuX76sNG3aVKlQoYJa5TQ7O1sZN26cYm1trSiKoqSlpSmFCxdWpkyZos71PH36tGJjY6MsWbJE3f/KlSv15uTo6Oa8CWFonlYZX6vVKuvWrVOaN2+u/PTTT0pKSopy8OBBpUyZMsqoUaPUv/nQ0FClQYMG6r316NEjZcGCBYqtra0ycuRIxdLSUsnKylL3q6tjkL9qq6IoUoNAGLzH/6ZPnjypxMbGKr169VLc3NyUiIgIZceOHUp2draSnZ2t5ObmKsnJyUq/fv0UBwcHxcPDQyldurTSqVMn5datW+p+Dhw4oHz66aeKRqNR2rdvryjKf+9b3fxqHa1W+8yrXQjxJsrNzS3wN5yQkKCEhIQojo6OipeXl9K7d291XvOVK1eUoKAgpWPHjurndczMzNTaHIcOHVJcXFyU2rVrK9OnT1ciIiKUcuXKKVFRUf/QlQkhnoUMo/xDlMfmgSmKQlpaGrt27WL27Nlcu3aNq1evMnr0aLRaLTVq1MDR0ZH333+flJQUtYffxMSEJk2a8PDhQ6KiorCysmLw4MH89NNPhIWFMXXqVIKDg2nQoAEtW7ZUj9ehQwdq1KhR4Lx0vZ5CGBpdj/uOHTuYOXMmt2/fVl+3t7dn3Lhx9OvXD3t7e1JTU8nOzmbDhg2cP38egO7du7Nnzx618repqSnh4eGEhIQwfvx4TExM9FLpdCMMsp60eJso/79GelpaGklJSXz44Yc0atSII0eOUKlSJa5evYqxsTEBAQGYmJhgYmKCkZERP/zwA4mJiSxevJjExERGjhzJ5s2b9aYZeXt78/XXX+Ps7IyVlRXZ2dnqfasblc6/nrSMoglD9Ph0ubNnz3L16lWSkpLo378/lpaWrFixgm+++YarV6/yxRdfAFC6dGnq1KnD77//ztWrVzEyMlKnOrRq1Yo1a9aQmppK7dq1WbVqFfXr12fmzJmcPXuWWbNm6bXxoGA7Uwjxz5Kg+h+Sv7Gg/H/a95w5cwgNDeXjjz9m165d2NraYmFhoW5XuHBhtSGzYcMG9XU3NzcCAgKYOXMmAMOGDeOXX37BxsaGpUuXEhwczPz587G2ttY7B1m+R7wtrly5QmJiIqGhoYSGhjJp0iQ++OADdd5Z3bp1qV69Oj/++CNubm4MGDCALl26kJCQQHx8vLqUXIkSJdRiL7r746uvvmLq1KlER0fj7u7+xOPLnDRhaJT/XwbrcRqNhrS0NNzd3YmIiMDCwoK4uDg+++wz6tati6WlJeXLl0ej0ZCdnQ3AsWPHWLFiBSEhIQQGBqIoCklJSTx69Ijdu3er22VnZ1O6dGmqVauGmZmZugRWfsbGxjJNQhiUx4NXIyMjMjMzOXfuHOHh4fj4+LBnzx5KlixJSEgIs2fPpl69etSoUQMLCwuio6M5ePAgGo2GGjVqYGlpSWRkJJDX7gOIiIggJiZGnRZYs2ZNJk+ezJEjR/jtt99o0KBBgfOSTikhXi95kr1kjzdcdD++CQkJ7N27V2/bQoUK4erqSkZGBlWqVKFSpUps3bqVmzdvqttUrFgRHx8fZs+ere7PxsaGdu3aERUVRU5ODlZWVjRt2pRff/2VAwcOMGLECKytrZ/4wy+EoTt8+DAffPABISEhlC9fnpSUFFasWIGtra1aa8DU1JTdu3ezcOFChg8fzuHDh5k8eTKenp5ER0dz9+5djI2NadmyJVOmTCErK0u9P0qXLk2fPn2oW7fu67xMIV4qjUajZiYlJCRw48YN9RlhbW1N06ZN2bJlC7Vr16Z06dJAXgXhhg0bsnz5cuC/zxAPDw/u3r3L9evXuX37Nnv37iUtLQ0XFxfOnz/PgwcPANQMK61Wqz4X5TkkDJUuO+nx4PXmzZu4ubkxZMgQrK2tOXr0KB07dsTKyoq+ffty8OBBAgICqF69On/88QflypVj+vTpAFStWpVq1aoxY8YMMjMz2b17N9u3b8ff3x9/f3/1HtLRaDTk5uZK9W4h3kDydHtJdL3v+RsuupQ2rVbLF198Qbdu3bhw4YL6g3zhwgUcHR3Vhk2nTp1ISEhQl7mCvGUXWrZsyb59+0hPT1dT5OrXr0+fPn1ITU1Vt9X1cOqWEpJeS2FoniWbwtXVlTp16nD58mU6deoEgJeXF507d+bUqVMcOHAAgIULF2JsbExoaCiWlpbs37+fa9euqQVgAAYMGMDXX3+tVkd93nMRwlDcvHmT4cOHU6JECVq3bk3Lli0ZPXq02jjv0KEDdnZ2eveCnZ0drVu3VivlGxsbk52dTaFChYiIiGD16tV4eHjQpEkT/Pz8iImJYfbs2djZ2QF5I9U9evRgz549fPjhh6/luoV4Vv8rfVqXnXTo0CGioqLIyspCq9VSokQJvLy8WL9+Pf7+/pQuXVptf928eZNvv/2WypUrExcXx44dO2jcuDFbt24F8or6de3aFUVRcHd3JyAggDNnzgCwa9cufHx8nngekiklxJtHguqXRNf7fv/+fcaPH4+Pjw9fffUVx44dw8jIiKVLl+Lm5kavXr3UdJ6iRYuSlJSkrnvbsWNHcnJyiIuLU/drbGxM3bp1SU1NZcGCBerr7u7u/Pvf/6Z48eIFzkW3lJAQhib/KNbTGjj29vb4+Pig0WjUETGAatWqUa5cOfU+qVevHgkJCaxcuZJDhw4xd+5cpkyZgpWVlTpq5u7uTt++fZ84eiYjauJtodVqWbFiBYcPH2bWrFkcP36cwYMHs3DhQhYtWgRAixYtsLe3JykpiaysLCCvk9jLywsnJycWLlyo7gvyls1avnw58+fPJzMzk65du6qrRuRfSq5IkSIsWbIEPz+/f/qyhXgmuueBRqPh7t27aqfr45YuXUrZsmUJCgpixIgRNG/enLVr1wJ51bft7e3VwQ1dG+zMmTNs3ryZzz//nHLlypGZmUliYiK3bt1SK3rXq1ePNWvWsGrVKrRaLX369ClwbkKIN5+0Gl+SzZs3M2fOHMaOHcuWLVsICAhg48aNdOrUic2bN+Pg4MDUqVPRaDQMHToUyGtwODs7q0siFClShCZNmrBkyRLGjBlD06ZNGTZsGNWrV2fjxo106dKlQKAhKUDCEOVf5kNHURSWL1/OZ599pmZ5PE73merVq1OzZk1WrFihvufq6oq/vz+7du0CIDw8nC5dujBp0iQaNmzIvXv3CAoK4ty5c/j6+urtUwq8CEP1LBkViqLg7e3Nf/7zH1q1agVAeno6169fZ9OmTWoxsgYNGhAbG6uuNw15y835+fkxZcoU4L8ZUSYmJlSpUoUWLVoA+s+i/EX9pkyZQrNmzV7OxQrxEt2/f58uXbowfvx4IO8+qVWrFr/++qv6vq6Q5blz55gzZw4DBw7k+vXr7N69m4CAAHr06AFAUFAQlpaWnD17lpycHPUeePToES4uLqxdu5bU1FRmzZqFi4sLrVq10htAqVChgrrEaf5AWorJCmE4JKj+m3QNmvj4eD755BNiY2NZuHAh48ePZ9euXZQrV44ff/yRzMxMKlasyL/+9S8SEhKYNm0acXFxODg4YGFhoRZ2GT58OMHBwaxbtw4nJyc1ZS4wMBArK6sCgYakAAlDpKuSqqObrrBw4ULS0tLUCtuP032mYsWK1KxZk127dqn3jrm5Ob6+vty8eVOdAzpz5kyioqK4f/8+y5cvV4v35W+0SNVhYcieJbvD2NgYb29vHB0d6d+/Px4eHixYsIBWrVqRmJhIQkICkNcRdenSJU6cOKF+1srKivbt29OrVy/1XstPd0x5FglDY2VlRevWrendu7fakdumTRuioqKoVasWNjY2/PzzzwDExsZy9+5dBg4cyP3791mwYAGrVq0iLS2NgwcPYmNjg4+PD7t37+batWvqMWrXrk2XLl2YPn06zs7OzJgxg9DQUFavXq3WANHR3UsSSAthmCSo/gvPMnqla4z3798fY2NjypQpoxZ5sbW1pVOnTty5c4ft27cDeQVepk2bxpYtW4iKiiI5OVlvHrazszPDhg3j8OHDzJs3j8qVK7+iqxPin/Gk9LVbt27RuXNn5s6dq/d6uXLl1DoBf3X/mZub4+3tTU5ODps2bVJf9/DwoHPnztjY2AB5o2oVKlRQi7voOsGk0SIMzYtmd+i2A1i2bBmxsbGsXLmSPXv28Ouvv3Lu3DkOHz4MgL+/PwAbN24kLS1N/XyzZs345ptvChRNAqk4LAxbSEgIRYsWJS0tjdu3b7N+/XrOnDmDs7Mzly9fZvLkyUBexXsrKysaN25MqVKlmDdvHh9//DHnzp3D29sbgC5dunD69GkSExPV/dva2jJ69GiWL1/OoUOH+P3332nWrJlaCT//PS33khCGTYLqx+Rff/ZZfuB0jfUiRYpQr149UlNTuXPnjvq+l5cXpqamauEJyCsI89lnn6HRaLC2tiYzM1PvWLoe//xBgBCGJP/frS6APXHiBDdu3ADypjo4OTnx9ddfExkZiUaj4eHDh2RlZVGsWDFyc3OfOqdZ1wipVq0aVlZWamV8yEsBnzZt2hPTTWXpHmHIXjS7A/KeUxkZGaxevZrq1aur85sjIyMxNTUlNjaWo0ePAnlzpcPDwwssySjTJMTbKCMjQ50jXbRoUfbu3YuXlxdlypTB1tZW3c7FxYUDBw7g5OREfHw8hw4dYsCAATg7O3P69Gkgb23pBw8eEB0dTWZmpt5xvL298fDw0GtjPn5PCyEMm7QwoUBPoS6ojYyMJDIykoyMjGfaT48ePdi3b59e9e6SJUty/PjxAiPOgYGBtGzZEmNjY8zNzZ8YPEsQIAyV7u/2zz//ZM2aNdjZ2dG4cWPatGnDggULsLS0ZPLkybRq1Yovv/yS48ePU7hwYa5evYqtrS3GxsZP7VDSNULKly/P0KFD+eabbwpsI7UGhCF72dkdiqJgYWGBra0tiYmJrF27lm3btrFz5046d+6Mq6urWvX7ww8/pGHDhgX2IdMkxNvIwsICe3t7Ll26xNGjRylZsiRt2rQhJiZGry3XsmVLSpcuTZkyZahYsaLaToyPj+frr79WA+vhw4fTpk0bzM3NCxxL1xEmUyWEeDu9sxGbrvHx+NJTWq2WCRMmYGNjwxdffMHIkSP54IMP1OUPntRY1/1AhoSEoCgKY8eO5dChQ+Tk5LB06VJKliyppoTn5+joqAbsEjwLQ5S/1z2/jIwMBg0aREhICMuWLeOXX34hNjaWqlWrMnDgQDVle+LEibi6ujJo0CBOnz6Np6cn58+fB56eKaLVasnOzsbIyIg2bdrg5eVVYBtptAhD8yqzO3T7Hjx4MJUqVaJfv36EhIRQoUIFvv/+e+bMmaPX8SsZUuJd0qFDB5KTk9XCYV26dOH27dtqrQGtVkuFChXo2bMnc+fOpUWLFkybNo3g4GCCgoJwcHDAysoKyJsK2Lhx4yceRzqlhHi7vbORnO7HTaPRcObMGaZNm8a1a9c4duwYa9asYdGiRSQmJrJjxw6qVq2qVnh8WmNdN7LQtWtXNm/ezPfff4+vry/9+/fn008/1WuwGBkZcfToUTZt2kRISMgrvlIhXi6tVqu3LrvunkhISFBft7CwwMTEhLi4OAoXLkxISAgVK1ZkxowZNGnShHHjxgFgbW3NtGnTKFKkCB999BE3btzA3d2d3NzcAqmuuvXXjYyM1Lmd9+/f/ycvXYhX5lVmd+ju0Vq1ajFr1ix27drFnTt3+PLLL7GwsAD0A2np5BXvkoYNG2Jra0tCQgIPHjzAxcWFKlWqsG/fPm7cuKHeD4MHD2bGjBl4enqyfPlyihQpwoYNG/j5558pVaqUuj/JlBLi3fTOPDnzNxi0Wi0ZGRlER0ezYcMGWrZsSXx8POnp6URFRVGhQgVat27NmTNnmDBhAosWLeLevXtcvXr1qfvX/eiGh4djYmJC9+7dGTt2LFlZWQwdOlQvGE9JSSEiIgI3NzeaNm366i5aiJckf2aHkZGRXqN7/Pjx2NjY0Lx5cz755BO1d7958+ZYWVlhZ2cH5N13hQoVolevXuzfv5/bt28DefOgp0yZQnZ2NkuXLsXGxgZjY2O1YaILsHXrr586dYq+fftSunRpNmzYIPM8hUF5Xdkduo5fExMT3N3dAdSOKpBAWry7ChcujK+vL6dOnVJrC3Tu3Jm9e/fyyy+/MG3aNJo3bw5A69atmTRpEnv37mXOnDlUr14d0G9jSqaUEO+mt/Yp+nhDW9dguHXrljpS3KJFC7777jsmTpzIggULcHd3Z9++fSQnJ1OtWjXq1KnDyZMnmT59OpcuXaJMmTJPPZ6uSIyvry+2trbs37+fJk2aYGRkRHZ2tt75FCtWjF27dhEdHU2JEiVezRcgxEuUP7Pj1KlTjBo1iqioKBISErh69So7d+7kl19+4ffff2fs2LEA1KhRg7p163LhwgUyMzPVe9DFxQVbW1u14nBOTo4aWFesWJGLFy8C/71njY2NuXPnDhMnTsTDwwNfX1+Sk5P54Ycf6NChg6TUiTfem5DdoUspz5/doeuoEuJd17p1ax48eKA+l0JCQoiIiGD9+vUsXLiQBg0aAPpty/zFZKVTSgjx1v4KPN5QePDgAbVr1+aHH34gJycHX19fPDw8uHXrFj4+Pup23t7exMTE0L59ey5cuMBvv/1Ghw4dKFKkiDoC97jc3Fy9Bk14eDiLFy/mypUrAJiamuqdjxR8EW+6x0fS0tPTiYmJYf369QQGBrJu3ToGDRpEcHAwTk5OeHl5ERQURP/+/dmxYwcXL17ExsaGWrVqkZSURExMjLqvffv2YWFhQdGiRYH/zh/19/fHxcWFSpUqAf+9h8eNG4eTkxORkZFERERw6tQp1qxZQ0hIiFpcSYg3jWR3CGE4vL29cXBwYOvWraSkpFC4cGEiIiLYu3cvcXFxDB06FNBvW0oxWSFEfm/Fr8GTUukuX77M3r171feKFClChQoVSEpK4uzZs0Bez2Rubq5ede/Q0FAsLS0pWrQoDg4O6usbN27k3//+t5oCnpOTo+7b2NgYY2NjUlJS2Lp1K4MGDSItLY2srKxXds1CvEq6kTTdqNaGDRto2LAhP//8MytWrODIkSMMHTqUy5cvq+lvkLeEXOnSpZk1axYAAQEBmJiY0KdPH3744Qf1PvL29qZmzZoFjnvmzBk1UM7OzgYgODiY48ePs3fvXnr37i3ZHcIgSHaHEIYlKCiIJk2aYGlpCeTdu0WKFNGbPiGEEE9jsEF1/jUznzR/JSIigiFDhnD58mX1tdDQUM6ePcuxY8cA6NWrF9evX9dbQ7pSpUr079+f7777jtatWzNmzBj8/f3p3bs3bm5u6tqdJiYm6nEXL15MvXr1cHNzY+LEiRQtWpQ//viDihUrvrLrF+JVunfvHiVKlGDJkiUoikLLli1xdXXl4cOHatG94OBgfH19Wb58ufq5smXL0rRpU1atWgXkBdm+vr5YWFhw9uxZxowZg4eHBz/++KPe8e7cuUOrVq0wNjZW19DVFSNzc3NT54AK8aaS7A4hDFuvXr3o37+/GlTr5J8+IYQQT2OwQXX+FOqFCxfy+eefs3XrVnXU+aOPPuKPP/7QW2ewefPmmJubc/jwYbXCY+XKlVm3bh2ZmZnqdqNGjWLWrFlUrVqVXbt20ahRIxISEvjyyy+xsbEBIDY2lnbt2mFvb8/o0aOpX78+Bw8eZNu2bdJoEW+0J2V2nD9/npMnTwJ5HVY2NjaUK1eOPXv2cOfOHaysrPD39ycjI0P9+y5SpAihoaGsX79eHVW2tLSkcePG3Lx5k9jYWIyNjfHy8qJEiRLUr1+fAwcOMHv27AJLzBUqVIjy5cuzbt26Jy6RJcSbTrI7hDB8Wq1WpkcIIV6IwQbVZ86cYcOGDfTr149vvvmGkydPEhYWRv/+/QFo27YtRkZG7Nu3Tw2YTU1N8fHxITY2Vk0B79GjB9HR0Vy7dk3dt7GxMS1atGDs2LFs27aNb7/9luLFi6sFKZKSkpgyZQoWFhZERkZy8uRJdQROiDfR/8rsaN++PQMGDOD+/ftqZ1XPnj3ZuXOnWlm4W7duJCQk6FUabty4MUZGRqxfv17dV8WKFalUqRIHDhwAoHHjxpiamqr/zs7OLrD0j5WVFVOnTsXT0/MlX7kQ/wzJ7hDC8BkZGcn0CCHECzHIoDolJYW+ffvSr18/kpOTOXLkCNHR0fz0008sWbKE+fPnAxAYGEhsbCwXLlxQP9uoUSNOnjypLpvw8ccfc/36dQ4dOlTgOLof1tzcXLXYDED58uVZsWIFixYtws/PT9KCxBsvf2bHokWLGDp0KDt27FBHtgYNGsTRo0fV4nqQN10iMzOTgwcPkpOTQ0BAAE5OTmrjH6BMmTLUq1dPnRMKeUWUYmJiGDJkCJAXZLu6uqoprqamplLcRRgUye4QQgghxF8xyJZt8eLFadSoESkpKTRr1gwbGxs0Gg2hoaGEhYUxffp0ALp06cKNGzfYuXMnkJfWs3btWrRaLVu2bOHWrVtYWlqyY8cOwsLCnno8Y2PjAhUfdSMCQhiCM2fO8NtvvzFkyBC+/fZbjh07RocOHZg5cyaQV7H+/v377N69W13+p3DhwtSrV49169aRkpICQFhYGKtWrSI9PR0AMzMzevToQdOmTfWWFjE3N9cr7hIUFMTw4cNxcnJ6DVcvxPOT7A4hhBBCPKvXHlTr1tJ8VrqGhb+/P87OzmrVU91IQseOHYmPjycjI4M6derQoEEDxo4dy+DBgwkLC6NEiRJ8++23tGvXDgcHB7RaLQEBAZLuI95aKSkp9OnThz59+nD37l2OHj3K5s2bCQ4OZtmyZXrL+axcuZK7d++qI8mBgYEcP36c06dPA9CpUye9TA+AVq1aMXHixAKjz/mLuzRt2pSwsDAKFy78D1yxEH+fZHcIIYQQ4ln9Y0/p1NRUhgwZwp9//qn3um4tTUAdDfsruoZFjRo18PLy4tixYzx8+FBvJKFUqVL8/vvvAIwZM4YRI0YQHx+Pubk5vXr1YsiQIXTs2BETExNpqIi3XvHixWncuDGpqak0bNiQIkWKAKjZGZGRkQD069eP+Ph4Dh48CEBmZia//fYbqampbNq0iYyMDN577z2io6Px9fXVO4YUdxFvG8nuEEIIIcSzeqURZVpaGsnJyQBkZWWRmJjIw4cP9ba5cuUKn3/+Oc7OzgQFBdG3b1+15/9pjXRFUbC0tKRu3bocOnSIRYsWqaMHkZGRuLi44OnpiVarpUSJEvTr14+YmBjmzp2Lq6srQIFUOiEMwYtmdvj5+eHs7KymoQJUr16dihUrsm/fPrRaLY0aNaJ27dr079+f0aNH0717dwICAhg5ciQ1a9bEzMwMyBt1fjyzQ4q7iLeJZHcIIYQQ4nm80qC6YsWKjBkzhocPH+Lk5MTGjRtxdHRU3z9//jzh4eFcuHCBiRMnMnToUOLi4vjqq6/IyMh4aiNdF2w3bNgQJycnhgwZwieffEL9+vVZuHAh4eHhWFhYFGiw5Obm6o0MCPGmetmZHV5eXlStWpUjR46oHVvW1tbUrl2bu3fvsn37dgB++uknunbtyvr16zEzM6Njx46MGjWK0NBQuWfEO0OyO4QQQgjxPF5JK1k3aty9e3d27drFH3/8AcC1a9do3749V69eBcDFxYUWLVqwZs0aQkNDadu2LVWrVmXLli1s3boVeHLVVV3jvkqVKnh7e1OrVi38/f3p3Lkzp06dokePHk88L2NjYwkMxBvrVWd21K5dmxs3brB37171PW9vbzQaDUuXLgWgcuXKjBw5ksOHDzNv3jzKlCkDPPk+FMIQSHaHEEIIIV61lx5hKoqiVsbu3bs3p06dUtPerK2tWbt2LZs2bQLygtxhw4Zx4cIFOnTogIODAwcOHMDR0ZElS5bkneBTgmCtVotGo8Hb25v09HSKFi1Kjx49cHJykhEAYZBedWZH/fr1sbKyYtu2bep7np6efPjhh3Tu3LnA5/Jndjyp+rEQbxLJ7hBCCCHE6/LcT/z79+8THx8PPHn0SqPRcPfuXbKysihbtiyenp6sWbOG9PR0rK2t6dq1K4sXL1ZHDtLT0xk+fDhmZmb89ttvnDx5En9/f+Lj40lOTkaj0RQIkPMXc2nUqBG2trZqoK7VamUEQBiUfyqzo0aNGtjZ2RETE6MGHqampvTt25dGjRoV+Jxkdog3nWR3CCGEEOJN8Fwt5nv37tGtWzd1eZAnjV7961//IjAwkMOHDwPw6aefsnHjRq5fvw5A165d2bdvH0lJSQAcP36cLVu20K1bN7y9vYG8YOLKlSusXLkS+O/cM10gbWRkRKFChYC8tTpLlCjBuXPnSElJkSBAGJR/OrNjyJAhLFmyBFtb2wLvC2FoJLtDCCGEEG+C54pAbWxsmDt3LhMmTFBf27t3rzqSBlC7dm3u37/PqVOnAPjkk0+4ffs2Bw4cUNeELlmypBqY379/X2+O2uLFizExMaFFixZqcKEbedal8O3evZuwsDCMjIxYsmQJI0aMYMuWLRQvXvxvfRlCvGxvSmaHrqFfu3ZtXFxcCpyHdEYJQyLZHUIIIYR4kzzX019RFKytrUlMTGTHjh1cunQJf39/vV78999/H0dHRw4ePMitW7cwNzenQYMGrFy5krS0NIyMjAgJCWHJkiUoikKdOnUIDAzkl19+wcnJiaFDhxIcHMyCBQuYM2cOkBd4nD59msGDB1O6dGmCg4OxsLBg27Zt9O7dm3LlysmogHjjvEmZHboOqZs3b0q9AWHQJLtDCCGEEG+a5wqqNRoNDx8+5Msvv2TkyJG4uLioo2T5i8M0a9aM48ePc/LkSQD69u3L9u3buXjxIgDdunUjKSmJXbt2YWtry3fffcfixYtZvnw5169fJzg4GBsbG3V/O3fupHLlypw9e5YpU6Zw9uxZZs2aRcOGDdVgQYg3zZuY2TFnzhyZ6yneaJLdIYQQQghD89wj1YULF6ZJkybk5ORw4sQJwsLC2L17tzqSBtC+fXuSk5M5duwYAEFBQRQuXJiYmBhycnKoUqUK7u7u6vsADRo0oH79+kDBhlSDBg24fv0669evJzg4GCsrqxe+YCH+KW9iZsewYcOkI0q8sSS7QwghhBCG6LlHqgH8/f0xNzdn1apVBAcHc+fOHRISEtTtKlSogKmpKfv37+fy5ctA3pqfv/76K2lpaQAkJCTQv39/vf3rGi5PakiVLFnyeU5ViNfuTczskGkS4k0m2R1CCCGEMEQvlL/23nvvUblyZWJjY7GyslJH306fPg3Ali1bePToEXFxcRw4cACA//znP6xatQp7e3sAzM3NC8xJk2WwxNtEMjuEeD6S3SGEEEIIQ/TcQbVuNNnX15d79+4RExPDoEGDSExMpGfPnowbN44ff/yRsWPH0qlTJ+rUqQNA6dKlqVy5sv7BZU6aeItJZocQz0eyO4QQQghhiJ47qtUFCn5+fhQvXpzVq1dTp04dZs2aRfHixdm8eTNBQUGEh4czbtw4XF1d9T4nxLtGMjuEeDaS3SGEEEIIQ6RR/kYFlmHDhrFv3z5mzpyJh4cHWVlZmJmZqe8rioKiKDIiLd5ZiqKg0WhYtGgRP/74IxMnTsTa2ppu3bpRrFgxAgMDiY2NpVOnTpw+fZpPP/0UV1dX9XNCvIuOHz9OREQE9evXZ8CAAVSpUoWvv/6aXr16qduUL1+emjVrMnnyZJydnWndujXnz59nz5492Nvbk5mZibm5ud5+5b4SQgghxKvwQtGuLg6vV68eGo2GuLg4AMzMzFAURR0F0Gg0ElCLd5pkdgjx/CS7QwghhBCG5IWqr+gaJt7e3ty8eZP09HS992QOmhD6XFxceO+999i3bx+nTp3C19cXLy8vyewQ4jG60WRfX18OHjyo1u3o1q0bPXv2VLM7xo4dy+nTp/XqdjweNMu9JIQQQoh/wgu3OLRaLZGRkdy5c4datWq9zHMS4q0imR1CPDvJ7hBCCCGEoflb64RcunSJcePGUbNmzZd1PkK8dSSzQ4jnJ9kdQgghhDAULxxUGxkZMXr06Jd5LkK8tSSzQ4hnp0sBr1evHvv37ycuLg4PDw81u0Or1WJsbIxGo5ERaiGEEEK8dtK9L8Q/RDI7hHg2kt0hhBBCCEPyt9K/hRDPRjI7hHg+kt0hhBBCCEMhI9VCCCHeSJLdIYQQQghDoFF0pYmFEEIIIYQQQgjxXGSkWgghhBBCCCGEeEESVAshhBBCCCGEEC9IgmohhBBCCCGEEOIFSVAthBBCCCGEEEK8IAmqhRBCCCGEEEKIFyRBtRBCCCGeat68edja2r7u03gtunXrxgcffPC6T0MIIcQbToJqIYQQwkBJ0KcvJiYGjUbDn3/++Vyfu3TpEhqNhqNHj+q9PnXqVObNm/fSzk8IIcTbyeR1n4AQQgghxJvIxsbmdZ+CEEIIAyAj1UIIIcRbICAggM8++4wBAwZgZ2eHo6MjM2fOJD09ne7du2NlZUX58uXZtGmT+hndyO7GjRupVq0aZmZmeHt7c+LEib881oYNG6hZsyZmZmaUK1eOUaNGkZOTo76v0WiYMWMGrVq1wsLCAg8PD/bv38+5c+cICAjA0tISHx8fzp8//9z7nTVrFkFBQVhYWFChQgUiIyOBvNHmBg0aAGBnZ4dGo6Fbt24AREdH4+fnh62tLQ4ODrRq1Urv2K6urgDUqFEDjUZDQEAAUDAT4OHDh0RERFC8eHHMzMzw8/MjLi6uwPe5fft2atWqhYWFBb6+vpw5c+Z//e8TQghhwCSoFkIIId4S8+fPp2jRohw6dIjPPvuM3r1707FjR3x9fUlISCAwMJDw8HAyMjL0PjdkyBC+//574uLiKF68OG3atCE7O/uJx9i8eTNdunQhIiKCxMREZsyYwbx58xg7dqzedmPGjKFr164cPXqUSpUqERYWRs+ePRk+fDjx8fEA9OvX77n3O2rUKIKDgzl+/DgtWrSgc+fOpKamUqZMGVavXg3AmTNnSE5OZurUqQCkp6fz+eefExcXx/bt2zEyMiIoKAitVgvAoUOHANi2bRvJycmsWbPmidc+dOhQVq9ezfz580lISMDNzY3AwEBSU1P1thsxYgQ//PAD8fHxmJiY8NFHHz39f5oQQgjDpwghhBDCIH344YdK27ZtFUVRlPr16yt+fn7qezk5OYqlpaUSHh6uvpacnKwAyv79+xVFUZSdO3cqgLJs2TJ1mzt37ijm5ubK8uXLFUVRlLlz5yo2Njbq+/7+/sq4ceP0zmPhwoVKyZIl1X8DyldffaX+e//+/QqgzJ49W31t6dKlipmZ2d/a74MHDxSNRqNs2rRJ73ru3r37lG8sT0pKigIoJ06cUBRFUS5evKgAypEjR/S2y//9PnjwQDE1NVUWL16svv/o0SPFyclJmTRpkt7xt23bpm6zceNGBVAyMzP/8pyEEEIYLplTLYQQQrwl3nvvPfW/jY2NcXBwoGrVquprjo6OAKSkpOh9zsfHR/1ve3t73N3dOXXq1BOPcfjwYeLi4vRGkHNzc8nKyiIjIwMLC4sC56I77uPnkpWVRVpaGtbW1i+0X0tLS6ysrApcz+POnz/PyJEjOXDgALdv31ZHqK9cuYKnp+dffjb/PrKzs3n//ffV10xNTalTp06B7yr/OZYsWRLI+87Lli37TMcSQghhWCSoFkIIId4Spqamev/WaDR6r2k0GgA1qPwrum0fp9VqGTVqFO3atSvwnpmZ2RPPRbevvzqXF9mvbj//63pat25NmTJl+PXXX3FyckKr1eLp6cmjR4/+8nP5KYqid975X3/8tRf9zoUQQhgmCaqFEEKId9yBAwfUUdS7d++SlJREpUqVnritl5cXZ86cwc3N7aWew8vYb6FChYC8EW6dO3fucOrUKWbMmIG/vz8Ae/bs+Z+fe5ybmxuFChViz549hIWFAZCdnU18fDwDBgx44XMWQghh+CSoFkIIId5xo0ePxsHBAUdHR0aMGEHRokWfuv71119/TatWrShTpgwdO3bEyMiI48ePc+LECb777rsXPoeXsV9nZ2c0Gg1RUVG0aNECc3Nz7OzscHBwYObMmZQsWZIrV67wxRdf6H2uePHimJubEx0dTenSpTEzMyuwnJalpSW9e/dmyJAh2NvbU7ZsWSZNmkRGRgYff/zxC1+3EEIIwyfVv4UQQoh33IQJE+jfvz81a9YkOTmZyMhIdfT2cYGBgURFRbF161Zq165N3bp1mTJlCs7Ozn/rHF7GfkuVKsWoUaP44osvcHR0pF+/fhgZGbFs2TIOHz6Mp6cnAwcOZPLkyXqfMzExYdq0acyYMQMnJyfatm37xP1PmDCB9u3bEx4ejpeXF+fOnWPz5s3Y2dn9rWsXQghh2DSKbpKQEEIIId4pMTExNGjQgLt372Jra/u6T0cIIYQwSDJSLYQQQgghhBBCvCAJqoUQQgghhBBCiBck6d9CCCGEEEIIIcQLkpFqIYQQQgghhBDiBUlQLYQQQgghhBBCvCAJqoUQQgghhBBCiBckQbUQQgghhBBCCPGCJKgWQgghhBBCCCFekATVQgghhBBCCCHEC5KgWgghhBBCCCGEeEESVAshhBBCCCGEEC9IgmohhBBCCCGEEOIF/R9Gn702IVpengAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " time\n", + "method \n", + "iterations = julia_vec(Z) 0.010208\n", + "julia_numpy_arrays(iterations, Z, c) 0.007970\n", + "julia_numpy_naive(iterations, Z, c) 0.105095\n", + "julia_pure_python(iterations, Z, c) 0.012355\n" + ] } ], "source": [ @@ -483,7 +498,7 @@ "source": [ "From the benchmark above, it is quite clear that simply using numpy arrays as a drop-in replacement for a list-of-lists is detrimental for performance. The problem is that accessing individual array elements from numpy arrays is quite slow due to type conversion that are handled under the hood.\n", "\n", - "Using numpy array operations is slightly faster than a list-of-lists implementation, and using `numpy.vectorize()` yields the best performance in this case." + "Using `numpy.vectorize()`is slightly faster than a list-of-lists implementation, and using numpy array operations yields the best performance in this case." ] }, { @@ -496,7 +511,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 29, "id": "986d1e58-d5a3-44d3-bebf-650753f4e57d", "metadata": { "scrolled": true @@ -504,13 +519,25 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACspklEQVR4nOzdd3gUVdvH8d+m0xIIJKElEHrvHVFQQSOCqAhKk2LBBwsiPo9gQRHELkoVURREqoggXamC0juC0hJKSEgCSYD0nPePvDuyJGBYAyl8P9eVC/bsmZl7NjuZueecOcdmjDECAAAAAADXzSW3AwAAAAAAIL8iqQYAAAAAwEkk1QAAAAAAOImkGgAAAAAAJ5FUAwAAAADgJJJqAAAAAACcRFINAAAAAICTSKoBAAAAAHASSTUAAAAAAE4iqQYA/Gtff/21bDbbVX/Wrl2b2yFmy3fffaexY8dm+Z7NZtObb755U+O51md65efbt29fVaxY8abGl9cdP35cNptNH374Ya5s335cHD9+PFe2n9M2bdqkN998U+fPn3d6HUuXLr3qcVSxYkX17dvX6XUDQG5xy+0AAAAFx7Rp01SjRo1M5bVq1cqFaK7fd999p3379mnw4MGZ3vvtt99Uvnz5mxrPb7/95vD67bff1po1a7R69WqH8lq1aikwMFAvvPDCzQwPt5hNmzbprbfeUt++fVW8eHGn1rF06VJNmDAhy8T6hx9+kLe3978LEgByAUk1ACDH1KlTR02aNMntMG6IFi1a5Po2/fz85OLikmUst2oykpCQIC8vL9lsttwOBf9Sw4YNczsEAHAK3b8BADfN7NmzZbPZNH78eIfyESNGyNXVVatWrbLKtm3bps6dO8vX11deXl5q2LCh5s6dm2mdp06d0lNPPaXAwEB5eHiobNmy6tq1qyIiIiRdvQvu2rVrHbqmt23bVkuWLFFoaKhD12q7rLp/79u3Tw888IBKlCghLy8vNWjQQN98802W25k1a5ZeffVVlS1bVt7e3rr77rt16NCh6/0Iryqr7t82m03PPvuspk2bpurVq6tQoUJq0qSJfv/9dxlj9MEHHyg4OFhFixbVnXfeqcOHD2da788//6y77rpL3t7eKly4sFq3bq1ffvnlH+Ox7/e3336rIUOGqHTp0ipUqJDuuOMO7dy5M1P97Py+7b/LlStXqn///vLz81PhwoWVlJSU7c/Jvo7Vq1frySefVMmSJeXt7a0+ffro4sWLOnPmjLp166bixYurTJkyGjp0qFJSUqzl7V3K33//fY0ePVpBQUHy8vJSkyZNsvW5SNn7TN98803ZbDbt2bNHjzzyiHx8fOTr66shQ4YoNTVVhw4d0r333qtixYqpYsWKev/99zNtJy4uTkOHDlVwcLA8PDxUrlw5DR48WBcvXnSoZ/+ezJgxQzVr1lThwoVVv359/fTTTw7xvPzyy5Kk4ODgTI92zJkzRx06dFCZMmVUqFAh1axZU6+88orDtvr27asJEyZY27T/2I/NrLp/h4WFqVevXvL395enp6dq1qypjz76SOnp6Zl+Jx9++KE+/vhj6zvdsmVL/f7779n6nQDAv0FSDQDIMWlpaUpNTXX4SUtLs95/9NFHNXDgQL300kvatm2bJGn16tUaNWqUhg8frvbt20uS1qxZo9atW+v8+fOaPHmyfvzxRzVo0EDdu3fX119/ba3v1KlTatq0qX744QcNGTJEy5Yt09ixY+Xj46Nz585dV+wTJ05U69atVbp0af3222/Wz9UcOnRIrVq10v79+/XZZ59pwYIFqlWrlvr27ZtlgjN8+HCFhoZq6tSpmjJliv766y916tTJ4fO5EX766SdNnTpV7777rmbNmqX4+Hh17NhRL730kjZu3Kjx48drypQpOnDggB5++GEZY6xlv/32W3Xo0EHe3t765ptvNHfuXPn6+uqee+7JdgI5fPhwHT16VFOnTtXUqVN1+vRptW3bVkePHrXqZPf3bde/f3+5u7trxowZmj9/vtzd3a/7c3niiSfk4+Oj2bNn67XXXtN3332nJ598Uh07dlT9+vU1f/58Pf744/roo480bty4TMuPHz9ey5cv19ixY/Xtt9/KxcVFISEh1/zOSNf/mXbr1k3169fX999/ryeffFKffPKJXnzxRXXp0kUdO3bUDz/8oDvvvFP/+9//tGDBAmu5S5cu6Y477tA333yj559/XsuWLdP//vc/ff311+rcubPD71mSlixZovHjx2vkyJH6/vvv5evrqwcffND6PT3xxBN67rnnJEkLFiywjo9GjRpJkv766y/dd999+vLLL7V8+XINHjxYc+fOVadOnaxtvP766+rataskORxjZcqUyfKzOnv2rFq1aqWVK1fq7bff1qJFi3T33Xdr6NChevbZZzPVnzBhglatWqWxY8dq5syZunjxou677z7FxsZe83cCAP+aAQDgX5o2bZqRlOWPq6urQ93ExETTsGFDExwcbA4cOGACAgLMHXfcYVJTU606NWrUMA0bNjQpKSkOy95///2mTJkyJi0tzRhjTP/+/Y27u7s5cODAP8Z27Ngxh/I1a9YYSWbNmjVWWceOHU2FChWyXI8kM2LECOv1o48+ajw9PU1YWJhDvZCQEFO4cGFz/vx5h+3cd999DvXmzp1rJJnffvvtqrFf6fHHHzdFihS56ntXxi7JlC5d2ly4cMEqW7hwoZFkGjRoYNLT063ysWPHGklmz549xhhjLl68aHx9fU2nTp0c1pmWlmbq169vmjVrds1Y7fvdqFEjh+0cP37cuLu7myeeeMIqy+7v2/677NOnzzW3bXfs2DEjyXzwwQdWmX0dzz33nEPdLl26GEnm448/dihv0KCBadSoUaZ1li1b1iQkJFjlcXFxxtfX19x9992ZtmX/7l3PZzpixAgjyXz00UeZ4pFkFixYYJWlpKQYPz8/89BDD1llY8aMMS4uLmbr1q0Oy8+fP99IMkuXLrXKJJmAgAATFxdnlZ05c8a4uLiYMWPGWGUffPBBlsfSldLT001KSopZt26dkWR2795tvTdo0CBztcvPChUqmMcff9x6/corrxhJZvPmzQ71nnnmGWOz2cyhQ4eMMX//TurWrevwd2TLli1Gkpk1a9Y14wWAf4uWagBAjpk+fbq2bt3q8LN582aHOp6enpo7d66io6PVqFEjGWM0a9Ysubq6SpIOHz6sgwcPqmfPnpLk0Op93333KTw83Oo2vWzZMrVr1041a9a8uTuqjBb2u+66S4GBgQ7lffv21aVLlzK1WHbu3Nnhdb169SRJoaGhNzTOdu3aqUiRItZr+2cVEhLi0L3dXm6PZ9OmTYqJidHjjz/u8DtIT0/Xvffeq61bt2bqRpyVHj16OGynQoUKatWqldasWSPp+n7fdg8//LAzH4WD+++/3+G1ff87duyYqTyr39FDDz0kLy8v63WxYsXUqVMnrV+//qq9D5z5TLOK02azKSQkxCpzc3NTlSpVHOL86aefVKdOHTVo0MBhW/fcc0+WI/K3a9dOxYoVs14HBATI398/29/Po0ePqkePHipdurRcXV3l7u6uO+64Q5L0xx9/ZGsdV1q9erVq1aqlZs2aOZT37dtXxphMA/Z17NjR+jsi3bxjDAAYqAwAkGNq1qyZrYHKqlSpojZt2mjJkiV65plnHLp/2p+FHjp0qIYOHZrl8lFRUZIyuofe7BG57aKjo7Pstlq2bFnr/cuVLFnS4bWnp6ekjIG2biRfX1+H1x4eHtcsT0xMlPT378HeXTcrMTExDgl7VkqXLp1l2e7dux22k53ft93Vugtfj+v5XOyfyeWutl/Jycm6cOGCfHx8Mr3vzGeaVTyFCxd2SOjt5XFxcQ7bOnz48FW7xl/5mV75/ZQyvqPZ+X5euHBBbdq0kZeXl0aNGqVq1aqpcOHCOnHihB566CGnv+PR0dFZThOX144xACCpBgDcdFOnTtWSJUvUrFkzjR8/Xt27d1fz5s0lSaVKlZIkDRs2TA899FCWy1evXl1SxmjYJ0+evOa27MnHlYNZXZlUXK+SJUsqPDw8U/np06cl/b0f+ZU9/nHjxl115POAgIB/XM+ZM2eyLLMnQNfz+7bLCyN9X22/PDw8VLRo0SyXyanPNDtKlSqlQoUK6auvvrpmLDlh9erVOn36tNauXWu1Tkv6V/NZSwX/GANQcJBUAwBuqr179+r5559Xnz599MUXX6hVq1bq3r27du7cqRIlSqh69eqqWrWqdu/erXfeeeea6woJCdGMGTN06NChTImXnb2la8+ePQ51Fi1alKludlvmJOmuu+7SDz/8oNOnT1stZ1JGF/jChQvnyhRcOal169YqXry4Dhw4kOWgUNk1a9YsDRkyxEqEQ0NDtWnTJvXp00eSruv3nZcsWLBAH3zwgXXTJj4+XosXL1abNm0cuiBfLqc+0+y4//779c4776hkyZIKDg7OkXVereXX/ru1v2/3+eefX3MdhQoVuub27rrrLo0ZM0Y7duywBkSTMo4xm82mdu3aXf9OAMANQFINAMgx+/btU2pqaqbyypUry8/PTxcvXlS3bt0UHBysiRMnysPDQ3PnzlWjRo3Ur18/LVy4UFLGxXhISIjuuece9e3bV+XKlVNMTIz++OMP7dixQ/PmzZMkjRw5UsuWLdPtt9+u4cOHq27dujp//ryWL1+uIUOGqEaNGmratKmqV6+uoUOHKjU1VSVKlNAPP/ygX3/9NVOcdevW1YIFCzRp0iQ1btxYLi4uV+3OPmLECP30009q166d3njjDfn6+mrmzJlasmSJ3n///Sy7/+YnRYsW1bhx4/T4448rJiZGXbt2lb+/v86ePavdu3fr7NmzmjRp0j+uJzIyUg8++KCefPJJxcbGasSIEfLy8tKwYcOsOtn9feclrq6uat++vYYMGaL09HS99957iouL01tvvXXVZXLqM82OwYMH6/vvv9ftt9+uF198UfXq1VN6errCwsK0cuVKvfTSS1bvkOyqW7euJOnTTz/V448/Lnd3d1WvXl2tWrVSiRIlNHDgQI0YMULu7u6aOXOm1cU/q3W89957CgkJkaurq+rVq2d1v7/ciy++qOnTp6tjx44aOXKkKlSooCVLlmjixIl65plnVK1aNSc+GQDIeSTVAIAc069fvyzLv/jiCz3xxBMaOHCgwsLCtHXrVuu50UqVKmnq1Kl65JFHNHbsWA0ePFjt2rXTli1bNHr0aA0ePFjnzp1TyZIlVatWLXXr1s1ab7ly5bRlyxaNGDFC7777rqKjo+Xn56fbbrvNehbV1dVVixcv1rPPPquBAwfK09NTjz76qMaPH59pUKoXXnhB+/fv1/DhwxUbGytjTKaph+yqV6+uTZs2afjw4Ro0aJASEhJUs2ZNTZs2LdNcu/lVr169FBQUpPfff19PP/204uPj5e/vrwYNGmR7H9955x1t3bpV/fr1U1xcnJo1a6bZs2ercuXKVp3s/r7zkmeffVaJiYl6/vnnFRkZqdq1a2vJkiVq3br1NZfLic80O4oUKaINGzbo3Xff1ZQpU3Ts2DEVKlRIQUFBuvvuu7N8VvmftG3bVsOGDdM333yjL774Qunp6VqzZo01x/tLL72kXr16qUiRInrggQc0Z84chxZmKWPguo0bN2rixIkaOXKkjDE6duxYlvH4+flp06ZNGjZsmIYNG6a4uDhVqlRJ77//voYMGeLkJwMAOc9mrna1AAAA4KS1a9eqXbt2mjdv3jUH5spvjh8/ruDgYH3wwQdXHVgNAHBrYUotAAAAAACcRFINAAAAAICT6P4NAAAAAICTaKkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACcxTzWUnp6u06dPq1ixYrLZbLkdDgAAAADkOmOM4uPjVbZsWbm4XL09mqQaOn36tAIDA3M7DAAAAADIc06cOKHy5ctf9X2SaqhYsWKSMr4s3t7euRwNAAAAAOS+uLg4BQYGWvnS1ZBUw+ry7e3tTVINAAAAAJf5p0dkGagMAAAAAAAnkVQDAAAAAOAkkmoAAAAAAJxEUp3HrF+/Xp06dVLZsmVls9m0cOHCbC+7ceNGubm5qUGDBjcsPgAAAADA30iq85iLFy+qfv36Gj9+/HUtFxsbqz59+uiuu+66QZEBAAAAAK7E6N95TEhIiEJCQq57uaefflo9evSQq6vrdbVuAwAAAACcR0t1ATBt2jQdOXJEI0aMyO1QAAAAAOCWQkt1PvfXX3/plVde0YYNG+Tmlr1fZ1JSkpKSkqzXcXFxNyo8AAAAACjQaKnOx9LS0tSjRw+99dZbqlatWraXGzNmjHx8fKyfwMDAGxglAAAAABRcNmOMye0gkDWbzaYffvhBXbp0yfL98+fPq0SJEnJ1dbXK0tPTZYyRq6urVq5cqTvvvDPTclm1VAcGBio2Nlbe3t45vh8AAAAAkN/ExcXJx8fnH/Mkun/nY97e3tq7d69D2cSJE7V69WrNnz9fwcHBWS7n6ekpT0/PmxEiAAAAABRoJNV5zIULF3T48GHr9bFjx7Rr1y75+voqKChIw4YN06lTpzR9+nS5uLioTp06Dsv7+/vLy8srUzkAAAAAIOeRVOcx27ZtU7t27azXQ4YMkSQ9/vjj+vrrrxUeHq6wsLDcCg8A8q20tDTt2bNHMTEx8vX1Vb169RwenwEAAHAGz1Qj288KAEB+tX79ek2cOFFnzpyxykqXLq3//Oc/uv3223MxMgAAkFdlN09i9G8AQIG2fv16DR06VHFxcapXr54eeeQRvfTSS6pUqZJGjBih9evX53aIAAAgH6P7NwCgwEpLS9O7774rT09PNW3aVDabTWfPnlVUVJR69eolSZo0aZJat25NV3AAAOAUWqoBAAXWnj17dOTIEdWtW1c2m80qN8Zo48aN6tmzp8LDw7Vnz55cjBIAAORnJNUAgAIrJiZGycnJKlGiRKb3zp49a009GBMTc7NDAwAABQRJNQCgwPL19ZWHh4fOnTuX6T0/Pz8dO3bMqgcAAOAMkmoAQIFVr149Va5cWXv37tXlk13YbDa1bt1aM2fOVJkyZVSvXr1cjBIAAORnJNUAgALL1dVVr7zyipKSkrR161adO3dOfn5+atSokb799lv99ttveuaZZxikDAAAOI15qsE81QAKvKzmqS5TpoyeeeYZ3X777Tp48KA2bNigyMhI+fv7q02bNqpRo0YuRgwAAHJbdvMkkmqQVAO4JaSlpWnPnj2KiYmRr6+v6tWrJ1dXVx08eFCzZ892qGuz2dS9e3cSawAAbmHZzZOYpxoA8K8lJiYqLCwst8P4R0WKFFGRIkUkSUeOHJEkzZ8/X9HR0Znqzp8/X926dbup8V0pKChIXl5euRoDAAC4NpJqAMC/FhYWpqeeeiq3w3BKaGiosuq0ZbPZ9PPPP+dCRH+bMmWKqlWrlqsxAACAayOpBgD8a0FBQZoyZUpuh/GPQkNDNXr0aL366quqUKGCJGnu3LmKiIjIVDcgICBPtFQDAIC8jaQaAPK4iIgIxcbG5nYYBVbjxo21bNkyxcTE6PTp00pISFChQoVUt27d3A4tX3Sp9/HxUUBAQG6HAQBArmGgMjBQGZCHRUREqFfvPkpJTsrtUPKcS5cuKTY2VsnJyfLw8JCPj48KFy7s1Lqio6N1+vRppaWlydXVVV5eXnJ3d5e/v7/T67xVuHt46tsZ00msAQAFDgOVAUABEBsbq5TkJCVUukPpXj65HU6ekXAuQjGHd0neJSRJSZIuGKlEmQYqVOL6k7v4A7/L06us9dpISpYUWdhHfrVaKOFchC6EH1NKwgW5FyqqomWCndpOQeOSGCsdXafY2FiSagDALcsltwMAAGQDnYocXAg/lqnMXKU8O1ISLmRZnppwwUrgky/GyqSnKflirM4d3qWEc5mfw77l8L0EAICWagDIDwodW5/bIeQpUaGh8shqxO4om4oo8rrXV/R8uJKSMnex9/T0VMqOI/LI4r2UuOMqVabMdW8LAAAULCTVAJAPJATfrvRCxXM7jDzD6HclX8w8eJtHER9drNXiutfnXiZCFw7v0uVpuk1S0SoNdO7oXpn0tEzLpLq46mKtu697WwWJS8J5bvgAAG55dP8GgPzAZsvtCPKUomWCdeUnYvv/cmcUKhGgElUaSDabEqJO61LUaeszdy9UNMtl3K5SfkvhewkAAC3VAJCX+fj4yN3DUzq6LrdDyVOKSCpsy2L07/DNUrhz67RduqQLkZHysBdEHtSFyIMqVqyY4uPjM9X3t/mr8IHr72pe0Lh7eMrHh0H0AAC3LpJqAMjDAgIC9O2M6cxTnUNCQ0M1evRovfrqq6pQoYLDe3PnzlVERObBxwICAtS4cWNt375dMTEx8vX1VePGjVW5cuWbFXaexjzVAIBbHUk1AORxAQEBJC05rEKFCqpWrZpDmc1mU8mSJTPVdXFxUUhIiEJCQm5WeAAAIB/hmWoAACT5+/tnWe7n53eTIwEAAPkJSTUAAJLatGkj2xUDb9lsNrVp0yaXIgIAAPkBSTUAAJJq1Kih7t27q1y5cvLw8FC5cuXUvXt31ahRI7dDAwAAeRjPVAMA8r2DBw9qw4YNioyMlL+/v9q0aeNUMlyjRg2SaAAAcF1oqQYA5GsHDx7U7NmzderUKaWkpOjUqVOaM2eODh48mNuhAQCAWwAt1QCAfy0xMVFhYWG5su358+crOjo6y/Ju3bo5lIWGhjr8m9cFBQXJy8srt8MAAADXYDPGmNwOArkrLi5OPj4+io2Nlbe3d26HAyAf+vPPP/XUU0/lyrZDQ0OV1anMZrNlmos6v5kyZUqmqb8AAMDNkd08iZZqAMC/FhQUpClTpuTKtufOnauIiIhM5QEBAZlaqvOboKCg3A4BAAD8A5JqAMC/5uXllWstql27dtWcOXMcWqttNpu6du1KKy8AALjhGKgMAJCvMRUWAADITbRUAwDyPabCAgAAuYWWagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNV5zPr169WpUyeVLVtWNptNCxcuvGb9BQsWqH379vLz85O3t7datmypFStW3JxgAQAAAOAWR1Kdx1y8eFH169fX+PHjs1V//fr1at++vZYuXart27erXbt26tSpk3bu3HmDIwUAAAAA2IwxJreDQNZsNpt++OEHdenS5bqWq127trp376433ngjW/Xj4uLk4+Oj2NhYeXt7OxEpAAAAABQs2c2TaKkuYNLT0xUfHy9fX9/cDgUAAAAACjy33A4AOeujjz7SxYsX1a1bt6vWSUpKUlJSkvU6Li7uZoQGAAAAAAUOLdUFyKxZs/Tmm29qzpw58vf3v2q9MWPGyMfHx/oJDAy8iVECAAAAQMFBUl1AzJkzRwMGDNDcuXN19913X7PusGHDFBsba/2cOHHiJkUJAAAAAAUL3b8LgFmzZql///6aNWuWOnbs+I/1PT095enpeRMiAwAAAICCjaQ6j7lw4YIOHz5svT527Jh27dolX19fBQUFadiwYTp16pSmT58uKSOh7tOnjz799FO1aNFCZ86ckSQVKlRIPj4+ubIPAAAAAHCroPt3HrNt2zY1bNhQDRs2lCQNGTJEDRs2tKbHCg8PV1hYmFX/888/V2pqqgYNGqQyZcpYPy+88EKuxA8AAAAAtxLmqQbzVAMAAADAFZinGgAAAACAG4ykGgAAAAAAJ5FUAwAAAADgJJJqAAAAAACcRFINAAAAAICTSKoBAAAAAHASSTUAAAAAAE4iqQYAAAAAwEkk1QAAAAAAOImkGgAAAAAAJ5FUAwAAAADgJJJqAAAAAACcRFINAAAAAICTSKoBAAAAAHASSTUAAAAAAE4iqQYAAAAAwEkk1QAAAAAAOImkGgAAAAAAJ5FUAwAAAADgJJJqAAAAAACcRFINAAAAAICTSKoBAAAAAHASSTUAAAAAAE4iqQYAAAAAwEkk1QAAAAAAOImkGgAAAAAAJ5FUAwAAAADgJJJqAAAAAACcRFINAAAAAICTSKoBAAAAAHASSTUAAAAAAE4iqQYAAAAAwEkk1QAAAAAAOImkGgAAAAAAJ5FUAwAAAADgJJJqAAAAAACcRFINAAAAAICTSKoBAAAAAHASSTUAAAAAAE4iqQYAAAAAwEkk1QAAAAAAOImkGgAAAAAAJ5FUAwAAAADgJJJqAAAAAACcRFINAAAAAICTSKoBAAAAAHASSXUes379enXq1Elly5aVzWbTwoUL/3GZdevWqXHjxvLy8lKlSpU0efLkGx8oAAAAAICkOq+5ePGi6tevr/Hjx2er/rFjx3TfffepTZs22rlzp4YPH67nn39e33///Q2OFAAAAADgltsBwFFISIhCQkKyXX/y5MkKCgrS2LFjJUk1a9bUtm3b9OGHH+rhhx++QVECAAAAACRaqvO93377TR06dHAou+eee7Rt2zalpKTkUlQAAAAAcGugpTqfO3PmjAICAhzKAgIClJqaqqioKJUpUybTMklJSUpKSrJex8XF3fA4AQAAAKAgoqW6ALDZbA6vjTFZltuNGTNGPj4+1k9gYOANjxEAAAAACiKS6nyudOnSOnPmjENZZGSk3NzcVLJkySyXGTZsmGJjY62fEydO3IxQAQAAAKDAoft3PteyZUstXrzYoWzlypVq0qSJ3N3ds1zG09NTnp6eNyM8AAAAACjQaKnOYy5cuKBdu3Zp165dkjKmzNq1a5fCwsIkZbQy9+nTx6o/cOBAhYaGasiQIfrjjz/01Vdf6csvv9TQoUNzI3wAAAAAuKXQUp3HbNu2Te3atbNeDxkyRJL0+OOP6+uvv1Z4eLiVYEtScHCwli5dqhdffFETJkxQ2bJl9dlnnzGdFgAAAADcBDZjH9UKt6y4uDj5+PgoNjZW3t7euR0OAAAAAOS67OZJdP8GAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iq86CJEycqODhYXl5eaty4sTZs2HDN+jNnzlT9+vVVuHBhlSlTRv369VN0dPRNihYAAAAAbl0k1XnMnDlzNHjwYL366qvauXOn2rRpo5CQEIWFhWVZ/9dff1WfPn00YMAA7d+/X/PmzdPWrVv1xBNP3OTIAQAAAODWQ1Kdx3z88ccaMGCAnnjiCdWsWVNjx45VYGCgJk2alGX933//XRUrVtTzzz+v4OBg3XbbbXr66ae1bdu2mxw5AAAAANx6SKrzkOTkZG3fvl0dOnRwKO/QoYM2bdqU5TKtWrXSyZMntXTpUhljFBERofnz56tjx443I2QAAAAAuKWRVOchUVFRSktLU0BAgEN5QECAzpw5k+UyrVq10syZM9W9e3d5eHiodOnSKl68uMaNG3fV7SQlJSkuLs7hBwAAAABw/Uiq8yCbzebw2hiTqczuwIEDev755/XGG29o+/btWr58uY4dO6aBAwdedf1jxoyRj4+P9RMYGJij8QMAAADArcJmjDG5HQQyJCcnq3Dhwpo3b54efPBBq/yFF17Qrl27tG7dukzL9O7dW4mJiZo3b55V9uuvv6pNmzY6ffq0ypQpk2mZpKQkJSUlWa/j4uIUGBio2NhYeXt75/BeAQAAAED+ExcXJx8fn3/Mk2ipzkM8PDzUuHFjrVq1yqF81apVatWqVZbLXLp0SS4ujr9GV1dXSRkt3Fnx9PSUt7e3ww8AAAAA4Pq55XYABcWJEyd0/PhxXbp0SX5+fqpdu7Y8PT2vez1DhgxR79691aRJE7Vs2VJTpkxRWFiY1Z172LBhOnXqlKZPny5J6tSpk5588klNmjRJ99xzj8LDwzV48GA1a9ZMZcuWzdF9BAAAAAA4Iqn+F0JDQzV58mTNmjVLJ06ccGgZ9vDwUJs2bfTUU0/p4YcfztSafDXdu3dXdHS0Ro4cqfDwcNWpU0dLly5VhQoVJEnh4eEOc1b37dtX8fHxGj9+vF566SUVL15cd955p957772c3VkAAAAAQCY8U+2kF154QdOmTVOHDh3UuXNnNWvWTOXKlVOhQoUUExOjffv2acOGDZo1a5bc3Nw0bdo0NW3aNLfDzlJ2nxUAAAAAgFtFdvMkWqqd5OHhoSNHjsjPzy/Te/7+/rrzzjt15513asSIEVq6dKlCQ0PzbFINAAAAAHAOLdWgpRoAAAAArsDo3zdRQkKCLl26ZL0ODQ3V2LFjtWLFilyMCgAAAABwo5FU54AHHnjAGo37/Pnzat68uT766CN16dJFkyZNyuXoAAAAAAA3Ckl1DtixY4fatGkjSZo/f74CAgIUGhqq6dOn67PPPsvl6AAAAAAANwpJdQ64dOmSihUrJklauXKlHnroIbm4uKhFixYKDQ3N5egAAAAAADcKSXUOqFKlihYuXKgTJ05oxYoV6tChgyQpMjKSgb8AAAAAoAAjqc4Bb7zxhoYOHaqKFSuqefPmatmypaSMVuuGDRvmcnQAAAAAgBuFKbVyyJkzZxQeHq769evLxSXjXsWWLVvk7e2tGjVq5HJ018aUWgAAAADgKLt5kttNjKlAK126tEqXLu1Q1qxZs1yKBgAAAABwM9D920kDBw7UiRMnslV3zpw5mjlz5g2OCAAAAABws9FS7SQ/Pz/VqVNHrVq1UufOndWkSROVLVtWXl5eOnfunA4cOKBff/1Vs2fPVrly5TRlypTcDhkAAAAAkMN4pvpfiIyM1JdffqnZs2dr3759Du8VK1ZMd999t5566ilrNPC8imeqAQAAAMBRdvMkkuoccv78eYWGhiohIUGlSpVS5cqVZbPZcjusbCGpBgAAAABHDFR2kxUvXlzFixfP7TAAAAAAADcRA5UBAAAAAOAkkmoAAAAAAJxEUg0AAAAAgJNIqgEAAAAAcBJJdQ5JTU3Vzz//rM8//1zx8fGSpNOnT+vChQu5HBkAAAAA4EZh9O8cEBoaqnvvvVdhYWFKSkpS+/btVaxYMb3//vtKTEzU5MmTcztEAAAAAMANQEt1DnjhhRfUpEkTnTt3ToUKFbLKH3zwQf3yyy+5GBkAAAAA4EaipToH/Prrr9q4caM8PDwcyitUqKBTp07lUlQAAAAAgBuNluockJ6errS0tEzlJ0+eVLFixXIhIgAAAADAzUBSnQPat2+vsWPHWq9tNpsuXLigESNG6L777su9wAAAAAAAN5TNGGNyO4j87vTp02rXrp1cXV31119/qUmTJvrrr79UqlQprV+/Xv7+/rkd4jXFxcXJx8dHsbGx8vb2zu1wAAAAACDXZTdP4pnqHFC2bFnt2rVLs2bN0o4dO5Senq4BAwaoZ8+eDgOXAQAAAAAKFlqqQUs1AAAAAFyBluqb7NSpU9q4caMiIyOVnp7u8N7zzz+fS1EBAAAAAG4kkuocMG3aNA0cOFAeHh4qWbKkbDab9Z7NZiOpBgAAAIACiu7fOSAwMFADBw7UsGHD5OKS/wZUp/s3AAAAADjKbp6U/zLAPOjSpUt69NFH82VCDQAAAABwHllgDhgwYIDmzZuX22EAAAAAAG4yun/ngLS0NN1///1KSEhQ3bp15e7u7vD+xx9/nEuRZQ/dvwEAAADAEaN/30TvvPOOVqxYoerVq0tSpoHKAAAAAAAFE0l1Dvj444/11VdfqW/fvrkdCgAAAADgJuKZ6hzg6emp1q1b53YYAAAAAICbjKQ6B7zwwgsaN25cbocBAAAAALjJ6P6dA7Zs2aLVq1frp59+Uu3atTMNVLZgwYJcigwAAAAAcCORVOeA4sWL66GHHsrtMAAAAAAANxlJdQ6YNm1abocAAAAAAMgFPFMNAAAAAICTaKl2UqNGjfTLL7+oRIkSatiw4TXno96xY8dNjAwAAAAAcLOQVDvpgQcekKenpySpS5cuuRsMAAAAACBX2IwxJreDyK/69++vTz/9VMWKFcvtUP6VuLg4+fj4KDY2Vt7e3rkdDgAAAADkuuzmSTxT/S988803SkhIyO0wAAAAAAC5hKT6X7hRjfwTJ05UcHCwvLy81LhxY23YsOGa9ZOSkvTqq6+qQoUK8vT0VOXKlfXVV1/dkNgAAAAAAH/jmep/6VoDlDljzpw5Gjx4sCZOnKjWrVvr888/V0hIiA4cOKCgoKAsl+nWrZsiIiL05ZdfqkqVKoqMjFRqamqOxgUAAAAAyIxnqv8FFxcX+fj4/GNiHRMTk+11Nm/eXI0aNdKkSZOsspo1a6pLly4aM2ZMpvrLly/Xo48+qqNHj8rX1zf7wV+GZ6oBAAAAwFF28yRaqv+lt956Sz4+PjmyruTkZG3fvl2vvPKKQ3mHDh20adOmLJdZtGiRmjRpovfff18zZsxQkSJF1LlzZ7399tsqVKhQjsQFAAAAAMgaSfW/9Oijj8rf3z9H1hUVFaW0tDQFBAQ4lAcEBOjMmTNZLnP06FH9+uuv8vLy0g8//KCoqCj95z//UUxMzFWfq05KSlJSUpL1Oi4uLkfiBwAAAIBbDQOV/Qs5/Tz11dZrjLnqttLT02Wz2TRz5kw1a9ZM9913nz7++GN9/fXXVx2ZfMyYMfLx8bF+AgMDc3wfAAAAAOBWQFL9L+T04+ilSpWSq6trplbpyMjITK3XdmXKlFG5cuUcuqDXrFlTxhidPHkyy2WGDRum2NhY6+fEiRM5txMAAAAAcAshqf4X0tPTc6zrtyR5eHiocePGWrVqlUP5qlWr1KpVqyyXad26tU6fPq0LFy5YZX/++adcXFxUvnz5LJfx9PSUt7e3ww8AAAAA4PqRVOcxQ4YM0dSpU/XVV1/pjz/+0IsvvqiwsDANHDhQUkYrc58+faz6PXr0UMmSJdWvXz8dOHBA69ev18svv6z+/fszUBkAAAAA3GAMVJbHdO/eXdHR0Ro5cqTCw8NVp04dLV26VBUqVJAkhYeHKywszKpftGhRrVq1Ss8995yaNGmikiVLqlu3bho1alRu7QIAAAAA3DKYpxrMUw0AAAAAV8hunkT3bwAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpDoPmjhxooKDg+Xl5aXGjRtrw4YN2Vpu48aNcnNzU4MGDW5sgAAAAAAASSTVec6cOXM0ePBgvfrqq9q5c6fatGmjkJAQhYWFXXO52NhY9enTR3fddddNihQAAAAAYDPGmNwOAn9r3ry5GjVqpEmTJlllNWvWVJcuXTRmzJirLvfoo4+qatWqcnV11cKFC7Vr165sbzMuLk4+Pj6KjY2Vt7f3vwkfAAAAAAqE7OZJtFTnIcnJydq+fbs6dOjgUN6hQwdt2rTpqstNmzZNR44c0YgRI250iAAAAACAy7jldgD4W1RUlNLS0hQQEOBQHhAQoDNnzmS5zF9//aVXXnlFGzZskJtb9n6dSUlJSkpKsl7HxcU5HzQAAAAA3MJoqc6DbDabw2tjTKYySUpLS1OPHj301ltvqVq1atle/5gxY+Tj42P9BAYG/uuYAQAAAOBWRFKdh5QqVUqurq6ZWqUjIyMztV5LUnx8vLZt26Znn31Wbm5ucnNz08iRI7V79265ublp9erVWW5n2LBhio2NtX5OnDhxQ/YHAAAAAAo6un/nIR4eHmrcuLFWrVqlBx980CpftWqVHnjggUz1vb29tXfvXoeyiRMnavXq1Zo/f76Cg4Oz3I6np6c8PT1zNngAAAAAuAWRVOcxQ4YMUe/evdWkSRO1bNlSU6ZMUVhYmAYOHCgpo5X51KlTmj59ulxcXFSnTh2H5f39/eXl5ZWpHAAAAACQ80iq85ju3bsrOjpaI0eOVHh4uOrUqaOlS5eqQoUKkqTw8PB/nLMaAAAAAHBzME81mKcaAAAAAK7APNUAAAAAANxgJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iq86CJEycqODhYXl5eaty4sTZs2HDVugsWLFD79u3l5+cnb29vtWzZUitWrLiJ0QIAAADArYukOo+ZM2eOBg8erFdffVU7d+5UmzZtFBISorCwsCzrr1+/Xu3bt9fSpUu1fft2tWvXTp06ddLOnTtvcuQAAAAAcOuxGWNMbgeBvzVv3lyNGjXSpEmTrLKaNWuqS5cuGjNmTLbWUbt2bXXv3l1vvPFGturHxcXJx8dHsbGx8vb2dipuAAAAAChIspsn0VKdhyQnJ2v79u3q0KGDQ3mHDh20adOmbK0jPT1d8fHx8vX1vREhAgAAAAAu45bbAeBvUVFRSktLU0BAgEN5QECAzpw5k611fPTRR7p48aK6det21TpJSUlKSkqyXsfFxTkXMAAAAADc4mipzoNsNpvDa2NMprKszJo1S2+++abmzJkjf3//q9YbM2aMfHx8rJ/AwMB/HTMAAAAA3IpIqvOQUqVKydXVNVOrdGRkZKbW6yvNmTNHAwYM0Ny5c3X33Xdfs+6wYcMUGxtr/Zw4ceJfxw4AAAAAtyKS6jzEw8NDjRs31qpVqxzKV61apVatWl11uVmzZqlv37767rvv1LFjx3/cjqenp7y9vR1+AAAAAADXj2eq85ghQ4aod+/eatKkiVq2bKkpU6YoLCxMAwcOlJTRynzq1ClNnz5dUkZC3adPH3366adq0aKF1cpdqFAh+fj45Np+AAAAAMCtgKQ6j+nevbuio6M1cuRIhYeHq06dOlq6dKkqVKggSQoPD3eYs/rzzz9XamqqBg0apEGDBlnljz/+uL7++uubHT4AAAAA3FKYpxrMUw0AAAAAV2CeagAAAAAAbjCSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOIqkGAAAAAMBJJNUAAAAAADiJpBoAAAAAACeRVAMAAAAA4CSSagAAAAAAnERSDQAAAACAk0iqAQAAAABwEkk1AAAAAABOcsvtAAA4OnjwoDZs2KDIyEj5+/urTZs2qlGjRm6HBQAAACALtFQDecjBgwc1e/ZsnTp1SikpKTp16pTmzJmjgwcP5nZoAAAAALJASzVuaYmJiQoLC8vtMCzz589XdHR0luXdunXLhYicFxQUJC8vr9wOAwAAALihSKpxSwsLC9NTTz11U7Z16dIlxcbGKjk5WR4eHvLx8VHhwoUd6oSGhsoYk2lZm82mn3/++brWldumTJmiatWq5XYYAAAAwA1FUo1bWlBQkKZMmXLDt3PkyBEtXbrUocxmsykkJESVK1e2yubOnauIiIhMywcEBKh58+YaPXq0evfurV27dv3junJbUFBQbocAAAAA3HAk1bhhIiIiFBsbm9th5Anbt2/PVBYTE6PPP/9cwcHBSk9PlySdP39eJ06cUJkyZeTr6yspI2Fu3Lixtdy+ffsyrcsYo+3bt+eppDovdau/Gh8fHwUEBOR2GAAAAMjHbCarvqa4pcTFxcnHx0exsbHy9vbOkXVGRESoV+8+SklOypH15XdXdutOSUnRxYsXJUlFihRx+L+U8ax3oUKFVKRIkUxdu6/VRbxChQo3cjcKHHcPT307YzqJNQAAADLJbp5ESzVuiNjYWKUkJymxXCMZj6K5HU7uS9mhlIvx1suL0eFK83KTq7unLkpK88o4FC+6eKpIyTLykuRepJiKV2ukhPNROhsZptSEi3IrVEQpxStkmVR7FCmmmBJBir+sbjH/IBUqXuom7WT+Yku+IJ3aodjYWJJqAAAAOI2kGjeU16kduR1CnuCXckmR5yOt17YLsXI1RkVcM1qpXe3lSTa5uyZnvIi1yaREKi4yYzlXSUaSSUmRJLm7uztso2haMcWd2udQN+7UPnn5++e5QcwAAABuZWlpadqzZ49iYmLk6+urevXqydXV9Z8XRJ5EUo0bwsfHR27uHkpNSc7tUPKEwoULy9/f32HEbjc3N7m7u8vV1VVpaWmSJBeXv6eO9/DwyPKZdHd3d9lsNnl4eDiM/n2159djY2NJqq/CzT3jswMAALhZ1q9fr4kTJ+rMmTNWWenSpfWf//xHt99+ey5GBmfxTDVuyDPVUv4YqCw0NFSjR4++6du9dOmSIv+/BfrK56vtLdD+/v46e/Zstp+fzmvPWr/66qt5/hlvBioDAADZdfDgQW3YsEGRkZHy9/dXmzZtVKNGjetax/r16zVixAi1bNlSPXv2VHBwsI4dO6aZM2fqt99+01tvvUVinYdkN08iqcYNS6rzg8TExFwbpfrIkSPavn27YmJirJZqV1dX+fr6qnHjxqpcufI1p9jq1q2bQ9n11L0ZgoKC5OXlddO3CwAAkNMOHjyo2bNnO5TZbDZ1794924l1WlqaevbsqUqVKmnUqFEOPRTT09P12muv6dixY/r222/pCp5HMFAZkA1eXl6qVq1army7WrVqCgkJuWadrl27as6cOQ4t0DabTV27ds0U9/XUBQAAQPZt2LAhU5kxRhs2bMh2Ur1nzx6dOXNGr7/+ukNCLWU8AtizZ08NGjRIe/bsUcOGDXMkbtwcJNVAHlajRg11795dGzZs0NmzZ+Xn53fVrkbXUxcAAADZZ39szy4qKkqhoaHauHGjJGW65sqqq3hMTIwkKTg4OMtt2Mvt9ZB/kFQDeVyNGjWynRhfT10AAAD8s4MHD+rQoUM6efKkihQpIm9vb506dUqSVKxYMZ06dUpz5syxuoJf2VXc/n7dunV16dIlffDBB3Jzc8v0XPaxY8ckZQwy+8UXX1gJebly5XTq1Kl/9Sw3biyeqcYt/Uw1AAAAsic/DEKblJTkMKr2vxUWFqa1a9cqNjbWGhQ2JiZGRYoUkZeXlypUqGDNJFKqVCndd999Wrp0qaKiojKty2azafPmzSpSpIhq165tld1xxx0KDAzUvHnzdPToUZUpU0Y2m02SrO1evh37MkFBQTm2n9lRunRpeXp63tRtXq+cHoSWgcqQbSTVAAAAuJaIiAj17NX7lpsuNTw8XElJSZIyZmxJTEzUxYsX5erqquLFi1uztkh/z7hytRlZLly4oKJFi2Yq9/T0VJkyZTJtT5Li4+OVlpYmV1dXFStWLMtl8Dc3dw/N/HZGjiXWDFQGAAAAIMek//9sJbeS5OS/byK4u7tbSXR6erpDQi1JHh4e1r+XJ8bXs43L/y/JmiEmPT39qsvgb7n1HSWpBgAAAHBNAQEBmjhxgk6cOJHboVxTSkpKll2vnbV27VqdO3fOoSw+Pl7R0dGqWLGiQ3nz5s1VtmxZnT59Wps3b860LpvNZrVgG2N04cIFpaamqmTJkurcubNsNlum7R0/flwJCQkqVKiQw/ZKlCihtm3b5th+ZkepUqUy3UjIawIDA3O0+3d2kVQDAAAA+Ee34oCozZo1y3LK0qZNm+rUqVNXnXHFPvr35e9LynJdl891feX2ypUrp/3796t27doqVapUlssg9/FMNXimGgAAOCWraYO40EdBk1WC7Oz3PDvrurKOffRvpky9+RioDNlGUg0AQMGV3cT3ehPkgwcPavz48QoNDdXFixdVpEgRVahQQc8++6w1rdC11md/f//+/YqJiZGvr69q165NwgAgzyCpRraRVAMAkPsSExMVFhaWo+s8cuSIli5d6lBms9kUEhKiypUrX3e9y02YMEG//fZbpmVatGihe++995rrs28vJiZGf/31l/V+1apV5evre83tXq+goCB5eXnlyLoA3FpIqpFtJNUAgILu8OHDOnbsWG6HcU0nTpzQ9OnTc3SdV07PY3fldDzZrXe5ffv2KTU1NVO5m5ubSpYsec312bdnny7Izj5tUE5OF9SnTx8FBgbmyLpulODgYFWpUiW3wwBwBabUAgAA+H/jxo3T7t27czuMm+5q0+5cWZ7dejm1Xfu/aVdMf2OfNignpwvK6RsVN0L9+vX16aef5nYYAJxEUp0HTZw4UR988IHCw8NVu3ZtjR071hoxMCvr1q3TkCFDtH//fpUtW1b//e9/NXDgwJsYMQAAedtzzz2X51uqc3oqICnr6YCkzNPxZLfe5RYuXKgDBw5kKq9Vq5aKFy9+zfXZt2efLsjOPm1QTk4XlB+mAQoODs7tEAD8CyTVecycOXM0ePBgTZw4Ua1bt9bnn3+ukJAQHThwQEFBQZnqHzt2TPfdd5+efPJJffvtt9q4caP+85//yM/PTw8//HAu7AEAAHlPlSpVbsnutVebDujK6XiyW+/KdU+YMEHHjx/XpUuXVLhwYVWsWFGDBg2SdO2pg+zbK1eunPbt22fVqVOnjvz8/JguCEC+wjPVeUzz5s3VqFEjTZo0ySqrWbOmunTpojFjxmSq/7///U+LFi3SH3/8YZUNHDhQu3fvzjR4yNXwTDUAAAVXdqcDcmbaoGst80/rs79/4MABRUdHq2TJkqpVqxajfwPIMxioLB9KTk5W4cKFNW/ePD344INW+QsvvKBdu3Zp3bp1mZa5/fbb1bBhQ4fncH744Qd169ZNly5dylZ3J5JqAAAAAHDEQGX5UFRUlNLS0hQQEOBQHhAQoDNnzmS5zJkzZ7Ksn5qaqqioqCxHzkxKSnIYkTMuLi4HogcAAACAW49LbgeAzGw2m8NrY0ymsn+qn1W53ZgxY+Tj42P95PVpJgAAAAAgryKpzkNKlSolV1fXTK3SkZGRmVqj7UqXLp1lffsckVkZNmyYYmNjrZ8TJ07kzA4AAAAAwC2GpDoP8fDwUOPGjbVq1SqH8lWrVqlVq1ZZLtOyZctM9VeuXKkmTZpc9XlqT09PeXt7O/wAAAAAAK4fSXUeM2TIEE2dOlVfffWV/vjjD7344osKCwuz5p0eNmyY+vTpY9UfOHCgQkNDNWTIEP3xxx/66quv9OWXX2ro0KG5tQsAAAAAcMtgoLI8pnv37oqOjtbIkSMVHh6uOnXqaOnSpapQoYIkKTw8XGFhYVb94OBgLV26VC+++KImTJigsmXL6rPPPmOOagAAAAC4CZhSC0ypBQAAAABXyG6eRPdvAAAAAACcRFINAAAAAICTSKoBAAAAAHASSTUAAAAAAE4iqQYAAAAAwEkk1QAAAAAAOIl5qiH7rGpxcXG5HAkAAAAA5A32/OifZqEmqYbi4+MlSYGBgbkcCQAAAADkLfHx8fLx8bnq+zbzT2k3Crz09HSdPn1axYoVk81my+1wcBVxcXEKDAzUiRMnrjn5PICr4zgC/j2OIyBncCzlfcYYxcfHq2zZsnJxufqT07RUQy4uLipfvnxuh4Fs8vb25g8v8C9xHAH/HscRkDM4lvK2a7VQ2zFQGQAAAAAATiKpBgAAAADASSTVQD7h6empESNGyNPTM7dDAfItjiPg3+M4AnIGx1LBwUBlAAAAAAA4iZZqAAAAAACcRFINAAAAAICTSKqBPISnMQAAeQHnIwDIPpJqII/YsGGDbDZbbocB5Ftnz57V9u3bJUnp6em5HA2Qf+3YsUMXLlzI7TCAfC01NVXh4eG5HQZuEpJqIA84deqUunfvrg8//FARERGSaCUArkdSUpK+/fZbPfzww9q2bZtcXDi9Ac7YunWrXnnlFb344otKSEiQxPkIyI60tDSH1y+++KL69eundevW5VJEuJkY/RvIZcYY2Ww2rV69Wp999plKlSqlqVOn5nZYQL40ZMgQ7d69W6+//rratm2b2+EA+Yb9XCRJx48fV69evdSwYUONGzculyMD8i57r6jLb+QePXpUlSpVUnp6ut566y0tWbJE48aNU8uWLR2OMxQsJNVALrDfzXR1dXUo37Fjh1q0aKGZM2fqoYceyvQ+gAzGGKWlpcnNzc16bbPZFBMTo9dee00bN27U+vXr5ePjk8uRAnnb1c5Ha9as0eOPP67hw4dr4MCBuREakGelp6c7JNJ//fWXJk+erG+//Vbu7u7av3+/fHx8lJSUpCeffFKnTp3S/PnzVaJEiVyMGjcS/eOAXODq6ipXV1clJibq4MGDSk1NlSQ1atRIffr00Zdffmk9GwogM5vNZiXUhw8f1pkzZyRJvr6+Gj16tMLDwzVlyhQlJyfnZphAnmc/HyUkJOjAgQNKSkqSJLVr104DBw7UO++8o4MHD+ZylEDe4uLiovj4eL3//vuqUqWKatWqpcOHD6to0aKqXLmyChcuLEny9PTUkCFDFBERoY8++iiXo8aNRFIN3ET2bkLr1q3T3XffrbJly+qDDz7QgQMHrDpPPfWULl68qMWLF+dWmECeFxsbqzfffFPly5dX586dtXTpUiUmJkqSSpQooe7du2vFihXau3dvLkcK5E32jorr16/X3XffrTJlymjMmDH6888/rTovvfSSEhMTtWTJEqWkpORWqECui4+P11NPPaW4uDgZY/Tss8+qePHimjVrlpU0//jjjypUqJAefvhhubu7W71AGjRooH79+umLL75QbGxsLu8JbhSSauBfuN6nJ1xcXLR7924NHjxYNWrU0KpVqzRkyBD5+flZdZo1a6aaNWtq165dOnv2bE6HDOQpxhinBkEaPXq0fvrpJ3300UdasGCBbrvtNrm6uloXMT169NDZs2e1a9euHI4YyJuu9ziy2Ww6evSoXnjhBVWtWlVr167Vf//7X5UpU0ZSRrdwT09P3XfffVq5ciXnI9zSEhIStH79ekVERMhms+nhhx/WkSNHtHPnTv3nP/+Rr6+vFixYoPDwcD3yyCMyxjg8UtGzZ0/Fx8dr7dq1ubcTuKHccjsAIL8xxig9PV2urq7XPdhEamqqPvzwQ3l5eentt9/O9GyN/RmdevXq6eDBgwoLC3NIuIGCIj09XTabzakBWzZu3Kgvv/xSH330kbp3755lnZYtW8rFxUXh4eFKS0tjfAIUSP/mfCRJw4YNk6enp0aPHi1fX1+H9+zre/TRR/Xoo4/mSLxAfvXzzz+rcuXKKlWqlKSMxyOkv29m2Ww2rVy5Ui1atFCpUqUyHY+lS5dW69attWjRIj3wwAOZnslG/sdvE8gG+6BIUsYfTvsF+rx58/Taa6/p6NGj2VqPm5ubfvvtNz3yyCMqUaKE9cf4yjl1W7VqpYMHD6pYsWI5uBdA7rInAFJGrw2bzaYjR47olVde0fz587O1vCSdO3dOiYmJ6tu3r8N79vftYxTUqFFDu3fvlqurK/NWo8C41vmof//+1jRY/7SO9PR0RUZGqmnTpvL19bXWeeVoxk2aNFFiYiIt1bhlpKWlZToeypUrp82bN2dqDLEnzwkJCVq2bJk6duwod3f3TOec1NRUtWzZ0nq8goS64OE3CmTD5RcuP//8szp27CgvLy91795dn3zyicqVK5et9aSkpKhy5crauHGj9Vr6+4+r/d+6desqKSlJ586dy+ldAXKNzWaTi4uLYmJiNGrUKJUvX17Vq1fX+++/r3379km6dhdW+8WLzWaTt7e3Nm3aJCnjAujyVm/7AGbNmjXTiRMnJHEBg4LjyvPR/fffL3d3d3Xv3l1ff/11tp7ZtNlsio+PV+nSpa1jxL5O+7FiPxYvXbqkpk2bOoz9ARRE9u+8ffC+tLQ0Kzk2xqh48eLWcWCva595Yvny5bp48aI6d+4sKeM4uvx85ubmJjc3N1WsWFFxcXE3c7dwk3CVAWRDaGionnrqKZUoUUJdu3ZVmTJltGPHDnXu3Fn9+vWTp6dnttZjs9nUqVMnLV26VLGxsfLw8JCU8Ud5w4YNOn36tLW91q1bM3IxCgT7hcWMGTPUuHFj+fv764cfftAHH3ygZcuWKTAw0OrGfa0urPb1VKhQQbVq1dKUKVMk/Z0MnD59Whs2bLDqx8bGqlWrVlbLNVAQHDlyRE8//bSKFy+ubt26yc/PTwcPHlSPHj3Uq1cvlS5d2mpluxYfHx81aNBAYWFh2rp1q1Welpambdu26fjx45IyWthSU1NVr169G7VLQJ5gP/+sXLlSnTp1UoMGDbR06VJJGcdFmTJltG3bNkmO3b4lae7cuWrevLnKly+faX32EfVTU1MVFRUlb29vek8VQCTVQDZ8+umnioyM1IwZMxQTE6OpU6fK29tbW7ZsUZs2bbK9Hjc3N/Xq1UtBQUHq3r27Zs2apdDQUL3//vsaN26cTp48KSmjG9Gff/6phg0b3qhdAm4am82mvXv36osvvlCnTp109OhRbd++XY899phWrFihgIAAVapUKVvrkTK6dT/++OOaOXOm3nrrLe3cuVPr1q3T888/r02bNik+Pl5Sxs0pY4zc3NycGgwNyEvs3+EvvvhCoaGh+u677xQVFaVp06apWLFiWrVqle69915JmeecvpL9gv6BBx5QQECA+vfvrzlz5ujIkSP64IMP9MYbb1itaSVLltSpU6esKYKA/O7yFugrffLJJ+rfv78qV66sYcOGWY/h1a5dW25ubtaMEpf36Dh37px++eUX9e7d21pPaGiohg0bpg4dOmjnzp2SMqZ8tI+TQ++pAsgAuKr09HRjjDGpqamZyqZOnWr8/PzMhQsXrnt9mzdvNt27dzc1a9Y0vr6+pnbt2ubbb781aWlpxhhjoqOjzYQJE8ylS5dyaleAPCUtLc0kJCSYGjVqmLffftsY8/fxkV2jR482zZs3N8HBwcbHx8f07dvXHDlyxHp/yZIlZuPGjTkaN5Bb7MeH/TxxuRkzZhg/Pz8TFRV13es9c+aM6dSpk6lTp44pUaKEqVOnjvn666+t896xY8fM7NmzTWxs7L/bASCPSUhIcHi9b98+U7JkSfPFF19kWX/QoEGmQ4cOZteuXcYYY5KTk40xxsycOdPUr1/fHDt2zEycONE0btzYuLi4mMaNG5tvvvnGWn7y5Mnmt99+u0F7g9xmM4bb94Az2rZtqzp16mj8+PFZvp+dkR137dolf39/lS1b1qE8KSlJbm5ujFiMAsn8/zNoa9as0YMPPqitW7eqatWqV613pcuPrdjYWB09ejTLXh0XL15UkSJFcn4HgDzCfoy0b99e5cuX17Rp07I8bq52Prq87sGDB+Xt7Z3pfJScnCwXFxdrrAIgvzD/P4Cl/flmm82m9PR0ffPNN/riiy9UtGhRNW/eXP/9739VrFgxLVy4UIMGDdKuXbvk5+dnLZOSkiJ3d3etX79eb7/9tmrVqqVPP/1U6enpSk9PV69evTR37ly5ubmpbNmyeuKJJzRo0KBMg5qdO3cuUxkKDvoeAE44cuSIDh06pA4dOkjKPHq3lL2uPQ0aNFDZsmWVnp7u8Aycp6cnCTUKLPtF/OLFi9WgQYOrdv2+2vPVlx9b3t7eVkKdmprqcCySUKOgs9ls+uuvv3Tw4EF16dLFKrvS1c5Hl9etUaNGlucjDw8PEmrkS/bBMe3/l6QRI0bo448/1r333qvHH39cc+bM0UsvvaSoqChFR0fL19dXR44ckfT3Ixfu7u6SMmZm6devn7744gsdPHjQutnk7e2t4cOHa//+/Tp+/Lhee+01lShRwmEUcUkk1AUcSTVuOVf+kbveZSVp+fLl8vDwUKdOnZSSkpLlRcwvv/yiZcuWZWu9Li4uJNHIN4wx/2rwr9TUVKWlpWnx4sW6//775erqao2Ef7n4+HiNGTPmmuu6/Nhzc3PjOTXkK//mfGS3bds2paen64477pCU9U3ejRs3aurUqdY2r4XzEfKjq32vX3/9dU2fPl2StHXrVv3444+aNGmS3njjDfXs2VMDBgzQd999pwULFqhdu3ZKTEy0Bu6zn08iIiIUHh4uNzc39ejRQw899JBeffVVLV68WJI0ZcoUjRo1SlWrVrXOj8YYaxRx3Bq4+sAtx/5HLjExUWvWrFFUVJSka0/lc/mykjR9+nQ9/PDDstlscnd3t7oH/frrrwoNDZUka7AXKeuLHCC/stlsVsvV/v37ramtsiM9PV1ubm765ZdfFBUVpYcffljS3y0Bhw8f1m+//SZjjHbt2qVXX31VK1askJS9YxTIT+zno4SEBK1du1ZhYWGSsvddt9/Ymjx5su69914VL15cUkYikJKSol9++UXR0dFKSEjQxIkTNWHCBGubQEFz5ffanmQvWbJEW7ZskSTt3LlTNptNlStX1jPPPKMyZcpo7NixGjhwoNq2batKlSqpVatWmjp1qubOnau4uDidO3dO7733nhYsWGCte+zYsWrRooUmTJigCxcuWNtLT0+3zo/XmskCBRNJNQos+7M0l7+WpM2bN+uee+6Rn5+f3njjDa1fv17StafyudyePXt08uRJ9ejRQ5K0adMm9evXT8WKFdOAAQMUGRkpY4xatWql1q1bS2KUR+RfWd0QunDhgt59910FBgbqnnvu0bx583TmzJlsrc9+LMydO1dt27ZVcHCwzp07pwkTJqhRo0aqVq2afvrpJ9lsNhUtWlQdOnSwpijhIgX51ZXnI7vff/9dISEh8vPz08iRI/X7779Lyt533c3NTQcOHNDhw4f1xBNPSMo4H/Xp00e+vr7q2rWrTp06pUKFCqlEiRIKCQnJ2Z0C8pC9e/fqhRde0C+//CIpI8mOiYlRUFCQNYJ31apVtXfvXlWvXl2RkZGaOHGiDh8+rA8//FDVqlWTJL3//vtq0aKFnn32WbVt21bly5fXhg0bHMb9KFWqlF5++WW9+uqrVi8rV1dXrvVucTwkgwLn8oEpLmez2XT69Gn973//U/Xq1fX+++8rICBAly5dyvZ6bTabfv75ZyUmJmr27Nl68MEHFRkZqfvvv18rV67U7bff7rC9rl275ui+ATeLfWCjrC4Svv76a82ZM0fvvfee7rrrLl26dMm6aMmO8+fPa+3atapXr546d+6sZcuWqWLFinr66ae1bt06a11BQUGqVKmSqlSpkmP7BdxMVzsfSVJcXJxeeeUVVa5cWb///rv8/Pyu+7GKDRs2KDY2VvPnz1e3bt109uxZ3X///Vq2bJluu+02q169evWYEgsFkv3azMPDQ3/88YfWrl2r7du3y83NzXo+ul27dpIyxuCoWrWqunbtqtGjR1vrOH/+vJYsWaJKlSqpZcuWGj9+vJ577jn9/vvvatOmjapXr57ltq9nSlUUfCTVKDDsf1jtPydOnNDy5ctVsWJFtW/fXlLGnczt27dr8eLFKlasmC5duqTSpUtnWkdW7KNG/vLLLzp37py2bdum9957z2qxtrOPEvn666/fuJ0FbjB7EvDTTz8pKipKt99+uypVqmTNx1mnTh316NFDqampCggIuK5179mzR0ePHpUkhYSE6ODBg6pcubL1flpammw2m0qWLKmJEyfm3E4BN9nl56Mff/xR9erVU7NmzeTl5aVly5YpIiJCn332merUqXNdo9Xbz1ULFizQpUuXtG/fvmuej5566qkbsXvADZWWlvaPjyvYr9mqV6+u7777To0bN9bQoUP10ksvKTAwUKVKlbIGHqtZs6Yee+wxffbZZ6pcubLuueceXbx4UV988YV27NhhjeHh7u6uOnXqqE6dOpIyjrf09HQencA1MaUW8q2sEuDU1FQdPnxYa9as0RtvvKHy5cvr2LFjGjZsmIYOHarffvtNgwYNUrly5VSqVCmVLFlS58+fV8OGDfX8889fdb3S3y13W7duVe3atR3u+qempmbZqnetJB3ICy7/jtr/HxYWpoiICI0YMUJbt25V2bJlFRsbqzVr1qhChQp64YUXtHbtWtWtW1dFihSxngsdMGCAGjVq5HAhdLXpffbu3av69es7lNmft75WjEBelNV3NDk5WSdOnNDKlSs1cuRIeXt769KlS+rUqZMmTpyotWvX6tVXX5Wbm5sCAwPl6+urqKgotWzZUoMGDZKLi8tVp8JKTU2Vm5ubjh49qoCAAIdknPMR8pO0tDSFh4erfPny1jPJziSw9mPl+++/1yeffKJGjRrps88+04MPPqhKlSrpo48+sur95z//0dq1a1W4cGH98ccfatGihV555RXdc889Duu0p0gcN8gOOv8j37EPPpHVH7m+ffuqe/fuWrlypZYtW6adO3fqP//5j+bMmaMlS5botttu0zvvvCNvb2+rhTotLU0vv/yy9RyOzWbTmTNnrJY0+/bsFyhNmzZV4cKFHUZtvdqow/whRl5kjMnyOLLZbDpy5Ihq1aqlV155RbfddpvCwsK0YsUKubu765133tHFixc1ZswYdezY0ZrTNjk5Wbt379aAAQMk/T1gzNatW7M8Bmw2m5VQ20dJvdY8uBxHyEsub4u41vnoxRdfVM2aNbVhwwYtW7ZM+/fv16hRozR16lStW7dObdu21ZgxY1ShQgUFBQWpaNGiSk5O1pgxY/TNN99IyjjvREZGateuXZL+HuPAfqxUqlRJRYoU4XyEfOnPP/9Uhw4dNHPmTEkZ33ebzSZXV1elpaXpm2++0XPPPafly5fr3Llzkq4+8Kv9O9+lSxcNHTpUkyZN0urVq3X48GEFBwdL+vuG0+TJk7Vq1Sq9++67Cg8P15o1azIl1NLfPU2AbDFAHrV161ZTqVIlc+bMmSzf37Fjh5k9e7Y5efKkVTZ79mxTokQJ89hjj1llUVFR5q677jLPPPOMw/Lp6enW//39/c37779vjDHm6NGjplmzZtY6Lq8H5CcpKSmmb9++5rnnnsvy/cTERDNv3jzzyy+/mNTUVKv8vvvuM4ULFzbr16+3ysaNG2caNWpkVq1alWkbxhgzffp04+XlZWJjY40xxnzyyScmMDDQbN68Oad3C7jpduzYYSpUqGCOHz+e5fvbtm0zM2fONIcPH7bK/vzzT2Oz2Uy3bt0c6taoUcM899xzJj4+PtN6Ll68aJo0aWIGDx5sjDEmOjra1K1b1wwcODAH9wbIHWlpaWb27NnmoYcessouv4YzJuO8NGnSJFO+fHlTp04d88ADD5hKlSqZTp06ZWsb9mu2Z555xnTo0MHYbDbz8ssvW9vPSmpqqsM5EHAGLdXIE0wWTyFUr15do0ePzvS85pYtW1S3bl3rLn/79u01btw4SdJdd92lqlWrysPDw6pfsmRJNWzYUIcOHdLu3bslSSdPnlR4eLiioqI0YsQIVa9e3RoZtXTp0qpcubI1yAt3KZEfmMtGF7b/6+bmpp49e+q5555zqJuUlKRhw4apRIkSev3119WvXz/17t1bO3bskJTxnHOpUqUcBk168MEHlZCQYM3fmZycrGPHjik+Pl6bNm3Sl19+qf/973/WYxGVK1dW+fLlrXk7gfzi8pYw+3e3ZMmSmjBhgipUqOAwH+62bdvUoEEDtWvXTp999pmaNWummTNnKjExUVWrVlXlypVVuHBhJSQkWOvq2bOnfv75Zx0/flySdOzYMUVGRurMmTMaO3asbDabnn76aUmSr6+vSpcurcDAwEyxAfmNi4uLTp06pe3bt2vnzp2SpHLlyun48ePW9dm5c+cUExOjd999V3v37tXChQv1yy+/6KefftKyZcv+8Xxif/+NN96wnomuUaOGtf2sMJ80cgJJNfIEe+Jqn+/PGKNixYrp0Ucfdbiwv3Tpkj755BPVqlVLR48e1eLFi9WlSxcNGTJEO3fuVKlSpdS0aVOFh4dr79691nJ33323Ll26pM2bNys9PV3Tp09Xr169VLVqVf3www967rnnVKdOHaWnp6tQoUKKiopSxYoVb+pnAPwb9m5qcXFxkv7ulnr33XeratWqunjxolV33bp1+vHHHzVz5kzt379fY8eOVWRkpF544QVJ0iOPPCJjjPbu3WtdxJcrV07169fXtm3bFBERoW3btumtt95S8+bNFRISomrVqunJJ5+0uqU2aNBAycnJKlGiBDemkK/YL7xjY2Ot725QUJA6duyolJQUh4vvDz74QNWrV9eRI0e0YsUK9erVS++++66+++47SVLv3r21Zs0aRUREWOvq16+fTp8+rT179kiSpk6dql69eqlGjRqaM2eOhg4dqurVq1vHcPPmzVW0aFGH2ID8JD093fo+t23bVhUrVtTcuXMlScePH1fv3r31zjvvSMpo2HjooYfUs2dPHTlyRM8//7w1evecOXOsc9zV2I+R0qVLa+TIkUpPT1f//v1v1K4Bf8ulFnLAwfbt282dd95pJk+ebJUlJiaa3bt3m0KFCpkDBw4YY4w5d+6c8fT0ND/99JNVLykpydx+++3m0UcfNcYYs3TpUtOgQQPzxRdfWHUuXrxo7r33XnP//febpKQks3v3bjN9+nRz9OhRhzjs3X+SkpKMMXT9Rv7yv//9z3Tu3Nn6/tq7Yj/++OOmQ4cOVr2RI0eaqlWrOiy7bNky4+bmZvbu3WuMMaZTp06mS5cuJiwszKozZ84cU65cOTN//nyTmppqvv/+e7N8+fIbvVvATXX06FFTrVo1891331ll6enpZs+ePaZ48eJmw4YNxhhj/vrrL1O1alUzadIkq15kZKTp27evadOmjTHGmIiICGOz2cy8efMcttG8eXNz7733msTERLN3714zc+ZMc+zYsSzjoVsqCpK4uDjz/PPPm6ZNm1plQ4cONXfeeaf566+/rLLly5ebOnXqmM6dO5uVK1eazz//3Hh7e5vdu3dfdd3p6elZHi/2x5SAG4lbnsgTatWqJR8fHy1evFi9e/eWh4eHfv75Z1WrVk1FixbVkiVLJGVMiVWlShUlJiZKymiN8/DwUM+ePbVs2TJJ0p133qlSpUppx44dVutc4cKFdeedd+r2229XSkqK6tWrp969eys4ONjhDqq9BcLDw8MahRLI6+zf3zp16uj06dMaPHiwKlSooHvuuUepqalq0aKFNm7caB03hw8fVv369RUfH2+to2HDhqpdu7amT58uKaOL6oEDB3TgwAGrzv3336927dopKChIrq6ueuihh6zBXdLS0rLsmkp3VeQ3wcHB8vHx0YIFC/TYY4/JxcVFCxcuVOnSpVWjRg3rGImJiVFycrLKly9vLVuyZEm1bt1ap06d0pEjR+Tv768WLVpo4cKFVk8sSRo0aJAaNGig9PR0a3q6ihUrOpyP7FxdXXmEAnnW0aNH9cknn1ivs/qbHxMToz59+ujMmTMqVqyYmjZtqvj4eOvarmXLlrp06ZJ+/vlnSVJUVJTGjBmjFi1aaMaMGWrfvr0qVqxo9Ti8cj53+/nHPsiZnbnsUSjgRiOpxk2V1QWDJB04cEBbt27V0qVLFR0drdWrVyskJEReXl7q0aOHdRFTrlw5lSxZ0uo2Z//jWaZMGRUuXFhHjx6Vp6enGjZsqLVr11ojpkrSyy+/rJdfftlh6hHz/6MOZ/UsDd3skBcZYzJdUNhsNhljtHXrVm3fvl3z58/Xc889p0WLFsnNzU333HOP3N3drS6pwcHBioyM1B9//GGto2jRoipXrpx1fHbt2lVnzpzRL7/8ouTkZEkZN6dmzJihpk2bOsQjZRyLWR0zHEfIq652Ptq/f79Onjyp77//XufPn9eaNWv04IMPytvbW506ddLixYslSc2aNVNqaqr2799v3bBycXFRoUKF5OPjo4SEBEkZ3b2/++47hYWFWdvo3bu3xowZo0KFCkn6e0yEq52PuMGLvGrfvn0ON23tf/MvP7ZiY2O1cOFCa/yb+vXrq2LFilqwYIEkqVWrVipTpozWrVsnSSpVqpR27dqlZs2aydvbW5L0ww8/KD09XZMnT9b58+clyToX2s8/kZGRGj16tHr06KGEhASOG9xUXO3gprJfMKSkpGjfvn1WS7K3t7eGDBmiFi1aqEOHDrrtttusi/U+ffpo37592rJliypVqqS6detq2bJlDi1oc+fOVZ06dVSqVClJGRcxo0aNUrNmzRy2n56e7nDHnz+4yG9sNpt11/3w4cM6ceKENQ1J586d9fDDD6tFixZ67LHH5OfnJynjZlRISIimTp0qSXr44YcVHR2tefPmWes9ceKENm7cqDZt2kjKuEiZMGGCBgwY4DDwn+R4scQxhPzKfj5KTk7Wrl27rPORn5+f3n33XZUpU0aPPvqo7rjjDkmSp6en2rRpo7S0NM2fP19SxgB+8+bN0++//26td8uWLUpLS1O1atUkSU8++aSmTp1qvba7/HzE1D3Irzp37qz58+fLy8tLknT+/Hk99NBDGjZsmFWnbNmyGjhwoDV1VvXq1dW0aVNt3bpV58+fV+nSpdWgQQOFhoZax1KnTp00bNgw9evXT61atZIxRps3b9arr75qXeu5ubkpPT1d33zzjVq1aqUqVapo6dKluvfee2mdxs2XO73OcStIS0vL9Ezypk2bzAMPPGC8vb1NgwYNTPv27c22bduMMRnPMffo0cN07tzZJCQkGGP+fqa5Vq1a5vnnnzfGGLN7924TEhJi/Pz8zFtvvWX69u1rgoODHZ5/AwqKK58Pi4uLMx999JEJDg42pUuXNg0bNjQjR440cXFxxhhjfvjhB9OwYUPz9ddfOyy3aNEi4+LiYk1fMn78eFOiRAnTpUsXM3LkSFO/fn3TuXNnc/bs2ZuzY8BNlJ6enul89Ntvv1nno9q1a5vmzZubAwcOWNPudOjQwXTr1s2cOnXKWubMmTOmU6dO5t577zXGGHP48GHzyCOPGG9vbzNq1CjTs2dPU758eTNnzhyHbQMF2datW82gQYOMMcbEx8ebgQMHmho1ajjUWb16tbHZbGbHjh3GmIxzVd26dc20adOMMcb8/PPPpm3btmbUqFHGmIzxCCZOnGjuvfdeM2rUKHPu3DmH9UVGRponn3zSeHh4mDp16pg333zT4Zls4GajpRo5zvz/nXd769nu3bu1Z88eRUdH65VXXlFgYKB+/vlnzZ49W0WKFNGbb76p06dPy8PDQ40bN1ZERIR+/fVXSX937enTp48WLVqkuLg41atXTzNmzNDLL7+sdevWKSEhQTNnztRjjz2WZRxAfmbv2bFmzRrFx8dr/vz5+v777/Xmm29qx44dGjRokBYtWqQpU6ZIyhhToGjRotq6davVHU/K6KoaFBRkPUoxaNAgzZw5U+XKldPy5cvVo0cPzZo1y2oBsOOZaORn5oqW4B07dujQoUM6ffq0PvroI5UsWVLr1q3TkiVLVKpUKQ0fPtyaOaJbt27auXOnw2MSfn5+uu+++7Rt2zbFx8ercuXKmjx5sl577TX99ttvSk1N1ezZs9WtWzdrGVqgUdBduHBBEydO1O7du1W0aFF17txZp0+f1pYtW6w6tWvXVqNGjTR+/HhJUt26dVWjRg3rueoWLVqoaNGiWrlypRITE+Xv769nnnlGy5Yt06uvvqrixYtL+runVEJCgho1aqTVq1dr9+7dGjFihKpUqXJzdxy4XC4n9SgA7Hf1L3f27FkTFhZmevfubXx9fa2RuO13JI0xJjQ01DzwwAPGx8fHGvV7y5Yt5s477zTDhw93WN/x48eNzWYzCxYsuHE7AuSSrFrRjDHmzz//NBs2bDC+vr6mY8eO5siRI2b37t1m06ZNxpiMY2/WrFkmICDA3HXXXVaL2ksvveTQC8Re97nnnjMlSpRw2MaVo6LSqob8LKvzUUREhAkPDzdDhgwxNpvNfPfdd+bEiRNm1apVVv0TJ06Yrl27Gj8/P/Ppp58aY4y5cOGCCQ4ONh988IFJTk621rdjxw5TvHhx8/7779+cnQJy2T+NQJ+enm6qV69uhg0bZozJuL5r1aqVeeKJJ6w6aWlpZvDgwcbX19cqe++990xAQIA5dOiQMcaYFStWZDm6d2pqKucm5Hm0VMNp9ruFWQ1EVKFCBXXv3l3FihXT7t279cQTT0iS+vbtq+3bt+u2225TkyZNlJiYqIYNG+r777+XJDVp0kS1a9fWjz/+qD179mjZsmX6/vvvVaFCBT399NPWgBVXxkFrGvKj9PR0a8TSK1uz5s2bp+rVq+vTTz/VhAkT9NNPP6lSpUqqV6+emjRporfeekvly5fX6NGj1apVK0VFRemXX36RlPGMW3R0tL755hudOnVK7777rqKjo9WjRw9169bNGkBJyngmzRhjHc+0qiE/utr5KD4+Xvfcc49atGih5ORkhYWF6bHHHlOZMmV09913a8eOHWrXrp0aNGig1NRUBQYG6rffflNERISKFCmiO+64Q/Pnz9fq1au1bNkyTZ06VQ0bNtSzzz6rqlWrZhkH5yMUBGlpaZlmRjFX6QFos9nUrVs3zZkzR4mJiSpdurQ6duyoRYsWWXWMMTp8+LDOnTun5cuXS5IaNGigRx55xKrToUMH1atXL9P6XV1dOTch78vlpB75yNXuEq5atcrMmDHDnDx50rqb/8orrxibzWbGjRtnjPn7Lmd8fLy55557zKBBg6xnX4YMGWLKli1rzY+7adMm06VLF1O6dGnj6upqPvroI+5QokA7ffq0+eqrr8yaNWusluOYmBgTFBRkqlevbk6fPm2M+bsVbu7cuaZevXpWz42YmBhTpkwZM3DgQGudn3zyialZs6bx8fExVapUyTQnO1AQLV++3EyfPt0cPnzYGJNx7hk3bpyx2WxWC7RdcnKy6dKli+nXr59V/7XXXjNBQUFm1apVxhhjtm/fbnr16mX8/f2Nt7e3eemll27uDgE3UVpaWqbeS8nJyWbixImmS5cuZunSpVdd9tChQ8bFxcX88ssvxhhj9uzZY0qUKGGeeeYZc+TIETN//nzz5JNPmmbNmpmnn376quvheg/5FUk1MklMTLT+f+LECbN3795Mf2SNMeb77783ZcuWNeXKlTOtW7c2devWNZ999pkxxph9+/YZm81mZs2a5bDMb7/9ZgICAsyyZcuMMRldT7t06WJcXFzM0KFDrXrR0dFm//79mbb5T12QgLzi8u/q+vXrzYULFzLViYqKMj179jReXl6mdevWJjg42PTp08fs27fPGGNMjx49TKNGjUx8fLy1TEJCgunfv79p3769dfGxatUqU6pUKVO3bl2HrnP79++3BjCzS09Pz7KLLJAXJSUlWf8/ceKE2bp1q8P79mNg4cKFJigoyJQpU8bce++9pnjx4mbOnDkmPT3dHDhwwBQqVMgazNJ+bP7888+matWqZu7cucaYjGProYceMqVKlTIvv/yytY3Y2Fire+rlOB+hIPvpp59Mx44djY+Pj6levboZPXq0iYmJueYyzZs3N/3797def/HFF6ZevXrG29vbGsDv4sWLmZbjWEJBQPdvOOjYsaNGjBhhdQ994IEHNHz4cLm5uSkiIkKrV6+WJIWFhenTTz/V8OHDdfLkSf36668aPHiwXnrpJZ08eVK1a9dWxYoVHeYulDIGHgsODtbcuXN18uRJffrppypUqJCeeeYZhy5zvr6+qlWrlrWMXVbzdwJ5ydatW1WyZElrcKN9+/bpjjvu0MmTJyVJa9as0alTpyRJs2bN0smTJ7Vnzx79+uuv+umnnxQXF6dXXnlFUsZctnv27LGWlSQvLy95eXnp3LlzWrhwobZv367vvvtOnTt3VsOGDXXhwgWrbq1atVSsWDGHbnw2m425o5EvdO/eXc8884wkKTk5Wf/73//Uo0cPSdLJkye1YsUK2Ww2xcXF6ZNPPtEzzzyj06dPa9myZRo+fLhGjx6t5cuXq2bNmrrttts0Z84cSX93Ya1cubLS0tK0atUq/fnnn5oyZYr8/PzUsmVL+fr66tKlS5Iypny0T4eVmprqMDc7UJBs27ZNAwcOVEBAgJ5++mmVL19eK1as0MGDBzV8+HCVKFHCuj40WXQF79evnxYtWqTIyEhJ0hNPPKFFixZp9erVOnHihLp166bChQtb87LbcSyhQMjVlB65LiwszEyaNMkcP37cGGPMypUrHe5Efv3118bHx8dUq1bN2Gw2069fP2NMxh3MFi1aGGMyWtveffddU6NGDWOz2czixYuNMcaMHj3aBAUFmWPHjlnrS0xMNFOmTDHVqlUzxYsXN7Vq1TIrV67MsiUcyC9mz55t9b4wJmPqEGP+7q5dtWpVU69ePePl5WUqVqxoNm7caOLi4kznzp2tqa+WL19uHnroIePl5WXuvPNOk5CQYFJSUky5cuXMO++847C+7du3mz59+pgyZcqYwoULmyFDhpiIiIibuctAjjt+/Lh57733TGxsrDEmY0Cwy6d4+/HHH42np6d1rnnhhRdMamqqmT59umnfvr0xxpjw8HDz4YcfmqCgIOPv729mzpxpjMk4l3l5eVmtZPYW7k8//dQ0a9bMeHt7m6pVq5oNGzY4DEoG5HdpaWnZagmOiIgwgYGB5v777zc//vijw3u7d+82/fv3N/Xq1TPff//9Vddx5swZU6hQIav3x5VokUZBRlJ9i7JfUHz++eembdu2xhjjcCERERFhUlNTTaVKlYzNZjNdunSx5rc1xphhw4aZevXqmVatWpmiRYuaVq1amc8//9yEh4dbdc6ePWvc3d2z/AP8xx9/mNDQUIeyrOa1BvKDevXqmfnz5xtj/n58Ijo62hiTkQjYbDZTrFgx88MPPzgs5+fnZzp06GDKli1rypYta55++mnz+++/O9R56aWXTMOGDa252+1SU1PNzp07M8XCRQvyG/vf/XXr1pnKlStnev/MmTPGGGNuu+02Y7PZzL333uvQLfyLL74whQoVMm3btjVFixY1t912m5k8ebLDjabjx48bf39/awaKy2/khoaGmrCwMIdtcj5CQbR58+Zrvn951+wzZ86Yt956y1StWtX4+vqaBx980CxevPiqN53sx0vHjh1N9+7djTGcj3BroQ/gLco+imKxYsWs7tXu7u6SpJCQED377LNKSUnRkSNH9PDDD+vChQsqUqSItfw999yjvXv3qk6dOtq1a5c2btyop556SqVLl9bevXsVHR2tUqVKKTg4WFOmTNHFixcdtl+jRg0FBQU5jDpsn9cayE+ioqJUoUIFpaSkSJI8PT118OBBlSpVSmvXrlXnzp31559/KikpSV5eXpL+fqShTZs22rJliz777DMdPXpUkydPVvPmzRUfH6+tW7dKknr27Kldu3Zp+/btDtt1dXVVgwYNrPUZuqQin7L/3d+7d69atWql+Ph4673evXvrwQcflCT98MMPGjZsmP766y95eHhY546GDRvKZrOpRo0a2rt3rzZs2KCnn35a/v7++uuvvxQWFqYKFSqoRYsWeueddyRljHpvFxQUpMDAQM5HyPdMFl2yt2/frgcffNCa93nHjh1XXb5w4cKaNGmSWrdurSpVqmjVqlX673//qz/++EMLFizQ/fffb10rXsl+vFSuXFmhoaGSOB/h1kJSfQvJapqPXbt2qVatWrpw4YL1x/i2227TkSNHrIv4p59+WuvWrdPBgwet5e644w6VK1dOnp6e8vX1tcq3bNmisWPHWn+0J06cqOeff94hIb+czWbjjy7yDXPFc2BSxrOef/31l4KDg606NWrUUJkyZbRq1SolJiaqSpUqatOmjb788ktJf1/Qd+3aVSkpKSpZsqQ8PT0lZUwB9NVXX+nHH3/UhQsX1LBhQ40bN041a9a8alxubm4kAMhXLn/O3/7v2bNndebMGYebvQ8++KD27t2r48ePq1SpUrr//vt17Ngxbdu2zTp3VK1aVXXq1NG5c+fk4+NjbWPTpk369NNPdfToUUnSa6+9po8++uiqMXE+Qn5kjLGu7648Dxw6dEgvvviiihYtqsWLF+urr75SiRIlrrquuLg4ff/992rXrp127typDRs26IknnpC/v3+2Ypk5c6bmzJmj/v37O79DQD5FUn0LsP+xvXxwIvtFTLFixbRjxw4VLVrUKuvTp48iIiK0Z88eSdLdd98tb29vrVixQikpKVa9UaNGacOGDWrdurXefvtt3XffferUqZPc3NxUo0YNSdJdd92l++6776btK3AjXG0+aWOMypYtq6ioKIWFhUmSkpKSJEmPP/645s+fr7Nnz0qS+vfvr+XLl1uDjhlj9Nhjj6ljx47q1q2bBgwYoBdffFGNGjXS559/roYNG1ot24MGDXK4eQXkV/bzkaurq1xdXWWMsRLZ6tWra+/evZL+vvEUEhIiLy8vLVy4UJJUu3ZtNW7cWJ9//rmkjJta3t7eev/997Vjxw61aNFCb7/9tkJCQvTggw/qwoULqly5siSpadOm6tSp083cXeCGsd/gtQ8+GR0drfnz52vXrl1Wnc2bN2vXrl2aMWOGmjdvrjp16lg3gLPi7e2tVatWadSoUapSpUq2Y7Ef16VKldLMmTP15JNPOrdTQD5GUn0LsCfTP//8s2bOnKnIyEjrIqZJkybavXu3UlJS5ObmprS0NAUGBqpOnTpav369lSg89thjWrRokSIiIqxlH3/8cU2bNk2PP/64Nm/erKpVq2r9+vX6/PPPFRgYaG0/qxZyID9xcXGRi4uLzpw5oylTpmjjxo2KjY21Rh5u2rSpli5dKunv7m4DBw7UX3/9pd27d0uSOnXqJHd3d6uePTmfPn26PvvsMxUrVkxHjx7ViBEjdODAAT388MMOXVQ5jpBf2W/ESn+fj5YtW6Zu3brpvvvuU1RUlKSMRydKlSplPfqQlpamQoUK6eGHH9bMmTOVlpYmb29vPfbYY1q4cKFSU1Pl4eEhKaP31OLFizVgwADt3r1b1apV04YNG/T11187nI+y6h4L5AdXfnft55A///xT06ZNU1BQkF577TXdf//9mjZtmiSpbNmycnV11dChQ/Xcc8/pzTff1Msvv6wlS5ZcdTvO9HqyH9f33HOP7rrrruteHigIbIYzTIFhjMn0x/Do0aPy9PTUY489pj///FPe3t5ycXHRihUrVKFCBR04cEBt2rTRhAkT9OijjyoxMVFeXl765ptvNHr0aE2YMEHt27fXoUOH1LhxY/Xv31+lSpXS4sWLtXTpUvn5+WUZhzGGaXtQYERHR2vo0KGaN2+eatSoofT0dHl5eWnZsmUqWrSo3nzzTS1atEg7duyQq6ur0tLS5Orqqnr16qlJkyYaN26cihQpoqeeekrLly/X888/r82bNysoKMjqjpqenp6pNwldUVHQREdHq2/fvtq2bZu6deumChUqKCQkRDVr1tSmTZs0bNgwhYSE6JVXXrGOid9//12tW7fW9u3b1aBBA506dUpVqlRRv3795OPjo927d+u1115Tq1atMm2P8xHyu7S0tCyf8U9MTLSeka5du7Zeeukl1a5dWwMGDFBoaKg++ugjNW/eXB9//LGWL1+uqlWr6uLFiwoLC9OePXu0dOlSNWvWLJf2Cih4OMvkc5cPrHLlH9zIyEhVqVJFTz75pEJCQnT69GnNnz9fnp6eev311yVl3MW88847NWnSJEl/D1bWtWtXpaWladeuXUpKSlL16tU1fvx4HTp0SD///LOeeeYZ+fn5ObSepaWlWV1kuYBBXmaff/ZaLu9Ct3TpUh06dEibN2/Wtm3btGXLFsXGxuq///2vUlNT1aJFC126dEk//vijJFmDlj399NNauXKl1eV71KhRevjhh/Xtt9+qZMmSevbZZyXJuui//HgmoUZ+c/mznZf78ccf9dJLLykhIUFLlizR0aNHtWvXLn366acaMmSINV5A3bp1FRwcrHXr1iklJcU6Jlq0aKGqVatq/vz5kqRy5crpm2++0cmTJ7Vhwwb16tVLrVq1cmjJ43yE/GbZsmVq3769zpw541Du6uoqm82mv/76SytWrLAeMfLy8lKdOnV06tQplS5dWo0bN5aXl5deeukleXp6au7cuZKkF198UStXrtTHH3+sr7/+WqtXr1ZMTEym7QD4l27OIONwVnan9EhNTTULFy40W7ZscZgSoWfPnsbd3d2sW7fOKps/f74pWrSo+fPPP40xxvz888/GZrOZjRs3OmzzkUceMc2aNTOHDh0yxmRMMcL8ncjv7rjjDjNkyJBr1lm1apWx2WwmLi7OGGNM/fr1ranhFi1aZJ544gljs9lMr169TFRUlImIiDC9e/c2TZs2Ncb8PZ/0pUuXjM1mM5MnT7bKLp8KCCjI7OeL4cOHm+rVqxtjjJk6darx8PAwx48fN0uWLDErVqwwu3fvNlFRUcYYY+bNm2eqV69uZsyYYYz5e0qe4cOHm6JFi1pzWF++fiC/sZ8PjPn7mis0NNRMnjw503Xf+vXrTYMGDUzRokVN1apVze23327NA719+3ZTv35985///Meqn5iYaJ5//nnTpk0b63iJiIgw586dM/Hx8Wb06NHmjjvusK4BAeQMbt/mYaGhobLZbFb3taxaAC5duqQ33nhD3t7eGjx4sHr27KnHHntM4eHhkjKe43RxcVGZMmWsZbp06SIXFxctX75cxhjdddddeuCBB/Thhx9q7969Vov3oEGD9Mgjj6h8+fKSMp6ZcXd3V3p6usMzckB+Mn78eL333nvW6+joaGt04MvLmjZtqoiICEkZz3qOGjVKwcHBevrpp+Xi4qINGzZo+vTpKlmypPz9/fX6669r7969mjFjhnV8FCpUSMOGDVP9+vWt1jL7M6Cpqak8J418yRjjMI2b3fnz5/Xmm29q1KhRkjIGGzPGyMfHR2XLllVKSoq6du2qFi1aqE6dOnr33Xf19ttvq0mTJhowYIDCwsLUtWtXPfDAAxoxYoSioqKsHhtPPPGEXnzxRev4kcT5CPmW/Xxw+bVdUFCQnn76adlsNqvswoUL+uyzz1StWjWdOHFCM2bMUOXKlfXkk08qOjpaDRo0UJMmTXTs2DHFxMRIyjhfNW3aVJcuXdK6deuUkJCgL7/8Ug899JAqVKigb775RoMGDbqugcgAZEMuJvS4hp9++snYbDZz9OjRLN+33+Vcu3atqVy5slm0aJG5cOGCWbFihalZs6bp0aOHSU5ONpcuXTI+Pj7m888/N8b8fUe0T58+5o477jDnzp0zxhizf/9+07t3b3PvvfdaLQNAQZWammpOnTpljDGmXbt25rbbbjObN2+23v/6669NzZo1TVxcnImJiTFPPfWUKVmypFm6dKm5cOGCVe/8+fPm4MGD5tKlS8YYY8aMGWPuu+8+M27cuJu7Q0AuiYyMtP6flJRkRo8ebdzc3MyaNWtMSkqKMcaYAQMGmB49epiEhARjjDFRUVEmMjLSHDp0yBw9etTs2LHDFC1a1CxevNgYk3F8tm3b1vTv398cO3bspu8TcKNt2bLFtGrVyqxdu9YqS09PN6tWrTJVqlSxegju37/f2Gw2s2PHDqteWlqa8ff3NyNHjjTGGPPll1+apk2bmgULFlh1/vzzT3PPPfeY7t27G2OMWbNmjfnkk0/M3r17b8buAbckWqrzGPP/d/4rVqyoOnXq6Ntvv5UknTp1SmPHjtXEiRN17tw5ubi4KC0tTUuWLJGfn5/atWunIkWKqEOHDho8eLAOHTqklStXqlChQrr//vs1ffp0paamWq3QTz/9tNavX68//vhDklSrVi1NmDBBkZGRGj9+vM6dOycpY/Akw1h2yIeyakmz69ixo3r16iVJGjt2rMqXL6/nn3/eah2oUKGCQkND5enpqRIlSqhVq1ZKT09X4cKFrTnXk5OTNW7cOM2ZM8dabsiQIRowYIAmTpyoffv2WdujJQ352ZXf3/Pnz+vdd99VzZo11bZtW/Xv319//PGHPDw8NHz4cPXr10+vv/66FixYIEny9/fX/7V35wE1pu0Dx7+nhRbtiERFSmSQJTVF1uwmSyUyZrNPGNsYwwzGPmNe5vXOMPZ9X5KRPbKXbCNkX6MhI1SU8/z+6HeetyPmxTAcrs9f45znPMuZnvPc131f93WfP38eMzMzHj16hIODA8WKFcPDwwM3Nzeys7NxcHCgVKlSQN4c0nnz5nH37l2mTJlCVlYW8OR14oUwRMWKFaNIkSJMnz6dXr16Ua5cOXbv3k2NGjU4e/asumpEWloajo6OasbGgwcPMDIyIjw8XF1mzt/fHwcHB+Li4tT9ly9fHl9fXzw9PXn48CFBQUH07dsXb29vvdodQoiXR4Lq10zXQDhw4ADnz59Xg97SpUvToEEDFi1axPnz56lbty6LFy9mwoQJtGnThnPnzmFsbMzx48cpU6aMup4t5P3A2trasmvXLgA++eQTkpKSSElJ0dsmODhY/aF+9OgRVlZWrF69mjp16uitbf0iyysI8bqZmJig0Wg4c+YMycnJeu9FRERw5MgRrl+/znvvvce4ceM4e/YsX3/9NZmZmWRmZlKxYkX1ngkJCaFdu3a0adOGDh06MHjwYLy9vVm0aBHlypXD3NwcyEvtbtOmDfPnz6dQoUJ6a/IKYUjyB6/GxsY8fPiQtLQ00tPT6devH+vWrWPw4MGMGzeOS5cu0a1bNy5evAjAt99+i5+fH/369ePKlStoNBqKFStGTk4OxsbG3Lx5k5kzZzJ27Fhat25N8+bNiYiIUAuWQd4zcNq0abRv314tzPT4OvFCvOken56geyakpqayd+9elixZwvnz5/npp5+oVasWtra2BAQEsHTpUhRFwcLCgvLly7Nx40bgv8+SWrVqcfXqVbRaLRUqVMDFxYVt27Zx4cIF9VgjRoxgxIgR6pQJXaeURqORZ5IQr4AE1a+R7sctKSmJOnXqqCNbGzZswNLSkqZNm/LHH3/QpUsXxowZw/79+5k2bRoZGRnqMjxNmjQhPj6eW7duqfv19vbm5s2b6nJXgYGBAMyZM0fv+Bs2bFCXU9D9wJYpU4Zq1arh4ODwSq9diJflSfOSs7OzmTp1Kp6engQEBNChQwciIiLUQKF169bk5OSoa0a7uLgwfvx4YmNjmT59Oqampty5c4dixYqhKArW1tZMnTqVmTNnYm9vz+nTpxk6dCjJycl07NixQHXh6tWr4+HhIVWHhUHJn5mkC17T09OZO3euutTigwcPaNKkCatXr6ZLly60bNmSkJAQDh06xNatW4G8VSUmTJhAqVKl+P7774mJicHd3V1dXaJw4cLk5uayceNGypUrx549exgzZoxe5zCAnZ0dfn5+2Nra/nNfghAvkZGRkdq+OnfunPpMsLS0pGfPnnh6etKtWzeaNWumPsu6d+/Opk2bOHPmDJUqVcLT05MlS5YAeZ3FAEuXLiUgIID79+8D0LZtW4YOHapXPwcK3tPSKSXEK/TPZ5yLJ6lSpYpSsWJFxc7OTp0/c/HiRaVx48ZK+fLl1SqnOTk5ypgxYxRra2tFURQlIyNDKVy4sDJp0iR1rufJkycVGxsbZdGiRer+ly9frjcnR0c3500IQ/O0yvharVZZs2aN0rRpU+Wnn35S0tLSlP379yulS5dWRowYof7Nh4eHK/Xq1VPvrYcPHyrz5s1TbG1tlWHDhimWlpZKdna2ul9dHYP8VVsVRZEaBMLgPf43ffz4cSU+Pl7p3r274u7urkRFRSnbtm1TcnJylJycHOXRo0dKamqq0rt3b8XBwUHx8vJSnJ2dlQ4dOig3btxQ97Nv3z7ls88+UzQajdK2bVtFUf573+rmV+totdpnXu1CiDfRo0ePCvwNJyUlKWFhYYqjo6Pi4+Oj9OjRQ53XfOnSJSUkJERp3769+nkdMzMztTbHgQMHFFdXV6VmzZrK1KlTlaioKKVs2bJKTEzMP3RlQohnIcMo/xDlsXlgiqKQkZHBjh07mDlzJleuXOHy5cuMHDkSrVZLtWrVcHR05P333yctLU3t4TcxMaFRo0Y8ePCAmJgYrKysGDBgAD/99BMRERFMnjyZ0NBQ6tWrR/PmzdXjtWvXjmrVqhU4L12vpxCGRtfjvm3bNqZPn87NmzfV1+3t7RkzZgy9e/fG3t6e9PR0cnJyWLduHWfPngXgo48+YteuXWrlb1NTUyIjIwkLC2Ps2LGYmJjopdLpRhhkPWnxNlH+f430jIwMUlJS+PDDD2nQoAGHDh2iQoUKXL58GWNjY4KCgjAxMcHExAQjIyN++OEHkpOTWbhwIcnJyQwbNoyNGzfqTTPy9fVl+PDhuLi4YGVlRU5Ojnrf6kal868nLaNowhA9Pl3u9OnTXL58mZSUFPr06YOlpSXLli3jm2++4fLly3z55ZcAODs7U6tWLX7//XcuX76MkZGROtWhRYsWrFq1ivT0dGrWrMmKFSuoW7cu06dP5/Tp08yYMUOvjQcF25lCiH+WBNX/kPyNBeX/075nzZpFeHg4n3zyCTt27MDW1hYLCwt1u8KFC6sNmXXr1qmvu7u7ExQUxPTp0wEYPHgwv/zyCzY2NixevJjQ0FDmzp2LtbW13jnI8j3ibXHp0iWSk5MJDw8nPDycCRMm8MEHH6jzzmrXrk3VqlX58ccfcXd3p2/fvnTq1ImkpCQSExPVpeRKlCihFnvR3R9ff/01kydPJjY2Fk9PzyceX+akCUOj/P8yWI/TaDRkZGTg6elJVFQUFhYWJCQk8Pnnn1O7dm0sLS0pV64cGo2GnJwcAI4cOcKyZcsICwsjODgYRVFISUnh4cOH7Ny5U90uJycHZ2dnqlSpgpmZmboEVn7GxsYyTUIYlMeDVyMjI7Kysjhz5gyRkZH4+fmxa9cuSpYsSVhYGDNnzqROnTpUq1YNCwsLYmNj2b9/PxqNhmrVqmFpaUl0dDSQ1+4DiIqKIi4uTp0WWL16dSZOnMihQ4f47bffqFevXoHzkk4pIV4veZK9ZI83XHQ/vklJSezevVtv20KFCuHm5kZmZiaVKlWiQoUKbN68mevXr6vbeHh44Ofnx8yZM9X92djY0KZNG2JiYsjNzcXKyorGjRvz66+/sm/fPoYOHYq1tfUTf/iFMHQHDx7kgw8+ICwsjHLlypGWlsayZcuwtbVVaw2Ympqyc+dO5s+fz5AhQzh48CATJ07E29ub2NhYbt++jbGxMc2bN2fSpElkZ2er94ezszM9e/akdu3ar/MyhXipNBqNmpmUlJTEtWvX1GeEtbU1jRs3ZtOmTdSsWRNnZ2cgr4Jw/fr1Wbp0KfDfZ4iXlxe3b9/m6tWr3Lx5k927d5ORkYGrqytnz57l3r17AGqGlVarVZ+L8hwShkqXnfR48Hr9+nXc3d0ZOHAg1tbWHD58mPbt22NlZUWvXr3Yv38/QUFBVK1alT/++IOyZcsydepUACpXrkyVKlWYNm0aWVlZ7Ny5k61btxIYGEhgYKB6D+loNBoePXok1buFeAPJ0+0l0fW+52+46FLatFotX375JV26dOHcuXPqD/K5c+dwdHRUGzYdOnQgKSlJXeYK8pZdaN68OXv27OH+/ftqilzdunXp2bMn6enp6ra6Hk7dUkLSaykMzbNkU7i5uVGrVi0uXrxIhw4dAPDx8aFjx46cOHGCffv2ATB//nyMjY0JDw/H0tKSvXv3cuXKFbUADEDfvn0ZPny4Wh31ec9FCENx/fp1hgwZQokSJWjZsiXNmzdn5MiRauO8Xbt22NnZ6d0LdnZ2tGzZUq2Ub2xsTE5ODoUKFSIqKoqVK1fi5eVFo0aNCAgIIC4ujpkzZ2JnZwfkjVR37dqVXbt28eGHH76W6xbiWf2v9GlddtKBAweIiYkhOzsbrVZLiRIl8PHxYe3atQQGBuLs7Ky2v65fv863335LxYoVSUhIYNu2bTRs2JDNmzcDeUX9OnfujKIoeHp6EhQUxKlTpwDYsWMHfn5+TzwPyZQS4s0jQfVLout9v3v3LmPHjsXPz4+vv/6aI0eOYGRkxOLFi3F3d6d79+5qOk/RokVJSUlR171t3749ubm5JCQkqPs1Njamdu3apKenM2/ePPV1T09P/v3vf1O8ePEC56JbSkgIQ5N/FOtpDRx7e3v8/PzQaDTqiBhAlSpVKFu2rHqf1KlTh6SkJJYvX86BAweYPXs2kyZNwsrKSh018/T0pFevXk8cPZMRNfG20Gq1LFu2jIMHDzJjxgyOHj3KgAEDmD9/PgsWLACgWbNm2Nvbk5KSQnZ2NpDXSezj44OTkxPz589X9wV5y2YtXbqUuXPnkpWVRefOndVVI/IvJVekSBEWLVpEQEDAP33ZQjwT3fNAo9Fw+/ZttdP1cYsXL6ZMmTKEhIQwdOhQmjZtyurVq4G86tv29vbq4IauDXbq1Ck2btzIF198QdmyZcnKyiI5OZkbN26oFb3r1KnDqlWrWLFiBVqtlp49exY4NyHEm09ajS/Jxo0bmTVrFqNHj2bTpk0EBQWxfv16OnTowMaNG3FwcGDy5MloNBoGDRoE5DU4XFxc1CURihQpQqNGjVi0aBGjRo2icePGDB48mKpVq7J+/Xo6depUINCQFCBhiPIv86GjKApLly7l888/V7M8Hqf7TNWqValevTrLli1T33NzcyMwMJAdO3YAEBkZSadOnZgwYQL169fnzp07hISEcObMGfz9/fX2KQVehKF6lowKRVHw9fXlP//5Dy1atADg/v37XL16lQ0bNqjFyOrVq0d8fLy63jTkLTcXEBDApEmTgP9mRJmYmFCpUiWaNWsG6D+L8hf1mzRpEk2aNHk5FyvES3T37l06derE2LFjgbz7pEaNGvz666/q+7pClmfOnGHWrFn069ePq1evsnPnToKCgujatSsAISEhWFpacvr0aXJzc9V74OHDh7i6urJ69WrS09OZMWMGrq6utGjRQm8ApXz58uoSp/kDaSkmK4ThkKD6b9I1aBITE/n000+Jj49n/vz5jB07lh07dlC2bFl+/PFHsrKy8PDw4F//+hdJSUlMmTKFhIQEHBwcsLCwUAu7DBkyhNDQUNasWYOTk5OaMhccHIyVlVWBQENSgIQh0lVJ1dFNV5g/fz4ZGRlqhe3H6T7j4eFB9erV2bFjh3rvmJub4+/vz/Xr19U5oNOnTycmJoa7d++ydOlStXhf/kaLVB0WhuxZsjuMjY3x9fXF0dGRPn364OXlxbx582jRogXJyckkJSUBeR1RFy5c4NixY+pnraysaNu2Ld27d1fvtfx0x5RnkTA0VlZWtGzZkh49eqgdua1atSImJoYaNWpgY2PDzz//DEB8fDy3b9+mX79+3L17l3nz5rFixQoyMjLYv38/NjY2+Pn5sXPnTq5cuaIeo2bNmnTq1ImpU6fi4uLCtGnTCA8PZ+XKlWoNEB3dvSSBtBCGSYLqv/Aso1e6xnifPn0wNjamdOnSapEXW1tbOnTowK1bt9i6dSuQV+BlypQpbNq0iZiYGFJTU/XmYbu4uDB48GAOHjzInDlzqFix4iu6OiH+GU9KX7tx4wYdO3Zk9uzZeq+XLVtWrRPwV/efubk5vr6+5ObmsmHDBvV1Ly8vOnbsiI2NDZA3qla+fHm1uIuuE0waLcLQvGh2h247gCVLlhAfH8/y5cvZtWsXv/76K2fOnOHgwYMABAYGArB+/XoyMjLUzzdp0oRvvvmmQNEkkIrDwrCFhYVRtGhRMjIyuHnzJmvXruXUqVO4uLhw8eJFJk6cCORVvLeysqJhw4aUKlWKOXPm8Mknn3DmzBl8fX0B6NSpEydPniQ5OVndv62tLSNHjmTp0qUcOHCA33//nSZNmqiV8PPf03IvCWHYJKh+TP71Z5/lB07XWC9SpAh16tQhPT2dW7duqe/7+PhgamqqFp6AvIIwn3/+ORqNBmtra7KysvSOpevxzx8ECGFI8v/d6gLYY8eOce3aNSBvqoOTkxPDhw8nOjoajUbDgwcPyM7OplixYjx69Oipc5p1jZAqVapgZWWlVsaHvBTwKVOmPDHdVJbuEYbsRbM7IO85lZmZycqVK6latao6vzk6OhpTU1Pi4+M5fPgwkDdXOjIyssCSjDJNQryNMjMz1TnSRYsWZffu3fj4+FC6dGlsbW3V7VxdXdm3bx9OTk4kJiZy4MAB+vbti4uLCydPngTy1pa+d+8esbGxZGVl6R3H19cXLy8vvTbm4/e0EMKwSQsTCvQU6oLa6OhooqOjyczMfKb9dO3alT179uhV7y5ZsiRHjx4tMOIcHBxM8+bNMTY2xtzc/InBswQBwlDp/m7//PNPVq1ahZ2dHQ0bNqRVq1bMmzcPS0tLJk6cSIsWLfjqq684evQohQsX5vLly9ja2mJsbPzUDiVdI6RcuXIMGjSIb775psA2UmtAGLKXnd2hKAoWFhbY2tqSnJzM6tWr2bJlC9u3b6djx464ubmpVb8//PBD6tevX2AfMk1CvI0sLCywt7fnwoULHD58mJIlS9KqVSvi4uL02nLNmzfH2dmZ0qVL4+HhobYTExMTGT58uBpYDxkyhFatWmFubl7gWLqOMJkqIcTb6Z2N2HSNj8eXntJqtYwbNw4bGxu+/PJLhg0bxgcffKAuf/CkxrruBzIsLAxFURg9ejQHDhwgNzeXxYsXU7JkSTUlPD9HR0c1YJfgWRii/L3u+WVmZtK/f3/CwsJYsmQJv/zyC/Hx8VSuXJl+/fqpKdvjx4/Hzc2N/v37c/LkSby9vTl79izw9EwRrVZLTk4ORkZGtGrVCh8fnwLbSKNFGJpXmd2h2/eAAQOoUKECvXv3JiwsjPLly/P9998za9YsvY5fyZAS75J27dqRmpqqFg7r1KkTN2/eVGsNaLVaypcvT7du3Zg9ezbNmjVjypQphIaGEhISgoODA1ZWVkDeVMCGDRs+8TjSKSXE2+2djeR0P24ajYZTp04xZcoUrly5wpEjR1i1ahULFiwgOTmZbdu2UblyZbXC49Ma67qRhc6dO7Nx40a+//57/P396dOnD5999pleg8XIyIjDhw+zYcMGwsLCXvGVCvFyabVavXXZdfdEUlKS+rqFhQUmJiYkJCRQuHBhwsLC8PDwYNq0aTRq1IgxY8YAYG1tzZQpUyhSpAgff/wx165dw9PTk0ePHhVIddWtv25kZKTO7bx79+4/eelCvDKvMrtDd4/WqFGDGTNmsGPHDm7dusVXX32FhYUFoB9ISyeveJfUr18fW1tbkpKSuHfvHq6urlSqVIk9e/Zw7do19X4YMGAA06ZNw9vbm6VLl1KkSBHWrVvHzz//TKlSpdT9SaaUEO+md+bJmb/BoNVqyczMJDY2lnXr1tG8eXMSExO5f/8+MTExlC9fnpYtW3Lq1CnGjRvHggULuHPnDpcvX37q/nU/upGRkZiYmPDRRx8xevRosrOzGTRokF4wnpaWRlRUFO7u7jRu3PjVXbQQL0n+zA4jIyO9RvfYsWOxsbGhadOmfPrpp2rvftOmTbGyssLOzg7Iu+8KFSpE9+7d2bt3Lzdv3gTy5kFPmjSJnJwcFi9ejI2NDcbGxmrDRBdg69ZfP3HiBL169cLZ2Zl169bJPE9hUF5Xdoeu49fExARPT08AtaMKJJAW767ChQvj7+/PiRMn1NoCHTt2ZPfu3fzyyy9MmTKFpk2bAtCyZUsmTJjA7t27mTVrFlWrVgX025iSKSXEu+mtfYo+3tDWNRhu3LihjhQ3a9aM7777jvHjxzNv3jw8PT3Zs2cPqampVKlShVq1anH8+HGmTp3KhQsXKF269FOPpysS4+/vj62tLXv37qVRo0YYGRmRk5Ojdz7FihVjx44dxMbGUqJEiVfzBQjxEuXP7Dhx4gQjRowgJiaGpKQkLl++zPbt2/nll1/4/fffGT16NADVqlWjdu3anDt3jqysLPUedHV1xdbWVq04nJubqwbWHh4enD9/HvjvPWtsbMytW7cYP348Xl5e+Pv7k5qayg8//EC7du0kpU688d6E7A5dSnn+7A5dR5UQ77qWLVty79499bkUFhZGVFQUa9euZf78+dSrVw/Qb1vmLyYrnVJCiLf2V+DxhsK9e/eoWbMmP/zwA7m5ufj7++Pl5cWNGzfw8/NTt/P19SUuLo62bdty7tw5fvvtN9q1a0eRIkXUEbjHPXr0SK9BExkZycKFC7l06RIApqameucjBV/Em+7xkbT79+8TFxfH2rVrCQ4OZs2aNfTv35/Q0FCcnJzw8fEhJCSEPn36sG3bNs6fP4+NjQ01atQgJSWFuLg4dV979uzBwsKCokWLAv+dPxoYGIirqysVKlQA/nsPjxkzBicnJ6Kjo4mKiuLEiROsWrWKsLAwtbiSEG8aye4QwnD4+vri4ODA5s2bSUtLo3DhwkRFRbF7924SEhIYNGgQoN+2lGKyQoj83opfgyel0l28eJHdu3er7xUpUoTy5cuTkpLC6dOngbyeyUePHulV9w4PD8fS0pKiRYvi4OCgvr5+/Xr+/e9/qyngubm56r6NjY0xNjYmLS2NzZs3079/fzIyMsjOzn5l1yzEq6QbSdONaq1bt4769evz888/s2zZMg4dOsSgQYO4ePGimv4GeUvIOTs7M2PGDACCgoIwMTGhZ8+e/PDDD+p95OvrS/Xq1Qsc99SpU2qgnJOTA0BoaChHjx5l9+7d9OjRQ7I7hEGQ7A4hDEtISAiNGjXC0tISyLt3ixQpojd9QgghnsZgg+r8a2Y+af5KVFQUAwcO5OLFi+pr4eHhnD59miNHjgDQvXt3rl69qreGdIUKFejTpw/fffcdLVu2ZNSoUQQGBtKjRw/c3d3VtTtNTEzU4y5cuJA6derg7u7O+PHjKVq0KH/88QceHh6v7PqFeJXu3LlDiRIlWLRoEYqi0Lx5c9zc3Hjw4IFadC80NBR/f3+WLl2qfq5MmTI0btyYFStWAHlBtr+/PxYWFpw+fZpRo0bh5eXFjz/+qHe8W7du0aJFC4yNjdU1dHXFyNzd3dU5oEK8qSS7QwjD1r17d/r06aMG1Tr5p08IIcTTGGxQnT+Fev78+XzxxRds3rxZHXX++OOP+eOPP/TWGWzatCnm5uYcPHhQrfBYsWJF1qxZQ1ZWlrrdiBEjmDFjBpUrV2bHjh00aNCApKQkvvrqK2xsbACIj4+nTZs22NvbM3LkSOrWrcv+/fvZsmWLNFrEG+1JmR1nz57l+PHjQF6HlY2NDWXLlmXXrl3cunULKysrAgMDyczMVP++ixQpQnh4OGvXrlVHlS0tLWnYsCHXr18nPj4eY2NjfHx8KFGiBHXr1mXfvn3MnDmzwBJzhQoVoly5cqxZs+aJS2QJ8aaT7A4hDJ9Wq5XpEUKIF2KwQfWpU6dYt24dvXv35ptvvuH48eNERETQp08fAFq3bo2RkRF79uxRA2ZTU1P8/PyIj49XU8C7du1KbGwsV65cUfdtbGxMs2bNGD16NFu2bOHbb7+lePHiakGKlJQUJk2ahIWFBdHR0Rw/flwdgRPiTfS/Mjvatm1L3759uXv3rtpZ1a1bN7Zv365WFu7SpQtJSUl6lYYbNmyIkZERa9euVffl4eFBhQoV2LdvHwANGzbE1NRU/XdOTk6BpX+srKyYPHky3t7eL/nKhfhnSHaHEIbPyMhIpkcIIV6IQQbVaWlp9OrVi969e5OamsqhQ4eIjY3lp59+YtGiRcydOxeA4OBg4uPjOXfunPrZBg0acPz4cXXZhE8++YSrV69y4MCBAsfR/bA+evRILTYDUK5cOZYtW8aCBQsICAiQtCDxxsuf2bFgwQIGDRrEtm3b1JGt/v37c/jwYbW4HuRNl8jKymL//v3k5uYSFBSEk5OT2vgHKF26NHXq1FHnhEJeEaW4uDgGDhwI5AXZbm5uaoqrqampFHcRBkWyO4QQQgjxVwyyZVu8eHEaNGhAWloaTZo0wcbGBo1GQ3h4OBEREUydOhWATp06ce3aNbZv3w7kpfWsXr0arVbLpk2buHHjBpaWlmzbto2IiIinHs/Y2LhAxUfdiIAQhuDUqVP89ttvDBw4kG+//ZYjR47Qrl07pk+fDuRVrL979y47d+5Ul/8pXLgwderUYc2aNaSlpQEQERHBihUruH//PgBmZmZ07dqVxo0b6y0tYm5urlfcJSQkhCFDhuDk5PQarl6I5yfZHUIIIYR4Vq89qNatpfmsdA2LwMBAXFxc1KqnupGE9u3bk5iYSGZmJrVq1aJevXqMHj2aAQMGEBERQYkSJfj2229p06YNDg4OaLVagoKCJN1HvLXS0tLo2bMnPXv25Pbt2xw+fJiNGzcSGhrKkiVL9JbzWb58Obdv31ZHkoODgzl69CgnT54EoEOHDnqZHgAtWrRg/PjxBUaf8xd3ady4MRERERQuXPgfuGIh/j7J7hBCCCHEs/rHntLp6ekMHDiQP//8U+913VqagDoa9ld0DYtq1arh4+PDkSNHePDggd5IQqlSpfj9998BGDVqFEOHDiUxMRFzc3O6d+/OwIEDad++PSYmJtJQEW+94sWL07BhQ9LT06lfvz5FihQBULMzoqOjAejduzeJiYns378fgKysLH777TfS09PZsGEDmZmZvPfee8TGxuLv7693DCnuIt42kt0hhBBCiGf1SiPKjIwMUlNTAcjOziY5OZkHDx7obXPp0iW++OILXFxcCAkJoVevXmrP/9Ma6YqiYGlpSe3atTlw4AALFixQRw+io6NxdXXF29sbrVZLiRIl6N27N3FxccyePRs3NzeAAql0QhiCF83sCAgIwMXFRU1DBahatSoeHh7s2bMHrVZLgwYNqFmzJn369GHkyJF89NFHBAUFMWzYMKpXr46ZmRmQN+r8eGaHFHcRbxPJ7hBCCCHE83ilQbWHhwejRo3iwYMHODk5sX79ehwdHdX3z549S2RkJOfOnWP8+PEMGjSIhIQEvv76azIzM5/aSNcF2/Xr18fJyYmBAwfy6aefUrduXebPn09kZCQWFhYFGiyPHj3SGxkQ4k31sjM7fHx8qFy5MocOHVI7tqytralZsya3b99m69atAPz000907tyZtWvXYmZmRvv27RkxYgTh4eFyz4h3hmR3CCGEEOJ5vJJWsm7U+KOPPmLHjh388ccfAFy5coW2bdty+fJlAFxdXWnWrBmrVq0iPDyc1q1bU7lyZTZt2sTmzZuBJ1dd1TXuK1WqhK+vLzVq1CAwMJCOHTty4sQJunbt+sTzMjY2lsBAvLFedWZHzZo1uXbtGrt371bf8/X1RaPRsHjxYgAqVqzIsGHDOHjwIHPmzKF06dLAk+9DIQyBZHcIIYQQ4lV76RGmoihqZewePXpw4sQJNe3N2tqa1atXs2HDBiAvyB08eDDnzp2jXbt2ODg4sG/fPhwdHVm0aFHeCT4lCNZqtWg0Gnx9fbl//z5Fixala9euODk5yQiAMEivOrOjbt26WFlZsWXLFvU9b29vPvzwQzp27Fjgc/kzO55U/ViIN4lkdwghhBDidXnuJ/7du3dJTEwEnjx6pdFouH37NtnZ2ZQpUwZvb29WrVrF/fv3sba2pnPnzixcuFAdObh//z5DhgzBzMyM3377jePHjxMYGEhiYiKpqaloNJoCAXL+Yi4NGjTA1tZWDdS1Wq2MAAiD8k9ldlSrVg07Ozvi4uLUwMPU1JRevXrRoEGDAp+TzA7xppPsDiGEEEK8CZ6rxXznzh26dOmiLg/ypNGrf/3rXwQHB3Pw4EEAPvvsM9avX8/Vq1cB6Ny5M3v27CElJQWAo0ePsmnTJrp06YKvry+QF0xcunSJ5cuXA/+de6YLpI2MjChUqBCQt1ZniRIlOHPmDGlpaRIECIPyT2d2DBw4kEWLFmFra1vgfSEMjWR3CCGEEOJN8FwRqI2NDbNnz2bcuHHqa7t371ZH0gBq1qzJ3bt3OXHiBACffvopN2/eZN++feqa0CVLllQD87t37+rNUVu4cCEmJiY0a9ZMDS50I8+6FL6dO3cSERGBkZERixYtYujQoWzatInixYv/rS9DiJftTcns0DX0a9asiaura4HzkM4oYUgku0MIIYQQb5LnevorioK1tTXJycls27aNCxcuEBgYqNeL//777+Po6Mj+/fu5ceMG5ubm1KtXj+XLl5ORkYGRkRFhYWEsWrQIRVGoVasWwcHB/PLLLzg5OTFo0CBCQ0OZN28es2bNAvICj5MnTzJgwACcnZ0JDQ3FwsKCLVu20KNHD8qWLSujAuKN8yZldug6pK5fvy71BoRBk+wOIYQQQrxpniuo1mg0PHjwgK+++ophw4bh6uqqjpLlLw7TpEkTjh49yvHjxwHo1asXW7du5fz58wB06dKFlJQUduzYga2tLd999x0LFy5k6dKlXL16ldDQUGxsbNT9bd++nYoVK3L69GkmTZrE6dOnmTFjBvXr11eDBSHeNG9iZsesWbNkrqd4o0l2hxBCCCEMzXOPVBcuXJhGjRqRm5vLsWPHiIiIYOfOnepIGkDbtm1JTU3lyJEjAISEhFC4cGHi4uLIzc2lUqVKeHp6qu8D1KtXj7p16wIFG1L16tXj6tWrrF27ltDQUKysrF74goX4p7yJmR2DBw+WjijxxpLsDiGEEEIYouceqQYIDAzE3NycFStWEBoayq1bt0hKSlK3K1++PKampuzdu5eLFy8CeWt+/vrrr2RkZACQlJREnz599Pava7g8qSFVsmTJ5zlVIV67NzGzQ6ZJiDeZZHcIIYQQwhC9UP7ae++9R8WKFYmPj8fKykodfTt58iQAmzZt4uHDhyQkJLBv3z4A/vOf/7BixQrs7e0BMDc3LzAnTZbBEm8TyewQ4vlIdocQQgghDNFzB9W60WR/f3/u3LlDXFwc/fv3Jzk5mW7dujFmzBh+/PFHRo8eTYcOHahVqxYAzs7OVKxYUf/gMidNvMUks0OI5yPZHUIIIYQwRM8d1eoChYCAAIoXL87KlSupVasWM2bMoHjx4mzcuJGQkBAiIyMZM2YMbm5uep8T4l0jmR1CPBvJ7hBCCCGEIdIof6MCy+DBg9mzZw/Tp0/Hy8uL7OxszMzM1PcVRUFRFBmRFu8sRVHQaDQsWLCAH3/8kfHjx2NtbU2XLl0oVqwYwcHBxMfH06FDB06ePMlnn32Gm5ub+jkh3kVHjx4lKiqKunXr0rdvXypVqsTw4cPp3r27uk25cuWoXr06EydOxMXFhZYtW3L27Fl27dqFvb09WVlZmJub6+1X7ishhBBCvAovFO3q4vA6deqg0WhISEgAwMzMDEVR1FEAjUYjAbV4p0lmhxDPT7I7hBBCCGFIXqj6iq5h4uvry/Xr17l//77eezIHTQh9rq6uvPfee+zZs4cTJ07g7++Pj4+PZHYI8RjdaLK/vz/79+9X63Z06dKFbt26qdkdo0eP5uTJk3p1Ox4PmuVeEkIIIcQ/4YVbHFqtlujoaG7dukWNGjVe5jkJ8VaRzA4hnp1kdwghhBDC0PytdUIuXLjAmDFjqF69+ss6HyHeOpLZIcTzk+wOIYQQQhiKFw6qjYyMGDly5Ms8FyHeWpLZIcSz06WA16lTh71795KQkICXl5ea3aHVajE2Nkaj0cgItRBCCCFeO+neF+IfIpkdQjwbye4QQgghhCH5W+nfQohnI5kdQjwfye4QQgghhKGQkWohhBBvJMnuEEIIIYQh0Ci60sRCCCGEEEIIIYR4LjJSLYQQQgghhBBCvCAJqoUQQgghhBBCiBckQbUQQgghhBBCCPGCJKgWQgghhBBCCCFekATVQgghhBBCCCHEC5KgWgghhBBPNWfOHGxtbV/3abwWXbp04YMPPnjdpyGEEOINJ0G1EEIIYaAk6NMXFxeHRqPhzz//fK7PXbhwAY1Gw+HDh/Venzx5MnPmzHlp5yeEEOLtZPK6T0AIIYQQ4k1kY2Pzuk9BCCGEAZCRaiGEEOItEBQUxOeff07fvn2xs7PD0dGR6dOnc//+fT766COsrKwoV64cGzZsUD+jG9ldv349VapUwczMDF9fX44dO/aXx1q3bh3Vq1fHzMyMsmXLMmLECHJzc9X3NRoN06ZNo0WLFlhYWODl5cXevXs5c+YMQUFBWFpa4ufnx9mzZ597vzNmzCAkJAQLCwvKly9PdHQ0kDfaXK9ePQDs7OzQaDR06dIFgNjYWAICArC1tcXBwYEWLVroHdvNzQ2AatWqodFoCAoKAgpmAjx48ICoqCiKFy+OmZkZAQEBJCQkFPg+t27dSo0aNbCwsMDf359Tp079r/99QgghDJgE1UIIIcRbYu7cuRQtWpQDBw7w+eef06NHD9q3b4+/vz9JSUkEBwcTGRlJZmam3ucGDhzI999/T0JCAsWLF6dVq1bk5OQ88RgbN26kU6dOREVFkZyczLRp05gzZw6jR4/W227UqFF07tyZw4cPU6FCBSIiIujWrRtDhgwhMTERgN69ez/3fkeMGEFoaChHjx6lWbNmdOzYkfT0dEqXLs3KlSsBOHXqFKmpqUyePBmA+/fv88UXX5CQkMDWrVsxMjIiJCQErVYLwIEDBwDYsmULqamprFq16onXPmjQIFauXMncuXNJSkrC3d2d4OBg0tPT9bYbOnQoP/zwA4mJiZiYmPDxxx8//X+aEEIIw6cIIYQQwiB9+OGHSuvWrRVFUZS6desqAQEB6nu5ubmKpaWlEhkZqb6WmpqqAMrevXsVRVGU7du3K4CyZMkSdZtbt24p5ubmytKlSxVFUZTZs2crNjY26vuBgYHKmDFj9M5j/vz5SsmSJdV/A8rXX3+t/nvv3r0KoMycOVN9bfHixYqZmdnf2u+9e/cUjUajbNiwQe96bt++/ZRvLE9aWpoCKMeOHVMURVHOnz+vAMqhQ4f0tsv//d67d08xNTVVFi5cqL7/8OFDxcnJSZkwYYLe8bds2aJus379egVQsrKy/vKchBBCGC6ZUy2EEEK8Jd577z31v42NjXFwcKBy5crqa46OjgCkpaXpfc7Pz0/9b3t7ezw9PTlx4sQTj3Hw4EESEhL0RpAfPXpEdnY2mZmZWFhYFDgX3XEfP5fs7GwyMjKwtrZ+of1aWlpiZWVV4Hoed/bsWYYNG8a+ffu4efOmOkJ96dIlvL29//Kz+feRk5PD+++/r75mampKrVq1CnxX+c+xZMmSQN53XqZMmWc6lhBCCMMiQbUQQgjxljA1NdX7t0aj0XtNo9EAqEHlX9Ft+zitVsuIESNo06ZNgffMzMyeeC66ff3VubzIfnX7+V/X07JlS0qXLs2vv/6Kk5MTWq0Wb29vHj58+Jefy09RFL3zzv/646+96HcuhBDCMElQLYQQQrzj9u3bp46i3r59m5SUFCpUqPDEbX18fDh16hTu7u4v9Rxexn4LFSoE5I1w69y6dYsTJ04wbdo0AgMDAdi1a9f//Nzj3N3dKVSoELt27SIiIgKAnJwcEhMT6du37wufsxBCCMMnQbUQQgjxjhs5ciQODg44OjoydOhQihYt+tT1r4cPH06LFi0oXbo07du3x8jIiKNHj3Ls2DG+++67Fz6Hl7FfFxcXNBoNMTExNGvWDHNzc+zs7HBwcGD69OmULFmSS5cu8eWXX+p9rnjx4pibmxMbG4uzszNmZmYFltOytLSkR48eDBw4EHt7e8qUKcOECRPIzMzkk08+eeHrFkIIYfik+rcQQgjxjhs3bhx9+vShevXqpKamEh0drY7ePi44OJiYmBg2b95MzZo1qV27NpMmTcLFxeVvncPL2G+pUqUYMWIEX375JY6OjvTu3RsjIyOWLFnCwYMH8fb2pl+/fkycOFHvcyYmJkyZMoVp06bh5ORE69atn7j/cePG0bZtWyIjI/Hx8eHMmTNs3LgROzu7v3XtQgghDJtG0U0SEkIIIcQ7JS4ujnr16nH79m1sbW1f9+kIIYQQBklGqoUQQgghhBBCiBckQbUQQgghhBBCCPGCJP1bCCGEEEIIIYR4QTJSLYQQQgghhBBCvCAJqoUQQgghhBBCiBckQbUQQgghhBBCCPGCJKgWQgghhBBCCCFekATVQgghhBBCCCHEC5KgWgghhBBCCCGEeEESVAshhBBCCCGEEC9IgmohhBBCCCGEEOIFSVAthBBCCCGEEEK8oP8DnMcQhqBg0jMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAp0ZJREFUeJzs3Xd4FFXj9vF702kJpBA6hF5C703BQpWuICAKWMAHC6L+FFBRBFHURxQpIj4qSBVRQbpSBaR3pENCCQkJkARC+nn/yLsjSwKGJZAEvp/r2gt2dsqZZCcz95wz59iMMUYAAAAAAOCmuWR3AQAAAAAAyK0I1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAIBb9t1338lms133tXr16uwuYqbMnDlT48aNy/Azm82md999946W50Y/02t/vn379lWZMmXuaPlyuhMnTshms+mTTz7Jlu3bj4sTJ05ky/az2oYNG/Tuu+/q4sWLTq9j8eLF1z2OypQpo759+zq9bgDILm7ZXQAAwN3j22+/VeXKldNNr1q1ajaU5ubNnDlTe/fu1eDBg9N9tnHjRpUoUeKOlmfjxo0O799//32tWrVKK1eudJhetWpVlSxZUi+//PKdLB7uMRs2bNB7772nvn37qmDBgk6tY/HixZowYUKGwfrnn3+Wt7f3rRUSALIBoRoAkGWCg4NVr1697C7GbdGoUaNs32ZAQIBcXFwyLMu9GkauXLkiLy8v2Wy27C4KblHt2rWzuwgA4BSafwMA7pjZs2fLZrPpyy+/dJg+YsQIubq6asWKFda0rVu3qmPHjvL19ZWXl5dq166tuXPnplvn6dOn9dxzz6lkyZLy8PBQsWLF9Oijjyo8PFzS9Zvgrl692qFpeosWLbRo0SKFhIQ4NK22y6j59969e9WpUycVKlRIXl5eqlWrlr7//vsMtzNr1iwNHz5cxYoVk7e3tx566CEdPHjwZn+E15VR82+bzaYXXnhB3377rSpVqqQ8efKoXr16+uuvv2SM0ccff6ygoCDlz59fDzzwgI4cOZJuvb///rsefPBBeXt7K2/evGratKn++OOPfy2Pfb9/+OEHDRkyREWKFFGePHl0//33a8eOHenmz8zv2/67XL58ufr376+AgADlzZtXCQkJmf452dexcuVKPfvss/Lz85O3t7eefPJJXb58WWfPnlX37t1VsGBBFS1aVK+99pqSkpKs5e1NyseOHavRo0erVKlS8vLyUr169TL1c5Ey9zN99913ZbPZtHv3bj322GPy8fGRr6+vhgwZouTkZB08eFBt2rRRgQIFVKZMGY0dOzbddmJiYvTaa68pKChIHh4eKl68uAYPHqzLly87zGf/nkyfPl1VqlRR3rx5VbNmTf32228O5Xn99dclSUFBQeke7ZgzZ45atWqlokWLKk+ePKpSpYrefPNNh2317dtXEyZMsLZpf9mPzYyaf4eGhuqJJ55Q4cKF5enpqSpVqujTTz9Vampqut/JJ598ov/+97/Wd7px48b666+/MvU7AYBbQagGAGSZlJQUJScnO7xSUlKszx9//HENHDhQr776qrZu3SpJWrlypUaNGqVhw4bp4YcfliStWrVKTZs21cWLFzV58mT9+uuvqlWrlnr06KHvvvvOWt/p06dVv359/fzzzxoyZIiWLFmicePGycfHRxcuXLipsk+cOFFNmzZVkSJFtHHjRut1PQcPHlSTJk20b98+ffHFF5o/f76qVq2qvn37Zhhwhg0bppCQEE2dOlVTpkzR4cOH1aFDB4efz+3w22+/aerUqfrwww81a9YsxcbGqn379nr11Ve1fv16ffnll5oyZYr279+vbt26yRhjLfvDDz+oVatW8vb21vfff6+5c+fK19dXrVu3znSAHDZsmI4dO6apU6dq6tSpOnPmjFq0aKFjx45Z82T2923Xv39/ubu7a/r06Zo3b57c3d1v+ufyzDPPyMfHR7Nnz9Zbb72lmTNn6tlnn1X79u1Vs2ZNzZs3T0899ZQ+/fRTjR8/Pt3yX375pZYuXapx48bphx9+kIuLi9q2bXvD74x08z/T7t27q2bNmvrpp5/07LPP6rPPPtMrr7yizp07q3379vr555/1wAMP6I033tD8+fOt5eLi4nT//ffr+++/10svvaQlS5bojTfe0HfffaeOHTs6/J4ladGiRfryyy81cuRI/fTTT/L19VWXLl2s39MzzzyjF198UZI0f/586/ioU6eOJOnw4cNq166dvvnmGy1dulSDBw/W3Llz1aFDB2sbb7/9th599FFJcjjGihYtmuHP6ty5c2rSpImWL1+u999/XwsWLNBDDz2k1157TS+88EK6+SdMmKAVK1Zo3LhxmjFjhi5fvqx27dopOjr6hr8TALhlBgCAW/Ttt98aSRm+XF1dHeaNj483tWvXNkFBQWb//v0mMDDQ3H///SY5Odmap3LlyqZ27domKSnJYdlHHnnEFC1a1KSkpBhjjOnfv79xd3c3+/fv/9eyHT9+3GH6qlWrjCSzatUqa1r79u1N6dKlM1yPJDNixAjr/eOPP248PT1NaGiow3xt27Y1efPmNRcvXnTYTrt27Rzmmzt3rpFkNm7ceN2yX+upp54y+fLlu+5n15ZdkilSpIi5dOmSNe2XX34xkkytWrVMamqqNX3cuHFGktm9e7cxxpjLly8bX19f06FDB4d1pqSkmJo1a5oGDRrcsKz2/a5Tp47Ddk6cOGHc3d3NM888Y03L7O/b/rt88sknb7htu+PHjxtJ5uOPP7am2dfx4osvOszbuXNnI8n897//dZheq1YtU6dOnXTrLFasmLly5Yo1PSYmxvj6+pqHHnoo3bbs372b+ZmOGDHCSDKffvppuvJIMvPnz7emJSUlmYCAANO1a1dr2pgxY4yLi4vZsmWLw/Lz5s0zkszixYutaZJMYGCgiYmJsaadPXvWuLi4mDFjxljTPv744wyPpWulpqaapKQks2bNGiPJ7Nq1y/ps0KBB5nqXn6VLlzZPPfWU9f7NN980ksymTZsc5nv++eeNzWYzBw8eNMb88zupXr26w9+RzZs3G0lm1qxZNywvANwqaqoBAFlm2rRp2rJli8Nr06ZNDvN4enpq7ty5ioqKUp06dWSM0axZs+Tq6ipJOnLkiA4cOKDevXtLkkOtd7t27RQWFmY1m16yZIlatmypKlWq3NkdVVoN+4MPPqiSJUs6TO/bt6/i4uLS1Vh27NjR4X2NGjUkSSEhIbe1nC1btlS+fPms9/afVdu2bR2at9un28uzYcMGnT9/Xk899ZTD7yA1NVVt2rTRli1b0jUjzkivXr0ctlO6dGk1adJEq1atknRzv2+7bt26OfOjcPDII484vLfvf/v27dNNz+h31LVrV3l5eVnvCxQooA4dOmjt2rXXbX3gzM80o3LabDa1bdvWmubm5qby5cs7lPO3335TcHCwatWq5bCt1q1bZ9gjf8uWLVWgQAHrfWBgoAoXLpzp7+exY8fUq1cvFSlSRK6urnJ3d9f9998vSfr7778ztY5rrVy5UlWrVlWDBg0cpvft21fGmHQd9rVv3976OyLduWMMAOioDACQZapUqZKpjsrKly+v5s2ba9GiRXr++ecdmn/an4V+7bXX9Nprr2W4fGRkpKS05qF3ukduu6ioqAybrRYrVsz6/Gp+fn4O7z09PSWldbR1O/n6+jq89/DwuOH0+Ph4Sf/8HuzNdTNy/vx5h8CekSJFimQ4bdeuXQ7byczv2+56zYVvxs38XOw/k6tdb78SExN16dIl+fj4pPvcmZ9pRuXJmzevQ6C3T4+JiXHY1pEjR67bNP7an+m1308p7Tuame/npUuX1Lx5c3l5eWnUqFGqWLGi8ubNq5MnT6pr165Of8ejoqIyHCYupx1jAECoBgDccVOnTtWiRYvUoEEDffnll+rRo4caNmwoSfL395ckDR06VF27ds1w+UqVKklK6w371KlTN9yWPXxc25nVtaHiZvn5+SksLCzd9DNnzkj6Zz9yK3v5x48ff92ezwMDA/91PWfPns1wmj0A3czv2y4n9PR9vf3y8PBQ/vz5M1wmq36mmeHv7688efLof//73w3LkhVWrlypM2fOaPXq1VbttKRbGs9auvuPMQB3D0I1AOCO2rNnj1566SU9+eST+vrrr9WkSRP16NFDO3bsUKFChVSpUiVVqFBBu3bt0gcffHDDdbVt21bTp0/XwYMH0wUvO3tN1+7dux3mWbBgQbp5M1szJ0kPPvigfv75Z505c8aqOZPSmsDnzZs3W4bgykpNmzZVwYIFtX///gw7hcqsWbNmaciQIVYQDgkJ0YYNG/Tkk09K0k39vnOS+fPn6+OPP7Zu2sTGxmrhwoVq3ry5QxPkq2XVzzQzHnnkEX3wwQfy8/NTUFBQlqzzejW/9t+t/XO7r7766obryJMnzw239+CDD2rMmDHavn271SGalHaM2Ww2tWzZ8uZ3AgBuA0I1ACDL7N27V8nJyemmlytXTgEBAbp8+bK6d++uoKAgTZw4UR4eHpo7d67q1Kmjfv366ZdffpGUdjHetm1btW7dWn379lXx4sV1/vx5/f3339q+fbt+/PFHSdLIkSO1ZMkS3XfffRo2bJiqV6+uixcvaunSpRoyZIgqV66s+vXrq1KlSnrttdeUnJysQoUK6eeff9aff/6ZrpzVq1fX/PnzNWnSJNWtW1cuLi7Xbc4+YsQI/fbbb2rZsqXeeecd+fr6asaMGVq0aJHGjh2bYfPf3CR//vwaP368nnrqKZ0/f16PPvqoChcurHPnzmnXrl06d+6cJk2a9K/riYiIUJcuXfTss88qOjpaI0aMkJeXl4YOHWrNk9nfd07i6uqqhx9+WEOGDFFqaqo++ugjxcTE6L333rvuMln1M82MwYMH66efftJ9992nV155RTVq1FBqaqpCQ0O1fPlyvfrqq1brkMyqXr26JOnzzz/XU089JXd3d1WqVElNmjRRoUKFNHDgQI0YMULu7u6aMWOG1cQ/o3V89NFHatu2rVxdXVWjRg2r+f3VXnnlFU2bNk3t27fXyJEjVbp0aS1atEgTJ07U888/r4oVKzrxkwGArEeoBgBkmX79+mU4/euvv9YzzzyjgQMHKjQ0VFu2bLGeGy1btqymTp2qxx57TOPGjdPgwYPVsmVLbd68WaNHj9bgwYN14cIF+fn5qWrVqurevbu13uLFi2vz5s0aMWKEPvzwQ0VFRSkgIEDNmjWznkV1dXXVwoUL9cILL2jgwIHy9PTU448/ri+//DJdp1Qvv/yy9u3bp2HDhik6OlrGmHRDD9lVqlRJGzZs0LBhwzRo0CBduXJFVapU0bfffpturN3c6oknnlCpUqU0duxYDRgwQLGxsSpcuLBq1aqV6X384IMPtGXLFvXr108xMTFq0KCBZs+erXLlylnzZPb3nZO88MILio+P10svvaSIiAhVq1ZNixYtUtOmTW+4XFb8TDMjX758WrdunT788ENNmTJFx48fV548eVSqVCk99NBDGT6r/G9atGihoUOH6vvvv9fXX3+t1NRUrVq1yhrj/dVXX9UTTzyhfPnyqVOnTpozZ45DDbOU1nHd+vXrNXHiRI0cOVLGGB0/fjzD8gQEBGjDhg0aOnSohg4dqpiYGJUtW1Zjx47VkCFDnPzJAEDWs5nrXS0AAAA4afXq1WrZsqV+/PHHG3bMlducOHFCQUFB+vjjj6/bsRoA4N7CkFoAAAAAADiJUA0AAAAAgJNo/g0AAAAAgJOoqQYAAAAAwEmEagAAAAAAnESoBgAAAADASYxTDaWmpurMmTMqUKCAbDZbdhcHAAAAALKdMUaxsbEqVqyYXFyuXx9NqIbOnDmjkiVLZncxAAAAACDHOXnypEqUKHHdzwnVUIECBSSlfVm8vb2zuTQAAAAAkP1iYmJUsmRJKy9dD6EaVpNvb29vQjUAAAAAXOXfHpGlozIAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwElu2V0AAABygwMHDmjdunWKiIhQ4cKF1bx5c1WuXDm7iwUAALIZoRoAcNfKqiB84MABzZ4923p/+vRpzZkzRz169CBYAwBwj7MZY0x2FwLZKyYmRj4+PoqOjpa3t3d2FwdALhQfH6/Q0NDsLoaDo0ePavHixQ7TbDab2rZtq3Llyt3UuubOnavw8PB00wMDA9W9e/dbKueNlCpVSl5eXrdt/QAA4Poym5OoqQYA3LLQ0FA999xz2V0MB2FhYUpISEg3fdmyZSpatOhNrSskJEQZ3YO22Wz6/fffnS7jv5kyZYoqVqx429YPAABuHaEaAHDLSpUqpSlTpmR3MRxMmjRJycnJDtMuXryoP//8U8OHD1fp0qUzva7srKkGAAA5G6EaAHK48PBwRUdHZ3cxco2jR49q27Zt2rNnj1JTU1WsWDEVKlTI+tzDw+Om11m3bl0tWbLEobbaZrOpbt26WVLm68lpTeoz4uPjo8DAwOwuBgAA2YZnqsEz1UAOFh4erif6PKmkxPTNmJFeXFycIiIiJElJSUm6fPmyJClfvnxyd3eXJBUuXFh58+Z1at3R0dFKTEyUh4eHfHx8nFrP3cbdw1M/TJ9GsAYA3HV4phoA7gLR0dFKSkzQlbL3K9XLJ7uLk+Od2/+XEgOuqpW+ckmJly4qzuYin9JVlL9okEyhQF12cv1Xn06N5PR67hYu8dHSsTWKjo4mVAMA7lmEagDIBVK9fJSazz+7i5HjJaakyrj/U3vs6p5XebwLy8XVTX71H5Ekpd7E+uKjzujS6UNKiouRe15v5S9eUV5+xbK41AAAIDdzye4CAACQVdzzZtw0yy1vgZteV3zUGZ0/sEmJsRdkUlKUGHtBFw5uUnzUmVstJgAAuItQUw0AuYDLlYvZXYRcoYBvgC6cP62rOwuxSSrgW1EulyNval2Xj22XLSkuw+l5vW6+s7O7Ed9LAAAI1QCQK+Q5vja7i5Ar5JOU15ZBh2Jhm6Swm+tsLDIkRB4ZjU0daVM+RdzmPQEAALkFoRoAcoErQfcpNU/B7C5GrpFRh2JXLoTr/JGdkndaR2YJki4ZqVDRWspTKH0nW0Z/KfFy+qHMPPL56HLVRrej2LmOy5WL3PABANzzCNUAkAuk5ilIR2W3KPboXodOzKS0wB17/pw8S1RLN3++snWUeHCTrq6sttnSpvO7AAAAdnRUBgC4JyTFxWQ4PTkuNsPpXn7FVKhSQ3kUKCQXVzd5FCikQpUa0vs3AABwQE01AOCe4J7XW4mxF9JNv1HP4F5+xQjRAADghgjVAJALuMSnf7YXNyejnsGTr1xWUvIVnV07W+558it/0aAMn69GxvheAgBAqAaAHM3Hx0fuHp7SsTXZXZRc79qewSXJlpgo90vu1jyXTmxW3sKFr9sjONJz9/CUj49PdhcDAIBsQ6gGgBwsMDBQP0yfpujoe7NG8OjRo9q2bZuioqLk5+enunXrqly5ck6vLyQkRKNHj9bw4cO1adMmhYeHp5snMDBQ3bt3v5Vi31N8fHwUGEjtPgDg3kWoBoAcLjAw8J4MLQcOHNCmTZskpQW35ORkbd68WUFBQapcufItrbt06dLavHmz/Pz80n3m4uKiihUr3tL6AQDAvYNQDQC4ZfHx8QoNDc3Sdc6bN09RUVEZTne2JjkkJMT61xiT4foDAwN16NAhp9af1UqVKiUvL6/sLgYAALgBmzFXj8CJe1FMTIx8fHwUHR0tb2/v7C4OgFzo0KFDeu6557J0nfbgey2bzabSpUvf8vrj4uIUERGRbnrhHPRM9ZQpU6g1BwAgm2Q2J1FTDQC4ZaVKldKUKVOydJ1z58697c8825/ZPn/+vHx9fW/5me2sVqpUqewuAgAA+BfUVIOaagA50oEDBzRnzhyH2mqbzaYePXrc8jPVAAAA/yazOcnlDpYJAIBMq1y5snr06KHixYvLw8NDxYsXJ1ADAIAch+bfAIAcq3LlyoRoAACQo1FTDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1TnQxIkTFRQUJC8vL9WtW1fr1q3L1HLr16+Xm5ubatWqdXsLCAAAAACQRKjOcebMmaPBgwdr+PDh2rFjh5o3b662bdsqNDT0hstFR0frySef1IMPPniHSgoAAAAAsBljTHYXAv9o2LCh6tSpo0mTJlnTqlSpos6dO2vMmDHXXe7xxx9XhQoV5Orqql9++UU7d+7M9DZjYmLk4+Oj6OhoeXt730rxAQAAAOCukNmcRE11DpKYmKht27apVatWDtNbtWqlDRs2XHe5b7/9VkePHtWIESMytZ2EhATFxMQ4vAAAAAAAN49QnYNERkYqJSVFgYGBDtMDAwN19uzZDJc5fPiw3nzzTc2YMUNubm6Z2s6YMWPk4+NjvUqWLHnLZQcAAACAexGhOgey2WwO740x6aZJUkpKinr16qX33ntPFStWzPT6hw4dqujoaOt18uTJWy4zAAAAANyLMle1iTvC399frq6u6WqlIyIi0tVeS1JsbKy2bt2qHTt26IUXXpAkpaamyhgjNzc3LV++XA888EC65Tw9PeXp6Xl7dgIAAAAA7iHUVOcgHh4eqlu3rlasWOEwfcWKFWrSpEm6+b29vbVnzx7t3LnTeg0cOFCVKlXSzp071bBhwztVdAAAAAC4J1FTncMMGTJEffr0Ub169dS4cWNNmTJFoaGhGjhwoKS0ptunT5/WtGnT5OLiouDgYIflCxcuLC8vr3TTAQAAAABZj1Cdw/To0UNRUVEaOXKkwsLCFBwcrMWLF6t06dKSpLCwsH8dsxoAAAAAcGcwTjUYpxoAAAAArsE41QAAAAAA3GaEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmE6hxo4sSJCgoKkpeXl+rWrat169Zdd94///xTTZs2lZ+fn/LkyaPKlSvrs88+u4OlBQAAAIB7l1t2FwCO5syZo8GDB2vixIlq2rSpvvrqK7Vt21b79+9XqVKl0s2fL18+vfDCC6pRo4by5cunP//8UwMGDFC+fPn03HPPZcMeAAAAAMC9w2aMMdldCPyjYcOGqlOnjiZNmmRNq1Klijp37qwxY8Zkah1du3ZVvnz5NH369EzNHxMTIx8fH0VHR8vb29upcgMAAADA3SSzOYnm3zlIYmKitm3bplatWjlMb9WqlTZs2JCpdezYsUMbNmzQ/ffffzuKCAAAAAC4Cs2/c5DIyEilpKQoMDDQYXpgYKDOnj17w2VLlCihc+fOKTk5We+++66eeeaZ686bkJCghIQE631MTMytFRwAAAAA7lHUVOdANpvN4b0xJt20a61bt05bt27V5MmTNW7cOM2aNeu6844ZM0Y+Pj7Wq2TJkllSbgAAAAC411BTnYP4+/vL1dU1Xa10REREutrrawUFBUmSqlevrvDwcL377rvq2bNnhvMOHTpUQ4YMsd7HxMQQrAEAAADACdRU5yAeHh6qW7euVqxY4TB9xYoVatKkSabXY4xxaN59LU9PT3l7ezu8AAAAAAA3j5rqHGbIkCHq06eP6tWrp8aNG2vKlCkKDQ3VwIEDJaXVMp8+fVrTpk2TJE2YMEGlSpVS5cqVJaWNW/3JJ5/oxRdfzLZ9AAAAAIB7BaE6h+nRo4eioqI0cuRIhYWFKTg4WIsXL1bp0qUlSWFhYQoNDbXmT01N1dChQ3X8+HG5ubmpXLly+vDDDzVgwIDs2gUAAAAAuGcwTjUYpxoAAAAArsE41QAAAAAA3GaEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJzklt0FuFucPHlSJ06cUFxcnAICAlStWjV5enpmd7EAAAAAALcRofoWhISEaPLkyZo1a5ZOnjwpY4z1mYeHh5o3b67nnntO3bp1k4sLjQIAAAAA4G5D0nPSyy+/rOrVq+vw4cMaOXKk9u3bp+joaCUmJurs2bNavHixmjVrprfffls1atTQli1bsrvIAAAAAIAsRk21kzw8PHT06FEFBASk+6xw4cJ64IEH9MADD2jEiBFavHixQkJCVL9+/WwoKQAAAADgdrGZq9ss454UExMjHx8fRUdHy9vbO7uLAwAAAADZLrM5iebfWeDKlSuKi4uz3oeEhGjcuHFatmxZNpYKAAAAAHC7EaqzQKdOnTRt2jRJ0sWLF9WwYUN9+umn6ty5syZNmpTNpQMAAAAA3C6E6iywfft2NW/eXJI0b948BQYGKiQkRNOmTdMXX3yRzaUDAAAAANwuhOosEBcXpwIFCkiSli9frq5du8rFxUWNGjVSSEhINpcOAAAAAHC7EKqzQPny5fXLL7/o5MmTWrZsmVq1aiVJioiIoOMvAAAAALiLEaqzwDvvvKPXXntNZcqUUcOGDdW4cWNJabXWtWvXzubSAQAAAABuF4bUyiJnz55VWFiYatasKReXtHsVmzdvlre3typXrpzNpbsxhtQCAAAAAEeZzUlud7BMd7UiRYqoSJEiDtMaNGiQTaUBAAAAANwJNP920sCBA3Xy5MlMzTtnzhzNmDHjNpcIAAAAAHCnUVPtpICAAAUHB6tJkybq2LGj6tWrp2LFisnLy0sXLlzQ/v379eeff2r27NkqXry4pkyZkt1FBgAAAABkMZ6pvgURERH65ptvNHv2bO3du9fhswIFCuihhx7Sc889Z/UGnlPxTDUAAAAAOMpsTiJUZ5GLFy8qJCREV65ckb+/v8qVKyebzZbdxcoUQjUAAAAAOKKjsjusYMGCKliwYHYXAwAAAABwB9FRGQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQnUWSU5O1u+//66vvvpKsbGxkqQzZ87o0qVL2VwyAAAAAMDtQu/fWSAkJERt2rRRaGioEhIS9PDDD6tAgQIaO3as4uPjNXny5OwuIgAAAADgNqCmOgu8/PLLqlevni5cuKA8efJY07t06aI//vgjG0sGAAAAALidqKnOAn/++afWr18vDw8Ph+mlS5fW6dOns6lUAAAAAIDbjZrqLJCamqqUlJR000+dOqUCBQpkQ4kAAAAAAHcCoToLPPzwwxo3bpz13maz6dKlSxoxYoTatWuXfQUDAAAAANxWNmOMye5C5HZnzpxRy5Yt5erqqsOHD6tevXo6fPiw/P39tXbtWhUuXDi7i3hDMTEx8vHxUXR0tLy9vbO7OAAAAACQ7TKbk3imOgsUK1ZMO3fu1KxZs7R9+3alpqbq6aefVu/evR06LgMAAAAA3F2oqQY11QAAAABwDWqq77DTp09r/fr1ioiIUGpqqsNnL730UjaVCgAAAABwOxGqs8C3336rgQMHysPDQ35+frLZbNZnNpuNUA0AAAAAdymaf2eBkiVLauDAgRo6dKhcXHJfh+o0/wYAAAAAR5nNSbkvAeZAcXFxevzxx3NloAYAAAAAOI8UmAWefvpp/fjjj9ldDAAAAADAHUbz7yyQkpKiRx55RFeuXFH16tXl7u7u8Pl///vfbCpZ5tD8GwAAAAAc0fv3HfTBBx9o2bJlqlSpkiSl66gMAAAAAHB3IlRngf/+97/63//+p759+2Z3UQAAAAAAdxDPVGcBT09PNW3aNLuLAQAAAAC4wwjVWeDll1/W+PHjs7sYAAAAAIA7jObfWWDz5s1auXKlfvvtN1WrVi1dR2Xz58/PppIBAAAAAG4nQnUWKFiwoLp27ZrdxQAAAAAA3GGE6izw7bffZncRAAAAAADZgGeqAQAAAABwEjXVTqpTp47++OMPFSpUSLVr177heNTbt2+/gyUDAAAAANwphGonderUSZ6enpKkzp07Z29hAAAAAADZwmaMMdldiNyqf//++vzzz1WgQIHsLsotiYmJkY+Pj6Kjo+Xt7Z3dxQEAAACAbJfZnMQz1bfg+++/15UrV7K7GAAAAACAbEKovgVU8gMAAADAvY1QfYtu1EEZAAAAAODuRkdlt6hixYr/GqzPnz9/h0oDAAAAALiTCNW36L333pOPj092FwMAAAAAkA0I1bfo8ccfV+HChbO7GAAAAACAbMAz1beA56kBAAAA4N5GqL4F9P4NAAAAAPc2mn/fgtTU1OwuAgAAAAAgG1FTDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUJ0DTZw4UUFBQfLy8lLdunW1bt266847f/58PfzwwwoICJC3t7caN26sZcuW3cHSAgAAAMC9i1Cdw8yZM0eDBw/W8OHDtWPHDjVv3lxt27ZVaGhohvOvXbtWDz/8sBYvXqxt27apZcuW6tChg3bs2HGHSw4AAAAA9x6bYbDlHKVhw4aqU6eOJk2aZE2rUqWKOnfurDFjxmRqHdWqVVOPHj30zjvvZGr+mJgY+fj4KDo6Wt7e3k6VGwAAAADuJpnNSdRU5yCJiYnatm2bWrVq5TC9VatW2rBhQ6bWkZqaqtjYWPn6+t6OIgIAAAAAruKW3QXAPyIjI5WSkqLAwECH6YGBgTp79mym1vHpp5/q8uXL6t69+3XnSUhIUEJCgvU+JibGuQIDAAAAwD2OmuocyGazObw3xqSblpFZs2bp3Xff1Zw5c1S4cOHrzjdmzBj5+PhYr5IlS95ymQEAAADgXkSozkH8/f3l6uqarlY6IiIiXe31tebMmaOnn35ac+fO1UMPPXTDeYcOHaro6GjrdfLkyVsuOwAAAADciwjVOYiHh4fq1q2rFStWOExfsWKFmjRpct3lZs2apb59+2rmzJlq3779v27H09NT3t7eDi8AAAAAwM3jmeocZsiQIerTp4/q1aunxo0ba8qUKQoNDdXAgQMlpdUynz59WtOmTZOUFqiffPJJff7552rUqJFVy50nTx75+Phk234AAAAAwL2AUJ3D9OjRQ1FRURo5cqTCwsIUHBysxYsXq3Tp0pKksLAwhzGrv/rqKyUnJ2vQoEEaNGiQNf2pp57Sd999d6eLDwAAAAD3FMapBuNUAwAAAMA1GKcaAAAAAIDbjFANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVCdA02cOFFBQUHy8vJS3bp1tW7duuvOGxYWpl69eqlSpUpycXHR4MGD71xBAQAAAOAeR6jOYebMmaPBgwdr+PDh2rFjh5o3b662bdsqNDQ0w/kTEhIUEBCg4cOHq2bNmne4tAAAAABwb7MZY0x2FwL/aNiwoerUqaNJkyZZ06pUqaLOnTtrzJgxN1y2RYsWqlWrlsaNG3dT24yJiZGPj4+io6Pl7e3tTLEBAAAA4K6S2ZxETXUOkpiYqG3btqlVq1YO01u1aqUNGzZkU6kAAAAAANfjlt0FwD8iIyOVkpKiwMBAh+mBgYE6e/Zslm0nISFBCQkJ1vuYmJgsWzcAAAAA3Euoqc6BbDabw3tjTLppt2LMmDHy8fGxXiVLlsyydQMAAADAvYRQnYP4+/vL1dU1Xa10REREutrrWzF06FBFR0dbr5MnT2bZugEAAADgXkKozkE8PDxUt25drVixwmH6ihUr1KRJkyzbjqenp7y9vR1eAAAAAICbxzPVOcyQIUPUp08f1atXT40bN9aUKVMUGhqqgQMHSkqrZT59+rSmTZtmLbNz505J0qVLl3Tu3Dnt3LlTHh4eqlq1anbsAgAAAADcMwjVOUyPHj0UFRWlkSNHKiwsTMHBwVq8eLFKly4tSQoLC0s3ZnXt2rWt/2/btk0zZ85U6dKldeLEiTtZdAAAAAC45zBONRinGgAAAACuwTjVAAAAAADcZoRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJbtldAAB3zoEDB7Ru3TpFRESocOHCat68uSpXrpzdxQIAAAByLUI1kE3udMA9cOCAZs+ebb0/ffq05syZox49ehCsAQAAACfZjDEmuwuB7BUTEyMfHx9FR0fL29s7u4tzR8XHxys0NPSOb/fo0aNavHixwzSbzaa2bduqXLlyN7Webdu2KSoqSn5+fqpbt+51l587d67Cw8PTTQ8MDFT37t1vbgcyoVSpUvLy8sry9QIAAAB3QmZzEqEa93SoPnTokJ577rnbvp24uDhFR0crMTFRHh4eSkxMVEaHnqenp4oWLXrd5Xx8fJQ3b17rs4iICIflk5KS5OHhIUnp5g8JCclwmzabTaVLl86yfbWbMmWKKlasmOXrBQAAAO6EzOYkmn/jtgkPD1d0dHR2F+OGEhISNHz48Nu6jdDQUK1evdph2t69e1WyZEn5+Pg4THd3d1fPnj0zXO7SpUvasWOHBg4cqLp162rx4sWKjIy0Po+OjtaJEyeUN29eVahQQVJaYL7//vslSbNmzVJkZKS8vLxUuHBha9v+/v5q165dVu+2EhISdOjQoSxfb1by8fFRYGBgdhcDAAAAuRg11bgtNdXh4eHq/UQfJSclZsn6crOwsDAlJCQ4TIuNjZUkFShQwGH61TXVGS139TzX1jzHxsYqJSVFklSwYEFrus1mkzFGSUlJunz5sjU9X758cnd3V+HCha3a7HuNm7uHZvwwnWANAACAdDKbkxhSC7dN6v8PePe6xMT0Nxa8vLyUmpqabvrVNdcZLXf1dHszbzv7+lxdXR2m2wO8u7u78uXLZ32enJx8Twdqie8oAAAAbh3Nv3FbBAYGauLECTp58mR2F+WGwsLC9L///e+2bsPDwyNdjbO7u7sKFixoPV997fPP11vOPl1KC+BXP1Pt4uKilJSUG3YO5u7uLnd3d0lpNdi3M1D379/f4fnwnKhkyZLUUgMAAOCWEKpx21SuXDnHD9UUHx+vRo0a3dZtHD16VEuWLHFoqp2Znr4zs5y99+/z588rJSVFUVFRKlSokMP8Npstw1rx29Xrtx29fwMAAOBewDPVuKd7/75T7GNSnzt3TgEBAZkek/pml8tofkmaM2dOunDO+NQAAADA9TGkFjKNUH33czbUAwAA4PawX59FRESocOHCXJ/lQIRqZBqhGgAAAMicfwvDmQnL+/bt0xdffKErV64oT548CgwM1IULFxQQECBXV1cVLlxYxYsX1+nTpwnd2YhQjUwjVAMAAOBuEB8fr9DQ0Nu2/qNHj2rx4sUO067u8+bfPpek7du3a+zYsTp//rw1j6urqzw9PVWkSBFVq1ZNJ06c0N69e+Xt7S0/Pz8VK1ZMvr6+/9onz+10L/aXQ6hGphGqAQAA8G+OHDmi48ePZ3cxbuh2j+wSFhaW4egsnp6eKlq06L9+bhcSEuLQ301sbKxSUlKs0VnOnz8vY4xsNps8PT0lSfny5VP+/Pmt9cTFxSk6Ovq6I8lktdwwsktQUJDKly+fZevLbE6i928AAAAA/2r8+PHatWtXdhcjWyUmJt5w+r99bnft0KkpKSmS0oZIjY+PtwL31cE7Pj7eGlo1Li7OYWjVhIQEq5n47QrWt3sY2qxQs2ZNff7553d8u4RqAAAAAP/qxRdfvOdrqq8Nw1dPz8zndj4+Pg6h2NXVVSkpKfLy8lJcXJxsNptVU22XmppqrSc6OjrD8kVHR9+2UJ1baqqzA6EaAAAAwL8qX758ljatvR3i4+PVqFGj27b+o0ePasmSJemGKr36merrfR4VFaWpU6fqiy++kJeXl44ePapt27bp/PnzSklJUUREhDZu3KgyZcooJSVFUVFR8vX1VZ48eSRJ+fPn1+uvv65y5cpp0qRJSk5OTlc+d3d3DRw48Lbs+734THVmEaoBAAAA3BW8vLxUsWLF27b+ihUrKigo6LpDld7o8x07dkhKq5WuWLGiKlasqLZt21rrXrhwobZv366qVasqNjZW1atXV0xMjOLi4pQvXz4NHDjQmr9q1ao6ffp0uvIVL178tu4/MkaoBgAAAIBMqly58g2Htrre5zVq1FCRIkU0Y8YMjRo1Si4uLtZnqamp2rhxo+rUqaNp06bp8OHD1w3uktS8eXPNmTMnXY148+bNs2gvcTPo/Rv0/g0AAADcAWvXrtWIESPUuHFj9e7dW0FBQTp+/LhmzJihjRs36r333tN9992XqXXZx8O+XvDGrWNILWQaoRoAAAC4M9auXauJEyfq7Nmz1rSiRYvq+eefz3Sgxp1BqEamEaoBAACAOyclJUW7d+/W+fPn5evrqxo1asjV1TW7i4VrME41AAAAAORArq6uql27dnYXA1nE5d9nAQAAAAAAGSFUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CSG1AIAAECmMLYuAKRHqAYAAMC/Wrt2rSZOnKizZ89a04oUKaL//Oc/uu+++7KxZACQvQjVAAAA95gDBw5o3bp1ioiIUOHChdW8eXNVrlz5uvOvXbtWI0aMUOPGjfX2228rKChIx48f14wZMzRixAi99957BGsA9yxCNQAAwD1k8eLF+vjjjxUWFiZJKlq0qHbt2qUXXnghw2CdkpKiiRMnqnHjxho1apRcXFx04MABbdiwQXnz5lWePHn00UcfqWnTpjQFB3BPIlQDAADcIw4cOKCPP/5Yx48ft6YdP35cly9f1ty5c/XOO++kW2b37t06e/as3n77bStQz549W5GRkQoJCdGpU6d07NgxderUSZ06dVLz5s0l6aZqwgEgNyNUAwCAu96BAwd08uTJ7C7GDSUlJSkyMvK2bmP16tU6cOCAkpKSHKbHx8fr119/VZkyZdItc+zYMUnSpk2btG3bNq1evVqhoaE6deqUEhMTFR0dreTkZG3cuFHx8fGaM2eOJKlAgQLWOhYvXqyGDRuqWLFit2/nrsPf31/u7u53fLs3o2TJktx0AHIxmzHGZHchkL1iYmLk4+Oj6OhoeXt7Z3dxAADIUuHh4erZs5dSU1OyuyjZLiQkROHh4UpNTU33Wf78+RUcHJypdcTExCglJUUJCQm6+lIyX7581v+vDtWS5OnpqaJFi95C6e9eLi6umjVrpgIDA7O7KACuktmcxDjVAADgrufCs76SJA8PD3l4eKSb7uLiki4E32gdKSlpNyiuDtQuLi5KSUlRamqq9fnVEhMTnSz13Y/vJ5C7UVMNaqoBAHe98PBwRUdHZ3cxbighIcFhuKrbITQ0VAsWLNCBAwd0+fJlJScny83NTRUrVlTv3r1VqlSpDJc7cOCAfvrpJ1WoUEFBQUH69ddfdfHiRZ09e1YJCQnKmzev/P395evray1ToUIFh3X4+/urXbt2t3X/MlKkSBF5enre8e3eDB8fH2qpgRwoszmJUA1CNQAA95ADBw5o7ty52rFjhySpdu3a6t69+78+03v1ONVRUVE6c+aMpLQm30WKFFHevHmt5uM2m01+fn7WsjabTT169OC5YQC5CqEamUaoBgAAmZGSkqLdu3fr/Pnzio6O1rlz53TgwAFFRUXJz89PVatWdej9+9y5cwoICKD3bwC5UmZzEr1/AwAAIFNcXV1Vu3btTM1LiAZwr6CjMgAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmE6hxo4sSJCgoKkpeXl+rWrat169bdcP41a9aobt268vLyUtmyZTV58uQ7VFIAAAAAuLcRqnOYOXPmaPDgwRo+fLh27Nih5s2bq23btgoNDc1w/uPHj6tdu3Zq3ry5duzYoWHDhumll17STz/9dIdLDgAAAAD3HpsxxmR3IfCPhg0bqk6dOpo0aZI1rUqVKurcubPGjBmTbv433nhDCxYs0N9//21NGzhwoHbt2qWNGzdmapsxMTHy8fFRdHS0vL29b30nAAAAACCXy2xOoqY6B0lMTNS2bdvUqlUrh+mtWrXShg0bMlxm48aN6eZv3bq1tm7dqqSkpAyXSUhIUExMjMMLAAAAAHDzCNU5SGRkpFJSUhQYGOgwPTAwUGfPns1wmbNnz2Y4f3JysiIjIzNcZsyYMfLx8bFeJUuWzJodAAAAAIB7DKE6B7LZbA7vjTHppv3b/BlNtxs6dKiio6Ot18mTJ2+xxAAAAABwb3LL7gLgH/7+/nJ1dU1XKx0REZGuNtquSJEiGc7v5uYmPz+/DJfx9PSUp6dn1hQaAAAAAO5hhOocxMPDQ3Xr1tWKFSvUpUsXa/qKFSvUqVOnDJdp3LixFi5c6DBt+fLlqlevntzd3TO1XXvNNs9WAwAAAEAaez761769DXKU2bNnG3d3d/PNN9+Y/fv3m8GDB5t8+fKZEydOGGOMefPNN02fPn2s+Y8dO2by5s1rXnnlFbN//37zzTffGHd3dzNv3rxMb/PkyZNGEi9evHjx4sWLFy9evHjxuuZ18uTJG+YpaqpzmB49eigqKkojR45UWFiYgoODtXjxYpUuXVqSFBYW5jBmdVBQkBYvXqxXXnlFEyZMULFixfTFF1+oW7dumd5msWLFdPLkSRUoUOCGz24je8XExKhkyZI6efIkQ58BTuI4Am4dxxGQNTiWcj5jjGJjY1WsWLEbzsc41UAuwXjiwK3jOAJuHccRkDU4lu4e9P4NAAAAAICTCNUAAAAAADiJUA3kEp6enhoxYgTDoQG3gOMIuHUcR0DW4Fi6e/BMNQAAAAAATqKmGgAAAAAAJxGqAQAAAABwEqEayEF4GgMAkBNwPgKAzCNUAznEunXrZLPZsrsYQK517tw5bdu2TZKUmpqazaUBcq/t27fr0qVL2V0MIFdLTk5WWFhYdhcDdwihGsgBTp8+rR49euiTTz5ReHi4JGoJgJuRkJCgH374Qd26ddPWrVvl4sLpDXDGli1b9Oabb+qVV17RlStXJHE+AjIjJSXF4f0rr7yifv36ac2aNdlUItxJ9P4NZDNjjGw2m1auXKkvvvhC/v7+mjp1anYXC8iVhgwZol27duntt99WixYtsrs4QK5hPxdJ0okTJ/TEE0+odu3aGj9+fDaXDMi57K2irr6Re+zYMZUtW1apqal67733tGjRIo0fP16NGzd2OM5wdyFUA9nAfjfT1dXVYfr27dvVqFEjzZgxQ127dk33OYA0xhilpKTIzc3Nem+z2XT+/Hm99dZbWr9+vdauXSsfH59sLimQs13vfLRq1So99dRTGjZsmAYOHJgdRQNyrNTUVIcgffjwYU2ePFk//PCD3N3dtW/fPvn4+CghIUHPPvusTp8+rXnz5qlQoULZWGrcTrSPA7KBq6urXF1dFR8frwMHDig5OVmSVKdOHT355JP65ptvrGdDAaRns9msQH3kyBGdPXtWkuTr66vRo0crLCxMU6ZMUWJiYnYWE8jx7OejK1euaP/+/UpISJAktWzZUgMHDtQHH3ygAwcOZHMpgZzFxcVFsbGxGjt2rMqXL6+qVavqyJEjyp8/v8qVK6e8efNKkjw9PTVkyBCFh4fr008/zeZS43YiVAN3kL2Z0Jo1a/TQQw+pWLFi+vjjj7V//35rnueee06XL1/WwoULs6uYQI4XHR2td999VyVKlFDHjh21ePFixcfHS5IKFSqkHj16aNmyZdqzZ082lxTImewNFdeuXauHHnpIRYsW1ZgxY3To0CFrnldffVXx8fFatGiRkpKSsquoQLaLjY3Vc889p5iYGBlj9MILL6hgwYKaNWuWFZp//fVX5cmTR926dZO7u7vVCqRWrVrq16+fvv76a0VHR2fznuB2IVQDt+Bmn55wcXHRrl27NHjwYFWuXFkrVqzQkCFDFBAQYM3ToEEDValSRTt37tS5c+eyushAjmKMcaoTpNGjR+u3337Tp59+qvnz56tZs2ZydXW1LmJ69eqlc+fOaefOnVlcYiBnutnjyGaz6dixY3r55ZdVoUIFrV69Wv/3f/+nokWLSkprFu7p6al27dpp+fLlnI9wT7ty5YrWrl2r8PBw2Ww2devWTUePHtWOHTv0n//8R76+vpo/f77CwsL02GOPyRjj8EhF7969FRsbq9WrV2ffTuC2csvuAgC5jTFGqampcnV1venOJpKTk/XJJ5/Iy8tL77//frpna+zP6NSoUUMHDhxQaGioQ+AG7hapqamy2WxOddiyfv16ffPNN/r000/Vo0ePDOdp3LixXFxcFBYWppSUFPonwF3pVs5HkjR06FB5enpq9OjR8vX1dfjMvr7HH39cjz/+eJaUF8itfv/9d5UrV07+/v6S0h6PkP65mWWz2bR8+XI1atRI/v7+6Y7HIkWKqGnTplqwYIE6deqU7pls5H78NoFMsHeKJKX94bRfoP/444966623dOzYsUytx83NTRs3btRjjz2mQoUKWX+Mrx1Tt0mTJjpw4IAKFCiQhXsBZC97AJDSWm3YbDYdPXpUb775pubNm5ep5SXpwoULio+PV9++fR0+s39u76OgcuXK2rVrl1xdXRm3GneNG52P+vfvbw2D9W/rSE1NVUREhOrXry9fX19rndf2ZlyvXj3Fx8dTU417RkpKSrrjoXjx4tq0aVO6yhB7eL5y5YqWLFmi9u3by93dPd05Jzk5WY0bN7YeryBQ3334jQKZcPWFy++//6727dvLy8tLPXr00GeffabixYtnaj1JSUkqV66c1q9fb72X/vnjav+3evXqSkhI0IULF7J6V4BsY7PZ5OLiovPnz2vUqFEqUaKEKlWqpLFjx2rv3r2SbtyE1X7xYrPZ5O3trQ0bNkhKuwC6utbb3oFZgwYNdPLkSUlcwODuce356JFHHpG7u7t69Oih7777LlPPbNpsNsXGxqpIkSLWMWJfp/1YsR+LcXFxql+/vkPfH8DdyP6dt3fel5KSYoVjY4wKFixoHQf2ee0jTyxdulSXL19Wx44dJaUdR1efz9zc3OTm5qYyZcooJibmTu4W7hCuMoBMCAkJ0XPPPadChQrp0UcfVdGiRbV9+3Z17NhR/fr1k6enZ6bWY7PZ1KFDBy1evFjR0dHy8PCQlPZHed26dTpz5oy1vaZNm9JzMe4K9guL6dOnq27duipcuLB+/vlnffzxx1qyZIlKlixpNeO+URNW+3pKly6tqlWrasqUKZL+CQNnzpzRunXrrPmjo6PVpEkTq+YauBscPXpUAwYMUMGCBdW9e3cFBATowIED6tWrl5544gkVKVLEqmW7ER8fH9WqVUuhoaHasmWLNT0lJUVbt27ViRMnJKXVsCUnJ6tGjRq3a5eAHMF+/lm+fLk6dOigWrVqafHixZLSjouiRYtq69atkhybfUvS3Llz1bBhQ5UoUSLd+uw96icnJysyMlLe3t60nroLEaqBTPj8888VERGh6dOn6/z585o6daq8vb21efNmNW/ePNPrcXNz0xNPPKFSpUqpR48emjVrlkJCQjR27FiNHz9ep06dkpTWjOjQoUOqXbv27dol4I6x2Wzas2ePvv76a3Xo0EHHjh3Ttm3b1LNnTy1btkyBgYEqW7ZsptYjpTXrfuqppzRjxgy999572rFjh9asWaOXXnpJGzZsUGxsrKS0m1PGGLm5uTnVGRqQk9i/w19//bVCQkI0c+ZMRUZG6ttvv1WBAgW0YsUKtWnTRlL6MaevZb+g79SpkwIDA9W/f3/NmTNHR48e1ccff6x33nnHqk3z8/PT6dOnrSGCgNzu6hroa3322Wfq37+/ypUrp6FDh1qP4VWrVk1ubm7WiBJXt+i4cOGC/vjjD/Xp08daT0hIiIYOHapWrVppx44dktKGfLT3k0PrqbuQAXBdqampxhhjkpOT002bOnWqCQgIMJcuXbrp9W3atMn06NHDVKlSxfj6+ppq1aqZH374waSkpBhjjImKijITJkwwcXFxWbUrQI6SkpJirly5YipXrmzef/99Y8w/x0dmjR492jRs2NAEBQUZHx8f07dvX3P06FHr80WLFpn169dnabmB7GI/PuzniatNnz7dBAQEmMjIyJte79mzZ02HDh1McHCwKVSokAkODjbfffeddd47fvy4mT17tomOjr61HQBymCtXrji837t3r/Hz8zNff/11hvMPGjTItGrVyuzcudMYY0xiYqIxxpgZM2aYmjVrmuPHj5uJEyeaunXrGhcXF1O3bl3z/fffW8tPnjzZbNy48TbtDbKbzRhu3wPOaNGihYKDg/Xll19m+HlmenbcuXOnChcurGLFijlMT0hIkJubGz0W465k/v8zaKtWrVKXLl20ZcsWVahQ4brzXevqYys6OlrHjh3LsFXH5cuXlS9fvqzfASCHsB8jDz/8sEqUKKFvv/02w+Pmeuejq+c9cOCAvL29052PEhMT5eLiYvVVAOQW5v93YGl/vtlmsyk1NVXff/+9vv76a+XPn18NGzbU//3f/6lAgQL65ZdfNGjQIO3cuVMBAQHWMklJSXJ3d9fatWv1/vvvq2rVqvr888+Vmpqq1NRUPfHEE5o7d67c3NxUrFgxPfPMMxo0aFC6Ts0uXLiQbhruHrQ9AJxw9OhRHTx4UK1atZKUvvduKXNNe2rVqqVixYopNTXV4Rk4T09PAjXuWvaL+IULF6pWrVrXbfp9veerrz62vL29rUCdnJzscCwSqHG3s9lsOnz4sA4cOKDOnTtb0651vfPR1fNWrlw5w/ORh4cHgRq5kr1zTPv/JWnEiBH673//qzZt2uipp57SnDlz9OqrryoyMlJRUVHy9fXV0aNHJf3zyIW7u7uktJFZ+vXrp6+//loHDhywbjZ5e3tr2LBh2rdvn06cOKG33npLhQoVcuhFXBKB+i5HqMY959o/cje7rCQtXbpUHh4e6tChg5KSkjK8iPnjjz+0ZMmSTK3XxcWFEI1cwxhzS51/JScnKyUlRQsXLtQjjzwiV1dXqyf8q8XGxmrMmDE3XNfVx56bmxvPqSFXuZXzkd3WrVuVmpqq+++/X1LGN3nXr1+vqVOnWtu8Ec5HyI2u971+++23NW3aNEnSli1b9Ouvv2rSpEl655131Lt3bz399NOaOXOm5s+fr5YtWyo+Pt7quM9+PgkPD1dYWJjc3NzUq1cvde3aVcOHD9fChQslSVOmTNGoUaNUoUIF6/xojLF6Ece9gasP3HPsf+Ti4+O1atUqRUZGSrrxUD5XLytJ06ZNU7du3WSz2eTu7m41D/rzzz8VEhIiSVZnL1LGFzlAbmWz2ayaq3379llDW2VGamqq3Nzc9McffygyMlLdunWT9E9NwJEjR7Rx40YZY7Rz504NHz5cy5Ytk5S5YxTITeznoytXrmj16tUKDQ2VlLnvuv3G1uTJk9WmTRsVLFhQUloQSEpK0h9//KGoqChduXJFEydO1IQJE6xtAneba7/X9pC9aNEibd68WZK0Y8cO2Ww2lStXTs8//7yKFi2qcePGaeDAgWrRooXKli2rJk2aaOrUqZo7d65iYmJ04cIFffTRR5o/f7617nHjxqlRo0aaMGGCLl26ZG0vNTXVOj/eaCQL3J0I1bhr2Z+lufq9JG3atEmtW7dWQECA3nnnHa1du1bSjYfyudru3bt16tQp9erVS5K0YcMG9evXTwUKFNDTTz+tiIgIGWPUpEkTNW3aVBK9PCL3yuiG0KVLl/Thhx+qZMmSat26tX788UedPXs2U+uzHwtz585VixYtFBQUpAsXLmjChAmqU6eOKlasqN9++002m0358+dXq1atrCFKuEhBbnXt+cjur7/+Utu2bRUQEKCRI0fqr7/+kpS577qbm5v279+vI0eO6JlnnpGUdj568skn5evrq0cffVSnT59Wnjx5VKhQIbVt2zZrdwrIQfbs2aOXX35Zf/zxh6S0kH3+/HmVKlXK6sG7QoUK2rNnjypVqqSIiAhNnDhRR44c0SeffKKKFStKksaOHatGjRrphRdeUIsWLVSiRAmtW7fOod8Pf39/vf766xo+fLjVysrV1ZVrvXscD8ngrnN1xxRXs9lsOnPmjN544w1VqlRJY8eOVWBgoOLi4jK9XpvNpt9//13x8fGaPXu2unTpooiICD3yyCNavny57rvvPoftPfroo1m6b8CdYu/YKKOLhO+++05z5szRRx99pAcffFBxcXHWRUtmXLx4UatXr1aNGjXUsWNHLVmyRGXKlNGAAQO0Zs0aa12lSpVS2bJlVb58+SzbL+BOut75SJJiYmL05ptvqly5cvrrr78UEBBw049VrFu3TtHR0Zo3b566d++uc+fO6ZFHHtGSJUvUrFkza74aNWowJBbuSvZrMw8PD/39999avXq1tm3bJjc3N+v56JYtW0pK64OjQoUKevTRRzV69GhrHRcvXtSiRYtUtmxZNW7cWF9++aVefPFF/fXXX2revLkqVaqU4bZvZkhV3P0I1bhr2P+w2l8nT57U0qVLVaZMGT388MOS0u5kbtu2TQsXLlSBAgUUFxenIkWKpFtHRuy9Rv7xxx+6cOGCtm7dqo8++siqsbaz9xL59ttv376dBW4zewj47bffFBkZqfvuu09ly5a1xuMMDg5Wr169lJycrMDAwJta9+7du3Xs2DFJUtu2bXXgwAGVK1fO+jwlJUU2m01+fn6aOHFi1u0UcIddfT769ddfVaNGDTVo0EBeXl5asmSJwsPD9cUXXyg4OPimequ3n6vmz5+vuLg47d2794bno+eee+527B5wW6WkpPzr4wr2a7ZKlSpp5syZqlu3rl577TW9+uqrKlmypPz9/a2Ox6pUqaKePXvqiy++ULly5dS6dWtdvnxZX3/9tbZv32714eHu7q7g4GAFBwdLSjveUlNTeXQCN8SQWsi1MgrAycnJOnLkiFatWqV33nlHJUqU0PHjxzV06FC99tpr2rhxowYNGqTixYvL399ffn5+unjxomrXrq2XXnrpuuuV/qm527Jli6pVq+Zw1z85OTnDWr0bhXQgJ7j6O2r/f2hoqMLDwzVixAht2bJFxYoVU3R0tFatWqXSpUvr5Zdf1urVq1W9enXly5fPei706aefVp06dRwuhK43vM+ePXtUs2ZNh2n2561vVEYgJ8roO5qYmKiTJ09q+fLlGjlypLy9vRUXF6cOHTpo4sSJWr16tYYPHy43NzeVLFlSvr6+ioyMVOPGjTVo0CC5uLhcdyis5ORkubm56dixYwoMDHQI45yPkJukpKQoLCxMJUqUsJ5JdibA2o+Vn376SZ999pnq1KmjL774Ql26dFHZsmX16aefWvP95z//0erVq5U3b179/fffatSokd588021bt3aYZ32iMRxg8yg8T9yHXvnExn9kevbt6969Oih5cuXa8mSJdqxY4f+85//aM6cOVq0aJGaNWumDz74QN7e3lYNdUpKil5//XXrORybzaazZ89aNWn27dkvUOrXr6+8efM69Np6vV6H+UOMnMgYk+FxZLPZdPToUVWtWlVvvvmmmjVrptDQUC1btkzu7u764IMPdPnyZY0ZM0bt27e3xrRNTEzUrl279PTTT0v6p8OYLVu2ZHgM2Gw2K1Dbe0m90Ti4HEfISa6ui7jR+eiVV15RlSpVtG7dOi1ZskT79u3TqFGjNHXqVK1Zs0YtWrTQmDFjVLp0aZUqVUr58+dXYmKixowZo++//15S2nknIiJCO3fulPRPHwf2Y6Vs2bLKly8f5yPkSocOHVKrVq00Y8YMSWnfd5vNJldXV6WkpOj777/Xiy++qKVLl+rChQuSrt/xq/0737lzZ7322muaNGmSVq5cqSNHjigoKEjSPzecJk+erBUrVujDDz9UWFiYVq1alS5QS/+0NAEyxQA51JYtW0zZsmXN2bNnM/x8+/btZvbs2ebUqVPWtNmzZ5tChQqZnj17WtMiIyPNgw8+aJ5//nmH5VNTU63/Fy5c2IwdO9YYY8yxY8dMgwYNrHVcPR+QmyQlJZm+ffuaF198McPP4+PjzY8//mj++OMPk5ycbE1v166dyZs3r1m7dq01bfz48aZOnTpmxYoV6bZhjDHTpk0zXl5eJjo62hhjzGeffWZKlixpNm3alNW7Bdxx27dvN6VLlzYnTpzI8POtW7eaGTNmmCNHjljTDh06ZGw2m+nevbvDvJUrVzYvvviiiY2NTbeey5cvm3r16pnBgwcbY4yJiooy1atXNwMHDszCvQGyR0pKipk9e7bp2rWrNe3qazhj0s5LkyZNMiVKlDDBwcGmU6dOpmzZsqZDhw6Z2ob9mu355583rVq1Mjabzbz++uvW9jOSnJzscA4EnEFNNXIEk8FTCJUqVdLo0aPTPa+5efNmVa9e3brL//DDD2v8+PGSpAcffFAVKlSQh4eHNb+fn59q166tgwcPateuXZKkU6dOKSwsTJGRkRoxYoQqVapk9YxapEgRlStXzurkhbuUyA3MVb0L2/91c3NT79699eKLLzrMm5CQoKFDh6pQoUJ6++231a9fP/Xp00fbt2+XlPacs7+/v0OnSV26dNGVK1es8TsTExN1/PhxxcbGasOGDfrmm2/0xhtvWI9FlCtXTiVKlLDG7QRyi6trwuzfXT8/P02YMEGlS5d2GA9369atqlWrllq2bKkvvvhCDRo00IwZMxQfH68KFSqoXLlyyps3r65cuWKtq3fv3vr999914sQJSdLx48cVERGhs2fPaty4cbLZbBowYIAkydfXV0WKFFHJkiXTlQ3IbVxcXHT69Glt27ZNO3bskCQVL15cJ06csK7PLly4oPPnz+vDDz/Unj179Msvv+iPP/7Qb7/9piVLlvzr+cT++TvvvGM9E125cmVr+xlhPGlkBUI1cgR7cLWP92eMUYECBfT44487XNjHxcXps88+U9WqVXXs2DEtXLhQnTt31pAhQ7Rjxw75+/urfv36CgsL0549e6zlHnroIcXFxWnTpk1KTU3VtGnT9MQTT6hChQr6+eef9eKLLyo4OFipqanKkyePIiMjVaZMmTv6MwBuhb2ZWkxMjKR/mqU+9NBDqlChgi5fvmzNu2bNGv3666+aMWOG9u3bp3HjxikiIkIvv/yyJOmxxx6TMUZ79uyxLuKLFy+umjVrauvWrQoPD9fWrVv13nvvqWHDhmrbtq0qVqyoZ5991mqWWqtWLSUmJqpQoULcmEKuYr/wjo6Otr67pUqVUvv27ZWUlORw8f3xxx+rUqVKOnr0qJYtW6YnnnhCH374oWbOnClJ6tOnj1atWqXw8HBrXf369dOZM2e0e/duSdLUqVP1xBNPqHLlypozZ45ee+01VapUyTqGGzZsqPz58zuUDchNUlNTre9zixYtVKZMGc2dO1eSdOLECfXp00cffPCBpLSKja5du6p37946evSoXnrpJav37jlz5ljnuOuxHyNFihTRyJEjlZqaqv79+9+uXQP+kU015ICDbdu2mQceeMBMnjzZmhYfH2927dpl8uTJY/bv32+MMebChQvG09PT/Pbbb9Z8CQkJ5r777jOPP/64McaYxYsXm1q1apmvv/7amufy5cumTZs25pFHHjEJCQlm165dZtq0aebYsWMO5bA3/0lISDDG0PQbucsbb7xhOnbsaH1/7U2xn3rqKdOqVStrvpEjR5oKFSo4LLtkyRLj5uZm9uzZY4wxpkOHDqZz584mNDTUmmfOnDmmePHiZt68eSY5Odn89NNPZunSpbd7t4A76tixY6ZixYpm5syZ1rTU1FSze/duU7BgQbNu3TpjjDGHDx82FSpUMJMmTbLmi4iIMH379jXNmzc3xhgTHh5ubDab+fHHHx220bBhQ9OmTRsTHx9v9uzZY2bMmGGOHz+eYXloloq7SUxMjHnppZdM/fr1rWmvvfaaeeCBB8zhw4etaUuXLjXBwcGmY8eOZvny5earr74y3t7eZteuXdddd2pqaobHi/0xJeB24pYncoSqVavKx8dHCxcuVJ8+feTh4aHff/9dFStWVP78+bVo0SJJaUNilS9fXvHx8ZLSauM8PDzUu3dvLVmyRJL0wAMPyN/fX9u3b7dq5/LmzasHHnhA9913n5KSklSjRg316dNHQUFBDndQ7TUQHh4eVi+UQE5n//4GBwfrzJkzGjx4sEqXLq3WrVsrOTlZjRo10vr1663j5siRI6pZs6ZiY2OtddSuXVvVqlXTtGnTJKU1Ud2/f7/2799vzfPII4+oZcuWKlWqlFxdXdW1a1erc5eUlJQMm6bSXBW5TVBQkHx8fDR//nz17NlTLi4u+uWXX1SkSBFVrlzZOkbOnz+vxMRElShRwlrWz89PTZs21enTp3X06FEVLlxYjRo10i+//GK1xJKkQYMGqVatWkpNTbWGpytTpozD+cjO1dWVRyiQYx07dkyfffaZ9T6jv/nnz5/Xk08+qbNnz6pAgQKqX7++YmNjrWu7xo0bKy4uTr///rskKTIyUmPGjFGjRo00ffp0PfzwwypTpozV4vDa8dzt5x97J2d25qpHoYDbjVCNOyqjCwZJ2r9/v7Zs2aLFixcrKipKK1euVNu2beXl5aVevXpZFzHFixeXn5+f1WzO/sezaNGiyps3r44dOyZPT0/Vrl1bq1evtnpMlaTXX39dr7/+usPQI+b/9zqc0bM0NLNDTmSMSXdBYbPZZIzRli1btG3bNs2bN08vvviiFixYIDc3N7Vu3Vru7u5Wk9SgoCBFRETo77//ttaRP39+FS9e3Do+H330UZ09e1Z//PGHEhMTJaXdnJo+fbrq16/vUB4p7VjM6JjhOEJOdb3z0b59+3Tq1Cn99NNPunjxolatWqUuXbrI29tbHTp00MKFCyVJDRo0UHJysvbt22fdsHJxcVGePHnk4+OjK1euSEpr7j1z5kyFhoZa2+jTp4/GjBmjPHnySPqnT4TrnY+4wYucau/evQ43be1/868+tqKjo/XLL79Y/d/UrFlTZcqU0fz58yVJTZo0UdGiRbVmzRpJkr+/v3bu3KkGDRrI29tbkvTzzz8rNTVVkydP1sWLFyXJOhfazz8REREaPXq0evXqpStXrnDc4I7iagd3lP2CISkpSXv37rVqkr29vTVkyBA1atRIrVq1UrNmzayL9SeffFJ79+7V5s2bVbZsWVWvXl1LlixxqEGbO3eugoOD5e/vLyntImbUqFFq0KCBw/ZTU1Md7vjzBxe5jc1ms+66HzlyRCdPnrSGIenYsaO6deumRo0aqWfPngoICJCUdjOqbdu2mjp1qiSpW7duioqK0o8//mit9+TJk1q/fr2aN28uKe0iZcKECXr66acdOv6THC+WOIaQW9nPR4mJidq5c6d1PgoICNCHH36ookWL6vHHH9f9998vSfL09FTz5s2VkpKiefPmSUrrwO/HH3/UX3/9Za138+bNSklJUcWKFSVJzz77rKZOnWq9t7v6fMTQPcitOnbsqHnz5snLy0uSdPHiRXXt2lVDhw615ilWrJgGDhxoDZ1VqVIl1a9fX1u2bNHFixdVpEgR1apVSyEhIdax1KFDBw0dOlT9+vVTkyZNZIzRpk2bNHz4cOtaz83NTampqfr+++/VpEkTlS9fXosXL1abNm2oncadlz2tznEvSElJSfdM8oYNG0ynTp2Mt7e3qVWrlnn44YfN1q1bjTFpzzH36tXLdOzY0Vy5csUY888zzVWrVjUvvfSSMcaYXbt2mbZt25qAgADz3nvvmb59+5qgoCCH59+Au8W1z4fFxMSYTz/91AQFBZkiRYqY2rVrm5EjR5qYmBhjjDE///yzqV27tvnuu+8clluwYIFxcXGxhi/58ssvTaFChUznzp3NyJEjTc2aNU3Hjh3NuXPn7syOAXdQampquvPRxo0brfNRtWrVTMOGDc3+/futYXdatWplunfvbk6fPm0tc/bsWdOhQwfTpk0bY4wxR44cMY899pjx9vY2o0aNMr179zYlSpQwc+bMcdg2cDfbsmWLGTRokDHGmNjYWDNw4EBTuXJlh3lWrlxpbDab2b59uzEm7VxVvXp18+233xpjjPn9999NixYtzKhRo4wxaf0RTJw40bRp08aMGjXKXLhwwWF9ERER5tlnnzUeHh4mODjYvPvuuw7PZAN3GjXVyHLm/995t9ee7dq1S7t371ZUVJTefPNNlSxZUr///rtmz56tfPny6d1339WZM2fk4eGhunXrKjw8XH/++aekf5r2PPnkk1qwYIFiYmJUo0YNTZ8+Xa+//rrWrFmjK1euaMaMGerZs2eG5QByM3vLjlWrVik2Nlbz5s3TTz/9pHfffVfbt2/XoEGDtGDBAk2ZMkVSWp8C+fPn15YtW6zmeFJaU9VSpUpZj1IMGjRIM2bMUPHixbV06VL16tVLs2bNsmoA7HgmGrmZuaYmePv27Tp48KDOnDmjTz/9VH5+flqzZo0WLVokf39/DRs2zBo5onv37tqxY4fDYxIBAQFq166dtm7dqtjYWJUrV06TJ0/WW2+9pY0bNyo5OVmzZ89W9+7drWWogcbd7tKlS5o4caJ27dql/Pnzq2PHjjpz5ow2b95szVOtWjXVqVNHX375pSSpevXqqly5svVcdaNGjZQ/f34tX75c8fHxKly4sJ5//nktWbJEw4cPV8GCBSX901LqypUrqlOnjlauXKldu3ZpxIgRKl++/J3dceBq2RzqcRew39W/2rlz50xoaKjp06eP8fX1tXritt+RNMaYkJAQ06lTJ+Pj42P1+r1582bzwAMPmGHDhjms78SJE8Zms5n58+ffvh0BsklGtWjGGHPo0CGzbt064+vra9q3b2+OHj1qdu3aZTZs2GCMSTv2Zs2aZQIDA82DDz5o1ai9+uqrDq1A7PO++OKLplChQg7buLZXVGrVkJtldD4KDw83YWFhZsiQIcZms5mZM2eakydPmhUrVljznzx50jz66KMmICDAfP7558YYYy5dumSCgoLMxx9/bBITE631bd++3RQsWNCMHTv2zuwUkM3+rQf61NRUU6lSJTN06FBjTNr1XZMmTcwzzzxjzZOSkmIGDx5sfH19rWkfffSRCQwMNAcPHjTGGLNs2bIMe/dOTk7m3IQcj5pqOM1+tzCjjohKly6tHj16qECBAtq1a5eeeeYZSVLfvn21bds2NWvWTPXq1VN8fLxq166tn376SZJUr149VatWTb/++qt2796tJUuW6KefflLp0qU1YMAAq8OKa8tBbRpyo9TUVKvH0mtrs3788UdVqlRJn3/+uSZMmKDffvtNZcuWVY0aNVSvXj299957KlGihEaPHq0mTZooMjJSf/zxh6S0Z9yioqL0/fff6/Tp0/rwww8VFRWlXr16qXv37lYHSlLaM2nGGOt4plYNudH1zkexsbFq3bq1GjVqpMTERIWGhqpnz54qWrSoHnroIW3fvl0tW7ZUrVq1lJycrJIlS2rjxo0KDw9Xvnz5dP/992vevHlauXKllixZoqlTp6p27dp64YUXVKFChQzLwfkId4OUlJR0I6OY67QAtNls6t69u+bMmaP4+HgVKVJE7du314IFC6x5jDE6cuSILly4oKVLl0qSatWqpccee8yap1WrVqpRo0a69bu6unJuQs6XzaEeucj17hKuWLHCTJ8+3Zw6dcq6m//mm28am81mxo8fb4z55y5nbGysad26tRk0aJD17MuQIUNMsWLFrPFxN2zYYDp37myKFCliXF1dzaeffsodStzVzpw5Y/73v/+ZVatWWTXH58+fN6VKlTKVKlUyZ86cMcb8Uws3d+5cU6NGDavlxvnz503RokXNwIEDrXV+9tlnpkqVKsbHx8eUL18+3ZjswN1o6dKlZtq0aebIkSPGmLRzz/jx443NZrNqoO0SExNN586dTb9+/az533rrLVOqVCmzYsUKY4wx27ZtM0888YQpXLiw8fb2Nq+++uqd3SHgDkpJSUnXeikxMdFMnDjRdO7c2SxevPi6yx48eNC4uLiYP/74wxhjzO7du02hQoXM888/b44ePWrmzZtnnn32WdOgQQMzYMCA666H6z3kVoRqpBMfH2/9/+TJk2bPnj3p/sgaY8xPP/1kihUrZooXL26aNm1qqlevbr744gtjjDF79+41NpvNzJo1y2GZjRs3msDAQLNkyRJjTFrT086dOxsXFxfz2muvWfNFRUWZffv2pdvmvzVBAnKKq7+ra9euNZcuXUo3T2RkpOndu7fx8vIyTZs2NUFBQebJJ580e/fuNcYY06tXL1OnTh0TGxtrLXPlyhXTv39/8/DDD1sXHytWrDD+/v6mevXqDk3n9u3bZ3VgZpeampphE1kgJ0pISLD+f/LkSbNlyxaHz+3HwC+//GJKlSplihYtatq0aWMKFixo5syZY1JTU83+/ftNnjx5rM4s7cfm77//bipUqGDmzp1rjEk7trp27Wr8/f3N66+/bm0jOjraap56Nc5HuJv99ttvpn379sbHx8dUqlTJjB492pw/f/6GyzRs2ND079/fev/111+bGjVqGG9vb6sDv8uXL6dbjmMJdwOaf8NB+/btNWLECKt5aKdOnTRs2DC5ubkpPDxcK1eulCSFhobq888/17Bhw3Tq1Cn9+eefGjx4sF599VWdOnVK1apVU5kyZRzGLpTSOh4LCgrS3LlzderUKX3++efKkyePnn/+eYcmc76+vqpataq1jF1G43cCOcmWLVvk5+dndW60d+9e3X///Tp16pQkadWqVTp9+rQkadasWTp16pR2796tP//8U7/99ptiYmL05ptvSkoby3b37t3WspLk5eUlLy8vXbhwQb/88ou2bdummTNnqmPHjqpdu7YuXbpkzVu1alUVKFDAoRmfzWZj7GjkCj169NDzzz8vSUpMTNQbb7yhXr16SZJOnTqlZcuWyWazKSYmRp999pmef/55nTlzRkuWLNGwYcM0evRoLV26VFWqVFGzZs00Z84cSf80YS1XrpxSUlK0YsUKHTp0SFOmTFFAQIAaN24sX19fxcXFSUob8tE+HFZycrLD2OzA3WTr1q0aOHCgAgMDNWDAAJUoUULLli3TgQMHNGzYMBUqVMi6PjQZNAXv16+fFixYoIiICEnSM888owULFmjlypU6efKkunfvrrx581rjsttxLOGukK2RHtkuNDTUTJo0yZw4ccIYY8zy5csd7kR+9913xsfHx1SsWNHYbDbTr18/Y0zaHcxGjRoZY9Jq2z788ENTuXJlY7PZzMKFC40xxowePdqUKlXKHD9+3FpffHy8mTJliqlYsaIpWLCgqVq1qlm+fHmGNeFAbjF79myr9YUxaUOHGPNPc+0KFSqYGjVqGC8vL1OmTBmzfv16ExMTYzp27GgNfbV06VLTtWtX4+XlZR544AFz5coVk5SUZIoXL24++OADh/Vt27bNPPnkk6Zo0aImb968ZsiQISY8PPxO7jKQ5U6cOGE++ugjEx0dbYxJ6xDs6iHefv31V+Pp6Wmda15++WWTnJxspk2bZh5++GFjjDFhYWHmk08+MaVKlTKFCxc2M2bMMMakncu8vLysWjJ7Dffnn39uGjRoYLy9vU2FChXMunXrHDolA3K7lJSUTNUEh4eHm5IlS5pHHnnE/Prrrw6f7dq1y/Tv39/UqFHD/PTTT9ddx9mzZ02ePHms1h/XokYadzNC9T3KfkHx1VdfmRYtWhhjjMOFRHh4uElOTjZly5Y1NpvNdO7c2Rrf1hhjhg4damrUqGGaNGli8ufPb5o0aWK++uorExYWZs1z7tw54+7unuEf4L///tuEhIQ4TMtoXGsgN6hRo4aZN2+eMeafxyeioqKMMWlBwGazmQIFCpiff/7ZYbmAgADTqlUrU6xYMVOsWDEzYMAA89dffznM8+qrr5ratWtbY7fbJScnmx07dqQrCxctyG3sf/fXrFljypUrl+7zs2fPGmOMadasmbHZbKZNmzYOzcK//vprkydPHtOiRQuTP39+06xZMzN58mSHG00nTpwwhQsXtkaguPpGbkhIiAkNDXXYJucj3I02bdp0w8+vbpp99uxZ895775kKFSoYX19f06VLF7Nw4cLr3nSyHy/t27c3PXr0MMZwPsK9hTaA9yh7L4oFChSwmle7u7tLktq2basXXnhBSUlJOnr0qLp166ZLly4pX7581vKtW7fWnj17FBwcrJ07d2r9+vV67rnnVKRIEe3Zs0dRUVHy9/dXUFCQpkyZosuXLztsv3LlyipVqpRDr8P2ca2B3CQyMlKlS5dWUlKSJMnT01MHDhyQv7+/Vq9erY4dO+rQoUNKSEiQl5eXpH8eaWjevLk2b96sL774QseOHdPkyZPVsGFDxcbGasuWLZKk3r17a+fOndq2bZvDdl1dXVWrVi1rfYYmqcil7H/39+zZoyZNmig2Ntb6rE+fPurSpYsk6eeff9bQoUN1+PBheXh4WOeO2rVry2azqXLlytqzZ4/WrVunAQMGqHDhwjp8+LBCQ0NVunRpNWrUSB988IGktF7v7UqVKqWSJUtyPkKuZzJokr1t2zZ16dLFGvd5+/bt110+b968mjRpkpo2bary5ctrxYoV+r//+z/9/fffmj9/vh555BHrWvFa9uOlXLlyCgkJkcT5CPcWQvU9JKNhPnbu3KmqVavq0qVL1h/jZs2a6ejRo9ZF/IABA7RmzRodOHDAWu7+++9X8eLF5enpKV9fX2v65s2bNW7cOOuP9sSJE/XSSy85BPKr2Ww2/ugi1zDXPAcmpT3refjwYQUFBVnzVK5cWUWLFtWKFSsUHx+v8uXLq3nz5vrmm28k/XNB/+ijjyopKUl+fn7y9PSUlDYE0P/+9z/9+uuvunTpkmrXrq3x48erSpUq1y2Xm5sbAQC5ytXP+dv/PXfunM6ePetws7dLly7as2ePTpw4IX9/fz3yyCM6fvy4tm7dap07KlSooODgYF24cEE+Pj7WNjZs2KDPP/9cx44dkyS99dZb+vTTT69bJs5HyI2MMdb13bXngYMHD+qVV15R/vz5tXDhQv3vf/9ToUKFrruumJgY/fTTT2rZsqV27NihdevW6ZlnnlHhwoUzVZYZM2Zozpw56t+/v/M7BORShOp7gP2P7dWdE9kvYgoUKKDt27crf/781rQnn3xS4eHh2r17tyTpoYcekre3t5YtW6akpCRrvlGjRmndunVq2rSp3n//fbVr104dOnSQm5ubKleuLEl68MEH1a5duzu2r8DtcL3xpI0xKlasmCIjIxUaGipJSkhIkCQ99dRTmjdvns6dOydJ6t+/v5YuXWp1OmaMUc+ePdW+fXt1795dTz/9tF555RXVqVNHX331lWrXrm3VbA8aNMjh5hWQW9nPR66urnJ1dZUxxgqylSpV0p49eyT9c+Opbdu28vLy0i+//CJJqlatmurWrauvvvpKUtpNLW9vb40dO1bbt29Xo0aN9P7776tt27bq0qWLLl26pHLlykmS6tevrw4dOtzJ3QVuG/sNXnvnk1FRUZo3b5527txpzbNp0ybt3LlT06dPV8OGDRUcHGzdAM6It7e3VqxYoVGjRql8+fKZLov9uPb399eMGTP07LPPOrdTQC5GqL4H2MP077//rhkzZigiIsK6iKlXr5527dqlpKQkubm5KSUlRSVLllRwcLDWrl1rBYWePXtqwYIFCg8Pt5Z96qmn9O233+qpp57Spk2bVKFCBa1du1ZfffWVSpYsaW0/oxpyIDdxcXGRi4uLzp49qylTpmj9+vWKjo62eh6uX7++Fi9eLOmf5m4DBw7U4cOHtWvXLklShw4d5O7ubs1nD+fTpk3TF198oQIFCujYsWMaMWKE9u/fr27dujk0UeU4Qm5lvxEr/XM+WrJkibp376527dopMjJSUtqjE/7+/tajDykpKcqTJ4+6deumGTNmKCUlRd7e3urZs6d++eUXJScny8PDQ1Ja66mFCxfq6aef1q5du1SxYkWtW7dO3333ncP5KKPmsUBucO13134OOXTokL799luVKlVKb731lh555BF9++23kqRixYrJ1dVVr732ml588UW9++67ev3117Vo0aLrbseZVk/247p169Z68MEHb3p54G5gM5xh7hrGmHR/DI8dOyZPT0/17NlThw4dkre3t1xcXLRs2TKVLl1a+/fvV/PmzTVhwgQ9/vjjio+Pl5eXl77//nuNHj1aEyZM0MMPP6yDBw+qbt266t+/v/z9/bVw4UItXrxYAQEBGZbDGMOwPbhrREVF6bXXXtOPP/6oypUrKzU1VV5eXlqyZIny58+vd999VwsWLND27dvl6uqqlJQUubq6qkaNGqpXr57Gjx+vfPny6bnnntPSpUv10ksvadOmTSpVqpTVHDU1NTVdaxKaouJuExUVpb59+2rr1q3q3r27SpcurbZt26pKlSrasGGDhg4dqrZt2+rNN9+0jom//vpLTZs21bZt21SrVi2dPn1a5cuXV79+/eTj46Ndu3bprbfeUpMmTdJtj/MRcruUlJQMn/GPj4+3npGuVq2aXn31VVWrVk1PP/20QkJC9Omnn6phw4b673//q6VLl6pChQq6fPmyQkNDtXv3bi1evFgNGjTIpr0C7j6cZXK5qztWufYPbkREhMqXL69nn31Wbdu21ZkzZzRv3jx5enrq7bfflpR2F/OBBx7QpEmTJP3TWdmjjz6qlJQU7dy5UwkJCapUqZK+/PJLHTx4UL///ruef/55BQQEONSepaSkWE1kuYBBTmYff/ZGrm5Ct3jxYh08eFCbNm3S1q1btXnzZkVHR+v//u//lJycrEaNGikuLk6//vqrJFmdlg0YMEDLly+3mnyPGjVK3bp10w8//CA/Pz+98MILkmRd9F99PBOokdtc/Wzn1X799Ve9+uqrunLlihYtWqRjx45p586d+vzzzzVkyBCrv4Dq1asrKChIa9asUVJSknVMNGrUSBUqVNC8efMkScWLF9f333+vU6dOad26dXriiSfUpEkTh5o8zkfIbZYsWaKHH35YZ8+edZju6uoqm82mw4cPa9myZdYjRl5eXgoODtbp06dVpEgR1a1bV15eXnr11Vfl6empuXPnSpJeeeUVLV++XP/973/13XffaeXKlTp//ny67QC4RXemk3E4K7NDeiQnJ5tffvnFbN682WFIhN69ext3d3ezZs0aa9q8efNM/vz5zaFDh4wxxvz+++/GZrOZ9evXO2zzscceMw0aNDAHDx40xqQNMcL4ncjt7r//fjNkyJAbzrNixQpjs9lMTEyMMcaYmjVrWkPDLViwwDzzzDPGZrOZJ554wkRGRprw8HDTp08fU79+fWPMP+NJx8XFGZvNZiZPnmxNu3ooIOBuZj9fDBs2zFSqVMkYY8zUqVONh4eHOXHihFm0aJFZtmyZ2bVrl4mMjDTGGPPjjz+aSpUqmenTpxtj/hmSZ9iwYSZ//vzWGNZXrx/IbeznA2P+ueYKCQkxkydPTnfdt3btWlOrVi2TP39+U6FCBXPfffdZ40Bv27bN1KxZ0/znP/+x5o+PjzcvvfSSad68uXW8hIeHmwsXLpjY2FgzevRoc//991vXgACyBrdvc7CQkBDZbDar+VpGNQBxcXF655135O3trcGDB6t3797q2bOnwsLCJKU9x+ni4qKiRYtay3Tu3FkuLi5aunSpjDF68MEH1alTJ33yySfas2ePVeM9aNAgPfbYYypRooSktGdm3N3dlZqa6vCMHJCbfPnll/roo4+s91FRUVbvwFdPq1+/vsLDwyWlPes5atQoBQUFacCAAXJxcdG6des0bdo0+fn5qXDhwnr77be1Z88eTZ8+3To+8uTJo6FDh6pmzZpWbZn9GdDk5GSek0auZIxxGMbN7uLFi3r33Xc1atQoSWmdjRlj5OPjo2LFiikpKUmPPvqoGjVqpODgYH344Yd6//33Va9ePT399NMKDQ3Vo48+qk6dOmnEiBGKjIy0Wmw888wzeuWVV6zjRxLnI+Ra9vPB1dd2pUqV0oABA2Sz2axply5d0hdffKGKFSvq5MmTmj59usqVK6dnn31WUVFRqlWrlurVq6fjx4/r/PnzktLOV/Xr11dcXJzWrFmjK1eu6JtvvlHXrl1VunRpff/99xo0aNBNdUQGIBOyMdDjBn777Tdjs9nMsWPHMvzcfpdz9erVply5cmbBggXm0qVLZtmyZaZKlSqmV69eJjEx0cTFxRkfHx/z1VdfGWP+uSP65JNPmvvvv99cuHDBGGPMvn37TJ8+fUybNm2smgHgbpWcnGxOnz5tjDGmZcuWplmzZmbTpk3W5999952pUqWKiYmJMefPnzfPPfec8fPzM4sXLzaXLl2y5rt48aI5cOCAiYuLM8YYM2bMGNOuXTszfvz4O7tDQDaJiIiw/p+QkGBGjx5t3NzczKpVq0xSUpIxxpinn37a9OrVy1y5csUYY0xkZKSJiIgwBw8eNMeOHTPbt283+fPnNwsXLjTGpB2fLVq0MP379zfHjx+/4/sE3G6bN282TZo0MatXr7ampaammhUrVpjy5ctbLQT37dtnbDab2b59uzVfSkqKKVy4sBk5cqQxxphvvvnG1K9f38yfP9+a59ChQ6Z169amR48exhhjVq1aZT777DOzZ8+eO7F7wD2Jmuocxvz/O/9lypRRcHCwfvjhB0nS6dOnNW7cOE2cOFEXLlyQi4uLUlJStGjRIgUEBKhly5bKly+fWrVqpcGDB+vgwYNavny58uTJo0ceeUTTpk1TcnKyVQs9YMAArV27Vn///bckqWrVqpowYYIiIiL05Zdf6sKFC5LSOk8y9GWHXCijmjS79u3b64knnpAkjRs3TiVKlNBLL71k1Q6ULl1aISEh8vT0VKFChdSkSROlpqYqb9681pjriYmJGj9+vObMmWMtN2TIED399NOaOHGi9u7da22PmjTkZtd+fy9evKgPP/xQVapUUYsWLdS/f3/9/fff8vDw0LBhw9SvXz+9/fbbmj9/viSpcOHCOn78uLy8vJSSkiI/Pz8FBASoYsWKCgoKUnx8vPz8/FS8eHFJac+QTps2TbGxsfriiy905coVSRmPEw/kRgEBAcqfP7+mTJmiQYMGqVy5clq/fr3q1auno0ePWqNGREREKDAw0GqxkZCQIBcXFz3++OPWMHNNmjSRn5+fVq9eba2/QoUKatiwoSpVqqTExES1aNFCgwcPVnBwsEPfHQCyDqE6m9kvEDZv3qzjx49bobdkyZJ68MEHNXPmTB0/flz333+/Zs2apbFjx6pr1646duyYXF1dtW/fPpUqVcoaz1ZK+wNbsGBB/fnnn5Kkp59+Wtu3b9ehQ4cc5mndurX1hzolJUUFChTQzz//rPvuu89hbGtnhlcAspubm5tsNpuOHDmi/fv3O3zWq1cv7dq1S2fPnlWNGjX04Ycf6ujRo3rrrbcUFxenuLg4Va1a1TpmunTpokcffVRdu3ZVz5499cYbbyg4OFgzZ85UuXLllCdPHklpTbu7du2q6dOny8PDw2FMXiA3uTq8urq6KjExURERETp//rxeeeUVLVy4UG+88YY+/PBDhYaGasCAAQoJCZEkvfvuu2rcuLFeeeUVnTp1SjabTQEBAUpKSpKrq6siIyP1zTffaMyYMerUqZPat2+vXr16WR2WSWnnwK+++kqPPfaY1THTtePEAzndtY8n2M8JYWFh2rhxo2bPnq3jx49r/PjxatCggQoWLKhmzZppzpw5MsYob968qlChgpYtWybpn3NJgwYNdPr0aaWmpqpy5coqXbq0Vq5cqRMnTljbeu+99/Tee+9Zj0zYb0rZbDbOScBtQKjORvY/btu3b9d9991n1WwtWbJE+fLlU9u2bXXu3Dn17dtXH3zwgTZt2qSvvvpKMTEx1jA8bdq00bp16xQVFWWtNzg4WJGRkdZwV82bN5ckfffddw7bX7JkiTWcgv0PbKlSpVS7dm35+fnd1n0HskpGzyXHx8drwoQJqlSpkpo1a6aePXuqV69eVlDo1KmTkpKSrDGjS5curY8++khLly7VlClT5O7urujoaAUEBMgYI29vb02YMEHffPONfH19dfjwYQ0fPlz79+9X79690/UuXLduXVWsWJFeh5GrXN0yyR5ez58/r++//94aajEhIUFt2rTRzz//rL59+6pDhw7q0qWLduzYoT/++ENS2qgSY8eOVfHixfXJJ5/ot99+U/ny5a3RJTw9PZWcnKxly5apXLly2rBhgz744AOHm8OSVKhQITVu3FgFCxa8cz8EIAu5uLhY11fHjh2zzgn58uXTf/7zH1WqVEkDBgxQu3btrHPZwIEDtXz5ch05ckTVqlVTpUqVNHv2bElpN4slac6cOWrWrJkuX74sSerWrZuGDx/u0H+OlP6Y5qYUcBvd+RbnyEjNmjVN1apVTaFChaznZ0JCQkyrVq1MhQoVrF5Ok5KSzAcffGC8vb2NMcbExMQYT09P89///td61vPAgQPGx8fHzJw501r/jz/+6PBMjp39mTcgt7lez/ipqanml19+MW3btjXjx483ERERZtOmTaZkyZLmvffes77zjz/+uGnZsqV1bCUmJppp06aZggULmrffftvky5fPxMfHW+u192Nwda+txhj6IECud+13et++fWbdunVm4MCBpnz58uall14yK1euNElJSSYpKcmkpKSYsLAw88ILLxg/Pz9TpUoVU6JECdOzZ08THh5ureevv/76f+3deUCU1frA8e8woCyyCCZKKKC44JKKIkqi4Ea5FamAKGabuQWWW2Zaalpq2tVuN/d9Ty0RE3cQdxC3BMEld5QUCmVRcN7fH/zmvYxoV8mF0efzl8y8K/LOnOec5zxH+eCDDxSNRqN07dpVUZT/Prf6+dV6Op3uoVe7EKI0unv3brG/4cTERCU4OFhxdHRUPD09lf79+6vzmi9cuKAEBgYq3bt3V/fXMzc3V2tzHDx4UHF1dVW8vLyUH374QQkPD1eqVaumREVFPaU7E0I8DBlGeUqUe+aBKYpCVlYWsbGxzJs3j0uXLnHx4kXGjRuHTqejUaNGODo68uqrr5Kenq728JuamtKuXTtu375NVFQU1tbWDB06lO+//57Q0FCmT59OUFAQ/v7+dOzYUT1ft27daNSoUbHr0vd6CmFs9D3uO3bsYPbs2Vy/fl193d7enokTJzJo0CDs7e3JyMggPz+fDRs2cObMGQDeeecddu/erVb+NjMzIywsjODgYL7++mtMTU0NUun0IwyynrR4nij/v0Z6VlYWqampvP3227Rp04bDhw9Tu3ZtLl68iFarxc/PD1NTU0xNTTExMWHq1KkkJSWxbNkykpKSGD16NJs3bzaYZuTt7c2YMWNwcXHB2tqa/Px89bnVj0oXXU9aRtGEMbp3utypU6e4ePEiqampREREYGVlxerVq/niiy+4ePEin376KQDOzs40bdqU3377jYsXL2JiYqJOdejUqRPr1q0jIyMDLy8v1qxZQ6tWrZg9ezanTp1i7ty5Bm08KN7OFEI8XRJUPyVFGwvK/6d9z58/n5CQEN577z1iY2Oxs7PD0tJS3a5s2bJqQ2bDhg3q6+7u7vj5+TF79mwARowYwcyZM7G1tWXFihUEBQWxaNEibGxsDK5Blu8Rz4sLFy6QlJRESEgIISEhTJ48mTfffFOdd9asWTMaNmzId999h7u7O4MHD6ZXr14kJiaSkJCgLiVXqVIltdiL/vn4/PPPmT59OtHR0dSqVeu+55c5acLYKP+/DNa9NBoNWVlZ1KpVi/DwcCwtLYmPj+ejjz6iWbNmWFlZUb16dTQaDfn5+QAcPXqU1atXExwcTEBAAIqikJqayp07d9i1a5e6XX5+Ps7OzjRo0ABzc3N1CayitFqtTJMQRuXe4NXExITc3FxOnz5NWFgYzZs3Z/fu3VSuXJng4GDmzZtHy5YtadSoEZaWlkRHR3PgwAE0Gg2NGjXCysqKyMhIoLDdBxAeHk5MTIw6LbBx48ZMmTKFw4cP8+uvv+Lv71/suqRTSohnS77JHrN7Gy76D9/ExET27NljsG2ZMmVwc3MjJyeHunXrUrt2bbZu3crVq1fVbWrWrEnz5s2ZN2+eejxbW1veeustoqKiKCgowNramvbt2zNnzhz279/PqFGjsLGxue8HvxDG7tChQ7z55psEBwdTvXp10tPTWb16NXZ2dmqtATMzM3bt2sWSJUsYOXIkhw4dYsqUKdSrV4/o6GgyMzPRarV07NiRadOmkZeXpz4fzs7ODBgwgGbNmj3L2xTisdJoNGpmUmJiIleuXFG/I2xsbGjfvj1btmzBy8sLZ2dnoLCCcOvWrVm1ahXw3+8QDw8PMjMzuXz5MtevX2fPnj1kZWXh6urKmTNnuHXrFoCaYaXT6dTvRfkeEsZKn510b/B69epV3N3dGTZsGDY2Nhw5coTu3btjbW3NwIEDOXDgAH5+fjRs2JA//viDatWq8cMPPwBQv359GjRowKxZs8jNzWXXrl1s374dX19ffH191WdIT6PRcPfuXaneLUQpJN9uj4m+971ow0Wf0qbT6fj000/p06cPZ8+eVT+Qz549i6Ojo9qw6dGjB4mJieoyV1C47ELHjh3Zu3cv2dnZaopcq1atGDBgABkZGeq2+h5O/VJC0mspjM3DZFO4ubnRtGlTzp8/T48ePQDw9PSkZ8+eJCcns3//fgCWLFmCVqslJCQEKysr9u3bx6VLl9QCMACDBw9mzJgxanXUR70WIYzF1atXGTlyJJUqVaJz58507NiRcePGqY3zbt26Ub58eYNnoXz58nTu3FmtlK/VasnPz6dMmTKEh4ezdu1aPDw8aNeuHS1atCAmJoZ58+ZRvnx5oHCkum/fvuzevZu33377mdy3EA/rf6VP67OTDh48SFRUFHl5eeh0OipVqoSnpyfr16/H19cXZ2dntf119epVvvzyS+rUqUN8fDw7duygbdu2bN26FSgs6te7d28URaFWrVr4+fmRkpICQGxsLM2bN7/vdUimlBCljwTVj4m+9/3mzZt8/fXXNG/enM8//5yjR49iYmLCihUrcHd3p1+/fmo6T4UKFUhNTVXXve3evTsFBQXEx8erx9VqtTRr1oyMjAwWL16svl6rVi3+/e9/U7FixWLXol9KSAhjU3QU60ENHHt7e5o3b45Go1FHxAAaNGhAtWrV1OekZcuWJCYm8tNPP3Hw4EEWLFjAtGnTsLa2VkfNatWqxcCBA+87eiYjauJ5odPpWL16NYcOHWLu3LkcO3aMoUOHsmTJEpYuXQpAhw4dsLe3JzU1lby8PKCwk9jT0xMnJyeWLFmiHgsKl81atWoVixYtIjc3l969e6urRhRdSq5cuXIsX76cFi1aPO3bFuKh6L8PNBoNmZmZaqfrvVasWEHVqlUJDAxk1KhRvP766/z8889AYfVte3t7dXBD3wZLSUlh8+bNfPLJJ1SrVo3c3FySkpK4du2aWtG7ZcuWrFu3jjVr1qDT6RgwYECxaxNClH7SanxMNm/ezPz585kwYQJbtmzBz8+PjRs30qNHDzZv3oyDgwPTp09Ho9EwfPhwoLDB4eLioi6JUK5cOdq1a8fy5csZP3487du3Z8SIETRs2JCNGzfSq1evYoGGpAAJY1R0mQ89RVFYtWoVH330kZrlcS/9Pg0bNqRx48asXr1afc/NzQ1fX19iY2MBCAsLo1evXkyePJnWrVvz119/ERgYyOnTp/Hx8TE4phR4EcbqYTIqFEXB29ub//znP3Tq1AmA7OxsLl++zKZNm9RiZP7+/sTFxanrTUPhcnMtWrRg2rRpwH8zokxNTalbty4dOnQADL+Lihb1mzZtGq+99trjuVkhHqObN2/Sq1cvvv76a6DwOWnSpAlz5sxR39cXsjx9+jTz58/n448/5vLly+zatQs/Pz/69u0LQGBgIFZWVpw6dYqCggL1Gbhz5w6urq78/PPPZGRkMHfuXFxdXenUqZPBAEqNGjXUJU6LBtJSTFYI4yFB9T+kb9AkJCTw/vvvExcXx5IlS/j666+JjY2lWrVqfPfdd+Tm5lKzZk3+9a9/kZiYyIwZM4iPj8fBwQFLS0u1sMvIkSMJCgril19+wcnJSU2ZCwgIwNrauligISlAwhjpq6Tq6acrLFmyhKysLLXC9r30+9SsWZPGjRsTGxurPjsWFhb4+Phw9epVdQ7o7NmziYqK4ubNm6xatUot3le00SJVh4Uxe5jsDq1Wi7e3N46OjkRERODh4cHixYvp1KkTSUlJJCYmAoUdUefOneP48ePqvtbW1nTt2pV+/fqpz1pR+nPKd5EwNtbW1nTu3Jn+/furHbldunQhKiqKJk2aYGtry48//ghAXFwcmZmZfPzxx9y8eZPFixezZs0asrKyOHDgALa2tjRv3pxdu3Zx6dIl9RxeXl706tWLH374ARcXF2bNmkVISAhr165Va4Do6Z8lCaSFME4SVP+Nhxm90jfGIyIi0Gq1VKlSRS3yYmdnR48ePbhx4wbbt28HCgu8zJgxgy1bthAVFUVaWprBPGwXFxdGjBjBoUOHWLhwIXXq1HlCdyfE03G/9LVr167Rs2dPFixYYPB6tWrV1DoBf/f8WVhY4O3tTUFBAZs2bVJf9/DwoGfPntja2gKFo2o1atRQi7voO8Gk0SKMTUmzO/TbAaxcuZK4uDh++ukndu/ezZw5czh9+jSHDh0CwNfXF4CNGzeSlZWl7v/aa6/xxRdfFCuaBFJxWBi34OBgKlSoQFZWFtevX2f9+vWkpKTg4uLC+fPnmTJlClBY8d7a2pq2bdvy8ssvs3DhQt577z1Onz6Nt7c3AL169eLkyZMkJSWpx7ezs2PcuHGsWrWKgwcP8ttvv/Haa6+plfCLPtPyLAlh3CSovkfR9Wcf5gNO31gvV64cLVu2JCMjgxs3bqjve3p6YmZmphaegMKCMB999BEajQYbGxtyc3MNzqXv8S8aBAhhTIr+3eoD2OPHj3PlyhWgcKqDk5MTY8aMITIyEo1Gw+3bt8nLy+Oll17i7t27D5zTrG+ENGjQAGtra7UyPhSmgM+YMeO+6aaydI8wZiXN7oDC76mcnBzWrl1Lw4YN1fnNkZGRmJmZERcXx5EjR4DCudJhYWHFlmSUaRLieZSTk6POka5QoQJ79uzB09OTKlWqYGdnp27n6urK/v37cXJyIiEhgYMHDzJ48GBcXFw4efIkULi29K1bt4iOjiY3N9fgPN7e3nh4eBi0Me99poUQxk1amFCsp1Af1EZGRhIZGUlOTs5DHadv377s3bvXoHp35cqVOXbsWLER54CAADp27IhWq8XCwuK+wbMEAcJY6f9u//zzT9atW0f58uVp27YtXbp0YfHixVhZWTFlyhQ6derEZ599xrFjxyhbtiwXL17Ezs4OrVb7wA4lfSOkevXqDB8+nC+++KLYNlJrQBizx53doSgKlpaW2NnZkZSUxM8//8y2bdvYuXMnPXv2xM3NTa36/fbbb9O6detix5BpEuJ5ZGlpib29PefOnePIkSNUrlyZLl26EBMTY9CW69ixI87OzlSpUoWaNWuq7cSEhATGjBmjBtYjR46kS5cuWFhYFDuXviNMpkoI8Xx6YSM2fePj3qWndDod33zzDba2tnz66aeMHj2aN998U13+4H6Ndf0HZHBwMIqiMGHCBA4ePEhBQQErVqygcuXKakp4UY6OjmrALsGzMEZFe92LysnJYciQIQQHB7Ny5UpmzpxJXFwc9evX5+OPP1ZTtidNmoSbmxtDhgzh5MmT1KtXjzNnzgAPzhTR6XTk5+djYmJCly5d8PT0LLaNNFqEsXmS2R36Yw8dOpTatWszaNAggoODqVGjBt9++y3z58836PiVDCnxIunWrRtpaWlq4bBevXpx/fp1tdaATqejRo0afPjhhyxYsIAOHTowY8YMgoKCCAwMxMHBAWtra6BwKmDbtm3vex7plBLi+fbCRnL6DzeNRkNKSgozZszg0qVLHD16lHXr1rF06VKSkpLYsWMH9evXVys8Pqixrh9Z6N27N5s3b+bbb7/Fx8eHiIgIPvjgA4MGi4mJCUeOHGHTpk0EBwc/4TsV4vHS6XQG67Lrn4nExET1dUtLS0xNTYmPj6ds2bIEBwdTs2ZNZs2aRbt27Zg4cSIANjY2zJgxg3LlyvHuu+9y5coVatWqxd27d4uluurXXzcxMVHndt68efNp3roQT8yTzO7QP6NNmjRh7ty5xMbGcuPGDT777DMsLS0Bw0BaOnnFi6R169bY2dmRmJjIrVu3cHV1pW7duuzdu5crV66oz8PQoUOZNWsW9erVY9WqVZQrV44NGzbw448/8vLLL6vHk0wpIV5ML8w3Z9EGg06nIycnh+joaDZs2EDHjh1JSEggOzubqKgoatSoQefOnUlJSeGbb75h6dKl/PXXX1y8ePGBx9d/6IaFhWFqaso777zDhAkTyMvLY/jw4QbBeHp6OuHh4bi7u9O+ffsnd9NCPCZFMztMTEwMGt1ff/01tra2vP7667z//vtq7/7rr7+OtbU15cuXBwqfuzJlytCvXz/27dvH9evXgcJ50NOmTSM/P58VK1Zga2uLVqtVGyb6AFu//npycjIDBw7E2dmZDRs2yDxPYVSeVXaHvuPX1NSUWrVqAagdVSCBtHhxlS1bFh8fH5KTk9XaAj179mTPnj3MnDmTGTNm8PrrrwPQuXNnJk+ezJ49e5g/fz4NGzYEDNuYkiklxIvpuf0WvbehrW8wXLt2TR0p7tChA1999RWTJk1i8eLF1KpVi71795KWlkaDBg1o2rQpJ06c4IcffuDcuXNUqVLlgefTF4nx8fHBzs6Offv20a5dO0xMTMjPzze4npdeeonY2Fiio6OpVKnSk/kFCPEYFc3sSE5OZuzYsURFRZGYmMjFixfZuXMnM2fO5LfffmPChAkANGrUiGbNmnH27Flyc3PVZ9DV1RU7Ozu14nBBQYEaWNesWZPff/8d+O8zq9VquXHjBpMmTcLDwwMfHx/S0tKYOnUq3bp1k5Q6UeqVhuwOfUp50ewOfUeVEC+6zp07c+vWLfV7KTg4mPDwcNavX8+SJUvw9/cHDNuWRYvJSqeUEOK5/RS4t6Fw69YtvLy8mDp1KgUFBfj4+ODh4cG1a9do3ry5up23tzcxMTF07dqVs2fP8uuvv9KtWzfKlSunjsDd6+7duwYNmrCwMJYtW8aFCxcAMDMzM7geKfgiSrt7R9Kys7OJiYlh/fr1BAQE8MsvvzBkyBCCgoJwcnLC09OTwMBAIiIi2LFjB7///ju2trY0adKE1NRUYmJi1GPt3bsXS0tLKlSoAPx3/qivry+urq7Url0b+O8zPHHiRJycnIiMjCQ8PJzk5GTWrVtHcHCwWlxJiNJGsjuEMB7e3t44ODiwdetW0tPTKVu2LOHh4ezZs4f4+HiGDx8OGLYtpZisEKKo5+LT4H6pdOfPn2fPnj3qe+XKlaNGjRqkpqZy6tQpoLBn8u7duwbVvUNCQrCysqJChQo4ODior2/cuJF///vfagp4QUGBemytVotWqyU9PZ2tW7cyZMgQsrKyyMvLe2L3LMSTpB9J049qbdiwgdatW/Pjjz+yevVqDh8+zPDhwzl//rya/gaFS8g5Ozszd+5cAPz8/DA1NWXAgAFMnTpVfY68vb1p3LhxsfOmpKSogXJ+fj4AQUFBHDt2jD179tC/f3/J7hBGQbI7hDAugYGBtGvXDisrK6Dw2S1XrpzB9AkhhHgQow2qi66Zeb/5K+Hh4QwbNozz58+rr4WEhHDq1CmOHj0KQL9+/bh8+bLBGtK1a9cmIiKCr776is6dOzN+/Hh8fX3p378/7u7u6tqdpqam6nmXLVtGy5YtcXd3Z9KkSVSoUIE//viDmjVrPrH7F+JJ+uuvv6hUqRLLly9HURQ6duyIm5sbt2/fVovuBQUF4ePjw6pVq9T9qlatSvv27VmzZg1QGGT7+PhgaWnJqVOnGD9+PB4eHnz33XcG57tx4wadOnVCq9Wqa+jqi5G5u7urc0CFKK0ku0MI49avXz8iIiLUoFqv6PQJIYR4EKMNqoumUC9ZsoRPPvmErVu3qqPO7777Ln/88YfBOoOvv/46FhYWHDp0SK3wWKdOHX755Rdyc3PV7caOHcvcuXOpX78+sbGxtGnThsTERD777DNsbW0BiIuL46233sLe3p5x48bRqlUrDhw4wLZt26TRIkq1+2V2nDlzhhMnTgCFHVa2trZUq1aN3bt3c+PGDaytrfH19SUnJ0f9+y5XrhwhISGsX79eHVW2srKibdu2XL16lbi4OLRaLZ6enlSqVIlWrVqxf/9+5s2bV2yJuTJlylC9enV++eWX+y6RJURpJ9kdQhg/nU4n0yOEECVitEF1SkoKGzZsYNCgQXzxxRecOHGC0NBQIiIiAHjjjTcwMTFh7969asBsZmZG8+bNiYuLU1PA+/btS3R0NJcuXVKPrdVq6dChAxMmTGDbtm18+eWXVKxYUS1IkZqayrRp07C0tCQyMpITJ06oI3BClEb/K7Oja9euDB48mJs3b6qdVR9++CE7d+5UKwv36dOHxMREg0rDbdu2xcTEhPXr16vHqlmzJrVr12b//v0AtG3bFjMzM/Xn/Pz8Ykv/WFtbM336dOrVq/eY71yIp0OyO4QwfiYmJjI9QghRIkYZVKenpzNw4EAGDRpEWloahw8fJjo6mu+//57ly5ezaNEiAAICAoiLi+Ps2bPqvm3atOHEiRPqsgnvvfcely9f5uDBg8XOo/9gvXv3rlpsBqB69eqsXr2apUuX0qJFC0kLEqVe0cyOpUuXMnz4cHbs2KGObA0ZMoQjR46oxfWgcLpEbm4uBw4coKCgAD8/P5ycnNTGP0CVKlVo2bKlOicUCosoxcTEMGzYMKAwyHZzc1NTXM3MzKS4izAqkt0hhBBCiL9jlC3bihUr0qZNG9LT03nttdewtbVFo9EQEhJCaGgoP/zwAwC9evXiypUr7Ny5EyhM6/n555/R6XRs2bKFa9euYWVlxY4dOwgNDX3g+bRabbGKj/oRASGMQUpKCr/++ivDhg3jyy+/5OjRo3Tr1o3Zs2cDhRXrb968ya5du9Tlf8qWLUvLli355ZdfSE9PByA0NJQ1a9aQnZ0NgLm5OX379qV9+/YGS4tYWFgYFHcJDAxk5MiRODk5PYO7F+LRSXaHEEIIIR7WMw+q9WtpPix9w8LX1xcXFxe16ql+JKF79+4kJCSQk5ND06ZN8ff3Z8KECQwdOpTQ0FAqVarEl19+yVtvvYWDgwM6nQ4/Pz9J9xHPrfT0dAYMGMCAAQPIzMzkyJEjbN68maCgIFauXGmwnM9PP/1EZmamOpIcEBDAsWPHOHnyJAA9evQwyPQA6NSpE5MmTSo2+ly0uEv79u0JDQ2lbNmyT+GOhfjnJLtDCCGEEA/rqX1LZ2RkMGzYMP7880+D1/VraQLqaNjf0TcsGjVqhKenJ0ePHuX27dsGIwkvv/wyv/32GwDjx49n1KhRJCQkYGFhQb9+/Rg2bBjdu3fH1NRUGiriuVexYkXatm1LRkYGrVu3ply5cgBqdkZkZCQAgwYNIiEhgQMHDgCQm5vLr7/+SkZGBps2bSInJ4dXXnmF6OhofHx8DM4hxV3E80ayO4QQQgjxsJ5oRJmVlUVaWhoAeXl5JCUlcfv2bYNtLly4wCeffIKLiwuBgYEMHDhQ7fl/UCNdURSsrKxo1qwZBw8eZOnSperoQWRkJK6urtSrVw+dTkelSpUYNGgQMTExLFiwADc3N4BiqXRCGIOSZna0aNECFxcXNQ0VoGHDhtSsWZO9e/ei0+lo06YNXl5eREREMG7cON555x38/PwYPXo0jRs3xtzcHCgcdb43s0OKu4jniWR3CCGEEOJRPNGgumbNmowfP57bt2/j5OTExo0bcXR0VN8/c+YMYWFhnD17lkmTJjF8+HDi4+P5/PPPycnJeWAjXR9st27dGicnJ4YNG8b7779Pq1atWLJkCWFhYVhaWhZrsNy9e9dgZECI0upxZ3Z4enpSv359Dh8+rHZs2djY4OXlRWZmJtu3bwfg+++/p3fv3qxfvx5zc3O6d+/O2LFjCQkJkWdGvDAku0MIIYQQj+KJtJL1o8bvvPMOsbGx/PHHHwBcunSJrl27cvHiRQBcXV3p0KED69atIyQkhDfeeIP69euzZcsWtm7dCty/6qq+cV+3bl28vb1p0qQJvr6+9OzZk+TkZPr27Xvf69JqtRIYiFLrSWd2eHl5ceXKFfbs2aO+5+3tjUajYcWKFQDUqVOH0aNHc+jQIRYuXEiVKlWA+z+HQhgDye4QQgghxJP22CNMRVHUytj9+/cnOTlZTXuzsbHh559/ZtOmTUBhkDtixAjOnj1Lt27dcHBwYP/+/Tg6OrJ8+fLCC3xAEKzT6dBoNHh7e5OdnU2FChXo27cvTk5OMgIgjNKTzuxo1aoV1tbWbNu2TX2vXr16vP322/Ts2bPYfkUzO+5X/ViI0kSyO4QQQgjxrDzyN/7NmzdJSEgA7j96pdFoyMzMJC8vj6pVq1KvXj3WrVtHdnY2NjY29O7dm2XLlqkjB9nZ2YwcORJzc3N+/fVXTpw4ga+vLwkJCaSlpaHRaIoFyEWLubRp0wY7Ozs1UNfpdDICIIzK08rsaNSoEeXLlycmJkYNPMzMzBg4cCBt2rQptp9kdojSTrI7hBBCCFEaPFKL+a+//qJPnz7q8iD3G73617/+RUBAAIcOHQLggw8+YOPGjVy+fBmA3r17s3fvXlJTUwE4duwYW7ZsoU+fPnh7ewOFwcSFCxf46aefgP/OPdMH0iYmJpQpUwYoXKuzUqVKnD59mvT0dAkChFF52pkdw4YNY/ny5djZ2RV7XwhjI9kdQgghhCgNHikCtbW1ZcGCBXzzzTfqa3v27FFH0gC8vLy4efMmycnJALz//vtcv36d/fv3q2tCV65cWQ3Mb968aTBHbdmyZZiamtKhQwc1uNCPPOtT+Hbt2kVoaCgmJiYsX76cUaNGsWXLFipWrPiPfhlCPG6lJbND39D38vLC1dW12HVIZ5QwJpLdIYQQQojS5JG+/RVFwcbGhqSkJHbs2MG5c+fw9fU16MV/9dVXcXR05MCBA1y7dg0LCwv8/f356aefyMrKwsTEhODgYJYvX46iKDRt2pSAgABmzpyJk5MTw4cPJygoiMWLFzN//nygMPA4efIkQ4cOxdnZmaCgICwtLdm2bRv9+/enWrVqMiogSp3SlNmh75C6evWq1BsQRk2yO4QQQghR2jxSUK3RaLh9+zafffYZo0ePxtXVVR0lK1oc5rXXXuPYsWOcOHECgIEDB7J9+3Z+//13APr06UNqaiqxsbHY2dnx1VdfsWzZMlatWsXly5cJCgrC1tZWPd7OnTupU6cOp06dYtq0aZw6dYq5c+fSunVrNVgQorQpjZkd8+fPl7meolST7A4hhBBCGJtHHqkuW7Ys7dq1o6CggOPHjxMaGsquXbvUkTSArl27kpaWxtGjRwEIDAykbNmyxMTEUFBQQN26dalVq5b6PoC/vz+tWrUCijek/P39uXz5MuvXrycoKAhra+sS37AQT0tpzOwYMWKEdESJUkuyO4QQQghhjB55pBrA19cXCwsL1qxZQ1BQEDdu3CAxMVHdrkaNGpiZmbFv3z7Onz8PFK75OWfOHLKysgBITEwkIiLC4Pj6hsv9GlKVK1d+lEsV4pkrjZkdMk1ClGaS3SGEEEIIY1Si/LVXXnmFOnXqEBcXh7W1tTr6dvLkSQC2bNnCnTt3iI+PZ//+/QD85z//Yc2aNdjb2wNgYWFRbE6aLIMlnieS2SHEo5HsDiGEEEIYo0cOqvWjyT4+Pvz111/ExMQwZMgQkpKS+PDDD5k4cSLfffcdEyZMoEePHjRt2hQAZ2dn6tSpY3hymZMmnmOS2SHEo5HsDiGEEEIYo0eOavWBQosWLahYsSJr166ladOmzJ07l4oVK7J582YCAwMJCwtj4sSJuLm5GewnxItGMjuEeDiS3SGEEEIIY6RR/kEFlhEjRrB3715mz56Nh4cHeXl5mJubq+8rioKiKDIiLV5YiqKg0WhYunQp3333HZMmTcLGxoY+ffrw0ksvERAQQFxcHD169ODkyZN88MEHuLm5qfsJ8SI6duwY4eHhtGrVisGDB1O3bl3GjBlDv3791G2qV69O48aNmTJlCi4uLnTu3JkzZ86we/du7O3tyc3NxcLCwuC48lwJIYQQ4kkoUbSrj8NbtmyJRqMhPj4eAHNzcxRFUUcBNBqNBNTihSaZHUI8OsnuEEIIIYQxKVH1FX3DxNvbm6tXr5KdnW3wnsxBE8KQq6srr7zyCnv37iU5ORkfHx88PT0ls0OIe+hHk318fDhw4IBat6NPnz58+OGHanbHhAkTOHnypEHdjnuDZnmWhBBCCPE0lLjFodPpiIyM5MaNGzRp0uRxXpMQzxXJ7BDi4Ul2hxBCCCGMzT9aJ+TcuXNMnDiRxo0bP67rEeK5I5kdQjw6ye4QQgghhLEocVBtYmLCuHHjHue1CPHckswOIR6ePgW8ZcuW7Nu3j/j4eDw8PNTsDp1Oh1arRaPRyAi1EEIIIZ456d4X4imRzA4hHo5kdwghhBDCmPyj9G8hxMORzA4hHo1kdwghhBDCWMhItRBCiFJJsjuEEEIIYQw0ir40sRBCCCGEEEIIIR6JjFQLIYQQQgghhBAlJEG1EEIIIYQQQghRQhJUCyGEEEIIIYQQJSRBtRBCCCGEEEIIUUISVAshhBBCCCGEECUkQbUQQgghHmjhwoXY2dk968t4Jvr06cObb775rC9DCCFEKSdBtRBCCGGkJOgzFBMTg0aj4c8//3yk/c6dO4dGo+HIkSMGr0+fPp2FCxc+tusTQgjxfDJ91hcghBBCCFEa2draPutLEEIIYQRkpFoIIYR4Dvj5+fHRRx8xePBgypcvj6OjI7NnzyY7O5t33nkHa2trqlevzqZNm9R99CO7GzdupEGDBpibm+Pt7c3x48f/9lwbNmygcePGmJubU61aNcaOHUtBQYH6vkajYdasWXTq1AlLS0s8PDzYt28fp0+fxs/PDysrK5o3b86ZM2ce+bhz584lMDAQS0tLatSoQWRkJFA42uzv7w9A+fLl0Wg09OnTB4Do6GhatGiBnZ0dDg4OdOrUyeDcbm5uADRq1AiNRoOfnx9QPBPg9u3bhIeHU7FiRczNzWnRogXx8fHFfp/bt2+nSZMmWFpa4uPjQ0pKyv/67xNCCGHEJKgWQgghnhOLFi2iQoUKHDx4kI8++oj+/fvTvXt3fHx8SExMJCAggLCwMHJycgz2GzZsGN9++y3x8fFUrFiRLl26kJ+ff99zbN68mV69ehEeHk5SUhKzZs1i4cKFTJgwwWC78ePH07t3b44cOULt2rUJDQ3lww8/ZOTIkSQkJAAwaNCgRz7u2LFjCQoK4tixY3To0IGePXuSkZFBlSpVWLt2LQApKSmkpaUxffp0ALKzs/nkk0+Ij49n+/btmJiYEBgYiE6nA+DgwYMAbNu2jbS0NNatW3ffex8+fDhr165l0aJFJCYm4u7uTkBAABkZGQbbjRo1iqlTp5KQkICpqSnvvvvug//ThBBCGD9FCCGEEEbp7bffVt544w1FURSlVatWSosWLdT3CgoKFCsrKyUsLEx9LS0tTQGUffv2KYqiKDt37lQAZeXKleo2N27cUCwsLJRVq1YpiqIoCxYsUGxtbdX3fX19lYkTJxpcx5IlS5TKlSurPwPK559/rv68b98+BVDmzZunvrZixQrF3Nz8Hx331q1bikajUTZt2mRwP5mZmQ/4jRVKT09XAOX48eOKoijK77//rgDK4cOHDbYr+vu9deuWYmZmpixbtkx9/86dO4qTk5MyefJkg/Nv27ZN3Wbjxo0KoOTm5v7tNQkhhDBeMqdaCCGEeE688sor6r+1Wi0ODg7Ur19ffc3R0RGA9PR0g/2aN2+u/tve3p5atWqRnJx833McOnSI+Ph4gxHku3fvkpeXR05ODpaWlsWuRX/ee68lLy+PrKwsbGxsSnRcKysrrK2ti93Pvc6cOcPo0aPZv38/169fV0eoL1y4QL169f5236LHyM/P59VXX1VfMzMzo2nTpsV+V0WvsXLlykDh77xq1aoPdS4hhBDGRYJqIYQQ4jlhZmZm8LNGozF4TaPRAKhB5d/Rb3svnU7H2LFjeeutt4q9Z25uft9r0R/r766lJMfVH+d/3U/nzp2pUqUKc+bMwcnJCZ1OR7169bhz587f7leUoigG11309XtfK+nvXAghhHGSoFoIIYR4we3fv18dRc3MzCQ1NZXatWvfd1tPT09SUlJwd3d/rNfwOI5bpkwZoHCEW+/GjRskJycza9YsfH19Adi9e/f/3O9e7u7ulClTht27dxMaGgpAfn4+CQkJDB48uMTXLIQQwvhJUC2EEEK84MaNG4eDgwOOjo6MGjWKChUqPHD96zFjxtCpUyeqVKlC9+7dMTEx4dixYxw/fpyvvvqqxNfwOI7r4uKCRqMhKiqKDh06YGFhQfny5XFwcGD27NlUrlyZCxcu8OmnnxrsV7FiRSwsLIiOjsbZ2Rlzc/Niy2lZWVnRv39/hg0bhr29PVWrVmXy5Mnk5OTw3nvvlfi+hRBCGD+p/i2EEEK84L755hsiIiJo3LgxaWlpREZGqqO39woICCAqKoqtW7fi5eVFs2bNmDZtGi4uLv/oGh7HcV9++WXGjh3Lp59+iqOjI4MGDcLExISVK1dy6NAh6tWrx8cff8yUKVMM9jM1NWXGjBnMmjULJycn3njjjfse/5tvvqFr166EhYXh6enJ6dOn2bx5M+XLl/9H9y6EEMK4aRT9JCEhhBBCvFBiYmLw9/cnMzMTOzu7Z305QgghhFGSkWohhBBCCCGEEKKEJKgWQgghhBBCCCFKSNK/hRBCCCGEEEKIEpKRaiGEEEIIIYQQooQkqBZCCCGEEEIIIUpIgmohhBBCCCGEEKKEJKgWQgghhBBCCCFKSIJqIYQQQgghhBCihCSoFkIIIYQQQgghSkiCaiGEEEIIIYQQooQkqBZCCCGEEEIIIUpIgmohhBBCCCGEEKKE/g/iiQqdxmAuVAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " time\n", + "method \n", + "iterations = julia_vec(Z) 0.044188\n", + "julia_numpy_arrays(iterations, Z, c) 0.018800\n", + "julia_numpy_naive(iterations, Z, c) 0.464113\n", + "julia_pure_python(iterations, Z, c) 0.053993\n" + ] } ], "source": [ @@ -522,26 +549,38 @@ "id": "b181599f-9e91-45c8-92da-8a3ac9f0b417", "metadata": {}, "source": [ - "In this case, the implementation using numpy array functions only has an edge over the `numpy.vectorize()` implementation.\n", + "In this case, the implementation using numpy array operations is by far the fastest implementation.\n", "\n", "However, as illustrated below, results also depend on the size of the data." ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 30, "id": "92a5c2a5-e81a-4153-b05b-e65de8600aed", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACnE0lEQVR4nOzdd3gUVeP28XvTaQmEhNAh9BJ6bwIWqnQEBUWKCj4oIuJPARVFEMWGUkTEBiJFRATp0gWkgxTpkFACMQGSAOk57x95d8ySgHENJIHv57pywc5OOZPs7Mw958w5NmOMEQAAAAAA+NdcsroAAAAAAADkVIRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAwH/2zTffyGaz3fRn/fr1WV3EDPn+++81ceLEdN+z2Wx6880372h5bvU7vfH327dvX5UuXfqOli+7O336tGw2mz744IMs2b79uDh9+nSWbD+zbdmyRW+++aauXLni9DqWLVt20+OodOnS6tu3r9PrBoCs4pbVBQAA3D2+/vprVapUKc30KlWqZEFp/r3vv/9eBw4c0NChQ9O8t3XrVhUvXvyOlmfr1q0Or99++22tW7dOa9eudZhepUoVlShRQi+88MKdLB7uMVu2bNFbb72lvn37Kn/+/E6tY9myZZoyZUq6wfqnn36St7f3fyskAGQBQjUAINMEBQWpbt26WV2M26Jhw4ZZvk1/f3+5uLikW5Z7NYzExMTIy8tLNpstq4uC/6hWrVpZXQQAcArNvwEAd8zcuXNls9k0efJkh+mjR4+Wq6urVq9ebU3buXOnOnbsKF9fX3l5ealWrVqaP39+mnWeO3dOzzzzjEqUKCEPDw8VLVpU3bt318WLFyXdvAnu+vXrHZqmt2jRQkuXLlVwcLBD02q79Jp/HzhwQJ06dVKBAgXk5eWlmjVr6ttvv013O3PmzNGoUaNUtGhReXt768EHH9SRI0f+7a/wptJr/m2z2fTcc8/p66+/VsWKFZUrVy7VrVtXv//+u4wxev/99xUYGKi8efPq/vvv1/Hjx9Os99dff9UDDzwgb29v5c6dW02aNNGaNWv+sTz2/f7uu+80bNgwFS5cWLly5VLz5s21Z8+eNPNn5O9t/1uuWrVK/fv3l7+/v3Lnzq24uLgM/57s61i7dq2efvppFSxYUN7e3urTp4+uXbumCxcuqEePHsqfP7+KFCmi4cOHKyEhwVre3qR8woQJGjdunEqWLCkvLy/VrVs3Q78XKWO/0zfffFM2m01//PGHHnnkEfn4+MjX11fDhg1TYmKijhw5ojZt2ihfvnwqXbq0JkyYkGY7UVFRGj58uAIDA+Xh4aFixYpp6NChunbtmsN89s/JrFmzVLlyZeXOnVs1atTQL7/84lCel19+WZIUGBiY5tGOefPmqVWrVipSpIhy5cqlypUr69VXX3XYVt++fTVlyhRrm/Yf+7GZXvPvkJAQPf744ypUqJA8PT1VuXJlffjhh0pOTk7zN/nggw/00UcfWZ/pRo0a6ffff8/Q3wQA/gtCNQAg0yQlJSkxMdHhJykpyXr/0Ucf1aBBg/TSSy9p586dkqS1a9dq7NixGjlypB566CFJ0rp169SkSRNduXJF06ZN088//6yaNWuqZ8+e+uabb6z1nTt3TvXq1dNPP/2kYcOGafny5Zo4caJ8fHx0+fLlf1X2qVOnqkmTJipcuLC2bt1q/dzMkSNH1LhxYx08eFCffvqpFi5cqCpVqqhv377pBpyRI0cqODhYM2bM0PTp03Xs2DF16NDB4fdzO/zyyy+aMWOG3n33Xc2ZM0fR0dFq3769XnrpJW3evFmTJ0/W9OnTdejQIXXr1k3GGGvZ7777Tq1atZK3t7e+/fZbzZ8/X76+vmrdunWGA+TIkSN18uRJzZgxQzNmzND58+fVokULnTx50pono39vu/79+8vd3V2zZs3SggUL5O7u/q9/L0899ZR8fHw0d+5cvfbaa/r+++/19NNPq3379qpRo4YWLFigJ598Uh9++KEmTZqUZvnJkydrxYoVmjhxor777ju5uLiobdu2t/zMSP/+d9qjRw/VqFFDP/74o55++ml9/PHHevHFF9W5c2e1b99eP/30k+6//3698sorWrhwobXc9evX1bx5c3377bcaMmSIli9frldeeUXffPONOnbs6PB3lqSlS5dq8uTJGjNmjH788Uf5+vqqS5cu1t/pqaee0vPPPy9JWrhwoXV81K5dW5J07NgxtWvXTl9++aVWrFihoUOHav78+erQoYO1jddff13du3eXJIdjrEiRIun+rv766y81btxYq1at0ttvv63FixfrwQcf1PDhw/Xcc8+lmX/KlClavXq1Jk6cqNmzZ+vatWtq166dIiMjb/k3AYD/zAAA8B99/fXXRlK6P66urg7zxsbGmlq1apnAwEBz6NAhExAQYJo3b24SExOteSpVqmRq1aplEhISHJZ9+OGHTZEiRUxSUpIxxpj+/fsbd3d3c+jQoX8s26lTpxymr1u3zkgy69ats6a1b9/elCpVKt31SDKjR4+2Xj/66KPG09PThISEOMzXtm1bkzt3bnPlyhWH7bRr185hvvnz5xtJZuvWrTct+42efPJJkydPnpu+d2PZJZnChQubq1evWtMWLVpkJJmaNWua5ORka/rEiRONJPPHH38YY4y5du2a8fX1NR06dHBYZ1JSkqlRo4apX7/+Lctq3+/atWs7bOf06dPG3d3dPPXUU9a0jP697X/LPn363HLbdqdOnTKSzPvvv29Ns6/j+eefd5i3c+fORpL56KOPHKbXrFnT1K5dO806ixYtamJiYqzpUVFRxtfX1zz44INptmX/7P2b3+no0aONJPPhhx+mKY8ks3DhQmtaQkKC8ff3N127drWmjR8/3ri4uJgdO3Y4LL9gwQIjySxbtsyaJskEBASYqKgoa9qFCxeMi4uLGT9+vDXt/fffT/dYulFycrJJSEgwGzZsMJLMvn37rPcGDx5sbnb5WapUKfPkk09ar1999VUjyWzbts1hvmeffdbYbDZz5MgRY8zff5Nq1ao5fI9s377dSDJz5sy5ZXkB4L+iphoAkGlmzpypHTt2OPxs27bNYR5PT0/Nnz9fERERql27towxmjNnjlxdXSVJx48f1+HDh9W7d29Jcqj1bteunUJDQ61m08uXL1fLli1VuXLlO7ujSqlhf+CBB1SiRAmH6X379tX169fT1Fh27NjR4XX16tUlScHBwbe1nC1btlSePHms1/bfVdu2bR2at9un28uzZcsWXbp0SU8++aTD3yA5OVlt2rTRjh070jQjTk+vXr0ctlOqVCk1btxY69atk/Tv/t523bp1c+ZX4eDhhx92eG3f//bt26eZnt7fqGvXrvLy8rJe58uXTx06dNDGjRtv2vrAmd9peuW02Wxq27atNc3NzU3lypVzKOcvv/yioKAg1axZ02FbrVu3TrdH/pYtWypfvnzW64CAABUqVCjDn8+TJ0+qV69eKly4sFxdXeXu7q7mzZtLkv78888MreNGa9euVZUqVVS/fn2H6X379pUxJk2Hfe3bt7e+R6Q7d4wBAB2VAQAyTeXKlTPUUVm5cuXUrFkzLV26VM8++6xD80/7s9DDhw/X8OHD010+PDxcUkrz0DvdI7ddREREus1WixYtar2fWsGCBR1ee3p6SkrpaOt28vX1dXjt4eFxy+mxsbGS/v472JvrpufSpUsOgT09hQsXTnfavn37HLaTkb+33c2aC/8b/+b3Yv+dpHaz/YqPj9fVq1fl4+OT5n1nfqfplSd37twOgd4+PSoqymFbx48fv2nT+Bt/pzd+PqWUz2hGPp9Xr15Vs2bN5OXlpbFjx6pChQrKnTu3zpw5o65duzr9GY+IiEh3mLjsdowBAKEaAHDHzZgxQ0uXLlX9+vU1efJk9ezZUw0aNJAk+fn5SZJGjBihrl27prt8xYoVJaX0hn327NlbbssePm7szOrGUPFvFSxYUKGhoWmmnz9/XtLf+5FT2cs/adKkm/Z8HhAQ8I/ruXDhQrrT7AHo3/y97bJDT9832y8PDw/lzZs33WUy63eaEX5+fsqVK5e++uqrW5YlM6xdu1bnz5/X+vXrrdppSf9pPGvp7j/GANw9CNUAgDtq//79GjJkiPr06aMvvvhCjRs3Vs+ePbVnzx4VKFBAFStWVPny5bVv3z698847t1xX27ZtNWvWLB05ciRN8LKz13T98ccfDvMsXrw4zbwZrZmTpAceeEA//fSTzp8/b9WcSSlN4HPnzp0lQ3BlpiZNmih//vw6dOhQup1CZdScOXM0bNgwKwgHBwdry5Yt6tOnjyT9q793drJw4UK9//771k2b6OhoLVmyRM2aNXNogpxaZv1OM+Lhhx/WO++8o4IFCyowMDBT1nmzml/739b+vt3nn39+y3XkypXrltt74IEHNH78eO3evdvqEE1KOcZsNptatmz573cCAG4DQjUAINMcOHBAiYmJaaaXLVtW/v7+unbtmnr06KHAwEBNnTpVHh4emj9/vmrXrq1+/fpp0aJFklIuxtu2bavWrVurb9++KlasmC5duqQ///xTu3fv1g8//CBJGjNmjJYvX6777rtPI0eOVLVq1XTlyhWtWLFCw4YNU6VKlVSvXj1VrFhRw4cPV2JiogoUKKCffvpJv/32W5pyVqtWTQsXLtRnn32mOnXqyMXF5abN2UePHq1ffvlFLVu21BtvvCFfX1/Nnj1bS5cu1YQJE9Jt/puT5M2bV5MmTdKTTz6pS5cuqXv37ipUqJD++usv7du3T3/99Zc+++yzf1xPWFiYunTpoqefflqRkZEaPXq0vLy8NGLECGuejP69sxNXV1c99NBDGjZsmJKTk/Xee+8pKipKb7311k2XyazfaUYMHTpUP/74o+677z69+OKLql69upKTkxUSEqJVq1bppZdeslqHZFS1atUkSZ988omefPJJubu7q2LFimrcuLEKFCigQYMGafTo0XJ3d9fs2bOtJv7preO9995T27Zt5erqqurVq1vN71N78cUXNXPmTLVv315jxoxRqVKltHTpUk2dOlXPPvusKlSo4MRvBgAyH6EaAJBp+vXrl+70L774Qk899ZQGDRqkkJAQ7dixw3putEyZMpoxY4YeeeQRTZw4UUOHDlXLli21fft2jRs3TkOHDtXly5dVsGBBValSRT169LDWW6xYMW3fvl2jR4/Wu+++q4iICPn7+6tp06bWs6iurq5asmSJnnvuOQ0aNEienp569NFHNXny5DSdUr3wwgs6ePCgRo4cqcjISBlj0gw9ZFexYkVt2bJFI0eO1ODBgxUTE6PKlSvr66+/TjPWbk71+OOPq2TJkpowYYIGDhyo6OhoFSpUSDVr1szwPr7zzjvasWOH+vXrp6ioKNWvX19z585V2bJlrXky+vfOTp577jnFxsZqyJAhCgsLU9WqVbV06VI1adLklstlxu80I/LkyaNNmzbp3Xff1fTp03Xq1CnlypVLJUuW1IMPPpjus8r/pEWLFhoxYoS+/fZbffHFF0pOTta6deusMd5feuklPf7448qTJ486deqkefPmOdQwSykd123evFlTp07VmDFjZIzRqVOn0i2Pv7+/tmzZohEjRmjEiBGKiopSmTJlNGHCBA0bNszJ3wwAZD6budnVAgAAgJPWr1+vli1b6ocffrhlx1w5zenTpxUYGKj333//ph2rAQDuLQypBQAAAACAkwjVAAAAAAA4iebfAAAAAAA4iZpqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJzEONVQcnKyzp8/r3z58slms2V1cQAAAAAgyxljFB0draJFi8rF5eb10YRq6Pz58ypRokRWFwMAAAAAsp0zZ86oePHiN32fUA3ly5dPUsqHxdvbO4tLAwAAAABZLyoqSiVKlLDy0s0QqmE1+fb29iZUAwAAAEAq//SILB2VAQAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOcsvqAgAAkJ0cPnxYmzZtUlhYmAoVKqRmzZqpUqVKWV0sAACQTVFTDQDA/3f48GHNnTtX586dU0JCgs6dO6d58+bp8OHDWV00AACQTVFTDQD4z2JjYxUSEnJbt3HixAnt2rVLERERKliwoOrUqaOyZctm6jYWLFigiIiIdKf36NEjU7eVESVLlpSXl9cd3y4AAMg4mzHGZHUhkLWioqLk4+OjyMhIeXt7Z3VxAORAR48e1TPPPHPb1n/9+nWFhYWlmV6oUCHlzp0707YTHBysG0+LCQkJiouLU758+eTh4SEfH59M3eatTJ8+XRUqVLgj2wIAAI4ympOoqQaAbO7ixYuKjIzM6mLcUlxcnEaNGnXb1r9s2TKFh4enme7n56d27dpleD2hoaH66quv1L9/fxUpUuQftxMZGanTp08rd+7cKl++vCTJZrOpefPmKlmypBN78u/ExcXp6NGjt307/4WPj48CAgKyuhgAAGQZaqpBTTWQjV28eFGPP9FHCfFxWV2ULHP9+nWdPHlSSUlJcnFxkZeXl9zd3SWlBNxSpUpl6rZS14hHR0crKSlJefLksbYpSZ6enumG8nuRu4envps1k2ANALjrUFMNAHeByMhIJcTHKaZMcyV7+WR1ce64mMsXden4XiXmDVBSfKwkKV425cpbWG658sgjj4+uVWmYqdvMe/miroaeUmLMVSXbzsgjj7dMrryKTzVPoourrlV5MFO3mxO5xEZKJzcoMjKSUA0AuGcRqgEgJ7hHGxXZw21SQpzioy/L5uoqV49cir96We658ihvkcBM32auAgHKVSAlIP516HfFX0vb9N4tV95M326OdI9+LgEASI1QDQA5QK5TG7O6CFki9PhxxV+9KldJHkpSYlyMEq5HylwNV97ESCVEnVbu29hxmO36dYX9lU4HabZCyn0o7XQAAHDvIVQDQA4QE3ifknPlz+pi3HExod8rKfmy9dolMV5JMVdlPHIpuUhVRUu6aqQCRWpatcuZLXVzcLdceZW3SKBMgQBduy1by1lcYq7cszd8AACwI1QDQE5gs2V1CbKEq2du6eoVq5lxynPVNrm4/d1pmFFKM/HbFapTNwfHDe7RzyUAAKkRqgEgG/Px8ZG7h6d0ckNWFyVLFIi7KHfFKDYuVsnJyUqKj5O7q6s8Eq/K468j1ny2cJvy6NbNsa9fv67IyEjFx8ff8fGm72buHp7y8bn3OtEDAMCOUA0A2VhAQIC+mzUz249TfbucOHFCy5cvl330x4MHD+ratWsqV66cfH19rfkCAgLUo0ePW65n2bJlunLlijZt2qT69eurQIECatu2rcqWLXvb9+NuxjjVAIB7HaEaALK5gICAbB9aYmNjFRISkunrLVu2rNq2batdu3bp0qVLqlatmiIiIlSgQAFrHpvNpjp16txyPbt27UozzRijXbt2ZetQXbJkSXl5eWV1MQAAwC3YjGE8jHtdRgc1B4CbOXr0qJ555pk7si1nmnEHBwcrvdOdzWZTqVKlbldR/7Pp06erQoUKWV0MAADuSRnNSdRUAwD+s5IlS2r69OlZXYybmj9/vi5evJhm+j81G89qJUuWzOoiAACAf0CoBgD8Z15eXtm6RrV79+6aN2+eQ221zWZT9+7ds3W5AQBA9ueS1QUAAOB2q1Spknr27KlixYrJw8NDxYoVU8+ePVWpUqWsLhoAAMjhqKkGANwTKlWqRIgGAACZjppqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYTqbGbjxo3q0KGDihYtKpvNpkWLFv3jMhs2bFCdOnXk5eWlMmXKaNq0abe/oAAAAAAAQnV2c+3aNdWoUUOTJ0/O0PynTp1Su3bt1KxZM+3Zs0cjR47UkCFD9OOPP97mkgIAAAAA3LK6AHDUtm1btW3bNsPzT5s2TSVLltTEiRMlSZUrV9bOnTv1wQcfqFu3breplAAAAAAAiZrqHG/r1q1q1aqVw7TWrVtr586dSkhIyKJSAQAAAMC9gZrqHO7ChQsKCAhwmBYQEKDExESFh4erSJEiaZaJi4tTXFyc9ToqKuq2lxMAAAAA7kbUVN8FbDabw2tjTLrT7caPHy8fHx/rp0SJEre9jAAAAABwNyJU53CFCxfWhQsXHKaFhYXJzc1NBQsWTHeZESNGKDIy0vo5c+bMnSgqAAAAANx1aP6dwzVq1EhLlixxmLZq1SrVrVtX7u7u6S7j6ekpT0/PO1E8AAAAALirUVOdzVy9elV79+7V3r17JaUMmbV3716FhIRISqll7tOnjzX/oEGDFBwcrGHDhunPP//UV199pS+//FLDhw/PiuIDAAAAwD2FmupsZufOnWrZsqX1etiwYZKkJ598Ut98841CQ0OtgC1JgYGBWrZsmV588UVNmTJFRYsW1aeffspwWgAAAABwB9iMvVcr3LOioqLk4+OjyMhIeXt7Z3VxAAAAACDLZTQn0fwbAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhOhuaOnWqAgMD5eXlpTp16mjTpk23nH/27NmqUaOGcufOrSJFiqhfv36KiIi4Q6UFAAAAgHsXoTqbmTdvnoYOHapRo0Zpz549atasmdq2bauQkJB05//tt9/Up08fDRgwQAcPHtQPP/ygHTt26KmnnrrDJQcAAACAew+hOpv56KOPNGDAAD311FOqXLmyJk6cqBIlSuizzz5Ld/7ff/9dpUuX1pAhQxQYGKimTZtq4MCB2rlz5x0uOQAAAADcewjV2Uh8fLx27dqlVq1aOUxv1aqVtmzZku4yjRs31tmzZ7Vs2TIZY3Tx4kUtWLBA7du3v+l24uLiFBUV5fADAAAAAPj3CNXZSHh4uJKSkhQQEOAwPSAgQBcuXEh3mcaNG2v27Nnq2bOnPDw8VLhwYeXPn1+TJk266XbGjx8vHx8f66dEiRKZuh8AAAAAcK8gVGdDNpvN4bUxJs00u0OHDmnIkCF64403tGvXLq1YsUKnTp3SoEGDbrr+ESNGKDIy0vo5c+ZMppYfAAAAAO4VblldAPzNz89Prq6uaWqlw8LC0tRe240fP15NmjTRyy+/LEmqXr268uTJo2bNmmns2LEqUqRImmU8PT3l6emZ+TsAAAAAAPcYaqqzEQ8PD9WpU0erV692mL569Wo1btw43WWuX78uFxfHP6Orq6uklBpuAAAAAMDtQ6jOZoYNG6YZM2boq6++0p9//qkXX3xRISEhVnPuESNGqE+fPtb8HTp00MKFC/XZZ5/p5MmT2rx5s4YMGaL69euraNGiWbUbAAAAAHBPoPl3NtOzZ09FRERozJgxCg0NVVBQkJYtW6ZSpUpJkkJDQx3GrO7bt6+io6M1efJkvfTSS8qfP7/uv/9+vffee1m1CwAAAABwz7AZ2gjf86KiouTj46PIyEh5e3tndXEAAAAAIMtlNCfR/BsAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJ7lldQHuFmfOnNHp06d1/fp1+fv7q2rVqvL09MzqYgEAAAAAbiNC9X8QHBysadOmac6cOTpz5oyMMdZ7Hh4eatasmZ555hl169ZNLi40CgAAAACAuw1Jz0kvvPCCqlWrpmPHjmnMmDE6ePCgIiMjFR8frwsXLmjZsmVq2rSpXn/9dVWvXl07duzI6iIDAAAAADIZNdVO8vDw0IkTJ+Tv75/mvUKFCun+++/X/fffr9GjR2vZsmUKDg5WvXr1sqCkAAAAAIDbxWZSt1nGPSkqKko+Pj6KjIyUt7d3VhcHAAAAALJcRnMSzb8zQUxMjK5fv269Dg4O1sSJE7Vy5cosLBUAAAAA4HYjVGeCTp06aebMmZKkK1euqEGDBvrwww/VuXNnffbZZ/96fVOnTlVgYKC8vLxUp04dbdq06Zbzx8XFadSoUSpVqpQ8PT1VtmxZffXVV07tCwAAAAAg4wjVmWD37t1q1qyZJGnBggUKCAhQcHCwZs6cqU8//fRfrWvevHkaOnSoRo0apT179qhZs2Zq27atQkJCbrpMjx49tGbNGn355Zc6cuSI5syZo0qVKv2nfQIAAAAA/DOeqc4EuXPn1uHDh1WyZEn16NFDVatW1ejRo3XmzBlVrFjRoWn4P2nQoIFq167tUMNduXJlde7cWePHj08z/4oVK/Too4/q5MmT8vX1dar8PFMNAAAAAI54pvoOKleunBYtWqQzZ85o5cqVatWqlSQpLCzsX4XU+Ph47dq1y1rerlWrVtqyZUu6yyxevFh169bVhAkTVKxYMVWoUEHDhw9XTEzMTbcTFxenqKgohx8AAAAAwL9HqM4Eb7zxhoYPH67SpUurQYMGatSokSRp1apVqlWrVobXEx4erqSkJAUEBDhMDwgI0IULF9Jd5uTJk/rtt9904MAB/fTTT5o4caIWLFigwYMH33Q748ePl4+Pj/VTokSJDJcRAAAAAPA3QnUm6N69u0JCQrRz506tWLHCmv7AAw/o448//tfrs9lsDq+NMWmm2SUnJ8tms2n27NmqX7++2rVrp48++kjffPPNTWurR4wYocjISOvnzJkz/7qMAAAAAADJLasLcLcoXLiwChcu7DCtfv36/2odfn5+cnV1TVMrHRYWlqb22q5IkSIqVqyYfHx8rGmVK1eWMUZnz55V+fLl0yzj6ekpT0/Pf1U2AAAAAEBa1FQ7adCgQRmu4Z03b55mz579j/N5eHioTp06Wr16tcP01atXq3Hjxuku06RJE50/f15Xr161ph09elQuLi4qXrx4hsoHAAAAAHAONdVO8vf3V1BQkBo3bqyOHTuqbt26Klq0qLy8vHT58mUdOnRIv/32m+bOnatixYpp+vTpGVrvsGHD9MQTT6hu3bpq1KiRpk+frpCQEA0aNEhSStPtc+fOWeNi9+rVS2+//bb69eunt956S+Hh4Xr55ZfVv39/5cqV67btPwAAAACAUO20t99+W88//7y+/PJLTZs2TQcOHHB4P1++fHrwwQc1Y8aMNL1530rPnj0VERGhMWPGKDQ0VEFBQVq2bJlKlSolSQoNDXUYszpv3rxavXq1nn/+edWtW1cFCxZUjx49NHbs2MzZUQAAAADATTFOdSa5cuWKgoODFRMTIz8/P5UtW/amnYtlN4xTDQAAAACOMpqTqKnOJPnz51f+/PmzuhgAAAAAgDuIjsoAAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqM0liYqJ+/fVXff7554qOjpYknT9/XlevXs3ikgEAAAAAbhd6/84EwcHBatOmjUJCQhQXF6eHHnpI+fLl04QJExQbG6tp06ZldREBAAAAALcBNdWZ4IUXXlDdunV1+fJl5cqVy5repUsXrVmzJgtLBgAAAAC4naipzgS//fabNm/eLA8PD4fppUqV0rlz57KoVAAAAACA242a6kyQnJyspKSkNNPPnj2rfPnyZUGJAAAAAAB3AqE6Ezz00EOaOHGi9dpms+nq1asaPXq02rVrl3UFAwAAAADcVjZjjMnqQuR058+fV8uWLeXq6qpjx46pbt26OnbsmPz8/LRx40YVKlQoq4t4S1FRUfLx8VFkZKS8vb2zujgAAAAAkOUympN4pjoTFC1aVHv37tWcOXO0e/duJScna8CAAerdu7dDx2UAAAAAgLsLNdWgphoAAAAAbkBN9R127tw5bd68WWFhYUpOTnZ4b8iQIVlUKgAAAADA7USozgRff/21Bg0aJA8PDxUsWFA2m816z2azEaoBAAAA4C5F8+9MUKJECQ0aNEgjRoyQi0vO61Cd5t8AAAAA4CijOSnnJcBs6Pr163r00UdzZKAGAAAAADiPFJgJBgwYoB9++CGriwEAAAAAuMNo/p0JkpKS9PDDDysmJkbVqlWTu7u7w/sfffRRFpUsY2j+DQAAAACO6P37DnrnnXe0cuVKVaxYUZLSdFQGAAAAALg7EaozwUcffaSvvvpKffv2zeqiAAAAAADuIJ6pzgSenp5q0qRJVhcDAAAAAHCHEaozwQsvvKBJkyZldTEAAAAAAHcYzb8zwfbt27V27Vr98ssvqlq1apqOyhYuXJhFJQMAAAAA3E6E6kyQP39+de3aNauLAQAAAAC4wwjVmeDrr7/O6iIAAAAAALIAz1QDAAAAAOAkaqqdVLt2ba1Zs0YFChRQrVq1bjke9e7du+9gyQAAAAAAdwqh2kmdOnWSp6enJKlz585ZWxgAAAAAQJawGWNMVhcip+rfv78++eQT5cuXL6uL8p9ERUXJx8dHkZGR8vb2zuriAAAAAECWy2hO4pnq/+Dbb79VTExMVhcDAAAAAJBFCNX/AZX8AAAAAHBvI1T/R7fqoAwAAAAAcHejo7L/qEKFCv8YrC9dunSHSgMAAAAAuJMI1f/RW2+9JR8fn6wuBgAAAAAgCxCq/6NHH31UhQoVyupiAAAAAACyAM9U/wc8Tw0AAAAA9zZC9X9A798AAAAAcG+j+fd/kJycnNVFAAAAAABkIWqqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhOhuaOnWqAgMD5eXlpTp16mjTpk0ZWm7z5s1yc3NTzZo1b28BAQAAAACSCNXZzrx58zR06FCNGjVKe/bsUbNmzdS2bVuFhITccrnIyEj16dNHDzzwwB0qKQAAAADAZowxWV0I/K1BgwaqXbu2PvvsM2ta5cqV1blzZ40fP/6myz366KMqX768XF1dtWjRIu3duzfD24yKipKPj48iIyPl7e39X4oPAAAAAHeFjOYkaqqzkfj4eO3atUutWrVymN6qVStt2bLlpst9/fXXOnHihEaPHn27iwgAAAAASMUtqwuAv4WHhyspKUkBAQEO0wMCAnThwoV0lzl27JheffVVbdq0SW5uGftzxsXFKS4uznodFRXlfKEBAAAA4B5GTXU2ZLPZHF4bY9JMk6SkpCT16tVLb731lipUqJDh9Y8fP14+Pj7WT4kSJf5zmQEAAADgXkSozkb8/Pzk6uqaplY6LCwsTe21JEVHR2vnzp167rnn5ObmJjc3N40ZM0b79u2Tm5ub1q5dm+52RowYocjISOvnzJkzt2V/AAAAAOBuR/PvbMTDw0N16tTR6tWr1aVLF2v66tWr1alTpzTze3t7a//+/Q7Tpk6dqrVr12rBggUKDAxMdzuenp7y9PTM3MIDAAAAwD2IUJ3NDBs2TE888YTq1q2rRo0aafr06QoJCdGgQYMkpdQynzt3TjNnzpSLi4uCgoIcli9UqJC8vLzSTAcAAAAAZD5CdTbTs2dPRUREaMyYMQoNDVVQUJCWLVumUqVKSZJCQ0P/ccxqAAAAAMCdwTjVYJxqAAAAALgB41QDAAAAAHCbEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqrOhqVOnKjAwUF5eXqpTp442bdp003kXLlyohx56SP7+/vL29lajRo20cuXKO1haAAAAALh3EaqzmXnz5mno0KEaNWqU9uzZo2bNmqlt27YKCQlJd/6NGzfqoYce0rJly7Rr1y61bNlSHTp00J49e+5wyQEAAADg3mMzxpisLgT+1qBBA9WuXVufffaZNa1y5crq3Lmzxo8fn6F1VK1aVT179tQbb7yRofmjoqLk4+OjyMhIeXt7O1VuAAAAALibZDQnUVOdjcTHx2vXrl1q1aqVw/RWrVppy5YtGVpHcnKyoqOj5evrezuKCAAAAABIxS2rC4C/hYeHKykpSQEBAQ7TAwICdOHChQyt48MPP9S1a9fUo0ePm84TFxenuLg463VUVJRzBQYAAACAexw11dmQzWZzeG2MSTMtPXPmzNGbb76pefPmqVChQjedb/z48fLx8bF+SpQo8Z/LDAAAAAD3IkJ1NuLn5ydXV9c0tdJhYWFpaq9vNG/ePA0YMEDz58/Xgw8+eMt5R4wYocjISOvnzJkz/7nsAAAAAHAvIlRnIx4eHqpTp45Wr17tMH316tVq3LjxTZebM2eO+vbtq++//17t27f/x+14enrK29vb4QcAAAAA8O/xTHU2M2zYMD3xxBOqW7euGjVqpOnTpyskJESDBg2SlFLLfO7cOc2cOVNSSqDu06ePPvnkEzVs2NCq5c6VK5d8fHyybD8AAAAA4F5AqM5mevbsqYiICI0ZM0ahoaEKCgrSsmXLVKpUKUlSaGiow5jVn3/+uRITEzV48GANHjzYmv7kk0/qm2++udPFBwAAAIB7CuNUg3GqAQAAAOAGjFMNAAAAAMBtRqgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEluWV0AAJnn8OHD2rRpk8LCwlSoUCEVK1ZM586ds143a9ZMlSpVyupiAgAAAHcNmzHGZHUhkLWioqLk4+OjyMhIeXt7Z3Vx7ko3ht2bhdvDhw9r/vz52r17tySpdu3aqlu3boaC8eHDhzV37lzrdXh4uA4cOKCgoCD5+flJkmw2m3r27EmwBgAAAP5BRnMSoRr3dKiOjY1VSEjIbd3GiRMntGzZModpNptNbdu2VdmyZR3mmz17to4ePSpJiomJ0eXLl5WYmKhSpUqpfPnyKlCgQLrLStL8+fN18eJF6/XBgwd19epV5c2bV1WrVrWmBwQEqEePHrdjVx2ULFlSXl5et307AAAAwO1AqEaG3a5Qffz4cZ06dSrT1nc7hIaG6quvvrrt24iLi0sz3dPTU0WKFHGYLzw8XElJSUpKSlJCQoISExNls9nk7u4uDw8P5cmTR+7u7mmWlaTg4GClPpwjIyOt1/nz57em22w2lSpVKpP3Mq3+/funKWN2ExgYqHLlymV1MQAAAJANZTQn8Uw1bptJkyZp3759WV2MLBcfH5+h6fHx8UpOTpYkJSYmWtONMdb02NhYubu7p7tODw8Ph/Du4uKipKQkubq6ppnvTrjdNysyQ40aNfTJJ59kdTEAAACQgxGqcds8//zz1FQrbdhNPf3G1/YgnLrG2WazycUlpaN+e7hOLxj7+PgoLCzMeu3l5aVr166laYLt4+Pj/M78CzmlphoAAAD4LwjVuG3KlSuX7ZvWxsbGqmHDhrd1GydOnNDy5cvTBOWbPVN97NgxhYWFKT4+3qqxLlSokHLlyqW8efMqKCgo3Weq7evYtWuXLl26JF9fXxUqVEhhYWHW6zp16qS73O3AM9UAcPdJSkrSH3/8YZ1XqlevnqZFFADca3imGvd0R2V3ir3377/++kv+/v7/2Pv3xo0bde7cORUuXFhFixZVVFSUrl+/rubNm6tHjx703g0AuOM2btyoqVOn6sKFC9a0woUL63//+5/uu+++LCwZcGdkdDQX3D3oqAwZRqjOnjIaxAEA+DecCQYbN27U6NGj1ahRI/Xu3VuBgYE6deqUZs+era1bt+qtt94iWOOult7QpSEhISpTpox8fX0lSa6urnc8bBP0by9CNTKMUA0AwL3hxmAgpTyS1LNnz5teiCclJal3794qU6aMxo4da/XzIaX09fHaa6/p1KlT+u6772gKjix3u4ZLTT106aVLl3Ts2DFJKcePMUY2m03lypWTr6/vTYc/TY/90b2IiAir7xwXFxcVLFjwHx/by+iwrZnlXny0j1CNDCNUAwBwb/jiiy907ty5NNNdXFxUpEgRq7YrOTlZmzdvVmhoqDw8PBQSEqJ33nlHFy5cSFMjdvDgQQ0ePFgff/yxatWqlQV7hTvl8OHDOnPmTFYX45ZuVye0qYcujY6OVlJSkqSU0VvsHci6uroqX758ktIOnZqe69evW53MJiQk6Nq1a5JkDaEqpfSrkzt37jTLRUZGKiIiQsYYeXl5WfNndNvOyAmd0JYoUSJTa+oZUgsAAAAOUo8SYRceHq4///xTzZo1kyStX79e69evl7u7u2w2mxISEnTlyhV99913qly5siTp3Llzmjdvnnr27GmNpHDp0qUMlYHmqjnTxYsX9b//DVZyclJWFyVLpB7NxR6ob5R6+s2GVE0tMjLS+n9sbKzD/+0hOTIy0iFUpw7i9g5tr1275hDEM7JtZ+SE4VJdXFw1Z873CggIuKPbJVQDAIC73vHjx7P9MI8JCQkKDw+/rds4ceKELl++7DDt9OnTkqR9+/ZJkn7//XdFRkbKxcVFXl5eSkpKUmxsrNatW5fmYj04OFhVqlSRJO3cuTPdWvDUzp8/r23btjlMW7ZsmRo0aKCiRYv+l127KT8/P4davOwoMDAw24+YIkkurq73bKhOPXSpq6urFaBTD3Oa+vGH9IY/vVHq4yl1ILc3A79xHskxiKcuR+ognpFt361csugRFEI1AAC4602aNMkKjfey1LVcdvaaMHvYDg8Pt5q52mvCJOny5cvas2ePw7I2m00nT56UJC1fvvwftx8aGmrV9qV26NChbN+s9HaqUaOGPvnkk6wuxi0FBARo9nezHEJddhQcHKxx48Zl+npz586tQoUKKTIyUomJiYqJibGeL7Y32079vLGPj88/rjN17XfqgJy634IbA3LqkO3l5WVtO3UQz8i2nTFq1CiVKlXqtqw7s/j4+NzxWmqJUA0AAO4Bzz//fLavqT5z5oxmzpx5W7eROhjYnwXNnz+/UnexY+946UY2my3NtH9bI3azZqm3q7mqJPXp00clSpS4bevPDPYm9NldQEBAlgSWf6NkyZKaPn36bd+OvYOxS5cuWWHY1dVVvr6+/9jBWOp1LF++XMYYXbp0ScePH5cklS9fXgUKFEi307HUHaZJKY9dhIaGytXVVc2bN8/wtp1xL3ZUllF0VAY6KgMAIBu4Xb0W/5PUF/aStGHDBp0+fdqh86PExETly5dP7u7uiomJsZatUKGC+vfvr9q1a2doWzcGAruAgAD16NEjE/YmLYIAsrPUQ6jaW4a4ubnddDjVw4cPa968eWluhN2qB384j96/kWGEagAA7m03Xtjv2LFDwcHBVgdI1apVU+/evXXmzBnt379fHh4eatq0qTp16vSvhtEiEAD/Xerj9WbhG5mDUI0MI1QDAIDUbudFO4EAQE5BqEaGEaoBAAAAwFFGc5LLTd8BAAAAAAC3RKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESozoamTp2qwMBAeXl5qU6dOtq0adMt59+wYYPq1KkjLy8vlSlTRtOmTbtDJQUAAACAexuhOpuZN2+ehg4dqlGjRmnPnj1q1qyZ2rZtq5CQkHTnP3XqlNq1a6dmzZppz549GjlypIYMGaIff/zxDpccAAAAAO49jFOdzTRo0EC1a9fWZ599Zk2rXLmyOnfurPHjx6eZ/5VXXtHixYv1559/WtMGDRqkffv2aevWrRnaJuNUAwAAAIAjxqnOgeLj47Vr1y61atXKYXqrVq20ZcuWdJfZunVrmvlbt26tnTt3KiEhId1l4uLiFBUV5fADAAAAAPj3CNXZSHh4uJKSkhQQEOAwPSAgQBcuXEh3mQsXLqQ7f2JiosLDw9NdZvz48fLx8bF+SpQokTk7AAAAAAD3GEJ1NmSz2RxeG2PSTPun+dObbjdixAhFRkZaP2fOnPmPJQYAAACAe5NbVhcAf/Pz85Orq2uaWumwsLA0tdF2hQsXTnd+Nzc3FSxYMN1lPD095enpmTmFBgAAAIB7GDXV2YiHh4fq1Kmj1atXO0xfvXq1GjdunO4yjRo1SjP/qlWrVLduXbm7u9+2sgIAAAAAqKnOdoYNG6YnnnhCdevWVaNGjTR9+nSFhIRo0KBBklKabp87d04zZ86UlNLT9+TJkzVs2DA9/fTT2rp1q7788kvNmTMnw9u0NxenwzIAAAAASGHPR/80YBahOpvp2bOnIiIiNGbMGIWGhiooKEjLli1TqVKlJEmhoaEOY1YHBgZq2bJlevHFFzVlyhQVLVpUn376qbp165bhbUZHR0sSHZYBAAAAwA2io6Pl4+Nz0/cZpxpKTk7W+fPnlS9fvlt2iIasFRUVpRIlSujMmTOMJw44ieMI+O84joDMwbGU/RljFB0draJFi8rF5eZPTlNTDbm4uKh48eJZXQxkkLe3N1+8wH/EcQT8dxxHQObgWMreblVDbUdHZQAAAAAAOIlQDQAAAACAkwjVQA7h6emp0aNHM8Y48B9wHAH/HccRkDk4lu4edFQGAAAAAICTqKkGAAAAAMBJhGoAAAAAAJxEqAayEZ7GAABkB5yPACDjCNVANrFp0ybZbLasLgaQY/3111/atWuXJCk5OTmLSwPkXLt379bVq1ezuhhAjpaYmKjQ0NCsLgbuEEI1kA2cO3dOPXv21AcffKCLFy9KopYA+Dfi4uL03XffqVu3btq5c6dcXDi9Ac7YsWOHXn31Vb344ouKiYmRxPkIyIikpCSH1y+++KL69eunDRs2ZFGJcCfR+zeQxYwxstlsWrt2rT799FP5+flpxowZWV0sIEcaNmyY9u3bp9dff10tWrTI6uIAOYb9XCRJp0+f1uOPP65atWpp0qRJWVwyIPuyt4pKfSP35MmTKlOmjJKTk/XWW29p6dKlmjRpkho1auRwnOHuQqgGsoD9bqarq6vD9N27d6thw4aaPXu2unbtmuZ9ACmMMUpKSpKbm5v12maz6dKlS3rttde0efNmbdy4UT4+PllcUiB7u9n5aN26dXryySc1cuRIDRo0KCuKBmRbycnJDkH62LFjmjZtmr777ju5u7vr4MGD8vHxUVxcnJ5++mmdO3dOCxYsUIECBbKw1LidaB8HZAFXV1e5uroqNjZWhw8fVmJioiSpdu3a6tOnj7788kvr2VAAadlsNitQHz9+XBcuXJAk+fr6aty4cQoNDdX06dMVHx+flcUEsj37+SgmJkaHDh1SXFycJKlly5YaNGiQ3nnnHR0+fDiLSwlkLy4uLoqOjtaECRNUrlw5ValSRcePH1fevHlVtmxZ5c6dW5Lk6empYcOG6eLFi/rwww+zuNS4nQjVwB1kbya0YcMGPfjggypatKjef/99HTp0yJrnmWee0bVr17RkyZKsKiaQ7UVGRurNN99U8eLF1bFjRy1btkyxsbGSpAIFCqhnz55auXKl9u/fn8UlBbIne0PFjRs36sEHH1SRIkU0fvx4HT161JrnpZdeUmxsrJYuXaqEhISsKiqQ5aKjo/XMM88oKipKxhg999xzyp8/v+bMmWOF5p9//lm5cuVSt27d5O7ubrUCqVmzpvr166cvvvhCkZGRWbwnuF0I1cB/8G+fnnBxcdG+ffs0dOhQVapUSatXr9awYcPk7+9vzVO/fn1VrlxZe/fu1V9//ZXZRQayFWOMU50gjRs3Tr/88os+/PBDLVy4UE2bNpWrq6t1EdOrVy/99ddf2rt3byaXGMie/u1xZLPZdPLkSb3wwgsqX7681q9fr//7v/9TkSJFJKU0C/f09FS7du20atUqzke4p8XExGjjxo26ePGibDabunXrphMnTmjPnj363//+J19fXy1cuFChoaF65JFHZIxxeKSid+/eio6O1vr167NuJ3BbuWV1AYCcxhij5ORkubq6/uvOJhITE/XBBx/Iy8tLb7/9dppna+zP6FSvXl2HDx9WSEiIQ+AG7hbJycmy2WxOddiyefNmffnll/rwww/Vs2fPdOdp1KiRXFxcFBoaqqSkJPonwF3pv5yPJGnEiBHy9PTUuHHj5Ovr6/CefX2PPvqoHn300UwpL5BT/frrrypbtqz8/PwkpTweIf19M8tms2nVqlVq2LCh/Pz80hyPhQsXVpMmTbR48WJ16tQpzTPZyPn4awIZYO8USUr54rRfoP/www967bXXdPLkyQytx83NTVu3btUjjzyiAgUKWF/GN46p27hxYx0+fFj58uXLxL0AspY9AEgprTZsNptOnDihV199VQsWLMjQ8pJ0+fJlxcbGqm/fvg7v2d+391FQqVIl7du3T66uroxbjbvGrc5H/fv3t4bB+qd1JCcnKywsTPXq1ZOvr6+1zht7M65bt65iY2OpqcY9IykpKc3xUKxYMW3bti1NZYg9PMfExGj58uVq37693N3d05xzEhMT1ahRI+vxCgL13Ye/KJABqS9cfv31V7Vv315eXl7q2bOnPv74YxUrVixD60lISFDZsmW1efNm67X095er/d9q1aopLi5Oly9fzuxdAbKMzWaTi4uLLl26pLFjx6p48eKqWLGiJkyYoAMHDki6dRNW+8WLzWaTt7e3tmzZIinlAih1rbe9A7P69evrzJkzkriAwd3jxvPRww8/LHd3d/Xs2VPffPNNhp7ZtNlsio6OVuHCha1jxL5O+7FiPxavX7+uevXqOfT9AdyN7J95e+d9SUlJVjg2xih//vzWcWCf1z7yxIoVK3Tt2jV17NhRUspxlPp85ubmJjc3N5UuXVpRUVF3crdwh3CVAWRAcHCwnnnmGRUoUEDdu3dXkSJFtHv3bnXs2FH9+vWTp6dnhtZjs9nUoUMHLVu2TJGRkfLw8JCU8qW8adMmnT9/3tpekyZN6LkYdwX7hcWsWbNUp04dFSpUSD/99JPef/99LV++XCVKlLCacd+qCat9PaVKlVKVKlU0ffp0SX+HgfPnz2vTpk3W/JGRkWrcuLFVcw3cDU6cOKGBAwcqf/786tGjh/z9/XX48GH16tVLjz/+uAoXLmzVst2Kj4+PatasqZCQEO3YscOanpSUpJ07d+r06dOSUmrYEhMTVb169du1S0C2YD//rFq1Sh06dFDNmjW1bNkySSnHRZEiRbRz505Jjs2+JWn+/Plq0KCBihcvnmZ99h71ExMTFR4eLm9vb1pP3YUI1UAGfPLJJwoLC9OsWbN06dIlzZgxQ97e3tq+fbuaNWuW4fW4ubnp8ccfV8mSJdWzZ0/NmTNHwcHBmjBhgiZNmqSzZ89KSmlGdPToUdWqVet27RJwx9hsNu3fv19ffPGFOnTooJMnT2rXrl167LHHtHLlSgUEBKhMmTIZWo+U0qz7ySef1OzZs/XWW29pz5492rBhg4YMGaItW7YoOjpaUsrNKWOM3NzcnOoMDchO7J/hL774QsHBwfr+++8VHh6ur7/+Wvny5dPq1avVpk0bSWnHnL6R/YK+U6dOCggIUP/+/TVv3jydOHFC77//vt544w2rNq1gwYI6d+6cNUQQkNOlroG+0ccff6z+/furbNmyGjFihPUYXtWqVeXm5maNKJG6Rcfly5e1Zs0aPfHEE9Z6goODNWLECLVq1Up79uyRlDLko72fHFpP3YUMgJtKTk42xhiTmJiYZtqMGTOMv7+/uXr16r9e37Zt20zPnj1N5cqVja+vr6latar57rvvTFJSkjHGmIiICDNlyhRz/fr1zNoVIFtJSkoyMTExplKlSubtt982xvx9fGTUuHHjTIMGDUxgYKDx8fExffv2NSdOnLDeX7p0qdm8eXOmlhvIKvbjw36eSG3WrFnG39/fhIeH/+v1XrhwwXTo0MEEBQWZAgUKmKCgIPPNN99Y571Tp06ZuXPnmsjIyP+2A0A2ExMT4/D6wIEDpmDBguaLL75Id/7BgwebVq1amb179xpjjImPjzfGGDN79mxTo0YNc+rUKTN16lRTp04d4+LiYurUqWO+/fZba/lp06aZrVu33qa9QVazGcPte8AZLVq0UFBQkCZPnpzu+xnp2XHv3r0qVKiQihYt6jA9Li5Obm5u9FiMu5L5/8+grVu3Tl26dNGOHTtUvnz5m853o9THVmRkpE6ePJluq45r164pT548mb8DQDZhP0YeeughFS9eXF9//XW6x83Nzkep5z18+LC8vb3TnI/i4+Pl4uJi9VUA5BTm/3dgaX++2WazKTk5Wd9++62++OIL5c2bVw0aNND//d//KV++fFq0aJEGDx6svXv3yt/f31omISFB7u7u2rhxo95++21VqVJFn3zyiZKTk5WcnKzHH39c8+fPl5ubm4oWLaqnnnpKgwcPTtOp2eXLl9NMw92DtgeAE06cOKEjR46oVatWktL23i1lrGlPzZo1VbRoUSUnJzs8A+fp6Umgxl3LfhG/ZMkS1axZ86ZNv2/2fHXqY8vb29sK1ImJiQ7HIoEadzubzaZjx47p8OHD6ty5szXtRjc7H6Wet1KlSumejzw8PAjUyJHsnWPa/y9Jo0eP1kcffaQ2bdroySef1Lx58/TSSy8pPDxcERER8vX11YkTJyT9/ciFu7u7pJSRWfr166cvvvhChw8ftm42eXt7a+TIkTp48KBOnz6t1157TQUKFHDoRVwSgfouR6jGPefGL7l/u6wkrVixQh4eHurQoYMSEhLSvYhZs2aNli9fnqH1uri4EKKRYxhj/lPnX4mJiUpKStKSJUv08MMPy9XV1eoJP7Xo6GiNHz/+lutKfey5ubnxnBpylP9yPrLbuXOnkpOT1bx5c0np3+TdvHmzZsyYYW3zVjgfISe62ef69ddf18yZMyVJO3bs0M8//6zPPvtMb7zxhnr37q0BAwbo+++/18KFC9WyZUvFxsZaHffZzycXL15UaGio3Nzc1KtXL3Xt2lWjRo3SkiVLJEnTp0/X2LFjVb58eev8aIyxehHHvYGrD9xz7F9ysbGxWrduncLDwyXdeiif1MtK0syZM9WtWzfZbDa5u7tbzYN+++03BQcHS5LV2YuU/kUOkFPZbDar5urgwYPW0FYZkZycLDc3N61Zs0bh4eHq1q2bpL9rAo4fP66tW7fKGKO9e/dq1KhRWrlypaSMHaNATmI/H8XExGj9+vUKCQmRlLHPuv3G1rRp09SmTRvlz59fUkoQSEhI0Jo1axQREaGYmBhNnTpVU6ZMsbYJ3G1u/FzbQ/bSpUu1fft2SdKePXtks9lUtmxZPfvssypSpIgmTpyoQYMGqUWLFipTpowaN26sGTNmaP78+YqKitLly5f13nvvaeHChda6J06cqIYNG2rKlCm6evWqtb3k5GTr/HirkSxwdyJU465lf5Ym9WtJ2rZtm1q3bi1/f3+98cYb2rhxo6RbD+WT2h9//KGzZ8+qV69ekqQtW7aoX79+ypcvnwYMGKCwsDAZY9S4cWM1adJEEr08IudK74bQ1atX9e6776pEiRJq3bq1fvjhB124cCFD67MfC/Pnz1eLFi0UGBioy5cva8qUKapdu7YqVKigX375RTabTXnz5lWrVq2sIUq4SEFOdeP5yO73339X27Zt5e/vrzFjxuj333+XlLHPupubmw4dOqTjx4/rqaeekpRyPurTp498fX3VvXt3nTt3Trly5VKBAgXUtm3bzN0pIBvZv3+/XnjhBa1Zs0ZSSsi+dOmSSpYsafXgXb58ee3fv18VK1ZUWFiYpk6dquPHj+uDDz5QhQoVJEkTJkxQw4YN9dxzz6lFixYqXry4Nm3a5NDvh5+fn15++WWNGjXKamXl6urKtd49jodkcNdJ3TFFajabTefPn9crr7yiihUrasKECQoICND169czvF6bzaZff/1VsbGxmjt3rrp06aKwsDA9/PDDWrVqle677z6H7XXv3j1T9w24U+wdG6V3kfDNN99o3rx5eu+99/TAAw/o+vXr1kVLRly5ckXr169X9erV1bFjRy1fvlylS5fWwIEDtWHDBmtdJUuWVJkyZVSuXLlM2y/gTrrZ+UiSoqKi9Oqrr6ps2bL6/fff5e/v/68fq9i0aZMiIyO1YMEC9ejRQ3/99ZcefvhhLV++XE2bNrXmq169OkNi4a5kvzbz8PDQn3/+qfXr12vXrl1yc3Ozno9u2bKlpJQ+OMqXL6/u3btr3Lhx1jquXLmipUuXqkyZMmrUqJEmT56s559/Xr///ruaNWumihUrprvtfzOkKu5+hGrcNexfrPafM2fOaMWKFSpdurQeeughSSl3Mnft2qUlS5YoX758un79ugoXLpxmHemx9xq5Zs0aXb58WTt37tR7771n1Vjb2XuJfP3112/fzgK3mT0E/PLLLwoPD9d9992nMmXKWONxBgUFqVevXkpMTFRAQMC/Wvcff/yhkydPSpLatm2rw4cPq2zZstb7SUlJstlsKliwoKZOnZp5OwXcYanPRz///LOqV6+u+vXry8vLS8uXL9fFixf16aefKigo6F/1Vm8/Vy1cuFDXr1/XgQMHbnk+euaZZ27H7gG3VVJS0j8+rmC/ZqtYsaK+//571alTR8OHD9dLL72kEiVKyM/Pz+p4rHLlynrsscf06aefqmzZsmrdurWuXbumL774Qrt377b68HB3d1dQUJCCgoIkpRxvycnJPDqBW2JILeRY6QXgxMREHT9+XOvWrdMbb7yh4sWL69SpUxoxYoSGDx+urVu3avDgwSpWrJj8/PxUsGBBXblyRbVq1dKQIUNuul7p75q7HTt2qGrVqg53/RMTE9Ot1btVSAeyg9SfUfv/Q0JCdPHiRY0ePVo7duxQ0aJFFRkZqXXr1qlUqVJ64YUXtH79elWrVk158uSxngsdMGCAateu7XAhdLPhffbv368aNWo4TLM/b32rMgLZUXqf0fj4eJ05c0arVq3SmDFj5O3trevXr6tDhw6aOnWq1q9fr1GjRsnNzU0lSpSQr6+vwsPD1ahRIw0ePFguLi43HQorMTFRbm5uOnnypAICAhzCOOcj5CRJSUkKDQ1V8eLFrWeSnQmw9mPlxx9/1Mcff6zatWvr008/VZcuXVSmTBl9+OGH1nz/+9//tH79euXOnVt//vmnGjZsqFdffVWtW7d2WKc9InHcICNo/I8cx975RHpfcn379lXPnj21atUqLV++XHv27NH//vc/zZs3T0uXLlXTpk31zjvvyNvb26qhTkpK0ssvv2w9h2Oz2XThwgWrJs2+PfsFSr169ZQ7d26HXltv1uswX8TIjowx6R5HNptNJ06cUJUqVfTqq6+qadOmCgkJ0cqVK+Xu7q533nlH165d0/jx49W+fXtrTNv4+Hjt27dPAwYMkPR3hzE7duxI9xiw2WxWoLb3knqrcXA5jpCdpK6LuNX56MUXX1TlypW1adMmLV++XAcPHtTYsWM1Y8YMbdiwQS1atND48eNVqlQplSxZUnnz5lV8fLzGjx+vb7/9VlLKeScsLEx79+6V9HcfB/ZjpUyZMsqTJw/nI+RIR48eVatWrTR79mxJKZ93m80mV1dXJSUl6dtvv9Xzzz+vFStW6PLly5Ju3vGr/TPfuXNnDR8+XJ999pnWrl2r48ePKzAwUNLfN5ymTZum1atX691331VoaKjWrVuXJlBLf7c0ATLEANnUjh07TJkyZcyFCxfSfX/37t1m7ty55uzZs9a0uXPnmgIFCpjHHnvMmhYeHm4eeOAB8+yzzzosn5ycbP2/UKFCZsKECcYYY06ePGnq169vrSP1fEBOkpCQYPr27Wuef/75dN+PjY01P/zwg1mzZo1JTEy0prdr187kzp3bbNy40Zo2adIkU7t2bbN69eo02zDGmJkzZxovLy8TGRlpjDHm448/NiVKlDDbtm3L7N0C7rjdu3ebUqVKmdOnT6f7/s6dO83s2bPN8ePHrWlHjx41NpvN9OjRw2HeSpUqmeeff95ER0enWc+1a9dM3bp1zdChQ40xxkRERJhq1aqZQYMGZeLeAFkjKSnJzJ0713Tt2tWalvoazpiU89Jnn31mihcvboKCgkynTp1MmTJlTIcOHTK0Dfs127PPPmtatWplbDabefnll63tpycxMdHhHAg4g5pqZAsmnacQKlasqHHjxqV5XnP79u2qVq2adZf/oYce0qRJkyRJDzzwgMqXLy8PDw9r/oIFC6pWrVo6cuSI9u3bJ0k6e/asQkNDFR4ertGjR6tixYpWz6iFCxdW2bJlrU5euEuJnMCk6l3Y/q+bm5t69+6t559/3mHeuLg4jRgxQgUKFNDrr7+ufv366YknntDu3bslpTzn7Ofn59BpUpcuXRQTE2ON3xkfH69Tp04pOjpaW7Zs0ZdffqlXXnnFeiyibNmyKl68uDVuJ5BTpK4Js392CxYsqClTpqhUqVIO4+Hu3LlTNWvWVMuWLfXpp5+qfv36mj17tmJjY1W+fHmVLVtWuXPnVkxMjLWu3r1769dff9Xp06clSadOnVJYWJguXLigiRMnymazaeDAgZIkX19fFS5cWCVKlEhTNiCncXFx0blz57Rr1y7t2bNHklSsWDGdPn3auj67fPmyLl26pHfffVf79+/XokWLtGbNGv3yyy9avnz5P55P7O+/8cYb1jPRlSpVsrafHsaTRmYgVCNbsAdX+3h/xhjly5dPjz76qMOF/fXr1/Xxxx+rSpUqOnnypJYsWaLOnTtr2LBh2rNnj/z8/FSvXj2FhoZq//791nIPPvigrl+/rm3btik5OVkzZ87U448/rvLly+unn37S888/r6CgICUnJytXrlwKDw9X6dKl7+jvAPgv7M3UoqKiJP3dLPXBBx9U+fLlde3aNWveDRs26Oeff9bs2bN18OBBTZw4UWFhYXrhhRckSY888oiMMdq/f791EV+sWDHVqFFDO3fu1MWLF7Vz50699dZbatCggdq2basKFSro6aeftpql1qxZU/Hx8SpQoAA3ppCj2C+8IyMjrc9uyZIl1b59eyUkJDhcfL///vuqWLGiTpw4oZUrV+rxxx/Xu+++q++//16S9MQTT2jdunW6ePGita5+/frp/Pnz+uOPPyRJM2bM0OOPP65KlSpp3rx5Gj58uCpWrGgdww0aNFDevHkdygbkJMnJydbnuUWLFipdurTmz58vSTp9+rSeeOIJvfPOO5JSKja6du2q3r1768SJExoyZIjVe/e8efOsc9zN2I+RwoULa8yYMUpOTlb//v1v164Bf8uiGnLAwa5du8z9999vpk2bZk2LjY01+/btM7ly5TKHDh0yxhhz+fJl4+npaX755Rdrvri4OHPfffeZRx991BhjzLJly0zNmjXNF198Yc1z7do106ZNG/Pwww+buLg4s2/fPjNz5kxz8uRJh3LYm//ExcUZY2j6jZzllVdeMR07drQ+v/am2E8++aRp1aqVNd+YMWNM+fLlHZZdvny5cXNzM/v37zfGGNOhQwfTuXNnExISYs0zb948U6xYMbNgwQKTmJhofvzxR7NixYrbvVvAHXXy5ElToUIF8/3331vTkpOTzR9//GHy589vNm3aZIwx5tixY6Z8+fLms88+s+YLCwszffv2Nc2aNTPGGHPx4kVjs9nMDz/84LCNBg0amDZt2pjY2Fizf/9+M3v2bHPq1Kl0y0OzVNxNoqKizJAhQ0y9evWsacOHDzf333+/OXbsmDVtxYoVJigoyHTs2NGsWrXKfP7558bb29vs27fvputOTk5O93ixP6YE3E7c8kS2UKVKFfn4+GjJkiV64okn5OHhoV9//VUVKlRQ3rx5tXTpUkkpQ2KVK1dOsbGxklJq4zw8PNS7d28tX75cknT//ffLz89Pu3fvtmrncufOrfvvv1/33XefEhISVL16dT3xxBMKDAx0uINqr4Hw8PCweqEEsjv75zcoKEjnz5/X0KFDVapUKbVu3VqJiYlq2LChNm/ebB03x48fV40aNRQdHW2to1atWqpatapmzpwpKaWJ6qFDh3To0CFrnocfflgtW7ZUyZIl5erqqq5du1qduyQlJaXbNJXmqshpAgMD5ePjo4ULF+qxxx6Ti4uLFi1apMKFC6tSpUrWMXLp0iXFx8erePHi1rIFCxZUkyZNdO7cOZ04cUKFChVSw4YNtWjRIqslliQNHjxYNWvWVHJysjU8XenSpR3OR3aurq48QoFs6+TJk/r444+t1+l951+6dEl9+vTRhQsXlC9fPtWrV0/R0dHWtV2jRo10/fp1/frrr5Kk8PBwjR8/Xg0bNtSsWbP00EMPqXTp0laLwxvHc7eff+ydnNmZVI9CAbcboRp3VHoXDJJ06NAh7dixQ8uWLVNERITWrl2rtm3bysvLS7169bIuYooVK6aCBQtazebsX55FihRR7ty5dfLkSXl6eqpWrVpav3691WOqJL388st6+eWXHYYeMf+/1+H0nqWhmR2yI2NMmgsKm80mY4x27NihXbt2acGCBXr++ee1ePFiubm5qXXr1nJ3d7eapAYGBiosLEx//vmntY68efOqWLFi1vHZvXt3XbhwQWvWrFF8fLyklJtTs2bNUr169RzKI6Uci+kdMxxHyK5udj46ePCgzp49qx9//FFXrlzRunXr1KVLF3l7e6tDhw5asmSJJKl+/fpKTEzUwYMHrRtWLi4uypUrl3x8fBQTEyMppbn3999/r5CQEGsbTzzxhMaPH69cuXJJ+rtPhJudj7jBi+zqwIEDDjdt7d/5qY+tyMhILVq0yOr/pkaNGipdurQWLlwoSWrcuLGKFCmiDRs2SJL8/Py0d+9e1a9fX97e3pKkn376ScnJyZo2bZquXLkiSda50H7+CQsL07hx49SrVy/FxMRw3OCO4moHd5T9giEhIUEHDhywapK9vb01bNgwNWzYUK1atVLTpk2ti/U+ffrowIED2r59u8qUKaNq1app+fLlDjVo8+fPV1BQkPz8/CSlXMSMHTtW9evXd9h+cnKywx1/vnCR09hsNuuu+/Hjx3XmzBlrGJKOHTuqW7duatiwoR577DH5+/tLSrkZ1bZtW82YMUOS1K1bN0VEROiHH36w1nvmzBlt3rxZzZo1k5RykTJlyhQNGDDAoeM/yfFiiWMIOZX9fBQfH6+9e/da5yN/f3+9++67KlKkiB599FE1b95ckuTp6almzZopKSlJCxYskJTSgd8PP/yg33//3Vrv9u3blZSUpAoVKkiSnn76ac2YMcN6bZf6fMTQPcipOnbsqAULFsjLy0uSdOXKFXXt2lUjRoyw5ilatKgGDRpkDZ1VsWJF1atXTzt27NCVK1dUuHBh1axZU8HBwdax1KFDB40YMUL9+vVT48aNZYzRtm3bNGrUKOtaz83NTcnJyfr222/VuHFjlStXTsuWLVObNm2oncadlzWtznEvSEpKSvNM8pYtW0ynTp2Mt7e3qVmzpnnooYfMzp07jTEpzzH36tXLdOzY0cTExBhj/n6muUqVKmbIkCHGGGP27dtn2rZta/z9/c1bb71l+vbtawIDAx2efwPuFjc+HxYVFWU+/PBDExgYaAoXLmxq1aplxowZY6Kioowxxvz000+mVq1a5ptvvnFYbvHixcbFxcUavmTy5MmmQIECpnPnzmbMmDGmRo0apmPHjuavv/66MzsG3EHJyclpzkdbt261zkdVq1Y1DRo0MIcOHbKG3WnVqpXp0aOHOXfunLXMhQsXTIcOHUybNm2MMcYcP37cPPLII8bb29uMHTvW9O7d2xQvXtzMmzfPYdvA3WzHjh1m8ODBxhhjoqOjzaBBg0ylSpUc5lm7dq2x2Wxm9+7dxpiUc1W1atXM119/bYwx5tdffzUtWrQwY8eONcak9EcwdepU06ZNGzN27Fhz+fJlh/WFhYWZp59+2nh4eJigoCDz5ptvOjyTDdxp1FQj05n/f+fdXnu2b98+/fHHH4qIiNCrr76qEiVK6Ndff9XcuXOVJ08evfnmmzp//rw8PDxUp04dXbx4Ub/99pukv5v29OnTR4sXL1ZUVJSqV6+uWbNm6eWXX9aGDRsUExOj2bNn67HHHku3HEBOZm/ZsW7dOkVHR2vBggX68ccf9eabb2r37t0aPHiwFi9erOnTp0tK6VMgb9682rFjh9UcT0ppqlqyZEnrUYrBgwdr9uzZKlasmFasWKFevXppzpw5Vg2AHc9EIyczN9QE7969W0eOHNH58+f14YcfqmDBgtqwYYOWLl0qPz8/jRw50ho5okePHtqzZ4/DYxL+/v5q166ddu7cqejoaJUtW1bTpk3Ta6+9pq1btyoxMVFz585Vjx49rGWogcbd7urVq5o6dar27dunvHnzqmPHjjp//ry2b99uzVO1alXVrl1bkydPliRVq1ZNlSpVsp6rbtiwofLmzatVq1YpNjZWhQoV0rPPPqvly5dr1KhRyp8/v6S/W0rFxMSodu3aWrt2rfbt26fRo0erXLlyd3bHgdSyONTjLmC/q5/aX3/9ZUJCQswTTzxhfH19rZ647XckjTEmODjYdOrUyfj4+Fi9fm/fvt3cf//9ZuTIkQ7rO336tLHZbGbhwoW3b0eALJJeLZoxxhw9etRs2rTJ+Pr6mvbt25sTJ06Yffv2mS1bthhjUo69OXPmmICAAPPAAw9YNWovvfSSQysQ+7zPP/+8KVCggMM2buwVlVo15GTpnY8uXrxoQkNDzbBhw4zNZjPff/+9OXPmjFm9erU1/5kzZ0z37t2Nv7+/+eSTT4wxxly9etUEBgaa999/38THx1vr2717t8mfP7+ZMGHCndkpIIv9Uw/0ycnJpmLFimbEiBHGmJTru8aNG5unnnrKmicpKckMHTrU+Pr6WtPee+89ExAQYI4cOWKMMWblypXp9u6dmJjIuQnZHjXVcJr9bmF6HRGVKlVKPXv2VL58+bRv3z499dRTkqS+fftq165datq0qerWravY2FjVqlVLP/74oySpbt26qlq1qn7++Wf98ccfWr58uX788UeVKlVKAwcOtDqsuLEc1KYhJ0pOTrZ6LL2xNuuHH35QxYoV9cknn2jKlCn65ZdfVKZMGVWvXl1169bVW2+9peLFi2vcuHFq3LixwsPDtWbNGkkpz7hFRETo22+/1blz5/Tuu+8qIiJCvXr1Uo8ePawOlKSUZ9KMMdbxTK0acqKbnY+io6PVunVrNWzYUPHx8QoJCdFjjz2mIkWK6MEHH9Tu3bvVsmVL1axZU4mJiSpRooS2bt2qixcvKk+ePGrevLkWLFigtWvXavny5ZoxY4Zq1aql5557TuXLl0+3HJyPcDdISkpKMzKKuUkLQJvNph49emjevHmKjY1V4cKF1b59ey1evNiaxxij48eP6/Lly1qxYoUkqWbNmnrkkUeseVq1aqXq1aunWb+rqyvnJmR/WRzqkYPc7C7h6tWrzaxZs8zZs2etu/mvvvqqsdlsZtKkScaYv+9yRkdHm9atW5vBgwdbz74MGzbMFC1a1Bofd8uWLaZz586mcOHCxtXV1Xz44YfcocRd7fz58+arr74y69ats2qOL126ZEqWLGkqVqxozp8/b4z5uxZu/vz5pnr16lbLjUuXLpkiRYqYQYMGWev8+OOPTeXKlY2Pj48pV65cmjHZgbvRihUrzMyZM83x48eNMSnnnkmTJhmbzWbVQNvFx8ebzp07m379+lnzv/baa6ZkyZJm9erVxhhjdu3aZR5//HFTqFAh4+3tbV566aU7u0PAHZSUlJSm9VJ8fLyZOnWq6dy5s1m2bNlNlz1y5IhxcXExa9asMcYY88cff5gCBQqYZ5991pw4ccIsWLDAPP3006Z+/fpm4MCBN10P13vIqQjVSCM2Ntb6/5kzZ8z+/fvTfMkaY8yPP/5oihYtaooVK2aaNGliqlWrZj799FNjjDEHDhwwNpvNzJkzx2GZrVu3moCAALN8+XJjTErT086dOxsXFxczfPhwa76IiAhz8ODBNNv8pyZIQHaR+rO6ceNGc/Xq1TTzhIeHm969exsvLy/TpEkTExgYaPr06WMOHDhgjDGmV69epnbt2iY6OtpaJiYmxvTv39889NBD1sXH6tWrjZ+fn6lWrZpD07mDBw9aHZjZJScnp9tEFsiO4uLirP+fOXPG7Nixw+F9+zGwaNEiU7JkSVOkSBHTpk0bkz9/fjNv3jyTnJxsDh06ZHLlymV1Zmk/Nn/99VdTvnx5M3/+fGNMyrHVtWtX4+fnZ15++WVrG5GRkVbz1NQ4H+Fu9ssvv5j27dsbHx8fU7FiRTNu3Dhz6dKlWy7ToEED079/f+v1F198YapXr268vb2tDvyuXbuWZjmOJdwNaP4NB+3bt9fo0aOt5qGdOnXSyJEj5ebmposXL2rt2rWSpJCQEH3yyScaOXKkzp49q99++01Dhw7VSy+9pLNnz6pq1aoqXbq0w9iFUkrHY4GBgZo/f77Onj2rTz75RLly5dKzzz7r0GTO19dXVapUsZaxS2/8TiA72bFjhwoWLGh1bnTgwAE1b95cZ8+elSStW7dO586dkyTNmTNHZ8+e1R9//KHffvtNv/zyi6KiovTqq69KShnL9o8//rCWlSQvLy95eXnp8uXLWrRokXbt2qXvv/9eHTt2VK1atXT16lVr3ipVqihfvnwOzfhsNhtjRyNH6Nmzp5599llJUnx8vF555RX16tVLknT27FmtXLlSNptNUVFR+vjjj/Xss8/q/PnzWr58uUaOHKlx48ZpxYoVqly5spo2bap58+ZJ+rsJa9myZZWUlKTVq1fr6NGjmj59uvz9/dWoUSP5+vrq+vXrklKGfLQPh5WYmOgwNjtwN9m5c6cGDRqkgIAADRw4UMWLF9fKlSt1+PBhjRw5UgUKFLCuD006TcH79eunxYsXKywsTJL01FNPafHixVq7dq3OnDmjHj16KHfu3Na47HYcS7grZGmkR5YLCQkxn332mTl9+rQxxphVq1Y53In85ptvjI+Pj6lQoYKx2WymX79+xpiUO5gNGzY0xqTUtr377rumUqVKxmazmSVLlhhjjBk3bpwpWbKkOXXqlLW+2NhYM336dFOhQgWTP39+U6VKFbNq1ap0a8KBnGLu3LlW6wtjUoYOMebv5trly5c31atXN15eXqZ06dJm8+bNJioqynTs2NEa+mrFihWma9euxsvLy9x///0mJibGJCQkmGLFipl33nnHYX27du0yffr0MUWKFDG5c+c2w4YNMxcvXryTuwxkutOnT5v33nvPREZGGmNSOgRLPcTbzz//bDw9Pa1zzQsvvGASExPNzJkzzUMPPWSMMSY0NNR88MEHpmTJkqZQoUJm9uzZxpiUc5mXl5dVS2av4f7kk09M/fr1jbe3tylfvrzZtGmTQ6dkQE6XlJSUoZrgixcvmhIlSpiHH37Y/Pzzzw7v7du3z/Tv399Ur17d/Pjjjzddx4ULF0yuXLms1h83okYadzNC9T3KfkHx+eefmxYtWhhjjMOFxMWLF01iYqIpU6aMsdlspnPnztb4tsYYM2LECFO9enXTuHFjkzdvXtO4cWPz+eefm9DQUGuev/76y7i7u6f7Bfznn3+a4OBgh2npjWsN5ATVq1c3CxYsMMb8/fhERESEMSYlCNhsNpMvXz7z008/OSzn7+9vWrVqZYoWLWqKFi1qBg4caH7//XeHeV566SVTq1Yta+x2u8TERLNnz540ZeGiBTmN/Xt/w4YNpmzZsmnev3DhgjHGmKZNmxqbzWbatGnj0Cz8iy++MLly5TItWrQwefPmNU2bNjXTpk1zuNF0+vRpU6hQIWsEitQ3coODg01ISIjDNjkf4W60bdu2W76fumn2hQsXzFtvvWXKly9vfH19TZcuXcySJUtuetPJfry0b9/e9OzZ0xjD+Qj3FtoA3qPsvSjmy5fPal7t7u4uSWrbtq2ee+45JSQk6MSJE+rWrZuuXr2qPHnyWMu3bt1a+/fvV1BQkPbu3avNmzfrmWeeUeHChbV//35FRETIz89PgYGBmj59uq5du+aw/UqVKqlkyZIOvQ7bx7UGcpLw8HCVKlVKCQkJkiRPT08dPnxYfn5+Wr9+vTp27KijR48qLi5OXl5ekv5+pKFZs2bavn27Pv30U508eVLTpk1TgwYNFB0drR07dkiSevfurb1792rXrl0O23V1dVXNmjWt9RmapCKHsn/v79+/X40bN1Z0dLT13hNPPKEuXbpIkn766SeNGDFCx44dk4eHh3XuqFWrlmw2mypVqqT9+/dr06ZNGjhwoAoVKqRjx44pJCREpUqVUsOGDfXOO+9ISun13q5kyZIqUaIE5yPkeCadJtm7du1Sly5drHGfd+/efdPlc+fOrc8++0xNmjRRuXLltHr1av3f//2f/vzzTy1cuFAPP/ywda14I/vxUrZsWQUHB0vifIR7C6H6HpLeMB979+5VlSpVdPXqVevLuGnTpjpx4oR1ET9w4EBt2LBBhw8ftpZr3ry5ihUrJk9PT/n6+lrTt2/frokTJ1pf2lOnTtWQIUMcAnlqNpuNL13kGOaG58CklGc9jx07psDAQGueSpUqqUiRIlq9erViY2NVrlw5NWvWTF9++aWkvy/ou3fvroSEBBUsWFCenp6SUoYA+uqrr/Tzzz/r6tWrqlWrliZNmqTKlSvftFxubm4EAOQoqZ/zt//7119/6cKFCw43e7t06aL9+/fr9OnT8vPz08MPP6xTp05p586d1rmjfPnyCgoK0uXLl+Xj42NtY8uWLfrkk0908uRJSdJrr72mDz/88KZl4nyEnMgYY13f3XgeOHLkiF588UXlzZtXS5Ys0VdffaUCBQrcdF1RUVH68ccf1bJlS+3Zs0ebNm3SU089pUKFCmWoLLNnz9a8efPUv39/53cIyKEI1fcA+5dt6s6J7Bcx+fLl0+7du5U3b15rWp8+fXTx4kX98ccfkqQHH3xQ3t7eWrlypRISEqz5xo4dq02bNqlJkyZ6++231a5dO3Xo0EFubm6qVKmSJOmBBx5Qu3bt7ti+ArfDzcaTNsaoaNGiCg8PV0hIiCQpLi5OkvTkk09qwYIF+uuvvyRJ/fv314oVK6xOx4wxeuyxx9S+fXv16NFDAwYM0IsvvqjatWvr888/V61ataya7cGDBzvcvAJyKvv5yNXVVa6urjLGWEG2YsWK2r9/v6S/bzy1bdtWXl5eWrRokSSpatWqqlOnjj7//HNJKTe1vL29NWHCBO3evVsNGzbU22+/rbZt26pLly66evWqypYtK0mqV6+eOnTocCd3F7ht7Dd47Z1PRkREaMGCBdq7d681z7Zt27R3717NmjVLDRo0UFBQkHUDOD3e3t5avXq1xo4dq3LlymW4LPbj2s/PT7Nnz9bTTz/t3E4BORih+h5gD9O//vqrZs+erbCwMOsipm7dutq3b58SEhLk5uampKQklShRQkFBQdq4caMVFB577DEtXrxYFy9etJZ98skn9fXXX+vJJ5/Utm3bVL58eW3cuFGff/65SpQoYW0/vRpyICdxcXGRi4uLLly4oOnTp2vz5s2KjIy0eh6uV6+eli1bJunv5m6DBg3SsWPHtG/fPklShw4d5O7ubs1nD+czZ87Up59+qnz58unkyZMaPXq0Dh06pG7dujk0UeU4Qk5lvxEr/X0+Wr58uXr06KF27dopPDxcUsqjE35+ftajD0lJScqVK5e6deum2bNnKykpSd7e3nrssce0aNEiJSYmysPDQ1JK66klS5ZowIAB2rdvnypUqKBNmzbpm2++cTgfpdc8FsgJbvzs2s8hR48e1ddff62SJUvqtdde08MPP6yvv/5aklS0aFG5urpq+PDhev755/Xmm2/q5Zdf1tKlS2+6HWdaPdmP69atW+uBBx7418sDdwOb4Qxz1zDGpPkyPHnypDw9PfXYY4/p6NGj8vb2louLi1auXKlSpUrp0KFDatasmaZMmaJHH31UsbGx8vLy0rfffqtx48ZpypQpeuihh3TkyBHVqVNH/fv3l5+fn5YsWaJly5bJ398/3XIYYxi2B3eNiIgIDR8+XD/88IMqVaqk5ORkeXl5afny5cqbN6/efPNNLV68WLt375arq6uSkpLk6uqq6tWrq27dupo0aZLy5MmjZ555RitWrNCQIUO0bds2lSxZ0mqOmpycnKY1CU1RcbeJiIhQ3759tXPnTvXo0UOlSpVS27ZtVblyZW3ZskUjRoxQ27Zt9eqrr1rHxO+//64mTZpo165dqlmzps6dO6dy5cqpX79+8vHx0b59+/Taa6+pcePGabbH+Qg5XVJSUrrP+MfGxlrPSFetWlUvvfSSqlatqgEDBig4OFgffvihGjRooI8++kgrVqxQ+fLlde3aNYWEhOiPP/7QsmXLVL9+/SzaK+Duw1kmh0vdscqNX7hhYWEqV66cnn76abVt21bnz5/XggUL5Onpqddff11Syl3M+++/X5999pmkvzsr6969u5KSkrR3717FxcWpYsWKmjx5so4cOaJff/1Vzz77rPz9/R1qz5KSkqwmslzAIDuzjz97K6mb0C1btkxHjhzRtm3btHPnTm3fvl2RkZH6v//7PyUmJqphw4a6fv26fv75Z0myOi0bOHCgVq1aZTX5Hjt2rLp166bvvvtOBQsW1HPPPSdJ1kV/6uOZQI2cJvWznan9/PPPeumllxQTE6OlS5fq5MmT2rt3rz755BMNGzbM6i+gWrVqCgwM1IYNG5SQkGAdEw0bNlT58uW1YMECSVKxYsX07bff6uzZs9q0aZMef/xxNW7c2KEmj/MRcprly5froYce0oULFxymu7q6ymaz6dixY1q5cqX1iJGXl5eCgoJ07tw5FS5cWHXq1JGXl5deeukleXp6av78+ZKkF198UatWrdJHH32kb775RmvXrtWlS5fSbAfAf3RnOhmHszI6pEdiYqJZtGiR2b59u8OQCL179zbu7u5mw4YN1rQFCxaYvHnzmqNHjxpjjPn111+NzWYzmzdvdtjmI488YurXr2+OHDlijEkZYoTxO5HTNW/e3AwbNuyW86xevdrYbDYTFRVljDGmRo0a1tBwixcvNk899ZSx2Wzm8ccfN+Hh4ebixYvmiSeeMPXq1TPG/D2e9PXr143NZjPTpk2zpqUeCgi4m9nPFyNHjjQVK1Y0xhgzY8YM4+HhYU6fPm2WLl1qVq5cafbt22fCw8ONMcb88MMPpmLFimbWrFnGmL+H5Bk5cqTJmzevNYZ16vUDOY39fGDM39dcwcHBZtq0aWmu+zZu3Ghq1qxp8ubNa8qXL2/uu+8+axzoXbt2mRo1apj//e9/1vyxsbFmyJAhplmzZtbxcvHiRXP58mUTHR1txo0bZ5o3b25dAwLIHNy+zcaCg4Nls9ms5mvp1QBcv35db7zxhry9vTV06FD17t1bjz32mEJDQyWlPMfp4uKiIkWKWMt07txZLi4uWrFihYwxeuCBB9SpUyd98MEH2r9/v1XjPXjwYD3yyCMqXry4pJRnZtzd3ZWcnOzwjByQk0yePFnvvfee9ToiIsLqHTj1tHr16unixYuSUp71HDt2rAIDAzVw4EC5uLho06ZNmjlzpgoWLKhChQrp9ddf1/79+zVr1izr+MiVK5dGjBihGjVqWLVl9mdAExMTeU4aOZIxxmEYN7srV67ozTff1NixYyWldDZmjJGPj4+KFi2qhIQEde/eXQ0bNlRQUJDeffddvf3226pbt64GDBigkJAQde/eXZ06ddLo0aMVHh5utdh46qmn9OKLL1rHjyTOR8ix7OeD1Nd2JUuW1MCBA2Wz2axpV69e1aeffqoKFSrozJkzmjVrlsqWLaunn35aERERqlmzpurWratTp07p0qVLklLOV/Xq1dP169e1YcMGxcTE6Msvv1TXrl1VqlQpffvttxo8ePC/6ogMQAZkYaDHLfzyyy/GZrOZkydPpvu+/S7n+vXrTdmyZc3ixYvN1atXzcqVK03lypVNr169THx8vLl+/brx8fExn3/+uTHm7zuiffr0Mc2bNzeXL182xhhz8OBB88QTT5g2bdpYNQPA3SoxMdGcO3fOGGNMy5YtTdOmTc22bdus97/55htTuXJlExUVZS5dumSeeeYZU7BgQbNs2TJz9epVa74rV66Yw4cPm+vXrxtjjBk/frxp166dmTRp0p3dISCLhIWFWf+Pi4sz48aNM25ubmbdunUmISHBGGPMgAEDTK9evUxMTIwxxpjw8HATFhZmjhw5Yk6ePGl2795t8ubNa5YsWWKMSTk+W7RoYfr3729OnTp1x/cJuN22b99uGjdubNavX29NS05ONqtXrzblypWzWggePHjQ2Gw2s3v3bmu+pKQkU6hQITNmzBhjjDFffvmlqVevnlm4cKE1z9GjR03r1q1Nz549jTHGrFu3znz88cdm//79d2L3gHsSNdXZjPn/d/5Lly6toKAgfffdd5Kkc+fOaeLEiZo6daouX74sFxcXJSUlaenSpfL391fLli2VJ08etWrVSkOHDtWRI0e0atUq5cqVSw8//LBmzpypxMREqxZ64MCB2rhxo/78809JUpUqVTRlyhSFhYVp8uTJunz5sqSUzpMMfdkhB0qvJs2uffv2evzxxyVJEydOVPHixTVkyBCrdqBUqVIKDg6Wp6enChQooMaNGys5OVm5c+e2xlyPj4/XpEmTNG/ePGu5YcOGacCAAZo6daoOHDhgbY+aNORkN35+r1y5onfffVeVK1dWixYt1L9/f/3555/y8PDQyJEj1a9fP73++utauHChJKlQoUI6deqUvLy8lJSUpIIFC8rf318VKlRQYGCgYmNjVbBgQRUrVkxSyjOkM2fOVHR0tD799FPFxMRISn+ceCAn8vf3V968eTV9+nQNHjxYZcuW1ebNm1W3bl2dOHHCGjUiLCxMAQEBVouNuLg4ubi46NFHH7WGmWvcuLEKFiyo9evXW+svX768GjRooIoVKyo+Pl4tWrTQ0KFDFRQU5NB3B4DMQ6jOYvYLhO3bt+vUqVNW6C1RooQeeOABff/99zp16pSaN2+uOXPmaMKECeratatOnjwpV1dXHTx4UCVLlrTGs5VSvmDz58+v3377TZI0YMAA7d69W0ePHnWYp3Xr1tYXdVJSkvLly6effvpJ9913n8PY1s4MrwBkNTc3N9lsNh0/flyHDh1yeK9Xr17at2+fLly4oOrVq+vdd9/ViRMn9Nprr+n69eu6fv26qlSpYh0zXbp0Uffu3dW1a1c99thjeuWVVxQUFKTvv/9eZcuWVa5cuSSlNO3u2rWrZs2aJQ8PD4cxeYGcJHV4dXV1VXx8vMLCwnTp0iW9+OKLWrJkiV555RW9++67CgkJ0cCBAxUcHCxJevPNN9WoUSO9+OKLOnv2rGw2m/z9/ZWQkCBXV1eFh4fryy+/1Pjx49WpUye1b99evXr1sjosk1LOgZ9//rkeeeQRq2OmG8eJB7K7Gx9PsJ8TQkNDtXXrVs2dO1enTp3SpEmTVL9+feXPn19NmzbVvHnzZIxR7ty5Vb58ea1cuVLS3+eS+vXr69y5c0pOTlalSpVUqlQprV27VqdPn7a29dZbb+mtt96yHpmw35Sy2Wyck4DbgFCdhexfbrt379Z9991n1WwtX75cefLkUdu2bfXXX3+pb9++euedd7Rt2zZ9/vnnioqKsobhadOmjTZt2qSIiAhrvUFBQQoPD7eGu2rWrJkk6ZtvvnHY/vLly63hFOxfsCVLllStWrVUsGDB27rvQGZJ77nk2NhYTZkyRRUrVlTTpk312GOPqVevXlZQ6NSpkxISEqwxo0uVKqX33ntPK1as0PTp0+Xu7q7IyEj5+/vLGCNvb29NmTJFX375pXx9fXXs2DGNGjVKhw4dUu/evdP0LlynTh1VqFCBXoeRo6RumWQPr5cuXdK3335rDbUYFxenNm3a6KefflLfvn3VoUMHdenSRXv27NGaNWskpYwqMWHCBBUrVkwffPCBfvnlF5UrV84aXcLT01OJiYlauXKlypYtqy1btuidd95xuDksSQUKFFCjRo2UP3/+O/dLADKRi4uLdX118uRJ65yQJ08e/e9//1PFihU1cOBAtWvXzjqXDRo0SKtWrdLx48dVtWpVVaxYUXPnzpWUcrNYkubNm6emTZvq2rVrkqRu3bpp1KhRDv3nSGmPaW5KAbfRnW9xjvTUqFHDVKlSxRQoUMB6fiY4ONi0atXKlC9f3urlNCEhwbzzzjvG29vbGGNMVFSU8fT0NB999JH1rOfhw4eNj4+P+f777631//DDDw7P5NjZn3kDcpqb9YyfnJxsFi1aZNq2bWsmTZpkwsLCzLZt20yJEiXMW2+9ZX3mH330UdOyZUvr2IqPjzczZ840+fPnN6+//rrJkyePiY2NtdZr78cgda+txhj6IECOd+Nn+uDBg2bTpk1m0KBBply5cmbIkCFm7dq1JiEhwSQkJJikpCQTGhpqnnvuOVOwYEFTuXJlU7x4cfPYY4+ZixcvWuv5/fffzdNPP21sNpvp1q2bMebv49b+fLVdcnJyhke7ALKjpKSkNJ/h3bt3m//X3p0HRFmtDxz/DgPKDoKJEgYoLrikooiSKK6UW5EKiOLSYm6B5ZaZlpp72tVutzS3XHNXRMUdxJVNxQTBJXeUFAplMXDm9we/eS8j2lVyYfT5/KUz7zr6zpznnOc8JzAwUOvg4KD18PDQDho0SJnXfOnSJa2/v7+2R48eyv46pqamSm2O2NhYrYuLi9bT01P7/fffa0NDQ7XVqlXTRkREPKM7E0I8ChlGeUa0980D02q1ZGdnEx0dzcKFC7ly5QqXL19m4sSJaDQaGjVqhIODA2+88QYZGRlKD7+xsTHt27fn7t27REREYGVlxYgRI/juu+8IDg5mzpw5BAQE0Lp1azp16qScr3v37jRq1KjEdel6PYUwNLoe97179zJ//nxu3rypvG5nZ8eUKVMYOnQodnZ2ZGZmUlBQwJYtWzh37hwA/fv358CBA0rlbxMTE0JCQggMDGTq1KkYGxvrpdLpRhhkPWnxItH+/xrp2dnZpKWl0bdvX9q2bcuxY8eoXbs2ly9fRq1W4+vri7GxMcbGxhgZGTFr1iySk5NZsWIFycnJjBs3jh07duhNM/Ly8mL8+PE4OztjZWVFQUGB8tzqRqWLrycto2jCEN0/Xe7MmTNcvnyZtLQ0wsLCsLCwYM2aNXz55ZdcvnyZzz77DAAnJyeaNm3Kr7/+yuXLlzEyMlKmOnTu3JkNGzaQmZmJp6cn69ato1WrVsyfP58zZ86wYMECvTYelGxnCiGeLQmqn5HijQXt/6d9L1q0iKCgIN5//32io6OxtbXF3Nxc2a58+fJKQ2bLli3K625ubvj6+jJ//nwARo8ezY8//oiNjQ2rVq0iICCAn3/+GWtra71rkOV7xIvi0qVLJCcnExQURFBQEDNmzOCdd95R5p01a9aMhg0b8u233+Lm5sawYcPo3bs3iYmJxMfHK0vJVa5cWSn2ons+vvjiC+bMmUNkZCS1atV64PllTpowNNr/XwbrfiqViuzsbGrVqkVoaCjm5ubExcXx8ccf06xZMywsLKhevToqlYqCggIATpw4wZo1awgMDMTPzw+tVktaWhp//fUX+/fvV7YrKCjAycmJBg0aYGpqqiyBVZxarZZpEsKg3B+8GhkZkZeXx9mzZwkJCaF58+YcOHCAKlWqEBgYyMKFC2nZsiWNGjXC3NycyMhIjh49ikqlolGjRlhYWBAeHg4UtfsAQkNDiYqKUqYFNm7cmJkzZ3Ls2DG2bdtG69atS1yXdEoJ8XzJL9kTdn/DRfflm5iYyMGDB/W2LVeuHK6uruTm5lK3bl1q167Nrl27uH79urJNzZo1ad68OQsXLlSOZ2Njw7vvvktERASFhYVYWVnRoUMHfvrpJ44cOcLYsWOxtrZ+4Be/EIYuISGBd955h8DAQKpXr05GRgZr1qzB1tZWqTVgYmLC/v37WbZsGWPGjCEhIYGZM2dSr149IiMjycrKQq1W06lTJ2bPnk1+fr7yfDg5OTF48GCaNWv2PG9TiCdKpVIpmUmJiYlcu3ZN+Y2wtramQ4cO7Ny5E09PT5ycnICiCsJt2rRh9erVwH9/Q9zd3cnKyuLq1avcvHmTgwcPkp2djYuLC+fOnePOnTsASoaVRqNRfhfld0gYKl120v3B6/Xr13Fzc2PkyJFYW1tz/PhxevTogZWVFUOGDOHo0aP4+vrSsGFDfv/9d6pVq8b3338PQP369WnQoAHz5s0jLy+P/fv3s2fPHnx8fPDx8VGeIR2VSsW9e/ekercQZZD8uj0hut734g0XXUqbRqPhs88+o1+/fpw/f175Qj5//jwODg5Kw6Znz54kJiYqy1xB0bILnTp14tChQ+Tk5Cgpcq1atWLw4MFkZmYq2+p6OHVLCUmvpTA0j5JN4erqStOmTbl48SI9e/YEwMPDg169epGSksKRI0cAWLZsGWq1mqCgICwsLDh8+DBXrlxRCsAADBs2jPHjxyvVUR/3WoQwFNevX2fMmDFUrlyZLl260KlTJyZOnKg0zrt3706FChX0noUKFSrQpUsXpVK+Wq2moKCAcuXKERoayvr163F3d6d9+/a0aNGCqKgoFi5cSIUKFYCikeoBAwZw4MAB+vbt+1zuW4hH9b/Sp3XZSbGxsURERJCfn49Go6Fy5cp4eHiwefNmfHx8cHJyUtpf169f56uvvqJOnTrExcWxd+9e2rVrx65du4Cion59+vRBq9VSq1YtfH19SU1NBSA6OprmzZs/8DokU0qIskeC6idE1/t++/Ztpk6dSvPmzfniiy84ceIERkZGrFq1Cjc3NwYOHKik81SsWJG0tDRl3dsePXpQWFhIXFyccly1Wk2zZs3IzMxk6dKlyuu1atXi3//+N5UqVSpxLbqlhIQwNMVHsR7WwLGzs6N58+aoVCplRAygQYMGVKtWTXlOWrZsSWJiImvXriU2NpbFixcze/ZsrKyslFGzWrVqMWTIkAeOnsmImnhRaDQa1qxZQ0JCAgsWLCApKYkRI0awbNkyli9fDkDHjh2xs7MjLS2N/Px8oKiT2MPDA0dHR5YtW6YcC4qWzVq9ejU///wzeXl59OnTR1k1ovhScpaWlqxcuZIWLVo869sW4pHofg9UKhVZWVlKp+v9Vq1axWuvvYa/vz9jx47lrbfeYuPGjUBR9W07OztlcEPXBktNTWXHjh18+umnVKtWjby8PJKTk7lx44ZS0btly5Zs2LCBdevWodFoGDx4cIlrE0KUfdJqfEJ27NjBokWLmDx5Mjt37sTX15etW7fSs2dPduzYgb29PXPmzEGlUjFq1CigqMHh7OysLIlgaWlJ+/btWblyJZMmTaJDhw6MHj2ahg0bsnXrVnr37l0i0JAUIGGIii/zoaPValm9ejUff/yxkuVxP90+DRs2pHHjxqxZs0Z5z9XVFR8fH6KjowEICQmhd+/ezJgxgzZt2vDnn3/i7+/P2bNn8fb21jumFHgRhupRMiq0Wi1eXl785z//oXPnzgDk5ORw9epVtm/frhQja926NTExMcp601C03FyLFi2YPXs28N+MKGNjY+rWrUvHjh0B/d+i4kX9Zs+ezZtvvvlkblaIJ+j27dv07t2bqVOnAkXPSZMmTfjpp5+U93WFLM+ePcuiRYv45JNPuHr1Kvv378fX15cBAwYA4O/vj4WFBWfOnKGwsFB5Bv766y9cXFzYuHEjmZmZLFiwABcXFzp37qw3gFKjRg1lidPigbQUkxXCcEhQ/Q/pGjTx8fF88MEHxMTEsGzZMqZOnUp0dDTVqlXj22+/JS8vj5o1a/Kvf/2LxMRE5s6dS1xcHPb29pibmyuFXcaMGUNAQACbNm3C0dFRSZnz8/PDysqqRKAhKUDCEOmqpOropissW7aM7OxspcL2/XT71KxZk8aNGxMdHa08O2ZmZnh7e3P9+nVlDuj8+fOJiIjg9u3brF69WineV7zRIlWHhSF7lOwOtVqNl5cXDg4OhIWF4e7uztKlS+ncuTPJyckkJiYCRR1RFy5c4OTJk8q+VlZWdOvWjYEDByrPWnG6c8pvkTA0VlZWdOnShUGDBikduV27diUiIoImTZpgY2PDDz/8AEBMTAxZWVl88skn3L59m6VLl7Ju3Tqys7M5evQoNjY2NG/enP3793PlyhXlHJ6envTu3Zvvv/8eZ2dn5s2bR1BQEOvXr1dqgOjoniUJpIUwTBJU/41HGb3SNcbDwsJQq9VUrVpVKfJia2tLz549uXXrFnv27AGKCrzMnTuXnTt3EhERQXp6ut48bGdnZ0aPHk1CQgJLliyhTp06T+nuhHg2HpS+duPGDXr16sXixYv1Xq9WrZpSJ+Dvnj8zMzO8vLwoLCxk+/btyuvu7u706tULGxsboGhUrUaNGkpxF10nmDRahKEpbXaHbjuAX375hZiYGNauXcuBAwf46aefOHv2LAkJCQD4+PgAsHXrVrKzs5X933zzTb788ssSRZNAKg4LwxYYGEjFihXJzs7m5s2bbN68mdTUVJydnbl48SIzZ84EiireW1lZ0a5dO1599VWWLFnC+++/z9mzZ/Hy8gKgd+/enD59muTkZOX4tra2TJw4kdWrVxMbG8uvv/7Km2++qVTCL/5My7MkhGGToPo+xdeffZQvOF1j3dLSkpYtW5KZmcmtW7eU9z08PDAxMVEKT0BRQZiPP/4YlUqFtbU1eXl5eufS9fgXDwKEMCTF/9/qAtiTJ09y7do1oGiqg6OjI+PHjyc8PByVSsXdu3fJz8/nlVde4d69ew+d06xrhDRo0AArKyulMj4UpYDPnTv3gemmsnSPMGSlze6Aot+p3Nxc1q9fT8OGDZX5zeHh4ZiYmBATE8Px48eBornSISEhJZZklGkS4kWUm5urzJGuWLEiBw8exMPDg6pVq2Jra6ts5+LiwpEjR3B0dCQ+Pp7Y2FiGDRuGs7Mzp0+fBorWlr5z5w6RkZHk5eXpncfLywt3d3e9Nub9z7QQwrBJCxNK9BTqgtrw8HDCw8PJzc19pOMMGDCAQ4cO6VXvrlKlCklJSSVGnP38/OjUqRNqtRozM7MHBs8SBAhDpft/+8cff7BhwwYqVKhAu3bt6Nq1K0uXLsXCwoKZM2fSuXNnPv/8c5KSkihfvjyXL1/G1tYWtVr90A4lXSOkevXqjBo1ii+//LLENlJrQBiyJ53dodVqMTc3x9bWluTkZDZu3Mju3bvZt28fvXr1wtXVVan63bdvX9q0aVPiGDJNQryIzM3NsbOz48KFCxw/fpwqVarQtWtXoqKi9NpynTp1wsnJiapVq1KzZk2lnRgfH8/48eOVwHrMmDF07doVMzOzEufSdYTJVAkhXkwvbcSma3zcv/SURqNh2rRp2NjY8NlnnzFu3DjeeecdZfmDBzXWdV+QgYGBaLVaJk+eTGxsLIWFhaxatYoqVaooKeHFOTg4KAG7BM/CEBXvdS8uNzeX4cOHExgYyC+//MKPP/5ITEwM9evX55NPPlFStqdPn46rqyvDhw/n9OnT1KtXj3PnzgEPzxTRaDQUFBRgZGRE165d8fDwKLGNNFqEoXma2R26Y48YMYLatWszdOhQAgMDqVGjBt988w2LFi3S6/iVDCnxMunevTvp6elK4bDevXtz8+ZNpdaARqOhRo0afPTRRyxevJiOHTsyd+5cAgIC8Pf3x97eHisrK6BoKmC7du0eeB7plBLixfbSRnK6LzeVSkVqaipz587lypUrnDhxgg0bNrB8+XKSk5PZu3cv9evXVyo8PqyxrhtZ6NOnDzt27OCbb77B29ubsLAwPvzwQ70Gi5GREcePH2f79u0EBgY+5TsV4snSaDR667LrnonExETldXNzc4yNjYmLi6N8+fIEBgZSs2ZN5s2bR/v27ZkyZQoA1tbWzJ07F0tLS9577z2uXbtGrVq1uHfvXolUV93660ZGRsrcztu3bz/LWxfiqXma2R26Z7RJkyYsWLCA6Ohobt26xeeff465uTmgH0hLJ694mbRp0wZbW1sSExO5c+cOLi4u1K1bl0OHDnHt2jXleRgxYgTz5s2jXr16rF69GktLS7Zs2cIPP/zAq6++qhxPMqWEeDm9NL+cxRsMGo2G3NxcIiMj2bJlC506dSI+Pp6cnBwiIiKoUaMGXbp0ITU1lWnTprF8+XL+/PNPLl++/NDj6750Q0JCMDY2pn///kyePJn8/HxGjRqlF4xnZGQQGhqKm5sbHTp0eHo3LcQTUjyzw8jISK/RPXXqVGxsbHjrrbf44IMPlN79t956CysrKypUqAAUPXflypVj4MCBHD58mJs3bwJF86Bnz55NQUEBq1atwsbGBrVarTRMdAG2bv31lJQUhgwZgpOTE1u2bJF5nsKgPK/sDl3Hr7GxMbVq1QJQOqpAAmnx8ipfvjze3t6kpKQotQV69erFwYMH+fHHH5k7dy5vvfUWAF26dGHGjBkcPHiQRYsW0bBhQ0C/jSmZUkK8nF7YX9H7G9q6BsONGzeUkeKOHTvy9ddfM336dJYuXUqtWrU4dOgQ6enpNGjQgKZNm3Lq1Cm+//57Lly4QNWqVR96Pl2RGG9vb2xtbTl8+DDt27fHyMiIgoICvet55ZVXiI6OJjIyksqVKz+dD0CIJ6h4ZkdKSgoTJkwgIiKCxMRELl++zL59+/jxxx/59ddfmTx5MgCNGjWiWbNmnD9/nry8POUZdHFxwdbWVqk4XFhYqATWNWvW5LfffgP++8yq1Wpu3brF9OnTcXd3x9vbm/T0dGbNmkX37t0lpU6UeWUhu0OXUl48u0PXUSXEy65Lly7cuXNH+V0KDAwkNDSUzZs3s2zZMlq3bg3oty2LF5OVTikhxAv7LXB/Q+HOnTt4enoya9YsCgsL8fb2xt3dnRs3btC8eXNlOy8vL6KioujWrRvnz59n27ZtdO/eHUtLS2UE7n737t3Ta9CEhISwYsUKLl26BICJiYne9UjBF1HW3T+SlpOTQ1RUFJs3b8bPz49NmzYxfPhwAgICcHR0xMPDA39/f8LCwti7dy+//fYbNjY2NGnShLS0NKKiopRjHTp0CHNzcypWrAj8d/6oj48PLi4u1K5dG/jvMzxlyhQcHR0JDw8nNDSUlJQUNmzYQGBgoFJcSYiyRrI7hDAcXl5e2Nvbs2vXLjIyMihfvjyhoaEcPHiQuLg4Ro0aBei3LaWYrBCiuBfi2+BBqXQXL17k4MGDynuWlpbUqFGDtLQ0zpw5AxT1TN67d0+vundQUBAWFhZUrFgRe3t75fWtW7fy73//W0kBLywsVI6tVqtRq9VkZGSwa9cuhg8fTnZ2Nvn5+U/tnoV4mnQjabpRrS1bttCmTRt++OEH1qxZw7Fjxxg1ahQXL15U0t+gaAk5JycnFixYAICvry/GxsYMHjyYWbNmKc+Rl5cXjRs3LnHe1NRUJVAuKCgAICAggKSkJA4ePMigQYMku0MYBMnuEMKw+Pv70759eywsLICiZ9fS0lJv+oQQQjyMwQbVxdfMfND8ldDQUEaOHMnFixeV14KCgjhz5gwnTpwAYODAgVy9elVvDenatWsTFhbG119/TZcuXZg0aRI+Pj4MGjQINzc3Ze1OY2Nj5bwrVqygZcuWuLm5MX36dCpWrMjvv/9OzZo1n9r9C/E0/fnnn1SuXJmVK1ei1Wrp1KkTrq6u3L17Vym6FxAQgLe3N6tXr1b2e+211+jQoQPr1q0DioJsb29vzM3NOXPmDJMmTcLd3Z1vv/1W73y3bt2ic+fOqNVqZQ1dXTEyNzc3ZQ6oEGWVZHcIYdgGDhxIWFiYElTrFJ8+IYQQD2OwQXXxFOply5bx6aefsmvXLmXU+b333uP333/XW2fwrbfewszMjISEBKXCY506ddi0aRN5eXnKdhMmTGDBggXUr1+f6Oho2rZtS2JiIp9//jk2NjYAxMTE8O6772JnZ8fEiRNp1aoVR48eZffu3dJoEWXagzI7zp07x6lTp4CiDisbGxuqVavGgQMHuHXrFlZWVvj4+JCbm6v8/7a0tCQoKIjNmzcro8oWFha0a9eO69evExMTg1qtxsPDg8qVK9OqVSuOHDnCwoULSywxV65cOapXr86mTZseuESWEGWdZHcIYfg0Go1MjxBClIrBBtWpqals2bKFoUOH8uWXX3Lq1CmCg4MJCwsD4O2338bIyIhDhw4pAbOJiQnNmzcnJiZGSQEfMGAAkZGRXLlyRTm2Wq2mY8eOTJ48md27d/PVV19RqVIlpSBFWloas2fPxtzcnPDwcE6dOqWMwAlRFv2vzI5u3boxbNgwbt++rXRWffTRR+zbt0+pLNyvXz8SExP1Kg23a9cOIyMjNm/erByrZs2a1K5dmyNHjgDQrl07TExMlL8XFBSUWPrHysqKOXPmUK9evSd850I8G5LdIYThMzIykukRQohSMcigOiMjgyFDhjB06FDS09M5duwYkZGRfPfdd6xcuZKff/4ZAD8/P2JiYjh//ryyb9u2bTl16pSybML777/P1atXiY2NLXEe3RfrvXv3lGIzANWrV2fNmjUsX76cFi1aSFqQKPOKZ3YsX76cUaNGsXfvXmVka/jw4Rw/flwprgdF0yXy8vI4evQohYWF+Pr64ujoqDT+AapWrUrLli2VOaFQVEQpKiqKkSNHAkVBtqurq5LiamJiIsVdhEGR7A4hhBBC/B2DbNlWqlSJtm3bkpGRwZtvvomNjQ0qlYqgoCCCg4P5/vvvAejduzfXrl1j3759QFFaz8aNG9FoNOzcuZMbN25gYWHB3r17CQ4Ofuj51Gp1iYqPuhEBIQxBamoq27ZtY+TIkXz11VecOHGC7t27M3/+fKCoYv3t27fZv3+/svxP+fLladmyJZs2bSIjIwOA4OBg1q1bR05ODgCmpqYMGDCADh066C0tYmZmplfcxd/fnzFjxuDo6Pgc7l6IxyfZHUIIIYR4VM89qNatpfmodA0LHx8fnJ2dlaqnupGEHj16EB8fT25uLk2bNqV169ZMnjyZESNGEBwcTOXKlfnqq6949913sbe3R6PR4OvrK+k+4oWVkZHB4MGDGTx4MFlZWRw/fpwdO3YQEBDAL7/8orecz9q1a8nKylJGkv38/EhKSuL06dMA9OzZUy/TA6Bz585Mnz69xOhz8eIuHTp0IDg4mPLlyz+DOxbin5PsDiGEEEI8qmf2K52ZmcnIkSP5448/9F7XraUJKKNhf0fXsGjUqBEeHh6cOHGCu3fv6o0kvPrqq/z6668ATJo0ibFjxxIfH4+ZmRkDBw5k5MiR9OjRA2NjY2moiBdepUqVaNeuHZmZmbRp0wZLS0sAJTsjPDwcgKFDhxIfH8/Ro0cByMvLY9u2bWRmZrJ9+3Zyc3N5/fXXiYyMxNvbW+8cUtxFvGgku0MIIYQQj+qpRpTZ2dmkp6cDkJ+fT3JyMnfv3tXb5tKlS3z66ac4Ozvj7+/PkCFDlJ7/hzXStVotFhYWNGvWjNjYWJYvX66MHoSHh+Pi4kK9evXQaDRUrlyZoUOHEhUVxeLFi3F1dQUokUonhCEobWZHixYtcHZ2VtJQARo2bEjNmjU5dOgQGo2Gtm3b4unpSVhYGBMnTqR///74+voybtw4GjdujKmpKVA06nx/ZocUdxEvEsnuEEIIIcTjeKpBdc2aNZk0aRJ3797F0dGRrVu34uDgoLx/7tw5QkJCOH/+PNOnT2fUqFHExcXxxRdfkJub+9BGui7YbtOmDY6OjowcOZIPPviAVq1asWzZMkJCQjA3Ny/RYLl3757eyIAQZdWTzuzw8PCgfv36HDt2TOnYsra2xtPTk6ysLPbs2QPAd999R58+fdi8eTOmpqb06NGDCRMmEBQUJM+MeGlIdocQQgghHsdTaSXrRo379+9PdHQ0v//+OwBXrlyhW7duXL58GQAXFxc6duzIhg0bCAoK4u2336Z+/frs3LmTXbt2AQ+uuqpr3NetWxcvLy+aNGmCj48PvXr1IiUlhQEDBjzwutRqtQQGosx62pkdnp6eXLt2jYMHDyrveXl5oVKpWLVqFQB16tRh3LhxJCQksGTJEqpWrQo8+DkUwhBIdocQQgghnrYnHmFqtVqlMvagQYNISUlR0t6sra3ZuHEj27dvB4qC3NGjR3P+/Hm6d++Ovb09R44cwcHBgZUrVxZd4EOCYI1Gg0qlwsvLi5ycHCpWrMiAAQNwdHSUEQBhkJ52ZkerVq2wsrJi9+7dynv16tWjb9++9OrVq8R+xTM7HlT9WIiyRLI7hBBCCPG8PPYv/u3bt4mPjwcePHqlUqnIysoiPz+f1157jXr16rFhwwZycnKwtramT58+rFixQhk5yMnJYcyYMZiamrJt2zZOnTqFj48P8fHxpKeno1KpSgTIxYu5tG3bFltbWyVQ12g0MgIgDMqzyuxo1KgRFSpUICoqSgk8TExMGDJkCG3bti2xn2R2iLJOsjuEEEIIURY8Vov5zz//pF+/fsryIA8avfrXv/6Fn58fCQkJAHz44Yds3bqVq1evAtCnTx8OHTpEWloaAElJSezcuZN+/frh5eUFFAUTly5dYu3atcB/557pAmkjIyPKlSsHFK3VWblyZc6ePUtGRoYEAcKgPOvMjpEjR7Jy5UpsbW1LvC+EoZHsDiGEEEKUBY8VgdrY2LB48WKmTZumvHbw4EFlJA3A09OT27dvk5KSAsAHH3zAzZs3OXLkiLImdJUqVZTA/Pbt23pz1FasWIGxsTEdO3ZUggvdyLMuhW///v0EBwdjZGTEypUrGTt2LDt37qRSpUr/6MMQ4kkrK5kduoa+p6cnLi4uJa5DOqOEIZHsDiGEEEKUJY/166/VarG2tiY5OZm9e/dy4cIFfHx89Hrx33jjDRwcHDh69Cg3btzAzMyM1q1bs3btWrKzszEyMiIwMJCVK1ei1Wpp2rQpfn5+/Pjjjzg6OjJq1CgCAgJYunQpixYtAooCj9OnTzNixAicnJwICAjA3Nyc3bt3M2jQIKpVqyajAqLMKUuZHboOqevXr0u9AWHQJLtDCCGEEGXNYwXVKpWKu3fv8vnnnzNu3DhcXFyUUbLixWHefPNNkpKSOHXqFABDhgxhz549/PbbbwD069ePtLQ0oqOjsbW15euvv2bFihWsXr2aq1evEhAQgI2NjXK8ffv2UadOHc6cOcPs2bM5c+YMCxYsoE2bNkqwIERZUxYzOxYtWiRzPUWZJtkdQgghhDA0jz1SXb58edq3b09hYSEnT54kODiY/fv3KyNpAN26dSM9PZ0TJ04A4O/vT/ny5YmKiqKwsJC6detSq1Yt5X2A1q1b06pVK6BkQ6p169ZcvXqVzZs3ExAQgJWVValvWIhnpSxmdowePVo6okSZJdkdQgghhDBEjz1SDeDj44OZmRnr1q0jICCAW7dukZiYqGxXo0YNTExMOHz4MBcvXgSK1vz86aefyM7OBiAxMZGwsDC94+saLg9qSFWpUuVxLlWI564sZnbINAlRlkl2hxBCCCEMUany115//XXq1KlDTEwMVlZWyujb6dOnAdi5cyd//fUXcXFxHDlyBID//Oc/rFu3Djs7OwDMzMxKzEmTZbDEi0QyO4R4PJLdIYQQQghD9NhBtW402dvbmz///JOoqCiGDx9OcnIyH330EVOmTOHbb79l8uTJ9OzZk6ZNmwLg5OREnTp19E8uc9LEC0wyO4R4PJLdIYQQQghD9NhRrS5QaNGiBZUqVWL9+vU0bdqUBQsWUKlSJXbs2IG/vz8hISFMmTIFV1dXvf2EeNlIZocQj0ayO4QQQghhiFTaf1CBZfTo0Rw6dIj58+fj7u5Ofn4+pqamyvtarRatVisj0uKlpdVqUalULF++nG+//Zbp06djbW1Nv379eOWVV/Dz8yMmJoaePXty+vRpPvzwQ1xdXZX9hHgZJSUlERoaSqtWrRg2bBh169Zl/PjxDBw4UNmmevXqNG7cmJkzZ+Ls7EyXLl04d+4cBw4cwM7Ojry8PMzMzPSOK8+VEEIIIZ6GUkW7uji8ZcuWqFQq4uLiADA1NUWr1SqjACqVSgJq8VKTzA4hHp9kdwghhBDCkJSq+oquYeLl5cX169fJycnRe0/moAmhz8XFhddff51Dhw6RkpKCt7c3Hh4ektkhxH10o8ne3t4cPXpUqdvRr18/PvroIyW7Y/LkyZw+fVqvbsf9QbM8S0IIIYR4Fkrd4tBoNISHh3Pr1i2aNGnyJK9JiBeKZHYI8egku0MIIYQQhuYfrRNy4cIFpkyZQuPGjZ/U9QjxwpHMDiEen2R3CCGEEMJQlDqoNjIyYuLEiU/yWoR4YUlmhxCPTpcC3rJlSw4fPkxcXBzu7u5KdodGo0GtVqNSqWSEWgghhBDPnXTvC/GMSGaHEI9GsjuEEEIIYUj+Ufq3EOLRSGaHEI9HsjuEEEIIYShkpFoIIUSZJNkdQgghhDAEKq2uNLEQQgghhBBCCCEei4xUCyGEEEIIIYQQpSRBtRBCCCGEEEIIUUoSVAshhBBCCCGEEKUkQbUQQgghhBBCCFFKElQLIYQQQgghhBClJEG1EEIIIR5qyZIl2NraPu/LeC769evHO++887wvQwghRBknQbUQQghhoCTo0xcVFYVKpeKPP/54rP0uXLiASqXi+PHjeq/PmTOHJUuWPLHrE0II8WIyft4XIIQQQghRFtnY2DzvSxBCCGEAZKRaCCGEeAH4+vry8ccfM2zYMCpUqICDgwPz588nJyeH/v37Y2VlRfXq1dm+fbuyj25kd+vWrTRo0ABTU1O8vLw4efLk355ry5YtNG7cGFNTU6pVq8aECRMoLCxU3lepVMybN4/OnTtjbm6Ou7s7hw8f5uzZs/j6+mJhYUHz5s05d+7cYx93wYIF+Pv7Y25uTo0aNQgPDweKRptbt24NQIUKFVCpVPTr1w+AyMhIWrRoga2tLfb29nTu3Fnv3K6urgA0atQIlUqFr68vUDIT4O7du4SGhlKpUiVMTU1p0aIFcXFxJT7PPXv20KRJE8zNzfH29iY1NfV//fMJIYQwYBJUCyGEEC+In3/+mYoVKxIbG8vHH3/MoEGD6NGjB97e3iQmJuLn50dISAi5ubl6+40cOZJvvvmGuLg4KlWqRNeuXSkoKHjgOXbs2EHv3r0JDQ0lOTmZefPmsWTJEiZPnqy33aRJk+jTpw/Hjx+ndu3aBAcH89FHHzFmzBji4+MBGDp06GMfd8KECQQEBJCUlETHjh3p1asXmZmZVK1alfXr1wOQmppKeno6c+bMASAnJ4dPP/2UuLg49uzZg5GREf7+/mg0GgBiY2MB2L17N+np6WzYsOGB9z5q1CjWr1/Pzz//TGJiIm5ubvj5+ZGZmam33dixY5k1axbx8fEYGxvz3nvvPfwfTQghhOHTCiGEEMIg9e3bV/v2229rtVqttlWrVtoWLVoo7xUWFmotLCy0ISEhymvp6elaQHv48GGtVqvV7tu3Twtof/nlF2WbW7duac3MzLSrV6/WarVa7eLFi7U2NjbK+z4+PtopU6boXceyZcu0VapUUf4OaL/44gvl74cPH9YC2oULFyqvrVq1SmtqavqPjnvnzh2tSqXSbt++Xe9+srKyHvKJFcnIyNAC2pMnT2q1Wq32t99+0wLaY8eO6W1X/PO9c+eO1sTERLtixQrl/b/++kvr6OionTFjht75d+/erWyzdetWLaDNy8v722sSQghhuGROtRBCCPGCeP3115U/q9Vq7O3tqV+/vvKag4MDABkZGXr7NW/eXPmznZ0dtWrVIiUl5YHnSEhIIC4uTm8E+d69e+Tn55Obm4u5uXmJa9Gd9/5ryc/PJzs7G2tr61Id18LCAisrqxL3c79z584xbtw4jhw5ws2bN5UR6kuXLlGvXr2/3bf4MQoKCnjjjTeU10xMTGjatGmJz6r4NVapUgUo+sxfe+21RzqXEEIIwyJBtRBCCPGCMDEx0fu7SqXSe02lUgEoQeXf0W17P41Gw4QJE3j33XdLvGdqavrAa9Ed6++upTTH1R3nf91Ply5dqFq1Kj/99BOOjo5oNBrq1avHX3/99bf7FafVavWuu/jr979W2s9cCCGEYZKgWgghhHjJHTlyRBlFzcrKIi0tjdq1az9wWw8PD1JTU3Fzc3ui1/AkjluuXDmgaIRb59atW6SkpDBv3jx8fHwAOHDgwP/c735ubm6UK1eOAwcOEBwcDEBBQQHx8fEMGzas1NcshBDC8ElQLYQQQrzkJk6ciL29PQ4ODowdO5aKFSs+dP3r8ePH07lzZ6pWrUqPHj0wMjIiKSmJkydP8vXXX5f6Gp7EcZ2dnVGpVERERNCxY0fMzMyoUKEC9vb2zJ8/nypVqnDp0iU+++wzvf0qVaqEmZkZkZGRODk5YWpqWmI5LQsLCwYNGsTIkSOxs7PjtddeY8aMGeTm5vL++++X+r6FEEIYPqn+LYQQQrzkpk2bRlhYGI0bNyY9PZ3w8HBl9PZ+fn5+REREsGvXLjw9PWnWrBmzZ8/G2dn5H13Dkzjuq6++yoQJE/jss89wcHBg6NChGBkZ8csvv5CQkEC9evX45JNPmDlzpt5+xsbGzJ07l3nz5uHo6Mjbb7/9wONPmzaNbt26ERISgoeHB2fPnmXHjh1UqFDhH927EEIIw6bS6iYJCSGEEOKlEhUVRevWrcnKysLW1vZ5X44QQghhkGSkWgghhBBCCCGEKCUJqoUQQgghhBBCiFKS9G8hhBBCCCGEEKKUZKRaCCGEEEIIIYQoJQmqhRBCCCGEEEKIUpKgWgghhBBCCCGEKCUJqoUQQgghhBBCiFKSoFoIIYQQQgghhCglCaqFEEIIIYQQQohSkqBaCCGEEEIIIYQoJQmqhRBCCCGEEEKIUpKgWgghhBBCCCGEKKX/A4ktrOI03sKPAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAApm9JREFUeJzs3XlcVNXj//H3AAJuoCjgrriiIrmvWVppmmluaWqW2aJmi1l9S1tM0yzbLNPK7FNprpkt7ktupOa+m+YKLgiugLIz5/cHv7k6gkYjCujr+Xjw0Dlz594zMHfufd9z7jk2Y4wRAAAAAAD4z9xyugIAAAAAAORVhGoAAAAAAFxEqAYAAAAAwEWEagAAAAAAXESoBgAAAADARYRqAAAAAABcRKgGAAAAAMBFhGoAAAAAAFxEqAYAAAAAwEWEagDAdfv+++9ls9mu+rNy5cqcrmKWTJs2TWPHjs30OZvNpnfeeeem1udav9Mrf799+vRRhQoVbmr9crsjR47IZrPpo48+ypHtO/aLI0eO5Mj2s9vatWv1zjvv6Pz58y6vY8GCBVfdjypUqKA+ffq4vG4AyCkeOV0BAMCt47vvvlNwcHCG8ho1auRAbf67adOmadeuXRo0aFCG59atW6cyZcrc1PqsW7fO6fG7776rFStWaPny5U7lNWrUUNmyZfXiiy/ezOrhNrN27VoNHz5cffr0UZEiRVxax4IFCzR+/PhMg/Uvv/wiHx+f66skAOQAQjUAINuEhISofv36OV2NG6Jx48Y5vk1/f3+5ubllWpfbNYwkJCTI29tbNpstp6uC61SnTp2crgIAuITu3wCAm2bGjBmy2Wz64osvnMqHDRsmd3d3LV261CrbtGmTOnToID8/P3l7e6tOnTqaNWtWhnUeP35czzzzjMqWLStPT0+VKlVKXbt2VVRUlKSrd8FduXKlU9f0Fi1aaP78+QoPD3fqWu2QWffvXbt26aGHHlLRokXl7e2t2rVr64cffsh0O9OnT9cbb7yhUqVKycfHR/fdd5/27dv3X3+FV5VZ92+bzabnnntO3333napVq6b8+fOrfv36+uuvv2SM0YcffqigoCAVKlRI99xzjw4cOJBhvcuWLdO9994rHx8fFShQQM2aNdMff/zxr/VxvO8ff/xRgwcPVokSJZQ/f37dfffd2rp1a4bls/L3dvwtlyxZor59+8rf318FChRQUlJSln9PjnUsX75cTz/9tIoVKyYfHx899thjunjxok6ePKlu3bqpSJEiKlmypF555RWlpKRYr3d0KR8zZoxGjRqlcuXKydvbW/Xr18/S70XK2u/0nXfekc1m044dO/Twww/L19dXfn5+Gjx4sFJTU7Vv3z61adNGhQsXVoUKFTRmzJgM24mNjdUrr7yioKAgeXp6qnTp0ho0aJAuXrzotJzjczJlyhRVr15dBQoU0B133KF58+Y51efVV1+VJAUFBWW4tWPmzJlq3bq1SpYsqfz586t69ep6/fXXnbbVp08fjR8/3tqm48exb2bW/TsiIkKPPvqoAgIC5OXlperVq+vjjz+W3W7P8Df56KOP9Mknn1if6SZNmuivv/7K0t8EAK4HoRoAkG3S0tKUmprq9JOWlmY9/8gjj6h///56+eWXtWnTJknS8uXLNXLkSA0dOlStWrWSJK1YsULNmjXT+fPn9dVXX+m3335T7dq11b17d33//ffW+o4fP64GDRrol19+0eDBg7Vw4UKNHTtWvr6+Onfu3H+q+4QJE9SsWTOVKFFC69ats36uZt++fWratKl2796tzz//XHPmzFGNGjXUp0+fTAPO0KFDFR4erkmTJmnixInav3+/2rdv7/T7uRHmzZunSZMm6f3339f06dMVFxendu3a6eWXX9aaNWv0xRdfaOLEidqzZ4+6dOkiY4z12h9//FGtW7eWj4+PfvjhB82aNUt+fn66//77sxwghw4dqkOHDmnSpEmaNGmSTpw4oRYtWujQoUPWMln9ezv07dtX+fLl05QpUzR79mzly5fvP/9ennrqKfn6+mrGjBl68803NW3aND399NNq166d7rjjDs2ePVuPP/64Pv74Y40bNy7D67/44gstWrRIY8eO1Y8//ig3Nze1bdv2mp8Z6b//Trt166Y77rhDP//8s55++ml9+umneumll9SxY0e1a9dOv/zyi+655x699tprmjNnjvW6+Ph43X333frhhx/0wgsvaOHChXrttdf0/fffq0OHDk5/Z0maP3++vvjiC40YMUI///yz/Pz81KlTJ+vv9NRTT+n555+XJM2ZM8faP+rWrStJ2r9/vx544AF9++23WrRokQYNGqRZs2apffv21jbeeustde3aVZKc9rGSJUtm+rs6deqUmjZtqiVLlujdd9/V77//rvvuu0+vvPKKnnvuuQzLjx8/XkuXLtXYsWM1depUXbx4UQ888IBiYmKu+TcBgOtmAAC4Tt99952RlOmPu7u707KJiYmmTp06JigoyOzZs8cEBgaau+++26SmplrLBAcHmzp16piUlBSn1z744IOmZMmSJi0tzRhjTN++fU2+fPnMnj17/rVuhw8fdipfsWKFkWRWrFhhlbVr186UL18+0/VIMsOGDbMeP/LII8bLy8tEREQ4Lde2bVtToEABc/78eaftPPDAA07LzZo1y0gy69atu2rdr/T444+bggULXvW5K+suyZQoUcJcuHDBKvv111+NJFO7dm1jt9ut8rFjxxpJZseOHcYYYy5evGj8/PxM+/btndaZlpZm7rjjDtOwYcNr1tXxvuvWreu0nSNHjph8+fKZp556yirL6t/b8bd87LHHrrlth8OHDxtJ5sMPP7TKHOt4/vnnnZbt2LGjkWQ++eQTp/LatWubunXrZlhnqVKlTEJCglUeGxtr/Pz8zH333ZdhW47P3n/5nQ4bNsxIMh9//HGG+kgyc+bMscpSUlKMv7+/6dy5s1U2evRo4+bmZjZu3Oj0+tmzZxtJZsGCBVaZJBMYGGhiY2OtspMnTxo3NzczevRoq+zDDz/MdF+6kt1uNykpKWbVqlVGktm+fbv13MCBA83VTj/Lly9vHn/8cevx66+/biSZ9evXOy03YMAAY7PZzL59+4wxl/4mtWrVcvoe2bBhg5Fkpk+ffs36AsD1oqUaAJBtJk+erI0bNzr9rF+/3mkZLy8vzZo1S2fOnFHdunVljNH06dPl7u4uSTpw4ID27t2rXr16SZJTq/cDDzygyMhIq9v0woUL1bJlS1WvXv3mvlGlt7Dfe++9Klu2rFN5nz59FB8fn6HFskOHDk6PQ0NDJUnh4eE3tJ4tW7ZUwYIFrceO31Xbtm2durc7yh31Wbt2rc6ePavHH3/c6W9gt9vVpk0bbdy4MUM34sz07NnTaTvly5dX06ZNtWLFCkn/7e/t0KVLF1d+FU4efPBBp8eO99+uXbsM5Zn9jTp37ixvb2/rceHChdW+fXutXr36qr0PXPmdZlZPm82mtm3bWmUeHh6qXLmyUz3nzZunkJAQ1a5d22lb999/f6Yj8rds2VKFCxe2HgcGBiogICDLn89Dhw6pZ8+eKlGihNzd3ZUvXz7dfffdkqS///47S+u40vLly1WjRg01bNjQqbxPnz4yxmQYsK9du3bW94h08/YxAGCgMgBAtqlevXqWBiqrXLmymjdvrvnz52vAgAFO3T8d90K/8soreuWVVzJ9/enTpyWldw+92SNyO5w5cybTbqulSpWynr9csWLFnB57eXlJSh9o60by8/Nzeuzp6XnN8sTEREmX/g6O7rqZOXv2rFNgz0yJEiUyLdu+fbvTdrLy93a4Wnfh/+K//F4cv5PLXe19JScn68KFC/L19c3wvCu/08zqU6BAAadA7yiPjY112taBAweu2jX+yt/plZ9PKf0zmpXP54ULF9S8eXN5e3tr5MiRqlq1qgoUKKCjR4+qc+fOLn/Gz5w5k+k0cbltHwMAQjUA4KabNGmS5s+fr4YNG+qLL75Q9+7d1ahRI0lS8eLFJUlDhgxR586dM319tWrVJKWPhn3s2LFrbssRPq4czOrKUPFfFStWTJGRkRnKT5w4IenS+8irHPUfN27cVUc+DwwM/Nf1nDx5MtMyRwD6L39vh9ww0vfV3penp6cKFSqU6Wuy63eaFcWLF1f+/Pn1v//975p1yQ7Lly/XiRMntHLlSqt1WtJ1zWct3fr7GIBbB6EaAHBT7dy5Uy+88IIee+wxffPNN2ratKm6d++urVu3qmjRoqpWrZqqVKmi7du367333rvmutq2baspU6Zo3759GYKXg6Ola8eOHU7L/P777xmWzWrLnCTde++9+uWXX3TixAmr5UxK7wJfoECBHJmCKzs1a9ZMRYoU0Z49ezIdFCqrpk+frsGDB1tBODw8XGvXrtVjjz0mSf/p752bzJkzRx9++KF10SYuLk5z585V8+bNnbogXy67fqdZ8eCDD+q9995TsWLFFBQUlC3rvFrLr+Nv63je4euvv77mOvLnz3/N7d17770aPXq0tmzZYg2IJqXvYzabTS1btvzvbwIAbgBCNQAg2+zatUupqakZyitVqiR/f39dvHhR3bp1U1BQkCZMmCBPT0/NmjVLdevW1RNPPKFff/1VUvrJeNu2bXX//ferT58+Kl26tM6ePau///5bW7Zs0U8//SRJGjFihBYuXKi77rpLQ4cOVa1atXT+/HktWrRIgwcPVnBwsBo0aKBq1arplVdeUWpqqooWLapffvlFf/75Z4Z61qpVS3PmzNGXX36pevXqyc3N7ard2YcNG6Z58+apZcuWevvtt+Xn56epU6dq/vz5GjNmTKbdf/OSQoUKady4cXr88cd19uxZde3aVQEBATp16pS2b9+uU6dO6csvv/zX9URHR6tTp056+umnFRMTo2HDhsnb21tDhgyxlsnq3zs3cXd3V6tWrTR48GDZ7XZ98MEHio2N1fDhw6/6muz6nWbFoEGD9PPPP+uuu+7SSy+9pNDQUNntdkVERGjJkiV6+eWXrd4hWVWrVi1J0meffabHH39c+fLlU7Vq1dS0aVMVLVpU/fv317Bhw5QvXz5NnTrV6uKf2To++OADtW3bVu7u7goNDbW631/upZde0uTJk9WuXTuNGDFC5cuX1/z58zVhwgQNGDBAVatWdeE3AwDZj1ANAMg2TzzxRKbl33zzjZ566in1799fERER2rhxo3XfaMWKFTVp0iQ9/PDDGjt2rAYNGqSWLVtqw4YNGjVqlAYNGqRz586pWLFiqlGjhrp162att3Tp0tqwYYOGDRum999/X2fOnJG/v7/uvPNO615Ud3d3zZ07V88995z69+8vLy8vPfLII/riiy8yDEr14osvavfu3Ro6dKhiYmJkjMkw9ZBDtWrVtHbtWg0dOlQDBw5UQkKCqlevru+++y7DXLt51aOPPqpy5cppzJgx6tevn+Li4hQQEKDatWtn+T2+99572rhxo5544gnFxsaqYcOGmjFjhipVqmQtk9W/d27y3HPPKTExUS+88IKio6NVs2ZNzZ8/X82aNbvm67Ljd5oVBQsWVFhYmN5//31NnDhRhw8fVv78+VWuXDndd999md6r/G9atGihIUOG6IcfftA333wju92uFStWWHO8v/zyy3r00UdVsGBBPfTQQ5o5c6ZTC7OUPnDdmjVrNGHCBI0YMULGGB0+fDjT+vj7+2vt2rUaMmSIhgwZotjYWFWsWFFjxozR4MGDXfzNAED2s5mrnS0AAAC4aOXKlWrZsqV++umnaw7MldccOXJEQUFB+vDDD686sBoA4PbClFoAAAAAALiIUA0AAAAAgIvo/g0AAAAAgItoqQYAAAAAwEWEagAAAAAAXESoBgAAAADARcxTDdntdp04cUKFCxeWzWbL6eoAAAAAQI4zxiguLk6lSpWSm9vV26MJ1dCJEydUtmzZnK4GAAAAAOQ6R48eVZkyZa76PKEaKly4sKT0D4uPj08O1wYAAAAAcl5sbKzKli1r5aWrIVTD6vLt4+NDqAYAAACAy/zbLbIMVAYAAAAAgIsI1QAAAAAAuIhQDQAAAACAiwjVAAAAAAC4iFANAAAAAICLCNUAAAAAALiIUA0AAAAAgIsI1QAAAAAAuIhQDQAAAACAiwjVAAAAAAC4iFANAAAAAICLCNUAAAAAALjII6crAADAzZCWlqYdO3bo7Nmz8vPzU2hoqNzd3XO6WgAAII8jVAMAbnmrV6/WhAkTdPLkSausRIkSevbZZ3XXXXflYM0AAEBeR6gGANzSVq9erWHDhqlJkyZ66623FBQUpMOHD2vq1KkaNmyYhg8f/p+D9d69exUWFqbo6GgFBASoefPmCg4OvkHvAAAA5GY2Y4zJ6UogZ8XGxsrX11cxMTHy8fHJ6eoAQLZJS0tTr169VLFiRY0cOVJubpeGErHb7XrzzTd1+PBh/fjjj1nuCr53717NmDHDqcxms6l79+4EawAAbiFZzUkMVAYAuGXt2LFDJ0+eVK9evZwCtSS5ubmpV69eioyM1I4dO7K8zrCwsAxlxphMywEAwK2PUA0AuGWdPXtWkhQUFJTp845yx3JZER0dnWn5qVOn/mPtAADArYBQDQC4Zfn5+UmSDh8+nOnzjnLHclkREBCQabm/v/9/rB0AALgVEKoBALes0NBQlShRQlOnTpXdbnd6zm63a+rUqSpZsqRCQ0OzvM7mzZvLZrM5ldlsNjVv3jxb6gwAAPIWQjUA4Jbl7u6uZ599VuvWrdObb76p3bt3Kz4+Xrt379abb76pdevWacCAAf9pvurg4GB1795dpUuXlqenp0qXLs0gZQAA3MYY/RuM/g3glpfZPNUlS5bUgAEDmKcaAABkKqs5iVANQjWA20JaWpp27Nihs2fPys/PT6Ghof+phRoAANxespqTPG5inQAAyDHu7u6qU6dOTlcDAADcYrinGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwkUdOVwAAgLxk7969CgsLU3R0tAICAtS8eXMFBwfndLUAAEAOoaUaAIAs2rt3r2bMmKHjx48rJSVFx48f18yZM7V3796crhoAAMghtFQDAK5bYmKiIiIicroaN9zs2bN15syZTMu7deuW7dsrV66cvL29s329AAAg+xCqAQDXLSIiQs8880xOV+OGCw8PlzEmQ7nNZtOyZcuyfXsTJ05U1apVs329AAAg+xCqAQDXrVy5cpo4cWJOV+NfhYeHa9SoUXrjjTdUvnz5//z6WbNmKSoqKkN5YGDgDWupBgAAuRuhGgBw3by9vfNUi2r58uVdqm/Xrl01c+ZMp9Zqm82mrl275qn3DwAAsg+hGgByuaioKMXExOR0NW4J4eHhTv/+V25ubmrYsKE2b96ss2fPys/PT/Xq1ZObm5v++eef7KxqnuHr66vAwMCcrgYAADnGZjK7OQy3ldjYWPn6+iomJkY+Pj45XR0Al4mKitKjvR9TSnJSTlcFyFQ+Ty/9OGUywRoAcMvJak6ipRoAcrGYmBilJCcpoeLdsnv75nR1bgkJ56J0IfKwUhIuKF/+QipUMkj5iwZec5l8BX2UcjH2mq+5HbklxkiHVikmJoZQDQC4bRGqASAPsHv7yl6weE5XI89LPHNCZ8P/fzdtdy8lJacoOeIfFc1fVN7FSmW6zMWYs0o8uFPexUvLI3/hTF8DAABuX4RqAMgD3BLO53QVbgkXD22RLSXeqSw14YJOrpkt7yIBype/kJLjY2W77M6olHORUlqyUs5FKp+Hu9O6Cnh73rS650Z8LgEAIFQDQJ6Q//DqnK7CLeF0eLg8Lw/MKSlKvnhRNptN+ZJOS5ISYmJUoEAB5cuXT5IUf/683CXZEmzy1EXrtbbTNhVU9E2tPwAAyH3ccroCAICr8/X1lUe+27s1NDt5ejr/LhMTEyWlj+rt4ObmpsTERKWkpCguLk7JyclKSkrSleN6Xrmu25VHPk/5+nK/PwDg9kVLNQDkYoGBgZr64xSm1MomYWFhevfdd9W8eXMVKVJEGzdulDFGVapUUdGiRSVJ586d065du6zQnJCQoHPnzsnPz0+hoaEqWrSobDab2rZtq0qVKuXk28kVmFILAHC7I1QDQC4XGBiY60NLYmKiIiIicroa/6pcuXIKCAhQ8eLFZbPZVKJECRUqVMgK1JJUtGhRFStWTMYYJSQkyN/fX+XLl1d8fLyioqIUHBysevXq3ZRAXa5cOXl7e9/w7QAAANcRqgEA1y0iIkLPPPNMTlcjSwoUKKCtW7dKkuLj4xUdnfG+6NTUVHl4ZDxE2mw2paSkaNmyZTe8npI0ceJEVa1a9aZsCwAAuIZQDQC4buXKldPEiRNzuhouOXjwoDZv3qyzZ8/Kz89P9erV0+bNmxUVFZVh2cDAQHXr1u2m1a1cuXI3bVsAAMA1NnPlyCu47cTGxsrX11cxMTHy8fHJ6eoAQI7bu3evZs6c6TQ4mc1mU/fu3RUcHJyDNQMAADdLVnMSo38DAHCF4OBgde/eXaVLl5anp6dKly5NoAYAAJmi+zcAAJkIDg4mRAMAgH9FSzUAAAAAAC4iVAMAAAAA4CJCNQAAAAAALiJUAwAAAADgIkI1AAAAAAAuIlQDAAAAAOAiQjUAAAAAAC4iVAMAAAAA4CJCNQAAAAAALiJU50ITJkxQUFCQvL29Va9ePYWFhWXpdWvWrJGHh4dq1659YysIAAAAAJBEqM51Zs6cqUGDBumNN97Q1q1b1bx5c7Vt21YRERHXfF1MTIwee+wx3XvvvTeppgAAAAAAmzHG5HQlcEmjRo1Ut25dffnll1ZZ9erV1bFjR40ePfqqr3vkkUdUpUoVubu769dff9W2bduyvM3Y2Fj5+voqJiZGPj4+11N9AAAAALglZDUn0VKdiyQnJ2vz5s1q3bq1U3nr1q21du3aq77uu+++08GDBzVs2LAbXUUAAAAAwGU8croCuOT06dNKS0tTYGCgU3lgYKBOnjyZ6Wv279+v119/XWFhYfLwyNqfMykpSUlJSdbj2NhY1ysNAAAAALcxWqpzIZvN5vTYGJOhTJLS0tLUs2dPDR8+XFWrVs3y+kePHi1fX1/rp2zZstddZwAAAAC4HRGqc5HixYvL3d09Q6t0dHR0htZrSYqLi9OmTZv03HPPycPDQx4eHhoxYoS2b98uDw8PLV++PNPtDBkyRDExMdbP0aNHb8j7AQAAAIBbHd2/cxFPT0/Vq1dPS5cuVadOnazypUuX6qGHHsqwvI+Pj3bu3OlUNmHCBC1fvlyzZ89WUFBQptvx8vKSl5dX9lYeAAAAAG5DhOpcZvDgwerdu7fq16+vJk2aaOLEiYqIiFD//v0lpbcyHz9+XJMnT5abm5tCQkKcXh8QECBvb+8M5QAAAACA7EeozmW6d++uM2fOaMSIEYqMjFRISIgWLFig8uXLS5IiIyP/dc5qAAAAAMDNwTzVYJ5qAAAAALgC81QDAAAAAHCDEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoToXmjBhgoKCguTt7a169eopLCzsqsv++eefatasmYoVK6b8+fMrODhYn3766U2sLQAAAADcvjxyugJwNnPmTA0aNEgTJkxQs2bN9PXXX6tt27bas2ePypUrl2H5ggUL6rnnnlNoaKgKFiyoP//8U/369VPBggX1zDPP5MA7AAAAAIDbh80YY3K6ErikUaNGqlu3rr788kurrHr16urYsaNGjx6dpXV07txZBQsW1JQpU7K0fGxsrHx9fRUTEyMfHx+X6g0AAAAAt5Ks5iS6f+ciycnJ2rx5s1q3bu1U3rp1a61duzZL69i6davWrl2ru++++0ZUEQAAAABwGbp/5yKnT59WWlqaAgMDncoDAwN18uTJa762TJkyOnXqlFJTU/XOO+/oqaeeuuqySUlJSkpKsh7HxsZeX8UBAAAA4DZFS3UuZLPZnB4bYzKUXSksLEybNm3SV199pbFjx2r69OlXXXb06NHy9fW1fsqWLZst9QYAAACA2w0t1blI8eLF5e7unqFVOjo6OkPr9ZWCgoIkSbVq1VJUVJTeeecd9ejRI9NlhwwZosGDB1uPY2NjCdYAAAAA4AJaqnMRT09P1atXT0uXLnUqX7p0qZo2bZrl9RhjnLp3X8nLy0s+Pj5OPwAAAACA/46W6lxm8ODB6t27t+rXr68mTZpo4sSJioiIUP/+/SWltzIfP35ckydPliSNHz9e5cqVU3BwsKT0eas/+ugjPf/88zn2HgAAAADgdkGozmW6d++uM2fOaMSIEYqMjFRISIgWLFig8uXLS5IiIyMVERFhLW+32zVkyBAdPnxYHh4eqlSpkt5//33169cvp94CAAAAANw2mKcazFMNAAAAAFdgnmoAAAAAAG4wQjUAAAAAAC4iVAMAAAAA4CJCNQAAAAAALiJUAwAAAADgIkI1AAAAAAAuIlQDAAAAAOAiQjUAAAAAAC4iVAMAAAAA4CJCNQAAAAAALiJUAwAAAADgIkI1AAAAAAAuIlQDAAAAAOAij5yuwK3i6NGjOnLkiOLj4+Xv76+aNWvKy8srp6sFAAAAALiBCNXXITw8XF999ZWmT5+uo0ePyhhjPefp6anmzZvrmWeeUZcuXeTmRqcAAAAAALjVkPRc9OKLL6pWrVrav3+/RowYod27dysmJkbJyck6efKkFixYoDvvvFNvvfWWQkNDtXHjxpyuMgAAAAAgm9FS7SJPT08dPHhQ/v7+GZ4LCAjQPffco3vuuUfDhg3TggULFB4ergYNGuRATQEAAAAAN4rNXN5nGbel2NhY+fr6KiYmRj4+PjldHQAAAADIcVnNSXT/zgYJCQmKj4+3HoeHh2vs2LFavHhxDtYKAAAAAHCjEaqzwUMPPaTJkydLks6fP69GjRrp448/VseOHfXll1/mcO0AAAAAADcKoTobbNmyRc2bN5ckzZ49W4GBgQoPD9fkyZP1+eef53DtAAAAAAA3CqE6G8THx6tw4cKSpCVLlqhz585yc3NT48aNFR4ensO1AwAAAADcKITqbFC5cmX9+uuvOnr0qBYvXqzWrVtLkqKjoxn4CwAAAABuYYTqbPD222/rlVdeUYUKFdSoUSM1adJEUnqrdZ06dXK4dgAAAACAG4UptbLJyZMnFRkZqTvuuENubunXKjZs2CAfHx8FBwfncO2ujSm1AAAAAMBZVnOSx02s0y2tRIkSKlGihFNZw4YNc6g2AAAAAICbge7fLurfv7+OHj2apWVnzpypqVOn3uAaAQAAAABuNlqqXeTv76+QkBA1bdpUHTp0UP369VWqVCl5e3vr3Llz2rNnj/7880/NmDFDpUuX1sSJE3O6ygAAAACAbMY91dchOjpa3377rWbMmKFdu3Y5PVe4cGHdd999euaZZ6zRwHMr7qkGAAAAAGdZzUmE6mxy/vx5hYeHKyEhQcWLF1elSpVks9lyulpZQqgGAAAAAGcMVHaTFSlSREWKFMnpagAAAAAAbiIGKgMAAAAAwEWEagAAAAAAXESoBgAAAADARYRqAAAAAABcRKjOJqmpqVq2bJm+/vprxcXFSZJOnDihCxcu5HDNAAAAAAA3CqN/Z4Pw8HC1adNGERERSkpKUqtWrVS4cGGNGTNGiYmJ+uqrr3K6igAAAACAG4CW6mzw4osvqn79+jp37pzy589vlXfq1El//PFHDtYMAAAAAHAj0VKdDf7880+tWbNGnp6eTuXly5fX8ePHc6hWAAAAAIAbjZbqbGC325WWlpah/NixYypcuHAO1AgAAAAAcDMQqrNBq1atNHbsWOuxzWbThQsXNGzYMD3wwAM5VzEAAAAAwA1lM8aYnK5EXnfixAm1bNlS7u7u2r9/v+rXr6/9+/erePHiWr16tQICAnK6itcUGxsrX19fxcTEyMfHJ6erAwAAAAA5Lqs5iXuqs0GpUqW0bds2TZ8+XVu2bJHdbteTTz6pXr16OQ1cBgAAAAC4tdBSDVqqAQAAAOAKtFTfZMePH9eaNWsUHR0tu93u9NwLL7yQQ7UCAAAAANxIhOps8N1336l///7y9PRUsWLFZLPZrOdsNhuhGgAAAABuUXT/zgZly5ZV//79NWTIELm55b0B1en+DQAAAADOspqT8l4CzIXi4+P1yCOP5MlADQAAAABwHSkwGzz55JP66aefcroaAAAAAICbjO7f2SAtLU0PPvigEhISVKtWLeXLl8/p+U8++SSHapY1dP8GAAAAAGeM/n0Tvffee1q8eLGqVasmSRkGKgMAAAAA3JoI1dngk08+0f/+9z/16dMnp6sCAAAAALiJuKc6G3h5ealZs2Y5XQ0AAAAAwE1GqM4GL774osaNG5fT1QAAAAAA3GR0/84GGzZs0PLlyzVv3jzVrFkzw0Blc+bMyaGaAQAAAABuJEJ1NihSpIg6d+6c09UAAAAAANxkhOps8N133+V0FQAAAAAAOYB7qgEAAAAAcBEt1S6qW7eu/vjjDxUtWlR16tS55nzUW7ZsuYk1AwAAAADcLIRqFz300EPy8vKSJHXs2DFnKwMAAAAAyBE2Y4zJ6UrkVX379tVnn32mwoUL53RVrktsbKx8fX0VExMjHx+fnK4OAAAAAOS4rOYk7qm+Dj/88IMSEhJyuhoAAAAAgBxCqL4ONPIDAAAAwO2NUH2drjVAGQAAAADg1sZAZdepatWq/xqsz549e5NqAwAAAAC4mQjV12n48OHy9fXN6WoAAAAAAHIAofo6PfLIIwoICMjpagAAAAAAcgD3VF8H7qcGAAAAgNsbofo6MPo3AAAAANze6P59Hex2e05XAQAAAACQg2ipBgAAAADARYRqAAAAAABcRKgGAAAAAMBFhGoAAAAAAFxEqAYAAAAAwEWEagAAAAAAXESoBgAAAADARYRqAAAAAABcRKgGAAAAAMBFhGoAAAAAAFxEqM6FJkyYoKCgIHl7e6tevXoKCwu76rJz5sxRq1at5O/vLx8fHzVp0kSLFy++ibUFAAAAgNsXoTqXmTlzpgYNGqQ33nhDW7duVfPmzdW2bVtFRERkuvzq1avVqlUrLViwQJs3b1bLli3Vvn17bd269SbXHAAAAABuPzZjjMnpSuCSRo0aqW7duvryyy+tsurVq6tjx44aPXp0ltZRs2ZNde/eXW+//XaWlo+NjZWvr69iYmLk4+PjUr0BAAAA4FaS1ZxES3UukpycrM2bN6t169ZO5a1bt9batWuztA673a64uDj5+flddZmkpCTFxsY6/QAAAAAA/jtCdS5y+vRppaWlKTAw0Kk8MDBQJ0+ezNI6Pv74Y128eFHdunW76jKjR4+Wr6+v9VO2bNnrqjcAAAAA3K4I1bmQzWZzemyMyVCWmenTp+udd97RzJkzFRAQcNXlhgwZopiYGOvn6NGj111nAAAAALgdeeR0BXBJ8eLF5e7unqFVOjo6OkPr9ZVmzpypJ598Uj/99JPuu+++ay7r5eUlLy+v664vAAAAANzuaKnORTw9PVWvXj0tXbrUqXzp0qVq2rTpVV83ffp09enTR9OmTVO7du1udDUBAAAAAP8fLdW5zODBg9W7d2/Vr19fTZo00cSJExUREaH+/ftLSu+6ffz4cU2ePFlSeqB+7LHH9Nlnn6lx48ZWK3f+/Pnl6+ubY+8DAAAAAG4HhOpcpnv37jpz5oxGjBihyMhIhYSEaMGCBSpfvrwkKTIy0mnO6q+//lqpqakaOHCgBg4caJU//vjj+v7772929QEAAADgtsI81WCeagAAAAC4AvNUAwAAAABwgxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaEaAAAAAAAXEaoBAAAAAHARoRoAAAAAABcRqgEAAAAAcBGhGgAAAAAAFxGqAQAAAABwEaE6F5owYYKCgoLk7e2tevXqKSws7KrLRkZGqmfPnqpWrZrc3Nw0aNCgm1dRAAAAALjNEapzmZkzZ2rQoEF64403tHXrVjVv3lxt27ZVREREpssnJSXJ399fb7zxhu64446bXFsAAAAAuL3ZjDEmpyuBSxo1aqS6devqyy+/tMqqV6+ujh07avTo0dd8bYsWLVS7dm2NHTv2P20zNjZWvr6+iomJkY+PjyvVBgAAAIBbSlZzEi3VuUhycrI2b96s1q1bO5W3bt1aa9euzbbtJCUlKTY21ukHAAAAAPDfEapzkdOnTystLU2BgYFO5YGBgTp58mS2bWf06NHy9fW1fsqWLZtt6wYAAACA2wmhOhey2WxOj40xGcqux5AhQxQTE2P9HD16NNvWDQAAAAC3E4+crgAuKV68uNzd3TO0SkdHR2dovb4eXl5e8vLyyrb1AQAAAMDtipbqXMTT01P16tXT0qVLncqXLl2qpk2b5lCtAAAAAABXQ0t1LjN48GD17t1b9evXV5MmTTRx4kRFRESof//+ktK7bh8/flyTJ0+2XrNt2zZJ0oULF3Tq1Clt27ZNnp6eqlGjRk68BQAAAAC4bRCqc5nu3bvrzJkzGjFihCIjIxUSEqIFCxaofPnykqTIyMgMc1bXqVPH+v/mzZs1bdo0lS9fXkeOHLmZVQcAAACA2w7zVIN5qgEAAADgCsxTDQAAAADADUaoBgAAAADARYRqAAAAAABcRKgGAAAAAMBFhGoAAAAAAFxEqAYAAAAAwEWEagAAAAAAXESoBgAAAADARYRqAAAAAABcRKgGAAAAAMBFhGoAAAAAAFxEqAYAAAAAwEWEagAAAAAAXESoBgAAAADARYRqAAAAAABcRKgGAAAAAMBFhGoAAAAAAFxEqAYAAAAAwEWEagAAAAAAXESoBgAAAADARYRqAAAAAABcRKgGAAAAAMBFhGoAAAAAAFzkkdMVAPDv0tLStGPHDp09e1Z+fn4KDQ2Vu7t7TlcLAAAAuO0RqoFcbvXq1ZowYYJOnjxplZUoUULPPvus7rrrrhysGQAAAABCNZCLrV69WsOGDVOTJk301ltvKSgoSIcPH9bUqVM1bNgwDR8+/F+D9d69exUWFqbo6GgFBASoefPmCg4OvknvAAAAALi12YwxJqcrgZwVGxsrX19fxcTEyMfHJ6erg/8vLS1NvXr1UsWKFTVy5Ei5uV0aAsFut+vNN9/U4cOH9eOPP161K/jevXs1Y8YMpzKbzabu3bsTrAEAAIBryGpOYqAyIJfasWOHTp48qV69ejkFaklyc3NTr169FBkZqR07dlx1HWFhYRnKjDGZlgMAAAD47wjVQC519uxZSVJQUFCmzzvKHctlJjo6OtPyU6dOXWftAAAAAEiEaiDX8vPzkyQdPnw40+cd5Y7lMhMQEJBpub+//3XWDgAAAIBEqAZyrdDQUJUoUUJTp06V3W53es5ut2vq1KkqWbKkQkNDr7qO5s2by2azOZXZbDY1b978htQZAAAAuN0QqoFcyt3dXc8++6zWrVunN998U7t371Z8fLx2796tN998U+vWrdOAAQOuOV91cHCwunfvrtKlS8vT01OlS5dmkDIAAAAgGzH6Nxj9O5fLbJ7qkiVLasCAAcxTDQAAANwgWc1JhGoQqvOAtLQ07dixQ2fPnpWfn59CQ0Ov2UINAAAA4PpkNSd53MQ6AbelvXv3KiwsTNHR0QoICFDz5s3/c/drd3d31alT5wbVEAAAAICrCNXADbR3717NmDHDenz8+HHNnDkzw33N2RG8AQAAANx8dP/Gbd39OzExURERETds/bNmzVJUVFSG8sDAQHXr1k2SdPDgQS1YsECSdO7cOZ04cUIJCQlq2LCh2rRpo0qVKmV5ewcPHtTmzZt15swZFStWTPXq1ftPr89O5cqVk7e3d45sGwAAALhe3FONLLtRoToqKkoxMTHZtr4bITw8XKNGjbqh689sF7PZbCpfvrwkKTIyUklJSUpJSdHFixetZdzd3VW4cGEFBASoQIEC/7qt+Ph4RUdHZyjP6uuz2xtvvGG9x9zK19dXgYGBOV0NAAAA5ELcU40cFRUVpV6P9lZqSnJOVyVHeXp6KikpKdNyh+Tk9N9RYmKi0zJpaWmSpJiYmGuG4vj4eMXExCg6OlrJyclyd3dXvnz55O3trXz58v3r62+UG3mxIrt45PPU1B+nEKwBAADgMuapxg0RExNz2wdqKb0l9N/KHQHbbrc7LeMY3dsRujPjaJ2+cOGCEhISlJaWpuTkZCUnJ+vixYtKSUm55utvd6kpybm+NwUAAAByN0I1bghfX1955PP89wVvcQUKFFBAQIC8vLxks9nk5eWVoTu2I2C7uTnvjo77kS9v1b6SIxAmJibKZrNZ5ampqVb5tV5/u/PI53nVCx8AAABAVtD9GzdEYGCgpv44Jde3At7oe6ql9GB9re7XjuBts9l0/vx5ubm5WV23pau3dkuXWrHtdrs8PDyUkpIiSdZ93Ha7PcdCI/dUAwAA4HbAQGVg9O8bOPr3f+UYvfvs2bPy8/P719G7HaOL7969WxcuXFBiYqLi4uJks9lUoUIF1apVSwMHDryJ7+ASRv8GAABAXsbo38iy2zlU53V79+7VzJkzderUKe3atcsqDwkJkb+/f4b5sAEAuB5paWnasWOHdfE3NDTUGgMEQNbs3btXYWFhio6OVkBAgJo3b875Wi5FqEaWEarzNscX8549e6z5qWvUqMEXNAAgW61evVoTJkzQyZMnrbISJUro2Wef1V133ZWDNQPyjr1792rGjBlOZTabTQ0aNNDx48ezHLQJ5jcHoRpZRqgGAOD24OqJ+OrVqzVs2DA1adJEvXr1UlBQkA4fPqypU6dq3bp1Gj58OMEaucKNurXPcYueowEjs1v0srKM49a9y507d04nTpxQzZo1rTKbzaa2bdtmehvgwYMHtWDBAqeyay2fXW7HW/sI1cgyQjUAALemy0N0WlqaoqOjVbx4cet5m832r7cKpaWlqVevXqpYsaJGjhxpzVaxd+9erVq1StOmTVNCQoK+++47p1CAW09UVNRtOQitYwrTKwUEBEhKn43FMbbN5YPNOpa5fMDa8PBwXRm/4uLilJaWpiJFikiSUlJSrJldihUrJl9fX6d1REZGKikpKUN9vLy8VLJkyet6r9dyOw5Cm9WcxOjfAAAAt6Aru5lu3rxZcXFxCgkJsYK1MUZhYWHXDNU7duzQyZMn9dZbb+mff/5RWFiYdu/erYMHD6p8+fKqWbOmFixYoHHjxqlDhw5OXVhLly6daZdWuq7mPVFRUer1aG+lpiTndFVuuqtdSDh16pQVkBMTE5WWlqaLFy+qYMGCVrCOiYlxCsSenp4ZArHdbrfGJkhJSdHFixclpV/0SkpKsvYTx3ocs79c6Wrl2eVGz5iTHTzyeWrqj1Nu+uwuhGoAAHDLywstbElJSU73K1+vBQsW6PTp09bjo0ePym63a9OmTapSpYpVHhERoQoVKlx1Pbt375YkhYWFac2aNZKk/fv3Kz4+XhERESpTpowkadeuXdq2bZu17vXr1ys8PFzly5eXr6+vFaSrVq2qffv2Wet3lN99990qV65ctr1/hxIlSsjLyyvb15ud8soUj/a0tJyuQo64WliNi4tToUKFJKUHY4fExEQrVF/5Wl9f3wyt3o7pVB2vvbzc4fJwnlkwd5Tf7nLqM0r3b9D9GwBwS7tdW9iu7Gbq6GIqyepmKmW9y+jlXU5jYmKsdbu7u6tw4cIZurA6Hjued0hISFD+/PkzrP9Gd13NzXKqde2/2rt3r44ePZrT1bimyMhI/e9//8v2dWYWYi9cuGCF6sv3L+nSPpbZ5zo+Pl4xMTFKTk6Wp6enPD09FRcXJ0k6f/68tdzlLd42m83qen2t7uiXt4pnt759++b6fbRs2bLZ2uuF7t8AAAD/3+3YwnZla5a3t7cuXryYYQosX1/fLK3v8hY3Nzc3K0A4/r28C6vj8eXPX76ezEL1je66mpvllc9ncHBwru+mn5iYqMaNG2frOg8ePKiFCxc6XaSy2Wyy2WzW5/zcuXPav3+/jDEqVKiQatas+Z8GD3MMcrZq1SqlpaWpVKlSKlq0qPV8YGCgunXrlmF5x/R2mQ2Klt1ux4HKsoqWatBSDQC45eWFFraUlBSn7trX68SJE1q/fr1TWVxcnHx8fKzW46pVq6pUqVL/uq4jR45o6tSp8vLyUokSJZSSkqKIiAhduHBBqampCg0N1fnz51WsWDGrVfrIkSNWq/Tl3csd94deqWjRomrRosV1vefMFC9e3GngqNwou1vXkP0ctymcOnVK/v7+at68uSRp5syZVtg+ffq0IiIiVKlSJZenN927d6/TOqWsDSiIG4PRv5FlhGoAAG5NmQUBV0/Mp0yZog8++EAXLlyQlH4RQJKaNm2q1q1bq3Tp0tq4caNTwNi9e7dq1qxpDYzmmI/38uUc5YQG5EXZuY/dyHXCNYRqZBmhGgAAZMXu3bs1Y8YMnThxQqVKldIjjzziNI3WlWHAMfr3leGA0AAgLyBUI8sI1QAAAADgLKs5ye2qzwAAAAAAgGsiVAMAAAAA4CJCNQAAAAAALiJUAwAAAADgIkI1AAAAAAAuIlQDAAAAAOAiQjUAAAAAAC4iVAMAAAAA4CJCNQAAAAAALiJUAwAAAADgIkI1AAAAAAAuIlQDAAAAAOAiQjUAAAAAAC7yyOkKIOcZYyRJsbGxOVwTAAAAAMgdHPnIkZeuhlANxcXFSZLKli2bwzUBAAAAgNwlLi5Ovr6+V33eZv4tduOWZ7fbdeLECRUuXFg2my2nq4OriI2NVdmyZXX06FH5+PjkdHWAPIn9CLh+7EdA9mBfyv2MMYqLi1OpUqXk5nb1O6dpqYbc3NxUpkyZnK4GssjHx4cvXuA6sR8B14/9CMge7Eu527VaqB0YqAwAAAAAABcRqgEAAAAAcBGhGsgjvLy8NGzYMHl5eeV0VYA8i/0IuH7sR0D2YF+6dTBQGQAAAAAALqKlGgAAAAAAFxGqAQAAAABwEaEayEW4GwMAkBtwPAKArCNUA7lEWFiYbDZbTlcDyLNOnTqlzZs3S5LsdnsO1wbIu7Zs2aILFy7kdDWAPC01NVWRkZE5XQ3cJIRqIBc4fvy4unfvro8++khRUVGSaCUA/oukpCT9+OOP6tKlizZt2iQ3Nw5vgCs2btyo119/XS+99JISEhIkcTwCsiItLc3p8UsvvaQnnnhCq1atyqEa4WZi9G8ghxljZLPZtHz5cn3++ecqXry4Jk2alNPVAvKkwYMHa/v27XrrrbfUokWLnK4OkGc4jkWSdOTIET366KOqU6eOxo0bl8M1A3IvR6+oyy/kHjp0SBUrVpTdbtfw4cM1f/58jRs3Tk2aNHHaz3BrIVQDOcBxNdPd3d2pfMuWLWrcuLGmTp2qzp07Z3geQDpjjNLS0uTh4WE9ttlsOnv2rN58802tWbNGq1evlq+vbw7XFMjdrnY8WrFihR5//HENHTpU/fv3z4mqAbmW3W53CtL79+/XV199pR9//FH58uXT7t275evrq6SkJD399NM6fvy4Zs+eraJFi+ZgrXEj0T8OyAHu7u5yd3dXYmKi9u7dq9TUVElS3bp19dhjj+nbb7+17g0FkJHNZrMC9YEDB3Ty5ElJkp+fn0aNGqXIyEhNnDhRycnJOVlNINdzHI8SEhK0Z88eJSUlSZJatmyp/v3767333tPevXtzuJZA7uLm5qa4uDiNGTNGlStXVo0aNXTgwAEVKlRIlSpVUoECBSRJXl5eGjx4sKKiovTxxx/ncK1xIxGqgZvI0U1o1apVuu+++1SqVCl9+OGH2rNnj7XMM888o4sXL2ru3Lk5VU0g14uJidE777yjMmXKqEOHDlqwYIESExMlSUWLFlX37t21ePFi7dy5M4drCuROjo6Kq1ev1n333aeSJUtq9OjR+ueff6xlXn75ZSUmJmr+/PlKSUnJqaoCOS4uLk7PPPOMYmNjZYzRc889pyJFimj69OlWaP7tt9+UP39+denSRfny5bN6gdSuXVtPPPGEvvnmG8XExOTwO8GNQqgGrsN/vXvCzc1N27dv16BBgxQcHKylS5dq8ODB8vf3t5Zp2LChqlevrm3btunUqVPZXWUgVzHGuDQI0qhRozRv3jx9/PHHmjNnju688065u7tbJzE9e/bUqVOntG3btmyuMZA7/df9yGaz6dChQ3rxxRdVpUoVrVy5Uv/3f/+nkiVLSkrvFu7l5aUHHnhAS5Ys4XiE21pCQoJWr16tqKgo2Ww2denSRQcPHtTWrVv17LPPys/PT3PmzFFkZKQefvhhGWOcbqno1auX4uLitHLlypx7E7ihPHK6AkBeY4yR3W6Xu7v7fx5sIjU1VR999JG8vb317rvvZri3xnGPTmhoqPbu3auIiAinwA3cKux2u2w2m0sDtqxZs0bffvutPv74Y3Xv3j3TZZo0aSI3NzdFRkYqLS2N8QlwS7qe45EkDRkyRF5eXho1apT8/PycnnOs75FHHtEjjzySLfUF8qply5apUqVKKl68uKT02yOkSxezbDablixZosaNG6t48eIZ9scSJUqoWbNm+v333/XQQw9luCcbeR9/TSALHIMiSelfnI4T9J9++klvvvmmDh06lKX1eHh4aN26dXr44YdVtGhR68v4yjl1mzZtqr1796pw4cLZ+C6AnOUIAFJ6rw2bzaaDBw/q9ddf1+zZs7P0ekk6d+6cEhMT1adPH6fnHM87xigIDg7W9u3b5e7uzrzVuGVc63jUt29faxqsf1uH3W5XdHS0GjRoID8/P2udV45mXL9+fSUmJtJSjdtGWlpahv2hdOnSWr9+fYbGEEd4TkhI0MKFC9WuXTvly5cvwzEnNTVVTZo0sW6vIFDfeviLAllw+YnLsmXL1K5dO3l7e6t79+769NNPVbp06SytJyUlRZUqVdKaNWusx9KlL1fHv7Vq1VJSUpLOnTuX3W8FyDE2m01ubm46e/asRo4cqTJlyqhatWoaM2aMdu3aJenaXVgdJy82m00+Pj5au3atpPQToMtbvR0DmDVs2FBHjx6VxAkMbh1XHo8efPBB5cuXT927d9f333+fpXs2bTab4uLiVKJECWsfcazTsa849sX4+Hg1aNDAaewP4Fbk+Mw7Bu9LS0uzwrExRkWKFLH2A8eyjpknFi1apIsXL6pDhw6S0vejy49nHh4e8vDwUIUKFRQbG3sz3xZuEs4ygCwIDw/XM888o6JFi6pr164qWbKktmzZog4dOuiJJ56Ql5dXltZjs9nUvn17LViwQDExMfL09JSU/qUcFhamEydOWNtr1qwZIxfjluA4sZgyZYrq1aungIAA/fLLL/rwww+1cOFClS1b1urGfa0urI71lC9fXjVq1NDEiRMlXQoDJ06cUFhYmLV8TEyMmjZtarVcA7eCgwcPql+/fipSpIi6desmf39/7d27Vz179tSjjz6qEiVKWK1s1+Lr66vatWsrIiJCGzdutMrT0tK0adMmHTlyRFJ6C1tqaqpCQ0Nv1FsCcgXH8WfJkiVq3769ateurQULFkhK3y9KliypTZs2SXLu9i1Js2bNUqNGjVSmTJkM63OMqJ+amqrTp0/Lx8eH3lO3IEI1kAWfffaZoqOjNWXKFJ09e1aTJk2Sj4+PNmzYoObNm2d5PR4eHnr00UdVrlw5de/eXdOnT1d4eLjGjBmjcePG6dixY5LSuxH9888/qlOnzo16S8BNY7PZtHPnTn3zzTdq3769Dh06pM2bN6tHjx5avHixAgMDVbFixSytR0rv1v34449r6tSpGj58uLZu3apVq1bphRde0Nq1axUXFycp/eKUMUYeHh4uDYYG5CaOz/A333yj8PBwTZs2TadPn9Z3332nwoULa+nSpWrTpo2kjHNOX8lxQv/QQw8pMDBQffv21cyZM3Xw4EF9+OGHevvtt63WtGLFiun48ePWFEFAXnd5C/SVPv30U/Xt21eVKlXSkCFDrNvwatasKQ8PD2tGict7dJw7d05//PGHevfuba0nPDxcQ4YMUevWrbV161ZJ6VM+OsbJoffULcgAuCq73W6MMSY1NTVD2aRJk4y/v7+5cOHCf17f+vXrTffu3U316tWNn5+fqVmzpvnxxx9NWlqaMcaYM2fOmPHjx5v4+PjseitArpKWlmYSEhJMcHCweffdd40xl/aPrBo1apRp1KiRCQoKMr6+vqZPnz7m4MGD1vPz5883a9asydZ6AznFsX84jhOXmzJlivH39zenT5/+z+s9efKkad++vQkJCTFFixY1ISEh5vvvv7eOe4cPHzYzZswwMTEx1/cGgFwmISHB6fGuXbtMsWLFzDfffJPp8gMHDjStW7c227ZtM8YYk5ycbIwxZurUqeaOO+4whw8fNhMmTDD16tUzbm5upl69euaHH36wXv/VV1+ZdevW3aB3g5xmM4bL94ArWrRooZCQEH3xxReZPp+VkR23bdumgIAAlSpVyqk8KSlJHh4ejFiMW5L5//egrVixQp06ddLGjRtVpUqVqy53pcv3rZiYGB06dCjTXh0XL15UwYIFs/8NALmEYx9p1aqVypQpo++++y7T/eZqx6PLl927d698fHwyHI+Sk5Pl5uZmjVUA5BXm/w9g6bi/2WazyW6364cfftA333yjQoUKqVGjRvq///s/FS5cWL/++qsGDhyobdu2yd/f33pNSkqK8uXLp9WrV+vdd99VjRo19Nlnn8lut8tut+vRRx/VrFmz5OHhoVKlSumpp57SwIEDMwxqdu7cuQxluHXQ9wBwwcGDB7Vv3z61bt1aUsbRu6Wsde2pXbu2SpUqJbvd7nQPnJeXF4EatyzHSfzcuXNVu3btq3b9vtr91ZfvWz4+PlagTk1NddoXCdS41dlsNu3fv1979+5Vx44drbIrXe14dPmywcHBmR6PPD09CdTIkxyDYzr+L0nDhg3TJ598ojZt2ujxxx/XzJkz9fLLL+v06dM6c+aM/Pz8dPDgQUmXbrnIly+fpPSZWZ544gl988032rt3r3WxycfHR0OHDtXu3bt15MgRvfnmmypatKjTKOKSCNS3OEI1bjtXfsn919dK0qJFi+Tp6an27dsrJSUl05OYP/74QwsXLszSet3c3AjRyDOMMdc1+FdqaqrS0tI0d+5cPfjgg3J3d7dGwr9cXFycRo8efc11Xb7veXh4cJ8a8pTrOR45bNq0SXa7XXfffbekzC/yrlmzRpMmTbK2eS0cj5AXXe1z/dZbb2ny5MmSpI0bN+q3337Tl19+qbffflu9evXSk08+qWnTpmnOnDlq2bKlEhMTrYH7HMeTqKgoRUZGysPDQz179lTnzp31xhtvaO7cuZKkiRMnauTIkapSpYp1fDTGWKOI4/bA2QduO44vucTERK1YsUKnT5+WdO2pfC5/rSRNnjxZXbp0kc1mU758+azuQX/++afCw8MlyRrsRcr8JAfIq2w2m9VytXv3bmtqq6yw2+3y8PDQH3/8odOnT6tLly6SLrUEHDhwQOvWrZMxRtu2bdMbb7yhxYsXS8raPgrkJY7jUUJCglauXKmIiAhJWfusOy5sffXVV2rTpo2KFCkiKT0IpKSk6I8//tCZM2eUkJCgCRMmaPz48dY2gVvNlZ9rR8ieP3++NmzYIEnaunWrbDabKlWqpAEDBqhkyZIaO3as+vfvrxYtWqhixYpq2rSpJk2apFmzZik2Nlbnzp3TBx98oDlz5ljrHjt2rBo3bqzx48frwoUL1vbsdrt1fLzWTBa4NRGqccty3Etz+WNJWr9+ve6//375+/vr7bff1urVqyVdeyqfy+3YsUPHjh1Tz549JUlr167VE088ocKFC+vJJ59UdHS0jDFq2rSpmjVrJolRHpF3ZXZB6MKFC3r//fdVtmxZ3X///frpp5908uTJLK3PsS/MmjVLLVq0UFBQkM6dO6fx48erbt26qlq1qubNmyebzaZChQqpdevW1hQlnKQgr7ryeOTw119/qW3btvL399eIESP0119/ScraZ93Dw0N79uzRgQMH9NRTT0lKPx499thj8vPzU9euXXX8+HHlz59fRYsWVdu2bbP3TQG5yM6dO/Xiiy/qjz/+kJQess+ePaty5cpZI3hXqVJFO3fuVLVq1RQdHa0JEybowIED+uijj1S1alVJ0pgxY9S4cWM999xzatGihcqUKaOwsDCncT+KFy+uV199VW+88YbVy8rd3Z1zvdscN8nglnP5wBSXs9lsOnHihF577TVVq1ZNY8aMUWBgoOLj47O8XpvNpmXLlikxMVEzZsxQp06dFB0drQcffFBLlizRXXfd5bS9rl27Zut7A24Wx8BGmZ0kfP/995o5c6Y++OAD3XvvvYqPj7dOWrLi/PnzWrlypUJDQ9WhQwctXLhQFSpUUL9+/bRq1SprXeXKlVPFihVVuXLlbHtfwM10teORJMXGxur1119XpUqV9Ndff8nf3/8/31YRFhammJgYzZ49W926ddOpU6f04IMPauHChbrzzjut5UJDQ5kSC7ckx7mZp6en/v77b61cuVKbN2+Wh4eHdX90y5YtJaWPwVGlShV17dpVo0aNstZx/vx5zZ8/XxUrVlSTJk30xRdf6Pnnn9dff/2l5s2bq1q1aplu+79MqYpbH6EatwzHF6vj5+jRo1q0aJEqVKigVq1aSUq/krl582bNnTtXhQsXVnx8vEqUKJFhHZlxjBr5xx9/6Ny5c9q0aZM++OADq8XawTFK5FtvvXXj3ixwgzlCwLx583T69GndddddqlixojUfZ0hIiHr27KnU1FQFBgb+p3Xv2LFDhw4dkiS1bdtWe/fuVaVKlazn09LSZLPZVKxYMU2YMCH73hRwk11+PPrtt98UGhqqhg0bytvbWwsXLlRUVJQ+//xzhYSE/KfR6h3Hqjlz5ig+Pl67du265vHomWeeuRFvD7ih0tLS/vV2Bcc5W7Vq1TRt2jTVq1dPr7zyil5++WWVLVtWxYsXtwYeq169unr06KHPP/9clSpV0v3336+LFy/qm2++0ZYtW6wxPPLly6eQkBCFhIRISt/f7HY7t07gmphSC3lWZgE4NTVVBw4c0IoVK/T222+rTJkyOnz4sIYMGaJXXnlF69at08CBA1W6dGkVL15cxYoV0/nz51WnTh298MILV12vdKnlbuPGjapZs6bTVf/U1NRMW/WuFdKB3ODyz6jj/xEREYqKitKwYcO0ceNGlSpVSjExMVqxYoXKly+vF198UStXrlStWrVUsGBB677QJ598UnXr1nU6Ebra9D47d+7UHXfc4VTmuN/6WnUEcqPMPqPJyck6evSolixZohEjRsjHx0fx8fFq3769JkyYoJUrV+qNN96Qh4eHypYtKz8/P50+fVpNmjTRwIED5ebmdtWpsFJTU+Xh4aFDhw4pMDDQKYxzPEJekpaWpsjISJUpU8a6J9mVAOvYV37++Wd9+umnqlu3rj7//HN16tRJFStW1Mcff2wt9+yzz2rlypUqUKCA/v77bzVu3Fivv/667r//fqd1OiIS+w2ygs7/yHMcg09k9iXXp08fde/eXUuWLNHChQu1detWPfvss5o5c6bmz5+vO++8U++99558fHysFuq0tDS9+uqr1n04NptNJ0+etFrSHNtznKA0aNBABQoUcBq19WqjDvNFjNzIGJPpfmSz2XTw4EHVqFFDr7/+uu68805FRERo8eLFypcvn9577z1dvHhRo0ePVrt27aw5bZOTk7V9+3Y9+eSTki4NGLNx48ZM9wGbzWYFascoqdeaB5f9CLnJ5W0R1zoevfTSS6pevbrCwsK0cOFC7d69WyNHjtSkSZO0atUqtWjRQqNHj1b58uVVrlw5FSpUSMnJyRo9erR++OEHSenHnejoaG3btk3SpTEOHPtKxYoVVbBgQY5HyJP++ecftW7dWlOnTpWU/nm32Wxyd3dXWlqafvjhBz3//PNatGiRzp07J+nqA786PvMdO3bUK6+8oi+//FLLly/XgQMHFBQUJOnSBaevvvpKS5cu1fvvv6/IyEitWLEiQ6CWLvU0AbLEALnUxo0bTcWKFc3JkyczfX7Lli1mxowZ5tixY1bZjBkzTNGiRU2PHj2sstOnT5t7773XDBgwwOn1drvd+n9AQIAZM2aMMcaYQ4cOmYYNG1rruHw5IC9JSUkxffr0Mc8//3ymzycmJpqffvrJ/PHHHyY1NdUqf+CBB0yBAgXM6tWrrbJx48aZunXrmqVLl2bYhjHGTJ482Xh7e5uYmBhjjDGffvqpKVu2rFm/fn12vy3gptuyZYspX768OXLkSKbPb9q0yUydOtUcOHDAKvvnn3+MzWYz3bp1c1o2ODjYPP/88yYuLi7Dei5evGjq169vBg0aZIwx5syZM6ZWrVqmf//+2fhugJyRlpZmZsyYYTp37myVXX4OZ0z6cenLL780ZcqUMSEhIeahhx4yFStWNO3bt8/SNhznbAMGDDCtW7c2NpvNvPrqq9b2M5Oamup0DARcQUs1cgWTyV0I1apV06hRozLcr7lhwwbVqlXLusrfqlUrjRs3TpJ07733qkqVKvL09LSWL1asmOrUqaN9+/Zp+/btkqRjx44pMjJSp0+f1rBhw1StWjVrZNQSJUqoUqVK1iAvXKVEXmAuG13Y8a+Hh4d69eql559/3mnZpKQkDRkyREWLFtVbb72lJ554Qr1799aWLVskpd/nXLx4cadBkzp16qSEhARr/s7k5GQdPnxYcXFxWrt2rb799lu99tpr1m0RlSpVUpkyZax5O4G84vKWMMdnt1ixYho/frzKly/vNB/upk2bVLt2bbVs2VKff/65GjZsqKlTpyoxMVFVqlRRpUqVVKBAASUkJFjr6tWrl5YtW6YjR45Ikg4fPqzo6GidPHlSY8eOlc1mU79+/SRJfn5+KlGihMqWLZuhbkBe4+bmpuPHj2vz5s3aunWrJKl06dI6cuSIdX527tw5nT17Vu+//7527typX3/9VX/88YfmzZunhQsX/uvxxPH822+/bd0THRwcbG0/M8wnjexAqEau4Aiujvn+jDEqXLiwHnnkEacT+/j4eH366aeqUaOGDh06pLlz56pjx44aPHiwtm7dquLFi6tBgwaKjIzUzp07rdfdd999io+P1/r162W32zV58mQ9+uijqlKlin755Rc9//zzCgkJkd1uV/78+XX69GlVqFDhpv4OgOvh6KYWGxsr6VK31Pvuu09VqlTRxYsXrWVXrVql3377TVOnTtXu3bs1duxYRUdH68UXX5QkPfzwwzLGaOfOndZJfOnSpXXHHXdo06ZNioqK0qZNmzR8+HA1atRIbdu2VdWqVfX0009b3VJr166t5ORkFS1alAtTyFMcJ94xMTHWZ7dcuXJq166dUlJSnE6+P/zwQ1WrVk0HDx7U4sWL9eijj+r999/XtGnTJEm9e/fWihUrFBUVZa3riSee0IkTJ7Rjxw5J0qRJk/Too48qODhYM2fO1CuvvKJq1apZ+3CjRo1UqFAhp7oBeYndbrc+zy1atFCFChU0a9YsSdKRI0fUu3dvvffee5LSGzY6d+6sXr166eDBg3rhhRes0btnzpxpHeOuxrGPlChRQiNGjJDdblffvn1v1FsDLsmhFnLAyebNm80999xjvvrqK6ssMTHRbN++3eTPn9/s2bPHGGPMuXPnjJeXl5k3b561XFJSkrnrrrvMI488YowxZsGCBaZ27drmm2++sZa5ePGiadOmjXnwwQdNUlKS2b59u5k8ebI5dOiQUz0c3X+SkpKMMXT9Rt7y2muvmQ4dOlifX0dX7Mcff9y0bt3aWm7EiBGmSpUqTq9duHCh8fDwMDt37jTGGNO+fXvTsWNHExERYS0zc+ZMU7p0aTN79myTmppqfv75Z7No0aIb/baAm+rQoUOmatWqZtq0aVaZ3W43O3bsMEWKFDFhYWHGGGP2799vqlSpYr788ktruejoaNOnTx/TvHlzY4wxUVFRxmazmZ9++slpG40aNTJt2rQxiYmJZufOnWbq1Knm8OHDmdaHbqm4lcTGxpoXXnjBNGjQwCp75ZVXzD333GP2799vlS1atMiEhISYDh06mCVLlpivv/7a+Pj4mO3bt1913Xa7PdP9xXGbEnAjcckTuUKNGjXk6+uruXPnqnfv3vL09NSyZctUtWpVFSpUSPPnz5eUPiVW5cqVlZiYKCm9Nc7T01O9evXSwoULJUn33HOPihcvri1btlitcwUKFNA999yju+66SykpKQoNDVXv3r0VFBTkdAXV0QLh6elpjUIJ5HaOz29ISIhOnDihQYMGqXz58rr//vuVmpqqxo0ba82aNdZ+c+DAAd1xxx2Ki4uz1lGnTh3VrFlTkydPlpTeRXXPnj3as2ePtcyDDz6oli1bqly5cnJ3d1fnzp2twV3S0tIy7ZpKd1XkNUFBQfL19dWcOXPUo0cPubm56ddff1WJEiUUHBxs7SNnz55VcnKyypQpY722WLFiatasmY4fP66DBw8qICBAjRs31q+//mr1xJKkgQMHqnbt2rLb7db0dBUqVHA6Hjm4u7tzCwVyrUOHDunTTz+1Hmf2nX/27Fk99thjOnnypAoXLqwGDRooLi7OOrdr0qSJ4uPjtWzZMknS6dOnNXr0aDVu3FhTpkxRq1atVKFCBavH4ZXzuTuOP45BzhzMZbdCATcaoRo3VWYnDJK0Z88ebdy4UQsWLNCZM2e0fPlytW3bVt7e3urZs6d1ElO6dGkVK1bM6jbn+PIsWbKkChQooEOHDsnLy0t16tTRypUrrRFTJenVV1/Vq6++6jT1iPn/ow5ndi8N3eyQGxljMpxQ2Gw2GWO0ceNGbd68WbNnz9bzzz+v33//XR4eHrr//vuVL18+q0tqUFCQoqOj9ffff1vrKFSokEqXLm3tn127dtXJkyf1xx9/KDk5WVL6xakpU6aoQYMGTvWR0vfFzPYZ9iPkVlc7Hu3evVvHjh3Tzz//rPPnz2vFihXq1KmTfHx81L59e82dO1eS1LBhQ6Wmpmr37t3WBSs3Nzflz59fvr6+SkhIkJTe3XvatGmKiIiwttG7d2+NHj1a+fPnl3RpTISrHY+4wIvcateuXU4XbR3f+ZfvWzExMfr111+t8W/uuOMOVahQQXPmzJEkNW3aVCVLltSqVaskScWLF9e2bdvUsGFD+fj4SJJ++eUX2e12ffXVVzp//rwkWcdCx/EnOjpao0aNUs+ePZWQkMB+g5uKsx3cVI4ThpSUFO3atctqSfbx8dHgwYPVuHFjtW7dWnfeead1sv7YY49p165d2rBhgypWrKhatWpp4cKFTi1os2bNUkhIiIoXLy4p/SRm5MiRatiwodP27Xa70xV/vnCR19hsNuuq+4EDB3T06FFrGpIOHTqoS5cuaty4sXr06CF/f39J6Rej2rZtq0mTJkmSunTpojNnzuinn36y1nv06FGtWbNGzZs3l5R+kjJ+/Hg9+eSTTgP/Sc4nS+xDyKscx6Pk5GRt27bNOh75+/vr/fffV8mSJfXII4/o7rvvliR5eXmpefPmSktL0+zZsyWlD+D3008/6a+//rLWu2HDBqWlpalq1aqSpKefflqTJk2yHjtcfjxi6h7kVR06dNDs2bPl7e0tSTp//rw6d+6sIUOGWMuUKlVK/fv3t6bOqlatmho0aKCNGzfq/PnzKlGihGrXrq3w8HBrX2rfvr2GDBmiJ554Qk2bNpUxRuvXr9cbb7xhnet5eHjIbrfrhx9+UNOmTVW5cmUtWLBAbdq0oXUaN1/O9DrH7SAtLS3DPclr1641Dz30kPHx8TG1a9c2rVq1Mps2bTLGpN/H3LNnT9OhQweTkJBgjLl0T3ONGjXMCy+8YIwxZvv27aZt27bG39/fDB8+3PTp08cEBQU53f8G3CquvD8sNjbWfPzxxyYoKMiUKFHC1KlTx4wYMcLExsYaY4z55ZdfTJ06dcz333/v9Lrff//duLm5WdOXfPHFF6Zo0aKmY8eOZsSIEeaOO+4wHTp0MKdOnbo5bwy4iex2e4bj0bp166zjUc2aNU2jRo3Mnj17rGl3Wrdubbp162aOHz9uvebkyZOmffv2pk2bNsYYYw4cOGAefvhh4+PjY0aOHGl69eplypQpY2bOnOm0beBWtnHjRjNw4EBjjDFxcXGmf//+Jjg42GmZ5cuXG5vNZrZs2WKMST9W1apVy3z33XfGGGOWLVtmWrRoYUaOHGmMSR+PYMKECaZNmzZm5MiR5ty5c07ri46ONk8//bTx9PQ0ISEh5p133nG6Jxu42WipRrYz///Ku6P1bPv27dqxY4fOnDmj119/XWXLltWyZcs0Y8YMFSxYUO+8845OnDghT09P1atXT1FRUfrzzz8lXera89hjj+n3339XbGysQkNDNWXKFL366qtatWqVEhISNHXqVPXo0SPTegB5maNnx4oVKxQXF6fZs2fr559/1jvvvKMtW7Zo4MCB+v333zVx4kRJ6WMKFCpUSBs3brS640npXVXLlStn3UoxcOBATZ06VaVLl9aiRYvUs2dPTZ8+3WoBcOCeaORl5oqW4C1btmjfvn06ceKEPv74YxUrVkyrVq3S/PnzVbx4cQ0dOtSaOaJbt27aunWr020S/v7+euCBB7Rp0ybFxcWpUqVK+uqrr/Tmm29q3bp1Sk1N1YwZM9StWzfrNbRA41Z34cIFTZgwQdu3b1ehQoXUoUMHnThxQhs2bLCWqVmzpurWrasvvvhCklSrVi0FBwdb91U3btxYhQoV0pIlS5SYmKiAgAANGDBACxcu1BtvvKEiRYpIutRTKiEhQXXr1tXy5cu1fft2DRs2TJUrV765bxy4XA6HetwCHFf1L3fq1CkTERFhevfubfz8/KyRuB1XJI0xJjw83Dz00EPG19fXGvV7w4YN5p577jFDhw51Wt+RI0eMzWYzc+bMuXFvBMghmbWiGWPMP//8Y8LCwoyfn59p166dOXjwoNm+fbtZu3atMSZ935s+fboJDAw09957r9Wi9vLLLzv1AnEs+/zzz5uiRYs6bePKUVFpVUNeltnxKCoqykRGRprBgwcbm81mpk2bZo4ePWqWLl1qLX/06FHTtWtX4+/vbz777DNjjDEXLlwwQUFB5sMPPzTJycnW+rZs2WKKFClixowZc3PeFJDD/m0EervdbqpVq2aGDBlijEk/v2vatKl56qmnrGXS0tLMoEGDjJ+fn1X2wQcfmMDAQLNv3z5jjDGLFy/OdHTv1NRUjk3I9WiphsscVwszG4iofPny6t69uwoXLqzt27frqaeekiT16dNHmzdv1p133qn69esrMTFRderU0c8//yxJql+/vmrWrKnffvtNO3bs0MKFC/Xzzz+rfPny6tevnzVgxZX1oDUNeZHdbrdGLL2yNeunn35StWrV9Nlnn2n8+PGaN2+eKlasqNDQUNWvX1/Dhw9XmTJlNGrUKDVt2lSnT5/WH3/8ISn9HrczZ87ohx9+0PHjx/X+++/rzJkz6tmzp7p162YNoCSl35NmjLH2Z1rVkBdd7XgUFxen+++/X40bN1ZycrIiIiLUo0cPlSxZUvfdd5+2bNmili1bqnbt2kpNTVXZsmW1bt06RUVFqWDBgrr77rs1e/ZsLV++XAsXLtSkSZNUp04dPffcc6pSpUqm9eB4hFtBWlpahplRzFV6ANpsNnXr1k0zZ85UYmKiSpQooXbt2un333+3ljHG6MCBAzp37pwWLVokSapdu7Yefvhha5nWrVsrNDQ0w/rd3d05NiH3y+FQjzzkalcJly5daqZMmWKOHTtmXc1//fXXjc1mM+PGjTPGXLrKGRcXZ+6//34zcOBA696XwYMHm1KlSlnz465du9Z07NjRlChRwri7u5uPP/6YK5S4pZ04ccL873//MytWrLBajs+ePWvKlStnqlWrZk6cOGGMudQKN2vWLBMaGmr13Dh79qwpWbKk6d+/v7XOTz/91FSvXt34+vqaypUrZ5iTHbgVLVq0yEyePNkcOHDAGJN+7Bk3bpyx2WxWC7RDcnKy6dixo3niiSes5d98801Trlw5s3TpUmOMMZs3bzaPPvqoCQgIMD4+Publl1++uW8IuInS0tIy9F5KTk42EyZMMB07djQLFiy46mv37dtn3NzczB9//GGMMWbHjh2maNGiZsCAAebgwYNm9uzZ5umnnzYNGzY0/fr1u+p6ON9DXkWoRgaJiYnW/48ePWp27tyZ4UvWGGN+/vlnU6pUKVO6dGnTrFkzU6tWLfP5558bY4zZtWuXsdlsZvr06U6vWbdunQkMDDQLFy40xqR3Pe3YsaNxc3Mzr7zyirXcmTNnzO7duzNs89+6IAG5xeWf1dWrV5sLFy5kWOb06dOmV69extvb2zRr1swEBQWZxx57zOzatcsYY0zPnj1N3bp1TVxcnPWahIQE07dvX9OqVSvr5GPp0qWmePHiplatWk5d53bv3m0NYOZgt9sz7SIL5EZJSUnW/48ePWo2btzo9LxjH/j1119NuXLlTMmSJU2bNm1MkSJFzMyZM43dbjd79uwx+fPntwazdOyby5YtM1WqVDGzZs0yxqTvW507dzbFixc3r776qrWNmJgYq3vq5Tge4VY2b948065dO+Pr62uqVatmRo0aZc6ePXvN1zRq1Mj07dvXevzNN9+Y0NBQ4+PjYw3gd/HixQyvY1/CrYDu33DSrl07DRs2zOoe+tBDD2no0KHy8PBQVFSUli9fLkmKiIjQZ599pqFDh+rYsWP6888/NWjQIL388ss6duyYatasqQoVKjjNXSilDzwWFBSkWbNm6dixY/rss8+UP39+DRgwwKnLnJ+fn2rUqGG9xiGz+TuB3GTjxo0qVqyYNbjRrl27dPfdd+vYsWOSpBUrVuj48eOSpOnTp+vYsWPasWOH/vzzT82bN0+xsbF6/fXXJaXPZbtjxw7rtZLk7e0tb29vnTt3Tr/++qs2b96sadOmqUOHDqpTp44uXLhgLVujRg0VLlzYqRufzWZj7mjkCd27d9eAAQMkScnJyXrttdfUs2dPSdKxY8e0ePFi2Ww2xcbG6tNPP9WAAQN04sQJLVy4UEOHDtWoUaO0aNEiVa9eXXfeeadmzpwp6VIX1kqVKiktLU1Lly7VP//8o4kTJ8rf319NmjSRn5+f4uPjJaVP+eiYDis1NdVpbnbgVrJp0yb1799fgYGB6tevn8qUKaPFixdr7969Gjp0qIoWLWqdH5pMuoI/8cQT+v333xUdHS1Jeuqpp/T7779r+fLlOnr0qLp166YCBQpY87I7sC/hlpCjkR45LiIiwnz55ZfmyJEjxhhjlixZ4nQl8vvvvze+vr6matWqxmazmSeeeMIYk34Fs3HjxsaY9Na2999/3wQHBxubzWbmzp1rjDFm1KhRply5cubw4cPW+hITE83EiRNN1apVTZEiRUyNGjXMkiVLMm0JB/KKGTNmWL0vjEmfOsSYS921q1SpYkJDQ423t7epUKGCWbNmjYmNjTUdOnSwpr5atGiR6dy5s/H29jb33HOPSUhIMCkpKaZ06dLmvffec1rf5s2bzWOPPWZKlixpChQoYAYPHmyioqJu5lsGst2RI0fMBx98YGJiYowx6QOCXT7F22+//Wa8vLysY82LL75oUlNTzeTJk02rVq2MMcZERkaajz76yJQrV84EBASYqVOnGmPSj2Xe3t5WK5mjhfuzzz4zDRs2ND4+PqZKlSomLCzMaVAyIK9LS0vLUktwVFSUKVu2rHnwwQfNb7/95vTc9u3bTd++fU1oaKj5+eefr7qOkydPmvz581u9P65EizRuZYTq25TjhOLrr782LVq0MMYYpxOJqKgok5qaaipWrGhsNpvp2LGjNb+tMcYMGTLEhIaGmqZNm5pChQqZpk2bmq+//tpERkZay5w6dcrky5cv0y/gv//+24SHhzuVZTavNZAXhIaGmtmzZxtjLt0+cebMGWNMehCw2WymcOHC5pdffnF6nb+/v2ndurUpVaqUKVWqlOnXr5/566+/nJZ5+eWXTZ06day52x1SU1PN1q1bM9SFkxbkNY7v/VWrVplKlSpleP7kyZPGGGPuvPNOY7PZTJs2bZy6hX/zzTcmf/78pkWLFqZQoULmzjvvNF999ZXThaYjR46YgIAAawaKyy/khoeHm4iICKdtcjzCrWj9+vXXfP7yrtknT540w4cPN1WqVDF+fn6mU6dOZu7cuVe96OTYX9q1a2e6d+9ujOF4hNsLfQBvU45RFAsXLmx1r86XL58kqW3btnruueeUkpKigwcPqkuXLrpw4YIKFixovf7+++/Xzp07FRISom3btmnNmjV65plnVKJECe3cuVNnzpxR8eLFFRQUpIkTJ+rixYtO2w8ODla5cuWcRh12zGsN5CWnT59W+fLllZKSIkny8vLS3r17Vbx4ca1cuVIdOnTQP//8o6SkJHl7e0u6dEtD8+bNtWHDBn3++ec6dOiQvvrqKzVq1EhxcXHauHGjJKlXr17atm2bNm/e7LRdd3d31a5d21qfoUsq8ijH9/7OnTvVtGlTxcXFWc/17t1bnTp1kiT98ssvGjJkiPbv3y9PT0/r2FGnTh3ZbDYFBwdr586dCgsLU79+/RQQEKD9+/crIiJC5cuXV+PGjfXee+9JSh/13qFcuXIqW7YsxyPkeSaTLtmbN29Wp06drHmft2zZctXXFyhQQF9++aWaNWumypUra+nSpfq///s//f3335ozZ44efPBB61zxSo79pVKlSgoPD5fE8Qi3F0L1bSSzaT62bdumGjVq6MKFC9aX8Z133qmDBw9aJ/H9+vXTqlWrtHfvXut1d999t0qXLi0vLy/5+flZ5Rs2bNDYsWOtL+0JEybohRdecArkl7PZbHzpIs8wV9wHJqXf67l//34FBQVZywQHB6tkyZJaunSpEhMTVblyZTVv3lzffvutpEsn9F27dlVKSoqKFSsmLy8vSelTAP3vf//Tb7/9pgsXLqhOnToaN26cqlevftV6eXh4EACQp1x+n7/j31OnTunkyZNOF3s7deqknTt36siRIypevLgefPBBHT58WJs2bbKOHVWqVFFISIjOnTsnX19faxtr167VZ599pkOHDkmS3nzzTX388cdXrRPHI+RFxhjr/O7K48C+ffv00ksvqVChQpo7d67+97//qWjRolddV2xsrH7++We1bNlSW7duVVhYmJ566ikFBARkqS5Tp07VzJkz1bdvX9ffEJBHEapvA44v28sHJ3KcxBQuXFhbtmxRoUKFrLLHHntMUVFR2rFjhyTpvvvuk4+PjxYvXqyUlBRruZEjRyosLEzNmjXTu+++qwceeEDt27eXh4eHgoODJUn33nuvHnjggZv2XoEb4WrzSRtjVKpUKZ0+fVoRERGSpKSkJEnS448/rtmzZ+vUqVOSpL59+2rRokXWoGPGGPXo0UPt2rVTt27d9OSTT+qll15S3bp19fXXX6tOnTpWy/bAgQOdLl4BeZXjeOTu7i53d3cZY6wgW61aNe3cuVPSpQtPbdu2lbe3t3799VdJUs2aNVWvXj19/fXXktIvavn4+GjMmDHasmWLGjdurHfffVdt27ZVp06ddOHCBVWqVEmS1KBBA7Vv3/5mvl3ghnFc4HUMPnnmzBnNnj1b27Zts5ZZv369tm3bpilTpqhRo0YKCQmxLgBnxsfHR0uXLtXIkSNVuXLlLNfFsV8XL15cU6dO1dNPP+3amwLyMEL1bcARppctW6apU6cqOjraOompX7++tm/frpSUFHl4eCgtLU1ly5ZVSEiIVq9ebQWFHj166Pfff1dUVJT12scff1zfffedHn/8ca1fv15VqlTR6tWr9fXXX6ts2bLW9jNrIQfyEjc3N7m5uenkyZOaOHGi1qxZo5iYGGvk4QYNGmjBggWSLnV369+/v/bv36/t27dLktq3b698+fJZyznC+eTJk/X555+rcOHCOnTokIYNG6Y9e/aoS5cuTl1U2Y+QVzkuxEqXjkcLFy5Ut27d9MADD+j06dOS0m+dKF68uHXrQ1pamvLnz68uXbpo6tSpSktLk4+Pj3r06KFff/1Vqamp8vT0lJTee2ru3Ll68skntX37dlWtWlVhYWH6/vvvnY5HmXWPBfKCKz+7jmPIP//8o++++07lypXTm2++qQcffFDfffedJKlUqVJyd3fXK6+8oueff17vvPOOXn31Vc2fP/+q23Gl15Njv77//vt17733/ufXA7cCm+EIc8swxmT4Mjx06JC8vLzUo0cP/fPPP/Lx8ZGbm5sWL16s8uXLa8+ePWrevLnGjx+vRx55RImJifL29tYPP/ygUaNGafz48WrVqpX27dunevXqqW/fvipevLjmzp2rBQsWyN/fP9N6GGOYtge3jDNnzuiVV17RTz/9pODgYNntdnl7e2vhwoUqVKiQ3nnnHf3+++/asmWL3N3dlZaWJnd3d4WGhqp+/foaN26cChYsqGeeeUaLFi3SCy+8oPXr16tcuXJWd1S73Z6hNwldUXGrOXPmjPr06aNNmzapW7duKl++vNq2bavq1atr7dq1GjJkiNq2bavXX3/d2if++usvNWvWTJs3b1bt2rV1/PhxVa5cWU888YR8fX21fft2vfnmm2ratGmG7XE8Ql6XlpaW6T3+iYmJ1j3SNWvW1Msvv6yaNWvqySefVHh4uD7++GM1atRIn3zyiRYtWqQqVaro4sWLioiI0I4dO7RgwQI1bNgwh94VcOvhKJPHXT6wypVfuNHR0apcubKefvpptW3bVidOnNDs2bPl5eWlt956S1L6Vcx77rlHX375paRLg5V17dpVaWlp2rZtm5KSklStWjV98cUX2rdvn5YtW6YBAwbI39/fqfUsLS3N6iLLCQxyM8f8s9dyeRe6BQsWaN++fVq/fr02bdqkDRs2KCYmRv/3f/+n1NRUNW7cWPHx8frtt98kyRq0rF+/flqyZInV5XvkyJHq0qWLfvzxRxUrVkzPPfecJFkn/ZfvzwRq5DWX39t5ud9++00vv/yyEhISNH/+fB06dEjbtm3TZ599psGDB1vjBdSqVUtBQUFatWqVUlJSrH2icePGqlKlimbPni1JKl26tH744QcdO3ZMYWFhevTRR9W0aVOnljyOR8hrFi5cqFatWunkyZNO5e7u7rLZbNq/f78WL15s3WLk7e2tkJAQHT9+XCVKlFC9evXk7e2tl19+WV5eXpo1a5Yk6aWXXtKSJUv0ySef6Pvvv9fy5ct19uzZDNsBcJ1uziDjcFVWp/RITU01v/76q9mwYYPTlAi9evUy+fLlM6tWrbLKZs+ebQoVKmT++ecfY4wxy5YtMzabzaxZs8Zpmw8//LBp2LCh2bdvnzEmfYoR5u9EXnf33XebwYMHX3OZpUuXGpvNZmJjY40xxtxxxx3W1HC///67eeqpp4zNZjOPPvqoOX36tImKijK9e/c2DRo0MMZcmk86Pj7e2Gw289VXX1lll08FBNzKHMeLoUOHmmrVqhljjJk0aZLx9PQ0R44cMfPnzzeLFy8227dvN6dPnzbGGPPTTz+ZatWqmSlTphhjLk3JM3ToUFOoUCFrDuvL1w/kNY7jgTGXzrnCw8PNV199leG8b/Xq1aZ27dqmUKFCpkqVKuauu+6y5oHevHmzueOOO8yzzz5rLZ+YmGheeOEF07x5c2t/iYqKMufOnTNxcXFm1KhR5u6777bOAQFkDy7f5mLh4eGy2WxW97XMWgDi4+P19ttvy8fHR4MGDVKvXr3Uo0cPRUZGSkq/j9PNzU0lS5a0XtOxY0e5ublp0aJFMsbo3nvv1UMPPaSPPvpIO3futFq8Bw4cqIcfflhlypSRlH7PTL58+WS3253ukQPyki+++EIffPCB9fjMmTPW6MCXlzVo0EBRUVGS0u/1HDlypIKCgtSvXz+5ubkpLCxMkydPVrFixRQQEKC33npLO3fu1JQpU6z9I3/+/BoyZIjuuOMOq7XMcQ9oamoq90kjTzLGOE3j5nD+/Hm98847GjlypKT0wcaMMfL19VWpUqWUkpKirl27qnHjxgoJCdH777+vd999V/Xr19eTTz6piIgIde3aVQ899JCGDRum06dPWz02nnrqKb300kvW/iOJ4xHyLMfx4PJzu3Llyqlfv36y2WxW2YULF/T555+ratWqOnr0qKZMmaJKlSrp6aef1pkzZ1S7dm3Vr19fhw8f1tmzZyWlH68aNGig+Ph4rVq1SgkJCfr222/VuXNnlS9fXj/88IMGDhz4nwYiA5AFORjocQ3z5s0zNpvNHDp0KNPnHVc5V65caSpVqmR+//13c+HCBbN48WJTvXp107NnT5OcnGzi4+ONr6+v+frrr40xl66IPvbYY+buu+82586dM8YYs3v3btO7d2/Tpk0bq2UAuFWlpqaa48ePG2OMadmypbnzzjvN+vXrree///57U716dRMbG2vOnj1rnnnmGVOsWDGzYMECc+HCBWu58+fPm71795r4+HhjjDGjR482DzzwgBk3btzNfUNADomOjrb+n5SUZEaNGmU8PDzMihUrTEpKijHGmCeffNL07NnTJCQkGGOMOX36tImOjjb79u0zhw4dMlu2bDGFChUyc+fONcak758tWrQwffv2NYcPH77p7wm40TZs2GCaNm1qVq5caZXZ7XazdOlSU7lyZauH4O7du43NZjNbtmyxlktLSzMBAQFmxIgRxhhjvv32W9OgQQMzZ84ca5l//vnH3H///aZ79+7GGGNWrFhhPv30U7Nz586b8faA2xIt1bmM+f9X/itUqKCQkBD9+OOPkqTjx49r7NixmjBhgs6dOyc3NzelpaVp/vz58vf3V8uWLVWwYEG1bt1agwYN0r59+7RkyRLlz59fDz74oCZPnqzU1FSrFbpfv35avXq1/v77b0lSjRo1NH78eEVHR+uLL77QuXPnJKUPnmQYyw55UGYtaQ7t2rXTo48+KkkaO3asypQpoxdeeMFqHShfvrzCw8Pl5eWlokWLqmnTprLb7SpQoIA153pycrLGjRunmTNnWq8bPHiwnnzySU2YMEG7du2ytkdLGvKyKz+/58+f1/vvv6/q1aurRYsW6tu3r/7++295enpq6NCheuKJJ/TWW29pzpw5kqSAgAAdPnxY3t7eSktLU7FixeTv76+qVasqKChIiYmJKlasmEqXLi0p/R7SyZMnKy4uTp9//rkSEhIkZT5PPJAX+fv7q1ChQpo4caIGDhyoSpUqac2aNapfv74OHjxozRoRHR2twMBAq8dGUlKS3Nzc9Mgjj1jTzDVt2lTFihXTypUrrfVXqVJFjRo1UrVq1ZScnKwWLVpo0KBBCgkJcRq7A0D2IVTnMMcJwoYNG3T48GEr9JYtW1b33nuvpk2bpsOHD+vuu+/W9OnTNWbMGHXu3FmHDh2Su7u7du/erXLlylnz2UrpX7BFihTRn3/+KUl68skntWXLFv3zzz9Oy9x///3WF3VaWpoKFy6sX375RXfddZfT3NauTK8A5DQPDw/ZbDYdOHBAe/bscXquZ8+e2r59u06ePKnQ0FC9//77OnjwoN58803Fx8crPj5eNWrUsPaZTp06qWvXrurcubN69Oih1157TSEhIZo2bZoqVaqk/PnzS0rv2t25c2dNmTJFnp6eTnPyAnnJ5eHV3d1dycnJio6O1tmzZ/XSSy9p7ty5eu211/T+++8rIiJC/fr1U3h4uCTpnXfeUZMmTfTSSy/p2LFjstls8vf3V0pKitzd3XX69Gl9++23Gj16tB566CG1a9dOPXv2tAYsk9KPgV9//bUefvhha2CmK+eJB3K7K29PcBwTIiMjtW7dOs2YMUOHDx/WuHHj1LBhQxUpUkR33nmnZs6cKWOMChQooCpVqmjx4sWSLh1LGjZsqOPHj8tutys4OFjly5fX8uXLdeTIEWtbw4cP1/Dhw61bJhwXpWw2G8ck4AYgVOcgx5fbli1bdNddd1ktWwsXLlTBggXVtm1bnTp1Sn369NF7772n9evX6+uvv1ZsbKw1DU+bNm0UFhamM2fOWOsNCQnR6dOnremumjdvLkn6/vvvnba/cOFCazoFxxdsuXLlVKdOHRUrVuyGvncgu2R2X3JiYqLGjx+vatWq6c4771SPHj3Us2dPKyg89NBDSklJseaMLl++vD744AMtWrRIEydOVL58+RQTEyN/f38ZY+Tj46Px48fr22+/lZ+fn/bv36833nhDe/bsUa9evTKMLlyvXj1VrVqVUYeRp1zeM8kRXs+ePasffvjBmmoxKSlJbdq00S+//KI+ffqoffv26tSpk7Zu3ao//vhDUvqsEmPGjFHp0qX10Ucfad68eapcubI1u4SXl5dSU1O1ePFiVapUSWvXrtV7773ndHFYkooWLaomTZqoSJEiN++XAGQjNzc36/zq0KFD1jGhYMGCevbZZ1WtWjX169dPDzzwgHUs69+/v5YsWaIDBw6oZs2aqlatmmbMmCEp/WKxJM2cOVN33nmnLl68KEnq0qWL3njjDafxc6SM+zQXpYAb6Ob3OEdm7rjjDlOjRg1TtGhR6/6Z8PBw07p1a1OlShVrlNOUlBTz3nvvGR8fH2OMMbGxscbLy8t88skn1r2ee/fuNb6+vmbatGnW+n/66Sene3IcHPe8AXnN1UbGt9vt5tdffzVt27Y148aNM9HR0Wb9+vWmbNmyZvjw4dZn/pFHHjEtW7a09q3k5GQzefJkU6RIEfPWW2+ZggULmsTERGu9jnEMLh+11RjDGATI8678TO/evduEhYWZ/v37m8qVK5sXXnjBLF++3KSkpJiUlBSTlpZmIiMjzXPPPWeKFStmqlevbsqUKWN69OhhoqKirPX89ddf5umnnzY2m8106dLFGHNpv3XcX+1gt9uzPNsFkBulpaVl+Axv2bLFdO/e3QQGBpq6deuaAQMGWPc1R0REmE6dOpmHH37Yer2Dt7e3NTbHhg0bTIUKFUyDBg3M+PHjzQsvvGAqVqxo5s2bd5PeGYCsoBnlJjFX3AdmjFFsbKxWrVqlb7/9VseOHdPRo0c1YsQI2e121alTR4GBgWrWrJmio6OtK/weHh5q1aqVkpKSNG/ePBUuXFivvPKKxo0bp549e+qzzz5Tt27d1LJlS7Vr187aXteuXVWnTp0M9XJc9QTyGscV9+XLl2vixIk6ffq0Ve7n56f33vt/7d1nQFRX2sDx/zCgFOnGQjCAYsESFUWUFcWKBU2ICliwpNgFE3uMJmrsUVd3s7E37F1s2FHsILYIgiV2lChElKLgzPuBd+4yolklGhl9fp/0zq2jd+557nnOcybQv39/7OzsSElJITs7my1btnD58mUAevTowaFDh5TK3yYmJgQHBxMYGMjEiRMxNjbWS6XT9TDIfNLiXaL9/znS09LSSExMpFu3bjRp0oRTp05RqVIlbty4gVqtxsfHB2NjY4yNjTEyMmLatGnExcWxfPly4uLiGDVqFDt37tQbZuTp6cno0aNxcnLC0tKS7Oxs5b7V9UrnnU9aetGEIXp2uNzFixe5ceMGiYmJhIaGYmFhwZo1a/j++++5ceMGw4cPB8DR0ZE6derw66+/cuPGDYyMjJShDn5+fmzYsIGUlBQ8PDxYt24dDRs2ZO7cuVy8eJH58+frtfEgfztTCPH3kqD6b5K3saD9/7TvhQsXEhQUxBdffMGBAwewsbHB3NxcWa9o0aJKQ2bLli3KcldXV3x8fJg7dy4Aw4YNY/bs2VhbW7Ny5UoCAgJYsmQJVlZWeucg0/eId8X169eJi4sjKCiIoKAgpkyZwqeffqqMO6tbty41atRgxowZuLq6MnDgQLp06UJsbCwxMTHKVHKlSpVSir3o7o/vvvuOmTNnEhERQcWKFZ97fBmTJgyN9v+nwXqWSqUiLS2NihUrEhISgrm5OdHR0QwYMIC6detiYWFBuXLlUKlUZGdnA3DmzBnWrFlDYGAgvr6+aLVaEhMTefLkCQcPHlTWy87OxtHRkerVq2NqaqpMgZWXWq2WYRLCoDwbvBoZGZGZmcmlS5cIDg6mXr16HDp0iNKlSxMYGMiCBQto0KABNWvWxNzcnIiICI4fP45KpaJmzZpYWFgQHh4O5Lb7AEJCQoiMjFSGBdaqVYupU6dy6tQptm/fTqNGjfKdl7yUEuLtkifZa/Zsw0X34xsbG8vhw4f11i1SpAguLi5kZGRQpUoVKlWqxO7du7lz546yToUKFahXrx4LFixQ9mdtbc1nn33G1q1bycnJwdLSkubNmzNv3jyOHTvGyJEjsbKyeu4PvxCG7uTJk3z66acEBgZSrlw5kpOTWbNmDTY2NkqtARMTEw4ePEhYWBgjRozg5MmTTJ06lapVqxIREUFqaipqtZrWrVszffp0srKylPvD0dGRvn37Urdu3bd5mUK8ViqVSslMio2N5fbt28ozwsrKiubNm7Nr1y48PDxwdHQEcisIN27cmNWrVwP/fYa4ubmRmprKrVu3uHfvHocPHyYtLQ1nZ2cuX77Mo0ePAJQMK41GozwX5TkkDJUuO+nZ4PXOnTu4uroyZMgQrKysOH36NB06dMDS0pJ+/fpx/PhxfHx8qFGjBr///jtly5bl559/BqBatWpUr16dOXPmkJmZycGDB9m7dy/e3t54e3sr95COSqXi6dOnUr1biEJInm6vie7te96Giy6lTaPRMHz4cLp3786VK1eUH+QrV65QsmRJpWHTsWNHYmNjlWmuIHfahdatW3PkyBHS09OVFLmGDRvSt29fUlJSlHV1bzh1UwnJW0thaF4mm8LFxYU6depw7do1OnbsCIC7uzudO3cmPj6eY8eOARAWFoZarSYoKAgLCwuOHj3KzZs3lQIwAAMHDmT06NFKddRXPRchDMWdO3cYMWIEpUqVok2bNrRu3ZqxY8cqjfP27dtja2urdy/Y2trSpk0bpVK+Wq0mOzubIkWKEBISwvr163Fzc6NZs2bUr1+fyMhIFixYgK2tLZDbU92zZ08OHTpEt27d3sp1C/Gy/lf6tC476cSJE2zdupWsrCw0Gg2lSpXC3d2dzZs34+3tjaOjo9L+unPnDj/88AOVK1cmOjqaffv20bRpU3bv3g3kFvXr2rUrWq2WihUr4uPjQ0JCAgAHDhygXr16zz0PyZQSovCRoPo10b19f/jwIRMnTqRevXp89913nDlzBiMjI1auXImrqyu9e/dW0nmKFy9OYmKiMu9thw4dyMnJITo6WtmvWq2mbt26pKSksHTpUmV5xYoV+fe//02JEiXynYtuKiEhDE3eXqwXNXDs7OyoV68eKpVK6REDqF69OmXLllXukwYNGhAbG8vatWs5ceIEixYtYvr06VhaWiq9ZhUrVqRfv37P7T2THjXxrtBoNKxZs4aTJ08yf/58zp49y+DBgwkLC2PZsmUAtGrVCjs7OxITE8nKygJyXxK7u7vj4OBAWFiYsi/InTZr9erVLFmyhMzMTLp27arMGpF3KrlixYqxYsUK6tev/3dfthAvRfc8UKlUpKamKi9dn7Vy5Uo++ugj/P39GTlyJC1btmTjxo1AbvVtOzs7pXND1wZLSEhg586dfPPNN5QtW5bMzEzi4uK4e/euUtG7QYMGbNiwgXXr1qHRaOjbt2++cxNCFH7SanxNdu7cycKFCxk/fjy7du3Cx8eHbdu20bFjR3bu3Im9vT0zZ85EpVIxdOhQILfB4eTkpEyJUKxYMZo1a8aKFSsYN24czZs3Z9iwYdSoUYNt27bRpUuXfIGGpAAJQ5R3mg8drVbL6tWrGTBggJLl8SzdNjVq1KBWrVqsWbNG+czFxQVvb28OHDgAQHBwMF26dGHKlCk0btyYBw8e4O/vz6VLl/Dy8tLbpxR4EYbqZTIqtFotnp6e/Oc//8HPzw+A9PR0bt26xY4dO5RiZI0aNSIqKkqZbxpyp5urX78+06dPB/6bEWVsbEyVKlVo1aoVoP8sylvUb/r06bRo0eL1XKwQr9HDhw/p0qULEydOBHLvk9q1azNv3jzlc10hy0uXLrFw4UK+/vprbt26xcGDB/Hx8aFnz54A+Pv7Y2FhwcWLF8nJyVHugSdPnuDs7MzGjRtJSUlh/vz5ODs74+fnp9eBUr58eWWK07yBtBSTFcJwSFD9F+kaNDExMXz55ZdERUURFhbGxIkTOXDgAGXLlmXGjBlkZmZSoUIF/vnPfxIbG8usWbOIjo7G3t4ec3NzpbDLiBEjCAgIYNOmTTg4OCgpc76+vlhaWuYLNCQFSBgiXZVUHd1whbCwMNLS0pQK28/SbVOhQgVq1arFgQMHlHvHzMwMLy8v7ty5o4wBnTt3Llu3buXhw4esXr1aKd6Xt9EiVYeFIXuZ7A61Wo2npyclS5YkNDQUNzc3li5dip+fH3FxccTGxgK5L6KuXr3KuXPnlG0tLS1p164dvXv3Vu61vHTHlGeRMDSWlpa0adOGPn36KC9y27Zty9atW6lduzbW1tb88ssvAERFRZGamsrXX3/Nw4cPWbp0KevWrSMtLY3jx49jbW1NvXr1OHjwIDdv3lSO4eHhQZcuXfj5559xcnJizpw5BAUFsX79eqUGiI7uXpJAWgjDJEH1n3iZ3itdYzw0NBS1Wk2ZMmWUIi82NjZ07NiR+/fvs3fvXiC3wMusWbPYtWsXW7duJSkpSW8ctpOTE8OGDePkyZMsXryYypUrv6GrE+Lv8bz0tbt379K5c2cWLVqkt7xs2bJKnYA/u//MzMzw9PQkJyeHHTt2KMvd3Nzo3Lkz1tbWQG6vWvny5ZXiLrqXYNJoEYamoNkduvUAVq1aRVRUFGvXruXQoUPMmzePS5cucfLkSQC8vb0B2LZtG2lpacr2LVq04Pvvv89XNAmk4rAwbIGBgRQvXpy0tDTu3bvH5s2bSUhIwMnJiWvXrjF16lQgt+K9paUlTZs25cMPP2Tx4sV88cUXXLp0CU9PTwC6dOnChQsXiIuLU/ZvY2PD2LFjWb16NSdOnODXX3+lRYsWSiX8vPe03EtCGDYJqp+Rd/7Zl/mB0zXWixUrRoMGDUhJSeH+/fvK5+7u7piYmCiFJyC3IMyAAQNQqVRYWVmRmZmpdyzdG/+8QYAQhiTv/1tdAHvu3Dlu374N5A51cHBwYPTo0YSHh6NSqXj8+DFZWVl88MEHPH369IVjmnWNkOrVq2NpaalUxofcFPBZs2Y9N91Upu4Rhqyg2R2Q+5zKyMhg/fr11KhRQxnfHB4ejomJCVFRUZw+fRrIHSsdHBycb0pGGSYh3kUZGRnKGOnixYtz+PBh3N3dKVOmDDY2Nsp6zs7OHDt2DAcHB2JiYjhx4gQDBw7EycmJCxcuALlzSz969IiIiAgyMzP1juPp6Ymbm5teG/PZe1oIYdikhQn53hTqgtrw8HDCw8PJyMh4qf307NmTI0eO6FXvLl26NGfPns3X4+zr60vr1q1Rq9WYmZk9N3iWIEAYKt3/2z/++IMNGzZga2tL06ZNadu2LUuXLsXCwoKpU6fi5+fHt99+y9mzZylatCg3btzAxsYGtVr9whdKukZIuXLlGDp0KN9//32+daTWgDBkrzu7Q6vVYm5ujo2NDXFxcWzcuJE9e/awf/9+OnfujIuLi1L1u1u3bjRu3DjfPmSYhHgXmZubY2dnx9WrVzl9+jSlS5embdu2REZG6rXlWrdujaOjI2XKlKFChQpKOzEmJobRo0crgfWIESNo27YtZmZm+Y6lexEmQyWEeDe9txGbrvHx7NRTGo2GSZMmYW1tzfDhwxk1ahSffvqpMv3B8xrruh/IwMBAtFot48eP58SJE+Tk5LBy5UpKly6tpITnVbJkSSVgl+BZGKK8b93zysjIYNCgQQQGBrJq1Spmz55NVFQU1apV4+uvv1ZStidPnoyLiwuDBg3iwoULVK1alcuXLwMvzhTRaDRkZ2djZGRE27ZtcXd3z7eONFqEoXmT2R26fQ8ePJhKlSrRv39/AgMDKV++PD/99BMLFy7Ue/ErGVLifdK+fXuSkpKUwmFdunTh3r17Sq0BjUZD+fLl6dWrF4sWLaJVq1bMmjWLgIAA/P39sbe3x9LSEsgdCti0adPnHkdeSgnxbntvIzndj5tKpSIhIYFZs2Zx8+ZNzpw5w4YNG1i2bBlxcXHs27ePatWqKRUeX9RY1/UsdO3alZ07d/LTTz/h5eVFaGgoX331lV6DxcjIiNOnT7Njxw4CAwPf8JUK8XppNBq9edl190RsbKyy3NzcHGNjY6KjoylatCiBgYFUqFCBOXPm0KxZMyZMmACAlZUVs2bNolixYnz++efcvn2bihUr8vTp03yprrr5142MjJSxnQ8fPvw7L12IN+ZNZnfo7tHatWszf/58Dhw4wP379/n2228xNzcH9ANpeckr3ieNGzfGxsaG2NhYHj16hLOzM1WqVOHIkSPcvn1buR8GDx7MnDlzqFq1KqtXr6ZYsWJs2bKFX375hQ8//FDZn2RKCfF+em+enHkbDBqNhoyMDCIiItiyZQutW7cmJiaG9PR0tm7dSvny5WnTpg0JCQlMmjSJZcuW8eDBA27cuPHC/et+dIODgzE2NqZHjx6MHz+erKwshg4dqheMJycnExISgqurK82bN39zFy3Ea5I3s8PIyEiv0T1x4kSsra1p2bIlX375pfJ2v2XLllhaWmJrawvk3ndFihShd+/eHD16lHv37gG546CnT59OdnY2K1euxNraGrVarTRMdAG2bv71+Ph4+vXrh6OjI1u2bJFxnsKgvK3sDt2LX2NjYypWrAigvKgCCaTF+6to0aJ4eXkRHx+v1Bbo3Lkzhw8fZvbs2cyaNYuWLVsC0KZNG6ZMmcLhw4dZuHAhNWrUAPTbmJIpJcT76Z19ij7b0NY1GO7evav0FLdq1Yoff/yRyZMns3TpUipWrMiRI0dISkqievXq1KlTh/Pnz/Pzzz9z9epVypQp88Lj6YrEeHl5YWNjw9GjR2nWrBlGRkZkZ2frnc8HH3zAgQMHiIiIoFSpUm/mCxDiNcqb2REfH8+YMWPYunUrsbGx3Lhxg/379zN79mx+/fVXxo8fD0DNmjWpW7cuV65cITMzU7kHnZ2dsbGxUSoO5+TkKIF1hQoV+O2334D/3rNqtZr79+8zefJk3Nzc8PLyIikpiWnTptG+fXtJqROFXmHI7tCllOfN7tC9qBLifdemTRsePXqkPJcCAwMJCQlh8+bNhIWF0ahRI0C/bZm3mKy8lBJCvLO/As82FB49eoSHhwfTpk0jJycHLy8v3NzcuHv3LvXq1VPW8/T0JDIyknbt2nHlyhW2b99O+/btKVasmNID96ynT5/qNWiCg4NZvnw5169fB8DExETvfKTgiyjsnu1JS09PJzIyks2bN+Pr68umTZsYNGgQAQEBODg44O7ujr+/P6Ghoezbt4/ffvsNa2trateuTWJiIpGRkcq+jhw5grm5OcWLFwf+O37U29sbZ2dnKlWqBPz3Hp4wYQIODg6Eh4cTEhJCfHw8GzZsIDAwUCmuJERhI9kdQhgOT09P7O3t2b17N8nJyRQtWpSQkBAOHz5MdHQ0Q4cOBfTbllJMVgiR1zvxa/C8VLpr165x+PBh5bNixYpRvnx5EhMTuXjxIpD7ZvLp06d61b2DgoKwsLCgePHi2NvbK8u3bdvGv//9byUFPCcnR9m3Wq1GrVaTnJzM7t27GTRoEGlpaWRlZb2xaxbiTdL1pOl6tbZs2ULjxo355ZdfWLNmDadOnWLo0KFcu3ZNSX+D3CnkHB0dmT9/PgA+Pj4YGxvTt29fpk2bptxHnp6e1KpVK99xExISlEA5OzsbgICAAM6ePcvhw4fp06ePZHcIgyDZHUIYFn9/f5o1a4aFhQWQe+8WK1ZMb/iEEEK8iMEG1XnnzHze+JWQkBCGDBnCtWvXlGVBQUFcvHiRM2fOANC7d29u3bqlN4d0pUqVCA0N5ccff6RNmzaMGzcOb29v+vTpg6urqzJ3p7GxsXLc5cuX06BBA1xdXZk8eTLFixfn999/p0KFCm/s+oV4kx48eECpUqVYsWIFWq2W1q1b4+LiwuPHj5WiewEBAXh5ebF69Wplu48++ojmzZuzbt06IDfI9vLywtzcnIsXLzJu3Djc3NyYMWOG3vHu37+Pn58farVamUNXV4zM1dVVGQMqRGEl2R1CGLbevXsTGhqqBNU6eYdPCCHEixhsUJ03hTosLIxvvvmG3bt3K73On3/+Ob///rvePIMtW7bEzMyMkydPKhUeK1euzKZNm8jMzFTWGzNmDPPnz6datWocOHCAJk2aEBsby7fffou1tTUAUVFRfPbZZ9jZ2TF27FgaNmzI8ePH2bNnjzRaRKH2vMyOy5cvc/78eSD3hZW1tTVly5bl0KFD3L9/H0tLS7y9vcnIyFD+fxcrVoygoCA2b96s9CpbWFjQtGlT7ty5Q1RUFGq1Gnd3d0qVKkXDhg05duwYCxYsyDfFXJEiRShXrhybNm167hRZQhR2kt0hhOHTaDQyPEIIUSAGG1QnJCSwZcsW+vfvz/fff8/58+fp1KkToaGhAHzyyScYGRlx5MgRJWA2MTGhXr16REVFKSngPXv2JCIigps3byr7VqvVtGrVivHjx7Nnzx5++OEHSpQooRSkSExMZPr06ZibmxMeHs758+eVHjghCqP/ldnRrl07Bg4cyMOHD5WXVb169WL//v1KZeHu3bsTGxurV2m4adOmGBkZsXnzZmVfFSpUoFKlShw7dgyApk2bYmJiovw9Ozs739Q/lpaWzJw5k6pVq77mKxfi7yHZHUIYPiMjIxkeIYQoEIMMqpOTk+nXrx/9+/cnKSmJU6dOERERwb/+9S9WrFjBkiVLAPD19SUqKoorV64o2zZp0oTz588r0yZ88cUX3Lp1ixMnTuQ7ju6H9enTp0qxGYBy5cqxZs0ali1bRv369SUtSBR6eTM7li1bxtChQ9m3b5/SszVo0CBOnz6tFNeD3OESmZmZHD9+nJycHHx8fHBwcFAa/wBlypShQYMGyphQyC2iFBkZyZAhQ4DcINvFxUVJcTUxMZHiLsKgSHaHEEIIIf6MQbZsS5QoQZMmTUhOTqZFixZYW1ujUqkICgqiU6dO/PzzzwB06dKF27dvs3//fiA3rWfjxo1oNBp27drF3bt3sbCwYN++fXTq1OmFx1Or1fkqPup6BIQwBAkJCWzfvp0hQ4bwww8/cObMGdq3b8/cuXOB3Ir1Dx8+5ODBg8r0P0WLFqVBgwZs2rSJ5ORkADp16sS6detIT08HwNTUlJ49e9K8eXO9qUXMzMz0irv4+/szYsQIHBwc3sLVC/HqJLtDCCGEEC/rrQfVurk0X5auYeHt7Y2Tk5NS9VTXk9ChQwdiYmLIyMigTp06NGrUiPHjxzN48GA6depEqVKl+OGHH/jss8+wt7dHo9Hg4+Mj6T7inZWcnEzfvn3p27cvqampnD59mp07dxIQEMCqVav0pvNZu3YtqampSk+yr68vZ8+e5cKFCwB07NhRL9MDwM/Pj8mTJ+frfc5b3KV58+Z06tSJokWL/g1XLMRfJ9kdQgghhHhZf9tTOiUlhSFDhvDHH3/oLdfNpQkovWF/RtewqFmzJu7u7pw5c4bHjx/r9SR8+OGH/PrrrwCMGzeOkSNHEhMTg5mZGb1792bIkCF06NABY2NjaaiId16JEiVo2rQpKSkpNG7cmGLFigEo2Rnh4eEA9O/fn5iYGI4fPw5AZmYm27dvJyUlhR07dpCRkcHHH39MREQEXl5eeseQ4i7iXSPZHUIIIYR4WW80okxLSyMpKQmArKws4uLiePz4sd46169f55tvvsHJyQl/f3/69eunvPl/USNdq9ViYWFB3bp1OXHiBMuWLVN6D8LDw3F2dqZq1apoNBpKlSpF//79iYyMZNGiRbi4uADkS6UTwhAUNLOjfv36ODk5KWmoADVq1KBChQocOXIEjUZDkyZN8PDwIDQ0lLFjx9KjRw98fHwYNWoUtWrVwtTUFMjtdX42s0OKu4h3iWR3CCGEEOJVvNGgukKFCowbN47Hjx/j4ODAtm3bKFmypPL55cuXCQ4O5sqVK0yePJmhQ4cSHR3Nd999R0ZGxgsb6bpgu3Hjxjg4ODBkyBC+/PJLGjZsSFhYGMHBwZibm+drsDx9+lSvZ0CIwup1Z3a4u7tTrVo1Tp06pbzYsrKywsPDg9TUVPbu3QvAv/71L7p27crmzZsxNTWlQ4cOjBkzhqCgILlnxHtDsjuEEEII8SreSCtZ12vco0cPDhw4wO+//w7AzZs3adeuHTdu3ADA2dmZVq1asWHDBoKCgvjkk0+oVq0au3btYvfu3cDzq67qGvdVqlTB09OT2rVr4+3tTefOnYmPj6dnz57PPS+1Wi2BgSi03nRmh4eHB7dv3+bw4cPKZ56enqhUKlauXAlA5cqVGTVqFCdPnmTx4sWUKVMGeP59KIQhkOwOIYQQQrxprz3C1Gq1SmXsPn36EB8fr6S9WVlZsXHjRnbs2AHkBrnDhg3jypUrtG/fHnt7e44dO0bJkiVZsWJF7gm+IAjWaDSoVCo8PT1JT0+nePHi9OzZEwcHB+kBEAbpTWd2NGzYEEtLS/bs2aN8VrVqVbp160bnzp3zbZc3s+N51Y+FKEwku0MIIYQQb8srP/EfPnxITEwM8PzeK5VKRWpqKllZWXz00UdUrVqVDRs2kJ6ejpWVFV27dmX58uVKz0F6ejojRozA1NSU7du3c/78eby9vYmJiSEpKQmVSpUvQM5bzKVJkybY2NgogbpGo5EeAGFQ/q7Mjpo1a2Jra0tkZKQSeJiYmNCvXz+aNGmSbzvJ7BCFnWR3CCGEEKIweKUW84MHD+jevbsyPcjzeq/++c9/4uvry8mTJwH46quv2LZtG7du3QKga9euHDlyhMTERADOnj3Lrl276N69O56enkBuMHH9+nXWrl0L/HfsmS6QNjIyokiRIkDuXJ2lSpXi0qVLJCcnSxAgDMrfndkxZMgQVqxYgY2NTb7PhTA0kt0hhBBCiMLglSJQa2trFi1axKRJk5Rlhw8fVnrSADw8PHj48CHx8fEAfPnll9y7d49jx44pc0KXLl1aCcwfPnyoN0Zt+fLlGBsb06pVKyW40PU861L4Dh48SKdOnTAyMmLFihWMHDmSXbt2UaJEib/0ZQjxuhWWzA5dQ9/DwwNnZ+d85yEvo4QhkewOIYQQQhQmr/T012q1WFlZERcXx759+7h69Sre3t56b/H/8Y9/ULJkSY4fP87du3cxMzOjUaNGrF27lrS0NIyMjAgMDGTFihVotVrq1KmDr68vs2fPxsHBgaFDhxIQEMDSpUtZuHAhkBt4XLhwgcGDB+Po6EhAQADm5ubs2bOHPn36ULZsWekVEIVOYcrs0L2QunPnjtQbEAZNsjuEEEIIUdi8UlCtUql4/Pgx3377LaNGjcLZ2VnpJctbHKZFixacPXuW8+fPA9CvXz/27t3Lb7/9BkD37t1JTEzkwIED2NjY8OOPP7J8+XJWr17NrVu3CAgIwNraWtnf/v37qVy5MhcvXmT69OlcvHiR+fPn07hxYyVYEKKwKYyZHQsXLpSxnqJQk+wOIYQQQhiaV+6pLlq0KM2aNSMnJ4dz587RqVMnDh48qPSkAbRr146kpCTOnDkDgL+/P0WLFiUyMpKcnByqVKlCxYoVlc8BGjVqRMOGDYH8DalGjRpx69YtNm/eTEBAAJaWlgW+YCH+LoUxs2PYsGHyIkoUWpLdIYQQQghD9Mo91QDe3t6YmZmxbt06AgICuH//PrGxscp65cuXx8TEhKNHj3Lt2jUgd87PefPmkZaWBkBsbCyhoaF6+9c1XJ7XkCpduvSrnKoQb11hzOyQYRKiMJPsDiGEEEIYogLlr3388cdUrlyZqKgoLC0tld63CxcuALBr1y6ePHlCdHQ0x44dA+A///kP69atw87ODgAzM7N8Y9JkGizxLpHMDiFejWR3CCGEEMIQvXJQretN9vLy4sGDB0RGRjJo0CDi4uLo1asXEyZMYMaMGYwfP56OHTtSp04dABwdHalcubL+wWVMmniHSWaHEK9GsjuEEEIIYYheOarVBQr169enRIkSrF+/njp16jB//nxKlCjBzp078ff3Jzg4mAkTJuDi4qK3nRDvG8nsEOLlSHaHEEIIIQyRSvsXKrAMGzaMI0eOMHfuXNzc3MjKysLU1FT5XKvVotVqpUdavLe0Wi0qlYply5YxY8YMJk+ejJWVFd27d+eDDz7A19eXqKgoOnbsyIULF/jqq69wcXFRthPifXT27FlCQkJo2LAhAwcOpEqVKowePZrevXsr65QrV45atWoxdepUnJycaNOmDZcvX+bQoUPY2dmRmZmJmZmZ3n7lvhJCCCHEm1CgaFcXhzdo0ACVSkV0dDQApqamaLVapRdApVJJQC3ea5LZIcSrk+wOIYQQQhiSAlVf0TVMPD09uXPnDunp6XqfyRg0IfQ5Ozvz8ccfc+TIEeLj4/Hy8sLd3V0yO4R4hq432cvLi+PHjyt1O7p3706vXr2U7I7x48dz4cIFvbodzwbNci8JIYQQ4u9Q4BaHRqMhPDyc+/fvU7t27dd5TkK8UySzQ4iXJ9kdQgghhDA0f2mekKtXrzJhwgRq1ar1us5HiHeOZHYI8eoku0MIIYQQhqLAQbWRkRFjx459necixDtLMjuEeHm6FPAGDRpw9OhRoqOjcXNzU7I7NBoNarUalUolPdRCCCGEeOvk9b4QfxPJ7BDi5Uh2hxBCCCEMyV9K/xZCvBzJ7BDi1Uh2hxBCCCEMhfRUCyGEKJQku0MIIYQQhkCl1ZUmFkIIIYQQQgghxCuRnmohhBBCCCGEEKKAJKgWQgghhBBCCCEKSIJqIYQQQgghhBCigCSoFkIIIYQQQgghCkiCaiGEEEIIIYQQooAkqBZCCCHECy1evBgbG5u3fRpvRffu3fn000/f9mkIIYQo5CSoFkIIIQyUBH36IiMjUalU/PHHH6+03dWrV1GpVJw+fVpv+cyZM1m8ePFrOz8hhBDvJuO3fQJCCCGEEIWRtbX12z4FIYQQBkB6qoUQQoh3gI+PDwMGDGDgwIHY2tpSsmRJ5s6dS3p6Oj169MDS0pJy5cqxY8cOZRtdz+62bduoXr06pqameHp6cu7cuT891pYtW6hVqxampqaULVuWMWPGkJOTo3yuUqmYM2cOfn5+mJub4+bmxtGjR7l06RI+Pj5YWFhQr149Ll++/Mr7nT9/Pv7+/pibm1O+fHnCw8OB3N7mRo0aAWBra4tKpaJ79+4AREREUL9+fWxsbLC3t8fPz0/v2C4uLgDUrFkTlUqFj48PkD8T4PHjx4SEhFCiRAlMTU2pX78+0dHR+b7PvXv3Urt2bczNzfHy8iIhIeF//fMJIYQwYBJUCyGEEO+IJUuWULx4cU6cOMGAAQPo06cPHTp0wMvLi9jYWHx9fQkODiYjI0NvuyFDhvDTTz8RHR1NiRIlaNu2LdnZ2c89xs6dO+nSpQshISHExcUxZ84cFi9ezPjx4/XWGzduHF27duX06dNUqlSJTp060atXL0aMGEFMTAwA/fv3f+X9jhkzhoCAAM6ePUurVq3o3LkzKSkplClThvXr1wOQkJBAUlISM2fOBCA9PZ1vvvmG6Oho9u7di5GREf7+/mg0GgBOnDgBwJ49e0hKSmLDhg3PvfahQ4eyfv16lixZQmxsLK6urvj6+pKSkqK33siRI5k2bRoxMTEYGxvz+eefv/gfTQghhOHTCiGEEMIgdevWTfvJJ59otVqttmHDhtr69esrn+Xk5GgtLCy0wcHByrKkpCQtoD169KhWq9Vq9+/frwW0q1atUta5f/++1szMTLt69WqtVqvVLlq0SGttba187u3trZ0wYYLeeYSFhWlLly6t/B3Qfvfdd8rfjx49qgW0CxYsUJatXLlSa2pq+pf2++jRI61KpdLu2LFD73pSU1Nf8I3lSk5O1gLac+fOabVarfa3337TAtpTp07prZf3+3306JHWxMREu3z5cuXzJ0+eaB0cHLRTpkzRO/6ePXuUdbZt26YFtJmZmX96TkIIIQyXjKkWQggh3hEff/yx8me1Wo29vT3VqlVTlpUsWRKA5ORkve3q1aun/NnOzo6KFSsSHx//3GOcPHmS6OhovR7kp0+fkpWVRUZGBubm5vnORXfcZ88lKyuLtLQ0rKysCrRfCwsLLC0t813Psy5fvsyoUaM4duwY9+7dU3qor1+/TtWqVf9027z7yM7O5h//+IeyzMTEhDp16uT7rvKeY+nSpYHc7/yjjz56qWMJIYQwLBJUCyGEEO8IExMTvb+rVCq9ZSqVCkAJKv+Mbt1naTQaxowZw2effZbvM1NT0+eei25ff3YuBdmvbj//63ratGlDmTJlmDdvHg4ODmg0GqpWrcqTJ0/+dLu8tFqt3nnnXf7ssoJ+50IIIQyTBNVCCCHEe+7YsWNKL2pqaiqJiYlUqlTpueu6u7uTkJCAq6vraz2H17HfIkWKALk93Dr3798nPj6eOXPm4O3tDcChQ4f+53bPcnV1pUiRIhw6dIhOnToBkJ2dTUxMDAMHDizwOQshhDB8ElQLIYQQ77mxY8dib29PyZIlGTlyJMWLF3/h/NejR4/Gz8+PMmXK0KFDB4yMjDh79iznzp3jxx9/LPA5vI79Ojk5oVKp2Lp1K61atcLMzAxbW1vs7e2ZO3cupUuX5vr16wwfPlxvuxIlSmBmZkZERASOjo6Ymprmm07LwsKCPn36MGTIEOzs7Pjoo4+YMmUKGRkZfPHFFwW+biGEEIZPqn8LIYQQ77lJkyYRGhpKrVq1SEpKIjw8XOm9fZavry9bt25l9+7deHh4ULduXaZPn46Tk9NfOofXsd8PP/yQMWPGMHz4cEqWLEn//v0xMjJi1apVnDx5kqpVq/L1118zdepUve2MjY2ZNWsWc+bMwcHBgU8++eS5+580aRLt2rUjODgYd3d3Ll26xM6dO7G1tf1L1y6EEMKwqbS6QUJCCCGEeK9ERkbSqFEjUlNTsbGxedunI4QQQhgk6akWQgghhBBCCCEKSIJqIYQQQgghhBCigCT9WwghhBBCCCGEKCDpqRZCCCGEEEIIIQpIgmohhBBCCCGEEKKAJKgWQgghhBBCCCEKSIJqIYQQQgghhBCigCSoFkIIIYQQQgghCkiCaiGEEEIIIYQQooAkqBZCCCGEEEIIIQpIgmohhBBCCCGEEKKAJKgWQgghhBBCCCEK6P8AmV3OsRM6Ci8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " time\n", + "method \n", + "iterations = julia_vec(Z) 0.039988\n", + "julia_numpy_arrays(iterations, Z, c) 0.038036\n", + "julia_numpy_naive(iterations, Z, c) 0.424582\n", + "julia_pure_python(iterations, Z, c) 0.049861\n" + ] } ], "source": [ @@ -550,19 +589,31 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 31, "id": "f3d6e8d8-dd84-49d5-a3f4-db0993329d87", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChA0lEQVR4nOzdd1xV9ePH8fcFBByAIrhxK6g4c4/UypUjV25zVVqWmdmvtGGWptmyTDO1oWaOzMw9cqfm3uZW3CAOUNnw+f3B955E0eimXsHX8/Hgoffcc8/5XLjnnvM+n2UzxhgBAAAAAIB/zcXZBQAAAAAAIL0iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwD+sx9++EE2m+22P6tXr3Z2EdPkp59+0ujRo1N9zmaz6b333ruv5bnT7/Tm32/37t1VuHDh+1q+B92JEydks9n0ySefOGX/9uPixIkTTtn/3bZhwwa99957unLlisPbWLRo0W2Po8KFC6t79+4ObxsAnMXN2QUAAGQc33//vYKCgm5ZXrp0aSeU5t/76aeftHfvXvXv3/+W5zZu3KgCBQrc1/Js3LgxxeMPPvhAq1at0sqVK1MsL126tAICAvTKK6/cz+LhIbNhwwYNHTpU3bt3V/bs2R3axqJFizR27NhUg/Wvv/4qb2/v/1ZIAHACQjUA4K4JDg5W5cqVnV2Me6J69epO36e/v79cXFxSLcvDGkaio6Pl6ekpm83m7KLgP6pYsaKziwAADqH5NwDgvpkxY4ZsNpu++uqrFMuHDBkiV1dXLV++3Fq2detWtWjRQr6+vvL09FTFihU1a9asW7Z55swZPf/88woICJC7u7vy5cuntm3bKjQ0VNLtm+CuXr06RdP0evXqaeHChQoJCUnRtNoutebfe/fu1VNPPaUcOXLI09NTFSpU0OTJk1Pdz/Tp0/XWW28pX7588vb21hNPPKGDBw/+21/hbaXW/Ntms+mll17S999/r8DAQGXOnFmVK1fWn3/+KWOMPv74YxUpUkTZsmXTY489piNHjtyy3d9//12PP/64vL29lSVLFtWqVUsrVqz4x/LY3/ePP/6oAQMGKE+ePMqcObPq1q2rHTt23LJ+Wv7e9r/lsmXL1LNnT/n7+ytLliyKjY1N8+/Jvo2VK1fqueeeU86cOeXt7a1nnnlG169f1/nz59WuXTtlz55defPm1cCBAxUfH2+93t6kfNSoURo+fLgKFiwoT09PVa5cOU2/Fyltv9P33ntPNptNu3fv1tNPPy0fHx/5+vpqwIABSkhI0MGDB9W4cWN5eXmpcOHCGjVq1C37iYyM1MCBA1WkSBG5u7srf/786t+/v65fv55iPfvnZOrUqSpVqpSyZMmi8uXLa8GCBSnK8/rrr0uSihQpckvXjpkzZ6phw4bKmzevMmfOrFKlSunNN99Msa/u3btr7Nix1j7tP/ZjM7Xm3ydPnlSXLl2UK1cueXh4qFSpUvr000+VlJR0y9/kk08+0WeffWZ9pmvUqKE///wzTX8TAPgvCNUAgLsmMTFRCQkJKX4SExOt5zt06KA+ffrotdde09atWyVJK1eu1LBhwzR48GA1aNBAkrRq1SrVqlVLV65c0fjx4/Xbb7+pQoUKat++vX744Qdre2fOnFGVKlX066+/asCAAVq8eLFGjx4tHx8fXb58+V+Vfdy4capVq5by5MmjjRs3Wj+3c/DgQdWsWVP79u3Tl19+qTlz5qh06dLq3r17qgFn8ODBCgkJ0aRJkzRhwgQdPnxYzZs3T/H7uRcWLFigSZMmaeTIkZo+fbquXr2qpk2b6rXXXtP69ev11VdfacKECdq/f7/atGkjY4z12h9//FENGzaUt7e3Jk+erFmzZsnX11eNGjVKc4AcPHiwjh07pkmTJmnSpEk6e/as6tWrp2PHjlnrpPXvbdezZ09lypRJU6dO1ezZs5UpU6Z//Xt59tln5ePjoxkzZujtt9/WTz/9pOeee05NmzZV+fLlNXv2bHXr1k2ffvqpxowZc8vrv/rqKy1ZskSjR4/Wjz/+KBcXFzVp0uSOnxnp3/9O27Vrp/Lly+uXX37Rc889p88//1yvvvqqWrZsqaZNm+rXX3/VY489pjfeeENz5syxXhcVFaW6detq8uTJ6tevnxYvXqw33nhDP/zwg1q0aJHi7yxJCxcu1FdffaX3339fv/zyi3x9fdWqVSvr7/Tss8/q5ZdfliTNmTPHOj4qVaokSTp8+LCefPJJffvtt1qyZIn69++vWbNmqXnz5tY+3nnnHbVt21aSUhxjefPmTfV3deHCBdWsWVPLli3TBx98oHnz5umJJ57QwIED9dJLL92y/tixY7V8+XKNHj1a06ZN0/Xr1/Xkk08qIiLijn8TAPjPDAAA/9H3339vJKX64+rqmmLdmJgYU7FiRVOkSBGzf/9+kzt3blO3bl2TkJBgrRMUFGQqVqxo4uPjU7y2WbNmJm/evCYxMdEYY0zPnj1NpkyZzP79+/+xbMePH0+xfNWqVUaSWbVqlbWsadOmplChQqluR5IZMmSI9bhDhw7Gw8PDnDx5MsV6TZo0MVmyZDFXrlxJsZ8nn3wyxXqzZs0ykszGjRtvW/abdevWzWTNmvW2z91cdkkmT5485tq1a9ayuXPnGkmmQoUKJikpyVo+evRoI8ns3r3bGGPM9evXja+vr2nevHmKbSYmJpry5cubqlWr3rGs9vddqVKlFPs5ceKEyZQpk3n22WetZWn9e9v/ls8888wd9213/PhxI8l8/PHH1jL7Nl5++eUU67Zs2dJIMp999lmK5RUqVDCVKlW6ZZv58uUz0dHR1vLIyEjj6+trnnjiiVv2Zf/s/Zvf6ZAhQ4wk8+mnn95SHklmzpw51rL4+Hjj7+9vWrdubS0bMWKEcXFxMVu2bEnx+tmzZxtJZtGiRdYySSZ37twmMjLSWnb+/Hnj4uJiRowYYS37+OOPUz2WbpaUlGTi4+PNmjVrjCSza9cu67m+ffua211+FipUyHTr1s16/OabbxpJZtOmTSnWe+GFF4zNZjMHDx40xvz9NylbtmyK75HNmzcbSWb69Ol3LC8A/FfUVAMA7popU6Zoy5YtKX42bdqUYh0PDw/NmjVLFy9eVKVKlWSM0fTp0+Xq6ipJOnLkiA4cOKDOnTtLUopa7yeffFLnzp2zmk0vXrxY9evXV6lSpe7vG1VyDfvjjz+ugICAFMu7d++uqKioW2osW7RokeJxuXLlJEkhISH3tJz169dX1qxZrcf231WTJk1SNG+3L7eXZ8OGDbp06ZK6deuW4m+QlJSkxo0ba8uWLbc0I05Np06dUuynUKFCqlmzplatWiXp3/297dq0aePIryKFZs2apXhsf/9Nmza9ZXlqf6PWrVvL09PTeuzl5aXmzZtr7dq1t2194MjvNLVy2mw2NWnSxFrm5uam4sWLpyjnggULFBwcrAoVKqTYV6NGjVIdkb9+/fry8vKyHufOnVu5cuVK8+fz2LFj6tSpk/LkySNXV1dlypRJdevWlST99ddfadrGzVauXKnSpUuratWqKZZ3795dxphbBuxr2rSp9T0i3b9jDAAYqAwAcNeUKlUqTQOVFS9eXHXq1NHChQv1wgsvpGj+ae8LPXDgQA0cODDV14eHh0tKbh56v0fktrt48WKqzVbz5ctnPX+jnDlzpnjs4eEhKXmgrXvJ19c3xWN3d/c7Lo+JiZH099/B3lw3NZcuXUoR2FOTJ0+eVJft2rUrxX7S8ve2u11z4X/j3/xe7L+TG93ufcXFxenatWvy8fG55XlHfqeplSdLliwpAr19eWRkZIp9HTly5LZN42/+nd78+ZSSP6Np+Xxeu3ZNderUkaenp4YNG6aSJUsqS5YsOnXqlFq3bu3wZ/zixYupThP3oB1jAECoBgDcd5MmTdLChQtVtWpVffXVV2rfvr2qVasmSfLz85MkDRo0SK1bt0719YGBgZKSR8M+ffr0HfdlDx83D2Z1c6j4t3LmzKlz587dsvzs2bOS/n4f6ZW9/GPGjLntyOe5c+f+x+2cP38+1WX2APRv/t52D8JI37d7X+7u7sqWLVuqr7lbv9O08PPzU+bMmfXdd9/dsSx3w8qVK3X27FmtXr3aqp2W9J/ms5Yy/jEGIOMgVAMA7qs9e/aoX79+euaZZzRx4kTVrFlT7du3144dO5QjRw4FBgaqRIkS2rVrlz788MM7bqtJkyaaOnWqDh48eEvwsrPXdO3evTvFOvPmzbtl3bTWzEnS448/rl9//VVnz561as6k5CbwWbJkccoUXHdTrVq1lD17du3fvz/VQaHSavr06RowYIAVhENCQrRhwwY988wzkvSv/t4Pkjlz5ujjjz+2btpcvXpV8+fPV506dVI0Qb7R3fqdpkWzZs304YcfKmfOnCpSpMhd2ebtan7tf1v783bffPPNHbeROXPmO+7v8ccf14gRI7R9+3ZrQDQp+Riz2WyqX7/+v38TAHAPEKoBAHfN3r17lZCQcMvyYsWKyd/fX9evX1e7du1UpEgRjRs3Tu7u7po1a5YqVaqkHj16aO7cuZKSL8abNGmiRo0aqXv37sqfP78uXbqkv/76S9u3b9fPP/8sSXr//fe1ePFiPfrooxo8eLDKli2rK1euaMmSJRowYICCgoJUpUoVBQYGauDAgUpISFCOHDn066+/6o8//rilnGXLltWcOXP09ddf65FHHpGLi8ttm7MPGTJECxYsUP369fXuu+/K19dX06ZN08KFCzVq1KhUm/+mJ9myZdOYMWPUrVs3Xbp0SW3btlWuXLl04cIF7dq1SxcuXNDXX3/9j9sJCwtTq1at9NxzzykiIkJDhgyRp6enBg0aZK2T1r/3g8TV1VUNGjTQgAEDlJSUpI8++kiRkZEaOnTobV9zt36nadG/f3/98ssvevTRR/Xqq6+qXLlySkpK0smTJ7Vs2TK99tprVuuQtCpbtqwk6YsvvlC3bt2UKVMmBQYGqmbNmsqRI4f69OmjIUOGKFOmTJo2bZrVxD+1bXz00Udq0qSJXF1dVa5cOav5/Y1effVVTZkyRU2bNtX777+vQoUKaeHChRo3bpxeeOEFlSxZ0oHfDADcfYRqAMBd06NHj1SXT5w4Uc8++6z69OmjkydPasuWLVa/0aJFi2rSpEl6+umnNXr0aPXv31/169fX5s2bNXz4cPXv31+XL19Wzpw5Vbp0abVr187abv78+bV582YNGTJEI0eO1MWLF+Xv76/atWtbfVFdXV01f/58vfTSS+rTp488PDzUoUMHffXVV7cMSvXKK69o3759Gjx4sCIiImSMuWXqIbvAwEBt2LBBgwcPVt++fRUdHa1SpUrp+++/v2Wu3fSqS5cuKliwoEaNGqXevXvr6tWrypUrlypUqJDm9/jhhx9qy5Yt6tGjhyIjI1W1alXNmDFDxYoVs9ZJ69/7QfLSSy8pJiZG/fr1U1hYmMqUKaOFCxeqVq1ad3zd3fidpkXWrFm1bt06jRw5UhMmTNDx48eVOXNmFSxYUE888USqfZX/Sb169TRo0CBNnjxZEydOVFJSklatWmXN8f7aa6+pS5cuypo1q5566inNnDkzRQ2zlDxw3fr16zVu3Di9//77Msbo+PHjqZbH399fGzZs0KBBgzRo0CBFRkaqaNGiGjVqlAYMGODgbwYA7j6bud3VAgAAgINWr16t+vXr6+eff77jwFzpzYkTJ1SkSBF9/PHHtx1YDQDwcGFKLQAAAAAAHESoBgAAAADAQTT/BgAAAADAQdRUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAg5qmGkpKSdPbsWXl5eclmszm7OAAAAADgdMYYXb16Vfny5ZOLy+3rownV0NmzZxUQEODsYgAAAADAA+fUqVMqUKDAbZ8nVENeXl6Skj8s3t7eTi4NAAAAADhfZGSkAgICrLx0O4RqWE2+vb29CdUAAAAAcIN/6iLLQGUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQnQG89957stlsKX7y5Mnj7GIBAAAAQIbn5uwC4O4oU6aMfv/9d+uxq6urE0sDAAAAAA8HQnUG4ebmRu00AAAAANxnNP/OIA4fPqx8+fKpSJEi6tChg44dO+bsIgHAAyUxMVE7duzQihUrtGPHDiUmJjq7SAAAIAOgpjoDqFatmqZMmaKSJUsqNDRUw4YNU82aNbVv3z7lzJnzlvVjY2MVGxtrPY6MjLyfxQWA+27t2rUaN26czp8/by3LkyePXnzxRT366KNOLBkAAEjvbMYY4+xC4O66fv26ihUrpv/7v//TgAEDbnn+vffe09ChQ29ZHhERIW9v7/tRRAC4b9auXashQ4aoRo0a6ty5s4oUKaLjx49r2rRp2rhxo4YOHfqvgvWBAwe0bt06hYWFKVeuXKpTp46CgoLu4TsAAADOEBkZKR8fn3/MSYTqDKpBgwYqXry4vv7661ueS62mOiAggFANIMNJTExU586dVbRoUQ0bNkwuLn/3ekpKStLbb7+t48eP68cff0zTAI8HDhzQjBkzUiyz2Wxq3749wRoAgAwmraGaPtUZUGxsrP766y/lzZs31ec9PDzk7e2d4gcAMqLdu3fr/Pnz6ty5c4pALUkuLi7q3Lmzzp07p927d6dpe+vWrbtlmTEm1eUAAODhQKjOAAYOHKg1a9bo+PHj2rRpk9q2bavIyEh169bN2UUDAKe6dOmSJKlIkSKpPm9fbl/vn4SFhaW6/MKFCw6UDgAAZASE6gzg9OnT6tixowIDA9W6dWu5u7vrzz//VKFChZxdNABwigMHDmjixImaM2eOzp07pxUrVqS63vHjxyVJvr6+adpurly5Ul3u7+/vWEEBAEC6x+jfGcDN/fsA4GF2Y7/nnDlzKlOmTBo1apSKFSum0qVLW+slJSVp2rRpyps3r8qVK5embdepU0czZ87UjcOR2Gw21alT5+6+CQAAkG4QqgEA/1lMTIxOnjzp7GJIkmbPnq2LFy9aj4OCgrR161a99NJLev3115U/f36dOXNGixcv1p49e9S7d28dPXo0Tdt2cXFR1apVtW3bNl26dEm+vr565JFH5OLiokOHDt3191KwYEF5enre9e0CAIC7h9G/keZR7QA4R2hoqCIiIpxdjDsKCQnR8OHDnV0MSclliYuLU0xMjBITE+Xq6ipPT0+5u7unu24xb7311gNfZh8fH+XOndvZxQAA4K5La06iphoAHmChoaHq0vUZxcfF/vPKsFy/ft36f2Jioq5fvy53d/d/fF1UVJQiIiIUFxcnd3d3+fj4KEuWLPeyqHf0oNyouJNM7h76ceoUgjUA4KFFqAaAB1hERITi42IVXbSukjx9nF2c+yb6cqiunTuu+OhrypQ5m7LlLaLMOdIW2uKilikx7oh0Y0Msm01x/sV1vXTDO+7z0pGdkncOSVKspGtGypG3grXv/1KujMglJkI6tkYRERGEagDAQ4vRvwEgPXiIeurYw23c9QiZpETFXY/Q5SM7FX05NG0bsLkoc448cnX3lM3FRa7unsqcI49stjuf8q6dO37LMnPD8v9crozoIfpcAgBwO9RUA0A6kPn4WmcX4b6JPHdO7rG3NnePjzwhv7x5//H12a6cU2xsrLJI/zvLxUvXrssj3kNZ90dJSr2Zt+3CBbmnEhJt4TZlVdh/LhcAAMiYqKkGgAeYj4+P3DL9c1/gjCQuLu5fLb+Zj0/qzeTty6OiohQWFqbY2FgZYxQbG6uwsLDbbs/eF/u/liujcsvkftvfOQAADwNqqgHgAZY7d25N+3HqAz/6d2xsrM6fP39XtrVo0SKFh4ffstzPz09PPvlkmrZx8uRJ7d27VxEREfLx8VFwcLAKFiyoc+fOafjw4apYsaKyZcuW4jUuLi4yxtwyB3XdunVVsGDBu1KufytPnjzy8PC4J9u+Wxj9GwDwsGNKLTClFoD/7NChQ3r++efvyrbsNck3y5Ur110ZiTskJESpnfpsNpv8/f1vO/r3vS5XaiZMmKCSJUvek20DAIA7Y0otAMB9U7BgQU2YMOGube/o0aPatm2bLl26JF9fXz3yyCMqVqzYXdn2rFmzFBp66+BiuXPnVrt27ZxWrtQULFjwnm0bAADcHdRUg5pqAA+VAwcOaObMmbc0827fvr2CgoKcWDIAAPAgSWtOYqAyAMBDJSgoSO3bt1f+/Pnl7u6u/PnzE6gBAIDDaP4NAHjoBAUFEaIBAMBdQU01AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCNQAAAAAADiJUAwAAAADgIEI1AAAAAAAOIlRnMCNGjJDNZlP//v2dXRQAAAAAyPAI1RnIli1bNGHCBJUrV87ZRQEAAACAhwKhOoO4du2aOnfurIkTJypHjhzOLg4AAAAAPBQI1RlE37591bRpUz3xxBP/uG5sbKwiIyNT/AAAAAAA/j03ZxcA/92MGTO0fft2bdmyJU3rjxgxQkOHDr3HpQIAAACAjI+a6nTu1KlTeuWVV/Tjjz/K09MzTa8ZNGiQIiIirJ9Tp07d41ICAAAAQMZkM8YYZxcCjps7d65atWolV1dXa1liYqJsNptcXFwUGxub4rnUREZGysfHRxEREfL29r7XRQYAAACAB15acxLNv9O5xx9/XHv27EmxrEePHgoKCtIbb7zxj4EaAAAAAOA4QnU65+XlpeDg4BTLsmbNqpw5c96yHAAAAABwd9GnGgAAAAAAB1FTnQGtXr3a2UUAAAAAgIcCNdUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1RnA119/rXLlysnb21ve3t6qUaOGFi9e7OxiAQAAAECGR6jOAAoUKKCRI0dq69at2rp1qx577DE99dRT2rdvn7OLBgAAAAAZms0YY5xdCNx9vr6++vjjj9WrV69/XDcyMlI+Pj6KiIiQt7f3fSgdAAAAADzY0pqT3O5jmXAfJCYm6ueff9b169dVo0aNVNeJjY1VbGys9TgyMvJ+FQ8AAAAAMhSaf2cQe/bsUbZs2eTh4aE+ffro119/VenSpVNdd8SIEfLx8bF+AgIC7nNpAQAAACBjoPl3BhEXF6eTJ0/qypUr+uWXXzRp0iStWbMm1WCdWk11QEAAzb8BAAAA4H/S2vybUJ1BPfHEEypWrJi++eabf1yXPtUAAAAAkFJacxLNvzMoY0yK2mgAAAAAwN3HQGUZwODBg9WkSRMFBATo6tWrmjFjhlavXq0lS5Y4u2gAAAAAkKERqjOA0NBQde3aVefOnZOPj4/KlSunJUuWqEGDBs4uGgAAAABkaITqDODbb791dhEAAAAA4KFEn2oAAAAAABxEqAYAAAAAwEGEagAAAAAAHESoBgAAAADAQQxU5mSnTp3SiRMnFBUVJX9/f5UpU0YeHh7OLhYAAAAAIA0I1U4QEhKi8ePHa/r06Tp16pSMMdZz7u7uqlOnjp5//nm1adNGLi40JgAAAACABxWJ7T575ZVXVLZsWR0+fFjvv/++9u3bp4iICMXFxen8+fNatGiRateurXfeeUflypXTli1bnF1kAAAAAMBtUFN9n7m7u+vo0aPy9/e/5blcuXLpscce02OPPaYhQ4Zo0aJFCgkJUZUqVZxQUgAAAADAP7GZG9se46EUGRkpHx8fRUREyNvb29nFAQAAAACnS2tOovm3E0VHRysqKsp6HBISotGjR2vp0qVOLBUAAAAAIK0I1U701FNPacqUKZKkK1euqFq1avr000/VsmVLff31104uHQAAAADgnxCqnWj79u2qU6eOJGn27NnKnTu3QkJCNGXKFH355ZdOLh0AAAAA4J8Qqp0oKipKXl5ekqRly5apdevWcnFxUfXq1RUSEuLk0gEAAAAA/gmh2omKFy+uuXPn6tSpU1q6dKkaNmwoSQoLC2PAMAAAAABIBwjVTvTuu+9q4MCBKly4sKpVq6YaNWpISq61rlixopNLBwAAAAD4J0yp5WTnz5/XuXPnVL58ebm4JN/j2Lx5s7y9vRUUFHRfysCUWgAAAACQUlpzktt9LBNSkSdPHuXJkyfFsqpVqzqpNAAAAACAf4Pm3/dZnz59dOrUqTStO3PmTE2bNu0elwgAAAAA4Chqqu8zf39/BQcHq2bNmmrRooUqV66sfPnyydPTU5cvX9b+/fv1xx9/aMaMGcqfP78mTJjg7CIDAAAAAG6DPtVOEBYWpm+//VYzZszQ3r17Uzzn5eWlJ554Qs8//7w1Gvi9Rp9qAAAAAEgprTmJUO1kV65cUUhIiKKjo+Xn56dixYrJZrPd1zIQqgEAAAAgJQYqSyeyZ8+u7NmzO7sYAAAAAAAHMFAZAAAAAAAOIlQDAAAAAOAgQjUAAAAAAA4iVAMAAAAA4CBCtZMlJCTo999/1zfffKOrV69Kks6ePatr1645uWQAAAAAgH/C6N9OFBISosaNG+vkyZOKjY1VgwYN5OXlpVGjRikmJkbjx493dhEBAAAAAHdATbUTvfLKK6pcubIuX76szJkzW8tbtWqlFStWOLFkAAAAAIC0oKbaif744w+tX79e7u7uKZYXKlRIZ86ccVKpAAAAAABpRU21EyUlJSkxMfGW5adPn5aXl5cTSgQAAAAA+DcI1U7UoEEDjR492npss9l07do1DRkyRE8++aTzCgYAAAAASBObMcY4uxAPq7Nnz6p+/fpydXXV4cOHVblyZR0+fFh+fn5au3atcuXKdV/KERkZKR8fH0VERMjb2/u+7BMAAAAAHmRpzUn0qXaifPnyaefOnZo+fbq2b9+upKQk9erVS507d04xcBkAAAAA4MFETTWoqQYAAACAm1BTnU6cOXNG69evV1hYmJKSklI8169fPyeVCgAAAACQFoRqJ/r+++/Vp08fubu7K2fOnLLZbNZzNpuNUA0AAAAADziafztRQECA+vTpo0GDBsnFxXkDsdP8GwAAAABSSmtOYkotJ4qKilKHDh2cGqgBAAAAAI4jzTlRr1699PPPPzu7GAAAAAAAB9H824kSExPVrFkzRUdHq2zZssqUKVOK5z/77LP7Ug6afwMAAABASoz+nQ58+OGHWrp0qQIDAyXploHKAAAAAAAPNkK1E3322Wf67rvv1L17d2cXBQAAAADgAPpUO5GHh4dq1arl7GIAAAAAABxEqHaiV155RWPGjHF2MQAAAAAADqL5txNt3rxZK1eu1IIFC1SmTJlbBiqbM2eOk0oGAAAAAEgLQrUTZc+eXa1bt3Z2MQAAAAAADiJUO9H333/v7CIAAAAAAP4D+lQDAAAAAOAgaqrvs0qVKmnFihXKkSOHKlaseMf5qLdv334fSwYAAAAA+LcI1ffZU089JQ8PD0lSy5YtnVsYAAAAAMB/YjPGGGcX4mHTs2dPffHFF/Ly8nJ2USRJkZGR8vHxUUREhLy9vZ1dHAAAAABwurTmJPpUO8HkyZMVHR3t7GIAAAAAAP4jQrUT0DgAAAAAADIGQrWT3GmAMgAAAABA+sBAZU5SsmTJfwzWly5duk+lAQAAAAA4glDtJEOHDpWPj4+ziwEAAAAA+A8I1U7SoUMH5cqVy9nFAAAAAAD8B/SpdgL6UwMAAABAxkCodgJG/wYAAACAjIHm306QlJTk7CIAAAAAAO4CaqoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaozgBEjRqhKlSry8vJSrly51LJlSx08eNDZxQIAAACADI9QnQGsWbNGffv21Z9//qnly5crISFBDRs21PXr151dNAAAAADI0GzGGOPsQuDuunDhgnLlyqU1a9bo0Ucf/cf1IyMj5ePjo4iICHl7e9+HEgIAAADAgy2tOYma6gwoIiJCkuTr6+vkkgAAAABAxubm7ALg7jLGaMCAAapdu7aCg4NTXSc2NlaxsbHW48jIyPtVPAAAAADIUKipzmBeeukl7d69W9OnT7/tOiNGjJCPj4/1ExAQcB9LCAAAAAAZB32qM5CXX35Zc+fO1dq1a1WkSJHbrpdaTXVAQAB9qgEAAADgf9Lap5rm3xmAMUYvv/yyfv31V61evfqOgVqSPDw85OHhcZ9KBwAAAAAZF6E6A+jbt69++ukn/fbbb/Ly8tL58+clST4+PsqcObOTSwcAAAAAGRfNvzMAm82W6vLvv/9e3bt3/8fXM6UWAAAAAKRE8++HCPdFAAAAAMA5GP0bAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoRoAAAAAAAcRqgEAAAAAcBChGgAAAAAABxGqAQAAAABwEKEaAAAAAAAHEaoBAAAAAHAQoToDWLt2rZo3b658+fLJZrNp7ty5zi4SAAAAADwUCNUZwPXr11W+fHl99dVXzi4KAAAAADxU3JxdAPx3TZo0UZMmTZxdDAAAAAB46BCqH0KxsbGKjY21HkdGRjqxNAAAAACQftH8+yE0YsQI+fj4WD8BAQHOLhIAAAAApEuE6ofQoEGDFBERYf2cOnXK2UUCAAAAgHSJ5t8PIQ8PD3l4eDi7GAAAAACQ7lFTDQAAAACAg6ipzgCuXbumI0eOWI+PHz+unTt3ytfXVwULFnRiyQAAAAAgYyNUZwBbt25V/fr1rccDBgyQJHXr1k0//PCDk0oFAAAAABkfoToDqFevnowxzi4GAAAAADx06FMNAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOIhQDQAAAACAgwjVAAAAAAA4iFANAAAAAICDCNUAAAAAADiIUA0AAAAAgIMI1QAAAAAAOMjN2QUAcG8dOHBA69atU1hYmBITEyVJrq6uypUrl+rUqaOgoCAnlxAAAABIvwjVwF12Y4i9Mbjebvnd3Ff+/Pl15syZFI83b94sSQoPD9fevXslScHBwYqPj9fMmTPVvn17gjUAAADgIJsxxji7EHCuyMhI+fj4KCIiQt7e3ndtu6GhoYqIiLhr27sXYmNjdf78+bu2vZMnT2r16tUpltlsNpUsWVKbN29WWFiYYmJi5Onpqdy5c6tFixYqWLDgXdlXRESEQkJCVKhQIfn4+EiSjhw5In9/f/n4+Ojw4cOKioqSJGXJkkUlSpSQJPn5+enJJ590qAx3kidPHnl4eNz17d5NPj4+yp07t7OLAQAAgAdQWnMSoRr3JFSHhoaqc5euSoiPuyvbSy/OnTun2NjYW5Zfu3ZNCQkJtyzPkSOHChUqdFf2dfXqVSUmJsrV1VVeXl6SkoO2i4uLvLy8FBERoRsP9+zZs0tKDv2OliG9c8vkrmk/TiVYAwAA4BZpzUkMVIZ7Jul//XcfJnFxqd9EsNcQ3+zq1at3bV/2/tJJSUnWMhcXF2u5i8vfh7urq6v1f3d3d4fLkN49jJ9RAAAA3F30qcY9kTt3bo0bN1anTp1ydlHu6Ny5c/ruu+/u2vbc3d1Tram+MdDeq325uroqMTExxb48PT2tdTw9PXX9+nXr/3b2puJ3W8+ePZU3b957su27JSAggFpqAAAA/CeEatwzQUFBD/wAWDExMapevfpd297Ro0e1ePHiFM2sbTabLl++rEOHDt2yvHr16urbt+9d2delS5d05MgRlShRQjly5LD2ERwcrLCwMF26dCnF6N++vr565JFHVKxYMUff7h0VLFgwRXgHAAAAMiL6VOOeDVT2sLKPyH3hwgX5+/urTp06kqSvvvpKISEhioqKUpYsWVSoUCG99NJL/+nGw837so/+feO+H/QbGwAAAMCDiIHKkGaE6vsjtbBN4AUAAAAeTGnNSTT/Bu6T9NAcHgAAAHdmrygJCwtTrly5/rGi5N+uf6fXSbKWhYaGas+ePTp//rw8PDxUp04d9e3bl+tNJ6CmGtRUAwAAAGlw4MABzZgxI8Uym82m9u3bpxpm/+36d3pdeHi4JMnPz0+HDx/W6tWrdf36dWXNmlWZMmWSJNWqVUvvvPMOwfouoaYaAAAAwF1z5MgRHT9+3NnFuKOoqCgdPXr0nm3/zz//VERExC3L9+3bl+rgt/92/Tu97vTp05KkAgUKaM+ePbpy5YqSkpIUFxcnDw8PSdKqVasUHx9/VwfitStWrJiyZMly17d7NxUpUkTFixe/7/slVAMAAAD4R2PGjNGuXbucXQynCgkJUWoNfW02m8LCwv7z+nd6XUREhIwxun79ui5duqSEhATruaSkJEnJM9ts2bLljtvOyMqXL68vvvjivu+XUA0AAADgH7388svUVN+m5tnHx+df1VTfbv07ve7Gmuq4uDirptrFxcWqqc6cObOqVKnyUNdUOwOhGgAAAGmSmJio3bt369KlS/L19VW5cuXk6urq7GLhPilevLhTmtY+SA4cOKCZM2emqEX+pz7V/2b9O70uPDxcNptNOXPmlJ+fH32qHyAMVAYGKgMAAP9o7dq1GjdunM6fP28ty5Mnj1588UU9+uijTiwZcH/922lSHZ1WNbXXSbKWnT9/Xnv27FFoaKg8PDxUu3ZtRv++y5inGmlGqAYA4OGRlul9bl7H09NT3333nWrUqKHOnTurSJEiOn78uKZNm6aNGzdq6NChBGsAGQ6hGmlGqAYA4OFgn6YnPDxc+/bt07lz5yRJlStXVsmSJeXq6mrNfWuz2WSMkTFGf/31lwIDAzV+/HiVLl3a2l5SUpLefvttHT9+XD/++CNNwQFkKEypBQAA8D+hoaGpDhb0IImNjU3RtPpeWLRokY4ePaoDBw5Yv4+EhATNmzdPefPmVb58+XT48GHFx8crS5YsioqKUmJiomJjYxUZGamRI0eqbt26KliwoLXNEiVKaMOGDfr+++9VqFChe1p+R+TJk8caxOlB5ePjo9y5czu7GAAcRE01qKkGAGRooaGh6tylqxLi45xdFKcLCQlRZGSkoqOjrSl4EhMTZYxRpkyZ5OLiosTERGu5vebZxcVF7u7uyp49uzw8PJQ3b16nvYeMyC2Tu6b9OJVgDTxg0pqTXO5jmQAAAJwi6X9B8WHn7u6upKQkK1BLskYXNsYoMTFRNpstxXIpuZm3PWDHxXFz4m7j8wmkbzT/zkDGjRunjz/+WOfOnVOZMmU0evRoa5RAAAAeVrlz59a4cWN16tQpZxfljuLj4xUeHn5P93H27FnNnDlT586dU0JCgiQpJiZGmTJlkoeHh9zd3eXm5qbIyEjFxcXJ3d1dkhQdHS0/Pz+VLl1aOXLkUL169axtLl++XJcvX9bTTz9tBfIHiZ+fnzXd0IMqICCAWmogHSNUZxAzZ85U//79NW7cONWqVUvffPONmjRpov3796fo9wQAwMMoKCiIaWb+p1y5cvr4448VEhIiNzc3eXh46OrVq8qVK5dKlCihM2fOKCoqSpJ04cIFubu7KyAgQEeOHFF4eLh69uypxx9/3Br9+/Tp04z+DeChRp/qDKJatWqqVKmSvv76a2tZqVKl1LJlS40YMeKOr6VPNQAAD5cDBw5o1qxZ2rFjh6TkmlI/Pz+5ublZNdg3///y5cvat2+fFbglKW/evHrhhRcI1AAyJEb/fojExcVp27ZtevPNN1Msb9iwoTZs2OCkUgEAgAdVUFCQ3n333X/9usTERO3evVuXLl2Sr6+vypUrxzRaAB56hOoMIDw8XImJibf0xcmdO3eqU3PExsYqNjbWehwZGXnPywgAANI/V1dXVaxY0dnFAIAHCqN/ZyA3Dw5ijEl1wJARI0bIx8fH+gkICLhfRQQAAACADIVQnQH4+fnJ1dX1llrpsLCwVEeSHDRokCIiIqyfB300VAAAAAB4UBGqMwB3d3c98sgjWr58eYrly5cvV82aNW9Z38PDQ97e3il+AAAAAAD/Hn2qM4gBAwaoa9euqly5smrUqKEJEybo5MmT6tOnj7OLBgAAAAAZFqE6g2jfvr0uXryo999/X+fOnVNwcLAWLVqkQoUKObtoAAAAAJBhMU81mKcaAAAAAG6S1pxEn2oAAAAAABxEqAYAAAAAwEGEagAAAAAAHESoBgAAAADAQYRqAAAAAAAcRKgGAAAAAMBBzFMN2WdVi4yMdHJJAAAAAODBYM9H/zQLNaEaunr1qiQpICDAySUBAAAAgAfL1atX5ePjc9vnbeafYjcyvKSkJJ09e1ZeXl6y2WzOLg5uIzIyUgEBATp16tQdJ58HcHscR8B/x3EE3B0cSw8+Y4yuXr2qfPnyycXl9j2nqamGXFxcVKBAAWcXA2nk7e3NFy/wH3EcAf8dxxFwd3AsPdjuVENtx0BlAAAAAAA4iFANAAAAAICDCNVAOuHh4aEhQ4bIw8PD2UUB0i2OI+C/4zgC7g6OpYyDgcoAAAAAAHAQNdUAAAAAADiIUA0AAAAAgIMI1cADhN4YAIAHAecjAEg7QjXwgFi3bp1sNpuziwGkWxcuXNC2bdskSUlJSU4uDZB+bd++XdeuXXN2MYB0LSEhQefOnXN2MXCfEKqBB8CZM2fUvn17ffLJJwoNDZVELQHwb8TGxurHH39UmzZttHXrVrm4cHoDHLFlyxa9+eabevXVVxUdHS2J8xGQFomJiSkev/rqq+rRo4fWrFnjpBLhfmL0b8DJjDGy2WxauXKlvvzyS/n5+WnSpEnOLhaQLg0YMEC7du3SO++8o3r16jm7OEC6YT8XSdKJEyfUpUsXVaxYUWPGjHFyyYAHl71V1I03co8dO6aiRYsqKSlJQ4cO1cKFCzVmzBjVqFEjxXGGjIVQDTiB/W6mq6triuXbt29X9erVNW3aNLVu3fqW5wEkM8YoMTFRbm5u1mObzaZLly7p7bff1vr167V27Vr5+Pg4uaTAg+1256NVq1apW7duGjx4sPr06eOMogEPrKSkpBRB+vDhwxo/frx+/PFHZcqUSfv27ZOPj49iY2P13HPP6cyZM5o9e7Zy5MjhxFLjXqJ9HOAErq6ucnV1VUxMjA4cOKCEhARJUqVKlfTMM8/o22+/tfqGAriVzWazAvWRI0d0/vx5SZKvr6+GDx+uc+fOacKECYqLi3NmMYEHnv18FB0drf379ys2NlaSVL9+ffXp00cffvihDhw44ORSAg8WFxcXXb16VaNGjVLx4sVVunRpHTlyRNmyZVOxYsWUJUsWSZKHh4cGDBig0NBQffrpp04uNe4lQjVwH9mbCa1Zs0ZPPPGE8uXLp48//lj79++31nn++ed1/fp1zZ8/31nFBB54EREReu+991SgQAG1aNFCixYtUkxMjCQpR44cat++vZYuXao9e/Y4uaTAg8neUHHt2rV64oknlDdvXo0YMUKHDh2y1nnttdcUExOjhQsXKj4+3llFBZzu6tWrev755xUZGSljjF566SVlz55d06dPt0Lzb7/9psyZM6tNmzbKlCmT1QqkQoUK6tGjhyZOnKiIiAgnvxPcK4Rq4D/4t70nXFxctGvXLvXv319BQUFavny5BgwYIH9/f2udqlWrqlSpUtq5c6cuXLhwt4sMPFCMMQ4NgjR8+HAtWLBAn376qebMmaPatWvL1dXVuojp1KmTLly4oJ07d97lEgMPpn97HNlsNh07dkyvvPKKSpQoodWrV+v//u//lDdvXknJzcI9PDz05JNPatmyZZyP8FCLjo7W2rVrFRoaKpvNpjZt2ujo0aPasWOHXnzxRfn6+mrOnDk6d+6cnn76aRljUnSp6Ny5s65evarVq1c7703gnnJzdgGA9MYYo6SkJLm6uv7rwSYSEhL0ySefyNPTUx988MEtfWvsfXTKlSunAwcO6OTJkykCN5BRJCUlyWazOTRgy/r16/Xtt9/q008/Vfv27VNdp0aNGnJxcdG5c+eUmJjI+ATIkP7L+UiSBg0aJA8PDw0fPly+vr4pnrNvr0OHDurQocNdKS+QXv3+++8qVqyY/Pz8JCV3j5D+vplls9m0bNkyVa9eXX5+frccj3ny5FGtWrU0b948PfXUU7f0yUb6x18TSAP7oEhS8hen/QL9559/1ttvv61jx46laTtubm7auHGjnn76aeXIkcP6Mr55Tt2aNWvqwIED8vLyuovvAnAuewCQkltt2Gw2HT16VG+++aZmz56dptdL0uXLlxUTE6Pu3buneM7+vH2MgqCgIO3atUuurq7MW40M407no549e1rTYP3TNpKSkhQWFqYqVarI19fX2ubNoxlXrlxZMTEx1FTjoZGYmHjL8ZA/f35t2rTplsoQe3iOjo7W4sWL1bRpU2XKlOmWc05CQoJq1Khhda8gUGc8/EWBNLjxwuX3339X06ZN5enpqfbt2+vzzz9X/vz507Sd+Ph4FStWTOvXr7ceS39/udr/LVu2rGJjY3X58uW7/VYAp7HZbHJxcdGlS5c0bNgwFShQQIGBgRo1apT27t0r6c5NWO0XLzabTd7e3tqwYYOk5AugG2u97QOYVa1aVadOnZLEBQwyjpvPR82aNVOmTJnUvn17/fDDD2nqs2mz2XT16lXlyZPHOkbs27QfK/ZjMSoqSlWqVEkx9geQEdk/8/bB+xITE61wbIxR9uzZrePAvq595oklS5bo+vXratGihaTk4+jG85mbm5vc3NxUuHBhRUZG3s+3hfuEqwwgDUJCQvT8888rR44catu2rfLmzavt27erRYsW6tGjhzw8PNK0HZvNpubNm2vRokWKiIiQu7u7pOQv5XXr1uns2bPW/mrVqsXIxcgQ7BcWU6dO1SOPPKJcuXLp119/1ccff6zFixcrICDAasZ9pyas9u0UKlRIpUuX1oQJEyT9HQbOnj2rdevWWetHRESoZs2aVs01kBEcPXpUvXv3Vvbs2dWuXTv5+/vrwIED6tSpk7p06aI8efJYtWx34uPjowoVKujkyZPasmWLtTwxMVFbt27ViRMnJCXXsCUkJKhcuXL36i0BDwT7+WfZsmVq3ry5KlSooEWLFklKPi7y5s2rrVu3SkrZ7FuSZs2apWrVqqlAgQK3bM8+on5CQoLCw8Pl7e1N66kMiFANpMEXX3yhsLAwTZ06VZcuXdKkSZPk7e2tzZs3q06dOmnejpubm7p06aKCBQuqffv2mj59ukJCQjRq1CiNGTNGp0+flpTcjOjQoUOqWLHivXpLwH1js9m0Z88eTZw4Uc2bN9exY8e0bds2dezYUUuXLlXu3LlVtGjRNG1HSm7W3a1bN02bNk1Dhw7Vjh07tGbNGvXr108bNmzQ1atXJSXfnDLGyM3NzaHB0IAHif0zPHHiRIWEhOinn35SeHi4vv/+e3l5eWn58uVq3LixpFvnnL6Z/YL+qaeeUu7cudWzZ0/NnDlTR48e1ccff6x3333Xqk3LmTOnzpw5Y00RBKR3N9ZA3+zzzz9Xz549VaxYMQ0aNMjqhlemTBm5ublZM0rc2KLj8uXLWrFihbp27WptJyQkRIMGDVLDhg21Y8cOSclTPtrHyaH1VAZkANxWUlKSMcaYhISEW5ZNmjTJ+Pv7m2vXrv3r7W3atMm0b9/elCpVyvj6+poyZcqYH3/80SQmJhpjjLl48aIZO3asiYqKultvBXigJCYmmujoaBMUFGQ++OADY8zfx0daDR8+3FSrVs0UKVLE+Pj4mO7du5ujR49azy9cuNCsX7/+rpYbcBb78WE/T9xo6tSpxt/f34SHh//r7Z4/f940b97cBAcHmxw5cpjg4GDzww8/WOe948ePmxkzZpiIiIj/9gaAB0x0dHSKx3v37jU5c+Y0EydOTHX9vn37moYNG5qdO3caY4yJi4szxhgzbdo0U758eXP8+HEzbtw488gjjxgXFxfzyCOPmMmTJ1uvHz9+vNm4ceM9ejdwNpsx3L4HHFGvXj0FBwfrq6++SvX5tIzsuHPnTuXKlUv58uVLsTw2NlZubm6MWIwMyfyvD9qqVavUqlUrbdmyRSVKlLjteje78diKiIjQsWPHUm3Vcf36dWXNmvXuvwHgAWE/Rho0aKACBQro+++/T/W4ud356MZ1Dxw4IG9v71vOR3FxcXJxcbHGKgDSC/O/ASzt/ZttNpuSkpI0efJkTZw4UdmyZVO1atX0f//3f/Ly8tLcuXPVt29f7dy5U/7+/tZr4uPjlSlTJq1du1YffPCBSpcurS+++EJJSUlKSkpSly5dNGvWLLm5uSlfvnx69tln1bdv31sGNbt8+fIty5Bx0PYAcMDRo0d18OBBNWzYUNKto3dLaWvaU6FCBeXLl09JSUkp+sB5eHgQqJFh2S/i58+frwoVKty26fft+lffeGx5e3tbgTohISHFsUigRkZns9l0+PBhHThwQC1btrSW3ex256Mb1w0KCkr1fOTu7k6gRrpkHxzT/n9JGjJkiD777DM1btxY3bp108yZM/Xaa68pPDxcFy9elK+vr44ePSrp7y4XmTJlkpQ8M0uPHj00ceJEHThwwLrZ5O3trcGDB2vfvn06ceKE3n77beXIkSPFKOKSCNQZHKEaD52bv+T+7WslacmSJXJ3d1fz5s0VHx+f6kXMihUrtHjx4jRt18XFhRCNdMMY858G/0pISFBiYqLmz5+vZs2aydXV1RoJ/0ZXr17ViBEj7ritG489Nzc3+qkhXfkv5yO7rVu3KikpSXXr1pWU+k3e9evXa9KkSdY+74TzEdKj232u33nnHU2ZMkWStGXLFv3222/6+uuv9e6776pz587q1auXfvrpJ82ZM0f169dXTEyMNXCf/XwSGhqqc+fOyc3NTZ06dVLr1q311ltvaf78+ZKkCRMmaNiwYSpRooR1fjTGWKOI4+HA1QceOvYvuZiYGK1atUrh4eGS7jyVz42vlaQpU6aoTZs2stlsypQpk9U86I8//lBISIgkWYO9SKlf5ADplc1ms2qu9u3bZ01tlRZJSUlyc3PTihUrFB4erjZt2kj6uybgyJEj2rhxo4wx2rlzp9566y0tXbpUUtqOUSA9sZ+PoqOjtXr1ap08eVJS2j7r9htb48ePV+PGjZU9e3ZJyUEgPj5eK1as0MWLFxUdHa1x48Zp7Nix1j6BjObmz7U9ZC9cuFCbN2+WJO3YsUM2m03FihXTCy+8oLx582r06NHq06eP6tWrp6JFi6pmzZqaNGmSZs2apcjISF2+fFkfffSR5syZY2179OjRql69usaOHatr165Z+0tKSrLOj3eayQIZE6EaGZa9L82NjyVp06ZNatSokfz9/fXuu+9q7dq1ku48lc+Ndu/erdOnT6tTp06SpA0bNqhHjx7y8vJSr169FBYWJmOMatasqVq1aklilEekX6ndELp27ZpGjhypgIAANWrUSD///LPOnz+fpu3Zj4VZs2apXr16KlKkiC5fvqyxY8eqUqVKKlmypBYsWCCbzaZs2bKpYcOG1hQlXKQgvbr5fGT3559/qkmTJvL399f777+vP//8U1LaPutubm7av3+/jhw5omeffVZS8vnomWeeka+vr9q2baszZ84oc+bMypEjh5o0aXJ33xTwANmzZ49eeeUVrVixQlJyyL506ZIKFixojeBdokQJ7dmzR4GBgQoLC9O4ceN05MgRffLJJypZsqQkadSoUapevbpeeukl1atXTwUKFNC6detSjPvh5+en119/XW+99ZbVysrV1ZVrvYccnWSQ4dw4MMWNbDabzp49qzfeeEOBgYEaNWqUcufOraioqDRv12az6ffff1dMTIxmzJihVq1aKSwsTM2aNdOyZcv06KOPpthf27Zt7+p7A+4X+8BGqV0k/PDDD5o5c6Y++ugjPf7444qKirIuWtLiypUrWr16tcqVK6cWLVpo8eLFKly4sHr37q01a9ZY2ypYsKCKFi2q4sWL37X3BdxPtzsfSVJkZKTefPNNFStWTH/++af8/f3/dbeKdevWKSIiQrNnz1a7du104cIFNWvWTIsXL1bt2rWt9cqVK8eUWMiQ7Ndm7u7u+uuvv7R69Wpt27ZNbm5uVv/o+vXrS0oeg6NEiRJq27athg8fbm3jypUrWrhwoYoWLaoaNWroq6++0ssvv6w///xTderUUWBgYKr7/jdTqiLjI1Qjw7B/sdp/Tp06pSVLlqhw4cJq0KCBpOQ7mdu2bdP8+fPl5eWlqKgo5cmT55ZtpMY+auSKFSt0+fJlbd26VR999JFVY21nHyXynXfeuXdvFrjH7CFgwYIFCg8P16OPPqqiRYta83EGBwerU6dOSkhIUO7cuf/Vtnfv3q1jx45Jkpo0aaIDBw6oWLFi1vOJiYmy2WzKmTOnxo0bd/feFHCf3Xg++u2331SuXDlVrVpVnp6eWrx4sUJDQ/Xll18qODj4X41Wbz9XzZkzR1FRUdq7d+8dz0fPP//8vXh7wD2VmJj4j90V7NdsgYGB+umnn/TII49o4MCBeu211xQQECA/Pz9r4LFSpUqpY8eO+vLLL1WsWDE1atRI169f18SJE7V9+3ZrDI9MmTIpODhYwcHBkpKPt6SkJLpO4I6YUgvpVmoBOCEhQUeOHNGqVav07rvvqkCBAjp+/LgGDRqkgQMHauPGjerbt6/y588vPz8/5cyZU1euXFHFihXVr1+/225X+rvmbsuWLSpTpkyKu/4JCQmp1urdKaQDD4IbP6P2/588eVKhoaEaMmSItmzZonz58ikiIkKrVq1SoUKF9Morr2j16tUqW7assmbNavUL7dWrlypVqpTiQuh20/vs2bNH5cuXT7HM3t/6TmUEHkSpfUbj4uJ06tQpLVu2TO+//768vb0VFRWl5s2ba9y4cVq9erXeeustubm5KSAgQL6+vgoPD1eNGjXUt29fubi43HYqrISEBLm5uenYsWPKnTt3ijDO+QjpSWJios6dO6cCBQpYfZIdCbD2Y+WXX37R559/rkqVKunLL79Uq1atVLRoUX366afWei+++KJWr16tLFmy6K+//lL16tX15ptvqlGjRim2aY9IHDdICxr/I92xDz6R2pdc9+7d1b59ey1btkyLFy/Wjh079OKLL2rmzJlauHChateurQ8//FDe3t5WDXViYqJef/11qx+OzWbT+fPnrZo0+/7sFyhVqlRRlixZUozaertRh/kixoPIGJPqcWSz2XT06FGVLl1ab775pmrXrq2TJ09q6dKlypQpkz788ENdv35dI0aMUNOmTa05bePi4rRr1y716tVL0t8DxmzZsiXVY8Bms1mB2j5K6p3mweU4woPkxrqIO52PXn31VZUqVUrr1q3T4sWLtW/fPg0bNkyTJk3SmjVrVK9ePY0YMUKFChVSwYIFlS1bNsXFxWnEiBGaPHmypOTzTlhYmHbu3Cnp7zEO7MdK0aJFlTVrVs5HSJcOHTqkhg0batq0aZKSP+82m02urq5KTEzU5MmT9fLLL2vJkiW6fPmypNsP/Gr/zLds2VIDBw7U119/rZUrV+rIkSMqUqSIpL9vOI0fP17Lly/XyJEjde7cOa1ateqWQC393dIESBMDPKC2bNliihYtas6fP5/q89u3bzczZswwp0+ftpbNmDHD5MiRw3Ts2NFaFh4ebh5//HHzwgsvpHh9UlKS9f9cuXKZUaNGGWOMOXbsmKlataq1jRvXA9KT+Ph40717d/Pyyy+n+nxMTIz5+eefzYoVK0xCQoK1/MknnzRZsmQxa9eutZaNGTPGVKpUySxfvvyWfRhjzJQpU4ynp6eJiIgwxhjz+eefm4CAALNp06a7/baA+2779u2mUKFC5sSJE6k+v3XrVjNt2jRz5MgRa9mhQ4eMzWYz7dq1S7FuUFCQefnll83Vq1dv2c7169dN5cqVTf/+/Y0xxly8eNGULVvW9OnT5y6+G8A5EhMTzYwZM0zr1q2tZTdewxmTfF76+uuvTYECBUxwcLB56qmnTNGiRU3z5s3TtA/7NdsLL7xgGjZsaGw2m3n99det/acmISEhxTkQcAQ11XggmFR6IQQGBmr48OG39NfcvHmzypYta93lb9CggcaMGSNJevzxx1WiRAm5u7tb6+fMmVMVK1bUwYMHtWvXLknS6dOnde7cOYWHh2vIkCEKDAy0RkbNkyePihUrZg3ywl1KpAfmhtGF7f+6ubmpc+fOevnll1OsGxsbq0GDBilHjhx655131KNHD3Xt2lXbt2+XlNzP2c/PL8WgSa1atVJ0dLQ1f2dcXJyOHz+uq1evasOGDfr222/1xhtvWN0iihUrpgIFCljzdgLpxY01YfbPbs6cOTV27FgVKlQoxXy4W7duVYUKFVS/fn19+eWXqlq1qqZNm6aYmBiVKFFCxYoVU5YsWRQdHW1tq3Pnzvr999914sQJSdLx48cVFham8+fPa/To0bLZbOrdu7ckydfXV3ny5FFAQMAtZQPSGxcXF505c0bbtm3Tjh07JEn58+fXiRMnrOuzy5cv69KlSxo5cqT27NmjuXPnasWKFVqwYIEWL178j+cT+/Pvvvuu1Sc6KCjI2n9qmE8adwOhGg8Ee3C1z/dnjJGXl5c6dOiQ4sI+KipKn3/+uUqXLq1jx45p/vz5atmypQYMGKAdO3bIz89PVapU0blz57Rnzx7rdU888YSioqK0adMmJSUlacqUKerSpYtKlCihX3/9VS+//LKCg4OVlJSkzJkzKzw8XIULF76vvwPgv7A3U4uMjJT0d7PUJ554QiVKlND169etddesWaPffvtN06ZN0759+zR69GiFhYXplVdekSQ9/fTTMsZoz5491kV8/vz5Vb58eW3dulWhoaHaunWrhg4dqmrVqqlJkyYqWbKknnvuOatZaoUKFRQXF6ccOXJwYwrpiv3COyIiwvrsFixYUE2bNlV8fHyKi++PP/5YgYGBOnr0qJYuXaouXbpo5MiR+umnnyRJXbt21apVqxQaGmptq0ePHjp79qx2794tSZo0aZK6dOmioKAgzZw5UwMHDlRgYKB1DFerVk3ZsmVLUTYgPUlKSrI+z/Xq1VPhwoU1a9YsSdKJEyfUtWtXffjhh5KSKzZat26tzp076+jRo+rXr581evfMmTOtc9zt2I+RPHny6P3331dSUpJ69ux5r94a8Dcn1ZADKWzbts089thjZvz48daymJgYs2vXLpM5c2azf/9+Y4wxly9fNh4eHmbBggXWerGxsebRRx81HTp0MMYYs2jRIlOhQgUzceJEa53r16+bxo0bm2bNmpnY2Fiza9cuM2XKFHPs2LEU5bA3/4mNjTXG0PQb6csbb7xhWrRoYX1+7U2xu3XrZho2bGit9/7775sSJUqkeO3ixYuNm5ub2bNnjzHGmObNm5uWLVuakydPWuvMnDnT5M+f38yePdskJCSYX375xSxZsuRevy3gvjp27JgpWbKk+emnn6xlSUlJZvfu3SZ79uxm3bp1xhhjDh8+bEqUKGG+/vpra72wsDDTvXt3U6dOHWOMMaGhocZms5mff/45xT6qVatmGjdubGJiYsyePXvMtGnTzPHjx1MtD81SkZFERkaafv36mSpVqljLBg4caB577DFz+PBha9mSJUtMcHCwadGihVm2bJn55ptvjLe3t9m1a9dtt52UlJTq8WLvpgTcS9zyxAOhdOnS8vHx0fz589W1a1e5u7vr999/V8mSJZUtWzYtXLhQUvKUWMWLF1dMTIyk5No4d3d3de7cWYsXL5YkPfbYY/Lz89P27dut2rksWbLoscce06OPPqr4+HiVK1dOXbt2VZEiRVLcQbXXQLi7u1ujUAIPOvvnNzg4WGfPnlX//v1VqFAhNWrUSAkJCapevbrWr19vHTdHjhxR+fLldfXqVWsbFStWVJkyZTRlyhRJyU1U9+/fr/3791vrNGvWTPXr11fBggXl6uqq1q1bW4O7JCYmpto0leaqSG+KFCkiHx8fzZkzRx07dpSLi4vmzp2rPHnyKCgoyDpGLl26pLi4OBUoUMB6bc6cOVWrVi2dOXNGR48eVa5cuVS9enXNnTvXaoklSX379lWFChWUlJRkTU9XuHDhFOcjO1dXV7pQ4IF17Ngxff7559bj1L7zL126pGeeeUbnz5+Xl5eXqlSpoqtXr1rXdjVq1FBUVJR+//13SVJ4eLhGjBih6tWra+rUqWrQoIEKFy5stTi8eT53+/nHPsiZnbmhKxRwrxGqcV+ldsEgSfv379eWLVu0aNEiXbx4UStXrlSTJk3k6empTp06WRcx+fPnV86cOa1mc/Yvz7x58ypLliw6duyYPDw8VLFiRa1evdoaMVWSXn/9db3++uspph4x/xt1OLW+NDSzw4PIGHPLBYXNZpMxRlu2bNG2bds0e/Zsvfzyy5o3b57c3NzUqFEjZcqUyWqSWqRIEYWFhemvv/6ytpEtWzblz5/fOj7btm2r8+fPa8WKFYqLi5OUfHNq6tSpqlKlSorySMnHYmrHDMcRHlS3Ox/t27dPp0+f1i+//KIrV65o1apVatWqlby9vdW8eXPNnz9fklS1alUlJCRo37591g0rFxcXZc6cWT4+PoqOjpaU3Nz7p59+0smTJ619dO3aVSNGjFDmzJkl/T0mwu3OR9zgxYNq7969KW7a2r/zbzy2IiIiNHfuXGv8m/Lly6tw4cKaM2eOJKlmzZrKmzev1qxZI0ny8/PTzp07VbVqVXl7e0uSfv31VyUlJWn8+PG6cuWKJFnnQvv5JywsTMOHD1enTp0UHR3NcYP7iqsd3Ff2C4b4+Hjt3bvXqkn29vbWgAEDVL16dTVs2FC1a9e2LtafeeYZ7d27V5s3b1bRokVVtmxZLV68OEUN2qxZsxQcHCw/Pz9JyRcxw4YNU9WqVVPsPykpKcUdf75wkd7YbDbrrvuRI0d06tQpaxqSFi1aqE2bNqpevbo6duwof39/Sck3o5o0aaJJkyZJktq0aaOLFy/q559/trZ76tQprV+/XnXq1JGUfJEyduxY9erVK8XAf1LKiyWOIaRX9vNRXFycdu7caZ2P/P39NXLkSOXNm1cdOnRQ3bp1JUkeHh6qU6eOEhMTNXv2bEnJA/j9/PPP+vPPP63tbt68WYmJiSpZsqQk6bnnntOkSZOsx3Y3no+YugfpVYsWLTR79mx5enpKkq5cuaLWrVtr0KBB1jr58uVTnz59rKmzAgMDVaVKFW3ZskVXrlxRnjx5VKFCBYWEhFjHUvPmzTVo0CD16NFDNWvWlDFGmzZt0ltvvWVd67m5uSkpKUmTJ09WzZo1Vbx4cS1atEiNGzemdhr3n3NaneNhkJiYeEuf5A0bNpinnnrKeHt7mwoVKpgGDRqYrVu3GmOS+zF36tTJtGjRwkRHRxtj/u7TXLp0adOvXz9jjDG7du0yTZo0Mf7+/mbo0KGme/fupkiRIin6vwEZxc39wyIjI82nn35qihQpYvLkyWMqVqxo3n//fRMZGWmMMebXX381FStWND/88EOK182bN8+4uLhY05d89dVXJkeOHKZly5bm/fffN+XLlzctWrQwFy5cuD9vDLiPkpKSbjkfbdy40ToflSlTxlSrVs3s37/fmnanYcOGpl27dubMmTPWa86fP2+aN29uGjdubIwx5siRI+bpp5823t7eZtiwYaZz586mQIECZubMmSn2DWRkW7ZsMX379jXGGHP16lXTp08fExQUlGKdlStXGpvNZrZv326MST5XlS1b1nz//ffGGGN+//13U69ePTNs2DBjTPJ4BOPGjTONGzc2w4YNM5cvX06xvbCwMPPcc88Zd3d3ExwcbN57770UfbKB+42aatx15n933u21Z7t27dLu3bt18eJFvfnmmwoICNDvv/+uGTNmKGvWrHrvvfd09uxZubu765FHHlFoaKj++OMPSX837XnmmWc0b948RUZGqly5cpo6dapef/11rVmzRtHR0Zo2bZo6duyYajmA9MzesmPVqlW6evWqZs+erV9++UXvvfeetm/frr59+2revHmaMGGCpOQxBbJly6YtW7ZYzfGk5KaqBQsWtLpS9O3bV9OmTVP+/Pm1ZMkSderUSdOnT7dqAOzoE430zNxUE7x9+3YdPHhQZ8+e1aeffqqcOXNqzZo1Wrhwofz8/DR48GBr5oh27dppx44dKbpJ+Pv768knn9TWrVt19epVFStWTOPHj9fbb7+tjRs3KiEhQTNmzFC7du2s11ADjYzu2rVrGjdunHbt2qVs2bKpRYsWOnv2rDZv3mytU6ZMGVWqVElfffWVJKls2bIKCgqy+lVXr15d2bJl07JlyxQTE6NcuXLphRde0OLFi/XWW28pe/bskv5uKRUdHa1KlSpp5cqV2rVrl4YMGaLixYvf3zcO3MjJoR4ZgP2u/o0uXLhgTp48abp27Wp8fX2tkbjtdySNMSYkJMQ89dRTxsfHxxr1e/Pmzeaxxx4zgwcPTrG9EydOGJvNZubMmXPv3gjgJKnVohljzKFDh8y6deuMr6+vadq0qTl69KjZtWuX2bBhgzEm+dibPn26yZ07t3n88cetGrXXXnstRSsQ+7ovv/yyyZEjR4p93DwqKrVqSM9SOx+Fhoaac+fOmQEDBhibzWZ++uknc+rUKbN8+XJr/VOnTpm2bdsaf39/88UXXxhjjLl27ZopUqSI+fjjj01cXJy1ve3bt5vs2bObUaNG3Z83BTjZP41An5SUZAIDA82gQYOMMcnXdzVr1jTPPvustU5iYqLp37+/8fX1tZZ99NFHJnfu3ObgwYPGGGOWLl2a6ujeCQkJnJvwwKOmGg6z3y1MbSCiQoUKqX379vLy8tKuXbv07LPPSpK6d++ubdu2qXbt2qpcubJiYmJUsWJF/fLLL5KkypUrq0yZMvrtt9+0e/duLV68WL/88osKFSqk3r17WwNW3FwOatOQHiUlJVkjlt5cm/Xzzz8rMDBQX3zxhcaOHasFCxaoaNGiKleunCpXrqyhQ4eqQIECGj58uGrWrKnw8HCtWLFCUnIft4sXL2ry5Mk6c+aMRo4cqYsXL6pTp05q166dNYCSlNwnzRhjHc/UqiE9ut356OrVq2rUqJGqV6+uuLg4nTx5Uh07dlTevHn1xBNPaPv27apfv74qVKighIQEBQQEaOPGjQoNDVXWrFlVt25dzZ49WytXrtTixYs1adIkVaxYUS+99JJKlCiRajk4HyEjSExMvGVmFHObFoA2m03t2rXTzJkzFRMTozx58qhp06aaN2+etY4xRkeOHNHly5e1ZMkSSVKFChX09NNPW+s0bNhQ5cqVu2X7rq6unJvw4HNyqEc6cru7hMuXLzdTp041p0+ftu7mv/nmm8Zms5kxY8YYY/6+y3n16lXTqFEj07dvX6vvy4ABA0y+fPms+XE3bNhgWrZsafLkyWNcXV3Np59+yh1KZGhnz5413333nVm1apVVc3zp0iVTsGBBExgYaM6ePWuM+bsWbtasWaZcuXJWy41Lly6ZvHnzmj59+ljb/Pzzz02pUqWMj4+PKV68+C1zsgMZ0ZIlS8yUKVPMkSNHjDHJ554xY8YYm81m1UDbxcXFmZYtW5oePXpY67/99tumYMGCZvny5cYYY7Zt22a6dOlicuXKZby9vc1rr712f98QcB8lJibe0nopLi7OjBs3zrRs2dIsWrTotq89ePCgcXFxMStWrDDGGLN7926TI0cO88ILL5ijR4+a2bNnm+eee85UrVrV9O7d+7bb4XoP6RWhGreIiYmx/n/q1CmzZ8+eW75kjTHml19+Mfny5TP58+c3tWrVMmXLljVffvmlMcaYvXv3GpvNZqZPn57iNRs3bjS5c+c2ixcvNsYkNz1t2bKlcXFxMQMHDrTWu3jxotm3b98t+/ynJkjAg+LGz+ratWvNtWvXblknPDzcdO7c2Xh6eppatWqZIkWKmGeeecbs3bvXGGNMp06dTKVKlczVq1et10RHR5uePXuaBg0aWBcfy5cvN35+fqZs2bIpms7t27fPGsDMLikpKdUmssCDKDY21vr/qVOnzJYtW1I8bz8G5s6dawoWLGjy5s1rGjdubLJnz25mzpxpkpKSzP79+03mzJmtwSztx+bvv/9uSpQoYWbNmmWMST62Wrdubfz8/Mzrr79u7SMiIsJqnnojzkfIyBYsWGCaNm1qfHx8TGBgoBk+fLi5dOnSHV9TrVo107NnT+vxxIkTTbly5Yy3t7c1gN/169dveR3HEjICmn8jhaZNm2rIkCFW89CnnnpKgwcPlpubm0JDQ7Vy5UpJ0smTJ/XFF19o8ODBOn36tP744w/1799fr732mk6fPq0yZcqocOHCKeYulJIHHitSpIhmzZql06dP64svvlDmzJn1wgsvpGgy5+vrq9KlS1uvsUtt/k7gQbJlyxblzJnTGtxo7969qlu3rk6fPi1JWrVqlc6cOSNJmj59uk6fPq3du3frjz/+0IIFCxQZGak333xTUvJctrt377ZeK0menp7y9PTU5cuXNXfuXG3btk0//fSTWrRooYoVK+ratWvWuqVLl5aXl1eKZnw2m425o5EutG/fXi+88IIkKS4uTm+88YY6deokSTp9+rSWLl0qm82myMhIff7553rhhRd09uxZLV68WIMHD9bw4cO1ZMkSlSpVSrVr19bMmTMl/d2EtVixYkpMTNTy5ct16NAhTZgwQf7+/qpRo4Z8fX0VFRUlKXnKR/t0WAkJCSnmZgcykq1bt6pPnz7KnTu3evfurQIFCmjp0qU6cOCABg8erBw5cljXhyaVpuA9evTQvHnzFBYWJkl69tlnNW/ePK1cuVKnTp1Su3btlCVLFmtedjuOJWQITo30cLqTJ0+ar7/+2pw4ccIYY8yyZctS3In84YcfjI+PjylZsqSx2WymR48expjkO5jVq1c3xiTXto0cOdIEBQUZm81m5s+fb4wxZvjw4aZgwYLm+PHj1vZiYmLMhAkTTMmSJU327NlN6dKlzbJly1KtCQfSixkzZlitL4xJnjrEmL+ba5coUcKUK1fOeHp6msKFC5v169ebyMhI06JFC2vqqyVLlpjWrVsbT09P89hjj5no6GgTHx9v8ufPbz788MMU29u2bZt55plnTN68eU2WLFnMgAEDTGho6P18y8Bdd+LECfPRRx+ZiIgIY0zygGA3TvH222+/GQ8PD+tc88orr5iEhAQzZcoU06BBA2OMMefOnTOffPKJKViwoMmVK5eZNm2aMSb5XObp6WnVktlruL/44gtTtWpV4+3tbUqUKGHWrVuXYlAyIL1LTExMU01waGioCQgIMM2aNTO//fZbiud27dplevbsacqVK2d++eWX227j/PnzJnPmzFbrj5tRI42MjFD9kLJfUHzzzTemXr16xhiT4kIiNDTUJCQkmKJFixqbzWZatmxpzW9rjDGDBg0y5cqVMzVr1jTZsmUzNWvWNN988405d+6ctc6FCxdMpkyZUv0C/uuvv0xISEiKZanNaw2kB+XKlTOzZ882xvzdfeLixYvGmOQgYLPZjJeXl/n1119TvM7f3980bNjQ5MuXz+TLl8/07t3b/PnnnynWee2110zFihWtudvtEhISzI4dO24pCxctSG/s3/tr1qwxxYoVu+X58+fPG2OMqV27trHZbKZx48YpmoVPnDjRZM6c2dSrV89ky5bN1K5d24wfPz7FjaYTJ06YXLlyWTNQ3HgjNyQkxJw8eTLFPjkfISPatGnTHZ+/sWn2+fPnzdChQ02JEiWMr6+vadWqlZk/f/5tbzrZj5emTZua9u3bG2M4H+HhQhvAh5R9FEUvLy+reXWmTJkkSU2aNNFLL72k+Ph4HT16VG3atNG1a9eUNWtW6/WNGjXSnj17FBwcrJ07d2r9+vV6/vnnlSdPHu3Zs0cXL16Un5+fihQpogkTJuj69esp9h8UFKSCBQumGHXYPq81kJ6Eh4erUKFCio+PlyR5eHjowIED8vPz0+rVq9WiRQsdOnRIsbGx8vT0lPR3l4Y6depo8+bN+vLLL3Xs2DGNHz9e1apV09WrV7VlyxZJUufOnbVz505t27YtxX5dXV1VoUIFa3uGJqlIp+zf+3v27FHNmjV19epV67muXbuqVatWkqRff/1VgwYN0uHDh+Xu7m6dOypWrCibzaagoCDt2bNH69atU+/evZUrVy4dPnxYJ0+eVKFChVS9enV9+OGHkpJHvbcrWLCgAgICOB8h3TOpNMnetm2bWrVqZc37vH379tu+PkuWLPr6669Vq1YtFS9eXMuXL9f//d//6a+//tKcOXPUrFkz61rxZvbjpVixYgoJCZHE+QgPF0L1QyS1aT527typ0qVL69q1a9aXce3atXX06FHrIr53795as2aNDhw4YL2ubt26yp8/vzw8POTr62st37x5s0aPHm19aY8bN079+vVLEchvZLPZ+NJFumFu6gcmJff1PHz4sIoUKWKtExQUpLx582r58uWKiYlR8eLFVadOHX377beS/r6gb9u2reLj45UzZ055eHhISp4C6LvvvtNvv/2ma9euqWLFihozZoxKlSp123K5ubkRAJCu3NjP3/7vhQsXdP78+RQ3e1u1aqU9e/boxIkT8vPzU7NmzXT8+HFt3brVOneUKFFCwcHBunz5snx8fKx9bNiwQV988YWOHTsmSXr77bf16aef3rZMnI+QHhljrOu7m88DBw8e1Kuvvqps2bJp/vz5+u6775QjR47bbisyMlK//PKL6tevrx07dmjdunV69tlnlStXrjSVZdq0aZo5c6Z69uzp+BsC0ilC9UPA/mV74+BE9osYLy8vbd++XdmyZbOWPfPMMwoNDdXu3bslSU888YS8vb21dOlSxcfHW+sNGzZM69atU61atfTBBx/oySefVPPmzeXm5qagoCBJ0uOPP64nn3zyvr1X4F643XzSxhjly5dP4eHhOnnypCQpNjZWktStWzfNnj1bFy5ckCT17NlTS5YssQYdM8aoY8eOatq0qdq1a6devXrp1VdfVaVKlfTNN9+oYsWKVs123759U9y8AtIr+/nI1dVVrq6uMsZYQTYwMFB79uyR9PeNpyZNmsjT01Nz586VJJUpU0aPPPKIvvnmG0nJN7W8vb01atQobd++XdWrV9cHH3ygJk2aqFWrVrp27ZqKFSsmSapSpYqaN29+P98ucM/Yb/DaB5+8ePGiZs+erZ07d1rrbNq0STt37tTUqVNVrVo1BQcHWzeAU+Pt7a3ly5dr2LBhKl68eJrLYj+u/fz8NG3aND333HOOvSkgHSNUPwTsYfr333/XtGnTFBYWZl3EVK5cWbt27VJ8fLzc3NyUmJiogIAABQcHa+3atVZQ6Nixo+bNm6fQ0FDrtd26ddP333+vbt26adOmTSpRooTWrl2rb775RgEBAdb+U6shB9ITFxcXubi46Pz585owYYLWr1+viIgIa+ThKlWqaNGiRZL+bu7Wp08fHT58WLt27ZIkNW/eXJkyZbLWs4fzKVOm6Msvv5SXl5eOHTumIUOGaP/+/WrTpk2KJqocR0iv7Ddipb/PR4sXL1a7du305JNPKjw8XFJy1wk/Pz+r60NiYqIyZ86sNm3aaNq0aUpMTJS3t7c6duyouXPnKiEhQe7u7pKSW0/Nnz9fvXr10q5du1SyZEmtW7dOP/zwQ4rzUWrNY4H04ObPrv0ccujQIX3//fcqWLCg3n77bTVr1kzff/+9JClfvnxydXXVwIED9fLLL+u9997T66+/roULF952P460erIf140aNdLjjz/+r18PZAQ2wxkmwzDG3PJleOzYMXl4eKhjx446dOiQvL295eLioqVLl6pQoULav3+/6tSpo7Fjx6pDhw6KiYmRp6enJk+erOHDh2vs2LFq0KCBDh48qEceeUQ9e/aUn5+f5s+fr0WLFsnf3z/VchhjmLYHGcbFixc1cOBA/fzzzwoKClJSUpI8PT21ePFiZcuWTe+9957mzZun7du3y9XVVYmJiXJ1dVW5cuVUuXJljRkzRlmzZtXzzz+vJUuWqF+/ftq0aZMKFixoNUdNSkq6pTUJTVGR0Vy8eFHdu3fX1q1b1a5dOxUqVEhNmjRRqVKltGHDBg0aNEhNmjTRm2++aR0Tf/75p2rVqqVt27apQoUKOnPmjIoXL64ePXrIx8dHu3bt0ttvv62aNWvesj/OR0jvEhMTU+3jHxMTY/WRLlOmjF577TWVKVNGvXr1UkhIiD799FNVq1ZNn332mZYsWaISJUro+vXrOnnypHbv3q1FixapatWqTnpXQMbDWSadu3FglZu/cMPCwlS8eHE999xzatKkic6ePavZs2fLw8ND77zzjqTku5iPPfaYvv76a0l/D1bWtm1bJSYmaufOnYqNjVVgYKC++uorHTx4UL///rteeOEF+fv7p6g9S0xMtJrIcgGDB5l9/tk7ubEJ3aJFi3Tw4EFt2rRJW7du1ebNmxUREaH/+7//U0JCgqpXr66oqCj99ttvkmQNWta7d28tW7bMavI9bNgwtWnTRj/++KNy5sypl156SZKsi/4bj2cCNdKbG/t23ui3337Ta6+9pujoaC1cuFDHjh3Tzp079cUXX2jAgAHWeAFly5ZVkSJFtGbNGsXHx1vHRPXq1VWiRAnNnj1bkpQ/f35NnjxZp0+f1rp169SlSxfVrFkzRU0e5yOkN4sXL1aDBg10/vz5FMtdXV1ls9l0+PBhLV261Opi5OnpqeDgYJ05c0Z58uTRI488Ik9PT7322mvy8PDQrFmzJEmvvvqqli1bps8++0w//PCDVq5cqUuXLt2yHwD/0f0ZZByOSuuUHgkJCWbu3Llm8+bNKaZE6Ny5s8mUKZNZs2aNtWz27NkmW7Zs5tChQ8YYY37//Xdjs9nM+vXrU+zz6aefNlWrVjUHDx40xiRPMcL8nUjv6tatawYMGHDHdZYvX25sNpuJjIw0xhhTvnx5a2q4efPmmWeffdbYbDbTpUsXEx4ebkJDQ03Xrl1NlSpVjDF/zycdFRVlbDabGT9+vLXsxqmAgIzMfr4YPHiwCQwMNMYYM2nSJOPu7m5OnDhhFi5caJYuXWp27dplwsPDjTHG/PzzzyYwMNBMnTrVGPP3lDyDBw822bJls+awvnH7QHpjPx8Y8/c1V0hIiBk/fvwt131r1641FSpUMNmyZTMlSpQwjz76qDUP9LZt20z58uXNiy++aK0fExNj+vXrZ+rUqWMdL6Ghoeby5cvm6tWrZvjw4aZu3brWNSCAu4Pbtw+wkJAQ2Ww2q/laajUAUVFRevfdd+Xt7a3+/furc+fO6tixo86dOycpuR+ni4uL8ubNa72mZcuWcnFx0ZIlS2SM0eOPP66nnnpKn3zyifbs2WPVePft21dPP/20ChQoICm5z0ymTJmUlJSUoo8ckJ589dVX+uijj6zHFy9etEYHvnFZlSpVFBoaKim5r+ewYcNUpEgR9e7dWy4uLlq3bp2mTJminDlzKleuXHrnnXe0Z88eTZ061To+MmfOrEGDBql8+fJWbZm9D2hCQgL9pJEuGWNSTONmd+XKFb333nsaNmyYpOTBxowx8vHxUb58+RQfH6+2bduqevXqCg4O1siRI/XBBx+ocuXK6tWrl06ePKm2bdvqqaee0pAhQxQeHm612Hj22Wf16quvWsePJM5HSLfs54Mbr+0KFiyo3r17y2azWcuuXbumL7/8UiVLltSpU6c0depUFStWTM8995wuXryoChUqqHLlyjp+/LguXbokKfl8VaVKFUVFRWnNmjWKjo7Wt99+q9atW6tQoUKaPHmy+vbt+68GIgOQBk4M9LiDBQsWGJvNZo4dO5bq8/a7nKtXrzbFihUz8+bNM9euXTNLly41pUqVMp06dTJxcXEmKirK+Pj4mG+++cYY8/cd0WeeecbUrVvXXL582RhjzL59+0zXrl1N48aNrZoBIKNKSEgwZ86cMcYYU79+fVO7dm2zadMm6/kffvjBlCpVykRGRppLly6Z559/3uTMmdMsWrTIXLt2zVrvypUr5sCBAyYqKsoYY8yIESPMk08+acaMGXN/3xDgJGFhYdb/Y2NjzfDhw42bm5tZtWqViY+PN8YY06tXL9OpUycTHR1tjDEmPDzchIWFmYMHD5pjx46Z7du3m2zZspn58+cbY5KPz3r16pmePXua48eP3/f3BNxrmzdvNjVr1jSrV6+2liUlJZnly5eb4sWLWy0E9+3bZ2w2m9m+fbu1XmJiosmVK5d5//33jTHGfPvtt6ZKlSpmzpw51jqHDh0yjRo1Mu3btzfGGLNq1Srz+eefmz179tyPtwc8lKipfsCY/935L1y4sIKDg/Xjjz9Kks6cOaPRo0dr3Lhxunz5slxcXJSYmKiFCxfK399f9evXV9asWdWwYUP1799fBw8e1LJly5Q5c2Y1a9ZMU6ZMUUJCglUL3bt3b61du1Z//fWXJKl06dIaO3aswsLC9NVXX+ny5cuSkgdPMoxlh3QotZo0u6ZNm6pLly6SpNGjR6tAgQLq16+fVTtQqFAhhYSEyMPDQzly5FDNmjWVlJSkLFmyWHOux8XFacyYMZo5c6b1ugEDBqhXr14aN26c9u7da+2PmjSkZzd/fq9cuaKRI0eqVKlSqlevnnr27Km//vpL7u7uGjx4sHr06KF33nlHc+bMkSTlypVLx48fl6enpxITE5UzZ075+/urZMmSKlKkiGJiYpQzZ07lz59fUnIf0ilTpujq1av68ssvFR0dLSn1eeKB9Mjf31/ZsmXThAkT1LdvXxUrVkzr169X5cqVdfToUWvWiLCwMOXOndtqsREbGysXFxd16NDBmmauZs2aypkzp1avXm1tv0SJEqpWrZoCAwMVFxenevXqqX///goODk4xdgeAu4dQ7WT2C4TNmzfr+PHjVugNCAjQ448/rp9++knHjx9X3bp1NX36dI0aNUqtW7fWsWPH5Orqqn379qlgwYLWfLZS8hds9uzZ9ccff0iSevXqpe3bt+vQoUMp1mnUqJH1RZ2YmCgvLy/9+uuvevTRR1PMbe3I9AqAs7m5uclms+nIkSPav39/iuc6deqkXbt26fz58ypXrpxGjhypo0eP6u2331ZUVJSioqJUunRp65hp1aqV2rZtq9atW6tjx4564403FBwcrJ9++knFihVT5syZJSU37W7durWmTp0qd3f3FHPyAunJjeHV1dVVcXFxCgsL06VLl/Tqq69q/vz5euONNzRy5EidPHlSvXv3VkhIiCTpvffeU40aNfTqq6/q9OnTstls8vf3V3x8vFxdXRUeHq5vv/1WI0aM0FNPPaWmTZuqU6dO1oBlUvI58JtvvtHTTz9tDcx08zzxwIPu5u4J9nPCuXPntHHjRs2YMUPHjx/XmDFjVLVqVWXPnl21a9fWzJkzZYxRlixZVKJECS1dulTS3+eSqlWr6syZM0pKSlJQUJAKFSqklStX6sSJE9a+hg4dqqFDh1pdJuw3pWw2G+ck4B4gVDuR/ctt+/btevTRR62arcWLFytr1qxq0qSJLly4oO7du+vDDz/Upk2b9M033ygyMtKahqdx48Zat26dLl68aG03ODhY4eHh1nRXderUkST98MMPKfa/ePFiazoF+xdswYIFVbFiReXMmfOevnfgbkmtX3JMTIzGjh2rwMBA1a5dWx07dlSnTp2soPDUU08pPj7emjO6UKFC+uijj7RkyRJNmDBBmTJlUkREhPz9/WWMkbe3t8aOHatvv/1Wvr6+Onz4sN566y3t379fnTt3vmV04UceeUQlS5Zk1GGkKze2TLKH10uXLmny5MnWVIuxsbFq3Lixfv31V3Xv3l3NmzdXq1attGPHDq1YsUJS8qwSo0aNUv78+fXJJ59owYIFKl68uDW7hIeHhxISErR06VIVK1ZMGzZs0Icffpji5rAk5ciRQzVq1FD27Nnv3y8BuItcXFys66tjx45Z54SsWbPqxRdfVGBgoHr37q0nn3zSOpf16dNHy5Yt05EjR1SmTBkFBgZqxowZkpJvFkvSzJkzVbt2bV2/fl2S1KZNG7311lspxs+Rbj2muSkF3EP3v8U5UlO+fHlTunRpkyNHDqv/TEhIiGnYsKEpUaKENcppfHy8+fDDD423t7cxxpjIyEjj4eFhPvvsM6uv54EDB4yPj4/56aefrO3//PPPKfrk2Nn7vAHpze1Gxk9KSjJz5841TZo0MWPGjDFhYWFm06ZNJiAgwAwdOtT6zHfo0MHUr1/fOrbi4uLMlClTTPbs2c0777xjsmbNamJiYqzt2scxuHHUVmMMYxAg3bv5M71v3z6zbt0606dPH1O8eHHTr18/s3LlShMfH2/i4+NNYmKiOXfunHnppZdMzpw5TalSpUyBAgVMx44dTWhoqLWdP//80zz33HPGZrOZNm3aGGP+Pm7t/avtkpKS0jzbBfAgSkxMvOUzvH37dtO+fXuTO3duU6lSJfPCCy9Y/ZpPnjxpWrVqZZ5++mnr9Xaenp7W2BybN282hQsXNlWqVDFjx441/fr1M0WLFjULFiy4T+8MQFpQjXKfmJv6gRljFBkZqTVr1ujbb7/V6dOnderUKb3//vtKSkpSxYoVlTt3btWqVUthYWHWHX43Nzc1aNBAsbGxWrBggby8vDRw4ECNGTNGnTp10hdffKF27dqpfv36atq0qbW/tm3bqmLFireUy37XE0hv7HfcV65cqQkTJig8PNxa7uvrqw8//FAvvfSSfH19denSJcXHx2v+/Pk6evSoJKlHjx76448/rJG/M2XKpK5du6p9+/YaMWKE3NzcUjSls9cwMJ80MhLzvznSIyMjdejQIXXr1k2PP/64duzYoaCgIJ06dUqurq6qV6+e3Nzc5ObmJhcXF3366afav3+/pk2bpv379+udd97R0qVLU3Qzqlatmt59910VKlRIXl5eio+Pt45be630jfNJU4uG9Ojm7nKHDx/WqVOndOjQIb3yyivKmjWrZs2apSFDhujUqVN68803JUkFChRQ1apVtXfvXp06dUouLi5WV4dmzZppzpw5unTpkqpUqaLZs2erbt26mjBhgg4fPqxJkyaluMaTbr3OBHB/EarvkxsvFsz/mn1/99136tChg3r16qU1a9Yoe/bsypIli7Weh4eHdSEzf/58a3nx4sVVr149TZgwQZL0xhtvaPz48fLx8dH06dPVrl07TZ48Wd7e3inKwPQ9yChOnjyp/fv3q0OHDurQoYNGjRqlli1bWv3OqlevrgoVKujzzz9X8eLF1b9/f3Xp0kXbt2/X1q1brank8uTJYw32Yj8+3n77bX3xxRdasmSJAgMDU90/fdKQ3pj/TYN1M5vNpsjISAUGBqpfv37KkiWLtmzZopdfflnVq1dX1qxZVaxYMdlsNsXHx0uSdu3apVmzZql9+/Zq1KiRjDE6dOiQ4uLitHbtWmu9+Ph4FShQQOXLl5enp6c1BdaNXF1d6SaBdOXm8Ori4qLo6GgdOXJEXbt2VY0aNfTHH38ob968at++vb799ls9+uijqlixorJkyaIlS5Zo06ZNstlsqlixorJmzap58+ZJSr7uk6R+/fpp9erVVrfARx55RB9//LF27NihRYsWqX79+reUi5tSgHNxJrvLbr5wsX/5bt++XevXr0+xrru7u4oUKaKoqCiVKVNGQUFBWr58uc6fP2+tU7JkSdWoUUPffvuttT0fHx+1bt1aCxYsUEJCgry8vNSwYUNNnDhRf/75p9566y15e3un+sUPpHfbtm1Ty5Yt1b59exUrVkxhYWGaNWuWsmfPbo01kClTJq1du1ZTp07VoEGDtG3bNn388ccKDg7WkiVLdPnyZbm6uqpp06b67LPPFBMTYx0fBQoU0Isvvqjq1as7820Cd5XNZrNaJm3fvl1nz561zhHe3t5q2LChli1bpipVqqhAgQKSkkcQfuyxxzRz5kxJf59DSpUqpcuXL+vMmTMKDw/X+vXrFRkZqcKFC+vo0aO6du2aJFktrJKSkqzzIuchpFf21kk3h9fz58+rePHiev311+Xt7a2dO3fq6aeflpeXl/r27atNmzapXr16qlChgi5cuKCiRYtq7NixkqSyZcuqfPny+uabbxQdHa21a9dqxYoVqlOnjurUqWMdQ3Y2m02JiYmM3g08gDi73SX2u+83XrjYm7QlJSXpzTffVPfu3XXs2DHrC/nYsWPKnTu3dWHTsWNHbd++3ZrmSkqedqFp06basGGDrl+/bjWRq1u3rl588UVdunTJWtd+h9M+lRB3LZHepKU1RZEiRVS1alWFhISoY8eOkqRKlSqpc+fO+uuvv/Tnn39KkqZOnSpXV1d16NBBWbNm1caNG3X69GlrABhJ6t+/v959911rdNR/WxYgvTh//rwGDRqkPHnyqHnz5mratKnef/996+K8bdu2ypEjR4pjIUeOHGrevLk1Ur6rq6vi4+P/v707ja/pXPs4/tsZyCASokGKxCyGVmNI5QgxBkVPiiBEdTKUitZU1QmldNBT5/S0VFGzmoOaCTEnUqJETEVLSIUSGVRkPy/y2etkC31IabP5f1/JmteWlX1f677u66ZIkSIMGjSIJUuW4OfnR6tWrWjcuDHR0dF88803lChRAsjtqe7Tpw/bt2/n+eef/1vuW+Ru/X/p05bspL1797Jq1SqysrLIycmhTJky+Pv7s2LFCoKCgihXrpzR/jp//jzvv/8+NWvWJDY2ls2bN9OyZUs2bNgA5Bb169WrF2azmerVqxMcHExSUhIAW7dupVGjRre9DmVKiRQ+CqrvE8vb97S0ND788EMaNWrE22+/zYEDB7Czs2P+/PlUqVKFfv36Gek8pUqV4ujRo8a8t126dCE7O5vY2FjjuPb29jz99NNcunSJWbNmGcurV6/Of/7zH7y8vPJdi2UqIRFbk7cX604NnJIlS9KoUSNMJpPRIwbw5JNPUqlSJeM5adKkCfHx8SxatIi9e/cyY8YMJk2ahJubm9FrVr16dQYMGHDb3jP1qMnDIicnh++++459+/Yxbdo0EhISGDp0KLNnz2bOnDkAtGvXjpIlS3L06FGysrKA3JfE/v7+eHt7M3v2bONYkDtt1sKFC/n222/JzMykV69exqwReaeSK1asGPPmzaNx48Z/9W2L3BXL94HJZOLy5cvGS9dbzZ8/nwoVKhAaGsqoUaNo27Yty5YtA3Krb5csWdLo3LC0wZKSkli3bh1vvPEGlSpVIjMzk8OHD3PhwgWjoneTJk1YunQpixcvJicnh1dffTXftYlI4adW432ybt06pk+fzrhx41i/fj3BwcGsXr2a7t27s27dOjw9Pfn8888xmUwMHz4cyG1w+Pj4GFMiFCtWjFatWjFv3jzGjh1L69atGTFiBHXr1mX16tX07NkzX6ChFCCxRXmn+bAwm80sXLiQ1157zcjyuJVln7p161KvXj2+++47Y13FihUJCgpi69atAERERNCzZ08++ugjmjdvzpUrVwgNDeX48eMEBgZaHVMFXsRW3U1GhdlsJiAggP/+97+0b98egPT0dM6ePcuaNWuMYmTNmjUjJibGmG8acqeba9y4MZMmTQL+lxHl4OBArVq1aNeuHWD9XZS3qN+kSZNo06bN/blZkfsoLS2Nnj178uGHHwK5z0n9+vX5+uuvjfWWQpbHjx9n+vTpvP7665w9e5Zt27YRHBxMnz59AAgNDcXV1ZVjx46RnZ1tPAO///47vr6+LFu2jEuXLjFt2jR8fX1p3769VQdK1apVjSlO8wbSKiYrYjsUVP9JlgZNXFwcL7/8MjExMcyePZsPP/yQrVu3UqlSJT777DMyMzOpVq0a//rXv4iPj2fy5MnExsbi6emJi4uLUdhl5MiRhIWFsXz5cry9vY2UuZCQENzc3PIFGkoBEltkqZJqYRmuMHv2bK5evWpU2L6VZZ9q1apRr149tm7dajw7zs7OBAYGcv78eWMM6NSpU1m1ahVpaWksXLjQKN6Xt9GiqsNiy+4mu8Pe3p6AgABKly5NZGQkfn5+zJo1i/bt23P48GHi4+OB3BdRp06d4uDBg8a+bm5udOrUiX79+hnPWl6Wc+q7SGyNm5sbHTp0oH///saL3I4dO7Jq1Srq16+Pu7s7X375JQAxMTFcvnyZ119/nbS0NGbNmsXixYu5evUqe/bswd3dnUaNGrFt2zZ++eUX4xwNGjSgZ8+efPHFF/j4+DBlyhS6devGkiVLjBogFpZnSYG0iG1SUP0H7qb3ytIYj4yMxN7envLlyxtFXjw8POjevTupqals2rQJyC3wMnnyZNavX8+qVatITk62Goft4+PDiBEj2LdvHzNnzqRmzZoP6O5E/hq3S1+7cOECPXr0YMaMGVbLK1WqZNQJ+KPnz9nZmYCAALKzs1mzZo2x3M/Pjx49euDu7g7k9qpVrVrVKO5ieQmmRovYmoJmd1i2A1iwYAExMTEsWrSI7du38/XXX3P8+HH27dsHQFBQEACrV6/m6tWrxv5t2rThvffey1c0CVRxWGxb165dKVWqFFevXuXixYusWLGCpKQkfHx8OH36NB9//DGQW/Hezc2Nli1b8vjjjzNz5kxeeukljh8/TkBAAAA9e/bkyJEjHD582Di+h4cHY8aMYeHChezdu5cff/yRNm3aGJXw8z7TepZEbJuC6lvknX/2bv7AWRrrxYoVo0mTJly6dInU1FRjvb+/P46OjkbhCcgtCPPaa69hMpkoXrw4mZmZVueyvPHPGwSI2JK8v7eWAPbgwYOcO3cOyB3q4O3tzbvvvktUVBQmk4nr16+TlZXFY489xs2bN+84ptnSCHnyySdxc3MzKuNDbgr45MmTb5tuqql7xJYVNLsDcr+nMjIyWLJkCXXr1jXGN0dFReHo6EhMTAz79+8HcsdKR0RE5JuSUcMk5GGUkZFhjJEuVaoUO3bswN/fn/Lly+Ph4WFs5+vry+7du/H29iYuLo69e/cyePBgfHx8OHLkCJA7t/S1a9dYu3YtmZmZVucJCAjAz8/Pqo156zMtIrZNLUzI96bQEtRGRUURFRVFRkbGXR2nT58+7Ny506p6d9myZUlISMjX4xwSEsIzzzyDvb09zs7Otw2eFQSIrbL83v72228sXbqUEiVK0LJlSzp27MisWbNwdXXl448/pn379rz11lskJCRQtGhRfv75Zzw8PLC3t7/jCyVLI6Ry5coMHz6c9957L982qjUgtux+Z3eYzWZcXFzw8PDg8OHDLFu2jI0bN7JlyxZ69OhBxYoVjarfzz//PM2bN893DA2TkIeRi4sLJUuW5NSpU+zfv5+yZcvSsWNHoqOjrdpyzzzzDOXKlaN8+fJUq1bNaCfGxcXx7rvvGoH1yJEj6dixI87OzvnOZXkRpqESIg+nRzZiszQ+bp16KicnhwkTJuDu7s6bb77JO++8wz//+U9j+oPbNdYtfyC7du2K2Wxm3Lhx7N27l+zsbObPn0/ZsmWNlPC8SpcubQTsCp7FFuV9655XRkYGQ4YMoWvXrixYsICvvvqKmJgY6tSpw+uvv26kbE+cOJGKFSsyZMgQjhw5Qu3atTlx4gRw50yRnJwcbty4gZ2dHR07dsTf3z/fNmq0iK15kNkdlmMPHTqUGjVqMHDgQLp27UrVqlX55JNPmD59utWLX2VIyaOkc+fOJCcnG4XDevbsycWLF41aAzk5OVStWpW+ffsyY8YM2rVrx+TJkwkLCyM0NBRPT0/c3NyA3KGALVu2vO159FJK5OH2yEZylj9uJpOJpKQkJk+ezC+//MKBAwdYunQpc+bM4fDhw2zevJk6deoYFR7v1Fi39Cz06tWLdevW8cknnxAYGEhkZCSvvPKKVYPFzs6O/fv3s2bNGrp27fqA71Tk/srJybGal93yTMTHxxvLXVxccHBwIDY2lqJFi9K1a1eqVavGlClTaNWqFePHjwegePHiTJ48mWLFivHiiy9y7tw5qlevzs2bN/OlulrmX7ezszPGdqalpf2Vty7ywDzI7A7LM1q/fn2mTZvG1q1bSU1N5a233sLFxQWwDqT1klceJc2bN8fDw4P4+HiuXbuGr68vtWrVYufOnZw7d854HoYOHcqUKVOoXbs2CxcupFixYqxcuZIvv/ySxx9/3DieMqVEHk2PzDdn3gZDTk4OGRkZrF27lpUrV/LMM88QFxdHeno6q1atomrVqnTo0IGkpCQmTJjAnDlzuHLlCj///PMdj2/5oxsREYGDgwMvvPAC48aNIysri+HDh1sF4ykpKQwaNIgqVarQunXrB3fTIvdJ3swOOzs7q0b3hx9+iLu7O23btuXll1823u63bdsWNzc3SpQoAeQ+d0WKFKFfv37s2rWLixcvArnjoCdNmsSNGzeYP38+7u7u2NvbGw0TS4BtmX89MTGRAQMGUK5cOVauXKlxnmJT/q7sDsuLXwcHB6pXrw5gvKgCBdLy6CpatCiBgYEkJiYatQV69OjBjh07+Oqrr5g8eTJt27YFoEOHDnz00Ufs2LGD6dOnU7duXcC6jalMKZFH00P7LXprQ9vSYLhw4YLRU9yuXTs++OADJk6cyKxZs6hevTo7d+4kOTmZJ598koYNG3Lo0CG++OILTp06Rfny5e94PkuRmMDAQDw8PNi1axetWrXCzs6OGzduWF3PY489xtatW1m7di1lypR5MB+AyH2UN7MjMTGR0aNHs2rVKuLj4/n555/ZsmULX331FT/++CPjxo0D4KmnnuLpp5/m5MmTZGZmGs+gr68vHh4eRsXh7OxsI7CuVq0aP/30E/C/Z9be3p7U1FQmTpyIn58fgYGBJCcn8+mnn9K5c2el1EmhVxiyOywp5XmzOywvqkQedR06dODatWvG91LXrl0ZNGgQK1asYPbs2TRr1gywblvmLSarl1Ii8tD+Fbi1oXDt2jUaNGjAp59+SnZ2NoGBgfj5+XHhwgUaNWpkbBcQEEB0dDSdOnXi5MmTfP/993Tu3JlixYoZPXC3unnzplWDJiIigrlz53LmzBkAHB0dra5HBV+ksLu1Jy09PZ3o6GhWrFhBSEgIy5cvZ8iQIYSFheHt7Y2/vz+hoaFERkayefNmfvrpJ9zd3alfvz5Hjx4lOjraONbOnTtxcXGhVKlSwP/GjwYFBeHr60uNGjWA/z3D48ePx9vbm6ioKAYNGkRiYiJLly6la9euRnElkcJG2R0itiMgIABPT082bNhASkoKRYsWZdCgQezYsYPY2FiGDx8OWLctVUxWRPJ6KP4a3C6V7vTp0+zYscNYV6xYMapWrcrRo0c5duwYkPtm8ubNm1bVvbt164arqyulSpXC09PTWL569Wr+85//GCng2dnZxrHt7e2xt7cnJSWFDRs2MGTIEK5evUpWVtYDu2eRB8nSk2bp1Vq5ciXNmzfnyy+/5LvvvuOHH35g+PDhnD592kh/g9wp5MqVK8e0adMACA4OxsHBgVdffZVPP/3UeI4CAgKoV69evvMmJSUZgfKNGzcACAsLIyEhgR07dtC/f39ld4hNUHaHiG0JDQ2lVatWuLq6ArnPbrFixayGT4iI3InNBtV558y83fiVQYMGMWzYME6fPm0s69atG8eOHePAgQMA9OvXj7Nnz1rNIV2jRg0iIyP54IMP6NChA2PHjiUoKIj+/ftTpUoVY+5OBwcH47xz586lSZMmVKlShYkTJ1KqVCl+/fVXqlWr9sDuX+RBunLlCmXKlGHevHmYzWaeeeYZKlasyPXr142ie2FhYQQGBrJw4UJjvwoVKtC6dWsWL14M5AbZgYGBuLi4cOzYMcaOHYufnx+fffaZ1flSU1Np37499vb2xhy6lmJkVapUMcaAihRWyu4QsW39+vUjMjLSCKot8g6fEBG5E5sNqvOmUM+ePZs33niDDRs2GL3OL774Ir/++qvVPINt27bF2dmZffv2GRUea9asyfLly8nMzDS2Gz16NNOmTaNOnTps3bqVFi1aEB8fz1tvvYW7uzsAMTExPPfcc5QsWZIxY8bQtGlT9uzZw8aNG9VokULtdpkdJ06c4NChQ0DuCyt3d3cqVarE9u3bSU1Nxc3NjaCgIDIyMozf72LFitGtWzdWrFhh9Cq7urrSsmVLzp8/T0xMDPb29vj7+1OmTBmaNm3K7t27+eabb/JNMVekSBEqV67M8uXLbztFlkhhp+wOEduXk5Oj4REiUiA2G1QnJSWxcuVKBg4cyHvvvcehQ4cIDw8nMjISgGeffRY7Ozt27txpBMyOjo40atSImJgYIwW8T58+rF27ll9++cU4tr29Pe3atWPcuHFs3LiR999/Hy8vL6MgxdGjR5k0aRIuLi5ERUVx6NAhowdOpDD6/zI7OnXqxODBg0lLSzNeVvXt25ctW7YYlYV79+5NfHy8VaXhli1bYmdnx4oVK4xjVatWjRo1arB7924AWrZsiaOjo/HzjRs38k394+bmxueff07t2rXv852L/DWU3SFi++zs7DQ8QkQKxCaD6pSUFAYMGMDAgQNJTk7mhx9+YO3atfz73/9m3rx5fPvttwCEhIQQExPDyZMnjX1btGjBoUOHjGkTXnrpJc6ePcvevXvzncfyh/XmzZtGsRmAypUr89133zFnzhwaN26stCAp9PJmdsyZM4fhw4ezefNmo2dryJAh7N+/3yiuB7nDJTIzM9mzZw/Z2dkEBwfj7e1tNP4BypcvT5MmTYwxoZBbRCk6Opphw4YBuUF2xYoVjRRXR0dHFXcRm6LsDhEREfkjNtmy9fLyokWLFqSkpNCmTRvc3d0xmUx069aN8PBwvvjiCwB69uzJuXPn2LJlC5Cb1rNs2TJycnJYv349Fy5cwNXVlc2bNxMeHn7H89nb2+er+GjpERCxBUlJSXz//fcMGzaM999/nwMHDtC5c2emTp0K5FasT0tLY9u2bcb0P0WLFqVJkyYsX76clJQUAMLDw1m8eDHp6ekAODk50adPH1q3bm01tYizs7NVcZfQ0FBGjhyJt7f333D3IvdO2R0iIiJyt/72oNoyl+bdsjQsgoKC8PHxMaqeWnoSunTpQlxcHBkZGTRs2JBmzZoxbtw4hg4dSnh4OGXKlOH999/nueeew9PTk5ycHIKDg5XuIw+tlJQUXn31VV599VUuX77M/v37WbduHWFhYSxYsMBqOp9FixZx+fJloyc5JCSEhIQEjhw5AkD37t2tMj0A2rdvz8SJE/P1Puct7tK6dWvCw8MpWrToX3DHIn+esjtERETkbv1l39KXLl1i2LBh/Pbbb1bLLXNpAkZv2B+xNCyeeuop/P39OXDgANevX7fqSXj88cf58ccfARg7diyjRo0iLi4OZ2dn+vXrx7Bhw+jSpQsODg5qqMhDz8vLi5YtW3Lp0iWaN29OsWLFAIzsjKioKAAGDhxIXFwce/bsASAzM5Pvv/+eS5cusWbNGjIyMnjiiSdYu3YtgYGBVudQcRd52Ci7Q0RERO7WA40or169SnJyMgBZWVkcPnyY69evW21z5swZ3njjDXx8fAgNDWXAgAHGm/87NdLNZjOurq48/fTT7N27lzlz5hi9B1FRUfj6+lK7dm1ycnIoU6YMAwcOJDo6mhkzZlCxYkWAfKl0IragoJkdjRs3xsfHx0hDBahbty7VqlVj586d5OTk0KJFCxo0aEBkZCRjxozhhRdeIDg4mHfeeYd69erh5OQE5PY635rZoeIu8jBRdoeIiIjciwcaVFerVo2xY8dy/fp1vL29Wb16NaVLlzbWnzhxgoiICE6ePMnEiRMZPnw4sbGxvP3222RkZNyxkW4Jtps3b463tzfDhg3j5ZdfpmnTpsyePZuIiAhcXFzyNVhu3rxp1TMgUljd78wOf39/6tSpww8//GC82CpevDgNGjTg8uXLbNq0CYB///vf9OrVixUrVuDk5ESXLl0YPXo03bp10zMjjwxld4iIiMi9eCCtZEuv8QsvvMDWrVv59ddfAfjll1/o1KkTP//8MwC+vr60a9eOpUuX0q1bN5599lnq1KnD+vXr2bBhA3D7qquWxn2tWrUICAigfv36BAUF0aNHDxITE+nTp89tr8ve3l6BgRRaDzqzo0GDBpw7d44dO3YY6wICAjCZTMyfPx+AmjVr8s4777Bv3z5mzpxJ+fLlgds/hyK2QNkdIiIi8qDd9wjTbDYblbH79+9PYmKikfZWvHhxli1bxpo1a4DcIHfEiBGcPHmSzp074+npye7duyldujTz5s3LvcA7BME5OTmYTCYCAgJIT0+nVKlS9OnTB29vb/UAiE160JkdTZs2xc3NjY0bNxrrateuzfPPP0+PHj3y7Zc3s+N21Y9FChNld4iIiMjf5Z6/8dPS0oiLiwNu33tlMpm4fPkyWVlZVKhQgdq1a7N06VLS09MpXrw4vXr1Yu7cuUbPQXp6OiNHjsTJyYnvv/+eQ4cOERQURFxcHMnJyZhMpnwBct5iLi1atMDDw8MI1HNyctQDIDblr8rseOqppyhRogTR0dFG4OHo6MiAAQNo0aJFvv2U2SGFnbI7REREpDC4pxbzlStX6N27tzE9yO16r/71r38REhLCvn37AHjllVdYvXo1Z8+eBaBXr17s3LmTo0ePApCQkMD69evp3bs3AQEBQG4wcebMGRYtWgT8b+yZJZC2s7OjSJEiQO5cnWXKlOH48eOkpKQoCBCb8ldndgwbNox58+bh4eGRb72IrVF2h4iIiBQG9xSBuru7M2PGDCZMmGAs27Fjh9GTBtCgQQPS0tJITEwE4OWXX+bixYvs3r3bmBO6bNmyRmCelpZmNUZt7ty5ODg40K5dOyO4sPQ8W1L4tm3bRnh4OHZ2dsybN49Ro0axfv16vLy8/tSHIXK/FZbMDktDv0GDBvj6+ua7Dr2MElui7A4REREpTO7p299sNlO8eHEOHz7M5s2bOXXqFEFBQVZv8f/xj39QunRp9uzZw4ULF3B2dqZZs2YsWrSIq1evYmdnR9euXZk3bx5ms5mGDRsSEhLCV199hbe3N8OHDycsLIxZs2Yxffp0IDfwOHLkCEOHDqVcuXKEhYXh4uLCxo0b6d+/P5UqVVKvgBQ6hSmzw/JC6vz586o3IDZN2R0iIiJS2NxTUG0ymbh+/TpvvfUW77zzDr6+vkYvWd7iMG3atCEhIYFDhw4BMGDAADZt2sRPP/0EQO/evTl69Chbt27Fw8ODDz74gLlz57Jw4ULOnj1LWFgY7u7uxvG2bNlCzZo1OXbsGJMmTeLYsWNMmzaN5s2bG8GCSGFTGDM7pk+frrGeUqgpu0NERERszT33VBctWpRWrVqRnZ3NwYMHCQ8PZ9u2bUZPGkCnTp1ITk7mwIEDAISGhlK0aFGio6PJzs6mVq1aVK9e3VgP0KxZM5o2bQrkb0g1a9aMs2fPsmLFCsLCwnBzcyvwDYv8VQpjZseIESP0IkoKLWV3iIiIiC26555qgKCgIJydnVm8eDFhYWGkpqYSHx9vbFe1alUcHR3ZtWsXp0+fBnLn/Pz666+5evUqAPHx8URGRlod39JwuV1DqmzZsvdyqSJ/u8KY2aFhElKYKbtDREREbFGB8teeeOIJatasSUxMDG5ubkbv25EjRwBYv349v//+O7GxsezevRuA//73vyxevJiSJUsC4OzsnG9MmqbBkoeJMjtE7o2yO0RERMQW3XNQbelNDgwM5MqVK0RHRzNkyBAOHz5M3759GT9+PJ999hnjxo2je/fuNGzYEIBy5cpRs2ZN65NrTJo8xJTZIXJvlN0hIiIituieo1pLoNC4cWO8vLxYsmQJDRs2ZNq0aXh5ebFu3TpCQ0OJiIhg/PjxVKxY0Wo/kUeNMjtE7o6yO0RERMQWmcx/ogLLiBEj2LlzJ1OnTsXPz4+srCycnJyM9WazGbPZrB5peWSZzWZMJhNz5szhs88+Y+LEiRQvXpzevXvz2GOPERISQkxMDN27d+fIkSO88sorVKxY0dhP5FGUkJDAoEGDaNq0KYMHD6ZWrVq8++679OvXz9imcuXK1KtXj48//hgfHx86dOjAiRMn2L59OyVLliQzMxNnZ2er4+q5EhERkQehQNGuJQ5v0qQJJpOJ2NhYAJycnDCbzUYvgMlkUkAtjzRldojcO2V3iIiIiC0pUPUVS8MkICCA8+fPk56ebrVOY9BErPn6+vLEE0+wc+dOEhMTCQwMxN/fX5kdIrew9CYHBgayZ88eo25H79696du3r5HdMW7cOI4cOWJVt+PWoFnPkoiIiPwVCtziyMnJISoqitTUVOrXr38/r0nkoaLMDpG7p+wOERERsTV/ap6QU6dOMX78eOrVq3e/rkfkoaPMDpF7p+wOERERsRUFDqrt7OwYM2bM/bwWkYeWMjtE7p4lBbxJkybs2rWL2NhY/Pz8jOyOnJwc7O3tMZlM6qEWERGRv51e74v8RZTZIXJ3lN0hIiIituRPpX+LyN1RZofIvVF2h4iIiNgK9VSLiEihpOwOERERsQUms6U0sYiIiIiIiIjcE/VUi4iIiIiIiBSQgmoRERERERGRAlJQLSIiIiIiIlJACqpFRERERERECkhBtYiIiIiIiEgBKagWERGRO5o5cyYeHh5/92X8LXr37s0///nPv/syRESkkFNQLSIiYqMU9FmLjo7GZDLx22+/3dN+p06dwmQysX//fqvln3/+OTNnzrxv1yciIg8nh7/7AkREREQKI3d397/7EkRExAaop1pEROQhEBwczGuvvcbgwYMpUaIEpUuXZurUqaSnp/PCCy/g5uZG5cqVWbNmjbGPpWd39erVPPnkkzg5OREQEMDBgwf/8FwrV66kXr16ODk5UalSJUaPHk12drax3mQyMWXKFNq3b4+Liwt+fn7s2rWL48ePExwcjKurK40aNeLEiRP3fNxp06YRGhqKi4sLVatWJSoqCsjtbW7WrBkAJUqUwGQy0bt3bwDWrl1L48aN8fDwwNPTk/bt21udu2LFigA89dRTmEwmgoODgfyZANevX2fQoEF4eXnh5ORE48aNiY2Nzfd5btq0ifr16+Pi4kJgYCBJSUn/33+fiIjYMAXVIiIiD4lvv/2WUqVKsXfvXl577TX69+9Ply5dCAwMJD4+npCQECIiIsjIyLDab9iwYXzyySfExsbi5eVFx44duXHjxm3PsW7dOnr27MmgQYM4fPgwU6ZMYebMmYwbN85qu7Fjx9KrVy/2799PjRo1CA8Pp2/fvowcOZK4uDgABg4ceM/HHT16NGFhYSQkJNCuXTt69OjBpUuXKF++PEuWLAEgKSmJ5ORkPv/8cwDS09N54403iI2NZdOmTdjZ2REaGkpOTg4Ae/fuBWDjxo0kJyezdOnS29778OHDWbJkCd9++y3x8fFUqVKFkJAQLl26ZLXdqFGj+PTTT4mLi8PBwYEXX3zxzv9pIiJi+8wiIiJik55//nnzs88+azabzeamTZuaGzdubKzLzs42u7q6miMiIoxlycnJZsC8a9cus9lsNm/ZssUMmBcsWGBsk5qaanZ2djYvXLjQbDabzTNmzDC7u7sb64OCgszjx4+3uo7Zs2eby5Yta/wMmN9++23j5127dpkB8zfffGMsmz9/vtnJyelPHffatWtmk8lkXrNmjdX9XL58+Q6fWK6UlBQzYD548KDZbDabf/rpJzNg/uGHH6y2y/v5Xrt2zezo6GieO3eusf733383e3t7mz/66COr82/cuNHYZvXq1WbAnJmZ+YfXJCIitktjqkVERB4STzzxhPFve3t7PD09qVOnjrGsdOnSAKSkpFjt16hRI+PfJUuWpHr16iQmJt72HPv27SM2NtaqB/nmzZtkZWWRkZGBi4tLvmuxnPfWa8nKyuLq1asUL168QMd1dXXFzc0t3/3c6sSJE7zzzjvs3r2bixcvGj3UZ86coXbt2n+4b95j3Lhxg3/84x/GMkdHRxo2bJjvs8p7jWXLlgVyP/MKFSrc1blERMS2KKgWERF5SDg6Olr9bDKZrJaZTCYAI6j8I5Ztb5WTk8Po0aN57rnn8q1zcnK67bVYjvVH11KQ41qO8//dT4cOHShfvjxff/013t7e5OTkULt2bX7//fc/3C8vs9lsdd15l9+6rKCfuYiI2CYF1SIiIo+43bt3G72oly9f5ujRo9SoUeO22/r7+5OUlESVKlXu6zXcj+MWKVIEyO3htkhNTSUxMZEpU6YQFBQEwPbt2//f/W5VpUoVihQpwvbt2wkPDwfgxo0bxMXFMXjw4AJfs4iI2D4F1SIiIo+4MWPG4OnpSenSpRk1ahSlSpW64/zX7777Lu3bt6d8+fJ06dIFOzs7EhISOHjwIB988EGBr+F+HNfHxweTycSqVato164dzs7OlChRAk9PT6ZOnUrZsmU5c+YMb775ptV+Xl5eODs7s3btWsqVK4eTk1O+6bRcXV3p378/w4YNo2TJklSoUIGPPvqIjIwMXnrppQLft4iI2D5V/xYREXnETZgwgcjISOrVq0dycjJRUVFG7+2tQkJCWLVqFRs2bKBBgwY8/fTTTJo0CR8fnz91DffjuI8//jijR4/mzTffpHTp0gwcOBA7OzsWLFjAvn37qF27Nq+//joff/yx1X4ODg5MnjyZKVOm4O3tzbPPPnvb40+YMIFOnToRERGBv78/x48fZ926dZQoUeJP3buIiNg2k9kySEhEREQeKdHR0TRr1ozLly/j4eHxd1+OiIiITVJPtYiIiIiIiEgBKagWERERERERKSClf4uIiIiIiIgUkHqqRURERERERApIQbWIiIiIiIhIASmoFhERERERESkgBdUiIiIiIiIiBaSgWkRERERERKSAFFSLiIiIiIiIFJCCahEREREREZECUlAtIiIiIiIiUkAKqkVEREREREQK6P8Ad36n4+37nfAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAJOCAYAAAC5nCQrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsvZJREFUeJzs3Xd4FFXj9vF700FIICSkAAlFIPTeRUHpHVRiQ4qK+GBBxJ+CBfURsT7SUUBFFCnSBCE0pQmI1IAgSE+EhFATWvp5/8i7I0uKYYWEwPdzXXvBzp45cybZyey958wZmzHGCAAAAAAAXDOX/G4AAAAAAAAFFaEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoA8K9NnTpVNpst28fq1avzu4m58t1332nUqFFZvmaz2fTWW2/laXty+ple/fPt06ePypYtm6ftu9kdOXJENptNH3/8cb5s335cHDlyJF+2f71t2LBBb731ls6dO+d0HUuWLMn2OCpbtqz69OnjdN0AkF/c8rsBAIBbx1dffaWwsLBMy6tWrZoPrbl23333nX7//XcNGjQo02sbN25U6dKl87Q9GzdudHj+3//+V6tWrdLPP//ssLxq1aoqU6aMXnjhhbxsHm4zGzZs0Ntvv60+ffqoWLFiTtWxZMkSjR8/PstgPX/+fHl7e/+7RgJAPiBUAwCum+rVq6t+/fr53YwbonHjxvm+TX9/f7m4uGTZlts1jFy+fFleXl6y2Wz53RT8S3Xq1MnvJgCAUxj+DQDIMzNnzpTNZtO4ceMclg8fPlyurq5asWKFtWzLli3q0qWLfH195eXlpTp16mj27NmZ6jx27Jj69++vMmXKyMPDQ8HBwXrggQd04sQJSdkPwV29erXD0PQWLVpo8eLFOnr0qMPQarushn///vvv6tq1q4oXLy4vLy/Vrl1bX3/9dZbbmTFjhl577TUFBwfL29tbrVq10r59+671R5itrIZ/22w2Pfvss/rqq69UuXJlFSpUSPXr19evv/4qY4w++ugjlStXTkWKFNG9996rAwcOZKp35cqVuu++++Tt7a3ChQurWbNm+umnn/6xPfb9/vbbbzV48GAFBgaqUKFCuueee7R9+/ZM5XPz+7b/LpcvX65+/frJ399fhQsXVlJSUq5/TvY6fv75Zz311FMqUaKEvL299fjjj+vixYuKjY1Vz549VaxYMQUFBWnIkCFKSUmx1rcPKf/www81YsQIhYSEyMvLS/Xr18/Vz0XK3c/0rbfeks1m086dO/Xggw/Kx8dHvr6+Gjx4sFJTU7Vv3z61a9dORYsWVdmyZfXhhx9m2k5CQoKGDBmicuXKycPDQ6VKldKgQYN08eJFh3L298k333yjKlWqqHDhwqpVq5Z+/PFHh/a8/PLLkqRy5cplurRj1qxZatOmjYKCglSoUCFVqVJFr776qsO2+vTpo/Hjx1vbtD/sx2ZWw7+joqL02GOPqWTJkvL09FSVKlX0ySefKD09PdPv5OOPP9b//vc/6z3dpEkT/frrr7n6nQDAv0GoBgBcN2lpaUpNTXV4pKWlWa8/9NBDGjBggF566SVt2bJFkvTzzz/r3Xff1bBhw9S6dWtJ0qpVq9SsWTOdO3dOn332mX744QfVrl1b4eHhmjp1qlXfsWPH1KBBA82fP1+DBw9WRESERo0aJR8fH509e/aa2j5hwgQ1a9ZMgYGB2rhxo/XIzr59+9S0aVPt3r1bY8aM0bx581S1alX16dMny4AzbNgwHT16VFOmTNGkSZO0f/9+de7c2eHncyP8+OOPmjJlit5//33NmDFD58+fV8eOHfXSSy9p/fr1GjdunCZNmqQ9e/bo/vvvlzHGWvfbb79VmzZt5O3tra+//lqzZ8+Wr6+v2rZtm+sAOWzYMB06dEhTpkzRlClTdPz4cbVo0UKHDh2yyuT2923Xr18/ubu765tvvtGcOXPk7u5+zT+XJ598Uj4+Ppo5c6Zef/11fffdd3rqqafUsWNH1apVS3PmzFHv3r31ySefaOzYsZnWHzdunJYuXapRo0bp22+/lYuLi9q3b5/je0a69p9pz549VatWLc2dO1dPPfWUPv30U7344ovq1q2bOnbsqPnz5+vee+/VK6+8onnz5lnrXbp0Sffcc4++/vprPf/884qIiNArr7yiqVOnqkuXLg6/Z0lavHixxo0bp3feeUdz586Vr6+vunfvbv2ennzyST333HOSpHnz5lnHR926dSVJ+/fvV4cOHfTFF19o6dKlGjRokGbPnq3OnTtb23jjjTf0wAMPSJLDMRYUFJTlz+rkyZNq2rSpli9frv/+979auHChWrVqpSFDhujZZ5/NVH78+PFasWKFRo0apenTp+vixYvq0KGD4uPjc/ydAMC/ZgAA+Je++uorIynLh6urq0PZxMREU6dOHVOuXDmzZ88eExAQYO655x6TmppqlQkLCzN16tQxKSkpDut26tTJBAUFmbS0NGOMMf369TPu7u5mz549/9i2w4cPOyxftWqVkWRWrVplLevYsaMJDQ3Nsh5JZvjw4dbzhx56yHh6epqoqCiHcu3btzeFCxc2586dc9hOhw4dHMrNnj3bSDIbN27Mtu1X6927t7njjjuyfe3qtksygYGB5sKFC9ayBQsWGEmmdu3aJj093Vo+atQoI8ns3LnTGGPMxYsXja+vr+ncubNDnWlpaaZWrVqmYcOGObbVvt9169Z12M6RI0eMu7u7efLJJ61luf1923+Xjz/+eI7btjt8+LCRZD766CNrmb2O5557zqFst27djCTzv//9z2F57dq1Td26dTPVGRwcbC5fvmwtT0hIML6+vqZVq1aZtmV/713Lz3T48OFGkvnkk08ytUeSmTdvnrUsJSXF+Pv7mx49eljLRo4caVxcXMzmzZsd1p8zZ46RZJYsWWItk2QCAgJMQkKCtSw2Nta4uLiYkSNHWss++uijLI+lq6Wnp5uUlBSzZs0aI8lERkZarw0cONBk9/EzNDTU9O7d23r+6quvGklm06ZNDuWeeeYZY7PZzL59+4wxf/9OatSo4fB35LfffjOSzIwZM3JsLwD8W/RUAwCum2nTpmnz5s0Oj02bNjmU8fT01OzZs3X69GnVrVtXxhjNmDFDrq6ukqQDBw5o7969evTRRyXJode7Q4cOiomJsYZNR0REqGXLlqpSpUre7qgyetjvu+8+lSlTxmF5nz59dOnSpUw9ll26dHF4XrNmTUnS0aNHb2g7W7ZsqTvuuMN6bv9ZtW/f3mF4u325vT0bNmzQmTNn1Lt3b4ffQXp6utq1a6fNmzdnGkaclUceecRhO6GhoWratKlWrVol6dp+33b333+/Mz8KB506dXJ4bt//jh07Zlqe1e+oR48e8vLysp4XLVpUnTt31tq1a7MdfeDMzzSrdtpsNrVv395a5ubmpjvvvNOhnT/++KOqV6+u2rVrO2yrbdu2Wc7I37JlSxUtWtR6HhAQoJIlS+b6/Xno0CE98sgjCgwMlKurq9zd3XXPPfdIkv74449c1XG1n3/+WVWrVlXDhg0dlvfp00fGmEwT9nXs2NH6OyLl3TEGAExUBgC4bqpUqZKricruvPNONW/eXIsXL9YzzzzjMPzTfi30kCFDNGTIkCzXP3XqlKSM4aF5PSO33enTp7McthocHGy9fqUSJUo4PPf09JSUMdHWjeTr6+vw3MPDI8fliYmJkv7+PdiH62blzJkzDoE9K4GBgVkui4yMdNhObn7fdtkNF74W1/Jzsf9MrpTdfiUnJ+vChQvy8fHJ9LozP9Os2lO4cGGHQG9fnpCQ4LCtAwcOZDs0/uqf6dXvTynjPZqb9+eFCxfUvHlzeXl56d1331WlSpVUuHBhRUdHq0ePHk6/x0+fPp3lbeJutmMMAAjVAIA8N2XKFC1evFgNGzbUuHHjFB4erkaNGkmS/Pz8JElDhw5Vjx49sly/cuXKkjJmw/7rr79y3JY9fFw9mdXVoeJalShRQjExMZmWHz9+XNLf+1FQ2ds/duzYbGc+DwgI+Md6YmNjs1xmD0DX8vu2uxlm+s5uvzw8PFSkSJEs17leP9Pc8PPzU6FChfTll1/m2Jbr4eeff9bx48e1evVqq3da0r+6n7V06x9jAG4dhGoAQJ7atWuXnn/+eT3++OOaPHmymjZtqvDwcG3fvl3FixdX5cqVVbFiRUVGRuq9997Lsa727dvrm2++0b59+zIFLzt7T9fOnTsdyixcuDBT2dz2zEnSfffdp/nz5+v48eNWz5mUMQS+cOHC+XILruupWbNmKlasmPbs2ZPlpFC5NWPGDA0ePNgKwkePHtWGDRv0+OOPS9I1/b5vJvPmzdNHH31kfWlz/vx5LVq0SM2bN3cYgnyl6/UzzY1OnTrpvffeU4kSJVSuXLnrUmd2Pb/23639dbvPP/88xzoKFSqU4/buu+8+jRw5Utu2bbMmRJMyjjGbzaaWLVte+04AwA1AqAYAXDe///67UlNTMy2vUKGC/P39dfHiRfXs2VPlypXThAkT5OHhodmzZ6tu3brq27evFixYICnjw3j79u3Vtm1b9enTR6VKldKZM2f0xx9/aNu2bfr+++8lSe+8844iIiJ09913a9iwYapRo4bOnTunpUuXavDgwQoLC1ODBg1UuXJlDRkyRKmpqSpevLjmz5+vX375JVM7a9SooXnz5mnixImqV6+eXFxcsh3OPnz4cP34449q2bKl3nzzTfn6+mr69OlavHixPvzwwyyH/xYkRYoU0dixY9W7d2+dOXNGDzzwgEqWLKmTJ08qMjJSJ0+e1MSJE/+xnri4OHXv3l1PPfWU4uPjNXz4cHl5eWno0KFWmdz+vm8mrq6uat26tQYPHqz09HR98MEHSkhI0Ntvv53tOtfrZ5obgwYN0ty5c3X33XfrxRdfVM2aNZWenq6oqCgtX75cL730kjU6JLdq1KghSRo9erR69+4td3d3Va5cWU2bNlXx4sU1YMAADR8+XO7u7po+fbo1xD+rOj744AO1b99erq6uqlmzpjX8/kovvviipk2bpo4dO+qdd95RaGioFi9erAkTJuiZZ55RpUqVnPjJAMD1R6gGAFw3ffv2zXL55MmT9eSTT2rAgAGKiorS5s2bretGy5cvrylTpujBBx/UqFGjNGjQILVs2VK//fabRowYoUGDBuns2bMqUaKEqlatqp49e1r1lipVSr/99puGDx+u999/X6dPn5a/v7/uuusu61pUV1dXLVq0SM8++6wGDBggT09PPfTQQxo3blymSaleeOEF7d69W8OGDVN8fLyMMZluPWRXuXJlbdiwQcOGDdPAgQN1+fJlValSRV999VWme+0WVI899phCQkL04Ycf6umnn9b58+dVsmRJ1a5dO9f7+N5772nz5s3q27evEhIS1LBhQ82cOVMVKlSwyuT2930zefbZZ5WYmKjnn39ecXFxqlatmhYvXqxmzZrluN71+Jnmxh133KF169bp/fff16RJk3T48GEVKlRIISEhatWqVZbXKv+TFi1aaOjQofr66681efJkpaena9WqVdY93l966SU99thjuuOOO9S1a1fNmjXLoYdZypi4bv369ZowYYLeeecdGWN0+PDhLNvj7++vDRs2aOjQoRo6dKgSEhJUvnx5ffjhhxo8eLCTPxkAuP5sJrtPCwAAAE5avXq1WrZsqe+//z7HibkKmiNHjqhcuXL66KOPsp1YDQBwe+GWWgAAAAAAOIlQDQAAAACAkxj+DQAAAACAk+ipBgAAAADASYRqAAAAAACcRKgGAAAAAMBJ3KcaSk9P1/Hjx1W0aFHZbLb8bg4AAAAA5DtjjM6fP6/g4GC5uGTfH02oho4fP64yZcrkdzMAAAAA4KYTHR2t0qVLZ/s6oRoqWrSopIw3i7e3dz63BgAAAADyX0JCgsqUKWPlpewQqvPQyJEjNW/ePO3du1eFChVS06ZN9cEHH6hy5co5rrdmzRoNHjxYu3fvVnBwsP7v//5PAwYMcCgzd+5cvfHGGzp48KAqVKigESNGqHv37rlql33It7e3N6EaAAAAAK7wT5fIMlFZHlqzZo0GDhyoX3/9VStWrFBqaqratGmjixcvZrvO4cOH1aFDBzVv3lzbt2/XsGHD9Pzzz2vu3LlWmY0bNyo8PFy9evVSZGSkevXqpZ49e2rTpk15sVsAAAAAcNuyGWNMfjfidnXy5EmVLFlSa9as0d13351lmVdeeUULFy7UH3/8YS0bMGCAIiMjtXHjRklSeHi4EhISFBERYZVp166dihcvrhkzZvxjOxISEuTj46P4+Hh6qgEAAABAuc9J9FTno/j4eEmSr69vtmU2btyoNm3aOCxr27attmzZopSUlBzLbNiwIcs6k5KSlJCQ4PAAAAAAAFw7QnU+McZo8ODBuuuuu1S9evVsy8XGxiogIMBhWUBAgFJTU3Xq1Kkcy8TGxmZZ58iRI+Xj42M9mPkbAAAAAJxDqM4nzz77rHbu3Jmr4dlXXxhvH7F/5fKsymR3Qf3QoUMVHx9vPaKjo6+1+QAAAAAAMft3vnjuuee0cOFCrV27Nsf7nUlSYGBgph7nuLg4ubm5qUSJEjmWubr32s7T01Oenp7/Yg8AAAAAABI91XnKGKNnn31W8+bN088//6xy5cr94zpNmjTRihUrHJYtX75c9evXl7u7e45lmjZtev0aDwAAAADIhFCdhwYOHKhvv/1W3333nYoWLarY2FjFxsbq8uXLVpmhQ4fq8ccft54PGDBAR48e1eDBg/XHH3/oyy+/1BdffKEhQ4ZYZV544QUtX75cH3zwgfbu3asPPvhAK1eu1KBBg/Jy9wAAAADgtsMttfJQdtc4f/XVV+rTp48kqU+fPjpy5IhWr15tvb5mzRq9+OKL2r17t4KDg/XKK69owIABDnXMmTNHr7/+ug4dOqQKFSpoxIgR6tGjR67axS21AAAAAMBRbnMSoRqEagAAAAC4CvepBgAAAADgBiNUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkt/xuAAAAubF3716tW7dOcXFxKlmypJo3b66wsLD8bhYAALjN0VMNALjp7d27VzNnztSxY8eUkpKiY8eOadasWdq7d29+Nw0AANzm6KkGAPxriYmJioqKumH1z5kzR6dPn7aenzlzRjExMVq3bp1atGihevXqqUKFCjds+/klJCREXl5e+d0MAACQA0I1AOBfi4qKUv/+/W9Y/UePHpUxRpKUkpKiixcvSpJsNpsOHDigKVOmqGTJkipcuPANa0N+mDRpkipVqpTfzQAAADkgVAMA/rWQkBBNmjTphtU/e/ZsnThxQpK0e/duXbhwQZJUpEgRVatWTZIUEBCgnj175ljP0aNHNWLECPXq1UsxMTE6ffq0SpQocdP2dIeEhOR3EwAAwD8gVAPATe7EiROKj4/P72bkq3r16ikiIkLGGF26dElSRi91cHCwVebMmTO5quvSpUtavXq1ihUrJinj5xsREaH27dvfdMH6Rg6pv158fHwUEBCQ380AACDf2Ix9PB1uWwkJCfLx8VF8fLy8vb3zuzkArnDixAk91utxpSQn5XdT8t2lS5cUHx+v06dPyxgjLy8vubu7W697enoqKCjoH+uJiYlRUlLmn2du14cjdw9PffvNNII1AOCWk9ucRE81ANzE4uPjlZKcpMvl71G6l09+NyffeUtyP3tCZw/skJGULCn18gUlXzgnD88SSlJJFQkqp0LFsw94Fy6vlElPU+rli0q+cFZpKclydfeQp2cJeVftkle7cktwSYyXDq1RfHw8oRoAcNsiVANAAZDu5aP0O/zyuxk3Bc87/FSsUHFdOPanLp86pqTLl+RRPEiuhYoqKTlFyVF/qnih4vIqEZzl+m7FAnUpLkqX409lLHBxVWpamnTpvC4lJme7HgAAQFYI1QBQALhcPpffTbipFPbyUOEK1XUy6YLcXP7/wpRL1usXD21TYS+PLNct6uuv+H2bZEtLcVju4VUix/WQGe9LAAAI1QBQIBQ6vDa/m3BTOnX0qDyymBrEdsqmOxSXafmlS5eUEh8vczZW6ampcnFxkYeHR8b12ReOyXbxeJbrAQAAZIdQDQA3MR8fH7m5eyg1JTm/m3JT8vDwyHLSMQ+PzL3Nly5dUlxcRmB2c3OTzWaTJIcJz7JaDzlzc/eQjw/X+wMAbl+EagC4iQUEBGj6t9/c9rfUys7BgwetW23Z2Wy2LG+PNXv2bO3bt0/r1q1Ts2bNdOLECV2+fFnJyckqXry4ChUqpIceekgtWrTI470o2LilFgDgdkeoBoCbXEBAAKElG5UqVVK5cuW0bt06nTx5Uv7+/mrevLnCwsIylbXZbNa9qUNDQ1W0aFFt3rxZaWlp8vPzU2hoqGJiYpSenp7l+gAAAFkhVAMA/rXExERFRUXly7ZdXFx0zz33OCz7888/M5UzxujcuXOSpHPnzikmJkbFihVTkSJFVLZsWUnSqVOnNGfOHPXs2fNGNztXQkJC5OXlld/NAAAAObAZk8UML7it5Pam5gCQnT///FP9+/fP72bk6MprqiVZAfuOO+6wrqmWMnq0Q0ND87p5WZo0aZIqVaqU380AAOC2lNucRE81AOBfCwkJ0aRJk/K7Gf/o4MGD2rp1q86cOaNDhw6pSJEiKl68uEOZgICAm6qnGgAA3NzoqQY91QBuS3v37tWsWbMyTXIWHh7ONdUAACDXOcklD9sEAMBNIywsTOHh4SpVqpQ8PDxUqlQpAjUAALhmDP8GANy2wsLCCNEAAOBfoacaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhOg+tXbtWnTt3VnBwsGw2mxYsWJBj+T59+shms2V6VKtWzSozderULMskJibe4L0BAAAAABCq89DFixdVq1YtjRs3LlflR48erZiYGOsRHR0tX19fPfjggw7lvL29HcrFxMTIy8vrRuwCAAAAAOAKbvndgNtJ+/bt1b59+1yX9/HxkY+Pj/V8wYIFOnv2rPr27etQzmazKTAw8Lq1EwAAAACQO/RUFyBffPGFWrVqpdDQUIflFy5cUGhoqEqXLq1OnTpp+/bt+dRCAAAAALi90FNdQMTExCgiIkLfffedw/KwsDBNnTpVNWrUUEJCgkaPHq1mzZopMjJSFStWzLKupKQkJSUlWc8TEhJuaNsBAAAA4FZFT3UBMXXqVBUrVkzdunVzWN64cWM99thjqlWrlpo3b67Zs2erUqVKGjt2bLZ1jRw50hpa7uPjozJlytzg1gMAAADArYlQXQAYY/Tll1+qV69e8vDwyLGsi4uLGjRooP3792dbZujQoYqPj7ce0dHR17vJAAAAAHBbYPh3AbBmzRodOHBATzzxxD+WNcZox44dqlGjRrZlPD095enpeT2bCAAAAAC3JUJ1Hrpw4YIOHDhgPT98+LB27NghX19fhYSEaOjQoTp27JimTZvmsN4XX3yhRo0aqXr16pnqfPvtt9W4cWNVrFhRCQkJGjNmjHbs2KHx48ff8P0BAAAAgNsdoToPbdmyRS1btrSeDx48WJLUu3dvTZ06VTExMYqKinJYJz4+XnPnztXo0aOzrPPcuXPq37+/YmNj5ePjozp16mjt2rVq2LDhjdsRAAAAAIAkyWaMMfndCOSvhIQE+fj4KD4+Xt7e3vndHAAAAADId7nNSUxUBgAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1Xlo7dq16ty5s4KDg2Wz2bRgwYIcy69evVo2my3TY+/evQ7l5s6dq6pVq8rT01NVq1bV/Pnzb+BeAAAAAADsCNV56OLFi6pVq5bGjRt3Tevt27dPMTEx1qNixYrWaxs3blR4eLh69eqlyMhI9erVSz179tSmTZuud/MBAAAAAFexGWNMfjfidmSz2TR//nx169Yt2zKrV69Wy5YtdfbsWRUrVizLMuHh4UpISFBERIS1rF27dipevLhmzJiRq7YkJCTIx8dH8fHx8vb2vpbdAAAAAIBbUm5zEj3VBUCdOnUUFBSk++67T6tWrXJ4bePGjWrTpo3DsrZt22rDhg152UQAAAAAuC255XcDkL2goCBNmjRJ9erVU1JSkr755hvdd999Wr16te6++25JUmxsrAICAhzWCwgIUGxsbLb1JiUlKSkpyXqekJBwY3YAAAAAAG5xhOqbWOXKlVW5cmXreZMmTRQdHa2PP/7YCtVSxlDyKxljMi270siRI/X2229f/wYDAAAAwG2G4d8FTOPGjbV//37reWBgYKZe6bi4uEy911caOnSo4uPjrUd0dPQNay8AAAAA3MoI1QXM9u3bFRQUZD1v0qSJVqxY4VBm+fLlatq0abZ1eHp6ytvb2+EBAAAAALh2DP/OQxcuXNCBAwes54cPH9aOHTvk6+urkJAQDR06VMeOHdO0adMkSaNGjVLZsmVVrVo1JScn69tvv9XcuXM1d+5cq44XXnhBd999tz744AN17dpVP/zwg1auXKlffvklz/cPAAAAAG43hOo8tGXLFrVs2dJ6PnjwYElS7969NXXqVMXExCgqKsp6PTk5WUOGDNGxY8dUqFAhVatWTYsXL1aHDh2sMk2bNtXMmTP1+uuv64033lCFChU0a9YsNWrUKO92DAAAAABuU9ynGtynGgAAAACuwn2qAQAAAAC4wQjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1QAAAAAAOIlQDQAAAACAkwjVAAAAAAA4iVANAAAAAICTCNUAAAAAADiJUA0AAAAAgJMI1Xlo7dq16ty5s4KDg2Wz2bRgwYIcy8+bN0+tW7eWv7+/vL291aRJEy1btsyhzNSpU2Wz2TI9EhMTb+CeAAAAAAAkQnWeunjxomrVqqVx48blqvzatWvVunVrLVmyRFu3blXLli3VuXNnbd++3aGct7e3YmJiHB5eXl43YhcAAAAAAFdwy+8G3E7at2+v9u3b57r8qFGjHJ6/9957+uGHH7Ro0SLVqVPHWm6z2RQYGHi9mgkAAAAAyCV6qguQ9PR0nT9/Xr6+vg7LL1y4oNDQUJUuXVqdOnXK1JN9taSkJCUkJDg8AAAAAADXjlBdgHzyySe6ePGievbsaS0LCwvT1KlTtXDhQs2YMUNeXl5q1qyZ9u/fn209I0eOlI+Pj/UoU6ZMXjQfAAAAAG45NmOMye9G3I5sNpvmz5+vbt265ar8jBkz9OSTT+qHH35Qq1atsi2Xnp6uunXr6u6779aYMWOyLJOUlKSkpCTreUJCgsqUKaP4+Hh5e3tf034AAAAAwK0oISFBPj4+/5iTuKa6AJg1a5aeeOIJff/99zkGaklycXFRgwYNcuyp9vT0lKen5/VuJgAAAADcdhj+fZObMWOG+vTpo++++04dO3b8x/LGGO3YsUNBQUF50DoAAAAAuL3RU52HLly4oAMHDljPDx8+rB07dsjX11chISEaOnSojh07pmnTpknKCNSPP/64Ro8ercaNGys2NlaSVKhQIfn4+EiS3n77bTVu3FgVK1ZUQkKCxowZox07dmj8+PF5v4MAAAAAcJuhpzoPbdmyRXXq1LFuhzV48GDVqVNHb775piQpJiZGUVFRVvnPP/9cqampGjhwoIKCgqzHCy+8YJU5d+6c+vfvrypVqqhNmzY6duyY1q5dq4YNG+btzgEAAADAbYiJypDrC/ABAAAA4HaR25xETzUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOcsvvBhQU0dHROnLkiC5duiR/f39Vq1ZNnp6e+d0sAAAAAEA+IlTn4OjRo/rss880Y8YMRUdHyxhjvebh4aHmzZurf//+uv/+++XiQqc/AAAAANxuSILZeOGFF1SjRg3t379f77zzjnbv3q34+HglJycrNjZWS5Ys0V133aU33nhDNWvW1ObNm/O7yQAAAACAPEZPdTY8PDx08OBB+fv7Z3qtZMmSuvfee3Xvvfdq+PDhWrJkiY4ePaoGDRrkQ0sBAAAAAPnFZq4c04zbUkJCgnx8fBQfHy9vb+/8bg4AAAAA5Lvc5iSGf+fC5cuXdenSJev50aNHNWrUKC1btiwfWwUAAAAAyG+E6lzo2rWrpk2bJkk6d+6cGjVqpE8++UTdunXTxIkT87l1AAAAAID8QqjOhW3btql58+aSpDlz5iggIEBHjx7VtGnTNGbMmHxuHQAAAAAgvxCqc+HSpUsqWrSoJGn58uXq0aOHXFxc1LhxYx09ejSfWwcAAAAAyC+E6ly48847tWDBAkVHR2vZsmVq06aNJCkuLo6JvQAAAADgNkaozoU333xTQ4YMUdmyZdWoUSM1adJEUkavdZ06dfK5dQAAAACA/MIttXIpNjZWMTExqlWrllxcMr6L+O233+Tt7a2wsLB8bt2/wy21AAAAAMBRbnOSWx62qUALDAxUYGCgw7KGDRvmU2sAAAAAADcDhn9nY8CAAYqOjs5V2VmzZmn69Ok3uEUAAAAAgJsNPdXZ8Pf3V/Xq1dW0aVN16dJF9evXV3BwsLy8vHT27Fnt2bNHv/zyi2bOnKlSpUpp0qRJ+d1kAAAAAEAe45rqHMTFxemLL77QzJkz9fvvvzu8VrRoUbVq1Ur9+/e3ZgMvqLimGgAAAAAc5TYnEapz6dy5czp69KguX74sPz8/VahQQTabLb+bdV0QqgEAAADAEROVXWfFihVTsWLF8rsZAAAAAICbCBOVAQAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVOdSamqqVq5cqc8//1znz5+XJB0/flwXLlzI55YBAAAAAPILoToXjh49qho1aqhr164aOHCgTp48KUn68MMPNWTIkFzXs3btWnXu3FnBwcGy2WxasGDBP66zZs0a1atXT15eXipfvrw+++yzTGXmzp2rqlWrytPTU1WrVtX8+fNz3SYAAAAAgPMI1bnwwgsvqH79+jp79qwKFSpkLe/evbt++umnXNdz8eJF1apVS+PGjctV+cOHD6tDhw5q3ry5tm/frmHDhun555/X3LlzrTIbN25UeHi4evXqpcjISPXq1Us9e/bUpk2bcr+DAAAAAACn2IwxJr8bcbPz8/PT+vXrVblyZRUtWlSRkZEqX768jhw5oqpVq+rSpUvXXKfNZtP8+fPVrVu3bMu88sorWrhwof744w9r2YABAxQZGamNGzdKksLDw5WQkKCIiAirTLt27VS8eHHNmDEjV23J7U3NAQAAAOB2kducRE91LqSnpystLS3T8r/++ktFixa9YdvduHGj2rRp47Csbdu22rJli1JSUnIss2HDhhvWLgAAAABABkJ1LrRu3VqjRo2ynttsNl24cEHDhw9Xhw4dbth2Y2NjFRAQ4LAsICBAqampOnXqVI5lYmNjs603KSlJCQkJDg8AAAAAwLUjVOfCp59+qjVr1qhq1apKTEzUI488orJly+rYsWP64IMPbui2bTabw3P7aP0rl2dV5uplVxo5cqR8fHysR5kyZa5jiwEAAADg9uGW3w0oCIKDg7Vjxw7NmDFD27ZtU3p6up544gk9+uijDhOXXW+BgYGZepzj4uLk5uamEiVK5Fjm6t7rKw0dOlSDBw+2nickJBCsAQAAAMAJhOpcKlSokPr166d+/frl2TabNGmiRYsWOSxbvny56tevL3d3d6vMihUr9OKLLzqUadq0abb1enp6ytPT88Y0GgAAAABuI4TqXDp27JjWr1+vuLg4paenO7z2/PPP56qOCxcu6MCBA9bzw4cPa8eOHfL19VVISIiGDh2qY8eOadq0aZIyZvoeN26cBg8erKeeekobN27UF1984TCr9wsvvKC7775bH3zwgbp27aoffvhBK1eu1C+//HId9hoAAAAAkBNuqZULX331lQYMGCAPDw+VKFEi0/XMhw4dylU9q1evVsuWLTMt7927t6ZOnao+ffroyJEjWr16tfXamjVr9OKLL2r37t0KDg7WK6+8ogEDBjisP2fOHL3++us6dOiQKlSooBEjRqhHjx653j9uqQUAAAAAjnKbkwjVuVCmTBkNGDBAQ4cOlYvLrTe3G6EaAAAAABxxn+rr6NKlS3rooYduyUANAAAAAHAeKTEXnnjiCX3//ff53QwAAAAAwE2G4d+5kJaWpk6dOuny5cuqUaOGNfO23f/+9798atn1wfBvAAAAAHCU25zE7N+58N5772nZsmWqXLmyJGWaqAwAAAAAcHsiVOfC//73P3355Zfq06dPfjcFAAAAAHAT4ZrqXPD09FSzZs3yuxkAAAAAgJsMoToXXnjhBY0dOza/mwEAAAAAuMkw/DsXfvvtN/3888/68ccfVa1atUwTlc2bNy+fWgYAAAAAyE+E6lwoVqyYevTokd/NAAAAAADcZAjVufDVV1/ldxMAAAAAADchrqkGAAAAAMBJ9FRno27duvrpp59UvHhx1alTJ8f7UW/bti0PWwYAAAAAuFkQqrPRtWtXeXp6SpK6deuWv40BAAAAANyUbMYYk9+NuFn169dPo0ePVtGiRfO7KTdUQkKCfHx8FB8fL29v7/xuDgAAAADku9zmJK6pzsHXX3+ty5cv53czAAAAAAA3KUJ1DujEBwAAAADkhFD9D3KaoAwAAAAAcHtjorJ/UKlSpX8M1mfOnMmj1gAAAAAAbiaE6n/w9ttvy8fHJ7+bAQAAAAC4CRGq/8FDDz2kkiVL5nczAAAAAAA3Ia6pzgHXUwMAAAAAckKozgGzfwMAAAAAcsLw7xykp6fndxMAAAAAADcxeqoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEaoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhGgAAAAAAJxGqAQAAAABwEqEaAAAAAAAnEarzwYQJE1SuXDl5eXmpXr16WrduXbZl+/TpI5vNlulRrVo1q8zUqVOzLJOYmJgXuwMAAAAAty1CdR6bNWuWBg0apNdee03bt29X8+bN1b59e0VFRWVZfvTo0YqJibEe0dHR8vX11YMPPuhQztvb26FcTEyMvLy88mKXAAAAAOC2RajOY//73//0xBNP6Mknn1SVKlU0atQolSlTRhMnTsyyvI+PjwIDA63Hli1bdPbsWfXt29ehnM1mcygXGBiYF7sDAAAAALc1QnUeSk5O1tatW9WmTRuH5W3atNGGDRtyVccXX3yhVq1aKTQ01GH5hQsXFBoaqtKlS6tTp07avn17tnUkJSUpISHB4QEAAAAAuHaE6jx06tQppaWlKSAgwGF5QECAYmNj/3H9mJgYRURE6Mknn3RYHhYWpqlTp2rhwoWaMWOGvLy81KxZM+3fvz/LekaOHCkfHx/rUaZMGed3CgAAAABuY4TqfGCz2RyeG2MyLcvK1KlTVaxYMXXr1s1heePGjfXYY4+pVq1aat68uWbPnq1KlSpp7NixWdYzdOhQxcfHW4/o6Gin9wUAAAAAbmdu+d2A24mfn59cXV0z9UrHxcVl6r2+mjFGX375pXr16iUPD48cy7q4uKhBgwbZ9lR7enrK09Pz2hoPAAAAAMiEnuo85OHhoXr16mnFihUOy1esWKGmTZvmuO6aNWt04MABPfHEE/+4HWOMduzYoaCgoH/VXgAAAABAzuipzmODBw9Wr169VL9+fTVp0kSTJk1SVFSUBgwYICljaPaxY8c0bdo0h/W++OILNWrUSNWrV89U59tvv63GjRurYsWKSkhI0JgxY7Rjxw6NHz8+T/YJAAAAAG5XhOo8Fh4ertOnT+udd95RTEyMqlevriVLllizecfExGS6Z3V8fLzmzp2r0aNHZ1nnuXPn1L9/f8XGxsrHx0d16tTR2rVr1bBhwxu+PwAAAABwO7MZY0x+NwL5KyEhQT4+PoqPj5e3t3d+NwcAAAAA8l1ucxLXVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQnU+mDBhgsqVKycvLy/Vq1dP69aty7bs6tWrZbPZMj327t3rUG7u3LmqWrWqPD09VbVqVc2fP/9G7wYAAAAA3PYI1Xls1qxZGjRokF577TVt375dzZs3V/v27RUVFZXjevv27VNMTIz1qFixovXaxo0bFR4erl69eikyMlK9evVSz549tWnTphu9OwAAAABwW7MZY0x+N+J20qhRI9WtW1cTJ060llWpUkXdunXTyJEjM5VfvXq1WrZsqbNnz6pYsWJZ1hkeHq6EhARFRERYy9q1a6fixYtrxowZ/9imhIQE+fj4KD4+Xt7e3te+UwAAAABwi8ltTqKnOg8lJydr69atatOmjcPyNm3aaMOGDTmuW6dOHQUFBem+++7TqlWrHF7buHFjpjrbtm2bbZ1JSUlKSEhweAAAAAAArh2hOg+dOnVKaWlpCggIcFgeEBCg2NjYLNcJCgrSpEmTNHfuXM2bN0+VK1fWfffdp7Vr11plYmNjr6nOkSNHysfHx3qUKVPmX+4ZAAAAANye3PK7Abcjm83m8NwYk2mZXeXKlVW5cmXreZMmTRQdHa2PP/5Yd999t1N1Dh06VIMHD7aeJyQkEKwBAAAAwAn0VOchPz8/ubq6ZupBjouLy9TTnJPGjRtr//791vPAwMBrqtPT01Pe3t4ODwAAAADAtSNU5yEPDw/Vq1dPK1ascFi+YsUKNW3aNNf1bN++XUFBQdbzJk2aZKpz+fLl11QnAAAAAODaMfw7jw0ePFi9evVS/fr11aRJE02aNElRUVEaMGCApIyh2ceOHdO0adMkSaNGjVLZsmVVrVo1JScn69tvv9XcuXM1d+5cq84XXnhBd999tz744AN17dpVP/zwg1auXKlffvklX/YRAAAAAG4XhOo8Fh4ertOnT+udd95RTEyMqlevriVLlig0NFSSFBMT43DP6uTkZA0ZMkTHjh1ToUKFVK1aNS1evFgdOnSwyjRt2lQzZ87U66+/rjfeeEMVKlTQrFmz1KhRozzfPwAAAAC4nXCfanCfagAAAAC4CvepBgAAAADgBiNUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQjUAAAAAAE4iVAMAAAAA4CRCNQAAAAAATiJUAwAAAADgJEI1AAAAAABOIlQDAAAAAOAkQnU+mDBhgsqVKycvLy/Vq1dP69aty7bsvHnz1Lp1a/n7+8vb21tNmjTRsmXLHMpMnTpVNpst0yMxMfFG7woAAAAA3NYI1Xls1qxZGjRokF577TVt375dzZs3V/v27RUVFZVl+bVr16p169ZasmSJtm7dqpYtW6pz587avn27Qzlvb2/FxMQ4PLy8vPJilwAAAADgtmUzxpj8bsTtpFGjRqpbt64mTpxoLatSpYq6deumkSNH5qqOatWqKTw8XG+++aakjJ7qQYMG6dy5c061KSEhQT4+PoqPj5e3t7dTdSBv7N27V+vWrVNcXJxKliyp5s2bKywsLL+bBQAAANxycpuT6KnOQ8nJydq6davatGnjsLxNmzbasGFDrupIT0/X+fPn5evr67D8woULCg0NVenSpdWpU6dMPdnIW3v37tXkyZM1YsQITZ48WXv37r0udc6cOVPHjh1TSkqKjh07plmzZl2XugEAAAA4xy2/G3A7OXXqlNLS0hQQEOCwPCAgQLGxsbmq45NPPtHFixfVs2dPa1lYWJimTp2qGjVqKCEhQaNHj1azZs0UGRmpihUrZqojKSlJSUlJ1vOEhAQn96jgS0xMzHbovbMOHjyoJUuWWM9jY2O1a9cutW/fXhUqVHC63jlz5uj06dNZLr/y/XCzCAkJ4RIEAAAA3PII1fnAZrM5PDfGZFqWlRkzZuitt97SDz/8oJIlS1rLGzdurMaNG1vPmzVrprp162rs2LEaM2ZMpnpGjhypt99++1/swa0jKipK/fv3v651xsTEOHxpYbds2TIFBQU5Xe/Ro0eV1dUaNptNK1eudLreG2XSpEmqVKlSfjcDAAAAuKEI1XnIz89Prq6umXql4+LiMvVeX23WrFl64okn9P3336tVq1Y5lnVxcVGDBg20f//+LF8fOnSoBg8ebD1PSEhQmTJlcrkXt5aQkBBNmjTputY5ceJEpaamZlru7u6uAQMG5LjuwYMHtXXrVp0+fVolSpRQvXr1rN7tiRMnav78+WrevLmKFStmrRMQEHDT9lQDAAAAtzpCdR7y8PBQvXr1tGLFCnXv3t1avmLFCnXt2jXb9WbMmKF+/fppxowZ6tix4z9uxxijHTt2qEaNGlm+7unpKU9Pz2vfgWt04sQJxcfH3/Dt3GxKlCihEydOZFp+9XXwV7t62PiJEycUERGh6tWrKy4uTkeOHNH58+cVHx9vhWqbzaZ69epd1/ZfL9d7WP2N4OPj849faAEAAAA5YfbvPDZr1iz16tVLn332mZo0aaJJkyZp8uTJ2r17t0JDQzV06FAdO3ZM06ZNk5QRqB9//HGNHj1aPXr0sOopVKiQfHx8JElvv/22GjdurIoVKyohIUFjxozRN998o/Xr16thw4b/2KYbMfv3iRMn9Fivx5WSnHkY9K3u0qVLiouLy7S8ZMmSKly4cKay8fHxSk5O1qVLl+Tm5iZ3d3fr9ZSUFCUmJqpo0aLW86SkJHl6eqpIkSLy8fHJVCdyz93DU99+M41gDQAAgExym5Poqc5j4eHhOn36tN555x3FxMSoevXqWrJkiUJDQyVlXI97ZQ/f559/rtTUVA0cOFADBw60lvfu3VtTp06VJJ07d079+/dXbGysfHx8VKdOHa1duzZXgfpGiY+PV0pykhJL1ZXxKJJv7cgPNknepU7pfFyUUhMvyc2rsIqWDJGtmJ8uX1Hu8rlTOn1ut1SokFRIupx4VEqTvIr6y90rIyhfPB2jdA8PpRT7eyi1pySPO4qqWKW6kqQz5/7/ti5flFuhO1S0ZIgKFfPLux0uoGzJF6Rj2xQfH0+oBgAAgNPoqcYN6an+888/r/sEYAXJlT3QHh4eWfYoXz2h2fnz55WWliZXV1erZzo+Pl4uLi7WczubzabQ0NBr6hVH1phQDQAAAFnhPtXIVz4+PnJz98jvZuQLe9BNSkqSMUZJSUmKi4vTpUuXHMolJyc7PLfffio9Pd1a5uLikuVtqTw8Mn622V2zfjtey+4MN3cP6zIKAAAAwBkM/8YNERAQoOnffnPTh7ukpKRc3yM8t5YsWaJTp05lWu7n56cOHTrkWC4+Pl6XLl1SSEiIfHx8VKJECf35558yxujChQvavn276tSpo06dOikkJETfffddtjONP/zww9d1v65VYGBgnkyI928wURkAAAD+LYZ/44YM/y4obsQw9ZzuJ22/dl7K/YRmOQ0lz+6e2J6env/qntjXA8OqAQAAUJAxURmQCzfiPtWzZ8/O8pZaWd1P2n5f6jNnzsjX19fhvtS5cfDgQUVERDiEeJvNpvbt219TPTcC96kGAADA7YCeatzWPdU3wt69ezVr1qxMQTc8PFxhYWE3ZHvr1q3TyZMn5e/vr+bNm9+Q7QAAAAC3k9zmJEI1CNU3AEEXAAAAKNgY/g3ko7CwMEI0AAAAcBsgVAMAAABANuwjEOPi4lSyZMksRyAuWbJEM2fOVExMjIKCgvTQQw853PXlRm0/N23DjcfwbzD8GwAAAMjC3r17NXPmTIdlV8+Vs2TJEn344YeZyrz88suZgvXevXs1e/Zsbdu2TZJUt25d9ezZM9sgnNP2Jf1j2/DvcE01co1QDQAAgH+yd+9eRUdH53czcpSSkqJTp05dt/pWr16ts2fPZlpevHhxtWjRQpL0+eef6/Tp05nKlChRQk8//bT1/Pjx41q5cqX++usvh3KlS5dWq1atFBwcfE3bl/SPbbue/Pz85O7uft3rvZ7KlClzXb9QIFQj1wjVAAAAyMmJEyf08MOPKD09Lb+bkqeOHj2qrOKSzWZTaGioJCkyMjLbMrVq1bKex8TE6NSpU0pLc/wZurq6ys/PT0FBQde0fUn/2LbbjYuLq2bM+E4BAQHXpb7c5iSX67I1AAAAALc0F1fX/G5CnvPw8PjH5bkpI0nJyclKT0/PVC4tLU3JycnXvP3cbvd2kl/vUSYqAwAAAJCjgIAATf/2G8XHx+d3U3KUlJSk2NjY61ZfVFSU1qxZ49AjbLPZdM899ygkJESStGnTJn3//feZyjz44INq1KiRtWzJkiXauHGjLl265LCNwoULq0mTJllObJbT9iX9Y9uup8DAQHl6el73eq8nHx+f69ZLfS0I1QAAAAD+UUBAQL4ElmtVo0aN61pfs2bNtG7dOp08eVL+/v6ZZthu3bq16tatq5kzZyo2NlaBgYFZzv5dpkwZpaSk6Pfff8/U3qeffjrba4Fz2v4/tQ15g2uqwTXVAAAAQB6wz/69fft2SVKdOnVynP0b+YuJypBrhGoAAAAAcMREZQAAAAAA3GCEagAAAAAAnESoBgAAAADASYRqAAAAAACcRKgGAAAAAMBJhGoAAAAAAJxEqAYAAAAAwEmEagAAAAAAnESoBgAAAADASW753QAAAAAUDGlpadq5c6fOnDkjX19f1axZU66urvndLADIV4RqAAAAZGnv3r1at26d4uLidO7cOe3evVuXLl2yXg8MDNR//vMf3X333dmuV7JkSTVv3lxhYWF53XwAyBM2Y4zJ70YgfyUkJMjHx0fx8fHy9vbO7+YAAIA8ZA/Au3fvtnqgq1WrplKlSum3336TJB09elTLly9X4cKF1ahRIzVp0kQhISHauHGjNm7cqH79+ikxMVFxcXFKS0tTXFyc/Pz8rG3YbDaFh4dbwZrQDaAgyG1OIlSDUA0AuOWdOHFC8fHx+d2MHCUlJSk2NjZPtxkVFaXVq1crPj5eR44ckZQRgENDQ3Xy5En5+/vL29tb69evV2Jiovz9/VW4cGFVrFhRNptNd999t5YtW6Zdu3apfv36stls2r9/vy5fvqzQ0FD5+PhY2/Lz81OHDh2sbV7JZrPpnnvuUUhIyHXfx8DAQHl6el73eq8nHx8fBQQE5HczAFyFUI1cI1QDAG5lJ06c0KOP9VJqSnJ+N+WmExMTo6SkJJ0/f15paWnWcldXV6Wnp8vFxUVFixZ1eN1ms1lh2R5Wk5KSrHXPnTtn1VG0aFFruT2s27d5NU9PTwUFBV33fSwI3Nw9NP3bbwjWwE0mtzmJa6oBAMAtL/2KwIi/JSdnfNGQdtXPxx6o7cuvfN3FxSXT+ldydXVVWlqa0tPTHZZ7eHhku05Oy28HvD+Bgo1QDQAAbmkBAQGaMGG8oqOj87spOUpJSdGpU6fydJurV6/W2bNndeTIEV2+fNlaXqhQIZUoUUKnT59WiRIltH37dhUrVkweHh4qVaqU1QNdvHhxnT9/Xps3b9add95p9Wr/9ddfKlSokMqWLWvV2ahRIwUHB1vbvFrx4sXVokWL676Pfn5+cnd3v+71Xk9lypShlxoowAjVAADglhcWFsZEWFlo2LChZs2apVKlSun333+3llevXl3+/v5q0KCBoqOjFR0drfT0dN17773y9/eXlDGc+8EHH9To0aNVtGhRNW3a1OrFPn36tPz9/eXm5iZ/f3+Hicjs27zyCsSrJzIDgIKEa6rBNdUAANzG7DNx79mzx+qZrlq1qkMQXrt2rYYMGSI/Pz9VrFhRlSpVynL2b/vkZv80m7d9m7ktDwD5gYnKkGuEagAA8E/Wrl2rCRMmOMxQHhQUpGeeeSbTfaoB4FZAqEauEaoBAEBupKWlaefOndb9rGvWrClXV9f8bhYA3BDM/g0AAIDrytXVVXXq1MnvZgDATcXln4sAAAAAAICsEKoBAAAAAHASoRoAAAAAACcRqgEAAAAAcBKhOh9MmDBB5cqVk5eXl+rVq6d169blWH7NmjWqV6+evLy8VL58eX322WeZysydO1dVq1aVp6enqlatqvnz59+o5gMAAAAA/j9CdR6bNWuWBg0apNdee03bt29X8+bN1b59e0VFRWVZ/vDhw+rQoYOaN2+u7du3a9iwYXr++ec1d+5cq8zGjRsVHh6uXr16KTIyUr169VLPnj21adOmvNotAAAAALgtcZ/qPNaoUSPVrVtXEydOtJZVqVJF3bp108iRIzOVf+WVV7Rw4UL98ccf1rIBAwYoMjJSGzdulCSFh4crISFBERERVpl27dqpePHimjFjxj+2iftUAwAAAICj3OYkeqrzUHJysrZu3ao2bdo4LG/Tpo02bNiQ5TobN27MVL5t27basmWLUlJSciyTXZ1JSUlKSEhweAAAAAAArh2hOg+dOnVKaWlpCggIcFgeEBCg2NjYLNeJjY3NsnxqaqpOnTqVY5ns6hw5cqR8fHysR5kyZZzdJQAAAAC4rRGq84HNZnN4bozJtOyfyl+9/FrqHDp0qOLj461HdHT0NbUfAAAAAJDBLb8bcDvx8/OTq6trph7kuLi4TD3NdoGBgVmWd3NzU4kSJXIsk12dnp6e8vT0dHY3AAAAAAD/H6E6D3l4eKhevXpasWKFunfvbi1fsWKFunbtmuU6TZo00aJFixyWLV++XPXr15e7u7tVZsWKFXrxxRcdyjRt2jRX7bL3fHNtNQAAAABksOejf5zb2yBPzZw507i7u5svvvjC7NmzxwwaNMjccccd5siRI8YYY1599VXTq1cvq/yhQ4dM4cKFzYsvvmj27NljvvjiC+Pu7m7mzJljlVm/fr1xdXU177//vvnjjz/M+++/b9zc3Myvv/6aqzZFR0cbSTx48ODBgwcPHjx48ODB46pHdHR0jnmKnuo8Fh4ertOnT+udd95RTEyMqlevriVLlig0NFSSFBMT43DP6nLlymnJkiV68cUXNX78eAUHB2vMmDG6//77rTJNmzbVzJkz9frrr+uNN95QhQoVNGvWLDVq1ChXbQoODlZ0dLSKFi2a47XdyF8JCQkqU6aMoqOjufUZ4CSOI+Df4zgCrg+OpZufMUbnz59XcHBwjuW4TzVQQHA/ceDf4zgC/j2OI+D64Fi6dTD7NwAAAAAATiJUAwAAAADgJEI1UEB4enpq+PDh3A4N+Bc4joB/j+MIuD44lm4dXFMNAAAAAICT6KkGAAAAAMBJhGoAAAAAAJxEqAZuIlyNAQC4GXA+AoDcI1QDN4l169bJZrPldzOAAuvkyZPaunWrJCk9PT2fWwMUXNu2bdOFCxfyuxlAgZaamqqYmJj8bgbyCKEauAkcO3ZM4eHh+vjjj3XixAlJ9BIA1yIpKUnffvut7r//fm3ZskUuLpzeAGds3rxZr776ql588UVdvnxZEucjIDfS0tIcnr/44ovq27ev1qxZk08tQl5i9m8gnxljZLPZ9PPPP2vMmDHy8/PTlClT8rtZQIE0ePBgRUZG6o033lCLFi3yuzlAgWE/F0nSkSNH9Nhjj6lOnToaO3ZsPrcMuHnZR0Vd+UXuoUOHVL58eaWnp+vtt9/W4sWLNXbsWDVp0sThOMOthVAN5AP7t5murq4Oy7dt26bGjRtr+vTp6tGjR6bXAWQwxigtLU1ubm7Wc5vNpjNnzuj111/X+vXrtXbtWvn4+ORzS4GbW3bno1WrVql3794aNmyYBgwYkB9NA25a6enpDkF6//79+uyzz/Ttt9/K3d1du3fvlo+Pj5KSkvTUU0/p2LFjmjNnjooXL56PrcaNxPg4IB+4urrK1dVViYmJ2rt3r1JTUyVJdevW1eOPP64vvvjCujYUQGY2m80K1AcOHFBsbKwkydfXVyNGjFBMTIwmTZqk5OTk/GwmcNOzn48uX76sPXv2KCkpSZLUsmVLDRgwQO+995727t2bz60Ebi4uLi46f/68PvzwQ915552qWrWqDhw4oCJFiqhChQoqXLiwJMnT01ODBw/WiRMn9Mknn+Rzq3EjEaqBPGQfJrRmzRq1atVKwcHB+uijj7Rnzx6rTP/+/XXx4kUtWrQov5oJ3PTi4+P11ltvqXTp0urSpYuWLFmixMRESVLx4sUVHh6uZcuWadeuXfncUuDmZB+ouHbtWrVq1UpBQUEaOXKk/vzzT6vMSy+9pMTERC1evFgpKSn51VQg350/f179+/dXQkKCjDF69tlnVaxYMc2YMcMKzT/88IMKFSqk+++/X+7u7tYokNq1a6tv376aPHmy4uPj83lPcKMQqoF/4VqvnnBxcVFkZKQGDRqksLAwrVixQoMHD5a/v79VpmHDhqpSpYp27NihkydPXu8mAzcVY4xTkyCNGDFCP/74oz755BPNmzdPd911l1xdXa0PMY888ohOnjypHTt2XOcWAzenaz2ObDabDh06pBdeeEEVK1bU6tWr9X//938KCgqSlDEs3NPTUx06dNDy5cs5H+G2dvnyZa1du1YnTpyQzWbT/fffr4MHD2r79u36z3/+I19fX82bN08xMTF68MEHZYxxuKTi0Ucf1fnz57V69er82wncUG753QCgoDHGKD09Xa6urtc82URqaqo+/vhjeXl56b///W+ma2vs1+jUrFlTe/fuVVRUlEPgBm4V6enpstlsTk3Ysn79en3xxRf65JNPFB4enmWZJk2ayMXFRTExMUpLS2N+AtyS/s35SJKGDh0qT09PjRgxQr6+vg6v2et76KGH9NBDD12X9gIF1cqVK1WhQgX5+flJyrg8Qvr7yyybzably5ercePG8vPzy3Q8BgYGqlmzZlq4cKG6du2a6ZpsFHz8NoFcsE+KJGX84bR/QP/+++/1+uuv69ChQ7mqx83NTRs3btSDDz6o4sWLW3+Mr76nbtOmTbV3714VLVr0Ou4FkL/sAUDKGLVhs9l08OBBvfrqq5ozZ06u1peks2fPKjExUX369HF4zf66fY6CsLAwRUZGytXVlftW45aR0/moX79+1m2w/qmO9PR0xcXFqUGDBvL19bXqvHo24/r16ysxMZGeatw20tLSMh0PpUqV0qZNmzJ1htjD8+XLlxUREaGOHTvK3d090zknNTVVTZo0sS6vIFDfeviNArlw5QeXlStXqmPHjvLy8lJ4eLg+/fRTlSpVKlf1pKSkqEKFClq/fr31XPr7j6v93xo1aigpKUlnz5693rsC5BubzSYXFxedOXNG7777rkqXLq3KlSvrww8/1O+//y4p5yGs9g8vNptN3t7e2rBhg6SMD0BX9nrbJzBr2LChoqOjJfEBBreOq89HnTp1kru7u8LDwzV16tRcXbNps9l0/vx5BQYGWseIvU77sWI/Fi9duqQGDRo4zP0B3Irs73n75H1paWlWODbGqFixYtZxYC9rv/PE0qVLdfHiRXXp0kVSxnF05fnMzc1Nbm5uKlu2rBISEvJyt5BH+JQB5MLRo0fVv39/FS9eXA888ICCgoK0bds2denSRX379pWnp2eu6rHZbOrcubOWLFmi+Ph4eXh4SMr4o7xu3TodP37c2l6zZs2YuRi3BPsHi2+++Ub16tVTyZIlNX/+fH300UeKiIhQmTJlrGHcOQ1htdcTGhqqqlWratKkSZL+DgPHjx/XunXrrPLx8fFq2rSp1XMN3AoOHjyop59+WsWKFVPPnj3l7++vvXv36pFHHtFjjz2mwMBAq5ctJz4+Pqpdu7aioqK0efNma3laWpq2bNmiI0eOSMroYUtNTVXNmjVv1C4BNwX7+Wf58uXq3LmzateurSVLlkjKOC6CgoK0ZcsWSY7DviVp9uzZatSokUqXLp2pPvuM+qmpqTp16pS8vb0ZPXULIlQDuTB69GjFxcXpm2++0ZkzZzRlyhR5e3vrt99+U/PmzXNdj5ubmx577DGFhIQoPDxcM2bM0NGjR/Xhhx9q7Nix+uuvvyRlDCP6888/VadOnRu1S0Cesdls2rVrlyZPnqzOnTvr0KFD2rp1qx5++GEtW7ZMAQEBKl++fK7qkTKGdffu3VvTp0/X22+/re3bt2vNmjV6/vnntWHDBp0/f15SxpdTxhi5ubk5NRkacDOxv4cnT56so0eP6rvvvtOpU6f01VdfqWjRolqxYoXatWsnKfM9p69m/0DftWtXBQQEqF+/fpo1a5YOHjyojz76SG+++abVm1aiRAkdO3bMukUQUNBd2QN9tU8//VT9+vVThQoVNHToUOsyvGrVqsnNzc26o8SVIzrOnj2rn376Sb169bLqOXr0qIYOHao2bdpo+/btkjJu+WifJ4fRU7cgAyBb6enpxhhjUlNTMy2bMmWK8ff3NxcuXLjm+jZt2mTCw8NNlSpVjK+vr6lWrZr59ttvTVpamjHGmNOnT5vx48ebS5cuXa9dAW4qaWlp5vLlyyYsLMz897//Ncb8fXzk1ogRI0yjRo1MuXLljI+Pj+nTp485ePCg9frixYvN+vXrr2u7gfxiPz7s54krffPNN8bf39+cOnXqmuuNjY01nTt3NtWrVzfFixc31atXN1OnTrXOe4cPHzYzZ8408fHx/24HgJvM5cuXHZ7//vvvpkSJEmby5MlZlh84cKBp06aN2bFjhzHGmOTkZGOMMdOnTze1atUyhw8fNhMmTDD16tUzLi4upl69eubrr7+21v/ss8/Mxo0bb9DeIL/ZjOHre8AZLVq0UPXq1TVu3LgsX8/NzI47duxQyZIlFRwc7LA8KSlJbm5uzFiMW5L5/9egrVq1St27d9fmzZtVsWLFbMtd7cpjKz4+XocOHcpyVMfFixd1xx13XP8dAG4S9mOkdevWKl26tL766qssj5vszkdXlt27d6+8vb0znY+Sk5Pl4uJizVUAFBTm/09gab++2WazKT09XV9//bUmT56sIkWKqFGjRvq///s/FS1aVAsWLNDAgQO1Y8cO+fv7W+ukpKTI3d1da9eu1X//+19VrVpVo0ePVnp6utLT0/XYY49p9uzZcnNzU3BwsJ588kkNHDgw06RmZ8+ezbQMtw7GHgBOOHjwoPbt26c2bdpIyjx7t5S7oT21a9dWcHCw0tPTHa6B8/T0JFDjlmX/EL9o0SLVrl0726Hf2V1ffeWx5e3tbQXq1NRUh2ORQI1bnc1m0/79+7V3715169bNWna17M5HV5YNCwvL8nzk4eFBoEaBZJ8c0/5/SRo+fLj+97//qV27durdu7dmzZqll156SadOndLp06fl6+urgwcPSvr7kgt3d3dJGXdm6du3ryZPnqy9e/daXzZ5e3tr2LBh2r17t44cOaLXX39dxYsXd5hFXBKB+hZHqMZt5+o/cte6riQtXbpUHh4e6ty5s1JSUrL8EPPTTz8pIiIiV/W6uLgQolFgGGP+1eRfqampSktL06JFi9SpUye5urpaM+Ff6fz58xo5cmSOdV157Lm5uXGdGgqUf3M+stuyZYvS09N1zz33SMr6S97169drypQp1jZzwvkIBVF27+s33nhD06ZNkyRt3rxZP/zwgyZOnKg333xTjz76qJ544gl99913mjdvnlq2bKnExERr4j77+eTEiROKiYmRm5ubHnnkEfXo0UOvvfaaFi1aJEmaNGmS3n33XVWsWNE6PxpjrFnEcXvg0wduO/Y/comJiVq1apVOnTolKedb+Vy5riRNmzZN999/v2w2m9zd3a3hQb/88ouOHj0qSdZkL1LWH3KAgspms1k9V7t377ZubZUb6enpcnNz008//aRTp07p/vvvl/R3T8CBAwe0ceNGGWO0Y8cOvfbaa1q2bJmk3B2jQEFiPx9dvnxZq1evVlRUlKTcvdftX2x99tlnateunYoVKyYpIwikpKTop59+0unTp3X58mVNmDBB48ePt7YJ3Gqufl/bQ/bixYv122+/SZK2b98um82mChUq6JlnnlFQUJBGjRqlAQMGqEWLFipfvryaNm2qKVOmaPbs2UpISNDZs2f1wQcfaN68eVbdo0aNUuPGjTV+/HhduHDB2l56erp1fszpTha4NRGqccuyX0tz5XNJ2rRpk9q2bSt/f3+9+eabWrt2raScb+VzpZ07d+qvv/7SI488IknasGGD+vbtq6JFi+qJJ55QXFycjDFq2rSpmjVrJolZHlFwZfWF0IULF/T++++rTJkyatu2rb7//nvFxsbmqj77sTB79my1aNFC5cqV09mzZzV+/HjVrVtXlSpV0o8//iibzaYiRYqoTZs21i1K+JCCgurq85Hdr7/+qvbt28vf31/vvPOOfv31V0m5e6+7ublpz549OnDggJ588klJGeejxx9/XL6+vnrggQd07NgxFSpUSMWLF1f79u2v704BN5Fdu3bphRde0E8//SQpI2SfOXNGISEh1gzeFStW1K5du1S5cmXFxcVpwoQJOnDggD7++GNVqlRJkvThhx+qcePGevbZZ9WiRQuVLl1a69atc5j3w8/PTy+//LJee+01a5SVq6srn/Vuc1wkg1vOlRNTXMlms+n48eN65ZVXVLlyZX344YcKCAjQpUuXcl2vzWbTypUrlZiYqJkzZ6p79+6Ki4tTp06dtHz5ct19990O23vggQeu674BecU+sVFWHxKmTp2qWbNm6YMPPtB9992nS5cuWR9acuPcuXNavXq1atasqS5duigiIkJly5bV008/rTVr1lh1hYSEqHz58rrzzjuv234BeSm785EkJSQk6NVXX1WFChX066+/yt/f/5ovq1i3bp3i4+M1Z84c9ezZUydPnlSnTp0UERGhu+66yypXs2ZNbomFW5L9s5mHh4f++OMPrV69Wlu3bpWbm5t1fXTLli0lZczBUbFiRT3wwAMaMWKEVce5c+e0ePFilS9fXk2aNNG4ceP03HPP6ddff1Xz5s1VuXLlLLd9LbdUxa2PUI1bhv0Pq/0RHR2tpUuXqmzZsmrdurWkjG8yt27dqkWLFqlo0aK6dOmSAgMDM9WRFfuskT/99JPOnj2rLVu26IMPPrB6rO3ss0S+8cYbN25ngRvMHgJ+/PFHnTp1SnfffbfKly9v3Y+zevXqeuSRR5SamqqAgIBrqnvnzp06dOiQJKl9+/bau3evKlSoYL2elpYmm82mEiVKaMKECddvp4A8duX56IcfflDNmjXVsGFDeXl5KSIiQidOnNCYMWNUvXr1a5qt3n6umjdvni5duqTff/89x/NR//79b8TuATdUWlraP16uYP/MVrlyZX333XeqV6+ehgwZopdeekllypSRn5+fNfFYlSpV9PDDD2vMmDGqUKGC2rZtq4sXL2ry5Mnatm2bNYeHu7u7qlevrurVq0vKON7S09O5dAI54pZaKLCyCsCpqak6cOCAVq1apTfffFOlS5fW4cOHNXToUA0ZMkQbN27UwIEDVapUKfn5+alEiRI6d+6c6tSpo+effz7beqW/e+42b96satWqOXzrn5qammWvXk4hHbgZXPketf8/KipKJ06c0PDhw7V582YFBwcrPj5eq1atUmhoqF544QWtXr1aNWrU0B133GFdF/rEE0+obt26Dh+Esru9z65du1SrVi2HZfbrrXNqI3Azyuo9mpycrOjoaC1fvlzvvPOOvL29denSJXXu3FkTJkzQ6tWr9dprr8nNzU1lypSRr6+vTp06pSZNmmjgwIFycXHJ9lZYqampcnNz06FDhxQQEOAQxjkfoSBJS0tTTEyMSpcubV2T7EyAtR8rc+fO1aeffqq6detqzJgx6t69u8qXL69PPvnEKvef//xHq1evVuHChfXHH3+ocePGevXVV9W2bVuHOu0RieMGucHgfxQ49sknsvoj16dPH4WHh2v58uWKiIjQ9u3b9Z///EezZs3S4sWLddddd+m9996Tt7e31UOdlpaml19+2boOx2azKTY21upJs2/P/gGlQYMGKly4sMOsrdnNOswfYtyMjDFZHkc2m00HDx5U1apV9eqrr+quu+5SVFSUli1bJnd3d7333nu6ePGiRo4cqY4dO1r3tE1OTlZkZKSeeOIJSX9PGLN58+YsjwGbzWYFavssqTndB5fjCDeTK/sicjofvfjii6pSpYrWrVuniIgI7d69W++++66mTJmiNWvWqEWLFho5cqRCQ0MVEhKiIkWKKDk5WSNHjtTXX38tKeO8ExcXpx07dkj6e44D+7FSvnx53XHHHZyPUCD9+eefatOmjaZPny4p4/1us9nk6uqqtLQ0ff3113ruuee0dOlSnT17VlL2E7/a3/PdunXTkCFDNHHiRP388886cOCAypUrJ+nvL5w+++wzrVixQu+//75iYmK0atWqTIFa+nukCZArBrhJbd682ZQvX97ExsZm+fq2bdvMzJkzzV9//WUtmzlzpilevLh5+OGHrWWnTp0y9913n3nmmWcc1k9PT7f+X7JkSfPhhx8aY4w5dOiQadiwoVXHleWAgiQlJcX06dPHPPfcc1m+npiYaL7//nvz008/mdTUVGt5hw4dTOHChc3atWutZWPHjjV169Y1K1asyLQNY4yZNm2a8fLyMvHx8cYYYz799FNTpkwZs2nTpuu9W0Ce27ZtmwkNDTVHjhzJ8vUtW7aY6dOnmwMHDljL/vzzT2Oz2UzPnj0dyoaFhZnnnnvOnD9/PlM9Fy9eNPXr1zeDBg0yxhhz+vRpU6NGDTNgwIDruDdA/khLSzMzZ840PXr0sJZd+RnOmIzz0sSJE03p0qVN9erVTdeuXU358uVN586dc7UN+2e2Z555xrRp08bYbDbz8ssvW9vPSmpqqsM5EHAGPdW4KZgsrkKoXLmyRowYkel6zd9++001atSwvuVv3bq1xo4dK0m67777VLFiRXl4eFjlS5QooTp16mjfvn2KjIyUJP3111+KiYnRqVOnNHz4cFWuXNmaGTUwMFAVKlSwJnnhW0oUBOaK2YXt/7q5uenRRx/Vc88951A2KSlJQ4cOVfHixfXGG2+ob9++6tWrl7Zt2yYp4zpnPz8/h0mTunfvrsuXL1v370xOTtbhw4d1/vx5bdiwQV988YVeeeUV67KIChUqqHTp0tZ9O4GC4sqeMPt7t0SJEho/frxCQ0Md7oe7ZcsW1a5dWy1bttSYMWPUsGFDTZ8+XYmJiapYsaIqVKigwoUL6/Lly1Zdjz76qFauXKkjR45Ikg4fPqy4uDjFxsZq1KhRstlsevrppyVJvr6+CgwMVJkyZTK1DShoXFxcdOzYMW3dulXbt2+XJJUqVUpHjhyxPp+dPXtWZ86c0fvvv69du3ZpwYIF+umnn/Tjjz8qIiLiH88n9tfffPNN65rosLAwa/tZ4X7SuB4I1bgp2IOr/X5/xhgVLVpUDz30kMMH+0uXLunTTz9V1apVdejQIS1atEjdunXT4MGDtX37dvn5+alBgwaKiYnRrl27rPVatWqlS5cuadOmTUpPT9e0adP02GOPqWLFipo/f76ee+45Va9eXenp6SpUqJBOnTqlsmXL5unPAPg37MPUEhISJP09LLVVq1aqWLGiLl68aJVds2aNfvjhB02fPl27d+/WqFGjFBcXpxdeeEGS9OCDD8oYo127dlkf4kuVKqVatWppy5YtOnHihLZs2aK3335bjRo1Uvv27VWpUiU99dRT1rDU2rVrKzk5WcWLF+eLKRQo9g/e8fHx1ns3JCREHTt2VEpKisOH748++kiVK1fWwYMHtWzZMj322GN6//339d1330mSevXqpVWrVunEiRNWXX379tXx48e1c+dOSdKUKVP02GOPKSwsTLNmzdKQIUNUuXJl6xhu1KiRihQp4tA2oCBJT0+33s8tWrRQ2bJlNXv2bEnSkSNH1KtXL7333nuSMjo2evTooUcffVQHDx7U888/b83ePWvWLOsclx37MRIYGKh33nlH6enp6tev343aNeBv+dRDDjjYunWruffee81nn31mLUtMTDSRkZGmUKFCZs+ePcYYY86ePWs8PT3Njz/+aJVLSkoyd999t3nooYeMMcYsWbLE1K5d20yePNkqc/HiRdOuXTvTqVMnk5SUZCIjI820adPMoUOHHNphH/6TlJRkjGHoNwqWV155xXTp0sV6/9qHYvfu3du0adPGKvfOO++YihUrOqwbERFh3NzczK5du4wxxnTu3Nl069bNREVFWWVmzZplSpUqZebMmWNSU1PN3LlzzdKlS2/0bgF56tChQ6ZSpUrmu+++s5alp6ebnTt3mmLFipl169YZY4zZv3+/qVixopk4caJVLi4uzvTp08c0b97cGGPMiRMnjM1mM99//73DNho1amTatWtnEhMTza5du8z06dPN4cOHs2wPw1JxK0lISDDPP/+8adCggbVsyJAh5t577zX79++3li1dutRUr17ddOnSxSxfvtx8/vnnxtvb20RGRmZbd3p6epbHi/0yJeBG4itP3BSqVq0qHx8fLVq0SL169ZKHh4dWrlypSpUqqUiRIlq8eLGkjFti3XnnnUpMTJSU0Rvn4eGhRx99VBEREZKke++9V35+ftq2bZvVO1e4cGHde++9uvvuu5WSkqKaNWuqV69eKleunMM3qPYeCA8PD2sWSuBmZ3//Vq9eXcePH9egQYMUGhqqtm3bKjU1VY0bN9b69eut4+bAgQOqVauWzp8/b9VRp04dVatWTdOmTZOUMUR1z5492rNnj1WmU6dOatmypUJCQuTq6qoePXpYk7ukpaVlOTSV4aooaMqVKycfHx/NmzdPDz/8sFxcXLRgwQIFBgYqLCzMOkbOnDmj5ORklS5d2lq3RIkSatasmY4dO6aDBw+qZMmSaty4sRYsWGCNxJKkgQMHqnbt2kpPT7duT1e2bFmH85Gdq6srl1DgpnXo0CF9+umn1vOs/uafOXNGjz/+uGJjY1W0aFE1aNBA58+ftz7bNWnSRJcuXdLKlSslSadOndLIkSPVuHFjffPNN2rdurXKli1rjTi8+n7u9vOPfZIzO3PFpVDAjUaoRp7K6gODJO3Zs0ebN2/WkiVLdPr0af38889q3769vLy89Mgjj1gfYkqVKqUSJUpYw+bsfzyDgoJUuHBhHTp0SJ6enqpTp45Wr15tzZgqSS+//LJefvllh1uPmP8/63BW19IwzA43I2NMpg8UNptNxhht3rxZW7du1Zw5c/Tcc89p4cKFcnNzU9u2beXu7m4NSS1Xrpzi4uL0xx9/WHUUKVJEpUqVso7PBx54QLGxsfrpp5+UnJwsKePLqW+++UYNGjRwaI+UcSxmdcxwHOFmld35aPfu3frrr780d+5cnTt3TqtWrVL37t3l7e2tzp07a9GiRZKkhg0bKjU1Vbt377a+sHJxcVGhQoXk4+Ojy5cvS8oY7v3dd98pKirK2kavXr00cuRIFSpUSNLfcyJkdz7iC17crH7//XeHL23tf/OvPLbi4+O1YMECa/6bWrVqqWzZspo3b54kqWnTpgoKCtKaNWskSX5+ftqxY4caNmwob29vSdL8+fOVnp6uzz77TOfOnZMk61xoP//ExcVpxIgReuSRR3T58mWOG+QpPu0gT9k/MKSkpOj333+3epK9vb01ePBgNW7cWG3atNFdd91lfVh//PHH9fvvv+u3335T+fLlVaNGDUVERDj0oM2ePVvVq1eXn5+fpIwPMe+++64aNmzosP309HSHb/z5g4uCxmazWd+6HzhwQNHR0dZtSLp06aL7779fjRs31sMPPyx/f39JGV9GtW/fXlOmTJEk3X///Tp9+rS+//57q97o6GitX79ezZs3l5TxIWX8+PF64oknHCb+kxw/LHEMoaCyn4+Sk5O1Y8cO63zk7++v999/X0FBQXrooYd0zz33SJI8PT3VvHlzpaWlac6cOZIyJvD7/vvv9euvv1r1/vbbb0pLS1OlSpUkSU899ZSmTJliPbe78nzErXtQUHXp0kVz5syRl5eXJOncuXPq0aOHhg4dapUJDg7WgAEDrFtnVa5cWQ0aNNDmzZt17tw5BQYGqnbt2jp69Kh1LHXu3FlDhw5V37591bRpUxljtGnTJr322mvWZz03Nzelp6fr66+/VtOmTXXnnXdqyZIlateuHb3TyHv5M+oct4O0tLRM1yRv2LDBdO3a1Xh7e5vatWub1q1bmy1bthhjMq5jfuSRR0yXLl3M5cuXjTF/X9NctWpV8/zzzxtjjImMjDTt27c3/v7+5u233zZ9+vQx5cqVc7j+DbhVXH19WEJCgvnkk09MuXLlTGBgoKlTp4555513TEJCgjHGmPnz55s6deqYqVOnOqy3cOFC4+LiYt2+ZNy4caZ48eKmW7du5p133jG1atUyXbp0MSdPnsybHQPyUHp6eqbz0caNG63zUbVq1UyjRo3Mnj17rNvutGnTxvTs2dMcO3bMWic2NtZ07tzZtGvXzhhjzIEDB8yDDz5ovL29zbvvvmseffRRU7p0aTNr1iyHbQO3ss2bN5uBAwcaY4w5f/68GTBggAkLC3Mo8/PPPxubzWa2bdtmjMk4V9WoUcN89dVXxhhjVq5caVq0aGHeffddY0zGfAQTJkww7dq1M++++645e/asQ31xcXHmqaeeMh4eHqZ69ermrbfecrgmG8hr9FTjujP//5t3e+9ZZGSkdu7cqdOnT+vVV19VmTJltHLlSs2cOVN33HGH3nrrLR0/flweHh6qV6+eTpw4oV9++UXS30N7Hn/8cS1cuFAJCQmqWbOmvvnmG7388stas2aNLl++rOnTp+vhhx/Osh1AQWYf2bFq1SqdP39ec+bM0dy5c/XWW29p27ZtGjhwoBYuXKhJkyZJyphToEiRItq8ebM1HE/KGKoaEhJiXUoxcOBATZ8+XaVKldLSpUv1yCOPaMaMGVYPgB3XRKMgM1f1BG/btk379u3T8ePH9cknn6hEiRJas2aNFi9eLD8/Pw0bNsy6c0TPnj21fft2h8sk/P391aFDB23ZskXnz59XhQoV9Nlnn+n111/Xxo0blZqaqpkzZ6pnz57WOvRA41Z34cIFTZgwQZGRkSpSpIi6dOmi48eP67fffrPKVKtWTXXr1tW4ceMkSTVq1FBYWJh1XXXjxo1VpEgRLV++XImJiSpZsqSeeeYZRURE6LXXXlOxYsUk/T1S6vLly6pbt65+/vlnRUZGavjw4brzzjvzdseBK+VzqMctwP6t/pVOnjxpoqKiTK9evYyvr681E7f9G0ljjDl69Kjp2rWr8fHxsWb9/u2338y9995rhg0b5lDfkSNHjM1mM/PmzbtxOwLkk6x60Ywx5s8//zTr1q0zvr6+pmPHjubgwYMmMjLSbNiwwRiTcezNmDHDBAQEmPvuu8/qUXvppZccRoHYyz733HOmePHiDtu4elZUetVQkGV1Pjpx4oSJiYkxgwcPNjabzXz33XcmOjrarFixwiofHR1tHnjgAePv729Gjx5tjDHmwoULply5cuajjz4yycnJVn3btm0zxYoVMx9++GHe7BSQz/5pBvr09HRTuXJlM3ToUGNMxue7pk2bmieffNIqk5aWZgYNGmR8fX2tZR988IEJCAgw+/btM8YYs2zZsixn905NTeXchJsePdVwmv3bwqwmIgoNDVV4eLiKFi2qyMhIPfnkk5KkPn36aOvWrbrrrrtUv359JSYmqk6dOpo7d64kqX79+qpWrZp++OEH7dy5UxEREZo7d65CQ0P19NNPWxNWXN0OetNQEKWnp1szll7dm/X999+rcuXKGj16tMaPH68ff/xR5cuXV82aNVW/fn29/fbbKl26tEaMGKGmTZvq1KlT+umnnyRlXON2+vRpff311zp27Jjef/99nT59Wo888oh69uxpTaAkZVyTZoyxjmd61VAQZXc+On/+vNq2bavGjRsrOTlZUVFRevjhhxUUFKRWrVpp27ZtatmypWrXrq3U1FSVKVNGGzdu1IkTJ3THHXfonnvu0Zw5c/Tzzz8rIiJCU6ZMUZ06dfTss8+qYsWKWbaD8xFuBWlpaZnujGKyGQFos9nUs2dPzZo1S4mJiQoMDFTHjh21cOFCq4wxRgcOHNDZs2e1dOlSSVLt2rX14IMPWmXatGmjmjVrZqrf1dWVcxNufvkc6lGAZPct4YoVK8w333xj/vrrL+vb/FdffdXYbDYzduxYY8zf33KeP3/etG3b1gwcONC69mXw4MEmODjYuj/uhg0bTLdu3UxgYKBxdXU1n3zyCd9Q4pZ2/Phx8+WXX5pVq1ZZPcdnzpwxISEhpnLlyub48ePGmL974WbPnm1q1qxpjdw4c+aMCQoKMgMGDLDq/PTTT02VKlWMj4+PufPOOzPdkx24FS1dutRMmzbNHDhwwBiTce4ZO3assdlsVg+0XXJysunWrZvp27evVf711183ISEhZsWKFcYYY7Zu3Woee+wxU7JkSePt7W1eeumlvN0hIA+lpaVlGr2UnJxsJkyYYLp162aWLFmS7br79u0zLi4u5qeffjLGGLNz505TvHhx88wzz5iDBw+aOXPmmKeeeso0bNjQPP3009nWw+c9FFSEamSSmJho/T86Otrs2rUr0x9ZY4yZO3euCQ4ONqVKlTLNmjUzNWrUMGPGjDHGGPP7778bm81mZsyY4bDOxo0bTUBAgImIiDDGZAw97datm3FxcTFDhgyxyp0+fdrs3r070zb/aQgScLO48r26du1ac+HChUxlTp06ZR599FHj5eVlmjVrZsqVK2cef/xx8/vvvxtjjHnkkUdM3bp1zfnz5611Ll++bPr162dat25tffhYsWKF8fPzMzVq1HAYOrd7925rAjO79PT0LIfIAjejpKQk6//R0dFm8+bNDq/bj4EFCxaYkJAQExQUZNq1a2eKFStmZs2aZdLT082ePXtMoUKFrMks7cfmypUrTcWKFc3s2bONMRnHVo8ePYyfn595+eWXrW3Ex8dbw1OvxPkIt7Iff/zRdOzY0fj4+JjKlSubESNGmDNnzuS4TqNGjUy/fv2s55MnTzY1a9Y03t7e1gR+Fy9ezLQexxJuBQz/hoOOHTtq+PDh1vDQrl27atiwYXJzc9OJEyf0888/S5KioqI0evRoDRs2TH/99Zd++eUXDRo0SC+99JL++usvVatWTWXLlnW4d6GUMfFYuXLlNHv2bP31118aPXq0ChUqpGeeecZhyJyvr6+qVq1qrWOX1f07gZvJ5s2bVaJECWtyo99//1333HOP/vrrL0nSqlWrdOzYMUnSjBkz9Ndff2nnzp365Zdf9OOPPyohIUGvvvqqpIx72e7cudNaV5K8vLzk5eWls2fPasGCBdq6dau+++47denSRXXq1NGFCxesslWrVlXRokUdhvHZbDbuHY0CITw8XM8884wkKTk5Wa+88ooeeeQRSdJff/2lZcuWyWazKSEhQZ9++qmeeeYZHT9+XBERERo2bJhGjBihpUuXqkqVKrrrrrs0a9YsSX8PYa1QoYLS0tK0YsUK/fnnn5o0aZL8/f3VpEkT+fr66tKlS5Iybvlovx1Wamqqw73ZgVvJli1bNGDAAAUEBOjpp59W6dKltWzZMu3du1fDhg1T8eLFrc+HJouh4H379tXChQsVFxcnSXryySe1cOFC/fzzz4qOjlbPnj1VuHBh677sdhxLuCXka6RHvouKijITJ040R44cMcYYs3z5codvIqdOnWp8fHxMpUqVjM1mM3379jXGZHyD2bhxY2NMRm/b+++/b8LCwozNZjOLFi0yxhgzYsQIExISYg4fPmzVl5iYaCZNmmQqVapkihUrZqpWrWqWL1+eZU84UFDMnDnTGn1hTMatQ4z5e7h2xYoVTc2aNY2Xl5cpW7asWb9+vUlISDBdunSxbn21dOlS06NHD+Pl5WXuvfdec/nyZZOSkmJKlSpl3nvvPYf6tm7dah5//HETFBRkChcubAYPHmxOnDiRl7sMXHdHjhwxH3zwgYmPjzfGZEwIduUt3n744Qfj6elpnWteeOEFk5qaaqZNm2Zat25tjDEmJibGfPzxxyYkJMSULFnSTJ8+3RiTcS7z8vKyesnsPdyjR482DRs2NN7e3qZixYpm3bp1DpOSAQVdWlparnqCT5w4YcqUKWM6depkfvjhB4fXIiMjTb9+/UzNmjXN3Llzs60jNjbWFCpUyBr9cTV6pHErI1TfpuwfKD7//HPTokULY4xx+CBx4sQJk5qaasqXL29sNpvp1q2bdX9bY4wZOnSoqVmzpmnatKkpUqSIadq0qfn8889NTEyMVebkyZPG3d09yz/Af/zxhzl69KjDsqzuaw0UBDVr1jRz5swxxvx9+cTp06eNMRlBwGazmaJFi5r58+c7rOfv72/atGljgoODTXBwsHn66afNr7/+6lDmpZdeMnXq1LHu3W6Xmppqtm/fnqktfGhBQWP/u79mzRpToUKFTK/HxsYaY4y56667jM1mM+3atXMYFj558mRTqFAh06JFC1OkSBFz1113mc8++8zhi6YjR46YkiVLWneguPKL3KNHj5qoqCiHbXI+wq1o06ZNOb5+5dDs2NhY8/bbb5uKFSsaX19f0717d7No0aJsv3SyHy8dO3Y04eHhxhjOR7i9MAbwNmWfRbFo0aLW8Gp3d3dJUvv27fXss88qJSVFBw8e1P33368LFy7ojjvusNZv27atdu3aperVq2vHjh1av369+vfvr8DAQO3atUunT5+Wn5+fypUrp0mTJunixYsO2w8LC1NISIjDrMP2+1oDBcmpU6cUGhqqlJQUSZKnp6f27t0rPz8/rV69Wl26dNGff/6ppKQkeXl5Sfr7kobmzZvrt99+05gxY3To0CF99tlnatSokc6fP6/NmzdLkh599FHt2LFDW7duddiuq6urateubdVnGJKKAsr+d3/Xrl1q2rSpzp8/b73Wq1cvde/eXZI0f/58DR06VPv375eHh4d17qhTp45sNpvCwsK0a9curVu3Tk8//bRKliyp/fv3KyoqSqGhoWrcuLHee+89SRmz3tuFhISoTJkynI9Q4JkshmRv3bpV3bt3t+77vG3btmzXL1y4sCZOnKhmzZrpzjvv1IoVK/R///d/+uOPPzRv3jx16tTJ+qx4NfvxUqFCBR09elQS5yPcXgjVt5GsbvOxY8cOVa1aVRcuXLD+GN911106ePCg9SH+6aef1po1a7R3715rvXvuuUelSpWSp6enfH19reW//fabRo0aZf3RnjBhgp5//nmHQH4lm83GH10UGOaq68CkjGs99+/fr3LlylllwsLCFBQUpBUrVigxMVF33nmnmjdvri+++ELS3x/oH3jgAaWkpKhEiRLy9PSUlHELoC+//FI//PCDLly4oDp16mjs2LGqUqVKtu1yc3MjAKBAufI6f/u/J0+eVGxsrMOXvd27d9euXbt05MgR+fn5qVOnTjp8+LC2bNlinTsqVqyo6tWr6+zZs/Lx8bG2sWHDBo0ePVqHDh2SJL3++uv65JNPsm0T5yMURMYY6/Pd1eeBffv26cUXX1SRIkW0aNEiffnllypevHi2dSUkJGju3Llq2bKltm/frnXr1unJJ59UyZIlc9WW6dOna9asWerXr5/zOwQUUITq24D9j+2VkxPZP8QULVpU27ZtU5EiRaxljz/+uE6cOKGdO3dKklq1aiVvb28tW7ZMKSkpVrl3331X69atU7NmzfTf//5XHTp0UOfOneXm5qawsDBJ0n333acOHTrk2b4CN0J295M2xig4OFinTp1SVFSUJCkpKUmS1Lt3b82ZM0cnT56UJPXr109Lly61Jh0zxujhhx9Wx44d1bNnTz3xxBN68cUXVbduXX3++eeqU6eO1bM9cOBAhy+vgILKfj5ydXWVq6urjDFWkK1cubJ27dol6e8vntq3by8vLy8tWLBAklStWjXVq1dPn3/+uaSML7W8vb314Ycfatu2bWrcuLH++9//qn379urevbsuXLigChUqSJIaNGigzp075+XuAjeM/Qte++STp0+f1pw5c7Rjxw6rzKZNm7Rjxw598803atSokapXr259AZwVb29vrVixQu+++67uvPPOXLfFflz7+flp+vTpeuqpp5zbKaAAI1TfBuxheuXKlZo+fbri4uKsDzH169dXZGSkUlJS5ObmprS0NJUpU0bVq1fX2rVrraDw8MMPa+HChTpx4oS1bu/evfXVV1+pd+/e2rRpkypWrKi1a9fq888/V5kyZaztZ9VDDhQkLi4ucnFxUWxsrCZNmqT169crPj7emnm4QYMGWrJkiaS/h7sNGDBA+/fvV2RkpCSpc+fOcnd3t8rZw/m0adM0ZswYFS1aVIcOHdLw4cO1Z88e3X///Q5DVDmOUFDZv4iV/j4fRUREqGfPnurQoYNOnTolKePSCT8/P+vSh7S0NBUqVEj333+/pk+frrS0NHl7e+vhhx/WggULlJqaKg8PD0kZo6cWLVqkJ554QpGRkapUqZLWrVunqVOnOpyPshoeCxQEV7937eeQP//8U1999ZVCQkL0+uuvq1OnTvrqq68kScHBwXJ1ddWQIUP03HPP6a233tLLL7+sxYsXZ7sdZ0Y92Y/rtm3b6r777rvm9YFbgc1whrllGGMy/TE8dOiQPD099fDDD+vPP/+Ut7e3XFxctGzZMoWGhmrPnj1q3ry5xo8fr4ceekiJiYny8vLS119/rREjRmj8+PFq3bq19u3bp3r16qlfv37y8/PTokWLtGTJEvn7+2fZDmMMt+3BLeP06dMaMmSIvv/+e4WFhSk9PV1eXl6KiIhQkSJF9NZbb2nhwoXatm2bXF1dlZaWJldXV9WsWVP169fX2LFjdccdd6h///5aunSpnn/+eW3atEkhISHWcNT09PRMo0kYiopbzenTp9WnTx9t2bJFPXv2VGhoqNq3b68qVapow4YNGjp0qNq3b69XX33VOiZ+/fVXNWvWTFu3blXt2rV17Ngx3Xnnnerbt698fHwUGRmp119/XU2bNs20Pc5HKOjS0tKyvMY/MTHRuka6WrVqeumll1StWjU98cQTOnr0qD755BM1atRI//vf/7R06VJVrFhRFy9eVFRUlHbu3KklS5aoYcOG+bRXwK2Hs0wBd+XEKlf/wY2Li9Odd96pp556Su3bt9fx48c1Z84ceXp66o033pCU8S3mvffeq4kTJ0r6e7KyBx54QGlpadqxY4eSkpJUuXJljRs3Tvv2/b/27juwxvN9/Pj7ZJCdEDNChBAhihAhHyFmzGqsEKJard1YRVFt7dFWi+oHRe1de8VMxIyIVSP2bEhJKkhCknP//sjvPM0R7Rcf1NHr9Zc855mR5zz39dzXfd3x7Nixg549e1KwYEGj3rOsrCwtRVYaMOJNZph/9u/kTKHbvHkz8fHxHDp0iNjYWGJiYrh37x6DBw8mMzOTGjVqkJqayrp16wC0omXdu3dn27ZtWsr3mDFjaN26NYsWLcLZ2Zk+ffoAaI3+nPezBNTC1OQc25nTunXrGDhwIGlpaWzatIlLly5x7NgxpkyZwoABA7R6ARUrVsTd3Z2oqCgyMjK0e6JGjRqUKVOGVatWAVCsWDHmz5/PjRs3iI6OplOnTvj7+xv15MnzSJiaLVu20LBhQ27dumW03NzcHJ1Ox/nz54mIiNCGGFlZWeHt7c3NmzcpUqQIVatWxcrKioEDB5I3b15WrFgBQP/+/dm2bRuTJ09m3rx57Nq1i6SkpFzHEUL8j15PkXHxop51So/MzEy1du1aFRMTYzQlQseOHZWlpaWKiorSlq1atUrZ2dmpc+fOKaWU2rFjh9LpdGrfvn1Gx2zbtq2qXr26io+PV0plTzEi83cKU1enTh01YMCAv11n+/btSqfTqZSUFKWUUpUqVdKmhlu/fr366KOPlE6nU506dVJ37txRt2/fVmFhYcrX11cp9ed80qmpqUqn06kZM2Zoy3JOBSTE28zwvBg2bJjy9PRUSik1e/ZslSdPHnXlyhW1adMmFRERoY4fP67u3LmjlFJq5cqVytPTUy1cuFAp9eeUPMOGDVN2dnbaHNY59y+EqTE8D5T6s8119epVNWPGjFztvj179qjKlSsrOzs7VaZMGVW7dm1tHugjR46oSpUqqV69emnrp6enq/DwcBUQEKDdL7dv31bJycnq/v37auzYsapOnTpaG1AI8XLI69s32NWrV9HpdFr62tN6AFJTU/niiy9wcHCgX79+dOzYkQ4dOpCQkABkj+M0MzOjaNGi2jbvvfceZmZmbN26FaUU9evXp2XLlnzzzTecPHlS6/Hu3bs3bdu2xdXVFcgeM2NpaYlerzcaIyeEKfnhhx+YOHGi9vPdu3e16sA5l/n6+nL79m0ge6znmDFjcHd3p3v37piZmREdHc2CBQtwdnamUKFCjBgxgpMnT7Jw4ULt/rC2tmbo0KFUqlRJ6y0zjAHNzMyUcdLCJCmljKZxM/jjjz/46quvGDNmDJBdbEwphaOjIy4uLmRkZNCmTRtq1KiBt7c3EyZMYPTo0VSrVo2uXbty7do12rRpQ8uWLfnyyy+5c+eOlrHx0Ucf0b9/f+3+AeR5JEyW4XmQs21XokQJunfvjk6n05Y9ePCAqVOnUrZsWa5fv87ChQspXbo0H3/8MXfv3qVy5cpUq1aNy5cvk5SUBGQ/r3x9fUlNTSUqKoq0tDTmzJlDq1atcHNzY/78+fTu3fu5CpEJIZ7BPxjQi7+xceNGpdPp1KVLl576ueEtZ2RkpCpdurRav369evDggYqIiFBeXl4qNDRUPX78WKWmpipHR0c1c+ZMpdSfb0Q7d+6s6tSpo5KTk5VSSp06dUqFhYWpxo0baz0DQrytMjMz1c2bN5VSStWtW1fVqlVLHTp0SPt83rx5ysvLS6WkpKikpCTVrVs35ezsrDZv3qwePHigrffHH3+os2fPqtTUVKWUUuPHj1dNmzZV06ZNe70XJMQ/JDExUfv3o0eP1NixY5WFhYXavXu3ysjIUEop1bVrVxUaGqrS0tKUUkrduXNHJSYmqvj4eHXp0iUVFxen7Ozs1IYNG5RS2fdnYGCg+vDDD9Xly5df+zUJ8arFxMQof39/FRkZqS3T6/Vq+/btysPDQ8sQPHXqlNLpdCouLk5bLysrSxUqVEiNGjVKKaXUnDlzlK+vr1q9erW2zrlz51RQUJAKCQlRSim1e/du9d1336mTJ0++jssT4l9JeqrfMOr/v/kvWbIk3t7eLFq0CICbN2/y/fff8+OPP5KcnIyZmRlZWVls2rSJggULUrduXWxtbWnUqBH9+vUjPj6ebdu2YW1tTfPmzVmwYAGZmZlaL3T37t3Zs2cPZ86cAaB8+fJMnz6dxMREfvjhB5KTk4Hs4klKatkJE/S0njSDZs2a0alTJwC+//57XF1dCQ8P13oH3NzcuHr1Knnz5iVfvnz4+/uj1+uxsbHR5lx//Pgx06ZNY/ny5dp2AwYMoGvXrvz444/8+uuv2vGkJ02Ysif/fv/44w8mTJiAl5cXgYGBfPjhh5w5c4Y8efIwbNgwPvjgA0aMGMHq1asBKFSoEJcvX8bKyoqsrCycnZ0pWLAgZcuWxd3dnfT0dJydnSlWrBiQPYZ0wYIF3L9/n6lTp5KWlgY8fZ54IUxRwYIFsbOzY9asWfTu3ZvSpUuzb98+qlWrxsWLF7VZIxITEylcuLCWsfHo0SPMzMxo3769Ns2cv78/zs7OREZGavsvU6YMfn5+eHp68vjxYwIDA+nXrx/e3t5GtTuEEC+PBNX/MEMDISYmhsuXL2tBb/Hixalfvz5Llizh8uXL1KlTh6VLlzJp0iRatWrFpUuXMDc359SpU5QoUUKbzxayv2CdnJzYu3cvAF27diUuLo5z584ZrRMUFKR9UWdlZWFvb8+aNWuoXbu20dzWLzK9ghD/NAsLC3Q6HRcuXOD06dNGn4WGhnL8+HFu3brFO++8w4QJE7h48SKff/45qamppKamUr58ee2eCQ4Opk2bNrRq1YoOHTowZMgQvL29WbJkCaVLl8ba2hrITu1u1aoVCxcuJE+ePEZz8gphSnIGr+bm5jx+/JjExESSkpLo378/GzZsYMiQIUyYMIFr167RvXt3rl69CsBXX31FzZo16d+/Pzdu3ECn01GwYEEyMjIwNzfnzp07zJkzh/Hjx9OyZUuaNWtGaGioVrAMsp+BM2fOpG3btlphpifniRfiTffk8ATDMyEhIYEDBw6wbNkyLl++zLRp06hevTpOTk7UqlWL5cuXo5TCxsaGMmXKEBERAfz5LKlevTo3b95Er9dTrlw53Nzc2LVrF1euXNGONXLkSEaOHKkNmTC8lNLpdPJMEuIVkKD6H2T4couLi6N27dpaz9aWLVuwtbWlSZMm/P7773Tp0oVx48Zx6NAhZs6cSUpKijYNT+PGjYmOjubu3bvafr29vblz54423VVAQAAA8+bNMzr+li1btOkUDF+wJUqUoEqVKjg7O7/SaxfiZXnauOT09HSmT5+Op6cntWrVokOHDoSGhmqBQsuWLcnIyNDmjHZzc2PixIls3bqVWbNmYWlpyb179yhYsCBKKRwcHJg+fTpz5swhf/78nD9/nuHDh3P69Gk6duyYq7pw1apVKVu2rFQdFiYlZ2aSIXhNSkpi/vz52lSLjx49onHjxqxZs4YuXbrQokULgoODOXr0KDt37gSyZ5WYNGkSxYoV45tvvmHjxo14eHhos0vkzZuXzMxMIiIiKF26NPv372fcuHFGL4cB8uXLR82aNXFycnp9vwQhXiIzMzOtfXXp0iXtmWBra0uvXr3w9PSke/fuNG3aVHuW9ejRg23btnHhwgUqVKiAp6cny5YtA7JfFgMsX76cWrVq8fDhQwBat27N8OHDjernQO57Wl5KCfEKvf6Mc/E0lSpVUuXLl1f58uXTxs9cvXpVNWrUSJUpU0arcpqRkaHGjRunHBwclFJKpaSkqLx586rJkydrYz3Pnj2rHB0d1ZIlS7T9r1y50mhMjoFhzJsQpuavKuPr9Xq1du1a1aRJEzVt2jSVmJioDh06pIoXL65Gjhyp/c23b99e1a1bV7u3Hj9+rBYsWKCcnJzUiBEjlK2trUpPT9f2a6hjkLNqq1JKahAIk/fk3/SpU6dUdHS06tGjh/Lw8FDh4eFq165dKiMjQ2VkZKisrCyVkJCg+vTpo5ydnZWXl5dydXVVHTp0ULdv39b2c/DgQfXxxx8rnU6nWrdurZT68741jK820Ov1zzzbhRBvoqysrFx/w3FxcSokJEQVLlxY+fj4qJ49e2rjmq9du6aCg4NV27Ztte0NrKystNocMTExqmTJksrX11dNnz5dhYeHq1KlSqmNGze+pisTQjwL6UZ5TdQT48CUUqSkpBAVFcWcOXO4ceMG169fZ9SoUej1eqpUqULhwoX5z3/+Q2JiovaG38LCgoYNG/Lo0SM2btyIvb09n376KdOmTSM0NJQpU6bQrl076tatS7NmzbTjtWnThipVquQ6L8NbTyFMjeGN+65du5g1axZ37tzRlufPn59x48bRp08f8ufPT1JSEhkZGWzYsIGLFy8C8MEHH7B3716t8relpSVhYWGEhIQwfvx4LCwsjFLpDD0MMp+0eJuo/z9HekpKCufOneP999+nfv36HD16lHLlynH9+nXMzc0JDAzEwsICCwsLzMzM+Pbbbzl9+jSLFy/m9OnTjBgxgoiICKNhRn5+fnzxxRe4ublhb29PRkaGdt8aeqVzzictvWjCFD05XO78+fNcv36dc+fO0bdvX2xtbVmxYgVffvkl169f57PPPgPA1dWV6tWr8+uvv3L9+nXMzMy0oQ7Nmzdn9erVJCUl4evry6pVq6hTpw6zZs3i/PnzzJ4926iNB7nbmUKI10uC6tckZ2NB/f+077lz59K+fXu6du1KVFQUTk5O2NjYaOvlzZtXa8hs2LBBW+7h4UFgYCCzZs0CYMiQIcyYMQNHR0eWLl1Ku3btmD9/Pg4ODkbnINP3iLfFtWvXOH36NO3bt6d9+/ZMmjSJ9957Txt3VqNGDSpXrsx3332Hh4cH/fr1o1OnTsTFxREbG6tNJVekSBGt2Ivh/vj888+ZMmUKW7duxdPT86nHlzFpwtSo/z8N1pN0Oh0pKSl4enoSHh6OjY0Nhw8f5pNPPqFGjRrY2tpSunRpdDodGRkZABw/fpwVK1YQEhJCUFAQSinOnTvH48eP2bNnj7ZeRkYGrq6uVKpUCSsrK20KrJzMzc1lmIQwKU8Gr2ZmZqSlpXHhwgXCwsKoWbMme/fupWjRooSEhDBnzhxq165NlSpVsLGxYevWrRw6dAidTkeVKlWwtbVl/fr1QHa7DyA8PJzIyEhtWGDVqlX5+uuvOXr0KJs3b6Zu3bq5zkteSgnxz5In2Uv2ZMPF8OUbFxfHvn37jNbNkycP7u7upKamUqFCBcqVK8f27du5deuWtk7ZsmWpWbMmc+bM0fbn6OhIq1at2LhxI5mZmdjb29OoUSN++uknDh48yPDhw3FwcHjqF78Qpu7IkSO89957hISEULp0aRITE1mxYgVOTk5arQFLS0v27NnDwoULGTp0KEeOHOHrr7/G29ubrVu3kpycjLm5Oc2aNWPy5Mmkp6dr94erqyu9evWiRo0a/+RlCvFS6XQ6LTMpLi6O3377TXtGODg40KhRI7Zt24avry+urq5AdgXhevXqsXz5cuDPZ4iXlxfJycncvHmTO3fusG/fPlJSUihZsiQXL17kwYMHAFqGlV6v156L8hwSpsqQnfRk8Hrr1i08PDwYNGgQDg4OHDt2jLZt22Jvb0/v3r05dOgQgYGBVK5cmd9//51SpUoxffp0ACpWrEilSpWYOXMmaWlp7Nmzh507dxIQEEBAQIB2DxnodDqysrKkercQbyB5ur0khrfvORsuhpQ2vV7PZ599RpcuXbh06ZL2hXzp0iUKFy6sNWw6dOhAXFycNs0VZE+70KxZM/bv38/Dhw+1FLk6derQq1cvkpKStHUNbzgNUwnJW0thap4lm8Ld3Z3q1atz9epVOnToAICPjw8dO3bkzJkzHDx4EICFCxdibm5O+/btsbW15cCBA9y4cUMrAAPQr18/vvjiC6066vOeixCm4tatWwwdOpQiRYrQokULmjVrxqhRo7TGeZs2bciXL5/RvZAvXz5atGihVco3NzcnIyODPHnyEB4ezi+//IKXlxcNGzakVq1aREZGMmfOHPLlywdk91R369aNvXv38v777/8j1y3Es/q/0qcN2UkxMTFs3LiR9PR09Ho9RYoUwcfHh3Xr1hEQEICrq6vW/rp16xZfffUV5cuX5/Dhw+zatYsGDRqwfft2ILuoX+fOnVFK4enpSWBgIPHx8QBERUVRs2bNp56HZEoJ8eaRoPolMbx9v3//PuPHj6dmzZp8/vnnHD9+HDMzM5YuXYqHhwc9evTQ0nkKFCjAuXPntHlv27ZtS2ZmJocPH9b2a25uTo0aNUhKSmLBggXack9PT3744QcKFSqU61wMUwkJYWpy9mL9VQMnf/781KxZE51Op/WIAVSqVIlSpUpp90nt2rWJi4tj5cqVxMTE8PPPPzN58mTs7e21XjNPT0969+791N4z6VETbwu9Xs+KFSs4cuQIs2fP5sSJE3z66acsXLiQRYsWAdC0aVPy58/PuXPnSE9PB7JfEvv4+ODi4sLChQu1fUH2tFnLly9n/vz5pKWl0blzZ23WiJxTydnZ2bFkyRJq1ar1ui9biGdieB7odDqSk5O1l65PWrp0KSVKlCA4OJjhw4fTpEkT1qxZA2RX386fP7/WuWFog8XHxxMREcGAAQMoVaoUaWlpnD59mtu3b2sVvWvXrs3q1atZtWoVer2eXr165To3IcSbT1qNL0lERARz585l7NixbNu2jcDAQDZt2kSHDh2IiIjA2dmZKVOmoNPpGDx4MJDd4HBzc9OmRLCzs6Nhw4YsWbKE0aNH06hRI4YMGULlypXZtGkTnTp1yhVoSAqQMEU5p/kwUEqxfPlyPvnkEy3L40mGbSpXrkzVqlVZsWKF9pm7uzsBAQFERUUBEBYWRqdOnZg0aRL16tXj3r17BAcHc+HCBfz9/Y32KQVehKl6lowKpRR+fn78+OOPNG/eHICHDx9y8+ZNtmzZohUjq1u3LtHR0dp805A93VytWrWYPHky8GdGlIWFBRUqVKBp06aA8bMoZ1G/yZMn07hx45dzsUK8RPfv36dTp06MHz8eyL5PqlWrxk8//aR9bihkeeHCBebOnUv//v25efMme/bsITAwkG7dugEQHByMra0t58+fJzMzU7sHHj9+TMmSJVmzZg1JSUnMnj2bkiVL0rx5c6MOlDJlymhTnOYMpKWYrBCmQ4Lq/5GhQRMbG8tHH31EdHQ0CxcuZPz48URFRVGqVCm+++470tLSKFu2LN9//z1xcXFMnTqVw4cP4+zsjI2NjVbYZejQobRr1461a9fi4uKipcwFBQVhb2+fK9CQFCBhigxVUg0MwxUWLlxISkqKVmH7SYZtypYtS9WqVYmKitLuHWtra/z9/bl165Y2BnTWrFls3LiR+/fvs3z5cq14X85Gi1QdFqbsWbI7zM3N8fPzo3DhwvTt2xcvLy8WLFhA8+bNOX36NHFxcUD2i6grV65w8uRJbVt7e3tat25Njx49tHstJ8Mx5VkkTI29vT0tWrSgZ8+e2ovcd999l40bN1KtWjUcHR3573//C0B0dDTJycn079+f+/fvs2DBAlatWkVKSgqHDh3C0dGRmjVrsmfPHm7cuKEdw9fXl06dOjF9+nTc3NyYOXMm7du355dfftFqgBgY7iUJpIUwTRJU/41n6b0yNMb79u2Lubk5xYsX14q8ODk50aFDB+7evcvOnTuB7AIvU6dOZdu2bWzcuJGEhASjcdhubm4MGTKEI0eOMG/ePMqXL/+Krk6I1+Np6Wu3b9+mY8eO/Pzzz0bLS5UqpdUJ+Lv7z9raGj8/PzIzM9myZYu23MvLi44dO+Lo6Ahk96qVKVNGK+5ieAkmjRZhal40u8OwHsCyZcuIjo5m5cqV7N27l59++okLFy5w5MgRAAICAgDYtGkTKSkp2vaNGzfmyy+/zFU0CaTisDBtISEhFChQgJSUFO7cucO6deuIj4/Hzc2Nq1ev8vXXXwPZFe/t7e1p0KABxYoVY968eXTt2pULFy7g5+cHQKdOnTh79iynT5/W9u/k5MSoUaNYvnw5MTEx/PrrrzRu3FirhJ/znpZ7SQjTJkH1E3LOP/ssX3CGxrqdnR21a9cmKSmJu3fvap/7+PhgaWmpFZ6A7IIwn3zyCTqdDgcHB9LS0oyOZXjjnzMIEMKU5Py7NQSwJ0+e5LfffgOyhzq4uLjwxRdfsH79enQ6HY8ePSI9PZ2CBQuSlZX1l2OaDY2QSpUqYW9vr1XGh+wU8KlTpz413VSm7hGm7EWzOyD7OZWamsovv/xC5cqVtfHN69evx9LSkujoaI4dOwZkj5UOCwvLNSWjDJMQb6PU1FRtjHSBAgXYt28fPj4+FC9eHCcnJ229kiVLcvDgQVxcXIiNjSUmJoZ+/frh5ubG2bNngey5pR88eMDWrVtJS0szOo6fnx9eXl5Gbcwn72khhGmTFibkelNoCGrXr1/P+vXrSU1Nfab9dOvWjf379xtV7y5atCgnTpzI1eMcFBREs2bNMDc3x9ra+qnBswQBwlQZ/m7/+OMPVq9eTb58+WjQoAHvvvsuCxYswNbWlq+//prmzZszbNgwTpw4Qd68ebl+/TpOTk6Ym5v/5QslQyOkdOnSDB48mC+//DLXOlJrQJiyl53doZTCxsYGJycnTp8+zZo1a9ixYwe7d++mY8eOuLu7a1W/33//ferVq5drHzJMQryNbGxsyJ8/P1euXOHYsWMULVqUd999l8jISKO2XLNmzXB1daV48eKULVtWayfGxsbyxRdfaIH10KFDeffdd7G2ts51LMOLMBkqIcTb6V8bsRkaH09OPaXX65kwYQKOjo589tlnjBgxgvfee0+b/uBpjXXDF2RISAhKKcaOHUtMTAyZmZksXbqUokWLainhORUuXFgL2CV4FqYo51v3nFJTUxk4cCAhISEsW7aMGTNmEB0dTcWKFenfv7+Wsj1x4kTc3d0ZOHAgZ8+exdvbm4sXLwJ/nSmi1+vJyMjAzMyMd999Fx8fn1zrSKNFmJpXmd1h2Penn35KuXLl6NOnDyEhIZQpU4ZvvvmGuXPnGr34lQwp8W/Spk0bEhIStMJhnTp14s6dO1qtAb1eT5kyZejevTs///wzTZs2ZerUqbRr147g4GCcnZ2xt7cHsocCNmjQ4KnHkZdSQrzd/rWRnOHLTafTER8fz9SpU7lx4wbHjx9n9erVLFq0iNOnT7Nr1y4qVqyoVXj8q8a6oWehc+fORERE8M033+Dv70/fvn35+OOPjRosZmZmHDt2jC1bthASEvKKr1SIl0uv1xvNy264J+Li4rTlNjY2WFhYcPjwYfLmzUtISAhly5Zl5syZNGzYkHHjxgHg4ODA1KlTsbOz48MPP+S3337D09OTrKysXKmuhvnXzczMtLGd9+/ff52XLsQr8yqzOwz3aLVq1Zg9ezZRUVHcvXuXYcOGYWNjAxgH0vKSV/yb1KtXDycnJ+Li4njw4AElS5akQoUK7N+/n99++027Hz799FNmzpyJt7c3y5cvx87Ojg0bNvDf//6XYsWKafuTTCkh/p3+NU/OnA0GvV5PamoqW7duZcOGDTRr1ozY2FgePnzIxo0bKVOmDC1atCA+Pp4JEyawaNEi7t27x/Xr1/9y/4Yv3bCwMCwsLPjggw8YO3Ys6enpDB482CgYT0xMJDw8HA8PDxo1avTqLlqIlyRnZoeZmZlRo3v8+PE4OjrSpEkTPvroI+3tfpMmTbC3tydfvnxA9n2XJ08eevTowYEDB7hz5w6QPQ568uTJZGRksHTpUhwdHTE3N9caJoYA2zD/+pkzZ+jduzeurq5s2LBBxnkKk/JPZXcYXvxaWFjg6ekJoL2oAgmkxb9X3rx58ff358yZM1ptgY4dO7Jv3z5mzJjB1KlTadKkCQAtWrRg0qRJ7Nu3j7lz51K5cmXAuI0pmVJC/Du9tU/RJxvahgbD7du3tZ7ipk2bMmbMGCZOnMiCBQvw9PRk//79JCQkUKlSJapXr86pU6eYPn06V65coXjx4n95PEORGH9/f5ycnDhw4AANGzbEzMyMjIwMo/MpWLAgUVFRbN26lSJFiryaX4AQL1HOzI4zZ84wcuRINm7cSFxcHNevX2f37t3MmDGDX3/9lbFjxwJQpUoVatSowaVLl0hLS9PuwZIlS+Lk5KRVHM7MzNQC67Jly3L58mXgz3vW3Nycu3fvMnHiRLy8vPD39ychIYFvv/2WNm3aSEqdeOO9CdkdhpTynNkdhhdVQvzbtWjRggcPHmjPpZCQEMLDw1m3bh0LFy6kbt26gHHbMmcxWXkpJYR4a78FnmwoPHjwAF9fX7799lsyMzPx9/fHy8uL27dvU7NmTW09Pz8/IiMjad26NZcuXWLz5s20adMGOzs7rQfuSVlZWUYNmrCwMBYvXsy1a9cAsLS0NDofKfgi3nRP9qQ9fPiQyMhI1q1bR1BQEGvXrmXgwIG0a9cOFxcXfHx8CA4Opm/fvuzatYvLly/j6OhItWrVOHfuHJGRkdq+9u/fj42NDQUKFAD+HD8aEBBAyZIlKVeuHPDnPTxu3DhcXFxYv3494eHhnDlzhtWrVxMSEqIVVxLiTSPZHUKYDj8/P5ydndm+fTuJiYnkzZuX8PBw9u3bx+HDhxk8eDBg3LaUYrJCiJzeim+Dp6XSXb16lX379mmf2dnZUaZMGc6dO8f58+eB7DeTWVlZRtW927dvj62tLQUKFMDZ2VlbvmnTJn744QctBTwzM1Pbt7m5Oebm5iQmJrJ9+3YGDhxISkoK6enpr+yahXiVDD1phl6tDRs2UK9ePf773/+yYsUKjh49yuDBg7l69aqW/gbZU8i5uroye/ZsAAIDA7GwsKBXr158++232n3k5+dH1apVcx03Pj5eC5QzMjIAaNeuHSdOnGDfvn307NlTsjuESZDsDiFMS3BwMA0bNsTW1hbIvnft7OyMhk8IIcRfMdmgOuecmU8bvxIeHs6gQYO4evWqtqx9+/acP3+e48ePA9CjRw9u3rxpNId0uXLl6Nu3L2PGjKFFixaMHj2agIAAevbsiYeHhzZ3p4WFhXbcxYsXU7t2bTw8PJg4cSIFChTg999/p2zZsq/s+oV4le7du0eRIkVYsmQJSimaNWuGu7s7jx490orutWvXDn9/f5YvX65tV6JECRo1asSqVauA7CDb398fGxsbzp8/z+jRo/Hy8uK7774zOt7du3dp3rw55ubm2hy6hmJkHh4e2hhQId5Ukt0hhGnr0aMHffv21YJqg5zDJ4QQ4q+YbFCdM4V64cKFDBgwgO3bt2u9zh9++CG///670TyDTZo0wdramiNHjmgVHsuXL8/atWtJS0vT1hs5ciSzZ8+mYsWKREVFUb9+feLi4hg2bBiOjo4AREdH06pVK/Lnz8+oUaOoU6cOhw4dYseOHdJoEW+0p2V2XLx4kVOnTgHZL6wcHR0pVaoUe/fu5e7du9jb2xMQEEBqaqr2921nZ0f79u1Zt26d1qtsa2tLgwYNuHXrFtHR0Zibm+Pj40ORIkWoU6cOBw8eZM6cObmmmMuTJw+lS5dm7dq1T50iS4g3nWR3CGH69Hq9DI8QQrwQkw2q4+Pj2bBhA3369OHLL7/k1KlThIaG0rdvXwBatmyJmZkZ+/fv1wJmS0tLatasSXR0tJYC3q1bN7Zu3cqNGze0fZubm9O0aVPGjh3Ljh07+OqrryhUqJBWkOLcuXNMnjwZGxsb1q9fz6lTp7QeOCHeRP9XZkfr1q3p168f9+/f115Wde/end27d2uVhbt06UJcXJxRpeEGDRpgZmbGunXrtH2VLVuWcuXKcfDgQQAaNGiApaWl9nNGRkauqX/s7e2ZMmUK3t7eL/nKhXg9JLtDCNNnZmYmwyOEEC/EJIPqxMREevfuTZ8+fUhISODo0aNs3bqVadOmsWTJEubPnw9AUFAQ0dHRXLp0Sdu2fv36nDp1Sps2oWvXrty8eZOYmJhcxzF8sWZlZWnFZgBKly7NihUrWLRoEbVq1ZK0IPHGy5nZsWjRIgYPHsyuXbu0nq2BAwdy7NgxrbgeZA+XSEtL49ChQ2RmZhIYGIiLi4vW+AcoXrw4tWvX1saEQnYRpcjISAYNGgRkB9nu7u5aiqulpaUUdxEmRbI7hBBCCPF3TLJlW6hQIerXr09iYiKNGzfG0dERnU5H+/btCQ0NZfr06QB06tSJ3377jd27dwPZaT1r1qxBr9ezbds2bt++ja2tLbt27SI0NPQvj2dubp6r4qOhR0AIUxAfH8/mzZsZNGgQX331FcePH6dNmzbMmjULyK5Yf//+ffbs2aNN/5M3b15q167N2rVrSUxMBCA0NJRVq1bx8OFDAKysrOjWrRuNGjUymlrE2traqLhLcHAwQ4cOxcXF5R+4eiGen2R3CCGEEOJZ/eNBtWEuzWdlaFgEBATg5uamVT019CS0bduW2NhYUlNTqV69OnXr1mXs2LF8+umnhIaGUqRIEb766itatWqFs7Mzer2ewMBASfcRb63ExER69epFr169SE5O5tixY0RERNCuXTuWLVtmNJ3PypUrSU5O1nqSg4KCOHHiBGfPngWgQ4cORpkeAM2bN2fixIm5ep9zFndp1KgRoaGh5M2b9zVcsRD/O8nuEEIIIcSzem1P6aSkJAYNGsQff/xhtNwwlyag9Yb9HUPDokqVKvj4+HD8+HEePXpk1JNQrFgxfv31VwBGjx7N8OHDiY2Nxdramh49ejBo0CDatm2LhYWFNFTEW69QoUI0aNCApKQk6tWrh52dHYCWnbF+/XoA+vTpQ2xsLIcOHQIgLS2NzZs3k5SUxJYtW0hNTeWdd95h69at+Pv7Gx1DiruIt41kdwghhBDiWb3SiDIlJYWEhAQA0tPTOX36NI8ePTJa59q1awwYMAA3NzeCg4Pp3bu39ub/rxrpSilsbW2pUaMGMTExLFq0SOs9WL9+PSVLlsTb2xu9Xk+RIkXo06cPkZGR/Pzzz7i7uwPkSqUTwhS8aGZHrVq1cHNz09JQASpXrkzZsmXZv38/er2e+vXr4+vrS9++fRk1ahQffPABgYGBjBgxgqpVq2JlZQVk9zo/mdkhxV3E20SyO4QQQgjxPF5pUF22bFlGjx7No0ePcHFxYdOmTRQuXFj7/OLFi4SFhXHp0iUmTpzI4MGDOXz4MJ9//jmpqal/2Ug3BNv16tXDxcWFQYMG8dFHH1GnTh0WLlxIWFgYNjY2uRosWVlZRj0DQrypXnZmh4+PDxUrVuTo0aPaiy0HBwd8fX1JTk5m586dAEybNo3OnTuzbt06rKysaNu2LSNHjqR9+/Zyz4h/DcnuEEIIIcTzeCWtZEOv8QcffEBUVBS///47ADdu3KB169Zcv34dgJIlS9K0aVNWr15N+/btadmyJRUrVmTbtm1s374deHrVVUPjvkKFCvj5+VGtWjUCAgLo2LEjZ86coVu3bk89L3NzcwkMxBvrVWd2+Pr68ttvv7Fv3z7tMz8/P3Q6HUuXLgWgfPnyjBgxgiNHjjBv3jyKFy8OPP0+FMIUSHaHEEIIIV61lx5hKqW0ytg9e/bkzJkzWtqbg4MDa9asYcuWLUB2kDtkyBAuXbpEmzZtcHZ25uDBgxQuXJglS5Zkn+BfBMF6vR6dToefnx8PHz6kQIECdOvWDRcXF+kBECbpVWd21KlTB3t7e3bs2KF95u3tzfvvv0/Hjh1zbZczs+Np1Y+FeJNIdocQQggh/inP/cS/f/8+sbGxwNN7r3Q6HcnJyaSnp1OiRAm8vb1ZvXo1Dx8+xMHBgc6dO7N48WKt5+Dhw4cMHToUKysrNm/ezKlTpwgICCA2NpaEhAR0Ol2uADlnMZf69evj5OSkBep6vV56AIRJeV2ZHVWqVCFfvnxERkZqgYelpSW9e/emfv36ubaTzA7xppPsDiGEEEK8CZ6rxXzv3j26dOmiTQ/ytN6r77//nqCgII4cOQLAxx9/zKZNm7h58yYAnTt3Zv/+/Zw7dw6AEydOsG3bNrp06YKfnx+QHUxcu3aNlStXAn+OPTME0mZmZuTJkwfInquzSJEiXLhwgcTERAkChEl53ZkdgwYNYsmSJTg5OeX6XAhTI9kdQgghhHgTPFcE6ujoyM8//8yECRO0Zfv27dN60gB8fX25f/8+Z86cAeCjjz7izp07HDx4UJsTumjRolpgfv/+faMxaosXL8bCwoKmTZtqwYWh59mQwrdnzx5CQ0MxMzNjyZIlDB8+nG3btlGoUKH/6ZchxMv2pmR2GBr6vr6+lCxZMtd5yMsoYUoku0MIIYQQb5LnevorpXBwcOD06dPs2rWLK1euEBAQYPQW/z//+Q+FCxfm0KFD3L59G2tra+rWrcvKlStJSUnBzMyMkJAQlixZglKK6tWrExQUxIwZM3BxcWHw4MG0a9eOBQsWMHfuXCA78Dh79iyffvoprq6utGvXDhsbG3bs2EHPnj0pVaqU9AqIN86blNlheCF169YtqTcgTJpkdwghhBDiTfNcQbVOp+PRo0cMGzaMESNGULJkSa2XLGdxmMaNG3PixAlOnToFQO/evdm5cyeXL18GoEuXLpw7d46oqCicnJwYM2YMixcvZvny5dy8eZN27drh6Oio7W/37t2UL1+e8+fPM3nyZM6fP8/s2bOpV6+eFiwI8aZ5EzM75s6dK2M9xRtNsjuEEEIIYWqeu6c6b968NGzYkMzMTE6ePEloaCh79uzRetIAWrduTUJCAsePHwcgODiYvHnzEhkZSWZmJhUqVMDT01P7HKBu3brUqVMHyN2Qqlu3Ljdv3mTdunW0a9cOe3v7F75gIV6XNzGzY8iQIfIiSryxJLtDCCGEEKbouXuqAQICArC2tmbVqlW0a9eOu3fvEhcXp61XpkwZLC0tOXDgAFevXgWy5/z86aefSElJASAuLo6+ffsa7d/QcHlaQ6po0aLPc6pC/OPexMwOGSYh3mSS3SGEEEIIU/RC+WvvvPMO5cuXJzo6Gnt7e6337ezZswBs27aNx48fc/jwYQ4ePAjAjz/+yKpVq8ifPz8A1tbWucakyTRY4m0imR1CPB/J7hBCCCGEKXruoNrQm+zv78+9e/eIjIxk4MCBnD59mu7duzNu3Di+++47xo4dS4cOHahevToArq6ulC9f3vjgMiZNvMUks0OI5yPZHUIIIYQwRc8d1RoChVq1alGoUCF++eUXqlevzuzZsylUqBAREREEBwcTFhbGuHHjcHd3N9pOiH8byewQ4tlIdocQQgghTJFO/Q8VWIYMGcL+/fuZNWsWXl5epKenY2VlpX2ulEIpJT3S4l9LKYVOp2PRokV89913TJw4EQcHB7p06ULBggUJCgoiOjqaDh06cPbsWT7++GPc3d217YT4Nzpx4gTh4eHUqVOHfv36UaFCBb744gt69OihrVO6dGmqVq3K119/jZubGy1atODixYvs3buX/Pnzk5aWhrW1tdF+5b4SQgghxKvwQtGuIQ6vXbs2Op2Ow4cPA2BlZYVSSusF0Ol0ElCLfzXJ7BDi+Ul2hxBCCCFMyQtVXzE0TPz8/Lh16xYPHz40+kzGoAlhrGTJkrzzzjvs37+fM2fO4O/vj4+Pj2R2CPEEQ2+yv78/hw4d0up2dOnShe7du2vZHWPHjuXs2bNGdTueDJrlXhJCCCHE6/DCLQ69Xs/69eu5e/cu1apVe5nnJMRbRTI7hHh2kt0hhBBCCFPzP80TcuXKFcaNG0fVqlVf1vkI8daRzA4hnp9kdwghhBDCVLxwUG1mZsaoUaNe5rkI8daSzA4hnp0hBbx27docOHCAw4cP4+XlpWV36PV6zM3N0el00kMthBBCiH+cvN4X4jWRzA4hno1kdwghhBDClPxP6d9CiGcjmR1CPB/J7hBCCCGEqZCeaiGEEG8kye4QQgghhCnQKUNpYiGEEEIIIYQQQjwX6akWQgghhBBCCCFekATVQgghhBBCCCHEC5KgWgghhBBCCCGEeEESVAshhBBCCCGEEC9IgmohhBBCCCGEEOIFSVAthBBCiL80b948nJyc/unT+Ed06dKF9957758+DSGEEG84CaqFEEIIEyVBn7HIyEh0Oh1//PHHc2135coVdDodx44dM1o+ZcoU5s2b99LOTwghxNvJ4p8+ASGEEEKIN5Gjo+M/fQpCCCFMgPRUCyGEEG+BwMBAPvnkE/r160e+fPkoXLgws2bN4uHDh3zwwQfY29tTunRptmzZom1j6NndtGkTlSpVwsrKCj8/P06ePPm3x9qwYQNVq1bFysqKUqVKMXLkSDIzM7XPdTodM2fOpHnz5tjY2ODl5cWBAwe4cOECgYGB2NraUrNmTS5evPjc+509ezbBwcHY2NhQpkwZ1q9fD2T3NtetWxeAfPnyodPp6NKlCwBbt26lVq1aODk54ezsTPPmzY2O7e7uDkCVKlXQ6XQEBgYCuTMBHj16RHh4OIUKFcLKyopatWpx+PDhXL/PnTt3Uq1aNWxsbPD39yc+Pv7/+u8TQghhwiSoFkIIId4S8+fPp0CBAsTExPDJJ5/Qs2dP2rZti7+/P3FxcQQFBREWFkZqaqrRdoMGDeKbb77h8OHDFCpUiHfffZeMjIynHiMiIoJOnToRHh7O6dOnmTlzJvPmzWPs2LFG640ePZrOnTtz7NgxypUrR2hoKN27d2fo0KHExsYC0KdPn+fe78iRI2nXrh0nTpygadOmdOzYkaSkJIoXL84vv/wCQHx8PAkJCUyZMgWAhw8fMmDAAA4fPszOnTsxMzMjODgYvV4PQExMDAA7duwgISGB1atXP/XaBw8ezC+//ML8+fOJi4vDw8ODoKAgkpKSjNYbPnw43377LbGxsVhYWPDhhx/+9X+aEEII06eEEEIIYZLef/991bJlS6WUUnXq1FG1atXSPsvMzFS2trYqLCxMW5aQkKAAdeDAAaWUUrt371aAWrZsmbbO3bt3lbW1tVq+fLlSSqmff/5ZOTo6ap8HBASocePGGZ3HwoULVdGiRbWfAfX5559rPx84cEABas6cOdqypUuXKisrq/9pvw8ePFA6nU5t2bLF6HqSk5P/4jeWLTExUQHq5MmTSimlLl++rAB19OhRo/Vy/n4fPHigLC0t1eLFi7XPHz9+rFxcXNSkSZOMjr9jxw5tnU2bNilApaWl/e05CSGEMF0yploIIYR4S7zzzjvav83NzXF2dqZixYrassKFCwOQmJhotF3NmjW1f+fPnx9PT0/OnDnz1GMcOXKEw4cPG/UgZ2VlkZ6eTmpqKjY2NrnOxXDcJ88lPT2dlJQUHBwcXmi/tra22Nvb57qeJ128eJERI0Zw8OBB7ty5o/VQX7t2DW9v77/dNuc+MjIy+M9//qMts7S0pHr16rl+VznPsWjRokD277xEiRLPdCwhhBCmRYJqIYQQ4i1haWlp9LNOpzNaptPpALSg8u8Y1n2SXq9n5MiRtGrVKtdnVlZWTz0Xw77+7lxeZL+G/fxf19OiRQuKFy/OTz/9hIuLC3q9Hm9vbx4/fvy32+WklDI675zLn1z2or9zIYQQpkmCaiGEEOJf7uDBg1ovanJyMufOnaNcuXJPXdfHx4f4+Hg8PDxe6jm8jP3myZMHyO7hNrh79y5nzpxh5syZBAQEALB3797/c7sneXh4kCdPHvbu3UtoaCgAGRkZxMbG0q9fvxc+ZyGEEKZPgmohhBDiX27UqFE4OztTuHBhhg8fToECBf5y/usvvviC5s2bU7x4cdq2bYuZmRknTpzg5MmTjBkz5oXP4WXs183NDZ1Ox8aNG2natCnW1tbky5cPZ2dnZs2aRdGiRbl27RqfffaZ0XaFChXC2tqarVu34urqipWVVa7ptGxtbenZsyeDBg0if/78lChRgkmTJpGamkrXrl1f+LqFEEKYPqn+LYQQQvzLTZgwgb59+1K1alUSEhJYv3691nv7pKCgIDZu3Mj27dvx9fWlRo0aTJ48GTc3t//pHF7GfosVK8bIkSP57LPPKFy4MH369MHMzIxly5Zx5MgRvL296d+/P19//bXRdhYWFkydOpWZM2fi4uJCy5Ytn7r/CRMm0Lp1a8LCwvDx8eHChQtERESQL1++/+nahRBCmDadMgwSEkIIIcS/SmRkJHXr1iU5ORknJ6d/+nSEEEIIkyQ91UIIIYQQQgghxAuSoFoIIYQQQgghhHhBkv4thBBCCCGEEEK8IOmpFkIIIYQQQgghXpAE1UIIIYQQQgghxAuSoFoIIYQQQgghhHhBElQLIYQQQgghhBAvSIJqIYQQQgghhBDiBUlQLYQQQgghhBBCvCAJqoUQQgghhBBCiBckQbUQQgghhBBCCPGCJKgWQgghhBBCCCFe0P8DTJbzYwMOTLMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " time\n", + "method \n", + "iterations = julia_vec(Z) 0.168675\n", + "julia_numpy_arrays(iterations, Z, c) 0.076183\n", + "julia_numpy_naive(iterations, Z, c) 1.900526\n", + "julia_pure_python(iterations, Z, c) 0.224786\n" + ] } ], "source": [ @@ -582,7 +633,7 @@ "id": "0ebc3685-2848-4d17-9bd2-73713c5333f8", "metadata": {}, "source": [ - "Overall, using `numpy.vectorize()` seems to yield the best performance. It is interesting to note though that for this particular problem, the difference between the pure Python implementation and the best numpy implemenation is not that large." + "Overall, using numpy array operations consistently seems to yield the best performance." ] } ], @@ -602,7 +653,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.13.5" } }, "nbformat": 4, From 9284039940323f43152625866add5e692200e2a9 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Thu, 31 Jul 2025 17:47:49 +0200 Subject: [PATCH 07/14] Add pure Python version of Ising model experiment --- source-code/ising_model_pure_python.ipynb | 2275 +++++++++++++++++++++ 1 file changed, 2275 insertions(+) create mode 100644 source-code/ising_model_pure_python.ipynb diff --git a/source-code/ising_model_pure_python.ipynb b/source-code/ising_model_pure_python.ipynb new file mode 100644 index 0000000..fa5b470 --- /dev/null +++ b/source-code/ising_model_pure_python.ipynb @@ -0,0 +1,2275 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6c7321ac-f110-42a1-9db0-1ada19ea6a58", + "metadata": {}, + "source": [ + "# Requirements" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "d2854c99-8bdf-48d8-aa37-ebd05709e1d3", + "metadata": {}, + "outputs": [], + "source": [ + "import abc\n", + "import collections\n", + "import copy\n", + "import itertools\n", + "import math\n", + "import random\n", + "import statistics" + ] + }, + { + "cell_type": "markdown", + "id": "65063840-c7c9-4bc4-b4b3-ba7a3c7ff1da", + "metadata": {}, + "source": [ + "# Ising system" + ] + }, + { + "cell_type": "markdown", + "id": "083aedf6-aeef-4f05-96de-bd753958ce5f", + "metadata": {}, + "source": [ + "An Ising system is defined as an $N$-dimensional grid of spins. Each spin interacts with its nearest neighboours, and is subject to an external magnetic field. Here, you will only consider a 2-dimensional system that is defined as $s_{kl}$ for $0 \\le k \\lt K$ and $0 \\le l \\lt L$, so $K \\cdot L$ spins in total. Conventially, spins are denoted by $s_i$ for $0 \\le i < N = K \\cdot L$.\n", + "\n", + "The Hamiltonian of the system is given by\n", + "$$\n", + " H = -J \\sum_{\\langle i, j \\rangle} s_i s_j - h \\sum_{j=0}^{N-1} s_j\n", + "$$\n", + "The sum index $\\langle i, j \\rangle$ denotes the sum over pairs nearest neighbor spins, where each pair is counted only once. Periodic boundary conditions are applied, so, e.g., the downward neighbor of a spin on the last row will be the corresponding spin on the upper row, and similar for the other edges.\n", + "\n", + "This Hamiltonian will be used to define the system's dynamics (see later)." + ] + }, + { + "cell_type": "markdown", + "id": "99cd95d7-d7ec-4250-a0c1-792167760962", + "metadata": {}, + "source": [ + "The implementation of a class to represent Ising systems is straightforward. Note that this implementation is *not* efficient." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "13c127ad-a665-4c74-8d14-29370e205438", + "metadata": {}, + "outputs": [], + "source": [ + "class IsingSystem:\n", + " '''Class to represent 2-dimensional Ising systems of `nr_rows` by `nr_cols`\n", + " spins. The interaction between the spins is characterized by `J`, that of\n", + " the spins with an external magnetic field by `h`.\n", + " \n", + " A seed initializes the random number generator for reproducibility.\n", + " '''\n", + "\n", + " def __init__(self, *, nr_rows, nr_cols, J, h):\n", + " '''Initializes an Ising spin system.\n", + " \n", + " Parameters\n", + " ----------\n", + " nr_rows: int\n", + " number of spin rows\n", + " nr_cols: int\n", + " number of spin columns\n", + " J: float\n", + " strength of the interaction between neighboring spins\n", + " h: float\n", + " strength of the interaction between a spin and an external magnetic field\n", + " seed: int\n", + " seed for the random number generator that initializes the spin values\n", + " '''\n", + " self._nr_rows = nr_rows\n", + " self._nr_cols = nr_cols\n", + " self._spins = [random.choice((-1, 1)) for _ in range(nr_rows*nr_cols)]\n", + " self._J = J\n", + " self._h = h\n", + "\n", + " @property\n", + " def nr_rows(self):\n", + " '''Returns the number of spin rows in the system.\n", + " \n", + " Returns\n", + " -------\n", + " int\n", + " number of spin rows in the system\n", + " '''\n", + " return self._nr_rows\n", + "\n", + " @property\n", + " def nr_cols(self):\n", + " '''Returns the number of spin columns in the system.\n", + " \n", + " Returns\n", + " -------\n", + " int\n", + " number of spin columns in the system\n", + " '''\n", + " return self._nr_cols\n", + "\n", + " @property\n", + " def N(self):\n", + " '''Returns the number of spins in the Ising system, i.e., the number of\n", + " rows times the number of columns.\n", + " \n", + " Returns\n", + " -------\n", + " int\n", + " number of spins in the system\n", + " '''\n", + " return self.nr_rows*self.nr_cols\n", + "\n", + " def __getitem__(self, item):\n", + " '''Accessor to get a spin value.\n", + " \n", + " Parameters\n", + " ----------\n", + " i: int\n", + " row index of the spin\n", + " j: int\n", + " column index of the spin\n", + " \n", + " Returns\n", + " -------\n", + " int:\n", + " value of the spin at row i, column j\n", + " '''\n", + " return self._spins[(item[0] % self.nr_rows)*self.nr_rows + item[1] % self.nr_cols]\n", + "\n", + " def __setitem__(self, item, value):\n", + " '''Accessor to set a spin value.\n", + " \n", + " Parameters\n", + " ----------\n", + " i: int\n", + " row index of the spin\n", + " j: int\n", + " column index of the spin\n", + " value: int\n", + " value to set the spin to\n", + " '''\n", + " self._spins[(item[0] % self.nr_rows)*self.nr_rows + item[1] % self.nr_cols] = value\n", + "\n", + " @property\n", + " def J(self):\n", + " '''Returns `J`, the strength of the interaction between neighboring spins.\n", + " \n", + " Returns\n", + " -------\n", + " float\n", + " strength of the interaction between neighboring spins\n", + " '''\n", + " return self._J\n", + "\n", + " @property\n", + " def h(self):\n", + " '''Returns `J`, the strength of the interaction between a spin and an\n", + " external magnetic field\n", + " \n", + " Returns\n", + " -------\n", + " float\n", + " strength of the interaction between a spin and an external magnetic\n", + " field\n", + " '''\n", + " return self._h\n", + "\n", + " def __repr__(self):\n", + " '''Returns a representation of an Ising system that allows to recreate\n", + " its original state for reproducibility.\n", + "\n", + " Returns\n", + " -------\n", + " str\n", + " string representation of the initial state of the Ising system\n", + "\n", + " Note\n", + " ----\n", + " This representation *can not* be used for checkpointing/serialization.\n", + " '''\n", + " return f\"\"\"{{\n", + " 'nr_rows': {self.nr_rows},\n", + " 'nr_cols': {self.nr_cols},\n", + " 'J': {self.J},\n", + " 'h': {self.h},\n", + "}}\"\"\"\n", + "\n", + " def __str__(self):\n", + " '''Returns a human readable representation of an Ising system for debugging\n", + " purposes. Note that -1 values are rendered as 0 to improve visual layout.\n", + "\n", + " Returns\n", + " -------\n", + " str\n", + " string representation of the initial state of the Ising system\n", + "\n", + " Note\n", + " ----\n", + " This representation *should not* be used for checkpointing/serialization as\n", + " -1 values are rendered as 0.\n", + " '''\n", + " return '\\n'.join(\n", + " (''.join('1' if self[i, j] > 0 else '0' for j in range(self.nr_cols))\n", + " for i in range(self.nr_rows))\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "f7803b10-49a7-4ced-a8ae-9f8b8c071f5c", + "metadata": {}, + "source": [ + "Note that since the `__init__` method uses the seed provided as an argument to seed the numpy random number generator, and the representation provides that string, an instance of an Ising system can always be reproduced from its representation, without having to contain the individual spins at all. Incidentally, initializing the system randomly may lead to slow convergence near the critical temperature.\n", + "\n", + "Also note that to make the string representation visually more pleasing, the $-1$ spins are represented as $0$.\n", + "\n", + "The `IsingSystem` class is essentially a wrapper for a numpy array. This allows to later optimize the implementation without having to modify the API." + ] + }, + { + "cell_type": "markdown", + "id": "ebdca70a-4b22-41e1-b977-49cc9f65bf00", + "metadata": {}, + "source": [ + "You can test the class by\n", + "\n", + " * creating an instance,\n", + " * checking its representation,\n", + " * checking its string representation,\n", + " * get the value of a spin,\n", + " * set the value of a sping, and\n", + " * show the string representation again." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2d0b5964-2299-48b5-95f4-d48c4bab2b40", + "metadata": {}, + "outputs": [], + "source": [ + "ising = IsingSystem(nr_rows=10, nr_cols=10, J=1.0, h=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "14f9f55c-3093-4ee5-8a57-46ecde3bfb77", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{\n", + " 'nr_rows': 10,\n", + " 'nr_cols': 10,\n", + " 'J': 1.0,\n", + " 'h': 1.0,\n", + "}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ising" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cdde4b32-7bb7-4dfb-935f-20c47686f778", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0000010010\n", + "1001100010\n", + "1010000101\n", + "1001010001\n", + "1010100101\n", + "1110001101\n", + "1100001000\n", + "1100011100\n", + "0101000100\n", + "0010110101\n" + ] + } + ], + "source": [ + "print(ising)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "0f526f45-a8af-4761-95ce-f2a2097877ed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ising[1, 4]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fc42bca1-c185-4472-90f3-1d6ae81734f3", + "metadata": {}, + "outputs": [], + "source": [ + "ising [1, 4] = -1" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "57e810b0-fe30-4dbb-81de-43612753c1a2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0000010010\n", + "1001000010\n", + "1010000101\n", + "1001010001\n", + "1010100101\n", + "1110001101\n", + "1100001000\n", + "1100011100\n", + "0101000100\n", + "0010110101\n" + ] + } + ], + "source": [ + "print(ising)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a59dfea9-4910-4499-99b4-cb8f751815ee", + "metadata": {}, + "outputs": [], + "source": [ + "del ising" + ] + }, + { + "cell_type": "markdown", + "id": "bae6eb9d-858e-47d4-8aff-322e6d8800b8", + "metadata": {}, + "source": [ + "# Measures" + ] + }, + { + "cell_type": "markdown", + "id": "dc53d9ab-ae0d-4e4b-8e37-1a93b875548d", + "metadata": {}, + "source": [ + "Several measures can be computed to characterize an Ising system, e.g.,\n", + "\n", + " * the magnetization,\n", + " * the energy." + ] + }, + { + "cell_type": "markdown", + "id": "0e990376-7c28-4f1e-b6ed-cba7cce33bef", + "metadata": {}, + "source": [ + "Since many measures share implementation details, it is convenient to define an abstract base class `Measure` that encapsulates the common functionality." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "11cdc23e-a3a7-4312-8eef-9f13c41cb06b", + "metadata": {}, + "outputs": [], + "source": [ + "class AbstractMeasure(abc.ABC):\n", + " '''abstract class that represents a measure of the system such as the\n", + " magnetization or the energy. It is however more general and can be used\n", + " for non-scalar measures as well.\n", + " '''\n", + "\n", + " def __init__(self, name, /, *, headers=None):\n", + " '''Base initialization method\n", + "\n", + " Parameters\n", + " ----------\n", + " name: str\n", + " the measure's name\n", + " headers: list[str] | tuple[str] | None\n", + " the headers for the measure, if `None`, the measure is assumed to be scalar\n", + " and the name is the sole header\n", + " '''\n", + " self._name = name\n", + " if headers is None:\n", + " self._headers = (self._name, )\n", + " else:\n", + " self._headers = tuple(headers)\n", + " self._sep = ' '\n", + " self._values = []\n", + "\n", + " @property\n", + " def name(self):\n", + " '''Returs the measure's name\n", + "\n", + " Returns\n", + " -------\n", + " str\n", + " the measure's name\n", + " '''\n", + " return self._name\n", + "\n", + " @property\n", + " def headers(self):\n", + " '''Returns a string representation of the headers for the measure, separated\n", + " by the `sep` value passed on initialization.\n", + "\n", + " Returns\n", + " -------\n", + " str\n", + " column headers for this measure\n", + " '''\n", + " return self._sep.join(self._headers)\n", + "\n", + " @property\n", + " def sep(self):\n", + " '''Returns the separator for textual output.\n", + " \n", + " Returns\n", + " -------\n", + " str\n", + " separator for output\n", + " '''\n", + "\n", + " @sep.setter\n", + " def sep(self, value):\n", + " '''Sets the separator to use for output.\n", + " \n", + " Parameters\n", + " ----------\n", + " sep: str\n", + " separator to use for output\n", + " '''\n", + " self._sep = value\n", + "\n", + " @property\n", + " def values(self):\n", + " '''Returns the accumulated values of this measure, i.e., all values measured\n", + " during the lifetime of the measure up to the call of this method.\n", + "\n", + " Returns\n", + " -------\n", + " list\n", + " values measured up to now (note: a deep copy is returned)\n", + " '''\n", + " return copy.deepcopy(self._values)\n", + "\n", + " def __len__(self):\n", + " '''Returns the number of values measured so far.\n", + " \n", + " Returns\n", + " -------\n", + " int\n", + " number of values measured so far\n", + " '''\n", + " return len(self._values)\n", + "\n", + " @property\n", + " def current_value(self):\n", + " '''Returns a string representation of the most recently measured value, if non-scalar,\n", + " components are separated by the `sep` value passed during initialization.\n", + "\n", + " Returns\n", + " -------\n", + " str\n", + " string representation of the most recent value that was measured\n", + " '''\n", + " value = self._values[-1]\n", + " if isinstance(value, collections.abc.Iterable):\n", + " return self._sep.join(str(x) for x in value)\n", + " else:\n", + " return str(value)\n", + "\n", + " @abc.abstractmethod\n", + " def compute_value(self, system):\n", + " '''Abstract method that has to be implemented to compute the specific measure\n", + " that is derived from this class.\n", + "\n", + " Parameters\n", + " ----------\n", + " system: Any\n", + " system to compute the measure on\n", + "\n", + " Returns\n", + " -------\n", + " Any\n", + " the value the measure computes\n", + " '''\n", + " ...\n", + "\n", + " def __call__(self, system):\n", + " '''Computes and stores the value of this measure. This makes the objects\n", + " callable, so a measure `A` on a system `s` can be computed as `A(s)`.\n", + "\n", + " Parameters\n", + " ----------\n", + " system: Any\n", + " system to compute the measure on\n", + "\n", + " Returns\n", + " -------\n", + " Any\n", + " the value the measure computes\n", + " '''\n", + " value = self.compute_value(system)\n", + " self._values.append(value)\n", + " return value" + ] + }, + { + "cell_type": "markdown", + "id": "ebaaa595-6532-49c7-acb7-6f5e7ff0dd00", + "metadata": {}, + "source": [ + "## Magnetization" + ] + }, + { + "cell_type": "markdown", + "id": "bd1fea95-e07d-4c47-826d-09697eba57d6", + "metadata": {}, + "source": [ + "The magnetization of the system is defined by\n", + "$$\n", + " M = \\frac{\\sum_{i=0}^{N-1} s_i}{N}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "6ba352a3-0aa9-47a2-8542-4ac156de0d88", + "metadata": {}, + "source": [ + "The concrete class `Magnetization` now simply has to implement the `compute_value` method." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "eed317ec-5aaf-4e88-8c6c-34a1e6898ada", + "metadata": {}, + "outputs": [], + "source": [ + "class Magnetization(AbstractMeasure):\n", + " '''Computes the magnetization of an Ising system.\n", + " '''\n", + "\n", + " def __init__(self):\n", + " '''Initializes the measure.\n", + " '''\n", + " super().__init__('magnetization')\n", + "\n", + " def compute_value(self, ising):\n", + " '''Computes the value of the magnetization for the given Ising system.\n", + "\n", + " Parameters\n", + " ----------\n", + " ising: IsingSystem\n", + " instance of the `IsingSystem` class\n", + "\n", + " Returns\n", + " -------\n", + " float\n", + " magnetization of the given Ising system\n", + " '''\n", + " magnetization = 0.0\n", + " for i, j in itertools.product(range(ising.nr_rows), range(ising.nr_cols)):\n", + " magnetization += ising[i, j]\n", + " return magnetization/ising.N" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "44353a9a-56f2-4653-b6cd-100df9a3fe05", + "metadata": {}, + "source": [ + "To test the measures you define, it is a good idea to use a very small Ising system, so that it is easy to check the results by hand." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "d03ad0a3-7f06-479b-9d55-d1032c25d123", + "metadata": {}, + "outputs": [], + "source": [ + "random.seed(1234)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "5355cecb-a38b-4fc1-b42a-41c7b07784fb", + "metadata": {}, + "outputs": [], + "source": [ + "mini_ising = IsingSystem(nr_rows=4, nr_cols=4, J=0.5, h=2.0)" + ] + }, + { + "cell_type": "markdown", + "id": "676e6fcb-9eae-4b8d-8637-04c9caa08e23", + "metadata": {}, + "source": [ + "The implementation can now be tested using `mini_ising`." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "e8ef6d91-071a-47ef-b392-f296b6cde930", + "metadata": {}, + "outputs": [], + "source": [ + "M = Magnetization()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "3247c2eb-03cc-4d03-949e-f022a30e950c", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.375" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M(mini_ising)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "8d88729d-dbd4-48a5-abf0-f1ddc542886e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000\n", + "0001\n", + "0000\n", + "1110\n" + ] + } + ], + "source": [ + "print(mini_ising)" + ] + }, + { + "cell_type": "markdown", + "id": "63785ebb-8de6-4540-a8bc-967747416720", + "metadata": {}, + "source": [ + "The system has 5 spins up ($s_i = 1$) and 11 spins down ($s_i = -1$) while $N = 16$, so the magnetization should be $(5 - 11)/16 = -3/8 = -0.375$ as computed." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "ab636c0d-cf08-4c7e-b4ee-22b114194b5e", + "metadata": {}, + "outputs": [], + "source": [ + "del mini_ising, M" + ] + }, + { + "cell_type": "markdown", + "id": "d2114304-d63b-49d5-beb1-b6b58dec632e", + "metadata": {}, + "source": [ + "## Energy" + ] + }, + { + "cell_type": "markdown", + "id": "37015ddd-e551-47ea-b6c3-d86bce53239e", + "metadata": {}, + "source": [ + "The energy of the system is defined as\n", + "$$\n", + " E = H/N\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "af1644ad-fcf4-4ff5-a90f-6243bb52298c", + "metadata": {}, + "source": [ + "The implementation of the `Energy` class is very similar." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "fd6dbbce-bc93-491a-8ac3-96a864631368", + "metadata": {}, + "outputs": [], + "source": [ + "class Energy(AbstractMeasure):\n", + " '''Class to compute the energy of an Ising system.\n", + " '''\n", + "\n", + " def __init__(self):\n", + " '''Initializes the measure.\n", + " '''\n", + " super().__init__('energy')\n", + "\n", + " def compute_value(self, ising):\n", + " '''Computes the value of the energy for the given Ising system.\n", + "\n", + " Parameters\n", + " ----------\n", + " ising: IsingSystem\n", + " instance of the `IsingSystem` class\n", + "\n", + " Returns\n", + " -------\n", + " float\n", + " energy of the given Ising system\n", + " '''\n", + " J, h = ising.J, ising.h\n", + " energy = 0.0\n", + " for i, j in itertools.product(range(ising.nr_rows), range(ising.nr_cols)):\n", + " energy -= J*ising[i, j]*(ising[i, j + 1] + ising[i + 1, j]) + h*ising[i, j]\n", + " return energy/ising.N" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b023beb7-4de2-4de3-83a9-d2165705868e", + "metadata": {}, + "source": [ + "To test the measures you define, it is a good idea to use a very small Ising system, so that it is easy to check the results by hand." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "82830bd4-9b42-4b7a-814b-835fa20b803b", + "metadata": {}, + "outputs": [], + "source": [ + "random.seed(1234)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "9abd4c5b-545e-497d-ae24-9a773f078dbf", + "metadata": {}, + "outputs": [], + "source": [ + "mini_ising = IsingSystem(nr_rows=4, nr_cols=4, J=0.5, h=2.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "98473b4d-74a2-4808-83b9-bdc67d436c94", + "metadata": {}, + "outputs": [], + "source": [ + "E = Energy()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "7c3374cd-13f2-4791-bcca-4c89eec59b05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.625" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E(mini_ising)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "37169d46-f5c4-44c6-ac64-df8023310bce", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000\n", + "0001\n", + "0000\n", + "1110\n" + ] + } + ], + "source": [ + "print(mini_ising)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "a59b0432-7a6d-4744-b038-c0e9811c6769", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " 'nr_rows': 4,\n", + " 'nr_cols': 4,\n", + " 'J': 0.5,\n", + " 'h': 2.0,\n", + "}\n" + ] + } + ], + "source": [ + "print(repr(mini_ising))" + ] + }, + { + "cell_type": "markdown", + "id": "7d0bd2aa-dc42-4cc5-a817-7fb24e204d02", + "metadata": {}, + "source": [ + "Again, this checks out, so the implementation could be correct." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "bbec6169-6ffc-4e29-a0fc-b13124343baf", + "metadata": {}, + "outputs": [], + "source": [ + "del mini_ising, E" + ] + }, + { + "cell_type": "markdown", + "id": "775d8ad5-4828-4b77-b76a-2f53e43c3f68", + "metadata": {}, + "source": [ + "# Dynamics" + ] + }, + { + "cell_type": "markdown", + "id": "494ab68d-d58d-45e0-9d83-c8b32aaf5e7a", + "metadata": {}, + "source": [ + "There are several ways to define the dymamics of an Ising system, and you can consider\n", + "\n", + " * Glauber dynamics and\n", + " * Metropolis-Hastings dynamics.\n", + "\n", + "Both are based on the same Hamiltonian, but differ in the selection of spins to update and transition probabilities." + ] + }, + { + "cell_type": "markdown", + "id": "7144767a-5fe9-4710-ba13-380538725239", + "metadata": {}, + "source": [ + "Since both methods share the same Hamiltonian, the energy difference between the original state and a new state where a single spin $i$ is split can be computed by the same function.\n", + "$$\n", + " \\Delta E_{i} = 2 s_i \\left( J \\sum_{\\langle i j \\rangle} s_j + h \\right)\n", + "$$\n", + "Again, the sum index $\\langle i, j \\rangle$ runs over *all* neirest neighbors.\n", + "\n", + "The dynamics in both cases is considered at an absolute temperature $T$." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "6443bdd7-a8e2-4098-9c33-b2b6115bc2bd", + "metadata": {}, + "outputs": [], + "source": [ + "class AbstractStepper(abc.ABC):\n", + " '''Abstract base class for steppers. Derived classes should\n", + " implement the `update` method.\n", + " '''\n", + "\n", + " def __init__(self, temperature):\n", + " '''Initializes the stepper.\n", + " \n", + " Parameters\n", + " ----------\n", + " temperature: float\n", + " temperature to use in the dynamics\n", + " '''\n", + " self._temperature = temperature\n", + "\n", + " @property\n", + " def T(self):\n", + " '''Returns the temperature for the dynamics\n", + "\n", + " Returns\n", + " -------\n", + " float\n", + " temperature of the dynamics\n", + " '''\n", + " return self._temperature\n", + "\n", + " @staticmethod\n", + " def _compute_ΔH(ising, i, j):\n", + " '''Computes the energy difference of the Hamiltonian if a spin\n", + " were flipped (without actually flipping it).\n", + "\n", + " Parameters\n", + " ----------\n", + " ising: IsingSystem\n", + " Ising system to compute the difference for\n", + " i: int\n", + " candiate spin's row index\n", + " j: int\n", + " candiate spin's column index\n", + "\n", + " Returns\n", + " -------\n", + " float\n", + " difference for the Hamiltonian value if the given spin were flipped\n", + " '''\n", + " return 2*ising[i, j]*(\n", + " ising.J*(\n", + " ising[i - 1, j] + ising[i, j + 1] + ising[i + 1, j] + ising[i, j - 1]\n", + " ) + ising.h\n", + " )\n", + "\n", + " @abc.abstractmethod\n", + " def update(self, ising, nr_steps=1):\n", + " '''Abstract method that updates the Ising system according to the dynamics\n", + " specified by the derived classes.\n", + "\n", + " Parameters\n", + " ----------\n", + " ising: IsingSystem\n", + " Ising system to update\n", + " nr_steps: int\n", + " number of update steps to take, defaults to 1\n", + " '''\n", + " ..." + ] + }, + { + "cell_type": "markdown", + "id": "f8c618d6-d282-440e-8bb7-01dea5c1b201", + "metadata": {}, + "source": [ + "## Glauber dynamics" + ] + }, + { + "cell_type": "markdown", + "id": "407cf016-4b2a-4f16-b8ec-a5dc9bcc42c9", + "metadata": {}, + "source": [ + "A step in the Glauber dynamics is defined as follows:\n", + "\n", + " 1. pick a spin at random,\n", + " 2. compute the energy difference $\\Delta E$ when it would be flipped,\n", + " 3. with probability $\\frac{1}{1 + e^{\\Delta E/T}}$, flip the spin." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "2befe8e6-8de1-4c9e-bea5-2e69784098cb", + "metadata": {}, + "outputs": [], + "source": [ + "class GlauberStepper(AbstractStepper):\n", + " '''Class that implements a stepper for the Glauber dynamics.\n", + " '''\n", + "\n", + " def __init__(self, temperature, ising):\n", + " '''Initializes the stepper.\n", + " \n", + " Parameters\n", + " ----------\n", + " temperature: float\n", + " temperature to use in the dynamics\n", + " ising: IsingSystem\n", + " Ising system to update\n", + " '''\n", + " super().__init__(temperature)\n", + "\n", + " def update(self, ising, nr_steps=None):\n", + " '''Updates the Ising system according to the Glauber dynamics.\n", + "\n", + " Parameters\n", + " ----------\n", + " ising: IsingSystem\n", + " Ising system to update\n", + " nr_steps: int\n", + " number of update steps to take, defaults to the number of spins\n", + " in the system\n", + " '''\n", + " if nr_steps is None:\n", + " nr_steps = ising.nr_rows*ising.nr_cols\n", + " for _ in range(nr_steps):\n", + " i = random.randrange(ising.nr_rows)\n", + " j = random.randrange(ising.nr_cols)\n", + " ΔE = self.__class__._compute_ΔH(ising, i, j)\n", + " if random.random() < 1.0/(1.0 + math.exp(ΔE/self._temperature)):\n", + " ising[i, j] = -ising[i, j]" + ] + }, + { + "cell_type": "markdown", + "id": "78ee7902-d235-4c00-8035-ae5fbbbea62c", + "metadata": {}, + "source": [ + "The process is repeated for as many steps to reach convergence, i.e., thermal equilibrium. Note that the default number of steps is $N$, the number of spins. Choosing this default makes it easier to compare the Metropolis-Hastings algorithm that (potentially) updates all spins in a single step." + ] + }, + { + "cell_type": "markdown", + "id": "801d9588-60c0-4ace-9608-de0cf84ede92", + "metadata": {}, + "source": [ + "## Metropolis-Hasting dynamics" + ] + }, + { + "cell_type": "markdown", + "id": "c4253cae-89f6-4ae2-9d8f-727946110bf3", + "metadata": {}, + "source": [ + "A step in the Metropolos-Hastings dynamics is defined as follows:\n", + "\n", + "For each spin (in order):\n", + " 1. compute the energy difference $\\Delta E$ when it would be flipped,\n", + " 1. with probability $e^{-\\Delta E/T}$, flip the spin." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "97327a74-b10d-4892-add6-43dbfb438f76", + "metadata": {}, + "outputs": [], + "source": [ + "class MetropolisHastingsStepper(AbstractStepper):\n", + " '''Class that implements a stepper for the Metropolis-Hastings dynamics.\n", + " '''\n", + "\n", + " def __init__(self, temperature):\n", + " '''Initializes the stepper.\n", + " \n", + " Parameters\n", + " ----------\n", + " temperature: float\n", + " temperature to use in the dynamics\n", + " '''\n", + " super().__init__(temperature)\n", + "\n", + " def update(self, ising, nr_steps=None):\n", + " '''Updates the Ising system according to the Metropolis-Hastings dynamics.\n", + "\n", + " Parameters\n", + " ----------\n", + " ising: IsingSystem\n", + " Ising system to update\n", + " nr_steps: int\n", + " number of update steps to take, defaults to the number of spins\n", + " in the system\n", + " '''\n", + " if nr_steps is None:\n", + " nr_steps = 1\n", + " for _ in range(nr_steps):\n", + " for i, j in itertools.product(range(ising.nr_rows), range(ising.nr_cols)):\n", + " ΔE = self.__class__._compute_ΔH(ising, i, j)\n", + " if ΔE <= 0.0 or random.random() < math.exp(-ΔE/self._temperature):\n", + " ising[i, j] = -ising[i, j]" + ] + }, + { + "cell_type": "markdown", + "id": "39c81c9b-4a90-43e2-b892-95efd7320ca0", + "metadata": {}, + "source": [ + "# Convergence criterion" + ] + }, + { + "cell_type": "markdown", + "id": "bb210695-04df-449f-b4bb-e56af8e3d9fe", + "metadata": {}, + "source": [ + "Many convergence criterions can be considered, for instance, the magnetization doesn't change for the last $n$ steps." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "2ee63b6b-567d-4e93-b3a5-490727f539fa", + "metadata": {}, + "outputs": [], + "source": [ + "class AbstractIsConverged(abc.ABC):\n", + "\n", + " def __init__(self, measure):\n", + " self._measure = measure\n", + "\n", + " @property\n", + " def measure(self):\n", + " '''Returns the measure used in the convergence criterion.\n", + " \n", + " Returns\n", + " -------\n", + " AbstractMeasure\n", + " measure used in this convergence criterion\n", + " \n", + " Note\n", + " ----\n", + " The measure returned is *not* a copy, it is the actual object.\n", + " '''\n", + " return self._measure\n", + "\n", + " @abc.abstractmethod\n", + " def is_converged(self):\n", + " '''Returns `True` if the simulation has converged, `False` otherwise, should\n", + " be implemented by derived classes.\n", + " \n", + " Returns\n", + " -------\n", + " bool\n", + " `True` if the simulation has converged, `False` otherwise\n", + " '''\n", + " ...\n", + "\n", + " def __call__(self):\n", + " '''Returns `True` if the simulation has converged, `False` otherwise.\n", + " \n", + " Returns\n", + " -------\n", + " bool\n", + " `True` if the simulation has converged, `False` otherwise\n", + " '''\n", + " return self.is_converged()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "e33e760c-e55f-4943-b3e7-a6b186588de9", + "metadata": {}, + "outputs": [], + "source": [ + "class IsMeasureStable(AbstractIsConverged):\n", + " '''Convergence criterion that will stop the simulation if the measure is\n", + " constant to within an absolute error for a given number of steps.'''\n", + "\n", + " def __init__(self, *, measure, nr_measurement_steps, delta):\n", + " '''Initialize the criterion.\n", + " \n", + " Parameters\n", + " ----------\n", + " measure: AbstractMeasure\n", + " measure that is used in the simulation\n", + " nr_measurement_steps: int\n", + " number of measurement steps for which the measure should be constant\n", + " delta: float\n", + " absolute error to consider the measure to be constant within\n", + "\n", + " Note\n", + " ----\n", + " This class is only designed to work for scalar measures.\n", + " '''\n", + " self._measure = measure\n", + " self._nr_measurement_steps = nr_measurement_steps\n", + " self._delta = delta\n", + "\n", + " def is_converged(self):\n", + " '''Returns `True` if the measure remained approximately constant, `False`\n", + " otherwise.\n", + "\n", + " Returns\n", + " -------\n", + " bool\n", + " `True` if the measure was approximately constant for the specified number\n", + " of measurement steps, `False` otherwise\n", + " '''\n", + " if len(self._measure) < self._nr_measurement_steps:\n", + " return False\n", + " values = self._measure.values[-self._nr_measurement_steps:]\n", + " mean = statistics.mean(values)\n", + " return max(abs(value - mean) for value in values) < self._delta" + ] + }, + { + "cell_type": "markdown", + "id": "2ba579d4-77c4-4f68-9d94-dcf28c524d03", + "metadata": {}, + "source": [ + "# Simulation" + ] + }, + { + "cell_type": "markdown", + "id": "254de867-be37-4942-881c-94ca26c0c7c7", + "metadata": {}, + "source": [ + "A simulation consists of\n", + "\n", + " 1. initializing an Ising system,\n", + " 2. creating a stepper for the desired dynamics and temperature $T$,\n", + " 3. updating the system for multiple time steps while printing various measures,\n", + " 4. stop when either a convergence criterion is met, or a maximum number of steps is reached." + ] + }, + { + "cell_type": "markdown", + "id": "d5da0e2a-ced6-4440-84bf-34650862ec78", + "metadata": {}, + "source": [ + "Again, it is convenient to create a class to encapsulate the scaffolding." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "990696f0-1970-40ac-b917-82af57398c94", + "metadata": {}, + "outputs": [], + "source": [ + "class Simulation:\n", + " '''Class to run simulations with a given initial Ising system, dynamics\n", + " and stop criterion.\n", + " '''\n", + "\n", + " def __init__(self, *, ising, stepper, is_converged, sep=' '):\n", + " '''Initializes the simulation.\n", + "\n", + " Parameters\n", + " ----------\n", + " ising: IsingSystem\n", + " instance of an initialized Ising system\n", + " stepper: AbstractStepper\n", + " stepper implementation to update the Ising system\n", + " is_converged: Callable\n", + " callable that returns `True` when the dynamics has converged, `False`\n", + " ottherwise\n", + " sep: str\n", + " separator to use for output, defaults to ' '\n", + " '''\n", + " self._ising = ising\n", + " self._stepper = stepper\n", + " self._is_converged = is_converged\n", + " self._sep = sep\n", + " self._measures = []\n", + " self._measure_steps = []\n", + " self.add_measures(self._is_converged.measure)\n", + "\n", + " def add_measures(self, *measures):\n", + " '''Add measures to the simulation.\n", + " \n", + " Parameters\n", + " ----------\n", + " measures: *AbstractMeasure\n", + " one or more measures to add to the simulation\n", + " '''\n", + " # ensure the separator is propagated to each measure, this only\n", + " # matters for non-scalar measures\n", + " for measure in measures:\n", + " measure.sep = self._sep\n", + " self._measures.extend(measures)\n", + "\n", + " def _compute_measures(self, step_nr):\n", + " '''Computes the measures for the simulation.\n", + "\n", + " Parameters\n", + " ----------\n", + " step_nr: int\n", + " current step number\n", + " '''\n", + " self._measure_steps.append(step_nr)\n", + " values = [str(step_nr)]\n", + " for measure in self._measures:\n", + " measure(self._ising)\n", + " values.append(measure.current_value)\n", + " print(self._sep.join(value for value in values))\n", + "\n", + " @property\n", + " def measures(self):\n", + " '''Returns an iterable over the measures of the simulation. The\n", + " actual values are deep copies of the original measures.\n", + "\n", + " Returns\n", + " -------\n", + " Iterable[AbstractMeasure]\n", + " iterable to deep copies of the measures\n", + " '''\n", + " return (copy.deepcopy(measure) for measure in self._measures)\n", + "\n", + " @property\n", + " def measure_steps(self):\n", + " '''Returns the step numbers at which measurements where computed during the run\n", + " of the simulation.\n", + "\n", + " Returns\n", + " -------\n", + " list[int]\n", + " deep copy of the list of steps at which measures were computed\n", + " '''\n", + " return copy.deepcopy(self._measure_steps)\n", + "\n", + " def run(self, *, max_steps, measure_interval=1):\n", + " ''' Simulates to convergence, or a maximum number of steps.\n", + "\n", + " Parameters\n", + " ----------\n", + " max_steps: int\n", + " maximum number of simulation steps to perform\n", + " measure_interval: int\n", + " number of steps between the computation and display of measurements\n", + " '''\n", + " print('step' + self._sep + self._sep.join(measure.headers for measure in self._measures)) \n", + " for step_nr in range(max_steps + 1):\n", + " if step_nr % measure_interval == 0:\n", + " self._compute_measures(step_nr)\n", + " if self._is_converged():\n", + " break\n", + " self._stepper.update(self._ising)\n", + " if step_nr % measure_interval != 0 and step_nr <= max_steps:\n", + " self._compute_measures(step_nr)" + ] + }, + { + "cell_type": "markdown", + "id": "7d74d743-9e96-4f0f-a2fc-1cee6193ea14", + "metadata": {}, + "source": [ + "Note that the measure used in the convergence criterion is added automatically." + ] + }, + { + "cell_type": "markdown", + "id": "f35ecc3d-1ce5-4e0b-bb63-bfa9bfa2c72e", + "metadata": {}, + "source": [ + "# Simulation run" + ] + }, + { + "cell_type": "markdown", + "id": "e01d9e02-50e5-4b1f-8762-46b366a894a8", + "metadata": {}, + "source": [ + "## Glauber dynamics" + ] + }, + { + "cell_type": "markdown", + "id": "28193261-6f84-43fe-80de-671e50164510", + "metadata": {}, + "source": [ + "### Ferromagnetic phase" + ] + }, + { + "cell_type": "markdown", + "id": "f9805d31-8ec3-4038-8ce4-4e6879d66569", + "metadata": {}, + "source": [ + "First, you can run for $T < T_c$, i.e., the system should be ferromagnetic. At equilibrium, the magnetization should be very close to 1 if $h > 0$ or -1 if $h < 0$." + ] + }, + { + "cell_type": "markdown", + "id": "10c5c8ae-4b7f-451f-bc2a-a4ead231fa19", + "metadata": {}, + "source": [ + "First you can set up a system of $100 \\times 100$ spins with $J = 1$ and $h = 1$." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "4ce070bf-8bbf-49a2-a5fb-a412dbdb5124", + "metadata": {}, + "outputs": [], + "source": [ + "random.seed(1234)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "c2fd28f7-f2da-456e-bbac-880cd034ee6c", + "metadata": {}, + "outputs": [], + "source": [ + "ising = IsingSystem(nr_rows=100, nr_cols=100, J=1.0, h=1.0)" + ] + }, + { + "cell_type": "markdown", + "id": "3fa76c6f-8ddc-4f7c-986e-dba2c09dd6ee", + "metadata": {}, + "source": [ + "Since you want to use Glauber dynamics, you can create such a stepper with temperature $T = 2$, below the critical temperature $T \\approx 2.27$." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "c19a4dcc-32f6-4c89-b03e-6ebf71259bf4", + "metadata": {}, + "outputs": [], + "source": [ + "stepper = GlauberStepper(temperature=2.0, ising=ising)" + ] + }, + { + "cell_type": "markdown", + "id": "f94eadc2-1751-4a31-a979-336bd8bff5b3", + "metadata": {}, + "source": [ + "The convergence criterion is that the magnetization remains constant to within $\\delta = 0.001$ for 5 measurement steps." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "5b951fc1-29fb-43d0-81ac-c2df9ce34667", + "metadata": {}, + "outputs": [], + "source": [ + "is_converged = IsMeasureStable(\n", + " measure=Magnetization(),\n", + " nr_measurement_steps=5,\n", + " delta=0.001,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "3e2418ec-48cf-4227-b673-49b813338745", + "metadata": {}, + "source": [ + "Now you can create the simulation based on the Ising system, the dynamics, i.e., the stepper and the convergence criterion. After that, you can add any additional measures you like." + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "e51bb5c2-86b9-435f-9d93-90ee10f0fbb6", + "metadata": {}, + "outputs": [], + "source": [ + "simulation = Simulation(\n", + " ising=ising,\n", + " stepper=stepper,\n", + " is_converged=is_converged\n", + ")\n", + "simulation.add_measures(Energy())" + ] + }, + { + "cell_type": "markdown", + "id": "141da7b5-4f3c-4f10-809a-51f8795f2490", + "metadata": {}, + "source": [ + "Now you can run the simulation for at most 500 steps, computing the measures every 10th step." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "44f889be-034c-43d4-a635-5eee0ac95bb6", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "step magnetization energy\n", + "0 -0.0102 0.005\n", + "10 0.979 -2.9022\n", + "20 0.9848 -2.9248\n", + "30 0.983 -2.9178\n", + "40 0.9826 -2.9154\n", + "50 0.9842 -2.9258\n", + "60 0.9788 -2.8988\n", + "70 0.9842 -2.923\n", + "80 0.9796 -2.9016\n", + "90 0.9828 -2.9216\n", + "100 0.9876 -2.9396\n", + "110 0.9806 -2.9058\n", + "120 0.987 -2.937\n", + "130 0.9848 -2.9264\n", + "140 0.9832 -2.9208\n", + "150 0.9796 -2.9056\n", + "160 0.982 -2.9128\n", + "170 0.984 -2.9224\n", + "180 0.9818 -2.9126\n", + "190 0.982 -2.9144\n", + "200 0.9846 -2.9266\n", + "210 0.9852 -2.9284\n", + "220 0.986 -2.9328\n", + "230 0.9834 -2.9218\n", + "240 0.9828 -2.9172\n", + "250 0.9844 -2.9256\n", + "260 0.9826 -2.9166\n", + "270 0.9874 -2.9394\n", + "280 0.981 -2.911\n", + "290 0.9872 -2.9372\n", + "300 0.983 -2.9166\n", + "310 0.9858 -2.9298\n", + "320 0.9852 -2.93\n", + "330 0.9828 -2.9188\n", + "340 0.9842 -2.9254\n", + "350 0.9858 -2.9298\n", + "360 0.9828 -2.9188\n", + "370 0.982 -2.914\n", + "380 0.986 -2.9312\n", + "390 0.9852 -2.9276\n", + "400 0.981 -2.9078\n", + "410 0.9818 -2.9146\n", + "420 0.9858 -2.931\n", + "430 0.9828 -2.9176\n", + "440 0.983 -2.919\n", + "450 0.9824 -2.9156\n", + "460 0.9826 -2.917\n", + "470 0.9842 -2.9238\n", + "480 0.9876 -2.9408\n", + "490 0.9816 -2.9116\n", + "500 0.9852 -2.9304\n", + "CPU times: user 7.69 s, sys: 23.4 ms, total: 7.72 s\n", + "Wall time: 7.7 s\n" + ] + } + ], + "source": [ + "%%time\n", + "simulation.run(max_steps=500, measure_interval=10)" + ] + }, + { + "cell_type": "markdown", + "id": "3cc8bedd-26e5-4483-81bb-dacd50b453d9", + "metadata": {}, + "source": [ + "Since the temperature $T < T_{\\mathrm{crit.}}$, the system is in the ferromagnetic phase." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "e2ded424-301f-4743-904f-64af37119b25", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, + { + "cell_type": "markdown", + "id": "38958218-7614-45fc-9360-ba746040e2f1", + "metadata": {}, + "source": [ + "### Paramagnetic phase" + ] + }, + { + "cell_type": "markdown", + "id": "3f1decb3-32ed-4791-aac1-1f9ccbfc22a3", + "metadata": {}, + "source": [ + "Next, you can do a run for $T > Tc$, i.e., the system should be paramagnetic. At equilibrium, the magnetization should be significantly different from 1 or -1. For $N \\to \\infty$, it should be zero." + ] + }, + { + "cell_type": "markdown", + "id": "311c888a-7f39-448b-abb7-6ef4283cf976", + "metadata": {}, + "source": [ + "First you can set up a system of $100 \\times 100$ spins with $J = 1$ and $h = 1$." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "e20922e8-41e8-4a5c-8c7d-5e62f6527f91", + "metadata": {}, + "outputs": [], + "source": [ + "ising = IsingSystem(nr_rows=100, nr_cols=100, J=1.0, h=1.0, seed=1234)" + ] + }, + { + "cell_type": "markdown", + "id": "b06bb109-facc-4a1a-9054-e99e938ac6d9", + "metadata": {}, + "source": [ + "Since you want to use Glauber dynamics, you can create such a stepper with temperature $T = 2.5$, above the critical temperature $T_c \\approx 2.27$." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "98db23eb-3305-4934-9138-955eb29891a7", + "metadata": {}, + "outputs": [], + "source": [ + "stepper = GlauberStepper(temperature=5.0, ising=ising)" + ] + }, + { + "cell_type": "markdown", + "id": "0f1f5f32-7a51-4b5c-bb02-e218eb8a7ce3", + "metadata": {}, + "source": [ + "The convergence criterion is that the magnetization remains constant to within $\\delta = 0.001$ for 5 measurement steps." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "346f89ef-4f88-4509-a0a9-d7b38b7e0f40", + "metadata": {}, + "outputs": [], + "source": [ + "is_converged = IsMeasureStable(\n", + " measure=Magnetization(),\n", + " nr_measurement_steps=5,\n", + " delta=0.001,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "04b65011-73dd-4154-8078-928dbb24a65e", + "metadata": {}, + "source": [ + "Now you can create the simulation based on the Ising system, the dynamics, i.e., the stepper and the convergence criterion. After that, you can add any additional measures you like." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "3d67235c-f72c-4789-a273-667a81c90df9", + "metadata": {}, + "outputs": [], + "source": [ + "simulation = Simulation(\n", + " ising=ising,\n", + " stepper=stepper,\n", + " is_converged=is_converged\n", + ")\n", + "simulation.add_measures(Energy())" + ] + }, + { + "cell_type": "markdown", + "id": "28ac8e9a-2bc9-4a6d-a031-d9dd5a6848fb", + "metadata": {}, + "source": [ + "Now you can run the simulation for at most 500 steps, computing the measures every 10th step." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "2c1ed2d8-3394-4e02-861a-6f45f6d79a58", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "step magnetization energy\n", + "0 0.0114 -0.0226\n", + "10 0.4522 -1.1514\n", + "20 0.4912 -1.2504\n", + "30 0.498 -1.2644\n", + "40 0.4802 -1.2138\n", + "50 0.4652 -1.176\n", + "60 0.477 -1.2018\n", + "70 0.5068 -1.2776\n", + "80 0.4832 -1.2224\n", + "90 0.5016 -1.2632\n", + "100 0.4974 -1.2606\n", + "110 0.461 -1.165\n", + "120 0.4896 -1.2476\n", + "130 0.47 -1.1792\n", + "140 0.4956 -1.2296\n", + "150 0.466 -1.1608\n", + "160 0.4698 -1.1938\n", + "170 0.4928 -1.2372\n", + "180 0.455 -1.1758\n", + "190 0.4832 -1.2308\n", + "200 0.5038 -1.2398\n", + "210 0.495 -1.265\n", + "220 0.488 -1.2384\n", + "230 0.4796 -1.2148\n", + "240 0.4776 -1.2092\n", + "250 0.4972 -1.2396\n", + "260 0.4902 -1.2298\n", + "270 0.4844 -1.2164\n", + "280 0.4554 -1.1242\n", + "290 0.506 -1.2528\n", + "300 0.4846 -1.2126\n", + "310 0.4818 -1.2338\n", + "320 0.486 -1.2384\n", + "330 0.4834 -1.2294\n", + "340 0.4836 -1.2128\n", + "350 0.512 -1.3024\n", + "360 0.4952 -1.2532\n", + "370 0.5026 -1.2594\n", + "380 0.4836 -1.2316\n", + "390 0.4728 -1.1828\n", + "400 0.4996 -1.2492\n", + "410 0.4716 -1.1828\n", + "420 0.4908 -1.2176\n", + "430 0.4834 -1.2178\n", + "440 0.4848 -1.2272\n", + "450 0.477 -1.2174\n", + "460 0.4902 -1.2054\n", + "470 0.4826 -1.203\n", + "480 0.4838 -1.195\n", + "490 0.4704 -1.1832\n", + "500 0.4944 -1.2352\n", + "500 0.4884 -1.2204\n" + ] + } + ], + "source": [ + "simulation.run(max_steps=500, measure_interval=10)" + ] + }, + { + "cell_type": "markdown", + "id": "be9a1115-ca45-4694-9dea-6b94fffd2b4f", + "metadata": {}, + "source": [ + "Note that the for this temperature, variations in the magnetization are higher, and don't converge to within $\\delta = 0.001$. However, it is clear that $M \\approx 0.48 < 1$." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "67de5ce1-de2c-42f7-aea6-502a35298591", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, + { + "cell_type": "markdown", + "id": "a7f7f7c8-4c98-471a-9207-ce0b7f05426d", + "metadata": {}, + "source": [ + "## Metropolis-Hastings dynamics" + ] + }, + { + "cell_type": "markdown", + "id": "d1fac941-cd0c-4248-af9d-385c025838d8", + "metadata": {}, + "source": [ + "You can redo the same simulation, but now with the Metropolis-Hastings dynamics." + ] + }, + { + "cell_type": "markdown", + "id": "8a8c2813-540b-4531-be6d-dcc9f16cdea3", + "metadata": {}, + "source": [ + "### Ferromagnetic phase" + ] + }, + { + "cell_type": "markdown", + "id": "7a01dbd3-56f2-45ce-93a2-2d681190d8ab", + "metadata": {}, + "source": [ + "First, you can run for $T < T_c$, i.e., the system should be ferromagnetic. At equilibrium, the magnetization should be very close to 1 if $h > 0$ or -1 if $h < 0$." + ] + }, + { + "cell_type": "markdown", + "id": "1b0932eb-b4f0-4769-b652-f8d632528e92", + "metadata": {}, + "source": [ + "First you can set up a system of $100 \\times 100$ spins with $J = 1$ and $h = 1$." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "af5d8dac-6735-4b78-ac81-dd723064757b", + "metadata": {}, + "outputs": [], + "source": [ + "ising = IsingSystem(nr_rows=100, nr_cols=100, J=1.0, h=1.0, seed=1234)" + ] + }, + { + "cell_type": "markdown", + "id": "90649c9b-928a-4bac-8be4-ebeebd6eb4c2", + "metadata": {}, + "source": [ + "Since you want to use Glauber dynamics, you can create such a stepper with temperature $T = 2$, below the critical temperature $T \\approx 2.27$." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "9428a125-4892-43c3-bd53-c05f4d46980e", + "metadata": {}, + "outputs": [], + "source": [ + "stepper = MetropolisHastingsStepper(temperature=2.0)" + ] + }, + { + "cell_type": "markdown", + "id": "df08b52e-e916-42ae-8597-797ac211e5fd", + "metadata": {}, + "source": [ + "The convergence criterion is that the magnetization remains constant to within $\\delta = 0.001$ for 5 measurement steps." + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "fe7b79a1-152d-48e2-8991-072f54b9674f", + "metadata": {}, + "outputs": [], + "source": [ + "is_converged = IsMeasureStable(\n", + " measure=Magnetization(),\n", + " nr_measurement_steps=5,\n", + " delta=0.001,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a353f77d-0f47-4c21-922c-f8c9ba2a9719", + "metadata": {}, + "source": [ + "Now you can create the simulation based on the Ising system, the dynamics, i.e., the stepper and the convergence criterion. After that, you can add any additional measures you like." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "30d1b553-35cc-4ac3-aa56-f95a8e174296", + "metadata": {}, + "outputs": [], + "source": [ + "simulation = Simulation(\n", + " ising=ising,\n", + " stepper=stepper,\n", + " is_converged=is_converged\n", + ")\n", + "simulation.add_measures(Energy())" + ] + }, + { + "cell_type": "markdown", + "id": "12b60aa1-abca-4ffa-a488-2ccaf4fb6563", + "metadata": {}, + "source": [ + "Now you can run the simulation for at most 500 steps, computing the measures every 10th step." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "efaaf211-451d-41fd-8639-0e6a985464f4", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "step magnetization energy\n", + "0 0.0114 -0.0226\n", + "10 0.9816 -2.9124\n", + "20 0.9832 -2.9196\n", + "30 0.9814 -2.9126\n", + "40 0.9836 -2.9212\n", + "50 0.9828 -2.9172\n", + "60 0.9806 -2.9078\n", + "70 0.985 -2.9282\n", + "80 0.9824 -2.916\n", + "90 0.9868 -2.936\n", + "100 0.9836 -2.922\n", + "110 0.9846 -2.9246\n", + "120 0.9844 -2.9256\n", + "130 0.9836 -2.9196\n", + "140 0.9816 -2.9112\n", + "150 0.9844 -2.9264\n", + "160 0.9824 -2.9156\n", + "170 0.98 -2.9072\n", + "180 0.9832 -2.9204\n", + "190 0.9854 -2.9274\n", + "200 0.9834 -2.9198\n", + "210 0.9852 -2.9276\n", + "220 0.9864 -2.936\n", + "230 0.9856 -2.9292\n", + "240 0.9834 -2.9206\n", + "250 0.983 -2.9206\n", + "260 0.9824 -2.9136\n", + "270 0.982 -2.9136\n", + "280 0.9858 -2.9306\n", + "290 0.9836 -2.922\n", + "300 0.9836 -2.9216\n", + "310 0.9826 -2.919\n", + "320 0.9822 -2.9158\n", + "330 0.9802 -2.9042\n", + "340 0.9816 -2.9124\n", + "350 0.9792 -2.8992\n", + "360 0.9798 -2.9042\n", + "370 0.9838 -2.9222\n", + "380 0.986 -2.9332\n", + "390 0.9772 -2.8936\n", + "400 0.984 -2.926\n", + "410 0.985 -2.931\n", + "420 0.9844 -2.9244\n", + "430 0.9832 -2.9204\n", + "440 0.9828 -2.9176\n", + "450 0.9856 -2.932\n", + "460 0.9794 -2.9018\n", + "470 0.986 -2.934\n", + "480 0.9902 -2.951\n", + "490 0.9832 -2.9212\n", + "500 0.982 -2.9148\n", + "500 0.9812 -2.9112\n" + ] + } + ], + "source": [ + "simulation.run(max_steps=500, measure_interval=10)" + ] + }, + { + "cell_type": "markdown", + "id": "bc98f07e-8594-47dd-a5c3-04380904d2be", + "metadata": {}, + "source": [ + "The Metropolis-Hastings dynamics shows more variation between measurement steps, and doesn't converge to within $\\delta = 0.001$ withing 500 steps. It is however also clear that the time taken by an update by the stpper is less than for Glauber dynamics.\n", + "\n", + "Although the failure to converge seems to be a drawback at first glance, it will also help to escape local minima, so for large spin systems, the accuracy should be better when compared to analytic results." + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "f4484bb4-cef0-4ccb-bbae-873bdf22299d", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, + { + "cell_type": "markdown", + "id": "de8c57ba-4efb-4c4f-b247-2b1d1c45616a", + "metadata": {}, + "source": [ + "### Paramagnetic phase" + ] + }, + { + "cell_type": "markdown", + "id": "30d34473-1846-4023-b96c-c12427e5c6fc", + "metadata": {}, + "source": [ + "Next, you can do a run for $T > Tc$, i.e., the system should be paramagnetic. At equilibrium, the magnetization should be significantly different from 1 or -1. For $N \\to \\infty$, it should be zero." + ] + }, + { + "cell_type": "markdown", + "id": "ba6b7be5-5c6a-4bce-b010-79a3a7641d4d", + "metadata": {}, + "source": [ + "First you can set up a system of $100 \\times 100$ spins with $J = 1$ and $h = 1$." + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "f6e66add-ce3c-4fcf-9d3e-ad92a5ea4167", + "metadata": {}, + "outputs": [], + "source": [ + "ising = IsingSystem(nr_rows=100, nr_cols=100, J=1.0, h=1.0, seed=1234)" + ] + }, + { + "cell_type": "markdown", + "id": "64442e72-afab-4812-8cda-8c615dfba853", + "metadata": {}, + "source": [ + "Since you want to use Glauber dynamics, you can create such a stepper with temperature $T = 2.5$, above the critical temperature $T_c \\approx 2.27$." + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "93e0662e-e212-477d-a89a-ab6077f4facf", + "metadata": {}, + "outputs": [], + "source": [ + "stepper = MetropolisHastingsStepper(temperature=5.0)" + ] + }, + { + "cell_type": "markdown", + "id": "1e280806-68d6-4b78-8c31-2c0046a174c8", + "metadata": {}, + "source": [ + "The convergence criterion is that the magnetization remains constant to within $\\delta = 0.001$ for 5 measurement steps." + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "89e28e3e-13b3-44db-a15e-70e241fa2bd0", + "metadata": {}, + "outputs": [], + "source": [ + "is_converged = IsMeasureStable(\n", + " measure=Magnetization(),\n", + " nr_measurement_steps=5,\n", + " delta=0.001,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "ac897f44-d9fc-48dc-8e74-9254ac31c40c", + "metadata": {}, + "source": [ + "Now you can create the simulation based on the Ising system, the dynamics, i.e., the stepper and the convergence criterion. After that, you can add any additional measures you like." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "f115d837-8a23-48dc-a3e3-7d27a805f3b5", + "metadata": {}, + "outputs": [], + "source": [ + "simulation = Simulation(\n", + " ising=ising,\n", + " stepper=stepper,\n", + " is_converged=is_converged\n", + ")\n", + "simulation.add_measures(Energy())" + ] + }, + { + "cell_type": "markdown", + "id": "84eb9f5e-9514-40ef-adbd-7f14248f711c", + "metadata": {}, + "source": [ + "Now you can run the simulation for at most 500 steps, computing the measures every 10th step." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "e9761af8-0618-4310-98c7-a76d5f8e5e95", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "step magnetization energy\n", + "0 0.0114 -0.0226\n", + "10 0.4748 -1.2004\n", + "20 0.4716 -1.1752\n", + "30 0.5022 -1.2562\n", + "40 0.4822 -1.2146\n", + "50 0.4974 -1.2462\n", + "60 0.4876 -1.212\n", + "70 0.5278 -1.3098\n", + "80 0.4948 -1.244\n", + "90 0.4898 -1.2286\n", + "100 0.4778 -1.2094\n", + "110 0.4696 -1.19\n", + "120 0.504 -1.2684\n", + "130 0.4806 -1.205\n", + "140 0.504 -1.2808\n", + "150 0.4584 -1.1508\n", + "160 0.4766 -1.1962\n", + "170 0.4868 -1.2012\n", + "180 0.493 -1.2478\n", + "190 0.484 -1.2268\n", + "200 0.5026 -1.2538\n", + "210 0.4886 -1.2398\n", + "220 0.4714 -1.1934\n", + "230 0.4968 -1.2484\n", + "240 0.4764 -1.196\n", + "250 0.4882 -1.2442\n", + "260 0.5022 -1.273\n", + "270 0.5042 -1.2662\n", + "280 0.4776 -1.204\n", + "290 0.491 -1.2282\n", + "300 0.495 -1.2414\n", + "310 0.461 -1.1766\n", + "320 0.48 -1.202\n", + "330 0.4936 -1.242\n", + "340 0.4748 -1.2048\n", + "350 0.4814 -1.211\n", + "360 0.4996 -1.2456\n", + "370 0.4872 -1.2324\n", + "380 0.4724 -1.1708\n", + "390 0.4836 -1.2388\n", + "400 0.4932 -1.2312\n", + "410 0.496 -1.232\n", + "420 0.5018 -1.2618\n", + "430 0.4864 -1.2536\n", + "440 0.4672 -1.1836\n", + "450 0.482 -1.2232\n", + "460 0.479 -1.229\n", + "470 0.486 -1.2268\n", + "480 0.4764 -1.2048\n", + "490 0.4796 -1.2244\n", + "500 0.474 -1.194\n", + "500 0.4748 -1.2008\n" + ] + } + ], + "source": [ + "simulation.run(max_steps=500, measure_interval=10)" + ] + }, + { + "cell_type": "markdown", + "id": "4384eda3-dc17-4fce-9c7c-a762a42672ee", + "metadata": {}, + "source": [ + "As for the ferromagnetic phase, the variation is higher for the Metropolis-Hastings dynamics than for the Glauber dynamics." + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "0ead386d-faa0-4a22-b40a-21990664eebe", + "metadata": {}, + "outputs": [], + "source": [ + "del ising, stepper, is_converged, simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "323782dd-e9d0-48d1-a0b4-8ba778e1e3ad", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From b66717dface36a7badf6d0503ebb408ced562fef Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Thu, 31 Jul 2025 17:50:35 +0200 Subject: [PATCH 08/14] Add nbdime Python package --- environment.yml | 1 + scientific_python_linux64_conda_specs.txt | 6 ++++++ 2 files changed, 7 insertions(+) diff --git a/environment.yml b/environment.yml index 47dc742..272c7d2 100644 --- a/environment.yml +++ b/environment.yml @@ -20,5 +20,6 @@ dependencies: - xarray - networkx - nbconvert + - nbdime - seaborn prefix: /home/gjb/mambaforge/envs/scientific_python diff --git a/scientific_python_linux64_conda_specs.txt b/scientific_python_linux64_conda_specs.txt index decf487..14c4bc0 100644 --- a/scientific_python_linux64_conda_specs.txt +++ b/scientific_python_linux64_conda_specs.txt @@ -188,6 +188,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py313h46c70d https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.5-py313hd8ed1ab_102.conda https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda @@ -246,6 +247,7 @@ https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.26.0-py313h4b2b08d_0.c https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_1.conda https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda +https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.2-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.7-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/tbb-2022.2.0-hb60516a_0.conda @@ -273,6 +275,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py313hfab6e84_0.cond https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.3-py313h7037e92_0.conda https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.59.0-py313h3dea7bd_0.conda +https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.12-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/h11-0.16.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2025.3.30-py313h8b391ee_2.conda @@ -310,6 +313,7 @@ https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.13.4-pyha770c72_0.conda https://conda.anaconda.org/conda-forge/noarch/bleach-with-css-6.2.0-h82add2a_4.conda https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_1.conda +https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.45-pyhff2d567_0.conda https://conda.anaconda.org/conda-forge/linux-64/h5py-3.14.0-nompi_py313hfaf8fd4_100.conda https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-11.3.3-hbb57e21_0.conda https://conda.anaconda.org/conda-forge/noarch/ipython-9.4.0-pyhfa0c392_0.conda @@ -368,8 +372,10 @@ https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.16.0-pyhe01879c_0 https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.6-hed9df3c_0.conda https://conda.anaconda.org/conda-forge/linux-64/py-opencv-4.12.0-qt6_py313hc0a75a6_601.conda https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.6-pyhe01879c_0.conda +https://conda.anaconda.org/conda-forge/noarch/jupyter-server-mathjax-0.2.6-pyhbbac1ac_2.conda https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.6-hb482800_0.conda https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/linux-64/opencv-4.12.0-qt6_py313h6537eeb_601.conda https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.4.5-pyhd8ed1ab_0.conda +https://conda.anaconda.org/conda-forge/noarch/nbdime-4.0.2-pyhd8ed1ab_1.conda From 79071606139864e5ade71574d9d31cd2b6e5a070 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Wed, 15 Oct 2025 08:59:30 +0200 Subject: [PATCH 09/14] Add material requirements --- docs/README.md | 8 ++++++++ docs/_config.yml | 3 ++- 2 files changed, 10 insertions(+), 1 deletion(-) diff --git a/docs/README.md b/docs/README.md index ee50c5c..9011993 100644 --- a/docs/README.md +++ b/docs/README.md @@ -56,6 +56,14 @@ from scratch. If you plan to do Python programming in a Linux or HPC environment you should be familiar with these as well. +For following along hands-on, you need +* laptop or desktop with internet access. +* a system set up so you can connect to an HPC system, an account on an HPC + system (e.g., VSC, CECI, ...), compute credits if that is required to run + jobs on the HPC system if you want to use an HPC system; +* a Python environment that can run Jupyter Lab if you want to use your own system; +* access to Google Colaboratory if you prefer not to install software. + ## Level diff --git a/docs/_config.yml b/docs/_config.yml index c741881..2933e3c 100644 --- a/docs/_config.yml +++ b/docs/_config.yml @@ -1 +1,2 @@ -theme: jekyll-theme-slate \ No newline at end of file +title: "Scientific Python" +theme: jekyll-theme-slate From 608dbe43264075f2dcbf8d0a20fb4d5e626ea1e9 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Mon, 3 Nov 2025 20:51:31 +0100 Subject: [PATCH 10/14] Fix VSC logo --- scientific_python.pptx | Bin 2457964 -> 2493986 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/scientific_python.pptx b/scientific_python.pptx index abaf665d33ec103962d867daf4b98931396371e1..1881a1125d49b6e6bfff5db83830b0a516f8ca99 100644 GIT binary patch delta 51557 zcmY&f1yoeu^Iup>y1S*MyBkRb6p@rr8l*#dX{1Y8kWT4_r5iySq@)Gu?uOq(_@4jy zd(J)Qz4y5@cka}kxhva#@o<^R32%;1f?4gK%h4CI4%J~2p7An^~XjHUE3Lc zd~d3EczL%QSDFyWLCjuUe{Hu@N)1ONHrMF5^Y`nGMv6Ez3Y3sFt+WBnT| zT`&GNBqi0So9UI?JbR-Nl8*7(u&&6G9ohPte!4atcZ_)BX`Bk2cKJsoF(q#{rg5Gc zAtKM8r2)ThtsLoJ>A@Rde#l1DAunB6k4iMC;lkVVJ>TJ^uiSw|n4h3b4WD+x9e%pp z+Tg2yn^zXr^}af9Uc$a6k5D!FGzhKH18S*0QQK|T4maprOd9GZR?w#ZlcQlN?s*Yd zl(abzCh?wYD@IdcM=+213+MD@mdnCR%+q7feCz42B3?tNa+M0E5$Z3ht@1AZTpF?B z7&^!}MXRlPzZ1@b6a@-nXR1JDF>Z@#Oozu+-ctN>Vv-5vZ(Tpc{NxVi7^=j>*k+w% zF+o9XL6&l8sz7L?pYiXxlN%GtkTqoG%ZOXjm(>t1vRhcsjlLRrb{HWggpY&}1CfQ;lLK;=^dq%5fGS``Kqc!-> z4{I@J&sOjVsFm7X{lIZE<$J1JspOje2*HBr(n%{^ky$-R{Ze>DYAL@;WZmIEj!KiH z{#;dK_HYu+gla=4m5l}}<-{U6oETA_^Y|0BN=fr+PomGqc{XdLXHI?`YGEMP%ncQH z8lnH<&TyCH0Wni}TmAfuMbr=C%EA;=_1sEB&F;1AYX+u|wuYnCY>l)`eXlMB+MnJ{ zA`6r@dsoZdp|a5DtY6WEg*09L%ruaAGGs8)!NMwhw96N-wNdOsxp=Ik)Q1zZ>HF-< zSIy_qSRO`N%ei6lK52^N`b1u{lU*HSBv|=i4@)*CzjqMkeAaa2gsitRpv2KOOcnpw zu_v`DnFOp0p_rm)N2)UywyQiXcDB#5{FwGFMz|0M<=B2_5XkaXaZ1bI_LL!AQlAF% z>V#c(UL>!*7uNqfHSm7*gG3hyTXjw}oFR3+3Fw976cg&E_htX;T@pS2v* z`44oMznVJx+giAiU_KGt%~;55?fBEzFH6&WFZznlqNUc-vZT;A#5F-Ce8ff8I>9#$ zbsd4AHZttn@61E|%0I@KUs+zxecU!{{a9hQ_9nSD1k$2V7R4w$UqR;RFEXDiIIRlqD~vsHk|B*PyG>Qxna{Fq#-w6- z<0JUp*vd5;$jeMVmN#r&?gkl6;$8ji!9BHiHU&q9eP1j%P~{UndLXZh?t4-%;iZ?3}Ke$>35MRr`UCW<(Z z+dm`g;C+{y*VB(XX;UMQCC}>;eMJ;!KZoxxP7o|k00#_sm^cC0gbzCG24;X#=+L7= zu{^qj&sEoqF3n^VjvSq%tVYxQ_+|-sc`Qed@x*`%P^5`llK` zu@f&pZ?&tQxc*$IA2$M+9jQn*if*;CFKh!%xM%ix@lKwhQo2r+&?mec1=zZ;@iymv zpD+VfV#in><}nh4R6VPr@%2UmjVai)oU>X1&50Z{nJNiW@$~gBk zAu@jSz%fH{!;m^*8lv4-@_TjHc>GqZd!xB2AJrwpFPPGd;pj#@h*i_WY6`h4 zyD6@0k$}^oSabRWS0ART`KeV+?)$K-JT8M$nI$_%JcltSG>3ORS}UWL?tPEYELzO8 zFDt_?xQ=_nvnt^Qi3d*E9OS)fW=R1VP87*-f5OLNy3Xo)q?#1?o8X-W71;6O%t&k> zBW*wpeFKQ=^b5TmJL|KEg`024lm3FmuhZTbF=d-q&D<1R8!kAln&O@`Pzn5rzTopd zEufRw<&h0u<>=}XB8VFac7#lIu2|<4f zI_wUnfqr!c<3XhFWD-1hW>A?&KXTCGiz?p0$#5q{*oZ5Pj^3QfH9BP=V^OYcxlx(I zTFw=dg@}m!{UWv{?S@Bc4GBES4JK8om2wQtLwyPQ-x)5H?z-%WzP6S(amxQJ_e8c$ z%gSAj)!kTC_D5%ia!`WUxQ1z1$T5-j59>)W!)8;-7DL5Q|JTu2rf5rojJIeanEt=6 zaZi3a<_XXaU&PP(d|}f>RLeA5UWY+AB;pVoi_0%mBe;b+Y~F3I{v83n zm79ST$JZVl8jj>VC44!voq{O4&S{_iMO$6RbDZdSpr$p_NPVqyABif7=!->=UyamB z-MONSBH4}#*Vi@UP&pP)>@11?e1;S4H?oyo&ni~Z0&A|HRdwA3Xm|zxFqKz>`c}Xb zKAAVn@3{u{@f+%E0_@{wESOC11CB)v(KCEhzcJ(A*=bHgT&sx=MVcO7+QRO~&>A)bqX*A!+s2<|fF$$AsyG zfliHy-G1E>a|kLG2PUy)A^eVRZu+v~4f&D^n=knfAISTw5*}QGMp1323uy$N8e^jL z&!jxaN{O;2owi=GEgzA$E9AUhU`Q-lc|1=vV>Z`SUkgs-Wwo%H<@?^nmNIIHzuUF0 z>R71gHKG0s*M4C8fJ%Z*&}+i5GVr4}U^o#N;ur7?J;L9hNq^YiI&dl&(Lr>`-X9j+ z1V%@I5`z)Opo?$_+|a~!@E8nu5`=^5eFUtU(gyBD{ju^UjvH|CCz#OPEif(AsuxTE zVcPtar#BTThOQ6?)QCRu=DJMumUKJQ6sX75HQgI=;Z(6EA{O5|n{l3nULPbMF-G-# z+Jn)T^CukmX?T&nbE^p~3}2P4-kwRL%vJfI`!1bXK0u?^c8?RbfaQI+qc^uq*CHiS zPZ)2k-WYs&s`R;jtzK035AFer&a#p>ME8{jEseqN(E*Z6+TZl{UPEECxCCG4!p%5H zREff9J0^K`p|!Y3?VM85(?goF1G+jlxH_cDe#6H z|I@m+8EX8Zd6X03_(BtDt~afm8r7CZjD=<=V!xi+2%PmZJII>LP1_u0Y~&ggLLy3P z89SiX1Sd6U8U<=d?bD~$`I9PQdgDQ`_THC96V;}L4UCtjg+K9{=3L;<4AoY?a_yFj zcyC2ML74IwpYGct`{uQ(A)6!7>$N=J9DJbt^`s!gogpEYPjBFp-o~~YH!<}wc!hqJw(^!5JgoZzEYm@W}=2vV)d{V2$YM1ZMG9IUm@nz!>`b8&4|xqhB#N2v=(<}z09 zB{6cfCt3r~zkTjQfxOSAMp+3VD0|OHq3gSly@GQ;$-OmFI^}xMh-EPlm&Dd_(8NJ| zc(uZcuFP5WRgmVFzYerFF9Zd?ue4A6(W0p^Kl&EZr;3-9dh&Za%fRWF@X#}(@tlz& z;`=a`j2XE+9%BM#MjQyT?b`8&^K(0>)#1vxBCg<2^;VE=MaX*d!%HGn=m+F>? zmS#J1=#@w`-(7V_?cM1a7H?*XmG>=oVh|}0=u}DzbCc%8NT|pSq9D9stW_~G6O52H zBWLmD@QW4LkIT!fc9Q+qE!2?%Vw)IRXoPjliD zuQjfOE@Igw)f_%fzO`z?CSu2Q8KPuA8<^1>cqQ{C*KeqCo%R^}PaxB?mNYji8%M}C zjWs6+7hZCIqu9v&%te$$W6Ya@UY158U4M}O*0WSMGNZq|C{E=xd=o^{xR`s)84$~l zhWWexYJXIH^eU+_JKn!C>TTL>6kch}W7dg&@%p1xyE0lPN(a*QBpI`F6oaZ%T&TH^ z{r8qnKey?hv+Q~wMf0d(us*fLv?sFCppCSes?7<)LD)`zX$Mvql_{>*3CUh4qRl$ zH++7!fLA{h_OBXu9wR*0X#$-uK-8h91r41+o{U07(^eA0qpeYYc<{CRnM>o|>xvI% zcA#1oMJz@A0Gd5l+_Ja-0%*v;E7Ql;^Mi2LFt4-EVuVu0L-W2=V$>aTgaal@|XFzB;%&5XKWgFGHJ;?gds=V+}kADJUY0?-nt87OD1-h`ssRb>t^}(UCaIT%IqB@ zOers~>B{RPg7F~9j87q=N*aaZ+~hwBN2FlWa)WIRZ&ogMw$dcLt}Z7@sy2g~4SZ?6 zbCd;SbY*FxR~)#*D-T8u#{+-`KjtShc;%y;Q%bpvk`DIC=5= z)BD$#*;s`Z83BY}>zJO;@j3b8r+tp~t50P|ZD22ItErN=AeXo2-K{_-Oi*LLiep{ts%-IJugSh<(3i$zt0UPEtw zLqfl3rPxamZ?o01mIrCp9Xo`y`0vHKXY9e6aEbc!hx*Qv*TQ6DVqT;czi4+_d5#;( z_qS9d@KuDs0i~@pE~3r$M$4N~5jb<_jAx15^^VbeU&*x4lWEe2R(a*op=EYfMbUgb zB1*GL(*5Dq;xD*}cr37HKbqna)Y-qHa)LCvXYp5-el%j7FI?_34ZWHPWF0_xm%h^q z_tRx{BayFSoT-qovct0G8)f-`M%>d0eY{o=oU!zRSPwMDkBjP}2p;On%}VbMwxwu( zz(x5Qw9V+MCk!xYaD$tPv&~*b?<-1Z7fK99UiN3mscL#7Z&OYKQy{C|`~7i(w6iq8R#3*$R^HmOSzj z4YKYGYufvemgeyTh;ay+w%TCCUyi^K6`FqOKBYukD^?omrz(!82usQFF&Z5`$%H~u z0$Yc-1RMv?Tz#A2N}|+^I66bN`0I~FQfen1vwFs?r*`Y+csFb3RCp6#{_qw_hIcxJ z-YkLXRWRdrrznu^H-A8zB1M#D*aWO)?UTbBvgp2ve#6A?ym^T`GuHf9Spz#3;sT7-8F{-wOa;@quMFQ^6ddVs}=G?AWbg= zb?k-zl<$g`tS>Lu=3h|w^WV};vGf*`HaOIimQitWP6{C^-?AkMPo=ZvcsktnB7(o0 zH3SLjvKkMpPhqISPqtMVnkZ`;ovjL=A(cEO$fTzYUn+0t9u-USyteC=kNrYqKE&Va zORgR{Jf+9dCEv^u#%B{P`kwsFxdzt=H6o<+!wMAs#%C7eAd6bz25Ee3XQ|6$N&D?M zqPSUCZku|wA_9Yg)Qy9lqebPxnej6G3k9RhJ2u4~q4XyD&+~PW_ISFS0lNs%L@(5Y z@%apU!h`vNOHj@Uk@_3f^H`36gQi*bfHzR#nlSsDU70mg{f&u_*F=9<8f3Hd=t&_> z@Q8yp+kR>uH^%FxpjzU$1pQ`>%F-W7I{8%x{rhW*EMTM`E%%p2 z>}f0~rOKYQ#23)pag4#Oak<692nT0&xNu3bRw|@7d!|pE1uW$_Gm(48=}MY^;vN~@A_RdY zGD6Hxu-k;LJe*Zg@57qIui55BdT}HUPE4AUq%q?8s9D&7+wdM^M+Q-My=|7$I>uq` z9>(Q?r}&T`@3%87FBU!r)bS>m9u<{0#NG4UF+iU$EG3*XmpyyaWl(MmMAsK&!AoYW zPsmUQO~$&K=T-I4pAU;Oj>pKY)N}PNW&D^Bj_Ny5bgMS~jEbRj)$x0JOD-?-%;D5*rzb5Gf8ORH}PnBW+*ADw^H zw%q^zlr@4u|Ni9wT0a8BwG{2*9_XLdf7yMRAOD79SnNK#pY>^YdTbKR3Woasu;<&p$77NR5j|Pk0`@ELPftRsp(A+Iwn;P?~Q;55^3yS5~Wbe)Wzv^wdds;DdwmvbL1cd^BgQ z5$1B~uc871-SNQU57|hhzui3)Jhi22jt_={1B2+o2mbix=t->}(5b!(L38EIrbk9P zPCmfLu%}O;%PpZKrlDnCYpJw^sLk>GK6ddQdKHgS5HHO$EuoXp$hOAK>GDk?AN!2( zjmBpdbp$qcK5Uz3-WUhrtb(CQ!3UQX$@4pHKQ_#R$83)hM|cd^QZQ^!YVciB6YTsi#JGHZQI4q*Plxf_d@XXI6%rU ztEK0W)*@1Ig)2#>VN?CJ?@Qc0xzc~CRe1-n7>D)==5W5IA{%U6#cS>l316!l$7G`U zH3TZT3!0zUX7TwfK&r7MUt=`P)cs*4M(vK<;&M^5Lo}>~Rs~0qJ5v15H@qNYYeNh8 z5bD3NH8iEhn3mhzDIL>7N+M8<4KOOiIPJS}JnKaCF0H%9x>j-MYvS4(SaGH;VhvNV z`UnQN+ZJ0-T~tPxWSXPgr8eX(2qi^K>l0of2)o{+Y?VO+j`}$AJpoAiju?1Ezkh7s zzkdvmd{5Teobx*5E!U7{kh6JyIKSrS1QrM1F%OL%_PXTE;Gc|ixh4=l2X00;WVt#! zOdj!Uk}Z{Waz^rBB>oY3ELk(YTuGGFo=HQsg<{eQl@{FG)s8T<@_Ig@YPDq5>L2de zsNZ*~YBmseEWJ#?_R@WaAg|n$boffLI-lV*lsS< z`>MNXMBAV88vV8TkrUq#DDT`BEY!B5MCEOgRP$Xo-bQ$}hqiVKyP zF3pPYX9Tgfs80>n1_?}iwX^ySc>2?k=?7zoMq!_inhBn$%QCpdV>^kkP=4B6YLVAl zoT11&i(l;tavN=QhLj9Y+hr+yBImNTmKg0Q$6Mc@7blHC%C(L18*eO@U8N5%*>bu$ zxLH{6_PpDpSS@JG+jA*POZo=G`BsjOOM*_jKp6z~GORP2Yl?(#k~kIf+7>DiArH98 z;JIXIzGH(C@z7!s-YSg61gta*eqpLe82P4hA^S4y)TtwHU7Y7V!N6a*V3QhoTt`;@ zH+llI)yiSqba0AbN&1;)?~6*`}o{Dm00O-o3F$RDh~5go?3nG(Mwr>cLRNG z1SUYZR$?E3t#5&=!ALWF*xanMu&g~WF&x4xWo9#I%RZPBG7~w&kL|@V451z~E8cCU zaWS+i&TM69$V+MF!L6p14q;XlaR~!m6rVaC(o?8qHZ{zDOzGrckc|m;93+oe8{g6! z7>-9#bmMXMV_A^O{^=%_bd`T(lT!B-SurpPo@YKfzmjp(P3-F8yXMaGiY27I3ptur z^S=nHDN6Y+kR>ImXn~hf|YRUB`%sa{L zV~y#On2@*ach?FQ*<$%uh&#EMbhf1su_h#`^hVwOs6sdAtN!^$9r4PUN+MS*_VJ?n zMU{i&-0=jxj}q2i-pwiX$q?oLtpIO&!p4iC*jwHcoB5 znC~zrJb(l!R;zi)^~)4OUJ}DEnP`b5^X@jh{qFlMCw!GEdg(L1dWL`&Gi`Jol{lQ_ zh#%9_u*i0hdv};vVgKYwNRfC{k>4)ypkkLc++-kh_$A9CH9M1Q15Y{lY%emnMOHzN z0u*RS;lwzeUsSB&)Q1`5uDH4)ahUH#SS7?PJzZcf24Wk~MJ$Dy%TKi3HUr86b?8No$`^aJ3ZmgecEZPU1vIW$c zM#KZfD~(_8?0&v*{(4lu2X2ao&}FWSRr&cY2-xZtZRMt+%V%*ae01}j+BVM|4>7Q~ zCFA5iK!U+^jbf*-`EpG21NE!VdhEkiZ9Eo$+jijc9pSFO%@dY#4BmoA>^T*k!GJ}a zfvMr3Zyo8et78yU;b7Js;8CQ1*V3?sb8sdy%&r;500E8@Nw|L>(TJ#DAOw?9QUikqMn*}?NcO;c?g;{H?g^qA-ve&}XMi`M77aEm zQx?(t)5FKLPmdpi|MZ~%;|VZOfq@45(}zwk9~`!a0SruFU;zUg7Pf~|X%}n}KmZIv zU=RU=7-kVb@-hIn*@?ea4tmQAod~BJ8y&2Ez8i2+i<_ooMhwQLsuR1Zr@c z#~dn@xe1X9rX_($jRdq@aHufgT@eXY8_OQ?cPQ|iNGMdQ0fhh>+kr@gg(L|A!CRvs z0l$^l*f+j|rj}wbLP9+hpG&E`PH)f6+0Q7{gI;YHyS2=s#2;l&#ysVu@Lf>@<X?Tw6atneF zqN^4auVse3{0dxKfI!&-^|z-{`$rIbL`jDrg+~8xm5nDpAl@xGocpN-Lv;O2Be#&!63W`=;p@1GT(gAmfiMh)*J zk)#EdV2gQJViX5hViMvZdp`?wa=#$dS@Qmw8t$G~L`e%x?4fu+R5GQa>V zIdCrndv!u@6V#P43#*3|oXM~eTH+vo5l_~ZZJ#vuKL`ixG>{9R;b;yX$@@u$@&J(dAHWCz0*@5P z_q=$({}yq%XT|jh2;8%Jv}nyet2)5bv@eYE>Fyb(3j=C~*gSey4L~@I@vz5MLSP@l zhE6wZ{h&u{G2?>Z)*o%1P74t3KGOXIP#zZi$I<3L3T%La@DYFqC@>#^0vrIKd=wD^ zzUTFb@ZXaVKO#H;VDq@$)O+ES_Xz&Ev#1JSa{vG5;aGt8tg}B5F5&>Yo;#6xut>-K zPLv*8(KQ)xWSHWEk7C`g#cu)m7fy?C01XAhgSAEPUFz!5-#q~OdesN|T6q9iegq5v zA3yegh>$Wl0HAsV_yAU7kG^(&&q|^n{$6e$z#-EmOo5~X{M$tVs5{p$XCRr^_J#k< z0r*(D?IREA`)8Yn9C1H0^kE&ldjTL1a}4(Z$u1v*3`rFL%pL#`ptt4+z4=Jp>*dkq zhK=RaI%2wec4T@G zT|z(V`z@hI1KPdwQv2tI=n?lXiE#J9+q!tah2)1VpvQnvS~(x`L~A;V4+MnnPx3$? z3Lv0IWEdbp4}K&8(p#%t!UHeEdm!Ku2myeyM+)kD;6(ylg*y7ZG{-3b=JSZXy2qj( zh>lYMpf$Xt<-rdil6!z5(c>P$Zy=OnZAz-fH>ks;5AL+i2ZyawE-Fs^RYIjN%_s-% zF-7_`ahAvL|FmBBJ-sCC@mW?;-YvU%*rI?i5^y@7@T&VVnOabu0)a;$AQoN)d%qJqV0oH@P<)yGFDb2)!C}W1U|*vY z!NIeU>OqnqPzl0+Db`0E2Sk$?+J^OC(i~=ir=}~n-p{)BvM5W}dz23NIA-JKi49LR zGk6W803F`?TNm92JxfMi=c44jNbWi)zkc}z$w^JY-?@PJ-Wuy*9?86}!*fHm+w(%~ zYajMUhnmNRfZlVwpOC+B)4W|?J2axeTIYP!J02XiOO2>FO1?vTQIxRSD(hD!<3A6F z*f8=0=)D!!+}nhc*E8)a2Lq1jUNji-52wevD6kf5ZbLou?x-FGGtN5IBSSPeY-a5j zpZJu^E&_3biXLQ!NUkaRcE!baBQGDyC!BC8p7Wv6V`x9xZ;%HZAm61;We`@?7S(!5 z6^--A3)s)Otkzc6^+CA;)w$Nin|v7;X;Rio$$z_L1<;@OyPYjQ;j-AbT2rE|IMV-@ zkcLg*sjnvw&ljyPmK`rh_#o%iVL(z291U*l+){HFzNZ&{fy%1!taScsngyDH#3v+b z-S=F_GF|tOBvB$9w;k6xj;Ys6-RVHpL3rcGgMIidJT>@UU$!p6i}Jd*t{n1{3+QFi zxsM*#haic>?7t|_>BvCsLG_SY^yokkZb_@QsMmcBhx5OEwi9#i&u>Y_CqC#e<=Uc> z67-RK5*|Xs=_{zmrxS5Vf^Y{}0=`lr{XbU*>J=nfB#HL^D0`#^9v~qkiLeZlJh}@| zzjWBYt!h}j=&iVZCrB|&@d(HQ(w2#eyFzqt1$&J@u@~LIrO-X(-xONVs3Qu^<@eC=&tAW z+G%3{${%e!&_+gW?I+Aik_vS1qB@Cavfk}1QUuk@?1vzPhl@@P;URWNxQT&y>_2ri zr~afC|0n+&LKILD00!_;0i;Q@u!j!jv(d;777F`Oy=Qo#)kjxi7TbOub9X!FPQCwM zoS?!*-@5%;`m_+AMr7|5Aj%9@i@`-xhFC$u zbuTZq?TM~yA;nhyD>bWKdf3J*d9`Rko+b7{KcMorR~hPB`%Dj&M^7q9p{3F0kBH{8 zQkA9f(0Vq?bKAJXBR(Y0(~~jDUAGGgqj6O4$Kz9v8Z?S$pYA=nKRMVtw8xj*I6X1m zEEVmrK-ASC6~A}aaGhMJxBpmmLVCV|6d>e$=XzmF>~n7mw5hiEbL#60-ZS*PflIb% zmz~P!>j&MRpVU_H)HfsQmxbCFZiJI-3d|)(Tm}1unjR%j4oy1l1key3%Lt#@CqBoL zFCoqemsX)wR$ijU6!94#eZplc%Q)px_3pvY3M)gvvonAH|@SHwT>&M%{J5G7j3Hq|C3 z#3x{}`#u9`lOf}oL0-CCA3+f2g6Ij9_Hg?ujqDI;jqo=fZ1_p4 zI$+wJZU?{g{xY4vQ5~~HR!y^L?o9#rXAzZXcl3Idhj|r1^m<+8hV{~(ssJJL-@}{v~fTrHSheWmOr#W0*AJabC&j$dvCUu8h(3Vh7=-_OEouqr{4dKDjOaARL8|OSzC+7d{cOi^OtzC>So^vN5WufsIC=7O2NNc7W6Nt z$KrxW;yF3pViotFq7Q%9IWsC>TL|{ODS(TPM%uDQTOmS9kReeCZIE5)mUZN@_;J9a zJ(Kq8`)b!5I>aZ5e3Q8NiA7m%=)Wql2FSfHP`qbrn(*xRn|GZhZW}I0Bkh~J_9EL~ z#vh89VSJr&vnNU>G1Gv_*|)T>70ga@qOcQlzkG~v#ISTMd9A|C6U5ME>f1HiInb@= z0!AmOm*4+1f;ET|{>chs(VRog%5C)@4{AvE^)1tIE3!1Pf1u+6ixb38<2^9g?7!cMy|Xu(b%1w zS+Z%0HE+Hz~3 z8R^UxBgae!lal?NDFIjLAT(}7%1jMa25oAiXsKfy_6uC!Mb~dxX$$m2aMw%8{ZM8x_x{kP}Ma}>9$%3&we zve@QZ&cYw4jp|p*CWtNH$=i;$DC(|ONV(CgmAqo9>jc!o zLD??VR3(qMlxu(I&2+rm!_!JdQaz-iZ-FZ7zW?x<0P03}8gzHnC5a)*M1s-Jgnm>4 zA*PU`{>k2&(D4uJmGLT4DBfOkC&vVz+OqfZ!zc^oxq4zO4-Vf>SK&dO&jNqTn0P%o zF)!l1---D*66%{WokCi4!?fyZJT?T0Z-Vn2BG&_3HG@(wHJ$60(}EX&o1id>;XtlY ze4~DK2IH8)Pv=c4^ol|ai^BRq;H{rn7@Nz} zYn!QHtgRVLv|P>WD|>sW%~o+=!;wwsasIFMX6&hwn|b|tM{$UaBgb}3ScRzBlis6J zAcz2SL`K6GGEQrqH|8wL+r73gYi2*9xHV0dLInz*+Sw(~NS5pA@2D+2EW7XyEzq>e zt2N6$*{va66-GI+?6%C%rzfQv)uk*{hJ8TyS(fJ>gZK}DuMSIyFo2S zeUXr}`T>X|z8ON(^pffif*KN}v0dn0W-Xd~fKQ)92ifew8D*i!3{udbp8Xu5zadP? zPx)<5qXap99^{WVZ~8p=T8T*rM@Hl+jfJJtK+VVN0YnrGXUm_6D_Ys|Ur zsBmG-8^P`HYe%RvqBBReH5lKN`;2PMjpFgDA*i;0bf;38&oYt_W-w-wG4seJ=%;sM zm{EZ`7@7drt^qLhOdA;fA~8Uh`?-OZU&fCZCEc1E5?BC9+uIkA zUuo8Mf^~eLeoe~CuR&l@cFO)sniC}|E%X#-HH<1O6T;YIO+fwFPkhQ=qkF#uD!!zI z_I&FjiaYk7GyNhvJtr_bbV$;~t0%reQBTZt8)uen*_vm(Mh#!f7LXXo00&%nrQW6u zGC9Fa>B4aymMQ(okZo9_NnWCL~ zBaEL=Y@tlGp@-R8K|9yBkE#-*g>dj{vfi|`b5WjRt6QOM^j^L|Uaf|hTfju12^63G zFhD!R*SCe{9OpQGl#Gdp5`G**KN@b^|=@L2KZ5bEZ1pjJvTh)m?zZPVx5 z8C;QR_&;bsc*r9gC0Mc^JpJpDocrQ0%I2_{1a~%^-+pSKZbavLdw(mo&J47iC9A+1 zJJKAk}$PJ(R6Lbgji@H}5qH`KQcr zwqB15(JrA^827xm;i7%Rtat-j<&$hX7%;rYM1A-dmTe8zbg-oDzF!BBFt_Zvg)0L+ zil9Z=lpn9wxWYf>0at1yWyHiNTV5|`W+P~C`lE!Ahi_+>Z5it(LpVA0yxTuUn|0}J zCYl5_Tm%=wh=40=2(xRPd4oX7cO`3tf8EA9FR*&(MnW^;PP6iY`gGwWUvApBy#rYA zTSDw1DM7}SHK1gvyq?tT(&IFa>D#UI^LU?&Vt&wk(JXILrEpA6aR0{;=|@0YY7Sgf zAo1OIe@P9md10&a#GGkk6&Vd$5&;Zv7AeE@IqKqd--Z&+qU*wWaf$epc`u z2iq%CSose3dR3ZPOl99YtB*WzMg^Gw3@0vKCr@qg2iRRHk@|_cT*5phO!T+Ksn05Y z+?c;3=S5FT@;I?nn?)RJXUxtc?Q&4%((OQxzCBlW?MoieXRNpNX1c_A_4S|oQbK5e zi)s7vBa0b8LgMSs;G?$e9|J+ok}ed)-vWGd&QCpTzjX5~*kNkG#Yij-m9xYyu}8b) z5Kk?7kQNd96gS*9ZMpu=R)X-o-2wK!4t`dKM2%hxO{*ai!D^=-*uxmSMqxNuV~TT@ z^pk3OOXl~KD`H{>Xqj_IbqsVN#&t3&lnoUguLXeAU43P$I%?>pP&GGMKn`&80(v<| zt_WEa@0U9BUpae@GXoQ`wuJhvp7@CJ&17V*$&^AfD2s~OaQ$c)0aX-5>CH7ADB`@5 zDuBDdqTqmP`?++~mQCOSyu@fgqek{WWKg`T#G<)abWprSIX@pkzfQ0=Sa-jk6w|_id~VB;6bw9u zCH$zYIfyBcYE*SDcdz^foiS4f&Zg$ioZex4hu;dQc*)*Z@dPY65lB2JWDvi0oy)o2 zYx+WY57JD(-{g7US?s>(iY_vYVt5(_fi=03W`yK>zVw z8Wdo8Hh^E*DehDSes#4?uu*Es6E$=`tWjIM6&Ngd&esCDU2e6_>lj*g=B8Augq?Fq zI_i!I@-W+&K@NJHEA;2}$a}o@r)tJlUKxwsUUrsVr!t+O?IiEnwOqnt)BVhxhf=r9 zZ(batKkHknx;|hZSAkw#M}0dxvyPE36CL}hdgY>GDw&dtB zyjto_wyF6L#ZiNwUk%C~b&QFRT{C&erb!@`Q!!qX8EaM(Qc?1~!rMnP6-6DbgBD!j z>ZxycQ!*g?%_~*4SSh8l7t7hA21K%VU>faIe>haH?l5vw)E{06XHFntQJxZhQG-G5 zI!eOL_Yzz0%^SXSzs)J;Vc|wsDy^o{+#y-!ahktl^4smBJIBcl7wN%mp@>3)hr}Pgi!>)>s`(d>ZHPOzAQ+{Yikkwm_GXx zR+;%;mY@__|4#fQ9d917a>=HZ*-3@tD!PIjvp-m>geVb%vuNJuS`4$l-~ABsPPYhy z_4MR-6YvKX=I`(mF;8s-=gg| zs4*X^+J4~`fAs><{_c`@>UPEVbdY)fphl)LMCOVM;k!zxH)0+!&~Rgh`QN->?XK;b z6AZz~efLpm@0D(PUQp1sVD1(?WY_Z*f;y*lUS%@NM(OCc?#K;A17yreBzH%x^K*yd zMj|n`J-hHa#FWiu)6gY(oy3I(_njh)Lnk5gYSQ)Ox)hit&QQlp znpxc(bV*QhQ?|9kOQ^e5bz!eVb-V+n=atVOu6a3|nz077+B-&Itby+k%3N)}5`m(d znBHc8WV~@#D+7Efi7uEoZ{C#F+Yj}P_z{=0TLuNyjM*)h@3{iHe3!YJnWnM)u73yr z<|F9!m|vFi-`iTk|KwZLmzrE^N6ttwv$Hqp1Vs||_{cZxHZyX0SF?VeG+(~0DfL@3 zQ6DeA8_s6g%WeM8)qYqcWU|A~Ahp}$s8GC$W4ZdoBc}TWZy5nxbfnJxuRYUbq6STh z(KE`Wz0*|A(BI7_h7{2|eU2Fk?h6(H%KDg9w~COj^Ttfbq{so&n0}4quiO?0#nAma zXLm|3`PV7^m-L?a8D9ilNe*1vi5>q{-ZM)?HZfo*2_ABPg|#LNIrFD(dLf&jc!g8L z02-A7dRL2!<*J<0yLq=hw)5BVKeNrfPvy(@J_dx4-u&vQ>O}`(O?zKuqvS1`r=M^D zmz?|Lq=jmCe38%Ef(~c(YD8-}^IV2?umfz8OSNMlr14?mNa@0xbWmq5t7ZddKD{B@ zNw2~(n+2GR1LcMTGa&N>l zi?TfRx41cNy>-Bj$CH18M9MjI8so8$HRdxY99Oxw`Y%vzqldWXn&Q}txkelrz21GI zpD$HOo}Z?mFA8Q9D-QOfzDR+}{>i}dnf-3gslr{W^H0 z<2~Z_a%|T?_}h{E?b*907(jii&Q-;$MI}7(WUrzv=X>~0Vhv$)3VK;1N4148Jwg#- z;?A#-z`>NTpj}OYz;tV(X%eVdX|O)!uy;TcijUKagcVMkKOT;l-T{WgZhZ~!DWWd} zH@;wDNGnA_c+m%W-l9LlnBc~g9J@isFcDPy>di%B&Uk7)GDyAG=Q~lU!oe+CW@V)P z_k^%B365u@1Xpy#jIV8Y+_wY7gKN2M76CE}N%wOM^F~) z#`#iukohtU`LQ^9U@VBIG;_j^y{{xj z=YNE|8`v9 z1%gO-BcdoNjkI)0E)53-K|w+hkXk|-q`OOLmTs12>7^G~7Vh!)`QF!k-T%*PX3m_M zXP$Z9adep<-C;+b=+&I)@6jLa{uJH5VITYO*Q*96))2Xop31-gR#{!5nAeQv{(Na-Bcu+Q8py z9@RKcD`&G`Qc`4n1)w5f#j8`7vv>khU3}aQG)?3fkVM$X6l6T&3hrcHuzm<{mY{5Q-?f2>AmGkk${fi)CQpBNhzd3ZCy&8BRsn_T>Y#bA+0 z$EgABbtxBM+mNy^^J>U<F061SyYy5Mkzks1(q&&X#~T@AIqxSoo0=kIr#ltxjy6!Vk1jsQ^3UY8aC)S#ogGr$MiI+nS~C%H*5Z!P9wd*@Q)Oedg&aziKk&$Cdm(HC}VUd{HDagPmM3NaxVAJY2jmYKG8$OmG9X+MxOI?51fBS*LnZh=Tiit zSL&~x46(mDmTxFZPcu&87#Jl%pBbPuBK=IIO>PZ$3aysXOB?8SU$UW?3d7?J$V(;v z9o(}5upia|)ssP~9CbHg?yV80<>hCkJ{y|MWfM-2*u#Ea2#h$JM?cXyoH zU7(E!sVrjGJ|7p+tlpCqq4c~QjSCvM48GJ2nd%mX<=HDPCSK0CjkhlN zq;k;=hq&w>PeNlbi16qs%c)uJf<7Ob^K;{D@{CdfSe~Qf)^0UM39m91cqem}n!(zl zO%4=`sY2>Wz^BtlLLkORnluE_|&~!2KprFg#L7FCX%6BH(+K-tH zZ}4>vBuBjFl5gF|>auc_@BVc=Yj2HY6Ox&w9$MF3@#@U_wCcy&kKu1&VCZX%Vjois zAxx)&^BZ_#-}Rbvv~M>6b+50Lyt!(%(kj<>Qo7_vraGQg>o#cw@V*e}N#V90@a=G1 z(WX;3=ULSxD8OSQmyyz2Z1k23M^_T$%d!qzI!yJ=;} z!_IJzkhJZ}T)N@eOlfsTo|ti#e#t)f74G1D5r^Imi>&ruQC!ziz--;JN_6f))hl;@ zl}pP)g$vqAopS_P1RlNxziYCQ$>Z&mZ}TstM4%}$dDO4RI6ku9hR-Oic+m816lQ3- zfoL1O5egITkFda-dcKDq=NPS;(ER)IkO8qFloO3S;W?BIdY_Rdt|st+3;h+xO|@vS zty=?|la<8YGrt-F%o7E#aA-cr^=1n@@v_3v%v_drCxF>f2-LQUEhtN zzxvtmTOVNM97>@0Sg1DW+W1;{Gs&6aAp%d9c0uD%ROLboc-F)xtP4WxgQjV=0oN}W z_TjoKo(7YUds4XU7xwqXyz3aCV4emSajE$---jXlu4aro{CkMTa7zU|AIF@>e*nqS zERR$_L5qBVLykWg3j386Qrk@-Th?(oMiD}g+(IQ$rJTP3 zxu>UDUh9+0$1Cwm+ZX%O9|`J$-~%Z?aV@< zEYHYObHJg1H4>gKe@(M1B#&?z>nb2|m4Qx(|CuGcjj^w8&89_>vgv;Monw4;WfIw~ zyTeoSgKMs?kuN_y9uwijXU#s@4DyzP*B(I~B8D?$`|Ba^2-k(%b5rhIj=ROxk`Yz; z11w|C1vZjRCUvC#$fHdRBtOe?VS4CfkovG!>?QS%dg+3z}MbU(X8jT29{cpBv$!2zv&3$Ok+`Tw}s)6m~Bu)Fp0JeoKu#{QWzye;SX7 z6(on~ewAwK$ve^C?IflqC1-s6v0aYN0oc2f^D~DHZ^=dH16W3Ec>`0FFWHwY*R=k= zK(_%_P)a8{d45jxf%HDBNpX$&&;BWUaoFzhU22!Hr%dV?sF9-YrcS5KsQHMEqAWq3 zwwy|K>pM1^i^ndkiT><9FuO+NmrMP?#I=B~8MalD=+b?WF&_Da-+tn~YYckcfa|4; zZf+v{W&S6KvZE>ics%04tIgYC%uxp@8P{Epr1Al+wKMr(0-Oq6t9Qqsa zkI=Z)>SPOa)q0fP1qLw*WTnx6`<|bEDlTzsuuisXEEqM$mMi=S&KrbQ}z4z1`KqbtKYxW%RFQc<>!P z`1Ss;IXGLg#L%??aZola46$Lf0x}+-zvEOXu_*LO%DDa{|EG9kFgIEE9fX7(;JS1) z&7S>5o|bXrZ?IO++CRNDG`VB9eHB za*){dt0?l?-O(mWR9+QnQ={bp}&0%L5n`i$b6%_S)p3}>GPvrwd+x>}!Q zO{{Y2irks1WI6{IEWl(WRzJx6xqdo@zRbyEF9w?FCNSf{WO3O5A-b9kHv578VZ;)^ z?US@A%UC1v+d^v8>{P|)EZl!=@enE4MEwmYbFPNzS=+H(Tl1{){fSu`y>HEXSl1MRa^1r1)e)N6#ux=z6BmQO&Ss`22P*NL{6ZbNz7g>LVg^) z#6Ca3+wwOL#$xM;;J|?8wk0Q_jdI=rZ30QwvA^CmyEb4!=jji$aeUsskyk`vp#hLN zm)%Z~p9oH1+U8rvQD`1!+R=8OR;JYWyy6wiryaDE1@!RsQO;2{K>!LyV{(uo0GOUQp&hTaD#rQXE>DnK!*dlEZ zqh!|Jlbr;fK5^a~cRrZyCxKVr31H_wT-adL4BFpxW&HEj@Xr(j1i?cKDNCg?ec7+HolN544nNW3Mz9dbY8<1cY0fxOE^ ztD4*sefwk~5U7$ig4FRrvL8Xdr%QgMGxQuv1iA@9a2)OtoEt9{&Nxgr1u%zZYntQEO1V2QphCRp= zHYgZ1QzPCg-M;&gjWZ&1q-I`K00ecQRFGb6<@Kta;Oj+(U4SS^SOnq`_l~0A1@xAD zF&?hQJRvm>O%4c%?jJ|0ZWo{EpHf`eB`kr2w%D%_<**gNDGV)jebF=+Xa-Jgm43Kd zpvk7NZ4fV=k_>UChB3pz8kB?R8BKk5yPp}FtZU}!sM#JLepR-G!;tC$$c#{a1$k(O z8NjtyQf(G+K6nC`{GQktZO9Iu*?AxtUB~surYQ(P7b~TTXkp4FnybajH(q+Ebw4Y+ ztz}{)4|uClFn_x}dIs3Bg z*1jp8H?9%kX}3ic?(SPQO6lN3hC#^&LnPkS@jO~6cj4SXxOV^LSwZQ(;dm9xPH@{Q zy5H4|0zWfi>PwB0$nS~phE{{iqFLj|A2()S09s}Wqb+x(M7cm1_ap|Qd~FKNpk$iF z(u5>n@}KsI_)4?(|m%p`%JaEvY|TEX&WQSPGGkLV)&P@1vC|W-cJCR zJh#ysN31LaX=GyKBh;o+IsR1g&XcN?^0Ttq_dttO?A)t}s?l|?MQ)QC`?nm0i-D!# zmb!#KpCQV0umDhJ)JLeR-0uoATrJyz%6*JWj=6{LxWI>_%^X zCMum08mtguei=@RzNFqN{ridGqd!1rY3Eoy4`cido%h~vO6)$Y!CMa;+n8muaP`6E7$e#mr{PInB6tb&-1r4qnu&i`!ciioW5AQ1$9` z`i%Pf(=)AiozWrS5dc4phirqiO&LxNC^JfJM`NN~nmZZzwaMew5IQdOc6&SYE7em3 zaWe&qit$Y68@KC0W&xRP0IN@mC(uiw~D`yV92y5r{N&fS-;2ranY5trdyl4)8s|I(g^vM53X>HOo|1Fby2j7~CEqzOI z)rJf9)6O)#0Ijp?0o=@^=6lPLF(?{7eqmg8lYqOX0C6O=g`1Vt>XnRm&;;mH%VS~4 zyN}H~rYgW%Xwrzpu-*nwF(DOWOcE{du8a z`zSf8Zbc2XpnA9Fjcr6?gjQ~khYN&22?T8V!l&jyaRF&X#FEBc-i-y%?V=yV>7|m) zq#Gc8+S8qrF!qs#isRDb+5T7ZD$= z!T=FiH5cOpxyT(7nOQ&h(!=~apHbo|g77*X$O^W|ST{Vh%-ox0`(bT+?M$3@5!pqY zE;q3(u5n;eD*}u8l1#3FptF@s)cGMvss|K`?H1pBE3L8FAc4LatI-PK)q%Q~b|Ov? zSXtP1PKS>=FSP*8SMA?;cXyVP?h}BCel};vT+TXDDd6+O<=@v%S0dP4dvRDlZKUuY z9tz@2#mavquyHW;%x=8{4=&eE{9Qw^7S4F$T%>kVTd1za@ue1}hH9E6RN6%XLo^`A zwv!3_$ow&gCUS`8syiT@ev*!)e1g~V|GtuR5IDDhn@LFd0}jYe%#6jOXgQQav9T0~345loHg5Xt)_Ovy&>^_!;{NlTL3cx-2@^-LhUbZu4 znxjEyU{1!7iAc41RL?p@@sz?Gz-4!GM|60LCQ+Rh{Cyr#`*CNRCx(jGi#+h%TQS{- zw;yN!#NNZwX#C`ywxL7Zakd=ZsM$zreqyGx+WuN*j$Jx#=#Gn@3*eZ1o*H_5n8klS zFot+o5>9+du_=W^!HQBtG~4q#pF1ix#QKITioLHB(n6;E0FO0Lj*z9b$oGb^m>N8e z%$P!^Uyc5TT5*^#;We;nrM*mqo3n_VxQ|6Xqj*?kyZ@HLDznbFOZXIP@td_l4$}M( z(xE*IN)L>JW{quuV0*kNhySnA==R#6V-o`x~Xh;`zHSM_Y(OYZg_Y-%yr`;(>Ok5|1$g$tN zF1zz_jrA)zd})!`9vl1= zYa85!{B{z4%E&pr(X{1nyfRa1(Nd?KQB6>DekQhBin4OlnEp57^l z5&NHrvBW`Yn%Pwv8Ryh6LYF3WrZ}-%25iwz~hzhFR zz&UE=kV=>XbIF2N9~DBBzIkZ|(OlU%#Y&U)rH^YSYX9)wHl(UmQf$wyw)E5cd0TKC zIb1g~r0LrlF@<)RY%e(tV3;$qFuJ!192UOB+g#qm)JA#hpoY|lSU-6jb0er|MHc6H zS8HwvQ}LRgI^d7|U#fnl)_bgFY^ws|$lk7#^POsNfzKmcRe&$SVk)q*oF zN%(|}7_U)NNjXGBmqf=^XH8=BF;-Xd)#UgcJiyxM!PTnnV9GU&EUR~^yV(+Gi0ZD| zQK4T(ZQMTFdzj$8fWDkC+U=+9lVTprGeF>GbW++drB-P!J_C60-^1U@+22LQtiHT{ zcy+ya2=kN*ZtoMbuCI!(HmBKa{(_x$Yf21*w@wa?EI0fAasQ2CxW0h zW=h|PIalGllWB^AZu7JVS2Y0o(z@i4)yNh z(aWaSS*I-ZMNE+$k*SZP>41+LB2>RY`zTX9_`bkBDk^>&@r;{w>(DR2j61udPqz*T9C~Wa5z_QB zK!+ShlnP=oVUZ>}|G@#;uo0cMKa0yQ!qx~DcN@qff`N$Kq}^_nyet7^gt?1;U*ky4 zF4LnC|Cb*tXC!&>^TF_W=P!;EJEY_F*u|eY)=*}UuM8FA-cG(H_$DxO1$^sL-^_;M2M5ztiE*xv+y72BTfvZa!}gesG$#4!=3TFICcN;*+J(H=@Ax}pwkm@y zYM$}yGv0seQu|ML9CH_P&(7~MfQ-xTy2qSt+mwi9b4cd%dpjw}J*@8W-%sPJM*l~` z_DV6464y{_RUb&PJgA;co=)k}WQKF{6`O!$7v%aMz;rpJ$uHxFECj z8CX7hhnygZ^-5*@u~=9VhSM5on)?l5+js=46C+6wYdV&bGh2Z7WV5PM-)aLT{gQ8% z+r{4>Jh256v3?TC?M7yg-)T|eL`JrXg!!OAihIGxC?IkOV%sPw^O)_d`6>W#ek_LF zf;nd&)askCj+5?f9UY^>aBXcKlU~*9%->R|!X8u4k}M9cxdL+ zAXZgD?i*i|w0kZg3dnsWPer2-pQj>Pbc@Mh^jm3LVv~Q-hm3lJfUH^U_c{OX-v2fb#U=wKjEws{q)m zJd3HnehVy7d=kubBvHZ!PMKTK3cZlN{Vj%h?g%olC!9b0KYetsq#r!6rdVsrcL{UK z`^dg5Nm}U?VPQ4AWt&aAJ*!U(CdaAKd+*=^kT^?PwgI82D|oKI7V4k7B%1z ziOA5sbjy$-c^oZv+G068P_3wwRH!R5dvNJ*rv~xvJ zrxXEcXK~DyB1SHFsZAU)CF^}*uqwnkE`%-LpX@9$Addk+7EX2IhdzAyu;0Dm2(`J$ z^zLwLy{PI6Ra&J$dmq0!3R2RlgTJqL#XpfDZa#_itO;4ecR)vi3V+krKzyLg`IAIX zj>D%z2gdU@z+WX&yc{=(%lC5%xQDN!pL5xI>C+hhyE_9d=-9E2U2;)j#|V-#~^d*yl1FX{rcFkh8-B&_RN0_qs=lI+ZliiAroX%_MbJOc-_N#k+T7V*V+GC3_ z|M{*VG#6oR99`0i6^dIW!`s40Pn(T5$NC4vRh7)w+OA)loaMt>ev2QdF5@9SS0c}8f}u{&7?8xC)nBSaHICZlWjqi?dV zjDKL{it6|>Sx(Dyj!cW=(as%5WZmb2Z?MVTM=<^QL~7?V*OHweoFxy!eFa;k<}F+D z$oIu&Zd7oz^!nGU>K&UYC`adM;OL<((9wdfbu~NxacL|w!U3c9wvSISed0NhUeuU& zTEbuCHRYv7cIrC%EJa*NX1Alc_w=PpJh~iJPL30sDLawOVxAOFv;Qz|^%@O}s@GpH zpC511h+~wBx;HUh1REc5gp4sY*6HACNh*S$o~dm7NlWJrzmp;6y{6G z*zxm$s>Y1=JyxiN&XqKU$a}jRF)}|Z>TDzM?e<{nGQ7!b=SIbSm~!*a>@v5n(5y72 zDeGX^usA%H&#A50fil6z(#uH&OY3hWBK8)Mhk3`{mZt}z2(j&w@bGdO%AjjXAeu%( zlM^TQ9(pJRr8>bXJiUt32%y@ud@NDU9|JM14WjY=PAQCiR&RG}+8iFZ*pC(Yze}qu z+pOj9+?Tsu+sgPn%M6dO|J*}+;bLl5UY-o^P2~B7y9-+$Ln2!G`bulr`{r>F2_#yu z;7MlFji*LNug&mm;5Ix0UN8Y#z$1&c19{IEtB)TIe*mlYecX^EASH`Fo5Mqj*MlhN zxr8@6Qe@Apr(Wt+QrItrRhFB5VS+}}oa73o#Q_=PqE#&ys8QX&YvI;)7SZ&m1>r2a zhD>-j%N+VuIEXR_MH`C>OYoL?HRt;;NSaao0ejJm0$~~%mxIO)8L54xtU!#G&g1*+i7)e!AeD%Qrc<0Ic&HSf{2&)8Iep z`0#_9Uql4C@97$!&;8ty&Q_ON)C})H ztM$XX55xpM(JdVQ=ZSI>3F&F;I+aTvsP%~hz?cWKtr((yz3S6sqOT9b9@EE)7aHj2 zt|KkoYSq<={Jwfi5UwK~QcyWin|~4m$jMh~gU+$FwsYq~5qhuKQ+ChCdCA%bO27^8Ygo$Y2A5p_OmIu+@7E9|Ox}b_wYpu`caG|G%BS7ZzInDE|6J}vSt$N@t@mDg9gOPAUPH1y9z7z z7jIfd-TT*RA=rE8ZnNvJnY2UF>I3XSF!JAMWkBsRkJ=!R|8xW*|L@*<~T*T5ZrF39Mcq=@i*a0OAkT#EAl=7ynrpG^jyBsoh`co-}Rj ziQJw363IVh61KX2*j}|mQ^b=}`{`Dpeb|4#E-ak?Mw%1i5QvSb+fYgzlg%**y=dY* zJ=Z0Jeg*#LEt7!(rzz*#r!vsBVuOL%F=FXuoREa~2K%OnUHM@CWaaoib^HhnkSW`4F zFy9W$%PNn$b5x>3p{oBkKR_@U6@=k4IC3BP@D!`P7;*a9Y#qE(mrH))hp;&C;Q<=; zXaDQ@2c*aKE7K)xjwJfjnl1VXfw2vjsL6>Htujwu+%t+$&;OhXHXq|qY@elzwn~G& z*G!7OIz7AaO}DxAhrQ=he+)iU<-acz4VuHa0MTGgSA~gCsNtHHz*PH|*$~EarN6?@ zX#VNf7EcCEq5q_%lFE?KhC!q2>%=cLa~m0cg|+a!KqDp&-mlj@A%4oO^VGQiw}{go zK%TigR0U|N>T6#0)xt|J^~gb|BwDaqcM-E(>1wU1nD)PQ8Gf?q9tVr5f#);5xV30>?F^ z1OH4kNo3LQ_y0Xa(x27cJ-NfcJ`&zF2heGMA$@J|;32^?)A;oIIee!7{9cAZcc{*a z%~ge`G2~jH#2SEHNQbZTpjSl?B}m$1#xhNrm-nuZj1?BuNzBuOVTY(HG-PKLav(La<>KHrrt4M~G|bPD@eZYzvFbla=?PpT}SR|K4j^pjovE%N+8elAr~g zb^n!JCLslb|J-cYJwVTuyM(U(56FhuIIbe*VsW`Tfn)kJ`-Dr!JC*XR+!+4Nz}$zA z|Fb&*T|asbPPmBNg_kNWhuge=-Z}~feJaWxUmCw6X<-dDpMLg#hIMNyVBDmYkxW2> zW!FbjcwnqZq1(a}2BX&6cVA8APu8SF|7-Cl*y2@^`zk4%p8kj=b}0~V5pdi8elY=x zTC*~bI9>kprIBy>7qnqMm~b`bF3{W|K%>vRUl1*#-G@z~*|I(P+Fv0`yk?OYVLrVg z^Dgt@zYTx%5F*Gg0M%ksz3bBY#4*QM_<+U5Sc2SCMUCf$#`XUO0B&IZQ;T~i?Ikzm zyhFH2oYz3|Kck-A3g2N)C4Qg(K9JRGh}F*x8SyaC8N{1Q8Qk6~;2!FjyP;KN^I`!_ zkHG%ewZV0ClG87>2-*TEfEP%C-!syOQwD@gE2g#JkZ zGlb*&YU~!{ZTGTGZ&qtUke+W~W5bXXj;rLvPht!HZ_M(smyJ(LTftp!nKM!!z4J=d z8oesV%9a{0hj`SIjtd!9%Ulek{j0lQeXo-^L|;kB@;=0=odk$o-ac9x1V@M3X2Mzw z^RB1#+XPFq=d$Cqx9|J9$(>V{Zt)WzJoI{x12MOzo&ACiVJjzPn2qP7rj!T$?!t=V zLZGC-Z^}2{&2+sm=({!Ya@1VLRD`B|=~c)?^UzN2jFD}LGpN+P46tRoTq_zcgjhX? zSY@m*(naE@0N0CMjfgJB2a#myQ~h0-oB4@j&>Ci5+odr8MV~=VGi1NHmOO(8k>>~O zHoEa-xwwOyz};XJ@gZ#-Cqhn(?lrjH0gOZ(VmQ!T=j#PsinX&skeMucnnmP+zj{@nIWTGYm7vt_L@QPYx#)g2w#ZPvPq<|%;0h}Hl!Ut;A}P$# zz@LwOiMJ?#n&BcN&H_q&Q*hYb-fF!4+YfEww^C`v}zEylLzzM4yFjzd8N-X4KLTOP8&AhVY1C^ z7ccN=yvH)5NIHU}EoMk339>O31ftl$eR`0y>oO#WXnnQ(i6M9>7Ql^U&vr8OGM9@J zcpk;SkazMKP7*<4lGZuA_pl(tm*qLN$UlWKLU zM@8?C)hYn)i@kPA^z>O|8_!4qU7G9sApe^FHsEcrFVeHO3RPj)$Z?~9eX#eu?( zTrlzEpW9O2Tlui#{O122jr}!jMw}!Fo;8d8*K=|!t#~pgpzK@C$MVAD8^@=KmcOI{ z-4p~*I^VL#H4K3Y{lqQ&Gpbw7ud22oMdamI9$7@Q+ za_h6??0*9H0hmplzZ%K?Yg-7?#}u||7==7n6WG;}L+&$6ThQo)aX%~Uz_66Rx%ZiN zfbHCc>d$xU<~_eOuXXfa!++!+ue_;u$ z^<|UsM76IpY@MoGC<6NA^l-qtiSCmJCE{(f?{3gt)V-Z^4Zt7Mpt~Yy~IiiAhHG$9J?ieP4TJivwlDZL%6f((YSmiW|BZIgDRTu zrb9_@BxU;sMcxSHS{}znZX)wRQNRoo`^R2)>vcj zKpkg8JSh9t6;06Hk|m8l2`|g{0Nzo;4Awx?@nPOOA@}%LeM+#HZ;RxoB2Ch6mG-Xw zibnftBiBo>L1EvnkjYZMbudxFyG~P zmK(MMr7`x=&L$5l-fyq<-$jY-TIAz-cOjCqDFGE&Rx)+zAN=t46(lGKW@3& zA6q#zZ1A6m^9fXA${%Z;@0YqP_B#^4TQ!L0O(b;=eS0|*BTatYy!>`%hkD7n0dd1A9 zDN2D#)<_1e9B9*2+v_3mkfn-V6lZhjcWsrm_hwH*^A0 zro4n|2--58^)ps_r_l_U40ksgqt3kRbK@F~bkn-0N}}c<+oda=kn+9n$&ZP^)aT8` zbsA+muf`)4V>n?b#p^Aegw=|!hT6~Qk0}On2#$3^FBJ^pP=`w+tCyGya zUb5I;c_X(l;ST>b5CSV_4^;hIMQ^#6>}48D(JPkoJmjB z^HB?H@QR=d?}HL!kAR3^7E;F))zt4toRZ(68AUva zhg>CyNDbQb0;OHI-wRK^wBG@ca`<5T6jz%K2cC;6MJsRDk0*ifFCmH6_;Rco++Cc3 zi&H+vkv=>*a`}{t$HKkpirO2#GxPew8%i&A>m@t)}Y>)qkd51y!W z_ZWLZCx^lE5SlOxp-e$->Kj)|P6_)&-{M+}y9Zf)878UJ(rSh21~d4x2{f$z_gVWZ zve4-+@nal6J$9|OLH)h^z>4jVBXcB=%44`M%cB3z)s%1P;@7c+S5PW+?386RT6Z%{E?rSh) z7m!esSz!xw$5wu}B9){d-J_QEhq)g&bIz-*^duoYDf#9G0Pie+hGXVTn-+&xfmxaA zBo!rEBoHB8;PuX0Pe0@7S%Im(56?145%73B`W%hAb+a#B!o4|rr^YaqzSvQuoqMv{ zFlx#{oKII{{^n<@>Lkv`hG^$+<8=7GW*#yHzoUm8Oa0x|-s}AknQRFqp%vJqJe$4a z|3u_l7FGTi89=^=(XM*^OAyu21k}#PK7@_&((RRtZ(7S@mJ65KyMt8~E$l|>$+4tA zcde|9i((|1>MC~qp=0p$uM@+5tC%+bd2(~4zwU+3O)v^vr|>~jXs z(C=jREsrPZU(4GC&4mVBjI64cv1l2XBwq~1%1vYkc=Z7;Eob%dDH5jF4V98wnvd~5 zIXwFfN4mMh+p`3oTkhv5VYV@_QWNWX_;kjK<5u3a;cckjqNv{(fu8BhO=qdV#Slk# z)Y40*MpiVHUbwUqb^qEZl&BNj%R^)qKYMt^<+J8QnaC5?wcmQHV~*C2^$t3#+XOn+ z;vqnft1)$5X{f@~+H1M&&*|NMYX-tmpi8h~ zJ2$z;l^Oo(eOeT9T^51fKOXX(cRI=HYU!~Nc`+g?i+=kxaE07AZpZ?veOa4%t^RsH zanUxQ_Q0?e)nK!7VbHa+s;K33+I<0|+68P68%P(ejWdFrL}hQ@W=HQXx7Zz6?wC@w z96w$~>6P!w(kA&73lX^woHjtyg2ZcNxZJO6XUk)hw)J$Uw3MKJ^-!ndCIPPsgk4ao z&*&BKr{Y0Aj3IcySNZ<&F~P7+EjF2_s-jFe-F3(G%q?aqmXOIJ7+=2UNJ7GC6sX68C+^{ zz7}ukSUPtCe9-m-gqv=o z+)UfOS)I2%Qa4*3^Y?m{L%%{zOEYja#M}Y`r zSIf~JD|&da*$GCiqTpY0-F7gI7s_+2c>OIEnRZgXhMvP$kYp17yomL`f3Cnl*X8%D z+myZYKw`C}B592+@x*YIEMCPF%P0A5uGZb&LrVP1-qK0Wb(?j&tin$NL)JO(!IV_8 zDT~WHr+bn!z>&a@-o#V@6SyhI$1N+C$nda4Znj9^X|2v zI?rTo{bR24YijhD<=l^D0jS?yl=sxF9U^8Um;NRWICl$&Vsk6dD*>~2Kgau=vQygQ zHZaagPm4ow#7GdfocmGXt!)Uq5euJ&^_yIHggHgU?2x_SeD6gm1A2Z~U72zU<#q6| zR6}z#bP0nC9CJzV=2LOpl)7JUD1Jh2WOvB+`L+u~b$>@MWIrUP@{J1|@}I;rFnZ$0 z`6v*6kbP5o-qHwcA7}OXl|h|sdk;VKEt#0U&h**uKQE5j!CeiN>~p2Y^BcRncxLiJ zekRa;2`~KM@xdECkbWO5yV2fDF7aX8mApZwA`o*}_NG0YHyEUP-GjHJRanoEHfn1& zPg54W3mz$8@0q0X?DlF};?fHyK?XJSyC||2*B6H9)Ni;(UhG6DGF72G4# zqwC8NDon+HDp>Enshz~;K6_F5eeQhGV;`N9yZ?nsLYIIIfeZ-J{ZMYXp0hj48FST= z>&BPFz3oAnLkM+eeOs7CF4X(h_bw;b6O|AexyC-A=trm0?39m#qpzkN1PyK4@wG;vEn(Tze zMQw7ZKXVw8D>2vIv5K!ocTd{vTlcBV>78L^e;DdgUGx`Euo+?Kst2W!{u*)HV>>1r z#STC+)G5F-!Go=I#Q?E!)v|+8*@yyU9}e^C8pj!;x81bV*pEzxs>QquEyTf~#X_-n zfxgkTN;@lGL6ftj=w)|Be26K^o^L9M?YAflTcIb<7Ks88>z&XRAQff(hplpk=+uO&`~2~N z+g6kIu?Q^;mdf=7(MP-=#OylrRj4Eq({*RGeIh({{3nJW@>tL4%5=m{RWJyc%8`_T zZ;R;~1a%wO{JwlONi_sLJsi4|9lhPhUH57TMMtwh{z3$>SvV@myoV;Yvt^Rut`Br{ zh-u>Z*dR{~f>D>|*`15nt}RSvwDq(cEI~y|&#c1zYXX;a4uiJI?SNrn`!YWs$GbeT z_Fh86S-p;yeB-e8-Z@3fbatRedNny!Z+aufqXeyfvf$COW2k~r^*vp64&U)e!A{6C zjf7K2{3>pizxyO~ORv@0w+$mwO*b!IO6pl?L60vl?x1B-~9 zy$7Zl?m*b!pjbf(zO0=WepAr9i6A1ZNUy{VT`#`}*^S;(gSdVm0kHm%^V9g$M^t6c zjOB)|_G!Zd^koxfq$nW>6~lmS<2Z&A^&P?6A7pjmg?_|)&oCgqW!(SqWf z&uD3@d%C1Lsxq$^IMDmJrbhN&l$cC`0;gm7=a1o1W9CB!-JK5Z*d{E^(A)DgeTgEy zAjc)CDEIBRiL+P^4({+_eRyNS*PN}_nE5=%fL)zV{wpI&&8$+En`^$*j+=}5;b1XO z`DcEG{Szt3ln?UsOJVD0{cA|hUw@5Q5*AspE}I=9qPir_05!}ZeQht3M(<-bK)2l< z`?2aC=Z&s<{lKVuQn$N=cA6hb>4k|wSBpF>jq3dH!<{E`m4iZkE~BHUR5}BPZ3HFk zpmp(0y1ujvKA#QxMDFH_ua zbBUPc-7x6&4d~>V_7h*z7%B+Bw_fTLkO#)BQzG-Ye5u~9l1Y;9q+xlp+lZvKtLy0&>pFO{&Opmh0?RIwZQ2+I zro=bh#7b2Ojv?&b??vRSWFnz}zEsucB7pM|upubxS<~;LPD~OGA+o-hN51fFL+T{S zR|8YiIszw?!Yl)UQSDLBYB;X=-YpQtU9Yl|1$W+QnezY9FNme=dzej1ynZBlIF8U< z%l*^yTFlmR`B$}wjFX;u@rb{Tdc=b#au*tt*h2GJxy`I5YFE^g%{h~`D^qz!g6DU5 z`slBU&ytohg*GA}+|0K?Y9fBE#iJe^=mVgtNNj7zutFUVx>)Icn<)#BdWd%4bm>xC zQ=FNv3u`Dzh5ZbY_l=l?0|DZr{|y1rZ*L0SQ6xq@^fU81C*bT^2Eq%;>q zFbSy@Bn?zrL6H_vQo0*Oq$Q;DpJjc&@AdnA9z6HNoH=vm%p!c#=e z#@%PPLLE$w9;|+EndxjizywF=6u5VUt;@bZNZMUP ziz6BJ*>9jQE<~%`Rhd!8p{_)a(If>bh9T*3n_0q-6vK#7!PQp#ZkyEE(s1X{9!#j zcvPX?;%~*9w;#KTOVC0>agvEHt^Xs=w`UDgVycH__0|-GeU^^hR+Pi(MGPEyBxU0g zWO}5jUjx7q;_yE3d>7lCK25btK9gg(upDN5(0s(Wv#Egz(vh#}oA%Yrsm#u;;Fj3`5Nqod(eNN`c(4u->vx!vu<87DY>No5C zCVsyo4(}J(%WiytbBX%OQsO{k>r(tQUc+JTy_oL)wbpWpc2hI#t0v{g^4c@SLu+^0c3%_uagg?khsBP*ikwpL zB-(4%>>hYUM|6JJ0;`i|!Xt1&ENAoq10?2~t7G!*|K{5p=rbYzbF>n8%`zvq zhQ{~&+NNB9{t7nuN}Ze}y|%##e#fUY7qojm1kc5O=XidT?(k@Ypt>J?R603?Wb2jj zrC>R`{mdHGfyMb(Y18Y$ocCD?-8r6S_5^q+m~M@qWf-gx6YHWz3%r`!k#|*IIr}^$ z@?~XlYzQV~z_R;Dy7EfTz=B=cjQ4MooGU**8sh!f)}j<0$GQ~)TkJoI#Fhs94oY1t zW#8h>O}ny)A2*cPY?4O7a(LbLXj;F0(AwblR`T=<2`Sw^0=~kKO4&)-M#-9^;Z@;1 zebdq628XR2?O@YPPlM1-TAxCtP9h0TZ-@Hq4{5=5k|*7Nu3}R<9az%!&TXA~PLv}6 zr6y*c>xtQ7!#WDPm(T1)G_M#pEY~v&S<(bL?6ir5urPoB2>RtDPQ>rjWtsfqD~_Yu zN`g1@Qpf^bbTj23*P&I<)(VFg&lkyOs9vYivU;nGX%}fKN#TDvtho}HmX-mTpA7jV z^gaHn21cDUji=fwSO(2>S@EqgJJ zUh}%g&NM#u)cC+kTK%4-UGIzz^eSi2s*OZuaAWh{)`WlIBikH)LgKaIu)-WeZHCMZ zWfG9zK~D{Jr{Mat-wwrfyQ#03GQ7T^BR;k70d# zgT45w<-kNUWk%P+2X05~vrZP19EU2&jG4Dl9#_KD!TS)z9#&UU0TB3KiWCq-?IBi$@>o>-)i@b02x7aNLt5Iv(#_i4#$GBn= zjw?@yvA1PhQ%gx+yqxwmpESvzm+pACTjcTXX3h<=Yaj1s{45zN+bF&B;fBH04A0_1 zwLaHAj+rfHhWR8z{|&KVS&gIL_8&twgVGwM%KXPTuUVo^U2b22zB)5syyJ~>^eB=r zvKAKSyPGp^v4Wd^>X)>*^33Xir(+iW7L9 zd}2$G*6szjpe;!nuqxfQ(IOuRoKsn#;q6l`F%vF1}p5fQkfVzF|zcZBK}W!7QFk5S8d z?$-iLSl8UTJO2IegAUfPSo2`cikIxAxwB}nw~ zj4ngoJW4QURWDl#N+=zAVMBHw>B;YBd} zZ8SB>-7L!`J;HX*dd1euMdh4G3z6!hICT7|P!X0kT`&zYj>`oab?RScMAixu-^Q+E#g}8_;>YdXQxdnp&5MnbC?e!{;qw` z>RtQPNTVHxwnE)q19s9)2&tS57N3dDk)jv%xW|}HwoJDA5 z^u?H8Qt4ZlQS$FkIEy%qcXCP#`rOU-J~*}JPhB^ioRaCEu>GZ2oNwDIJK*uo?^^d( z#%Dbfe;-eJ&SCACj|LKZYpI+E#5QTP$(bZGSTVSrQ)srQYkQcaiL8xZy8X<8PZz|p z4a+WM-mGAnOqm8FGsM8-*7F*%7$3h|7b{90`OF(X{)+Q9J%oEzFxy}8wx2l@)%w_? z?V3jTR%zwIeFMVLyLCG!d8oCgB%f9=-0({CEiBkhvHU_C4o>ipg0(`?>@`9kdT10I zv#@XERCGA-Rv>ruw7AS&r8;g3?U-97RqFkF7e+rTj&r297OjV@&sG-1)o`ZNcgWW% zRL*iJ2OW(>C$u`CJxeM&`Q6c-MVdpbz!pncK`E(a}VqBTHmQ2xfW-%8ZeYi-0E#q zsk9)^k1_W=(|WVoaYyUJJl0}|??L4ebDd*|TFvEO)hC4f0;t0q9i@M@5%w)?r(d)5 z$!!A%yY_bsa#Byfy%Lo^`>@T{{N%=VNXDK*<*TIR=o=MPf##FrA>}@Wfg7J!T}!e0 zTYSW`k*JQn)ZR#WgNe_-x5SxyesoEW$Q3jWtj)ZrWR;PG%(?=7$b!3Lm6ocXIa6Jy z$Dt_CzF!F^0fM&4`+gELWey&+bEpqo_Fus152jse>c7~ccDdCdU2nbD-b9>@OO)?h zen{TACR10c7{}z#pTc%cw`C%{^z^Z)nmaN6hH z_3}wyexLXDsX=0o`a9iXzuH0agL$dq9RYeqOKuK_>C7DgYNw*XtcBW`2d&w8lZ_2N*fh!9 z`ZBVoQ`v>fvhv#B!jiZR1zgjG6WiB6u06fA7%mUwn~7N4oPQH=l;h`i1eNp1gm#rib(MC1=%akH z{n%MPTf59Nkx?(C^eywPH~S%ZpH*wN{F$6uzJJbp)#y~-Hjc+<38h;6dSjc?ASFLM zI^gWr#D`~UK>MLy%Pxg3=ePNcP=9`DVD-d6{?YggQ?o@~&iaW+@w1dok>gZYRMx{3 z^>F*ipo{X7#y8!G7qK-WZ|WR$E<|tCQZLCvtz4TY_<0Ur3sUa0GjUkzxs%3kA8^Km z(6(=A#kBW{4yB0ZcG>R^S!djBkystei3ujLxVv^@58td;@U4l#4mk0%{P0DQ^!N0j zr-Ra=nK@wL)69reYz_u=y!{?m?wOgV(-@9o#iBefadzWaBxbkA=}5qBa&)4=(0z8U+bT->2|81=@#L)ujbMDjM>a2O=TlDWztALI zrtgso)|O(}zel}qUo*oc=YLSuP&;1{o05|^MI8Kaoi<&3|D7%B=mYubOETDY_w*FA zGMW~N)QXV@1wHZk3+uvj6VxxBhALs4ZqlI#A2M8f6^E zq;ur?IZ)txU}AcT*reL!A#QJ6gigPH2yB};|-opo^k%n9lsCc6b~=> zSMD6D>WN;;uS*HSzhoBMnxcV#+@*?*u;MuO6Ny_>7*>1y9Df zt?_T;qEff)jZ!ORA5Qmt=(Ehq-z~by{atos*quDs+|x9XX8WtVY{#Y~7V}=)XEgVz z8~MB4=DX=5P{r=)RqI$aEm!P-lR*UwF2*2CLHotPUd$lapGoVTyff+4r*ULzGTulk z)1KR&d{VaNur71AB5tSbo` znz74{m($Mk#QF6z7Ml4ciC3h%il{qR9%{So4}DMzPltAnr0v|DHV6|u4}wLkaBnbd z4{Xq!Q(($5Ge^_>b{SAl!$$5hC6ha4Pn`cMHblx4U`363OGsp%|LI$Ev@tG=>>KtN z{|rLL2PpN`t8lU@CXo)JkVo+j%;kQGzXJmWl{&y`&|XW6sO5|0SM_-wuC^*T7m(CB z=ke?}!M_^7j@LurQQEEVPb5~lICCXBUg7et1!vse&P-Br+N!|Xe^&!9P-dF`q^|+T zhkY5O`QUvXZ*$%AN&HiC9Ln#8e=j@ca3&n*P|Xy%^|IyxctxC#JgF9J*>r9+c&8s4 ziLZ2JWrfU;E_!G5bm44D=z?S+3YWi{?p7s9)?{4p=@bB;tEyE|&NyQbmdbU=3AT-N z3cALWjUw!^0wBLyX#J9z@y%$$U9hxnKQktKhq%^XnFTAI`E1-VdDg7$jye%P$iZM9 z3yBByeez9d)MT%y^cl_s$$MuXW^bawwwWc_i$_P?+rHosVy3V`C~$#!Y-!5(7=mhD z3xdZYugG@6p*f3tl>6D|2wv9hCUf>?l?Q@UY#{%T0%zX142$D_`7e()f2nj6yPyH5 z?$L%tg$Vc!X^Lj>g`=U2?gq~vH2Z>vcsl15F9Cm@I9Cxu8BX~-rTQ{a$k$s3!tFC= zQs$l7prMyEE7r5JVpv`kYRd|ISE>CiXm}>;8e-E5_srI5T5O1)>ZT~qHl;Zy)&Q$; z6Wq-5I6c3W2t2vI8V}a!!Q(VlP4g*bCPax7Gso|)mQV8XkQtcads=ikc61LESKbx1 zozH!vi+_MYDY2wUY!CGe`fYZ-`!vC;C;uAcM*;0Ry`R3(`cZ01^!&1Q|4NaO(S`>z z3-ieN_K8s`mCl>M)GLp$za~VtY2Ehd@a~^)SPRm}%{ukRQn!ttJ8Jzbcl=Y=H+YTZ zI|G`+6Mx&KUE#^w_A}=YE1e`HZ3G)#vKw;7H$V7vch1~pZDQx2S&X-jOFP{|Lh)MB zFYbI*;~mzfgVdTN( z?g7ZI3T^*`=FGotd&XlJ_m}3`q1euAIE?Qx))g zKTuOk|3Pf<*-A^ZRZ29At_s<{2Bjd46Yd2yY>?Bov)ShoGjsk%`FPHxsO-jRkcZX` zY!h#OVosV{ux(hL$S!XIuDH2NjPOv0mnZf*fv zy6%(B6&BTI_L5j5vhP_z2JiI%OvA!Dx^mf_K1A)XEXX^Vxkp5dl%edLGUriz9O%nk z;je0kSBeiV+}p{pOS{DLgp1qiG!8}N$b)MCki^4}E+5(CwFK%^Vp;@bvOIEbDcTN9 z$MY0}lBme*#}k}#-oD{njB&grmMwTJax{U7Pw8oz^4=&980M(Z4B}8h)#nv=i_Y)n z)fQ4DIp6ZpUEiTTnz)vK`_i$0Q7CzEthva90#EYc+>3GpH@1j@{jMWft(fUF6Z|N1 z$Qr*%{rL6teQ;7m(OHq=hp?N~s2EGe_EABP?N0BvUW-m2@VYk`|0owql=TWwMZ6dG zNZP=qB3+!kHg$P!RkM%x^`C5wrg#dhPBKJP2AV z)>oIyOITFF*uFZc{i<1tuRl?NNDrJAhFvjh`2clz{+BhSfnBexHOp-hfy=(+ttS)v zKpYM~pIwdUHI@(xMJHgj4u?Kf!EdH#ie2(0m$zXt2>sM^x{3F|Bc(S(`>64do{6X6 zw`|LK#tC~H6(YSqCp)kp=lLy$FlVV} z1a++Vr+z$$|INnKU(z0fYW4O=$!q2Xx`(kfaY?GR$X!~=Nr-iRzgEabiE^r^bwmW#SH&YTMvwBkA z@-A}5Ap9);sRUo4d~CPjAmc%B1dGU(ey7ZGJ^t1g=~`3Dq4p`&a{1#jrNSU-CKr74 zk2HyvRp%LKG@FX95t(qo_obeJV*Y&eeS2Z8l##|CjV-b3Vx?hHxYeA&x>TURr&t$* zP!N#KHtKl`c2(S2F2(ELWtXjz@4UMnAhK1&*(?(rtcC5zd7L=hqVP-Yk6j>1J?%rM zCv`8dLxEN@3*T=PEIe#foAQD?Ha2GFLPUPF0_5v z61(r@T5fUj^jwUW7@FI+5bn!kMUhcJ(F?4d5t*lIKuU3XLM<;PURX|Hu|0C=N01e$ zLR;Gi2S>0rRnKKwY`i9QX#SRK9cqJ|W+6~U;hAt`hYxcS3C<0z-t7~7b)S_;4>|W| z1umwU_M2Mw--B)C?&2x(#sl8RIfOYMtCI@&fC=!|mNFy0b71X_h=q7oW;kVK4*QrJ z$rq7~@>Udp{Zfg7H8>)wc4B6Kt`Ju~#7h28jIg56d=g;#Qpct`?l(81q9=aN>WquM z*ZgA`NM$c&<-H}SLBNPN=xa&C3LPI>gj206T>i|eFnHSbwPLLOE(z%SGw*Stk<7uJ zAay|}8$9i!ZHg3QjR;QPPcU*{^eNHAem(B4PH@boQ%HztEnwkjSL%~6k#?cHhUR3Q z5K?V`7O3_*s8;)MoGw_XQ`qQbVG+Z*JfgP@c$-K_b%GqiomV|<*B^dluxXm6*u=vU z2Zn#`BN<#6CJs|p1Zz=LW+`ZT{r4X=o<=ugnGM44=nENyD|loa_iv{mnpNTEXMG{- zo3Y8=p-Oqjsfh!?vSc>#qlBsvF_pocuZcuBIIw1}j* zhI70t6h@R7&GBGgd?{C5Bu8t%MT2DnY8Hb-VMXyha+Qr@O^%W%Y{^;q_&SgY;VFdH z-rEZ|!z?J=>or;d`v^chbes}=fsT_vN&L-QC04rvJ-Q1#3jd+=5h&F;%n9@i@IGdK zXl+4=^j_6j6gqbQ3CiL{;qUbgtj0SFS{vafS;*`+ON&Dhdii@!?7$q>?KWHS=N5|H zWeZt2|M2b)a4E`s0>&ffTukx$hUqTJk?inqzANB@m?q4#4T8;cA-IJY4<%z=13 zjRS>7EsBC=7Y9OMf(bv4J&r}qf@LU*H3q3-h6rd)M&h|#71+*&q-oC7h4q2d#jsnX zQ~;w1bDVm$Qw&(E@F%->8XM3{^M^qXGuV&{&B3gWTCC?jj&EvMRq)s26!4u`d|1pH zj5_;W+pOc>`v5y*^N*GQ*csKokl?=sBNl(G1A`oO;SOSUF6@lE$jP|tVxT=%H<5~6 zIYGsY$M=q?%=d7`%4)~{F9DAUQSKCf{13iSgM*4jPEmHM!?pYw(H*VutWF zO<@G~Pa|^Oz0L$GnlwTx$_G)6Vzl?(DpCi}>`|!DBub#NWySb7L$fQ~{)AeRqluP5p2%wb*q=!~QwT1IL2OEagXqsPE)$$;MJXgA3+=6RUWhcIryX6XH~ z5AI8amoKo#5tRaFbX2b*GSwKs9Hu`-VB_@ovujPbk1gkidFFq3uw}i|&)I>MsCn4K zy*9xAs(-l01Z0(&c?vF;_J;wR*Zapje()VVl)@Oo;fC$&{bQde%*aO=^RRiMf6TiE zGpPTRfX(YgmdcqoV217=25g(?G?EuN2R20%woMbud+cGI<8D(ES0;ql|J<-eqRn!w z;I{$>j*bRo^y|R`?RpB*?Q<|A8wr~Pcv`s*zI6wY0|)T_l!1*bX_)-=DgU6(SQlS2(Qj5@OJ0cuWj89S?&^F4$cQSfr(l z@Qw9#{iff{p|}p^Prd zl%)`esX#c4Gz^eeJw6LW9)`h(+^8^ArElu-)yQx}?*8t?2Y&>mzdH$S=b?@|BK%U* z3L;wEQcX#AEi|$HzK+U41e=q>kXtWJn89L1y*l40 zUtkIY=EJmy#;|1#HRl15-icSAMV2dne>F-UE7fZIFnQHfcdc2gg`UnSQCz>-GD&+t zw_T9v`9)WHuo;_e6Lx&PywkKdYyH%CHW7o~P_i zjTA{M3R${rW?F-#2~jjLQ9NrhHY@v@izD7j_O+uCe&k+UytcY2%~LCu-Vp-jX5I8u z4X9sby0Ahf=8fHGVUJBdZECdV)m$7bL6p13UZZm#edCYVA*yFIVr*Az7%S?7&XKqn z`<6L1B+pmBJs;tFx~}3esa;N*}!bMDQ)W4e#|k6$Yzrt3F74$0#^#%Q2qY4#rI3^OaqU1lsh_&Zz5 zjO9oVE4^gR9(M|_YvXa``%f579BkK(a6y{LWx_zh=BfrRH)ov_W3yIyIb()I%vcx_oiYXtY zIs76XiaSwLkD*Hvsdwk}Ug)|P-I5y9vTI6P#X3Vr!llR%b^r3peX&gS;P;u@?M>I7 ze2C1QrHEd)cu47z(%@Xj{QiJ?|E-_-#`AKeTNU3!yD!Z266q?Gf3LfBzW=s#YrhK* z{gluGS3zj9`pXWhSGO#lcsmp=CtI@3-7*(+J+*1vk6tt0J9Bu#Ta4t^v%mpSk^noI z#zsCSx6skIJze$ukw0XEf?9rZkp&5R5PKZ#J-R5$Axb1)@sodEyKZf;wx)q~KFa#i zIZ^fmJjVvb*i9zO!=m;0Fbi7ZH+&u;v;-)WOzAgYc77bJcu8u;2ktgaZev^D#U|b6 zc6xS04k`*O9GxW3`JVOKT@Lfm-V8DwgPd>z4!K4C>VsOU)jj>@W~u~-Yi8@ah3x@& z7r8~wtvwt+aM|w>kbOo*OFw<>lgdr9@-4ZY!;0-I%_IrdnZyq$cApv2>5@HDeTAQ( zS5xN{CUWA9I`+oO)#=A(yhbEvllw75)M*)MRS&J~73^XU^jz^b8SaO_+%d>X*31vy zwf<0`V?ovNA}gptUA6uD^(_i)9CuH1M@{uy<5iJpc|BUk^J1#1o~_p~@6G6hJxrR? zg7Cm6>;*ka$S+DMJP+6sz15G&Fd~rBN3loC^sF-JiyC4}xV^ivW0!F^Ek5hI8FC&J z4|w!OPsMZ(8hZ4Se&k9jNsR3Y7kl*G)_^NIK=DE=l@0*-o*HfTk*#(h}#r zMa^?fHcux44b>>Ui^YYrzNF!jeO5b_vwUxC^qyGYIx~+xF&utv#~ac0!$SGgZir>{*ve#U7k4vk(=?AsyENqyDyi2mfO z*X}~!biXsF_P7VlwqI(t3uAMT8DHA!*g9BPyk0r-WF1FrC78POIoq^LfzbeCnYF() z`W_Wd!ss>KZJc)oq%=E3G2=UP<*6Dq_O1VhI`c3ju0YQU=Q~HDjZ@TPrT7Ki)kFMe{JHNl28JohShG>W z5YN#SMmD_GGM--c4e3dO=eV|~wJGjU_7af{Y1$k2nTv|mIY*_xeTa5ANt;P}N9X0N zltL>TmuiC-_6f^Ymx;3Q4KAV0$<^C(FV0_g46>znFCrWeDk_+X+QjMdTf9@}`N*Y^ zxSraF_O@oHK(vKcY~!WZmIi#?rv`WxMam5|?TPP*;OJ4dcqtqOcwp<$G@JCZ0j8GD zQ5Jre{7>%~rK{;+H1I4u$0vzJ)2$UTZrQ%^9we zp(v6LX4FD*nsE`w!0VdfhDeDwR_!CnT6*#65?UiMS-P^nFd zyA)vomP3zdh%&NNOycW<(K`=X_uO`rouULAzkakC9`t%i8d+@Wyg{3$vuHr-saqzx zd@>D)X-IQRnM6J`^hns$Lqc>9cqYY8+g9lb=^z{!M z?v9PcENQyh;*8jbX)S-YajxagD^kpwGO^CE;mL81JO~qGs9~}qmw4{w^0=A2BroLb zmyyuGGwZh4u-bd{O<(s|bIv9#@jBp!EbW|meo2ju<^JQrSp}UKF)xK8E7j>MGgN1n zn;Sn<=N*K)Z9Vb4|13?&i1{E%^kKK_k+LUdAqQ7oL_-w4^h<18WP^gcY3H>QcloCg zhJp7L{T&7lJ!TO*jl~~JvKC3qTv1yN2(Z%4NX#>jbd zu2$d+JonMArF2}P6g_%G>m2XXP$m2BMI8ThmSRos+R63hwG-Pla`H@Szc*i>WQi#r zd0JFjTKwa2GWzJ9Oss%kY)I{~GkQ&6g0g-<;W=y($DBf_Pkp41tYKHcS zLY-__dcY6H(GHoi$8X6_(=PltBpK14q$7MP@zy85y3oP%&efW-kJ3T(+9w{6&8udQ zJgi!JxJ@FjLR-3Rt*CNxh~RfnokfV8C{(LZar^1jzR7Pwxkm4fM>C#Xt%sNS_F)n8HWT`h3Mva1-P-PC537P zF}mp6ryv?3j3PRMAzqvQG~_0P;YP6O^ zFhX_%K~9JQB)}6vv|*$&072qm1m_-t48Vw0Jc67N0|-evf>^=`*((Hj4kKMfP_Gz9 z3B6qg(TM{%RtK5EFue`RgdxKq^aF;LBM_GafX(BO3k(%zpduKiFGK4vG~a?QT)-&d zx}$KQ;0wS3^@PwTm@q|&0~JuMn?lLq9!)0|*NE^-)d+z&5tps*JJD*_l=Jr5cMGU%#eh*cgyiE79WhG&|f z*D%cOgcf0#KLiOX0I2Z;@&*w1%P$-#b_rc922o<0nJ5K|+?q6+*IRoh^0ToPaPy!71&q0GQyubr7Dg#I%23f&S zK@NHWAnrAFG{mHaKAm(Cv`POe8e-M?M>C1xUz)ENLGBkpi5E6#=%zIg`U;Amt(>53 znEKKW4Y~XNQ`Alc^ypeR6siKMDu{tT!!Y0}M05#2%V&@#3@h@WSQw5JL%jgvc9)}} zv@)PV@G?+510wM<;F>i;nJ~<3fquZyr4!;(1u%L9a)F`w52y%0+_*(FWWE4Old6Hz z+w0H;HNbV+hk{_ZfeU?t;blSyPaVM0laMNaxU}@R(Bx^{Kfd&1#r?N0E7_ndziT4W{92&sIGD6xJ;4CM8HRAK01eezxFpbn zs~B#aenA@5_ z=%qGB3|*~{AnPzvZh#|Uf9}E#nvH_r^!IXDK2<4j&C{SRGAc9u`l4F7( zSQuG1MUZwFSusNprfUFMG)KJ9X$B0^&;)kgy@p}HK|>0j7mi?GbX4 z9+0VUK#&Z3AhWConmOc%P^ugNMNS`3`mRH(aL1K70#`)Clx`=4(xVTW)o}ws&KdxO z(gi`hV8qE4X}zWkDA;BI3fj9tU3Nefl_5qH&-x}V3gUOeWjSsN3_W8H7K2cxF@_fX`4%K( zgwaF~`y!R+-ohn@LyPfW5!&a6m^y6)oYLtJ)j9!1qQ)2z^tnKoLl50H29;N2&VL#J zHq`(F{>+Tzyuc)Pz660Y0^P3@bYm-!y;(z zP?)TRJ{N|tjZJ|p`)vey4I?7q2(kqu0(TJP@HWt*V+I_|6M;~6!vQ4&rf^0glpkiG zz}dTqi$u%;!g3EmenkS=N9I8G%zcD1e;2We8-4l#LSeN41*jh)$W4GiYZjO@P&G_` z7ln|?EWz+CfF4_dMg~U#4G)b$%)w(3CkL8@skuM`ogE8{YoRM2!`(s;J&XmS@Ni(n zF*23M1D}J7#PQ`-Zbq4_7I4Gzs2_A5wVuIf9w}eL@46cpl0DD z1c`tVeh5Jh6M^iwHE6x>6NGZs2CyF`BZ%1(zz(tj?0YE)r50v)Jw*@-TYxa9A%SHH zBMe~W0f%@2KyU=1FgpxGQaWM|1#}u<=u4T1gr*&kFoQY)4dTrNBF7{8Ox9l`+VdGK ztcAY!94RDe59&yNfgosooInd@oIq=Pp-=Gdhu}B5vlt#_TIjDO$Y@I~{>KH`C4af#;5{PHRssazO9J|G zDMD$y0rV(;M37U?0Ff_45b}>e_NFtCl`cmpC&~b&+8IN^^doX0TnRif`vo$j{T)9N z6}ZrH87@0S<^oE7tb@Ybz*=>350?^B^9FWLxP$JiuKyRg)a4)Y=gV&Rg~3Xj_~ifA+}QxjGDGiNF|>?m0X@S|Fa}7#`yziEsMv~#;kW^@+q|e7 z?m*ifcx>{w7}!-k)}{lCfn3*~Ux2nt|F6=*9#~A|%%yY|vqhkY7CiF%TTw9->V{!~ ze!+U2R}QDxfu4Bq_~mb@@lm8Y*_%MjT`Nv(8H`M4;Nic;j4a0kk*$v#pSUf%`!wXQlKtG~W zH=!jLj0XDpK3w2Wgjl%#6AEqz|01(^fKc#0{1?R^rUV@Qi?Xl_Vsp#`tVcspc#wN7 z?pcV>6C;WniSq}$>xmJ=jY9vyfPE*RB~Kup09IHGUKnYp?G`Xp2_Fxd#M073xV{(x zn%l&9D0g>n0atrFCu;#GS8GRmG3b&nh99@}#2>j>AV((v-lO{;IdOhpR|kl}57ZD( zg$G^s!^q?QEWm^A`(ZH9svoF|ZW#|c=?}BPAS+5dixc|4*H;;IU`E1Ov|qw39+>!JxtOkIA6r zZ>*;vjSxVlAUX;8h5TdqJ1}kF8qA%9I=ufON%#QLJ7x;#u?jx8(+&e|nehcAlOzhL zvz6!+>~{*N0QPbQ*mZC911@WW8++{vJv1Kxuzi1krFSzy^e|=#yDK7!843!*$U+ow ztL{ZJLwvy1Ov^QD5%0kB^y}c|o4W$%oOx=Jl0)S04)FLd$?(@EG?`kh_ z{J#)%)eZCr%*Hj7WPu=+yj3Id}SN{qxoeHA6cg;Ce?Jis3-#v_R6Kz*QMoV3w*Tun&vD zFv3qP9B@#m0x(3JwL=aM(9Y|JiCkg+jp(sQ>%V*B-PDi#d(>&>U7?=YoL( zu%KQAD$FT%+W*ReUsW-f{|!%J$l4!63uT4^i)T}yO4vw_Fn|obffT|p%qN*~m~oD- MqEKX&7@*<*0Lsc0n*aa+ delta 15424 zcmZX51z1#1_dmN!cX!LuU4kHCAV^3ENP_~>DF^~C-AHo*L6A_Sd!?nNK~Nebr9*t_uQZ>$b3IRQFRpVbX`M!j|Bm(*>A*SgB&0-uHUPejs` zN^B^>KE9bSv8&M@pL+1Sx#3$LuVz^|u3;{}){I8A^_BjXFW1Y;i`vaE-c=(t_K0`} zTWYe%mgn;mF^W&{2!ghRdwU;nIT(1mw%yo)cEkqW(1Xml-^hJ6sBR@4w*V_5F4NLa zn5ARq`0088Yr={8G+9%~;aN6JRW;>fuioCc%eYtlVv;klbFS0i$tKQv217%o5AoH# zy4ZU;WTNi{RTK~8%Gk9ZPBCLvJmo{^EnMlPiY>ozR^`cH{1&x{;bpeZW<9h1b7&)4 z#zSwq<`5e5GFZX7ff#BLw_3i8px7W+F!~vfpP=Y|E00F{{Pc6{b^W@@1pP(9A5;z3 zUhF*k#)2q~4mG;qs4WRk~F~vBPZTZ~vE_DFPr*NlwrEYn4ht8w9W-aHCamy^> zl|3R#ZZ?OnaUN5U9EnL7P^DY>30 zG&}+;+5JD!{L#8=1j!st2e(HX=}UObrf%Rt{I-(h*M&@GLPS` zc>aAtOKo<6gDJ17ho7-@;>o6A>^GCiZ3chWO9tI6Pg80_YsDWgl^348YnmnDd?izQ z&XC9^N*NSK9TrCo0SgovM-8)*02E%rxPZ7-I6iP54=V;TOJR3`tVuWlU>5@02X??K zB$Eb=m=ixx&fSj|f`Rc43j9`uF#;^haC}5{!q9z~B4O8V;BI;UY}za@d;atb&9~V! zA4uW`^BSJ~7!pkrXmECZm?U_Ro!!l0_VSdx@)6M-6^@$alY+Z&RW0-3k%{54MXO&f zuGjE;NeMsFmQ!C#cqA}1L_M^|>P}Hpn;XazU^lWlGmy+an}d^3(f%pfM2%TA?1L5) zV(q4Qfwh%)$rq8^{9OHy9qr=3t!h)gu4vCHUvhdXF?V;?hw!um_p2z6G{X^L$e8(6 z2f4e)Eox@Xd%Ff#kY~{Z!Fjd0^$Gc+;Y!ezvYq!f6BCzlB3LfBGUv>Xh8Voc1-re2 zQh)Mc)^#q_ItSpItbTuPUDP73I!NyuEJArS&s7wX)O{LJkRZD_o0jf7{*wq5XME?c zB(EW0v@HIKmLn=!#R;wVVIriVV6;eAohlmwBgLnq@Izk2pJBL)H87;BJx;iPysfTV zPCzAlASITz`)$J9btgW)mFINlJ^3-@gW3z0%-;OyAl$-fL?Ps^j_!4KX0hx{k;(h2 z;e38X4q{jrB-6)D>wB%wWx|pk+`(PC?+GcCGEezb=TZ=Jwlgj}jImg)iEgzX2QkCAzGEm7RpU`UQT=Q(yzbhWTOo%U832Rlnw-l(m=Q<-V8^oO) z_*NQQuiPbI)&+s|`;lfR!<(pjSNuLV{yW1_g2y8iKD?rw#Ezm}TOVpgjnwkwdqlO5 zOpe1((;@AVJj6 zakh83(#h=~++z^fH`W)`zx?_o(Sc0f`s3Nz9ucsh3cG;1SgN4oM+Knd4|s0MvT`d)NPifcvjxMNL|?2Y$rm3_9PG_xH&^9@gL_?eZU0Q zk|PXgwFGzGRsxJ3I&A{rCc=Wu1pK$UAc)-UX+6~$FYofTFJuJo9FGPA*`K9KY4-B- z3N&vJoLL*0cZ(FdKlTcW9U$lxzpXf(eP(=-_ckxa^L=WsyXf6qD!K3xmeq%eXT=|K zCKo9u53@pQFL{L3)Z<R_|EC~;1k=Hx> z1gpQl_3F1=J@@0NntVAO;QLsuONN-h5TeM{B&y-=C9}iA9FWJKK_2w{vqcBy^y-z< zugIX!R@{f29NOH1u50eZ52E3dxl|En{-ra|$15n=*!r*Qn_Ud(TR<|!OA`3)vJaMcbQLlz#vzF-qk?CUy- zU}9k45o2Jm0dFCglz>Ygi~zvzhEXAu{TONprYpiAw&Y{$uwimXg8Vx%c_t0F1Dd}b zN%!7vQcs+?&VDyu{*C+9GTG_QWi7`yY%$Z}Lgyg9p<0*Zk;Z})zw^=dF%^d> zf`=>N!}!PBOshxdt-CEvMLrqJ*KO{NwnLIWSp~PKuX>e71fK;fAq7X?rLXQ-WBym6w_gd} zBSvy#)yW$SU-028mOHLHIb37#zZv)DsaS#$6|Yr$(1yi;a{QCah;b6aC%Q$Fh{_jw z^I|s_J>7?j+4Y01^R^{f(w)v~rVwk9KBB&pdRop6=J~uwR*ZYtv;%rX9IlNH}#(>6VxqU`Ef?SU=4beKR$kAKnr}^73A4?Jyi4-HaY8 zEY?>a6KfSOS+{H6y#I74u@!@jPOb zG7>KYRo4XzE2)yBo;jrkN2N`W6>l;??Y@Ta^EtMZ7`iu}a5J2aH#2=O7`UTurXz1Y zw(+*J{rXWOJyF8#>P3mQ?AtJT zY`gZx^x5r7?1}Prm?xCNs?FO0%V9#RJ5+e&d{?#>D!Fyy&xCVjlqYM=hcIu~xKRsj zQR%yesyOgx3b}Eb*{%1904_SWn$fphnLS`Nu57;fCY!K~yJzLj8Q|ii(HBzEUUAEE zWL1I!$l{c|xmh)NuVrmbVEOcx_x^($^bh=KLkFc^acT%NooPV7Pwa=bTabo8_C^a#hN``;FL)0itL}5NCTUuKpP*ZdNB<-hJ zO0b{8;jEHSg7%NE6;6dK$wda&OlVeod_ov507XRz6%nm}otQuP(*~d5@6FGGpcJat z$cw%cl{qL?@!m}igHw@$2say}LwVhjv*qhcjpjUpxFp7DkFSP89U)OcvsGbze!o2R z#l}eUKYVu=YNYiF-!rC6njdN+L8i&?$4RErq~d9;&b_hO-Cpcwnfsh(-AOeURifzM zdPq3b)JrQ(0L|3T>pHuo+_qrCgLoK2#Q)V#llua%+@AVQP%C$V$cpK6(@ZzhB=|s2 z{%54b!aFRjU<=sQX5{_Z+#a3bJa&5Xne|;0Q6IdK$cA~@<>-g7zF{MUnbT0J@FjXl zrwqK zlA-Ephd`d6)OE^}zH%zbg{v@xdS8G+Ui2zUJXtv9SoZTr3^{QPEJ-BXDWpp_6{b?3 zzI(Y2i~Sn9=(s7LsXR>7F8u+M?|aUghr`I@=i<^ZtuJn4Dzpy(v$Gc_3I(CxIC77T?v^5JndRXO>r;8r<}Wqt4DJMRAGHt1cHLWS#nIRD zb`7GsI<)P*dSDppXDG_Hg$Vm4ETX|yrmklD@O9ce@=+_1pWEOgj={dq1y3#8Z4`&k z9sQ2Ofdy%=08gy!to$yjSg}pXX2$65o@X1~6<;02)6Ww5na>kl8%@jfgS4udS)LU+ zE;BaD=$6hmU!9I3%Mh80MNVtyRNRaDQ_sYzbt$0+CGT>%Gm9^DQxTRg-K3e$`y9j% zsw^@%*6k|QmJVsAkAr*o^*au=TPXc#s5u{;m8Y-Xx6w+EG9ELzO{2UY!Oc^!x!$HY z9wIT3awHs)BaF{wlJcqM<+H)5MrVf;VbMe4zRfP%JWs^CF-Mg(X_*K{b%!-Sl7+eleeu{=GK|fZ;PZ7E*o)W(dQ6i#?`#U2b5$CoG>)TA=$ zRee1OcdSiktT;-?n2XBB)=i!Pvwfm{N82OY0Uxe6;@B)8sE~m{wsp5r- zucN->R1aHPI)4+>FW;wuGwn7su35Y{$7SwsMG2F<4h{B2@JM>7r}|tklNxRhrk;d- zVT^AaUZdwz=cwF&yVn}UcE`w2jr!Z$=eS!E{THvZ$`^i++Xq@xKDF$$CDsbm(M-1g z_*Oo9O2kBplyv!kkL|&&S!nM}_Q@mzmo07ev=jMrPN$?-w~(7S5!3WBN?PxkPA!}d zCX6!}vo~@$Y!Ma4s-h8N;F`?5ywErJPfXZm#{Ozbgs3b z1T;-BbK}3+lk)6-j6%pn5Y-BuIxAERg`0#I4t#^~Wci>O|3Ef^-GK>of7fGM6=b4=FxLeUBK+ct9 z0iEaVHR3=lB$v%3_f^%!|qqT<}^>W!D7u1CO-ZH28!yb1X$29CEcD@xOZ zCntO=MP6a$jg0(G;W#E7o|6opnN0CqG7>&HqKu>IdsmHX*BWO>Vnw-?{-oH`@;t2y zZsfAyK-jow#&fz&Bm5@QbSUTkH?xo@l<$MOq^<+ zbNNe)4TM%eAbw|=R{DyCFs+mU`A{ZzR>uh0c$PU@Cz65hU=G_(1!*{sWN?r zS7nl4^y;L9p^g{`TD6SV@Uhw6;?{6RZea8i!L9D&Oja#5)q(3{*)`WzpsokocT+Sd z-nr6imXa<1t_)U6$F6)K#(oGChgJsi=Fr^HC%gX#LJPuY^zK++?kq)*-F zJP_EUZTut^Jm##O>n-m#ANs>I;ZANmMJV`_#%r1Im#}N7id5E+ju7!`&s*n^TN>H* z$F-YF?Yj?RNf57wi(ZH%l68%R#9aI5z<$8&;qs{@?X=x=9(drdEUowZ<> z3qh^13*&v5HEFu~MZspg7v+){e2?{wW;tAF!!v9tf>cX(G2X$we;-zn?j;ISw>K!@Y7X z;4dv@uw&f#^_Y2Lgc9G8yp-s#Iw|V8%T2M)Kc$eXLW<=L}Bc~eb}O+Cu=s1vYdSK|8%T?c03E*0(}&K*_X=G$t^)XlZ1gwz7{V#0 zYH`-YO78IqH^j@h=y87k#GX`Qjoh1p8#xv;R@gUfs0rvc9C|EGyX7$*+nuscQx!P* zB8&#>mRtm~wlPIxoPxs~G|57_DFuC@3$OHRgK`tgVno2NFZYui3U9Sw(Ihi3f zxS${keS+itMuhMpe&N;mE3zpYn@5)~5%Y&P$31hdt{?6vC=|-_eU|b`7je73q}?~$ zX7AA&Cf&MnpXFr;|1xc@W45`87j2Mut7u&}VU%?FwRxV(llv(m`L}+mTP$zR)U~Ne z+b5mchteHncS!%dbw=$vhhz^Z{LC>#o-;cb*_~N`va3aN;)%1-lrLRr@kZP^(;mTx zJHsu?c(31R`JR%LClod}eJ^+9)6Ws^M+4J_mZoiM^%~{*yN`d*S(NrhojKv0 z*M0D2uoX*DWDinY&b5#d#;%o-oY~|SK6^4R*7atozFl#G-ydi z`~@y{#K+Ywiqf4`w*<;B55s`lv_9ze4gDR`}gx~ z=^88shRwi$OIJIORNR8mLNG%N_|pNCZJ03PpVPYX-wHNEk<9|r1tt@b5`@aH%{`9? z??1egL@tq_w@rj~hOEsRHLFy;UzsR1F!N1_^KN|DafZ(`KeMJeUBa3>%DtOuD<*Z+ z>>ge2hVw(k&tH!*8!7V||47|W?=QX?|84VhNWRJLUBb$BuOTEpL`mSimv!=e34~5} zynzZYf0@^9J1>0~EeovJ#kn4=E8Gbxci(X)X{vWMU$ba_Wc;|RDCRa$<#^ZbYXELr zdEkka3WIdE#E)!=KxKcC_bg#~M?~dV7Gu^=*{U8?moFN)XTK>icx7kY+7`;IM2Z`H z-+n|EDTTApuo)1zi!Y7DN zNzNg>LrR203VEFb{`0FNE_-Vdddu+=L^Uim*2H>A2t~)PVp_FHs@GAzb68_m1B<&o zqAD=?$Sn@$k}Y8q%%h246w@aB)C=7BP3Dy+;z_5B1-ypwNpsFvb+a2Ae!K|Dgyj3Q zt%t2Eb~_C(&3)c%ci&rJ!`4A;UJw&poZI#`a|w*Zr6jpuF374yyMB)4e5aYy*Pms? z|2>pVdR|AgIU%EuSCpR8KrEf&z|*J+k)!$y&m_AKvi3Azq;sjQnW%JDikOQ+2DjSz za-@U#y`n?xl6j4xz-)X=BuO(OIo+FRB-4IeDC_s>O5YEJ(05%i!dW89eTENbbW`~F zcT)O#K0oME^;r-3z-0R1u}}OfcA1z!VYQT{yX3`k>w-N5@6%Y{VVw)Gq+b`3wVmfp z#}o8^TPkXL=$AdZ7kfuMBVBLU{d~2gv)-v*OP2ZER6L0$+>utj`o_Nf03(YM=iK+z zS_#e%{bo9kQ|Q-pePS7rHaoX>Wq$v86@|$=(H(%4*@taHu|6HiPCr2M9l%&2$*(X) zf$XdQeSduhYLLxWumo(R>LJYR4-JXg3B!f}!zX{py+nxHzCD##7#KE8sQW~A3^OHQ zjK@iev=Cs4hhlvufC}{^kA+xRVPS^r#7M(+5@QL#T$+UksUXI}iVeQ7AT4-~1Qj~i zKyxn(3-Cprg$8-h%c4RA5e<`@U;zs&Qf`9n$p%CWnbXEj2SaLNVVYq=#F6EAn8nyY z86GAU(t;FI0UBnLLJAf#u#kg=0%?;%dG{XjEjeb$OjyY*C0MAyLJbxgWXUXTl}i}s zE+$y8kes{N#g@q8FHAq`fhbH)QlPSlofc`^N@$Ilg3C!C=AuCd7L;TF3nS7+gGn|R z*uVt``tB8Tcwh-&SWwTwN$D{t9chpCp#Gv$r#ySGKyKEg?2Yz1;&2jjG8>ZNGGCus7#Z;E81Po8RQXDgheh->r`(TT zY332)gzX}sx;jwfpneobQ$?Ax^@V0^IWZxL1Xor@Eq86}OZ_1uLWv=7PeBs{AZfli z$?Cq<=u54r61}|_$$fe;2w|IGqse*GBAbkaC)W4EwX1_4lYv-J5D_*0)-g7*d{#0t{|-pW0urQrI~YJVfF0^)+@C&jSs zuy*|uY#j4Q;u(|pgVb&njXB$Pnv#(-j4SBM?A@;8rpnK@CkWr`Rg4P=AD$jy&QQ53gyS>)zGfd52ew^XIR*S%-_oapsZG$Y?j7?~O?8S)Z(nliR*U zmRP;Q!TLbuD>S0^PEXEH-bi0rDB|fCO}Qs3=h6EVb^MsJ0AW@M?3agd8%?%gwF~w?l5|%EEyHr zl-lSb*7APW$3nN%J9M0$b6r-AyNczrJSEPX9J0hE6VmSS+*eAT|bFSfL?jQbk{hyc5 z0@V~JC!_+t7EwHsR*k0Fcb$Eui7#kfa$+ofAl<9wFr^Cdu5PB!8Av$6yBHtKeE=)N!`k zcf?ko{=+01VRbqsf!oZ>o{o_iX(rmN=dM>R6*h$HKOxq18rnQ5dbB*^bvLMX=UF!@ z4bKk^8Q5t$C>2)SR^%gea9cCBD=U;Qu|F!&DByI81_%c-D!!G}G0^h>(&-m#l=>#r zAtGV;aoD#Cw4X6)_OWpnM86l7-$_gkwM2|*K6dcf50uN}vElN)M(0xgb)ELn_^;4& zf16?fHY8(i?Rc=oq;Uun{L<2dts8dLp*r_pPiA!ARU#t!a zyGE@Xu#%rcKhX6NvU2Q(9J^brXpWfO{ggegYfN8kcO^yraT@zxUFYTbu{;ExMCF_l z{-_{pF4DGbo$=#UnkJiN7{lDyjIgTP60hJ+!#YVmRU0G4QiAQ1&HHrEo+8J8^4)kl zkw819zS7pnKt{QGh?|&aI9zSDF*Nc(^W{YRLlKj(4dVK`1cPnLZLDbHjHzfuv*3?} zFmfI9=~$$rBez2Tq)Ypx91j(gO98%(htH4Zt9t@&78x@WQG6*I0e`_wb4%O7Y);boLY;T?5RM+A1_ZhqJTzym8J*PN^>R`-kqe zH41!P_$k#;M{MNNaGyDqXHTdPwjUUBz*oyckTTAjokcCGUn3Zprt!EchUe~?QECzS zFD?5Bc%K5ZeMhr9jJb8S*=3p#QP%{XOWro5Ydp_2U>aAr^bCzyh>f_CDBp%pl17t!EZqTl8s!L{h9mqNKUV+AY|$#XD0bBlf)g}@=c}F9*IRtNL*(Z*qu##WDpI8pd z>17AYHDpdNM|A+E@EYkS&Qm3`V{8YUjYHlq233CUmzD+!(DEhmlSVwI^j|KdbTi2wUlDJ-9pIss zQmjpmUyT#hb#TV}ng8ZO|oO$Z?sSRBpT~idJ`vS%%dZQ_z`Oz zBe9g_KqM8h#9$os1ny3VY||uBdiF5IS93#1$0IP|NkKODIzJ~_E7!Mx58IuAg3{OQ z7mnx!bNr-+W%#hmZPN=>WX6sk?455}jl|I7Pwqs*a=d%QxQwx$wTA3!7h{sF`XIGL zyKjHfp22YM9p>88!5LD+rkLEB>y63zIv zltPT~7u_4R3NtzAF*@7(n8BXju`I{I5$z0ECgpReeu=HEV>#rq@Z0)s_9UUUtAio2 zAF*FoK{H&slqD4X5+1cJWB4YBpUyq1!OuvTeThFX$PnyI0A}LlKD3n z7K-F72o`|T3Fn2mg1;!f<3MNtRTPRRg`|*!AQlABb9$hm6MhR;$p!(~u7O&bE|Aj9 z4FLprL1Y9XD6bF@)&;sHk_P%v@<<*a=>~1gl_0>-J&P+E)UJD7n%IjH6^v7r@XD zN`oQ53?+>wfLxS3T?Brhr296&Hvr1+6TlfIGoU~fN@8LI$0+H52gnS9(t;d7pyW+@ zpdBUqSOAoz>W(ZFFp&e1&@hNFRG@(KeGvUw zyg|d@;)Q7fS;L_Dg&wd3N|-j7!Pxp3q{xqe2E;Z{z|ZzS28kn}fzETFYy>1`2SNdo zV6ckd3m7%ySHSfzpd0RVzy~FX-U2NsXwoLoDDqN?H*C4Jg@81N=rwJ67QKI4CQ40I~@qKVm)pjC_-8tkG#ggP3KJOEu3PJ#mo(Lifrroife2WT*Z0)Cok zz&8yShj;^I)1dp`+Mpf7A)FWD0hpr{=Q^Om2<6CC2Suj^XlCFNP{)U8V2uK{x@fSY z2WG8(ngO|1dT7mtKBys?1vM7>XpPP+XkhXP4RTPxzyJ;A3_aw#!6ZWkC2^BQl8m%F=0X5|d;0S`BqNfbs z7DkY=2r2?>(2Bc@;3!_&qCqkWe6mA>6%?R#Ko2(45sZcW5@<;22<$I|BTjb$eZK-V zn50fH3;^K_V*#d@;G~TI&9BD5VExa{`j6~)LwjZg?HT`@Sp2^<_Gjoe!Bk^<#{WyR z1z#lm+na?4ptucoq;VN82KDqr^-2xu`W$VmzXAr@!3$tJ1{v>GKt`K4s)i0Q@`2$2 zmn&dL|1Y2Q|8w2+0_}zD5Y7oG_`ooMp%pkjbi@Z8Rz@|@1-JzN*$(}_=wZ#Tf^B~G zLj%DdAn16B24?@rbOM^FYx5A$ z9JL3at-)vu<4{oZXA?Aqpu3vC4$f9xC>k7~Kus7LJct0NPGbYKt_VkKR3kx6CQ4Hh zfz~W+fCj6PXdt`^mjI|Y;S7NPCfG6M7_@p2R73B)LW8+j(1q$87y_v+aE&U&qSX#t zAV)9mpNRo$82_8|3%*16*J{v?N7J?wz_IY{!ATkZWaomMN$CG_lYxEE86ceWPaGj5 zfWkJY0CQab3G6@;+S|!C*yWyNG`P0|0&)Niic>*u_6|5|u2i&U1yy}54Go&o!D_i( zu-YLVtqIx%tLt8)m-`nKsL4Qs2X8PH}WT7?D~D3Dr> z2Ad#&ECM4(;P`xzUOm@M#WA8%ns4D? zVC;ze?=tyP2bi3|)uB4A0OTA_kz9sJhRSrN2jWh^02{RZR|{r4|5-Ss0GRSjO7!1_ zY1R${>W*Nns0S`yC?B{R|KmvM3S7?rN{#-n6?i4mi=r|EqGxa_#(yPI{)_f@5KRj} z(f*as^)H(F7c>pb?4n{srEztFkN!%ieC&VGNXAh#F~)x-bp4A#F^zWQbPhWDlg$M> zO2qwNM{?iMv?de{l?<~B?m>Gn$p3CHdkIY=yZ~u`@(93FH(K)lr46p4X+|j8zYgdA z)wge(Xj&nPhB}yg1NQ9}n0LzlFIveSns#~tr)ET*35cJP#@K`fOyhCFfm`^T^f0S- zEPx3gM8P1U>>S3zaB+Di~Ofw#b1|D5nA}>;(lt4FfNT7%2e*7-*sn9+bdlI>3is zTo8e$DD<#)1QlxdbU-U6rx4X_Al3hlTto_B!{(#}@KLr#!Bl{=1|2nU6FgTz9j?&B z-s92(IC!8tODqs6zNZHQu)rzf!{)>X5HL^`RX`6c=-^PJ$EFN6O0~R8|Nk{30qny# z1*veKGW>s4*8yK#aHepeOh5@P=S=`SqWOE|_~0Lr=3!u);6V-jUpKW&YF6~nNP7vf z(9`>^pYU(XO*&S91RJy@!2(y4Hp4&s2Uwiow+uF@qG4tQw6Vbuepz4zl2I2Y`fR`i z$^<<2q5tc5xtuiMOu%^!bq@6RQ)-k9uuZ_p0BnxK@frW`Xb9ZN;F>3z54C0jj)*v!iJ2fwkVY*GjC3J5$o_v)R<>pU From d90b877c5a9c80408ee227d6431db1c969f90db0 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Mon, 3 Nov 2025 20:55:26 +0100 Subject: [PATCH 11/14] Fix VSC logo --- scientific_python.pptx | Bin 2513724 -> 2545106 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/scientific_python.pptx b/scientific_python.pptx index 6bcf84908b2df1088a5d4243aa34839383e2d793..52a8616bede7495ceabf563f9e4ab797ba5cf176 100644 GIT binary patch delta 52498 zcmY&e1yogCu)c8VknRovX{1X!1r(5O>F$!afP~T^jkF@&-HmjEG}7H&?;!l|t;brk z);Z_fGkf;z*%SNHP?ZQZnx70+l8J!?x|e$hg$04m(PPkfaUpEXZq`1MvYbt82(f8?3|ASqD~P%6AXjf$&b;C%fuvSLay5^@mvZMSl2)+kv*aU2b| zv(IiYF;Q&$&&gh%2vM)Zd>L{dQ7vv}fmvVDytewm;+l&U1qC95%-HKs27A9sQuVxV z2Fh(HlQ3H?XlNj-ZF$+dG~rai!9`#2D@lx5UFMH*q7Hj)Q=((EO6n|#7oEjSB`i$N zcCO+JY>SI`{03(}HfG8ZQl)T-`)y?A@w2J#G<9fp=YrTjokhKk_bE{4`0*)tpCso) z<@7r20q#7`RC}{^5l`ORr9RQn0w3JIE%sV{2c3usLH#^5~BaZ>KZN%x}^ET*X z*X>0`FDC{?1HKS3Tg66R_Ud2jrY8LDaD(6Fap+g(ym;XB=Z~9BjPHs~j(5U$ z&<2~{myLJO69uZcyJw}`#*~ai+dwqb#1Uqs-Q4FOE{!ol-p=$(UKzr%KlgB9r4oI< zoub z!8v4fA}h`AoRC?kkvt`DILEFqKg8nHhiJt98LLH9n@eLBWdv*9iK$iG_D?@Vj*q!A zI5lt+f+H=6^}yJGMV+siUXK*9L^6mZ3&S*$6pJnTLGhbCQah1ZMLtdnC0*b9Yxp** zi=3G6@o9^i84&+?Kc!QS&P>Mxo6=un?^=%3P7jejE2MdZQK<6teFyV=j~;ap_ZP4a zC_4_eJ9arhvD|g?Mmq!tj7>&oW&Xq@v$)@ zhXf}qd-l*T#VSa^pP4gbis5bSSxd;g3LlIRjCGwbTCBC&R+wP>TX@?TH<3xXZFR&^ zZGk=-P!uR(8e6z*xx4y zb7;gwr%yFdkbgnZ67j-!Hb`HrqC-Hq7}A=37KCT(E5bx&uuJ>1!GHAwZfu76l1Zda zMT6IToX>Y32lGu@%9PMMYFSLCHeWp2)~|3LE1(r>R>EC_MKr9&1FSEHSFF@FuOl|t zs!Gu`zRdsWPhBUdYM%?~D%X!QX17HUQ;C0R%!k*+hm_P?mHSpK?c+<{LrV3lSEMkXdafv?a6m&BQ7c&_})I~vU35!!Qm28f$KU0%oxl(g7NY<36 zUX(Ldl()2>m=UiGqoux&B7G%j8fyZ%6;dM1dX?vnY8ShGnk$5oGLpo;{g>8;II+0e z@h>JdeW*PP^GeHShJ~pweT}kXB<-$yKFZbC@3YM@uQgI;a)TU+hN2P1X^3ZQqZ=8+ zax_@gGB(MvFQOZ6Mx~whnAUW(cHUjB=({Oy2Bx>H@9&r`25!7bym@z;xm+xRdts85 z7&t(^mbkzDAz@&=9Xo(z@(woUhzI*KF()x>yU4J{;7<_83JC=jRu9M9$q zCXP>b0MkIY$L6PR851j<78hETwnUL}^12iIJx}DNyT%I3|G-ftF1=Ok(Kg!5PY)}8 zd&CB*bw?+7c}Qq=s2==6Mvit$ZN;@BvgRw{m{J$^yB}ss7E-c`6Y1dS42dDyK6Dc5 z7lwtJzf|965w2b}1_z`>g4RYqTw>={ilv2zzDJG8NnC=K#A+L=YAY}E1Ds};yQor#0;+KlM`oO``QjZeM~I*;mL!_$uN5Mcdp9tA z*H6|w48v;}7Q7lSZEj(IF8f3NKYydkjKaFqHruW@dSxlr44TwFNR!(4?(RpMbRALc z^74+uVY*!TT6uZN8eZBGcIt|q-OsGXV<5rcRBt+h>%?JK1E)TV#^=<4nIU&Jvpkp& z4?Z67A{QGXl}#^+oN=p&4sd&_L}I)^nwi!*bh1(-Hlv-;UU42Fv)x-UyLRF;4w&`7 zt6-yBSoIa#N6dJd7g2mbAdx!Wo&d{3w8L)Qw>>mq}7nk>@=fU{J(Fto}IC z2YZE3^>*?^hkHLZd#TD>S77zZ;tk8|>z}=w5b=bziw-diKH}+q2bGO$rQfE!_QW5B=GQt<> ze|bN3xiD_3;xeJ$;8&Upd0!zmZ&tCQHucH;cQRqWtg-4&<@f1nJ{Q{$qvWvu_BA5J z?%owdWJ6&MbgD=eOS(%^ip0ApX($#WJ!$4Dnt5y$umjYueG7&N|Kt(koaUZollJV` z$1c(h5NK1#MmikcmSLt@g*2`W4DWjwARNTGVM%^P zIt>7~N-<~*Anz&O$WC+;x>MNVciK;FBX>d*e-t+sSR1s(vsPdI?T_;(_9a8edO(F! zk>O?rwGWQ5)?XrQkXcDJ34QoItGpkoJT{z8+~wlumlktX3V&=VLgKF#JrkG=(A`BM z-*{CCB#~GC?IKK*ScXuvrMS3fLI-e|?=SzhUimU)u!6^t?`FeR_j4BtH%cUkNtYS< z$nLW`(hH&#RR)T9v?}~JEg#v0^bhU-;3iplh^^YlcV&24R;^*GBBlBK@E>rVq=18P z@B9Vz+B#XjIEi5uhK+TarMwTN=XlYbO;9z}ul$YN3W|X>aBv;sbPpv?pOQ+*EUHvW znT8uWUw#}pwdW^}t6ddM?V!W%YWr=rzVLghI~G?Zm393Jd9=%*1NF$k-H}n=Pf640 zjvNIZ5?F=pE39skFi8XA0Nr7-I|CvG(3p|psClV6;XPlluM|5 z+%vJAh7MFtpRs9EynbVR(oJYuU1eoR$%!XjjE^Z@UWL6BEp*Lya0y97*sXqz#bu{| z{lS`mfvlKMrQheUnHHrn(X2`#EFnvAqgfYC&!Tc{9TOv znho{|PsvIK>`mXs!^2MBhETIuWmm`_7O)q{Yraf1)5kZo`))cd+t743K$+Ha>|M$T zM|g@kw*RtGN;pmH7MTU|LBMCZ_jB{j0|T`_cniD)bRlvdMu%ksvhP#Wv5r6qK5 z+i%0$zlXdz|Ut_LsVb&Tb}6JRw*&m=JkB+R|sJ%O@Mz%Nec)Vh>i zXGknI8m82ctc5|HXT@BU=Hl~>f|0}|lrf`@iV~N^Btjfdc*$^y10$wmWvN@Lr|D~6 z$qAR&K~S5kdTd=3wJAL_--JhFK-ghG=3tsm{nxta0&;cZL=|f)sdjLFzWs?rr%`o2 zf5+A7?6y&jdvkL;xK53Gce6`xB#f`_x0=&RIP*Rk+9nOj{Jomf7&C6d5BP7cKJ3cf zI!kMuadB|7+r;_@l#_njPBJEVX-)yw`SfugWCt(RwU-m)`Knj0aqHsVlOr|p=pD)B zc~|taY(omZFO{9hP4zU@7e?s>l=3;xs?2{Il|QgLEBd?lqFT97i?;aJ`|fnK!nqkI zHRK?F38xohXT$fdS7bplf_TwdB;Pg-tJhVfCe3CqRIlbYr+5zLeKV>5qL81@avHW~ zq=>yIp>pGs{w=9CG1xE#WvSWPUlTScjSbUKgjftAta0|jGhycT&%YA>IT_F&r>ul4 z$HXNZ$@JCi*Id6^`2-9#9qEkTn}_09m(8UW(QBz;--9ghq7=M$!i(wC>d0<$|3M*e zPgaiqB^m>05yKv~TvA|~^2JS)aOW+;6%|Eyx}bdz&LH7&37EGfWHy&-HNtPsU1fOy((MyCCjN^Ft+BOX_QdjbbhQnIM#qdZWOoxE-K!Gjcg?E|<5s}RT|AaUp zyQ5#zZ%Xy(QLZAHqPjPO-IKby*JhCew3p}ZuPi;7mC@*Hv*R*7|1^V1z}<=t)mP16F&NmcHRYJs@gf~S5}dc0<-+bhfZrv7+0%@o+aCL+GaW97 zA{~>iK;{!?rbYMCf_iU;1nIQ03P^yVWYNa_=1Cn*7_WkFk5W!(BYIp9s$Z6JB^>#w zdJ$>6R|VvUu1i$z&Zd$6RQRZ+olY<1uUcb!z*@bC=KZjzGrvOJEW%%h8)x*PA?W&C z7V@QTqfS6;8S{uib4Au$>%A%^h2Edh0fKAFKQHaQhC=2rabo8~O<4%u;e}APPjP6) z*I>f6v5JV!45>*BXldSIY7Vf*;|pF-QB4=bvnZI8FcIjcfe z%~OJFn>n}6ol+3gnFy?I>yEbr?lnuMR6Is>jcTf6SB@ySoYL+m!tOE;{3-M$bR z5q&3H5^I#-iD;HT(zw9vTnGASI#cw?&f4Zr z60^MNmAtRCm9kJ}R~(xfN5ilDWLBI&EFL-IQ{(Vvpx@~uD~-hYAI$MKcZveEFUb9j zjiPHWV$or-2`!f@U2>eoJkA^9N+uj2RjEWp5JcXqPd2OHV(6jJ8;)!;oT2MqTfa6415v~Q&Y6;FOZvs{$#HQ|paAqB}n z1Q=!78U;gBo-k2U!ZvdJi0EZ}g{IsXA%sr^?bkF%Y6}Y@!iSr1Ug66dJ1VpFwRP3uEU6gmzJG|LCI>XIIC3N*ChYPCWim;?&Oj}c@MZ`%)MfgAua z1^wZT{(-Pr8qU{imMjGW{&OyJc|SfckYuJ|#TeFDMx3PX?od*zR_b04%I!hQW=%yl!P%BH@|hz7%wYVB{M9<{b0c^c|$>6Sy)*e zZPKh5t<{4NT$$Q7S$i&+Tu!W#J&xs=l#|6QTB((Wit?(&8lM`G^=@`TP!YOx?TPDh}5*;q}1D+x|Kk+)szCYqw@ zwH&_xbPZFanb5W-;Jo8(XUa}tUa&N{+87>Xa1PyvNpH?kZ;u$k()@}s?OIVL)St{b zeg)LNQrSG2?is`UlsGs&C0X1*xuD@<*=F&J!_Y`vRtCpLPFzR8aW)YA-<#3w-}`#_ zCCGjG-?G5$3el#DBxH-M3gNsXu47gR58t@(`yxxpJP=2hr%i@7%&D2r-~~rm*og1p zJL?&jf^$`%-;c61oPk9%oW%NlfQX0NDLq)0lihxLqf4QN;LIh(=10&gqdMIP4g^Cq z9v&oS#v3I&C`06_gXNzP9?)R8Uq}p|KQg{njR+dv4I9@h7i`@~&sPngvQDD?W%&je zbq_B$D5DVW?W0e+9|wO=1>p%-xvdB`*e{Va&g){c_*fm$2euwio$#vK-h4}K=RI{2`})RI{c>#E76sUU*p%kaLFukB=Bxd*3dkx z;8amwW_I~s@0XirvWYxom=Q*~G@;QJcx2A|wYp}8R`uTR8oKnE@l?FUV0^Lp5f&d1 z-%bY@ck%jr3b8_3UqP3@&-~g?#z1+Bq+{o8H+#*}%F9Hh*xjRT%Nbmxx;78Rvi!l=f$7WEYL-+5Y3c_f9*ZYGC#9J zHR%X=0UA2ou=;)sOb&%AnM$U;3j+e-;DbOE@frJIvUngg(1FFnvg4g6z%L<3-*Dsk z>Pno#u-W8C{~jqlaF7ya6xsWRz?fE$$6rU=-Q7(TH#acw3%s>Cj2`r-A%Hztdh10m z{)bJT^qoxj6)cks#iBf2Uuk6Z?uZ<|cl53RyLI330C7%$Zn3HLHRooLjU?P+h}q2{Sn>U z3h0evk+k)fCa-c}8(nUD1b zaZC|?W(;CFC}1r9&@f~t_mku8D)TvSN;>w`nq;q2&L#8}g=p-Lslmu11V7eao)|L< z{=(~AMZI}j*vn(2%`Hch|7t->{Ljv5~zuR`fZFUKdT@ndVa&YiVvFt z2O}|fJ2W{Ydrss8#8XUzIUr1!OjM51mE?Z*Xjt82-zwoJE0@vjq)p}Iw6NxJJDeOq zmvueox&QWi?!Xa+m*hLsvpU)}$RT2A}JAs2abxeXON(uQzV| z@LnhIwVS5Sf`VowMudVU%lLX&_L*w(qQ!}c6TG~Wo}oyU=&X>GwE{$3C6W8h8^sA} zceW0LsW^L{-|Mmeah|^qVg?-VYW;VOwsNz85sY%#hfA9qrarrk)N5ri^*Umj^fAm zk`*5fPmm#v-`84lb`Ylv$Xqu~kHm$m$y%+<&`l!d{4zajGBVH1Dd)gxcC@ zJ26Y_(o}doVizOs+5YQ1^01PN>SbiMyvo9B*^D?_i0N8cgF)HO#Cf2(3<@12U|9Yv z=ygoQm8xpL)cip*J;9zT<7Xvt@!2rvs2aiBq+v-{?U3!RU)EuhQ$y2|J6G(JChR_c z2(TOSXfMV|>g_kUmS0T_x8|EPskm#1>oG8~_zNw0?=7@uo)h#s6t)dP{n*_WGXC+s zzdQ=TZWG?uX~fiuQ)iZ&%kUbM_>o;7a?}d(0Jsl~MjpITA>i*djUokI$c#>hwCUpG zOX5RD3-ZnM(M7J9Ejym)WO}k0sz!?T3zR(3*R0 zhP$U2zOPM0$2#_&-HST3n^Fd1H-u#$>%6xYlhit|P@|%qw)tDDwDtCa@N|)QgnMu% zAMyix2DsA$(-%@9&4KBuU8w04W@e~cVEEz4H+G=^9w3iTdXwla$e-IOjw@IC8aym~ zQEAbbChFfY*<=ae`CmjZ4x;yBozT{O-kxrt6L1(;TN8QHgHY5#3*&a=%JZG6WUsEP z|6)C`JVBpI_`JV_Cg$r(?TfbMRjm^dOk_3p=n)AAmO=9=B4)=coNTrIXK;ZgG)TWscd6K?8sxAkE^x2jbAnFRZZ82Pz^r%)9~7+Fh0C>2n_qO zC~lNU!!}XG^=Ce-#!ak4!ZQN-v^>LoCBS{Ot`jfrfZxDOA7y9qT$D;(e-R!2@XGT| zrGUpi*`zgW>c&TxZssYn#fPiC?h6RKdVZN%6QncXR$Enjq5}1;Kh>D|=AUwX3%RIr z)|8N8ZW`nvPF!Y}ls_B^{fD5p{xwyM$|XWB zXC$R#2ocxSB!8>JZY6_M_Lr*LQDDwUqrdRgnia*-+e5u?uWrP9cM7$s6R{@}t>|NJ zbqkTACSg2nZOjKD(2u|Qz`U2IH?6MQ2G>AC6TwtF?Ez&C(nEi%=QtPyqC|;r*#=X^ zlgk3Zt7{)j4pWIPYZSk|52k>8z%Kk6`7$3q&UH=m%Q!DX@3psnW16Xp1x2o%j()Gj z>yj#Q&ElZu`{Uq?mrOQ?afR5>p_=DMEt>S5H{nz#FLO&8KBkNxTDOV^;0OeJ#L0)>2SNyYfq~3>uJAEW5P97DAH)klP)Ag7ok&)Y}Ss`b}_rfz z^JPNFTK|!0^a1ZAEI_V7y&Z3e&=2M+6!%vbPQxWA!#Moa>mvkgF~>4R8oA?Ia`DB9 zokiHRBYp#uW}QXE54ePd5~V5UVnimSJC(KeFMck%R@XFZe36Yve=&o?$ZDTo9PSM- zliuK-c(AzMH;YwzOnQoWDuNj`;cDGu`+<>HLjeEV+#l=LCP$3<}&} z&ZH=oYO)ekB$jN;}{0`|GjrX)8(e~r-52xx3Lg&gSI+o}^Qsd#a zGB8m&4)O;QaI^$(s6x|y2F>&_3Vw5!e8@|jQTj+))0B`61EX93fp93z9+=7(5Gt4@ zLPUcpl)fP~wkl!xqF7#HK}ncq$T24sLOGqAC-e`_ViC_~eO**ciFug?%ec|(udEpX z&eFdd@IJ;uK~{PQ)sw;WZ++Opn^G;@+Lz+pSUkcdg;^ zc(Cd?O)OYt3NgBtZyTuGr@z3nTQI|goOQ)89%l8VQXh@KC|A_aNfj!cA2Gx3Qrv`X z9GTk3XYk3RXNZoyU=XoUyZ*q3OY~b-p04$*sCQ!6^{(e!0Dl(syiM%I`eJ?vKjUG& zVc&fSlcMR{u7vp1BfvZ3U`1@zCc42o{WO=_I_V+c&6v@Ift7$At{RsZ>fN(l@?qzl zZbAM5zYc{MeZKGE^V4ZG^>wjH?x=rsG>aCS@9t(VY#$ng3zIT-X7sU|qw*TX7!;wS zj%x63Vw|iZ8d=NRcXU5Sl<}06(;>9~<{^>y+ftjqb2kve>!^@UfMDx5ZU;#1nX9b( z$yB{p{|r z;Oy5@V;v2Dg94Ai0KotR3lJPY@BkqIga{B4K*#{00E7zA3xLo7LI(%~AWVR;0Kx_c z2OwO4@BqRGhyWl$fQSGh28g6O@R&4M1ofarKHlb(IP%0-X>u5xMqyUN{_j=GO$bS}42SA>)*@! zzJb^)W0?lj{=(m@Z)IO}W@S>>7;#_pf^eQYOkrS-U}8wxFE)0zdD$PIyc0_^uSH9YMNI)+`isz@ku%86k_UH5GGakv6j5AVPC7Sr%>Cx(#ZXFK z15}Eq5D0mEEcNJ%ooRsd;`c#twc~MvVQ5%3TnJ=6*sy@Q?$hsN8OPseD7LEc#GZa{ zr!s!Q`Nx9qS`)U^>PAIPZ7=77f4Q=+RDOaMcu|0Uex!Qm^6kZyrDVf`CTrsh)8xu$h`Wt z-$Dw}D}F`Pf+l?;AhIx*b7aTN)b`V{Nl&kqF>e5EI*bhb3SKD0iNrxcVsQ`79!2@> z9VV>?0*mKOpVLMNHI?Kf208`pahyI=u{3B5!uO@0BKNDV-dEED;UDP8K5I1ehJSjs zNC{Dqm{>5REbvA0NcFcH(-NY>!UrXPfV~nhqKrFUMY{!|Eh`^pd@K4rU~3}!ZNr{W zTnLHm((sCv>c_(G#XBpGp1Kuw+d0(NETn6R+&lwRLu8?4B7CI&zj_MF{4(lHbvSB?vCZry;C9ie8mA+#6K-pRCvC%an|=9#mX-zTht9 z9N;RE5fWwY#6vQUU&iU$e(0_cE4X|mo91VB!DwZkt#PAH2<7h`Eg+pWez7w7mp?Bk zSzZ+fV|#u^6kMhkFZYU%fnh5_SB;*-|M(@Bb1qY2;UdY#Coq}In^xGYA7Y0{F<^+m z_V!^(cfLd?n(Ht38zh;Y67a|@WkF)em}TcyFznGW(G@EU%j@Xxkwt| zYIRD8FynLVDQ9IZdGN}Qx_eNz)RD_sl)+2dBR#W?J9CO)-BLz}3wN~hA~WS6Bb!gX z|I&Z8aks6Hp8E1A_u%Cp{iRMZ$dWVUr2pb?gNF;QOHh^#e&LNu#upKTlNZ*?&7Suw z@hoW%o_?e%Lc4-cyUbSMQ7JEr$s?Cbk^{3mH&H*k?RMtqm^E~p{|$?w3zus5WDOpC zlbatxzK=t^qZM{Cx)20&^qnZGj-Ch0iY5)GfJ=?xd!ScKgF$SQ4x*={L>5sEgy*oF zaiFcpTG7DzJXbCMxNR;8+rL>djQu-&s42L}N+XsaF+pw9uAY2VgCA8eo5)4{*##KQW{6hX zN#OAY(XroBVpnnNGcZ}me5+H}5Ix_zjLdbMH@Of5obP(f<~MlDZ^HSf67scpUoM&# zTok2(=IX;Z3p5Av5(PhFPPsw~bEUF#$;=MGlIt&|cfIKRkLHW)xX&u^ZPG__y*s*n zJ|2GMx>QFGzodJQ^5zIGjl9?I6d_Wg6ZFjr>RV9ln}Z0@s}Cr`TX5;D{hZ3qunsWN zSsy{YRiNI#o9bCpzwmvIQH7Dd8%F5@pSNwGzR~E7II$M$j%p!js$}n zKLy0^YAil7UbuKIH5&AI1Vu8m_!bXXylQ4evY6jU8ff;ge}X}vKf&=LSTH#8c#33r zXmG+H5VSP{90&xmv2W0hA1a2Sg#>%Zh>Lu1o7tV8x1W`+1HIoZbZ?$Rh&#!gilSmA z@m*5_{iH0x_ANkQlp^N?#jYX9N$C&d>jh%9I#AW%S#wTRFn%Tf3P;$&tHL-C0RtTd zH#|>vy#v7pQCAAQsiB9+#R82p2$aoTcYhvncmlzO6?RC&2L1;L1mbuL0l|=$j+|8| zA9pLsJbn^(gb@ZM*=Hd*9~FA>#7#~Ch3Lsg|{kN*^ zm%vnSLNdSrEIjb21MQOz<8pv_<7e@A0B}tH3`hf(MSBLq0O0k1z*_(ydj{kok1WsY z83$A)$9hJ*9s$Z{S;7Fo@(iFp%EBDeNA!EtwI%g&+=KLFur!haHN{^LLgIB=fT0Ji+||MPG(z*qrT_YMF|p8ybG zx27k%`G`E)<=N%%IRJq48OV49SO9}P`X4?cfZRVLt&ba>n*e87^iM1N$G!G`@*y9Q zN9@__@Tnig5$Qm*aQ(<1mxK}tSogt8>7N^-ggw3_LOmYdmZirfq&zJFB?^Sl!uk{^ zTGA1GARv^_1W)|I00MeOh5;6opl22!ytUXRJjv331pJ?YuK-Z;%t8JLyiI^A`+)MO z&FOal^LfVJKVlJ2OsA;;&=OkI{Nx7^;R9eJQDUCKBoIQO1}RyCGSV>NlRIs4LZNGx z3cSIO6;kL+GyDPd93p+1us|71QWxIP|9x1%1U_sWZ8%Cm6+St%&*LZizLn2o$K5>l zJK|r3`JeVEeF#R_?1T2niYH`GD6IFv<(E-9=hN96ehW>`v6punx_`$Fg>Lqr*3lq@ zut&uhNEO^URr&r4yPFJ9=!AfF32{OSWLJy0qCqZC>k>Xd@QKt$@zxeRVxal~Q+S>J zFDPviL7_+Iq2D4DKtVGR>Ohhq@j|%&Lafgl3=lL35Y^nw+}S`Y`L(%e*9A z=UF@8?|B{`xD{U+mz0u(p$N2a863npPlo7-;qF| zO)$Igug>F3eWm-$eDqr%=4XdmK!<<~SPUkmuH4n`S2m6fNzgV~pY4tXh3--%@CG5* zp{*c-PidVomdZ{^~*feuwJt0>(axDY4Q?brRNEj~>>a`u)C5DNYoYqXhyFqB9=fpm&0!w^)7qyM}l#p*~y?m_kxT6CyEkk`VNtr3cS^~Vc;e0CFm zJmzmw%@#%ma62jes7lJMqO8?K5fqDgw5>BYCKf)fa zo*f7X$@~n%1kdgQ)GzJ!Di!rhSG{Go+B_t~B+q~Zplyl38#jp7Jx{NZD|5je)OYHq z`1_p_H0lT(8kwsVftdNkh@xg4llL@1Ya5PNiFp+76QA`721!SBItvv!{P})-LLcL$ zf$h50Qq=qUnh=`O0$D)*DQ4G6g0dGMb)&gCws5+$PHYeFxKnQ&AoU|lgB3}ShFts$ z$Ua5rpsn15>urvhd0qlw4W_E%X_NQ7{ogQPdnUT9H#VzM1!9)NR0k8o+3V=3g=JxS}xl9xigZX@ZWCk>E)%&Q6 zOrzUwqaN-DKan5)cTSL?BJbVD{<<#4rQz9oh4C@=4sHCk@jZTE5F*<_3ADoRX;g|` zQhc&|q##rz=~qigsMhthhCSYG4W!WW^IFwW6es zl}Ar1NV>VfW|?2@Rk6a~(BL{I(o5Tz;}cFe&-1f!;eGcj62l23@8|TXLk=3nvQPIO zJ)9cs9XjCr*)TIX(IgV-u!z^$E)sX}P=A|}uXFfZbwYZQK++Im&P$z;zs&P0c^YIp zTtDjS@(gHtl%Z10+a#tl`uahS`IFodn*46$!*#yKl{@a#hBSTA30vM_zM4l7;<0i2 z12;0va~a_?hv;)EEC+E;xV8+gu=ElzD(gIGnqBc&Pd?9LT%qDb^?ok+{$PS2TR}2^ z_ZD$o%ikn<&)y7h8JAen7vK*k+Fn+=<`LYsp`ZhEgUVilM$v|_Y;GK!?)Ega85`K_ z=fjTTAXV@3^5o4+x;P6sp&Kzj2eJRFxP`+3Poa>w&Sxzl7}fb+=_FSV!+wsa)Q`1? zb^86ue~n~7*<{-;~Gm%cd*|8>$HGVyFWV?am-OY%88Cxm*IJPGoBz+NPIXBr* zlYBKYGduT~gg!nHFxB7R#nZ1@<09Mw;R+ZC0hLjKM!i;&sveK7B|i{ZY{uEzKbEa5 z4lvxOYLJ&mJ{=?nYGBxdRy&vI;R^LnQ;DblC>$N49C=ney)T9AA?6-}ac$ zNT|bS&*dEAdc^wlSKQ8r9NXgR@E%=EG81$UDdQfU+@;k!6;x1Ww;tF$e8iY|cTI%5qL*N_9g3|ZZ!H_sR80*s{ayYg#wz|)#oeJHhLGOh zq1qM%5$VsB5}2XT5VC1>%!Typ3OoXkPL&_+OP+1;pOB2;Os5jac@FP5aJ5 z_w`qV;r30P2jOjUamW0osIjx|_IN1-rmEGF_RVb@d2>^&2+a7e<(^MCY)CqqlzM*V z8Eo(h`TYjvJm}tY5w!!<%k}v@j4_ZD8gY%bVBVo>?Y?r^gB+55dy6ya{z}L&eu=f? zCNv%I(K3bXU?coCLR4G!Kk?%ssgS(<{@`u%k{4pK#Xn7^I-GIa?!A~_YYN|&&NJ;# zy7Mw!xU0^={>5efy^xG!K6wEZXn1Gr&vLYpdC5Dlw$m2M?jv$)I+Y5BEZ*3rB7$0C zV1(;zOP3#lAg!O(cy~8}gqY_mX|7YQU8Mm}jZiMEkVN0dN|enwgtsPiufoy1box5( zB&~A@dGK9ueZW-v&=DAdH+ZL5yLiBk)DzVe1eDBf)AS{!p+iw=_p@9qSl@^+#KP_ZgRxss9u16#g z8{aw47`~=#thzrn``4y1TF-_5_Tu=VnenwoOdz%MNtHl%MmwJ>VarV8GMOwCXb1+B zE;9+*YRZ9|vwf{`VW>G*2p=^QL`bwcTLdoCglX6c7n>d`58T#3Q2&5>+|Pac5Lvfl zslnY3!Q3n+`qu&rCj&M)DCOR4MpLhDbVLPGDj)4hU3Kl+L9=;QXx~Z`qlNnIUGA8= zx9+z^_O~T_CBoM#R|K`+JT^X4KJHq&JT&=ywcBcQb?P-eBZ}@E)29Xh5SZCp$G%0O z(C)cF^j%r!CcWLryzMpIW_~6iAOk|KUrr_lME_%Ff+i=q=xMV%sZ!SK6mHqbOoXjd z?!UimnkTtmmk&83mq0h$apwC-ZdkW=;aSY$N8U*Fl(GvkKwCjqjSySTGnMw%2=dMr zNU7obwO@rIw+Tr3gA$$ZQe{0f-p>?8=N&R0-xefg(wi5*N--Cs&L=fQe2kuEl7wN*M~*E zu$cSkg;37p@+zLbH8mcUq}@FPxmWqIk$Rjq09#!U-46uBTCauM#kX%;BW90l7P*cD z`S0fywKk|=T6-NGFo%9~;Uc;+Sb6B)CKN(Wi`o`F86#FSv_u3g@*_s|O9$?_I?vt^ zn7K1!&QGBcc`ty09%>NCC@U&N;7%r3p*DN2GD&e18h?>mYg4L*SDHvZ9e1hmHzZ1E zB-TgVDt>|?OfFQnHq$|9JF_p4f2!Ty*xSe3>=gFZpV$PS=8kPPp-&gxE$A*dzJb^{ zvg}5MlnIz3_MQ|2hX~k?@JQ%<+8OoBh965(c8c~TP0S}G_a-SKNI=0;GxygsoZ)sR z2dSBzVISI|IXa19`vbY&5&2s-YU=}B!f8z&w7r8#5 zj$Z#v#%++XAJ}}-7Y@0o8-O@so5BG99q_ITr-}e>d_Vpnvj+K-zfYe~JJHnfKY5iO4MM~(e?gYLIVwJU0-PkENmU*QoST@hN~Se|ey8$qA|x|o zTX|k$+{H(0zvNZgp0*wdXNgnt3$w%ALf-kz4Vyq&-TcB2Rblo7plB!b{s zafW-p2HY7GtWjP%b~pD?>PQoN7L}1ok4ki}RJp#2QKUGNB~wTFPOpSofo6;weX0hS zA05%BL=nYX4ygE&6WVgEPe>k^f6w;w@AaHj+o3>`C*LFb21X#7YBkKR*fKTEdX4HU zO5_pfi2(^Nv|MM~2A&vaws`TeE-l0YEh`#;@@_quW{|!8op@<^ze&h7S6a$OS&asE zBy!*pc{3G^9M$e8lH1=Uc=?F{>ADW6#Pd{RDO;^Rl zPi%Ity<4U4OwvZa6~cupxLES8zK7mgTH~i}A6YqSGw$HcRGmq2$C4DuPPcUH=%aoC z9P0H^_rMl`CJ}rNLjddG-`?k&v0P&KktScBFC< z8ve;2cDodN6Dsoc_j5Qi?xXq;V67bLUN2f?Adj{C1t2blXPCsqyMl8X5XSPcH+Qc8 z;&OI(vY4*#vaIGUTh*)K(?$hd5$MwVh4$67MWZ$`a3M_D(w}j* z7cz6!Uf$sVGUrZ`DfNGJaY*nVh(_5SQcasSw+Sz3*uY~?!n}eE-B=48B%9v%QUZ$z=G>%_oMn4Tt2FSNkT0{vsVGl|$Lm zc(>|ob_-skkblOUVCwa_66oZ8kNPO{wgTH8V|U#hS0mknALL^<;YsY{OdM0Ie^)Nw-TCg_nPDv zKg{G$asEt8IykBhQo%(Z65*j;+W<L;Tw>;FH$uu7N;jVHXnoB!Ax@m**a~-@4fs?Ov!t zMG5^KDrJcN%N*(Q1AltSgRlVKr?CFMamVdXwk(8GWe-^QCiqne963r&d|DMAKUy34 zzya#uEdtHa23?G^u%Aey3XvZbTiE0*&@%rV)zs617}bh>C#^5@P~-+ecjb-AyHR~F z>5BQOJYqna7tqT&vV}0%s2;Z-L54BVir5Kr=i6tkQiaEWNL4*iNtwgGCgu`{$S#{Jl{ zLP{u*&wVMJw4TSXkRO>f3qA>4)jQ4W{hQA`&M#62E~XbQoU~DMpm+SsO$=~*tOw3)6(^e^c0y@RB?8&a+i~xQ+D@1XsH(oCt#MiV^5kEX zloU;NWd>gazwd%{Lv;7wFRZ9n3$^0&Acz%K82<5U5Df3u6TRcyf?F?2bsT2r_a5X5uI*$lZ~X|es) zKD6TenpCO0`jSo9QEQxso!-V2a@6Born{g++~ajPUB#4{w2v2}Ufj-`a`5S%OPfrJ zL`YA5JZOUV*GZ~#b86z*&8g#xas!-=E8Wi3jLYPKT8vxsr$4?MH)TKXkCsWNuH*&K zxMxj@Yt$BPNqNwMEH5&&=et~vip~ztqdvLSsG`wsFHc?sPMp{`b>G#XK`s!c`-HGX zhCcba!w9vBQNak=Xfg)LFb3Ut7iSp~^EX5G#%ky;RuTzsj0EqmJBn{p>CTY%QV#5z zudAce{Y;&QQg_Vm-X5d8>ib)9d&E4U5Px$Uk#uok9VJyFF#h}9jf;Y%cVJ+=@J|UL zcn{l2IIs;n-9Z+Q9qZnE0*LN6`|NX4B_S$Rx@_pY8YcKkyIa+>4yK|HL7$)tN7tUoPJY4t^*_)wy+0uSe z_MkrmJ@Pd0lM%z6GTF_p=k>Vfb*My1XoiGe!$4Y(`*3bf@A#_3s&dqP6v0FRu?>!V zl-a{;JYrx-n}$D&NpXdT^Bh>Sj}~6(qd#V(6MM<%kGmeV>J#(>Q$%OAnPw<0ZN3+=xnhz+98U2YhDtGx{Mt$m;$wxOw z160oZ@SDy+*iOkrz3CU-JDIO2>TDaf=J~D()jCMc01jI=s_KYSOXV)tvc!$3CtLPW*+N(9A?hI#85DR)eyc1^4rfAwl*7xTT~C3ss}&7{3g zv&QENzkB}WVBqNmY0h`a0W<0Jd?G~4E)XED?E~Zw$PO3`!%`_`%;?j+WJ`d2b#k5S zYmsLd5=-vM=WRA zBGPj?S6$4YUN=UBpU$&ee7)COT;pa>n)2gSJ1+g=(2Dn*@2>b~ZZ|%k53?U0)yP(U zlST7j=c?&ea zO}mv+pIU1}3hSJYoV;@?ZP=2zTv|XQEbABJSB0f_#UgK$bK1clJdNy=cfTG_Az9tih++8L2_*^sqO(}JvXJwe*M^3xO zvK{lS;e(h zedhC{SCPMr0wX%|!{2Vt9G$pPvqJQ|a%uk@lUw|3i@7mF^!|WLMuPW}b&#?lQPr&i z5DPbZj!TOhG)MHMiC)cXiBf{#OV`4F>6PFXW8kX6{V!&hA!zBLD<_H5b!DVwBCfd+ zOGzlqTa6eY2cQC(n-%2}6wstKERZo7Fn6`ST&v11y@PuVyu5f9_b1EB|NKoE(k|#5 z?ag>+RX+iQc+MZ4g_pN%m43zr7C8^;X$#fw1R~kmLyi{=YQ*cf^V~;1kOVoTl?Ic!T>>^vd_s+o*LxLm(MFC+u{nmbm}k_5)lc8!8N5^_1wO~{tSFRKqB!&m^JQwh+)6f)=s%Dw+0|rB zlf@|D9llZP1Ah)aj(BdmoY>)$5B{TmN)rc0qDd!jZc+O83BmYQlc$Pbhe>qmKC+@c zJNNs3Vhv?WDnVHjSGBe1GwdSD#QpJa!NaNHAqUz*!Rhu?b2RZ1rJ;t5BmP0ncmb}8 z2^-uFD?Tnn{z1kgUIUFL4AED?+rNkjU%ib2_z8yjv;o2YNO9S6Ui!M#v`1|fSOJF?OK#FclZQrPNsrQ;orSV_`CT{5M)`ON4;7uXcYv6~>e+B{Iqhj>vX<3jC8cHP&@jFXC# zV5)+lel2grcrlF|N<11A)X7triz<7G5$z!Uv=i&NAh>i`^n#R*SS0IUMrh8D8pcEH zDkvLRa^3V5U)*MoAhdQc@8fgpGW8+g?T_0X=a>vhk8nyuLHY6=)i*&HZdhT9&ZEbd z4J6lnJV4Lo^x@C~YJrVPoVd$m)TgWKmq>|aGe?k&%Nb&qV4 z-XFwlXwg4=z>GM3UvsLxPkp?XAh>hKJpQ@Iy#^!DA+@vyN-RVv4nx%IFAQ}7x8jNE3>aSc*~piz z%gc1UzDdV0W+P|k=^Wf1BXh>*{j{6?5!R>#mt;XKk6f%{b{wOhrx!y^Z={hZYMmo;!tf@ z`cgKAFfaMIL5C8@CVwg;Wm5mnfzPT9_RwDYs&MDbCKr%%FnuH7+Yzu*!^RakRYT?< z#H@sex5Pi$9&y&XjYggr>|D=5CZ9U2IZfY0_FgwPk=N&!3 z#;H!JkA8`o*Nu5_epj>A+@u370V=M45aTY(}hA4(z0 z2RoYY{O}zaVRTk$DFOlk6lsJjUMQA#68cgeFYdO~1c=UdE81->+&Fvmej!z1VXF@5 zfVlaMmyxSDJ| z4@VFYu}6tlee!3MbMHg=wk!$t;6o1gLWzq-wagp}4`lkxss~QfhG>?cOUUBwayhj1FOk?prqO6~@*wN>MtY>PkD_KDM`pSaPbr!%#nJv`JH59^ z85USs$gFWOA)r>hFDXFkdNmf~KX?^zr4=~c%MZ=9mR*X!nspj&s~7z~9oyC$a%)QF zs1^!w+&h_ai$cRgBd1NL=h*Z6Jt;0O^s|W5OL3sNwzk`Q)o3}a%4p!D#C1wKV~Ykc zkRLc6a?rfyNhB$F`s$6Iy}aj7h&&X|e_>E68V$Im2@(7IU*!x@G@+7z(oxoa$!K_o zt$8Rq>OP-z@9~WmBTM;SkMntZYd901#2oqXhSsWkXJ+u4H{$@ByM>0PzcGS&Ts9Cl zjSR-E<9hS)k1=)<1e$T{huW@{wk%v6( z40Q=i-Kor>8kx%wSFz=YnqU|Z?f?`V4SbU?I}&lqaU|*Qke({6%=3f|^&P`msc@*R zSM?@4Gm*J(VJ#3?zzbN<&2Rs9XfbL&e2>(z-%TY}$(yW%Z92nEI^8tl!_^HzL|~h8 zD@U}A^hyN#Pq%ryT=owxdfV}vI{3YOf9jfu$#P=0y<7I2Ezo?*DOarWKWg>_H};~a zuM--IwE;%f;W&~n1D(hp86c1DAZYzTRaom357my^* z@JuP#t>Ggt*0UEg}9%fP++4cAR3d?Oq-nJf;-#R42*57@p8GGfn zJ>~a^lSs|K$lh}^6EkrI7WT_5m($Y#P?cGUa~mJwUtL1m>&4n)h<%zrLY zZGsh)(#cMagvovo-e)!?th(^kCwV{SrgvhG+;RLRoeJ7bPu6Qovr}Tsc+^5x5~of> zN-?YTBa_ADb4SK_A7)ReRU_itm9}5}x^LGk(;7i!>4CsFhxB5xxA32Jn)e=n)0LxE zPCV>QUNA)7P+c%Yg;(l4>V6b3by$9_+bPJxiR&57uTwP}eK%2k#UK`kV^jSke~Bq9 zUE@>QBQ5mFvle3uV_TtooKqL?M;XJno9eOei21B4^>EFEeiIG;3~B}&`oGsiVP4J^ z|Aa$JZAI->7|dTr+*@~+7#~Fd*0|%wLuA>lyl7dmpZ{RtfCIB6B8|dY=6-l5!7jh@ zaegWYbvqX#6!*ww4Dsox$~{wKcJRPt27!!y-1_ScruV5N?i@`yOm3$_eLByulUXRI zgK$g1o@8EuEf`|oLp9ytt6h66bG-@w2gAu0q&;cjR4~S4z#L9}CV-JrV@E;w{MZ&2Vy#X@ubr?;BFjzB!OjQXtv2ez#X z_xt}12V+VS8NSuQ_s@ccz&G_)LB!)fA6XSkObR>`({F>NyNfo5a+0(@LI{`vwkuo1 zthwLBsp)q*s{={LxXl#Q$HGy?+a(Ovm^gh z!{2lQ=l%OrXJfAlPPHjphhUjAj>gI=cl+~`Xnno4S0q0yt_azn7zY&S#X^mgwfanR ze8n>-#O`z@-354H0XjXQ`XTzS^)t!TWp*z6QEnN|JhLuzCRYs*yz99DqhF|BdJMko zo{3wMv^65dCSqeoXNsQZp+4hFM+n{~@*hB%eKqvGxfR2$Ima4TchvIOV{^`{il*s# zw^9+KRp|ay-Bw`HPkI%6GwNQWas)vHNNyaO%dINbk2 z@A(VNmVda=7MX_y`1!81E!**JmU9kj;D|Dg_juIoS%3wdm%mW@vAG9&?qLN5IzYyJ zRy$5!Jh*|WTOVl0+;Y(~ww4E!60J6QJpM875LJ-@Ah2`!+ir6-PWS`AzVGA4+1~G4 zUFTvx{7OS@SZ-b}=%6oTf2{0T^kua=E$NgW4CcnyNjPclf@Y(1f5lnq2f!)V2ew{HRw}GZ>{e*iX3CTKeoTnyYrgCN4z{9y3 zHEhV)6_Z@Fxuv7gY*s5+lnJV>WF_=llv5GWGYxHye0}N?e@}cT@NxQ=-@H|OXr#va`-s(x{r{{n=ullm6Lm_NH|X&zair8))t5wbZR{f;nvD}K(I&K7k$eP zR0{9PzWrqpq$_9{27nE}ycjUfI#koxMdK~7X2L}AF>MAg`mW4FPnz^jKHm}(hgPj zGuYy{^yj3KlfchV)u%aJcVoeOMNyyC?rnr3>Y9ByX0*?RU6o~GGpuw7A|vD#AWx0Z zgP7KGO3gg>hc95FKjRxCb(uk*oeP4|HJyHK8GU}|(hX3f z8gMcq!OjSq{#K(WP&^sh(5iD)IH&*o%jVo`K;1}YtmUDYARE}mJ&l6M-x|85lhRGy zPzzo7QSl%E?TItWsjdx(>Q9_-b|SLu_JW52F}LhSm66pi8xEQu2k;M?1s;Uc2txAy zfcZWeXRpHdB6yaFiO-KajdF;nX(7)1(`>bhysnCy-40rm8OLfF?BQR%fcSbtzCSn?|k zHPyoP{0fn$g8G6yqkdd1`2i=W?poQlo79(>q^L*OPMd^HY+Bl^W*;#h##f<)s4MdA(w<oj7cLZqg91!c-E*+Fa;r!bpX|_U`vLGrk_Px$*#!E4~JN7&0q;C24 zC^xAj*FL=0%;TC09sLt1XpImZ{%Pg?W5uh3eqc9Z zM1ej}K4bWGNIR!zQup`#kMz@qdGoTc!g=iN8qDp|W1rWhwTZ8MwhbN~{%9&P^(w_w z9?3sQJy&xF)X%F2F*A;vAFYH(At|`H`7xOdd>JpT&=-ichr@YYTVa7AY^qv>I9|m48OShprF5 z;2HcXg7;AM#f5q1`t&~?&EZNV>N$Nbju0FY+ic05s}b60s_r%2G65^Oq>$d!RsQujuYaX^q7uf!n+B8udUXRXm?k8dc5FMk>*1ME|8?gyylX4#`> zSQ<13=Ot|E@RXXz-kS%?o{<;>n9O#c;2j=3C-(dJK}hTA z{pVQ;H;-;8R1;WdEU4fQ>`g~DYc>;`Ul?hwwZD~^XBLkce&Fcs2-qfFqy(KDWpZB( zj>DgpgyNr(Y>8ozFd~)V&DPxZ7q+qu(O!W|LJoC&>WJiDpj!j!2$||jT<>U$$U%2x zL>D-tFjnkl#$rH+)xe~l`X(M`%ph?3X*~QD$7^t5@23J}|}LL(J2`hBQGZ!;VYO_v_8v-olQLG&-g5@#}=(+16XP zWe>irGkzzAEid6)-vqn_u~kmHn+Jq})}2OTioaBh(;_{AV#j;EujPgV@kZXj^RmPC zECad_KTbo>Xjx}Ao3?%QS7$3t+6qggKZRY*pMFmcC$F@h(kb$;gYzFfvz3YV!tbR% zU~P>@k7R!yILR4Sy!0YPVu&<1RqBg5I+88j_5EfH5s)!7*C$q8ts4b2@zdGC-F2Dk z@Gz`8Ow|HJS7Eld!wsTzWRv9VKXAg|!UBoFSYw<2+19)1raCKn`Xm8iW~ZO09d&eO zdA4f)DaLoNqJ2ieK3fiBT|_URi#gGli9Uku1`FA1>_c`_dN)kJwFU8hQYk$(tX$W- ze(3JART=Vm6L{cDP{9cA^438pl88xon2K3a1OR$@5860EAedoQ(RlwMT-;lr%kBEYy9%q(Iu;ulWotbHuZj=aG!Sq zF;X`=tmf4kHjT2GYA-qSrJ2_=(R;K792LC5+FIF1*G70~B8Qdn7=v9-*x_W90!#Cp zYc+Q?fsFC+3fOxqTxg9NalGx>p>7eM+jQsbT=QC@H{Qg)kX#!U4iDONfNe7-vjt;9 z6!!%YK31ceoP3~w7J;Ud=DNt%^BXNug{g@LSb(|Slj}9Dq2yaAQRbiJ-eyyvA)>cx zSCM)Jxq1J5|7o1ZBI;^VZ*PFIUyOb{R|k%n-brdfmr|v+^a|j>c7T19vVMq+T6=T* z^!j$`2p(B3a(USAbkZA`J%{OxAOxhXyb);cvjy3*{^{izs9b9)K%gj0T-j(ogw zlOcX5WM75xQKBirZHJ?Uzp4Sy7S|#UuST?Z#ptLR_rCvh7ez;OGtU_63+ci;!kuI(c2+70c1*062E(zr1RxX24>%6!z%F#V*}$-O>duau{O5a< z+fUWI-+?H@tk$7dOg#lW*UHtVeKG0pq*OFw<-B%KMrAKuS5XMA8+ zJSH1-lZa?JL^QinuX(0PERAfYR%-B)8zj3r? zkM7y1&zmomv!Wc>d7$}x(1T&e4C#0~e%U?G7(@@^mEDBccarY$zVpji1>d^VE8}V3 zVf_V|9VR)_QClq(wy4zF87U88&JK8)ocF3Vg@eg^8cF&?>*p| z^u7uhIGReeu`yf|nPB^}^VhRk@&>l+wnuHI(n-%W@3~*lVTCrL~K^Kea1{XhIkBH!xCQ|ti&LXZnRE%f+v*p{s+Q# zPc{(a*|lIrlD9ASouvUj?aO@jdLaLyCk%7h5|g=z)=s%$Fw1$QYe~HO)z%0mh-`fY zmd`#SCJCb5Q)quJ6_kWvwE7w5{D50F9z*Md2;zjAPNbxa7GZr^j4I^!+CWOb=)0A6 zVTZ#PmS7+@Kp?u)Nbgdd8X=6QXDN%D2NI;%7xnaf!-pZ3jiM6Ina-Q9eF6LDLO0t` z`>exSZ3D&$!u{>z6J!XcrNwi?>w3+FdooowC**SkD{!BJ=T@Wa_HaEp43GvMl=0G^ zQHhuR&dVV6kz=3?;y}(-R`2uI>97{9!uG&nLf#&k3t0D}^ftda$x|G>UHR;}S)utg z$T(v44YOs^VPhn(ZSPp*Fn}x5QO!6#w6!ZL{pc$v1*yH5HZcZBPaj!tQ_;Ehg(~El zO!s&%GDL8R&{Gja@ax!RY`ayw59~kKrdePQBLZi_=;luF)Vdab^2D5Ey(!Nz#4h&> z^NJ{8rCpejrCAoi7aerq8CrwYlD3Ng8|e1ms_L!OWeJ{TUI)8AOY9Gf`#`KNM~mE) z8S9B3OK1zso5n3(JJq_3#YVtR4s3-}*K!L#xzUn*ANYNIaNae8kOXIqX&z?nJMXQz z<`J28(P9v6yI;EC65oq4RNB4vxt|2vOZ&tlq=K>WX?-pqAK}!Osx;(T{uTWUUAN0= zya0_ASiJ7_7S;mj+dzOk!Tdl-t7F_BXT-!s70H!5LvDFW?}R)!wfEu)(zLR$0Siw+ zg6fTPx&*=VNTF+QyrRi^X~zQHXS17}QTx$qQ^>F(uI`kc&)e@95cOr}xT+}o3ja_4dyxkKHCW7Au3-zt@nZtHLMS=<+!?!@JpTxzBcvqIA zm&1qp3l>0+93fV=GsN-d1qsZ>%hubzY@_sLl+VN6!4_2Xc*h>GAir%G!O|fS`r-Ux z@|O@<;QnE-&ns%*+qrC^qfS5JVfdxTJI5UmR}#vkjS45qhKhebJ1o^9mZ18(NE~)| zmSo=%zy2+gwB!bh&)=_v#U2ZOl9U{2OYD&e_Mi-~B)0ghCKpo)%Lx;+-Q8CDK*O&? zr`9z0`(-Us+FBzpc4hXizPMHkc~5c}mB$A#dH9`(O_d9AO4QU@l&qfl&5cRexFRJ5 zO2*#M>DWL!J)yS@Mmzl_#8kM+OWh|Iy6CJ{RQOD8OTY8`zGm;bw`ciCV!M5&Fyn-e z4M90@WBtgI)*HThndFN+>rsUNOb!qk z9CBy$_R9m#0iQu#EVtv*%vQ&$<~%Q-((rR!vyQ!~GU!NX!#pku7cv!Ddk}e-d9D8o zEmc^@mBDaUo_%as6pOO&I40`7;C*+K)O!roUWg~RKX)qG^~YFt!99?%lxyC$Bo22d zGIAz^p~N@7Usvy1OuMmkp81U(Sppp`s9GnZi(gmz5~D0oau4g+WWyJ(lWB#Gsb?kJ zh3?bt%0y>QW3Q5hV<`@v#;o0|>V40@eHTO)ztJYMd1a3gx9>B$nP^^%lL$Ci-3bwSn~`Vffp51D-H_l+V!F^P>PMFwe`S`qe~n_KC{5k~ z&4$U*iF9^t#jYD2Y&@-;khiq{P9$u932~Hr(rbElCxk3P2JNJY5&C!-P#}+J7AYg+i&(^ucpoBiKF#+q0h(E%CfCm z?#=_L`?amK|703r;SOB5Xe?e%&q+%YVZ95#xcubEluHwj62HAxU-7tm?oR-T?0dkC{X1x+{?sjl(83DOQHk z!fKr0u*O81@YMt5J1=LUPBYDGoj&JSxXrI+pU&kgh1b(qt%iaBl2uQ?1CYK$ev!I( zjjKWggRsyEEld^f!c_vot6DY$V$}-QnpR9j!Vu>kwdqBEV1?lC{NAz;idJYAFt{jZlNxX0-v5vFXDm&A8jtee+5<2S-};U zPb_;3xd<;)pVD}2(N7vUym2P{#o5R)hzVrmC$AesyZo!R(x3`4(@9Ff_^HTv^P4j@ zz0TonYT(VI3+K6ww{#kTsrA0rU^DXXY9&DKGKcaIwoaGKF8xIPZEsVCUkTa=?&?P= zuaDogI>8S*PVl(^Mv#;f2MC->=n`o5fuUnLFAtlv`(8g_XQr# zd<*BEHV9eUIBKujr6}Y`t_{9dU>)+Wt_uU}-<4(u+W6f>)osefk4t9j1YI_Ry6MxQt+UW(>&u{QD{lERa`=AB^svm|PX+M7@-wEm9NA^~6eW$yE&J#qQnKMPcz|ps06ErwAqm<{!jd?{99J6_tksH4N$9-o}5cncqzJE~tg&`svZJaDKn#2=tb3T_DH&-yu$Y0(s^5 zR0*J{s;^P#uZ5Lfy(b2hk|@Dy-DT8DrIWduZ0djKG7wvOE9N&4H1F^d@>7^_3Ovl* z+otBv2kZ^~{Xu;D$CvtydkX(86(sCOc0(e0bgv38a6FUMTm1ath_~f&lrK1baz>Cg zPCfZ=ogi_a`PGN?kQSTKo})A2o5{D}Dmpo$tzo-&yqrH7ErRfZ%3l2U@IR0s;DZ3Q zRefpvcIi~Vz}Y+kft8=O`#HMul?_MDzvN=+P%s#!`djZrDn&ZSInA%Nz%X^GupY%v z;h7A0|G$R_1~Pklr*>(WM?<^j0V<7egl~18JjHos7@JlV2W#wBZY5P+|>DT+p>G{)ppsx z0%X#-;J}JZmI3t7;J4zPrh@ocCMFrDs}6!+C*J&j@3q3ytkiTvANaZwrv=<~pVd7& zJ{g^V)ohquK+TnhxK2J#h(?%LuEXY|G1)qS6Y6v8xGUQSmC}stXzne)oTtzKl{*1d zKl%<&+3-H`FIQZRw0R`lI}QMKD$1T;=_?SlFa{aVy!xMD-MS)ZHz_4V;}Brk_1QEQ zXe*Mbwz2p@tF`{qOHDr5oDlE75fi`>uM6X7n8|sM;Ri^I(#T|TA`;7;9Q34wMH^~&+mZ#qbDg^P@P2$6hXI3RXW<33S z;g6p}c)5Ap)R~kXI<~&B&DQ5XWN_3MAvRQ0=6J1o``-e<3(S3H^60d^#Ydhp^o`GN?9g%22k_}oR3)p zJV&S517b^{ERYPCK=KsNiXTnu;I2En{J()fmy)n~zjm?f@m5UNJTZPcm#Djn>O;q+ zk6TgbOgtP_TA;`Q9|Ji6e#*rn?m~P>KyL9=VAI$AK0P_i=+Y(f_QRm=WH3TFd92KA zGST)Z%kXZkCJ^EJ4mv&pNoKiDiVqfA^m%8LcXQSFva}Vv<)+!A^^v;@O6I6FDMqH0 zSSk3kmNZPrh;qh~A7zi$LG`0f{6K9vKGVk#yLJK~dS&N$bqHJ?a)<85WQ21gdB7q- zoH>UXtG)fe%USAzv~-&r|M0210|vy{oO13PDv+t1kY+BHi=0#%)Vm8Qj0tojEWRt> z`Z(M5TBrZs=$kQP2}1#j_GN{@$>!nRoLN1~5_^!Td*y3MceP$PQ2;Uf2V$1KN=p@v zoebPAbv44fXrF`=rA-fXq3;$ZPe5sy1r5hWUnF%pF~zX;)_T$`7DSpGu-fd!l4N5K zXaaA8UfAc<35+l)b*i_->a^MVB#Q(jR_D;Sv|5(#*Ts1d$nzWBjrc5ioW3aVwz=_` z4?I0Or!tVrFK>^vVRml<1-%+wue2S3ylx-4kyJhN?j^L5+&zf&wvm>9{vMYqIfb+# z=;Dihv+1eBxOGq0PjdzhN@Z|~moz$WWJRkS^1PY&b_pQ?_H$8J1CT_JrG22w{D<Ajwp>$A@+`pUg-mj&?@4{Uc4e(SkEIt3< zJ8>6!`LJ19@s~rcfU8d*K}Yy%&2Dt`WJJ+C&@+qN8z#!kP%jsk28+5U(|;%V5@^y; zfCT3zpm>_-CibFCLk9j&VP?Zg2b_X9|RG!?WNW?TQuG(-8jM_(xinJyg3x__EC z?|Y|$byq{a;=*3O*69#Nw%!QJZrHXH+WXExN(f}!0ym=E+a{OQZhkThuwCcTLB$-l z`M`NYz{I^5Ev#`T^XPenxTKD2nOy)Vd|AgeNRnVtXG9z41zl5^l}-q1>tFs5-HWS1 z_ypQy9UHM*0bQWPDRZfQ4mCtu|2%ATG-W+dyg=lNezZlUbb7+>OQliW5I{f{?|^;q zCtWvSS=Q^C6qp*d@Z71N>I#^?k*Pu3XZjtyKx5CpGDeN(oRGl=3Q8EwubT8HtG&db z8)UtFVQw$Zjs`uNsDfQc;UAj4_WU0rAMN(4DY{tQBrR%2I!m#XU%y9{J1e4+lG#zq zo(J0IsET0As~b@sc;;Z7ZLbKhB|N=zJ^)Cdad($o8dt7`4C06-kcA7qRH#VX`jt8& z+m;sh`go5c-Ln~Ij+!RHf`Z@r(5nOcl2LM4pb^wr^=xvja)sM4MkL!ET3Ri%NdbMK zY5=StRST+Wrw=SGK1;){Wl0a)u-12>gkw~0L|=Px=MXqVH<=5_S}c*?72(|^pqYgB z84SlgBIxyrkr+SJh=50j{}AlWDAlPy)b&1w8bKTH6uH%SUI;dM)tKKraI>8YbRq5E zkTpQ{ik37c;9iyQ1Ds>H>5P7c6C<1t0v~ZPdY0Uve=HH72{eg2S6Vyy$m$&^kKQi7 z1&Mu|i+0nd-+EohqjIOb57nB17p*UTZ#ic%^xvU{A38O<6PSr_YmQ1{*!)0qXLw_sfEacu$Mvwlf|lDV@p50 z6V46Go{d#{7=d$zkda~la7ee6&E@Gr7FpgudpGF!7}C+en8L)j($EQr8FJz(!zs%& zH_jQU?Z(of670PwvbtJ$=a_nyij4L-3` z^T{|Rf1H@=L~2T}x2Ru->ce>KFZ$i^Z;pYm00u(aWTlj!$E>11-O>v=;*Z!$;Nhy2 zY58({&c%x_zO_F95K`FS_$1d`4Tr8viiN8mHcqC1&~Jh9=Gan}e#ae499DMLJM9K`~U$VHA4KI}4<$~O$yc)K?e^w|}e_9@C5*Uo0B zJdh&9gfD|vgZ$2klvTt!-m9qAa%G`MOxY)c=`q4*r;#jxbFdp+${y7YZKPQi@~6<%!XN;X(pC2s1Y+v{i2 zNZ)xRUU*R#$74`-3+bK8Mi)zhoAEgc{00?sRq8#LCf)Dle^8DudoPoEzlH=E%<-F` zI=1t&WXVK%sh+iLJk9yCm3>iV_Ffdymz-y;18~l9r`u-CwyCqY=NpwNO_7nJ1pMIQ z`R*Uh-)pD8JkK}O_T*RrAp$NR#{NMe@7*1Um#}ZmJ*d%5p)Rr&XlI|Q){U695$4iT zUARj~QJTW|(hzC?V}c6X%g99{zc_Nlw$$g7vcvmd0#hwP1e82mq~~)Fd|n9r$Rx}A zCILwI(OOk+eDfz8o^-RaunuIRy>eD?^h#}6%5-E?{&={isD87Va(W`_!(J;X;V2tU zq_lRk@zge8=J%=YfLTSP6A>!GAB?*g5zki!?3#fOp_JPBd zu*dX%esh5i8!e;KRWwQhD#{gwHggu(1r$ERz<(Qjd5M6&?{yOsTV9CrI6XQqh9R6C zW33tdE=&)y<>+H(T~%eoKM2pODLM>>3$S zWbZ@8?Z^k#$K3Eb!Mi+6WRlRwDJ-2iFGxomx1sUDLj`@je)9gXv$~C^V?7oE^f~F1 z*OdmzOwT_?#R+Fn;uH*=p1rAnIwg9P>BFfK+6Xs}3;NC;4w%#6jsab~6+1aeHBR&} z1&7oK#D*jsb#OB5wP1Ie+11i#A@F)sP!jdwyWc9YSIn@9o5odb#;wZRgZL#&-`Ydn zR%C<4>ZMNC?wYK+-C6G?lxz>MJZd0ZGS^S{w-c1S`;Zm6x6)#DXu4}i)^hTE4f(!& zPm(gxvxpDx)8JWyTdKcsjRf1L+uFJED7l^YTGQ%sZr=57b|+0d?iFw={}j)$YoNR0 zNgk9YV9-nc@yQ9!h(+y95=T`wnPe}JA5+fc!ZNI>F(|x3~VY>&T z{f2)YI~H)I7F~D4p=vr5m5e7cw+dUEZ&H4VgO+ zMb=s>64#mHPj%ObVigT zr+@DIcAwmC^daeQ7jt!h1# z`+lC8c_w#uc4i;H_@J(UA$&7SUVl!GpzgKo!Iz_);5}1 zzJEG)3!;|LGY@6jJ!$d%`>Ch4twWVYgS@BlBi6Xq3{1fG`w)fSU)m_7Ll-?Ms^s4X z9juoae2EYU0b9LTyX(^4JB^;MHq@^jp?Y^cr1u?5>k!S|mU}hR+$JI9bHP;|9;!_F z&WE>O{VvDm@sGMj+xRM1It*}9?AO1U5ViWrIH==o|1pFeOyyp#*nZ3vM%HqE7PTl#l z^Csud6B=n_BIe1tz+mIhQis_$%VV4|hjlq#g2_CKcc|VF`*<^1f8xjlG!_;pR2gE;tHlZ)tp#Emz!k1^&HY8NZX91}n6v<%(&cYzx=#phPw-K0Cr#Xrp^e;?K@9ccZI z!YZ)$2pC(%o9`@oUDILtYu)uh@_wGZ6d1G^DOdJ(j*T7Dwo8BRP%yqU$!>ZY8k3(r zUh^)tg)BC>Op}*fgl7d*NEq9ys~lL8fr0Z)1Iy%SKi2*t^y?@?NY&TQ%lbYFZv_#p1yqbe0}w z5~4)2IPMH>Pmu&o&NlkgVN+L~zA~4Ml5APiwCr-Nc`ei!Zit^vPfz83GTDCWPw++0 z(MZvvX9rDWeP0G6QU_if5Ix&4u{^Zt_0kpz#ty%ck?&rVG&T!vF}qQ?uQ5c^<+HWk zMV1}C*v?a_(X~oXH$ibl9D8HpZ&4QO4uy;J1$mxNK{wrEYA_F~lum({QTuk;jZ?U$ zg@deUrxC^UBrRDJ+xOm)N!)U8&Km-6BRyiSCH{OjsreLK?}_%jYP;zmIFSCO?YpW& z1`D=TZYCwwWaM|uouVDx&51j8OXgY!+J0Lz?h#9OUg8FoF7!swK7CzKt3=KFaKWVB z-S6{(_y_uNsp8Xj^X$(NC`q~L?=_(`@%w^&?tSKL^A~T;**yCMPw zmwN;?!Pf_aNpRwA(#P~|LU+y_n@m?pnFbMIXW2Q!2ZkT4mbH#L{5Ce+s$$#OuQ}+= zPYPa*IghIs>Xj?nJ4l_C6UKeurN5#2&Ml%x5u4ac^hmheORSa&{b4g8DvjYB5m<7+ zsMH&t-d2Tgvty`kpUHq`ol^DBQzf<$t~DO9+Vba}r}`^mIidR9x39R~J3~fywJf&{ zyJqs>m(H2n5~t26Q{pxJc#+UkY;|${yzx>4Pizg2uFGOK4Y;~83BEZk8|A%d0gd4> z7@mk8)9&h|$Ttg`2jjUn1DA~&g$^yL^j{S-9v=y&HXQGb_k>8^RZ{WK>ll1F_cB!J z-1MW_?T%k_oUfZL8Iz`%a31pw;u6N>wOHD8w~SvaS#%~3va$4wUt%AWvvM9A>wfyy z=bhZ*Ep3?Qzp8e{+N`NgDLsv5cRiGhSFx;9wB4hxZ#9+P%x!U!Dt)bf${@qk)lXo{ zn3!Mgtxp_P&4DVFu)aN$>$M*Nt8O!!6n07lsI14Y^se8-J-Kn(?x4$Qo+O;KjFJ{h zdT>8*)PJJ+_*mp94Uc2u)2MpbAbg+rA{SJvJ(SP%8=nj6NKLr<(wmf9+&1_4yh-~v zqg%EH|XSB>6L1jWo!&E<0Y(OAr!8Ft=xF9;UWuNN2FDRC)@L6twIW1*!= zztR>Ex2V8*>`hM+a*OObE@AA_a~U#h9<9s)I76vrPuJ@1FUVh>tEP<;d!}buzv5R* z5}=TFc0shsSZrf+b&7N8^rPId#mVGfhesoIPLWY)ir?osqhzHI*x?Z) z;msj2#&1DUU!qh#Vh#nbPmshP%`lw_X(X!~4oK(_!BMrdXP-Vb`&VLpU{e2A&ev8= zNoR*2uRn;(-!ic)=nc4``;?7WaZhgumuEMoIRC1K)^nA2{=4^WNTeAuw%`H~Au=I?d!eWuF1NiV#@%Chfx&wDiK{8Akq zuY6QhtZpI36JH^dQ^>27biV#(l|ocBm&bm0qZ9e)_sF9OIdfv=c99MX-1BYuE^6*_ zdwtL)Ke90g&iAqe{=9oUK#G^=Q%vIT!N7Sy!Ql8cNTtE;NuADaghu9S#K&r^S4QkJ zGl3s-*Nm46N-wz-Eq(7*$XjB}4CwOyvtp_t9Z=67cR0vgFUu&zhh|9-_N-dyU2o+- zD*JRPL^H^QAgm;Lxn9O`Q1v41ZN1%ky?rVYQm1te{&>Bs1dl(Oc080fP0G8_llkP* z=aEzCV$tuk%l3Wd+Prv`RWjC`hOjnw)@3VA8$XkT=wBXk>^$I+RP?Z;d*IZjc#ubu z+3+%7%uMx8@gPR)iN~ulpBtKBXL{Ln&2T&25EN?0+hgpOlPz zr#sWABKtM?_lJH|BX}D|Rs8_X%HN{X9ld3md%&rshDwYlx@p#sDM+Al6iI_UA|{-4 zU|}c!+ZA9W(eKDevPXSKl#@6~Xa42GAQb{-)O_5NOLi#S^f+$)XZu`F3yvcw+^EFf zSbct~bLQsRldBQBA(X#c{zpRktG3wletW@QeiD z4^KZ*CYzIArlKag#oS2tsP-!M`9i%0@S5Q$G|C#krWpf1v|^u8I$D>n(_e3!eXKyB zTz78%Ohqx(1J@^{YPd=NPC7iLoU-zuVAEgrV-a?NWRzzZ&!r7j z;{ABlJR`1t^r_LFl6cV8xzCPjEWLz*y@2e~q~vKM^3-qs;0STpAb7uvZA+h}-lv$$ zGhJE@HOI9bU)S$;|T zy(*Q7i6`@si1j&>Cr5`GaL*x8ABuNajceR)^qtyxPZ~BPc#zZb6z>X+?n>ftOUFw5 zEJ5>8{^OXwp}!qfl3kWo*xV@L-Hvm#!OLvb1+$N8{%Bz}2oz!GCar0*Bm1j8>S;`I zuV&OcQWW*(%0~Z2uZt6>h)uT86ppxAGk9zUZ)2>#M~OI3$NR(z&0J8i3Jn=2kuu> z|w^+jFmeTnyV7{6=h#%E!#Dp!^9;!NIQhApzNidfz~pV0D$ z_KL}6p$S@*wpgtW4mmYn10y7)}0N5bWe+m8j@{imV1DKm~~M+-jM3kg0R7gIXQt&ZZ8I@GS% z-WZ*J$hEgqTkx^+vF)8MoCuXw*V0bc{e-Dkz+bqBbUj5&|79VpuR&(P`69or#)nJ| zuXh}FBd42vYObb#y?3BmbAxQl-2pZ0UbAy^BNR)C$~u)Kj!l2^XL~5DhpMVr#(CbP zW%|X)-Ki$%LTDzUN-eQp3>i+VbQaa?xXj+@-OHVKKlOYm1|506K-p-)&F$Rxg|LtY@l4xnVFTP z-D>0I`{Bbg@^^!yuuEfj-lQQtgdY@p8Hl)B1ZtPf_asN(k<9&2?K15C;G3u0bmsew zH?6pV^T(ix~ucy7w{dZfz-*^ohq}!k%eO}Mxlz{U~ zS}DE$k3kEuKiOYH*Iz^i1P^xu_yb> z%zl3_CCi;jHinUUaq(Unv|#SSo}#-(q}w>uVYhsZZM}CVRp{GCdm_oQWG;V{V_YNSZ5K>s=0&kwl(wS)kY>^ zTiSpdd!3@e%uGKkLA{*83*Sgxl`AaMbspDK5%MTVIUR7zFjE0?A6@tEsJ@Z?dYNL5 z`fVy5%U!hzy%KE|8N#ne^|}FRX&I39nc&aDKjRIwIF!4B;)pubo_?F@HnwkNf#cP^#eoDIhjn5Y6>YeSfJ!`rP;FCe_t*gw%E3J-R;Pel!`c0;`W#iyS%R!*luRI zRUXuFQ{9r6T-N&k+87U!AjF=TG3k^%n?MjEJxMJ}&4Zj?3br{*$d-1&-9 z3^XEGro@cB$4u&3N$Sy#`J=t3jMD_YgO8Pcv-B3-iAA;1&&fva-OIgE+>APKAw}TrY3pl$ne&94D@Ao$J;ALvLQAGJ1cwTYc zt?@H%iQg3c(BfyaUjk;M_H-?~J>Q+<%E;JtUyx!S$hoIhkY&G_y>C5jQMf4E{eHj1 z>%B*w+v#hS5gEVBM?Y;AcgbKU>7mBGJAv(twT(X^(dsItnrFtC^#w=w8BILN} zO^=5ARs8GY@`KKdoD<)7_htBB9u#PNHw(@RR5Z2<<|Ld_B)DDlemn8Wl(a_sL~D?V z-PT{92Fmb&JvEy(wt?@|f2gvKGJcKQHuAg`WW>7XH$3zk`Vf@Jbe!)v!fRLUnDVRO z>DV{LgfUX{+{bCz#Z%N2pBn7U@l+tO=W~V(1&buXpKqtTEaeE<@yfc?Y1;~(8W;SY zeuE?MSj3d}sI@vn67PKfvq*}=$f-L-^FPK@lRT}mZl#AiEZDC(+_|NO5p5??kBmdd zj|-Pz>C%PLAS+JEmVlJIcQ|Z&|DKxNE_iS-!8f_88;?uptN->LpLs$gBs+~&Z9fQrTpU^Hu+UsAA||FU-BHQ z_TOY#{u*D`@ac%-oimmz(+TYSiSxtHSRf7kfPF9fN%RXvD`SB`!sWTZ=&*btVP7xD zYPv4$3rAm*>9#$gHVJpXG=-R1>flLc;kEJX3E!lO(p%#cKVNW`aGLMsRTK?+S{;0J z?I@gav7DZf8=7+Xqg+<#&>=tU_1^bd-%du8k%ga+_j%4Sy_iZ9$%DVCoH)|!X>`e% zWOGKAXy#gSG+Zi}KTaYue?@s z=s;?`NqLezy`y9^cyqp{D6XC}rLkMFL8)e*T{ZCddvrp_4Yb$U`UCc)PB4d#zk2Lg zH%R2(?v&BiyF@)!)WPn2ot+KtAx~?$N#kEn5n@z zSfl>xpSn}RzWy{}EzYukI*A9DcGIuf`s8noKoq>_{;6|LT?gu29r6 z{C6(9hDA;qvg!@+IUUp&tFlt}>L#_zc|6LhoF_G~6Ch}pV(>R9W9A61i(Pa0s^1dc zP!Qcp>(J$PjjJ6u(v3C;oGc_*xy1N?6b2VyS}onFW1N$lK8NmG?#hMVF*3%YJVc+= zbNLq3%3`nX({jGu=B_t?f9&>FB&}(GvugUjfX@e~)Ijm)Ln{F`PQ0GHx68VpDwGfR z228j=7yd;xrgJ5t_tfD(IdrlGwFb`S<0$ z<$#FbgNiD{f+jlm2h3ulH>Q5Cgc~Yb(v7v~i3eI`4LrKK{Rwh&E3}9YcH@mo@uJ^+ z0q%u2**`}2M0B-P{*E~lR-cbYkF({dX{j~3UIM)5?M6stSvEiF4dR75`>|8TR-*RT zx!?I8=lR|~hN^hwLV7ErdMo-q4pP0?eST9hNAHt&;zgt2ic+R~?+$|tn$+ue{1{!^ ze>N55wzyVxP7?6jLa8=?-Z`W+%P5YG58w1{{c&M-AJRbV!8&!MpMM{d!6=2?K2|UCD$kNVuHwQ zBL1E_Aha3~Dzz}#11Ek~pJkWG{!9;iIU*afT|WA{&>w63MOeqdQatz-wlHPTGq6H< z`cR#_30xdE{;#WIZ}!??HjC`wG)%7bW`w zovGb&=H8T65Fv5o^*3J@Q|OJewaHh{_saz7$uJx~ra5$~pW{;S!__u_S*(st$t##4 z4SKdomo9Pm-T`&|k%In;9Jb3dJ;mx1ZM$S@_4lVm{qcoMn<5KSG}$jhR5)DkHHg!7 ztaej(2-dXt)ZEAgb2(4Fy68FoIHiNJ<&GC*Mc+QU-J!rP9_?91wQRGkn3%i%X~+)H zp7F`wHo0B8#2Qx^;{8tbo$u+%=I!IW&m+8toqg{f9PL4uGG8-xtZHC!t|cmAIPc6^ zMwxEgGlz5b_0ws{u1pT-DflIN!= zFmKTM-HM-V_ICA-^JD7Xz$qvnN%__69jWb$#7G9qOaD!$T$}|Cd1NKr^$Y6b3-`Y_ z+kK9ys$AU*cqLFbHe-eT6HrtUE+gu0uoo`#mvt!DNvplMReoMoZmt8rZuNJ%)tp~z z9?h_ZIB%3d+ysTKkums;o|%;Q#kifxACqD-_ngd9YviBJ_J16-%_`h4@!|9#Ap zBFNg?GLd%oo2PvDwltRGgPzZL{>$4G@Aumx(!WF1`}FJfu^Kw=*kMdlzOC?8x*>c>2-mhvEqB4@bu1(iIQaQ~N{jZT>KdQ1OyInC{#nj88Z4XHp3aUu z=Gnau4k2cWn1p~Lu#T-r`58l0XJ|w8Tr~IeJ~%XI^O))|2SfCxVLzF3Agd|>xMBnT zhm<%ACgqr&53Bxob^6JqTQ~*|yY`JYFDr$^JESSwz!#22Gy0mnf6*QanG)!8D_;TS zbqZ4*Och48ky3Y+B>3AsoJiN4m5g+xWY9yCc?+q#(Y$$}(tYVKt3 zYSlC!?`ab<{U1=kC7YvYH4nhsFGNhJ-i{lnQg2ANr+kZtGBrr`dYJ#S4fm zJ#!H(t(OGmmgAk`(&+oiDBmjk#&OrSJY;E2?gQ0fA@J>a>hHqV$N9=PybS-w?=r0H zZaDd38Q)X5?jM;x(do7q0_FWiO8Q*-#oeLl;a%zry9$JaD#Q*o`4k48i6r{bu|&Xk zGuRPWP1#D4&u>G&H*=0FnUiBxlmVYNBW?@7?6Z=3sG7&u&y8yFwya=b^ol&s(AUs< z{Pq)X(LHqbs+-N%biXE;PSJd!ICl|`(jV)7cZYHtoh-gb7Z*&ZeAK?1hEvR(Jh1fT z(S+SL&p%yQ?A-8JxM?*^{0MioZy0i{MLYeX{k%pJB1B+MryieA({Qa@PoBHOuX(iq z6}k@^Hz@mvhthHIA;j5;rq5SN{2va?(|kSC2HwbO@MR6?|__);3!K-b-y zR!!wr)&ebx@tjFfIW4om53LngCf@$cl(ewq(7Za8Q(Sr-?SDOeS$FUtUxBvV*(|=G z{{U?2Qm6_r`y`_^K#_&&8jkd1(_}v+8+1SmWqZ z;N4`Veo=99hEEt(&g1wvP?!56-!zVN%WzVU_c9#QuJFF#;<2O0qkQ!JX`Nqi;!)+T zN>)W3!3MRMc0su;ue^K84#TtYyk#IH>XFOI0H<1TXu1$%9&d|f4Vri~p1{bj@-j{J zV4N3pb5uwMX^4>e>*|OS?)`!<#gs`m@A(*R?$I1iT`PQW<)nO3C`E9rxx|8!K>FE2 zc9qF(*6`uO-eY;4nAtQ7!YFIVp0HK(WPAD{IH{t1QBHA~TS=3My&Z9^LS`$`Y7Z63@RCz?CDxgvwi%pf>Twkp!XI2M&+hAHRw@rqBC{c;T2%Hv%i(=mPDe8#( zk3E%%HdmOWKhb-PlWxecMOMp} zxhmo4ltrL?upTz@#NoZr(87L>r_&5pUEgnEZFcA47dH@Zfsb8WGrZ}*6O~W z@)qmoNqbTzAzx@vp$~xRk{Y!K4^r>)(V1{T!yGk(VnIO~F*wWdNT!jgt0#t#r_q{~ za>gKxjqq&3ec?iEpXta&Tu?Z(sP2$!W|fgZM|Qf- zjB1EeN}WRCq+EpvaGJ>lAN?awqGQp21v1U5W@vU=r0C~L|8SW=A^M4vh)&A)mR~LH zv76!*p)&Y&oI!@vAi(F?TP7i(LAG7jELd`^<;l8Lw)s=54b#IbgzKN|n+0#54bp1Hng$i|Ka*vT#ZbbC}Tr$Sb|bT;VCN=R!18I^yaAldMQ z?1`gO@^BQ%080@OsdB8yPWJpSo>()cEWR9moPUQSBkdlWIq{XVCQo|e50F!9u)}Yq zsGo}w9oaR5EZtRA*R!y*%CXqM37}0{eB7L&m9I8G?Q=3(qlC_(S@g@`YIdwu-q#@Y z*ioo`Tr6XC)|%|W^83i*>7}7##i^|wG^dzv=Ldd5Mv!SGu(pxO3T8RQaa(S&uO~6J zkFg8B(wnR#?~D64YdWn7#XM`H`kAMYCJN3UpjwZ)$=>3AR%>Eww2y4$J$t@`9*}Xb z=3;{aMpPW__Gz*KcO#1(L>|IQg$gB#{KM36*^%VIw`kv&74lpWlmwp)*fP&DpE#!% zVn?&|#P&`!g3a7EoJ*Y_cf_B#x>wnppi#KZ z=?P!>s0c#yip!jkLq9?+AS$%|b&;TOme#t3Oq;E@s*;kQgE7{_McbG}CEY=g9}KtlU>NL(zicd!9#}S6P=-#1Bk>zqXVa z{*xW+WJW5?yEexuFLyM^)Izb0c$BxJ1mZU;lq^BvQD3I!4i}2?6@%>*|Fsbo6q;WW z3}2eqROiFCHdOS~?|J=6@ekVn3rBpA7GOUnYC99o23tt(w^Vo@5Q zcX+ED>$Fb>>i)t9ylBL8a1U@@(8CH3`{?T>%CTld^iLAZJePgSwXxq$s;dVav*{5Q zCi&~Xbi6O~S%gHdSW!!RxjIM1JDNNfB-|rn_NKUm0aHLy%0RGQtcu>axxU*J}h`2zGu&V`t=%`MA)vSazN4Srp4L%PGE z@oZ_=9els~q@M_YIsD<{phHUo6m6ZCKp*q7&f{pj=W7g{OPQ@)M;`Nez=vYqIoMFF zLJ6866D=(D*EhWN(rt;;?nTvD%t7&Ocp~6(8ssLgwoM=b%}56(Y48aNROZsH2WL>X z4hl|sk^=YyAL_^%OyW#J)CXbt-E`dyDJng#V)5mCFF2GmNPAUSj`^vI;VYytdrXN2p7iozgYa?!l?U$H2!-qu=!^l=;SD= zhlttvaA8CsC*xeiL4NE!kc8biLBbbLo*hw{AK-*lHBQRE9K0q(c~br>fAEbOJXADt zin2!&PUT;pw$Ol6G1CqcH-+zMO5fq~X+iG0E{q_dX)`3DLeQ#F7oG0zlxTu?_9#?H z5*3KDea-yDL$f=a|Aa4OC;2yq&3OIK3~UszL;oz&n}*=V)P9}tq~|ig1;dSGb_~pt zP+ajyW_e*7oZg@GR~JHHL#Eij%)-T=fH*fddxa1}(VHt}p>^TRpUJq&(Yb`1lh8oUwm{dZsWOkOQ$P1#U$Drg53zR4Ym; z5fL!JW*8xEyED0A!5|`VgUvAdXCGXbN^i2UCoL)kjOeHVWn`!^fhCOpg22WZ3FLgS z;5o5e0G3(*lfjk^%)Y(^tVAusB|LB)l)w5v=?Q_%GBeM@!P5Q-VDkq4nI{0gqlZ$O zKqNe{eFOjO^M(b5h+q*mPwbz0*I)t7zYwr_1ISc4(+w6F{u98qiOnK@k@H|v#9-UB zv3w^btbbB%8WO6+@cf?#wn(f^fd%|l;(%L6Gt&Ew;Ev{!f>iqgEXYBcO#(cuxPWgR z!y)Kkfdta{xe`Hh>LEhf!y9VQoEVThkG=$4r~HU@ny_`{ClBdZl#(kP-sE5ScsM); zIR~o`Hno8Rc>lt{MwU0v|FKUbc>t0{alnmr>^FE53jU(uf+&xoV*$TE_nt(E4Cq{8 zaD-P7gRa7TVyyL~8%%S-#kGV*a(WSduy#StWru{pz1iLAq#Jk&!8ZJBSah?$J*2GxEI=K=IUhsn#SSbqpp^2#Y)6HmAQ66iL~Xq@!9@6$K5 zm3Gk$EoojDN|Nio({+!dK24jrx2HVb_`>y|W+C?Ix3#0bln(gQ)MK6!-$w_S9|x3B zt#IE>7K=)aFo>S?`kGyf%*py_4*u`gk9(-&bpmpf1&=*-TR~hrPeiwH> z!03XN=+Re+5d5i(X)HB)N3wk-P1Tmm<*QCzSDkQ$Pi5*Ao&Gzdmm3!4cL;9rV21pE*_S?f(t`!j8 zHz^!75ovZ9GO)rEP1MZzth*v7y70|@N>sIPrOIxMZ>6k&@YjaHw&WrGyc_NE<((o| zv4!XB7nv*WR^oZL=w79$J{PyM_Cwe*Q*5nmfTL+^RfM`Xwuj|#Ii>ooB58*M@i9Z# zTggY~ll!<{{Ti1d>8qRRU`~QqQ}EA{hJL*H{45a)C0Fr9h)oC&o!Sg-2($4K1RjKO zKx`sx*4R|F5-}E$RvY6Bp|w|j+S%8cx?l`%W(2<|;z@v-3|+Z0-c!fLON}WsWxQ#> z`*-OeSTQ=q>##IWO6#4nN}Od9&%4?2*wTKLKfl=C%CE3svooLqMDk(}JKLYHsENzXFqZ~j&bBpmR^MT>;DhM(tS5x+*&S(h~>On$>C zY<8ojBJ-(%z5nR~KTii6*Vl1c+>w|ahWAoqHFq1Wm;b!L#idH4&d7vD6>t;bUu3Pu zK3sn0O-`ilaHUz2-VxpYyBUfSWqXUg|C5B(tjjvJ2f(8K^!fC61xr6xLCeow?8v z5++}HCe%m%W;w;eW$@o?p~eLVy^?fUdARV zNzo|LWyuk57Sr!=egnJzLW?T4J`BxoJtZW$qj1}-HoE!pmj|vlwke=a5?)dw1EoHb z!uuAve3aT#^zUfc3x2DA#h(?Ar5YimcBkO4bbVnM%e%CNa#tHRPKm=X3Jk z+ESxO6DtB6__R#tj93S6{qYqs+axW=8utlqQlzw>PgjVBZqI)ZsuXk!iM&c5x@P}L zDRG4KqXBbC{Oq@%Vvx5D!a!7MUr}v#z!ebfjeJ$@a7PR`jt*lv1QcM^kxr1$u zGqqvtG}YCx@S+UNx01zdM(tx z$k9ahRc*-g4nxac>s4x=>_B_r32vV+-jt^-t%S%v%U2e4#W30TT4a{1+3772oHosk zv$xfA=L+L}R8sJkWa!;9r@>TdsWtW_Jf zYB8km8+DXYb-?K(?TH97ZyC3grvhs^%|0tdTV;u(Vy5;->wE(4T-9jP3(d*3{v>x( zb#B!pEbt$xf2=rV+q8SO?v2Q|*Ax>Phxfj8xJ(#$em0jS=&ZB*YT=yb*wrwfyMOlprUa&>0 z_Fxr>iOiEuiKK+j#2Y?Ow%%?vJ#b>75Whb42~}Zt)3(z6(ReUrIG(CSvW0ntOkwE8 zcWDKGqi?eY=lr;(D-wr-yRUVvZ;)xT{76@dk@w#IQNhcC zT)+jrD*|P4p=qG{Qy2j>*xs;u3Zsno3=$>>vgex6b7g#5=m|NH`53`~Cf?SF5HeB2 zP{!Z2qa=rCFvwrN-H8~YJdF{=n}n23V^q;vcM$Fc;LuS42pES!-(v)@oB=>M0WvrP zk{eG)$hR;#m5YF77`!e$$&wHSh`SxKqX2OiH=ar z`N)Z;5+w*c1bI?|z)DjmR4bs+A7@VjXU_f${9)z4123Mr&mJnF1wm-d5srio zDBQh{0Bslq-aXh5Zro+*v?+JV1aI4APz;AQJ$*F{tM(h}`N0^n)HG z$VCrFk&1v@Frd#wKnVbN>d-Vj&>nw>a8l=hf?g>C0%6crjeySp;1xn^=YY0+7s9EZ z2MUVA2#AEi#19CM0i@ak0G??Q15nQ2K`1i@AP>QVs4f6`Dh%cc5HJk@o<2l*0cfjH zA)Fu;nhUSUNppV5d>-Hf`l1CoW2)s` z0_9(j5F=2Y(?#Tu0f(M8M!+{1NZ28Ok_l-4g_M|pw&Xp8djUA~!%zf_!$2ttGGGRY zvM>Wco(uyO^m+zDzJ*DhJOnJmz`Ya!LM$M1N63x^MDF();VJ=#{?mkjLl}s(B0z~1 zXdgkItU#M(6biir5^Mz=di4ha$S(oFzK8&Q0PvndA(w#m!5+emzzPv~&~r8r^dcJo zqXY=B0{~A0ie&@Zxn~h>9#+t0MgSi>P)LNV*fE#!zCl^wg3lp?58kigm%0G8|#5Df!K2Lw#OK-3Wdd;$PyIw2qc06Z6{ zQ~;xk=a?jj(E|gKK76r(GT}=mv<6>xAtfPD2%EQ%P;Z4ms5NL(2qSXQS>TvN6g
?gAziW~_Xmby>jZ`T*vD4{0Oh z(3%M54BGo1lA3@BC^Yx`&<`b`XnP+hf^w&Xl0+~Ju<0V8R_go^)nY%SRw$u|{`mhr zJb&^>$~@m61ospLDR%|H)-gaIMKPl2_CUncnm`c#j2I9%2O*517)ZP!7y++fP=`f8 z2^Q!cz`9i-2%{tp#2ujsh=D=N0|ZRMpfL;q{1O1vKSV$v0C?3 zO+@HhvLJ(0&>G;NYVaG4c>xP_(3g@C1#>w--bz7$O$vzQq+5M@iBxIcOV9&OMh_}^ z5bcLlgjSOWt+*o%0X1nrCqo`&;72;b%)sKE39#|~> z8Uf6T0O)5U;5H1j-ykioP7&C7JqH1&l>lhTMSv9mAdAyVAdC61;B+1=&_R>tBMJw3 zNUkWM5MGc6-2#LLuBA>!3?8&*A;QQN{$KX56d{a+3W!go7y;ohP$+?oI}Zt!0NqIy zkP**Pgke(!;#=<#VDlb`166_8r3_&#$^g>=Gs)!$LwOklnE8MJTNq4zL_iS?zE>as zcNxRL`0LSdmjtKi+mO;8U1t2Q-(sQrZ1=F-dyTS11- zfyMs+RXhCyQNtq#YKNKvoiBjeGFaUIUp3m_h+2pShVFvC4v%v>uuTPQi#S;&{ZHX9 zK_wa(@e9Y_z61^cg-c*g|Gx@tNt$5ro`CcU81PlL@S%%a z_$=^K0T24j0a7Wa4nR8z(E<$ZA;R=%fjVQrA%I640G1;JFdhNjXl_c?eD+=^5#OhA)N(dFo(H@P0xqIv8dA3q%CaX9Lib*>%CZ!V)sl1!Ok) zKe7~%Xc8*ur!Gbb?-sc$-j~E@p)&?xy0QpK8vxk?6lj1^MvE9g^#&LXJZ*^d z8ko4X8^e$Ra=r#^i-91R8#PC`Ex_ToSdl|nR^(?Pc|(wW0UOBG5SX?AHf-%R- zhwMx+T#T#r8sYE3bD|5_9q_+RMNNzuVisdQ>3lqB2^na^1cQMrO)(6#SS4nZr{`Tk zcPB?zdqG!sduJzMNLe34%V$zTmVs-0VMgD4XHO%Gti9xvy=^*;K^&M|3pY11wA&y$fFmdp%(Zm`5YoL z$0(v{+wu)!>h?zT3I8annHUod@% zYyS$JSb~aA#J8fTvM9BLLtT;1um^}N!^0cL6NKhtqVxaygccs?Byd;;0Ph3E;zN%! zuXu5kYxM0?khE2X&#U=4GubwT8X4N_?d+$c6^NbLSW$5b8Kf4P?lxDI?K-<3pGq{| zf;cGywit5aoWTX?`8k@{OtkG3ua)PP2-YivI_SWfi(y*4HmItJVJBPO+LS`OXd^+d z$@gE+?Ti-7SQV7E!Rq}MqLA*>7463b&F?Jhp5ol4N*%Gf?EurE&d-O5e~9sloEEE@ zv;?ne(zM^5eTEeEAPk_b#?UQTDvgX#RcbD^kt!1}Il=pJvR_tgKIix$*-j&ofa(4+ za7%DPV0qTB&R{RSc$r38xyCkf;MXEYNvp26bvSIIO^;}^V{-GV7W8z2H?VTJt$2IM zcdgxd;i9z!Uf{!RQOe=_lA488YbyG-bNrd=q}rY6F6n=kQH>Su8Z$N{sWElEs$?@e zw2`t(S%R&7GYCp6(^oOb7>~q|epiv2&n~H}>d~E|Mqr-$&40VJ)h1^`Y1ogxnAAYX zgLN_pAnDe&2p29IpCu?$%@P-i!EJ4d&L<|lITil=(Q#n4w0L>kSQa@GCPy)I zAy*cb%)?%>wqKK|a=zz4)Q`+yJPg@oB?%2QD z=Yf}6USIloh4ag~c`mMDw|6UZgBH-M))Pd+Xd{%xjXaP7?b?D=Ad5arzl%RkzF!XB z>}?cNK2y7oeHLR`Ld7VuSQ_s)goz(+4LB}Om>xe^?XRRBw87`GFbZBksL>0{?T=FIuqocoJ2 zZu+V`^P`^$n_HK~QHaNxXP-vf1{@W>^-A~JmQ?1?X?{a3oXY*JCN7Y42*Qv%lRuqb zV5m;`-K~sqhf#ugd^)9vohM$*q~(#RnH4pfYv3Av4vzs0QSb5ZGR2dWp3rJbk_2$t zZ*NJupULtbDEA)U6)(7WZ3sHX#8m#&8>%VyFcjHJcs0Ivk(KQ&x*M+Q*ANEDX9oqeBqTZ#wtf(mCYlS-D!ApRf2nNM<*@)PRQY}N&Q|f#!(a2 zsmUF&!7D~)f?~i9LE)+1!qX~fF;y$F9L^&eI2!FzjsjI+$y0^f*y^*A?3V@Zt*gq- zSyZ^_aKs%c_v53E=t@Kg+xNm9$z~*h>99kk>tJ#KwFx5D5zgdm1<9>_Cq>jUlfT9M zA^a=I_vo8t2Db@rc{{yjh12eulA@}soLCS%w`2s0=qkkDzB{W zU3@a5bZ&fmMe=FChtzSz3|dMF>$YI%?Qzd$XC}4Us;eG zQdzm=lBs-Js+9X26-2U@549(dJ3%c&%ux7gSR69W+CmX={6>G!1p3Ea+K}uL{q!OO z-H~2zPVF1msf<#7sqCv;lzGF3tU&?$pUh)X4J&-}QLL~oJ!S}Gi62^GWS@Tb+%A69O>@5;17W;|gI z-XQPx#}!=#-towjzS7Wbn6sH%D*M70!T#(-v7%k9IO6M{8P50v;Dyph+6#`aS2c11 zz*MwcAZ82QcToFRD1~(KRfP(R0 zHmGqlWsqa-;EPT~Rv&{O|Wo9P%kyO z$t-`2PN1<%quQ1wTU~1!NA#s-qAYP$o&58Rg_7f!Mte<@zu#|Wz@61Fa`A6qX@apJ zs4wnpxuRa5zww{kXM7)%Uhgco8qTxV4^NP8#fsFYI+3W=!{*;{DbSa4wmUx_63wnT zy5;+3U;bT;(?0--Fb>%0mQAmP9yQ3FW%v$q3VkM4FS!STw9pg$0Thy{k`kKYv|#os5(=ar-L7&K|) z;lBGUkE$<~<|8_DWygtn^aOX+b2)cPZUZGZ>IHj zLyQ31gZ1;x-FQOsP`$1;&kD<(B6@E`J;QG#cmVtA1~QfeIE|_=gbF^8QRelk51qqK zr{tm~Zb;^pnP(CkJxCvwLLrACmP)d!wQks4$vup@L@&Ekh*U1a%iU>%YtMQ05lV(G zTMJ63VGjt#ju#GP&}Vf1?GUI5k4%uMPDh%G(kw}2$dW_M{Mc$kPPMVE*rt={Xt9%F zn;w+hPi^>_;fUuPHL&N0ixS|Fvy&tAi3Ltkm~yK*Ot1hxdVs|;&!HPsNPAH4y29c7N4%|TWBoLp(@2GPzL^)9 z%<@<)gyOkNFk5zM@kDm-WRY}1=_f_DpyTG8#n=2ecVX~ds4W*zHqm3O_{o@Z^+gR~ z$hKNX?lU!1fwzk3LHN~k-ah&WQgdfc#XYWrzxlDMB37;r-mP0b8M_us6|GuJyN5sA zbCm~}1!fj)>~D3cALq%Yg$8!)7}6dzoIKY{LZCa5l)jTw8rJlJOzhRf*r>w|gtyUh zhZ=XskSyebPC6U`7qbsBcl={4-DdnT5yf$2&89+f#*cBrPRISUyBB%X((y|PAL?}I zy2Qc0)6>({=+^~zl{SJQKI98`i@x`pr@w!}&o@sqSBh1?jUOh2h=mMVDw9WzNcJ5C zZ>Yys@w`mW;yB+{@#G3-(?fuyiH@upkR{+!hE56SGQ-vm@Q-w7VC*J09?h+)svJjZ z&3yTy1Y%eF^XON-L-+BYZO^3;q&H;fBaV`iGDde(x^p_o?$38541+a|&1MKFRBmwK z7jL0YRKs)@Q`p@JPtr$pc#Rertc=2w$c8yj^g&^$=*LKDR>fGTdv~MD1^U0$MJ$F(d^l}W_C&l%K6yZ zJzH8dR?bh(n$Gm~dI~Czue#cWB{Vd^i(T!71q41~oEIm<26NFo?X6(GTmrZ6F9vgR z?V5%uM2g$MX<0%y|I`&tZG4*wXTPpUO@#6V$}Bzad93EDa!qAC{(Te2U~~Pm&6snY z6KxUy(WgD{A(gV{Io6)i1=j$X85KS9mtW1|u2{ooi?$jrD$<-?4NDynExemx`6j!p zPGb?mK!HXl>jgcAPw3cl+_Ed8FFS|eOp&v;xa~7TRpJhg7M^+WjqaB5EAgITk1J$M zN-T3g-A*;0GxFi5fHT~_1!3tg?d7gVUC5dX@Mgod-^IyFe!9qcEcI5McQ8A*K~^7u z(zTCS_2eznajfcq0pF#>1`f=?-5FI>B*MREKSl$%s!56;NCAcAk??U#_4wpPiV$^`>0NxzQW6_`QZq!+;n~)StaRAT#VcGQWByQOz zCIx%M(PeTRjA7sSJ<^_h6d?PzKo7_x;p@oZ212mz?&kZGwHKob3T>Nd>V6N19F!FBU?FETKBAGuUtg=7?0C30v0BNf5Ul3+0>KF*&KapBx zs*c?T7iP!~Od3CIhPl|EA4(mygkH=-8IUgR0PTF+Jj^jt%avcbLM3`&fNG8$CBR2zvoZSo#l_3MeYn4GfF`Mj#pP!zJOt z!%N>)Pgend%s4?UxwVlLH28>rwnal^Hv9a>7|Oc01~ypJR|i!cL~5`$&w%$xw#MNE znvvPWS6#ImZb*%yjucbtwN|dQ4h!~Y4)cq9xK$JLkSSowQ-W?AJeeDz3MWk7j*up? z&}k>w7=_*;lAMXeqh&y}TD#8m)MQglRs`?e`3sj?x!+P3uzAkhfx|YY_#4WV(K6zj zH@q#{Pc=H{u>P1n)>j2=yY^YBjSFdRbTizqmz7kk|5Vouwxn-gHg@^*b;p>)Bfn)s z{wI-ac_-^Izbm!H7K{J&AN{5WCr{Ccna%#M&jp*Dzb?ISbJV0XGFufrL+P%0h+ayLH9rhV0w{8>1G~!zMqH*Ql^!gHfN*xj5QdqS$lffc>sx#l-gh> zI@1ZAa$c)GBpk=x=pm}o7k$Jsp8*_RDY#S*eIafi1E0z&adKAIeS2Ru8IJEj(o}!1 zYNdz7V})7bU;n4+q(H6E9f{{+mI}K@{AG<)`#1jg#k@D>`=t;Mj*g9QNVP^IFc(PCUk}a@+hm8nB8LICe09EE-Fpvu75Q08GqQPQC6iY6L&mp zpgI-F_HC!zWEmsZbzPAl8-JnE{EWy|mM;Xu9UnC+ukw7N^TW2)XLEeAG+t;B_~COG z8M7^t&6I@m_n_c6JL29dUdh;Cc=5pO*sI}%`@k-<^d5K=<#xB_p;1{{LriVJvPqZC zy#-r)L6^Efyh>jZQV+$b5S$;|lT4-?#mdKYtl()m`SY zR}UTcLL!UJs1iRmN9G-gI^KBfTg7X2n9H9?L=S0|5Z=2>+ug zEgzZ!hJY|SYl)u#5dx7)#wWfwe5lR~>i>BBM|If#$q!9xZrBlUqWUn+f=QZZ&bxMk zM*S&dY=I+R$c{lLdgIzbGImnZ@!F81_Dwm7OrJwLDw45Al&t%%Bi+~1chlKKk;^#k zIkCj7$xO%AW^bl-5zta@^G*MVo)273$}>=4nL!n2#^*Ir&U<>j-zwOj`4z} zfY+fDL41uV(o3L`_@@L_&FtS9%x|`RV!_Eo5nd&zkBQBCN+WJtt7Q&jmFfnc3TAL3 zS*daO4Ag?khQmlO>7or7C$wFc&rB+p0wisREd+xKo0}fg6J9w35D@T$>y}lrU8;R% zjvIv#H9U>wofIWVB!ix4&vk@h?^d5Rz)Cac1V%~K%bXC&P`H-K3?*-~5$U8lKVqD7 zeRo`b8#bU~HD(|+;%W0(=sda@#@Jwv{}}7cnMz%W9X*;jC7+jX@oQ+IabNO#Stjgp zK5kY`BC$VK3)NUo<@-y6w!cp7(Bo)NJ@<%c+htRxVOXAQEs!CPa->8x-z!rv3>IT@ zY@m=NPS|UU#~HFaugVekMW+ZA;A}qkUyt&rgSzM4vNB+qNYyPl)iX(w=FrfQmIcdo zVJiz`Up3XfI$NA3^N71a%wVGCt=8M`ci;fMJHH}=2h&W>_88@{7 zu|8mJPwwHG%E;l))k~=pP(SqJ!5w(<`{k1I_dlhYLpfs-R@!y|2m4T;X083VhR(_Y z1h#7S6-Q<9QfI37jWkBUOtoYvXRV(zW~%ms>k;>5WO4NP?P*@^ggGk&v|OfonOkRZ ztgiQJZ1~cld@lG?c6hynf56{i>%4Hp>(p{R6_tCSyjR z%ou&G>ldk+g*t|5srrkaxxk9<7BzXVPJUvgwncc2o)v)eCa_dYTr{j}qmbFs7yN_5 zC}m9;;Bh{Zo;4jXD4%G^lNGbInnTsmnf#M`;Uq?GrN-d>{qQ^$EFV`m++i z|8Z)dgVwo^(x9{1-~>#b*gyEuZHj{m!>?u#f*j004jgf&hv#sn6CRM99IdL&g@PInXu) zM6-R1@FIu=h-Biv2)OtVEG*prBUq`?OCTDMWORON>k^0(ocg&Sm8ZS-d-QA?|z z?YR(j2W4qQaOF0(6g@&&mAmo&&|~-(|7)2wbNbAoNuhz%+rCnY1?KUMaLysrk>wao z=jTWk>aWo!uWtHL5njj$cE^8oWiX&han8)%^0T2^z9WO2&7Vxz2D65Oj?ZYT@)#Ih zP8*A!IhNS!QMGmXqgE95Pq(t$et)kuZ(g%8w6iI1q%05es*c$zWs?^ZXK$P@k8h#3 z(|m1Pq)B|Hxu?5VXQRzpYD!C40nvd^!o*@JWtv`v_4_DW6O)Z8QtS~h> zoK2!ydE={fL{#{u4Ciq4u_qLYy!goow?b!(iBf*HG5~hay#Xw$IiaAnZJe>L#j!6kyiE8sAqQBr7l;ewaGD0*ZjIxH<4X{PI*jQ<`eJ z3StKrgr~%Fk7=X!wT6c8TaIsl&et7axlGv@i>t!z5R7@a0p5D1UQFu7s0Vz>n!%3- zY?I$$7nSsVx;m-GeK1$!Pz^rz`XZ5gzAmJ#&2;}+O?cNXGdn1zBF0tQ7Ws&ADN~JOmnsUfE(557+xONy<-bF zr5ztiwq46MY7056L}L2pw;-PAHCZ?A%*)6-%wV*iLTYmM(}stNE7XK4;OfOpMDQdv zWetQ2PGyy$@T{@)y{;N4oJacm?TpO{WY$;## z-FD#qr3LK!@_xC)Hb|?RFlV1i@ClrT23(U zOn+NUJVtx+L{r{HA!c1oQhDRb^xLTBI&8QhNOK+!v)&^l?M4E5H?tu+9Wafa#hUV27Pf2#*l&sTfIcNamB8# zw_E*%>xJS_F^S>ugh#|)HiF3aU^1?U#`m#xip^xeJu79XEqwaZf}xl$mE~^-JKydf zI(e3h0oZU;;{jPec-4OpGx@%sigJ`U97OyYZ(^n>D3!R|)P+-uw&{q`pf9=C(y9ZC zytmMM$On5Lpt$y*YK%>@ZMb~enYPqUYZnwO2Dj-Jvvkn!yG+B+32{x7#@*IvSgN%& zp5bZ_X)&;ryMd*RHKgn-*t<6}LRj|+*8CW(HKGa`~%im>96 z2hjZ0!d=HoM+Yign?~hUlEFr)&(ag4QpuVU+0kFa3P=!>BL@*obj28T=1!D=HN`>?iptk{l*bZf|gM>^3HEE+*GWK*HIAx&|o(EYmA4w z{u<9(aSq+sY^r$rQoy2|W-WaU*WAdo`@&oU1e-S5|`FPJ9)uNzh` zO#=tI;KUxGxGSQ^=RVZ1k|-1-!-6O;UwPIZ&po>rPf%Op&%IOTi#QI^BNAdqA$CV2 zJFp1kN@?nkQ5!ykJmxWi%PQ_QJXh~8zd62Y`pF^%+@mY=4+wB#Fg|Sgl zX=}+}Q??FEC{)>jtKNt56zsfK?j;q;ZhSZ3_-fk?HGDwEG&n0V3%0c}(WH4vSGg5u5wa}ZRWhyYN9=2I_7&T(D=LNZI@mlppB2`#H zHnqm*6L;MBqe-#N`;&XY^bosAvGw>NtgX{Fm)3jg0U|+sZuBUb42GF*&FzbXouD%j^1wA7b~_%**H$FBmYKb?}sCQz|fi%Xi%SNe<$Op*eWs31`I^Wc z&d(ltw)b##PJ$*$C(3e_CDo##Kz(>}7>w(#uA;U_oPS?-K>k*CqHlRS1GPdxoR74$ zTz<@LAoUm0Ia4=&f#e}M(4F9}$j?h_jDKyk_!cSDBc@|PI$TguOMoqHT*KQ{s*(dpbV z|HzYGoA)xN?|0Z;B&DgV^BU-~<}hKiQ?KwDBo`_pg^?iAjT$goGVnG&qc>`!g5j9W z9`=(Ko1vRYqB2y5MoVdr2oTcU>q3~aIUwO~@aPnSW!!%QMJ!|RSbxJ}iaOUTQOPbl z3x{=AEcZlus_($Dy<9%alW1EsVh=g3qu8c-R4yM4bEo<4Z0)_9kxKIi@K~_b_6}Bc z^E?w$_}?6T>jwW|vR4@V2&2L+z$H4p9<`-rOB8OhBUdM%!uBptT*4=wLymJO%DGS% zc-Z;e(2zX%mnW7nit^|Op`ecOBiFU$O54_s-Ia6Me-C7DD5C6*-WH5#Kh@=ATxkc= z+;_4|q9j}7o_GHfN-Z@A_QS%TL_uTsWq5-o3Ny+W$dB@taT1gK3`6e0vEsBZZ6_&IE=Rmx%*I|lhS5wIK%h4rI3qc2 zWNl7N9u9@=LWO;Igub>MB6b}DM`L-Y-iE9@TX*~6 zryBgc=(Cwq^J)lxuicy~4^?{#?d`C{V(c z$iul4H|Q{_1e8alP!#;36SmWMR^`Da7*m$R?OUoIUz&A$8+8@M-9UQi7ezkWsfggE zzwR)Zc#mXIGM5={OWpnbF*@f0a$72H_Wc>nFubc7XNQ1yQkIiPzx!PXbUUQbA3R-A zPulPIv$M>EjZ37Mv*btYE)){=wxp*z11=aDR<3s5-!DIABl@}OQ?o9%wc$IGOWS$L zxk9FVzlPo^2sccaCNHkrQ&$V<07!vBApCp+uD^5C%;%+nUrvLD|DBAz2%cnD)V zLuUwQyx;eV^QR-iiVrHUpl7^SNa>Ho#*Tdcye+Lx=$6E%VWl~VKmTH|+{B?4{Cn5= zi-l3@7N0W#7N!$iTO9iGOJux#<&^y?K(*Cl*t-AcMpPucj62rthhD&3>(9xbyhxSw zQ#wz%JC3>w{7B~JK76VtlWmrV%+nNsoXW2xIIj{I)M1bW+1;IFQDzARJq2N(ac8yk zT#ZhCjwI+E`va=&<-bgiDs@m#d)PYVbKs?(;T>L;v~mEe7{G}n4XQJV@s}|LXYWp( zDf=lnobn)Q_|-b)3gWW8jjL;)Tp;D>p#8Bk%U4$L8}Y~L7uYV}iJ6ZlI6bIh-LbeG z+VHZu9a`gGCgc@1w^qhd>uBxR4f>L)0f{3NC-afW_^CREPi||2v$Kf9*JJl-n3OA6 zjNp7dA4&+!e;!P3Z++cC1Ic`Avh!ve4y8DYXnEOKt97so8@$Cn>W#r2(ZD|8+CS2z z&3;3r>(&$5Y1o1bWMe#rhfH{i2D=~Fl2G^JhvM+K|-YYUyqXnZh?!U1@!mOC0Ykhfl54*!-331B{{ksEVWzp zm7}fTOeQFg4x3#xuR^B`=@^LjIxN=#l^2F85r8wgWNUO z-l=(WD|qnpyo}N8+P(Rsxn=%Hp>r*HLmnKQn9Fd#s z=wrzRWdiO~1S3Xq<^MWLS;}x6c`MRO_mvETLqJhy6)qjz#J~k>wyTt6GJ=8gk+}XJI?~1VnXA*5*i=){H=!CqIk1Q6H7?cXUA8PX!IS4sv$R3 z6wV)&v}B7NO~KHnJ&ftf-_?`mS-PrKE!f938p>pB$86qyajg(M*51O6anpU0Ru3Wq z|5VZl4dvHokalbpok|QPjCoQX9qJ?EsOs6P%jExgy@5_&2lwSj_j1-XWJn?2h^=kK zrWvky!29b$x^Q-|zyI5nPW0X19PM*so;UgS+3$Z!!3~wgUO`gX0n84Wf#)w=1y7GB z4|fu#(}GtTFoDY?DISI$gJvz#ki_TK zs9jvpa`hR*x|g_^E_@{Yer<-Seq(eWFu&27rgLtZFMERd$kCi_B=>S^u($h*g8g%f zrSM&CBjK$Z6uPvNagLTLO7=LavrhT^E>dT4CJ5pptmBGr6;DNq5R#E8GLM6#YMBF; zg47$D!z-!k@l82Kt&A(etElSmxfrk;O;-RRo~_eS3mR4Z(zbB3IJ$0iHw;rvaD6y7G}ZS#UG1 z0~H$kMgklLCH#%Ag$cX^Xpj=fg|M+eik(o3*k;e2f)Is@EC5OZzkX(!FN;{CXe7}Q zK$2n77^1_6QuLcx64{;wGT{J4P%07Cw=gZ`%g5P${& zLPsUVfMg~SVj(AE#iT$306`zFQ1CGS-{~J8Qgjw!kP+CCj8!SGPXq(?+CRQ-PC1~T zoP=3u*Vu^-68)pG|E=}k#-Iu*0?|lF{f#gH5D*_#LP37KQ22NI=m05;u#%CZ|8;y` zT^}k5^PJG`@4xE+#E%*v&_EwyIPf_a01(%{&4+L3XbGpd|F;}G*s*L)-mTwNM8_qE zGqgbdX(20Gk6V7?kKaG{LDRe2QQvp*+^tV1hz0s5vV6EbUcH_PTMatJwVm^?qndSN zK2xe44I3!T9RmO`KL+L^Q>|DkTH+VX<#~B-W@0ipr&(9nDKaU)acy->aV@n^Pj~tO zfOwt|uoJvwwW;93Z^_9Myxa^KQ(T+XCLDHk{K6m2hW+^eflv_lNj z3ezB~3rG0spvhu}_s^p%ORdssYl_iMgkcM7KhH%*r@=kjo0*ZAPXu&`A;wsd9%u(* zgZVa!W7(6Pg!$Z5R)lHObDuSE=?_8Phu^Z~^)bB93b861{8bH<=PSvm36a+F2`DppL`*8VK=^~sd?ixh=1@O)UgR>A>7yj)Z#6SJJ z<^g{{r{Iq)(SnMTuZLS+=h7hwtxZWQ{v4A=iaGhil>rm&E|xF;NiL6;2O>v8K1(1b zOR#xEXx+AWJNDmtK>yam3S?#Z>V=9yFWp-yJypv!y2&Nyf=fG7@d?k)+<)2z0WApO+q8wQZTp|! z_~+WQ^RszTA5`9^~x1&SRbCWG)X(MkQpE&XuSB4-$7`L=+h|+|M;GzAU-g{8}w57tHiPBHi@(czH}r^ zn(EVX96|mf2PML!IXRV8YhG*_l0EWQ=`T&6ST2>^77D}2>54*2OZ^}A$ho??W;UDH zcR?&%Vc^~ck|jm{xf1J3he}I91pZ>a-b1yDJ!kYkh_Ko{8>g^rR|JyqYKZ`yI_&oA zmmdsaiV=a?FcnbfkgYm=N~%sZoPioeBUpl`!2JoR{@Tr{0hQAfNGI_l|a-J!eP#CLJ`Ff z`wP&D3KY@FydFGpF&dsjm(W)(T&Q=GSwQNN{0f;m`m^_By4B+8T>T<^51YozIC4{*#_> zkuhKr45cSNO zJ_#o9#by%{9gf(o=uLicdP&BAefIA8&!_+a1xa7dpriZ;OZDFy`SX?uN}8ko0Jkl1 zX1||TLJOst_!HcelKE+tAY16tc#DpLeZhVS9lHYY@T(&M^S6HadK+GyNdQ_rQ8Q0* z@vVU1u0RB98iZ200G8@qK-PLASxhe|U^$GM5J?voz2Gd>K7mVZ6(}xH`<<3=)%2e6 zxbW?TIK+>AyFE%qy0DO$+BV2iVj5BrfkN|-#G?|%3M4EhH}ka^r81Bo8rlgAqZYTj zUk<$s0ev7)D_Y$ztPb>Ahw_=stw1g&y{Xs?zm?cQlg~k`63BVSvaGp1# z;wKkJK<-Uf#%-%toS^Cp`qtiy>StND!hC4`4YCg;uApgpon)v5`fOjQJ@uizUC;kZIz{xQPz!~O*e%~%d?n&@SF1?Lw4GAdS8 zbgePy|3%x6{ux4)S!arK34y0yTwxM62U0Tt6T=eSWpjuQ9%6AD`CD~JgCIRc73QJ%r#Gy>IwJ)1N^|8xdWCmOyK)PeN>-6a*^^ zSi}2J`s=mgH}tMACs}RxSxiVqO~qZ5#AKgkuPWKUx7@8Xa%(;;L>ny)mGA8e8{c3* z1m4S_9EV$MF_ug)FP(z5y*$2Tx1I30{&){re+Xq;*SUbt zJiq^sF8w>a#uWRc68uw{GhrSfze?pEv#V~&S;YHIlAhB~^}3n7{y37T>3s)e5d;w+ zP=UIOp*(B>kyFEZ>{0H)r#bFYen?>mV^A`8+d#;+c<}kPK*FxiKI@`6|E}{igrQ^3 zK$?5_Y>Qv^F#LDl0$s{awk?ycy7-UtXtJLmgJ0%Y((U_dc@Sy>;w^x>F@G4mcoW0G;w>hW6= zxXkbL2J9!Q+Gz|D?+t>`fwfm}1v95nmAbP)8Ko6uddb(1Gy;N>qR6(4n)Ew_Q89bJ zKM6|e3Uz$N{CtY0`rz*fO(+5>GblQu(2uD$U~g{+NwyJ&wDOXo$?)>^bI)Kdy=Y0a z;ioT(ekf>$K_Nh<2Rzw+)V&_q&uywe7dP=n}p@H~*DsS=NuawsRbm4y|4yXxI zBnIUN2~rdZQrqqG*Hlsz=u#BXrkm*x2IzcTzoaPQP)OVfAzTzbe8?19ko%Kx+u^Q{5bt7F*nC{RPy{uSr$J| zfP$t_A(oBppLa;FI)IQNI~25&6}sQ~4J`AoasEMc5*$Tj8!Kq~TxA5)bPH7W2vc)I z;Rek~hGj+S0zkf&8e-TnP#eZU7pS_Gn-r60%~^>=YA)J@;rbI%5od5y3WB$Xx z4+sEj^-T9y#TjC!j=QRUZQIQbd86qM^wTB_iajFJ#&O%zEflOJ+1N#Be$bEE4$P(Nu4Glo^!Z2K<>St!5Q>16ncUY2XW5>jA0eDiQ zVtrB)LPUl&9rcqeLWM;oT+9_hC8-+|u3shXCK<>2Y!pv19)$g79IToNA^8)eK4@}% zO(&h%o@p^(0$)rnj;sDBRHwc9QARt^^4BG|+NeWWUs!FiyL0&`85q0pfhKTEMIcx5 zU2-jwHg0AO<_2{KQ9_+R6J3GK{hn8SRO$0`iJ(n|cDH2bH>tY!77H&kPd>VNhp#&r z{Oh+T*`X$#H=h((`7cJ?g1KB)@tH?f{;O1|FN@R`s2U2ItROJaiCg4);58-}SHHU; z=n)z~HJR5bWFm?RMrBuw38fJNDftZooIa`O)~$DAf-w9RdPj`U4+;GEGa~7Pc-=uy`ww}whq|)3LJeB>_wKur0k_* zj>3(dBqd>E#$SO&mNj8Uqrj)RkGc{@TYlH2^^afC!|BPqc{$$Rg$&Tj+qnx+^hfai z3&;rwepDv8tkpTo7>Vm|vWSUGVEFpP6H5G(tf>RXb6>ql$!vzTS&-nw6Se3iqDS8V04G2Na5narapSM*pyt{Q@IfzU`9zc=)LLw@p;qUOg{szf@Uf`31>Sb2JhDGncL=?G!N+TXbrY^WS|OLzL| zG+}@0a>{1D2A%jv^gS@tYvtu`vbbw2w{Avo^L^}b+u|;uK*HxQz_%fO9YrVeeRt7! zrsnTjDp-h^A=L$*1gB*{h&XX9)F_$c1JV|wWU|3Oa8W|}3MC&w_f#rlG&w%FPkx^n zHRMY21v%v^t}u5tI)iK$p7E2q)mq0l1(kxqW><}oRFe>3C?>J?Y{YtL+JT{lWCX)MqA4gr817B$QyS>yZ*{|=~Xob8K~RgGv{&s zR*V$7Ze2!3vHQhqHw{XVs}vB1<(0Hn@_%$XLXD|j>z*&y=5>ru&(9~&hVxanSNSvLy! z35q^h#cq`|(%+~&g1uKr62~stdjL=ArTH5AT%@N9%udbwL~-m0jWwFXSq`WbNt<0LRXI*Q;^=^oy}?0X8D@I(kX`kY zG;7@kPvXNE&kjpH8~4L9H8?oqDTz z&ENpRqnZgjRgFy>@RF&ztBga^4(4-da+D@~rVK+^%qnGfco&P)2#M2} z4}=TUm(>WxQ=0-4(n132w!Q;k|7P(%^~S3VaivhiETl3NM*g6!=C-VQzl4Z}EZ)PN7{GtGRl4Yl(&vlbmqLIL9)b zkZ3$_$+{t|-h3s}MGpEAvE%T|!pwGNZ*gJS%KKP7w{;YUN}0Q$m-$**Y8sWsiZDOc z_8@6}vej?jWps6$^p)D?0U-1EM^}Ch0evFv00*I5L^?rBnurf`;+R5=n~kKBSCf~5 zdj`=&YI8f38I*fKcFa7?u8t_exWdu7aZ{=(YFlC|* zzyMRe&?m>7N)C#G5Ok9kBBm3Qi~!eR&J-X_hYKOZx#zM4F>3UNJPkcl{3VuAYYC%h z9Lw|2Tm{_CD(wA4x!C$%2Bn4gpNMcUy}tvMAFYT7@`(Y{FNL(getD3d{ke73+&LBk z>XG+mttVl0cmUMGWaj#C*TPD($OAc`cH(ZYE`FNzJMF2$*qe67pIEighAw zhXv*m5{>0^;9@IlrRh%QHZZ+Ko(yj?-J$-?prvCHMX}XLF<7;sZGX&gj(QfXF4Z$D zXhCb<`og8(p10Ef(@hCv%GVAXgfanDKB!+C{p^=TZ;o9;$d_3s1i$G)TRvwSMWFaj zvURIn9u>yjyry9plpUa|-^Axv-M*hd5S z^Rt~t&@)KP+J7F~-(H*AqLn8Z@x{|h6i=5W=$n{Wt-Kz6MRSyqSi=DL*RK)R;^sQP zsrp_C`ypfNKHAD!;k?wQet{u%)fL1SkoET`Ge7>#r0H5QD#5w>=V(lOh+np|u~5+D zW+ZIH0i`jD%?)Wt?(4Ul;?W5r0_fy*bN;zR)<=GZeR1QL)0E=di35WemHZ+tJ84eg z`B^NQL~kkVk@IqYMV%+hk5YJGbH#|w)5MxzG?MUXmCCG2NW&A^^_>{aR2?vLTXkJ zl_~@>P9n=R#{cW$+T)_C*65sb02L7t43USJ{Mace6J?pHDdsIT#nEeJc~QYD_{hY{ zM_LFeq9zKAvPh7J4^UJTL44(d5HX)<+RaD8FMIsLl(MW_c;&8r_Eb*%!S}88t#6-i z?|t@}Gc#uo+)_li-XXwVcHalXq#xJ?WkWR|dwLfaq^F25tr7=Q#9;kjR>XABee88s z7x*qEUyjJ74z_)KXjq#zbXB+Wu{*#{qOD4w@+H*ik4+;3wdVj+2xF_D>nW2r9Yv} z?9*}SryMYS_Z9S~SDSv6^y|*h_XAe2oe`f)-hT9RS6r1it<|Ly{qi5 zm;Kn+ULNLG1m?flUz^GeQdxY<^uLk*fV-w2wvxW>K1bCLPjc%uK6BN)xY6N{zs1N~ zDW20d;!7H%oxg@z{#qvtOk)wpx?)BeN3!k_?4&jNhik|SXSD4qj{06awThVqSRjo% z4ohQ$zMAa>+B78EsGPW3gc;|?X^420C@Y@@l&=>4hBa10Ml7jsDbV`BJ6$}d|D1qV z(s`Wk-_a1YfI-<^RHqAnEezMG(8i%#2F+T;Nz(}>H2TjuXv$!j7xM8$rWmXln48Hc za6lS&+?Qqv2HR<-VkwRO-!nL6XUgxNq5T@BWMj-4M!k_GO&qRB(+^$N(riR5jnTHX zj+w3XPB^lb6c_+!a4hm)(4h?_ zswdJmz&)GF97NIRKTd=_oBiJrr=xv5HBH%^g*$T)@FCfO$vO&?$jy@ID>M`zURn!$NxFnHlDzu4jscfRny1lQxtx^}tdf!X?{q{qGIBGQ@_)d0J)5e;Ytjrx zo-}Llr8F)Oc{H(@E=?PhN@K&FJTXK|MW1{zL~rPe_wvckL6wC4U%==?qBFV{h~E0s zLy=KPFiV2o!xT6y!DGXbT*OGbLh*$5C?X3*l=cYHY4nhhO1FNb;f}BZj#hA#Vuo&D zX22)~AVDXa0^dmBGg^VP(M%k;k%{fcC}znTW*QcFzF`E*>GKLOe2Aab`0PkrG#QqvhbcQ9e@0+n!U0o#-H;J1TZ3LhY%l+%)mBpQA3d#Yp2 z?@?sVgcRwE5*7XQP9ALGA_Y<QN3-2ybz`KlKeu^4_A5y5DQAX|COBJ(Ah7(d1Xp!LcWeP;?CYZWhfrjNwG<&yq zHw!OZq3G|a(OTi*a(2}~f;27C_~UXpvzu2bS@#Np4(V#3=2mb%+hr(FBY`bbfsT6! z((DRMmSFiB6J)LBVmP#iWv8rF(R-5ds3dbXOEI=e>Tf`SdVim_Y{_KDkwa)e;;pQQ*1+ZMQ4X>m!0zI}}LV!B)(xpHZrqQ!?D* z0RD$~X=#QgFSXO?>%Gd;EqUz>b41RN7y=JVLF9uvO$mPRC1iD1MXquhKXdy%A<-d1$wF<~{< z-Ejh(njabojTjFXRC%~`!H7?I_SWz<`4cfn>w*2B z@a@IBXqKiF15WbJFB3`9xS?8_m2f*nGakdFslZBUig8YwB6y$Xp_*)%eTEmzS*L}S zcR=~4c^jJglF4Pg?BR;HPqQ{}Dzp*kb%uFaNH`;g^9J@Hk$y88EoXT6B1E1gJeiG@ zv#j_BPfys|d-|gOEJx`nxSwNYCPqs04ANT7P)QRo^=Cil_F}$fke?N(I^gYi@ Date: Tue, 18 Nov 2025 14:50:25 +0100 Subject: [PATCH 12/14] Update VSC logo --- scientific_python.pptx | Bin 2513724 -> 2545116 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/scientific_python.pptx b/scientific_python.pptx index 6bcf84908b2df1088a5d4243aa34839383e2d793..b7b54d5e23610f1e0b137be7aaf312d9dd9d7e64 100644 GIT binary patch delta 56225 zcmY(q1ymfr_rSZbxVyU-cPs8*+_gY)_aX}vXmNKbT8b8TEfjZmcXyY!eB0muy|?Gw zb29UpdvlZAWHL#%r7jg>sU#huA{QM&h8pKK3K{^oL5oM_!vV1|d)nD9X)Q)Aa-;dO zjDg71vn>M#n#P+N<`tRd5mc#$DU_72Vv`yexY(&Zw9 z1|3IIQ^gPFFOQ2w2?r#Xs}KhX8*y?=EeF$<^|en|x7}^Y$>AAfC)q!n9RIAyGV*&I zuC}L0!|1f8p#g3EF3vxqiJ}Y(EB}U9OKi^SzI=fldp6*Z5f`sl(PT}u>LzX>Y5nQ? z@IJZJ;n%Ojz>$TIt+@&Wlo{L-fxEfI@7c5u+q!joivS#-uVdwt{Y$ku3qFUP5ErV~ z&h0>-;w)p&cD37;^A^jm4T?pS`r{1l!#-F&B-*)l@#%p4I5_*wyoa?8;OE9}enVb( z9IUGNx-zJk@P~^#sI>BN)c@SE`1HODW+YP)n|^c2m-hv*YrsSp)*@KkX*Awy9gYfF ziE~DG2eaZA(pj2i5WH0mR14l(&=sDJIPB^Cp2gCrxaeGXqw`zMBTklbOYDT8*ognS zP;hz!VnEFue^+>_=@p3dytNn1l)p*r`Hn5y)|Cg&y9Y~H%BD#$1x7HbgF+s z5qVNCzavkQ1s2)2C)S><^5Zc#%!o}>u5T65zN0)EBpa-73craM-Sqo#YYfPz0o+#P zT%%@}axxrlDY;EL>9dNaOB_neqb#n2@MaueFgwKbxpfwi#xa*&nK~sL=7&HE{LHms zSs{BMY#Bk!SH>1hsuJDoW`yW9;t>QnD5mkWL@Y6Nl>{e*E<($i66_2LxT$6V&6UdtxH{mQ1B;XWW zbrI%x;eLu_bL8rWdIk)hoR<84>*l1(zpl&=Vx^hQpePLx^%MV$lG?U&9em9;`s^w& zTA3+6*kd2o37aw3NZRcpJis9gCtNgb$jhd!cjFAAJ^$@}>#t#Ordc!V43%(&8@6r; zsRcm2t;g8jl^*S_wnZYexEH9IwBoG?3Zotgq|w|nj<#@q5WW`hAMH}hV~qp(+gp-> z!cx|K`smjZl_X)Wt(Y;yad(gHBxT=4jYJD3dQ6+GHrgI2O|xy3J+&rH=TaQlo^#e) zqfG>tCrz0l^=UyQ^TTuS8*=2K?ozDvs-ck!*H%}ii$di#3Mx99NuLP(W{zqd8dQKf zGh?DNrW`IUxh3z2MhRH_YAjyUEg

)R}+%71tp^l!?;hi1tTI(3Uz*Vvg0?rx=5p z7T@J0|4e^pt36tZjEH9{ISi)X0l2iCp)lT?fK4h^f+LevRLs^>%x`D+tW@^w(YtJQ zm8d%3mgk4EcJS-Emco0gjg!nd9N@$?lBv!4aohM2(gx~^#eEgKkwIo413u-61 z%d{G)Bt*sj#%G(+s{52_DN&dUL9eQ+(($zmi-{1@nGV|^`^ques_jx(g%V2d93E#h zK*6Jsr+;?Bhb7TJZl)OaNEBG%Ed(n;VL%q5Ds(N z(!3jW)hhgL`-9{M-BHB}OMEOE_7@`DuSB>IV1cYB!UgK+Ay_cK!f`+V05!m5Ha8$q za=J5+2E;SDJom(yTI0I9(y6*HhKOCyrksVLJkSynv{Lz%iJuhOS)wpWrJ`Ahzs z4b@ zeh??6=t*w|hi1gwKgzfpk zT8wV`0L6ma;H%Fg62$Fv_I`dNuF5R3M{Do*!|s3_`L;=$mbwgy)41|T!&*?y51poSG2Z`n$QiWj_?$xuTC`H7oeMKXFw+>J#Iho2hummJAAQsKmN#3V!;`sxxWrN zu7lNBrEA=hw|x~!_-IzxAbChvZ5#`mbYX>IwvKMJxMeLo=Xr5^O4hC zT%G*Pr2)@LV*Xm4pP|6ky|oYv`@@d`P3r9`E($tIj3bpq{7u>6RPl1H)m`=Y}E{=z`)u zv%=vIxk9*iAs&Y=5Zs;lc225dK8X-VW7eL7vvYgPpM6Zy%p3)A3!20{8PCv^TU1sB zsqCkM~QEs$p~9+{7rfG zZe_|s!+l!2C9tvxq+BDuY+19ZHT&7BKb>Gm&Rp}bHgj%{-`zodf($yysX>&;%dduz zbTqPsP7}d;&2UXxh3E+BJCgNy-*+nw-D0*H=wT}MfYMQd`CtD@_ClDznL+G%g~2Vu`AQZt0_1lPEho9^XM z`D2^wZ4hDsEGz1X>7!m)6$6nKv0x06?pD80TQAiq%{!2XCqJn8q%fJFd5Ojd`PK=f zk=1VW5PX+h2a*5IaQDiE4Cb^tS?{;o{5EQ`iOX5yY0uX5;|KyLR`e^AAv5B+;}>lN z6v7Nm2J&RoIy|9{k8HxmXHN4tX|~?tTlR`QIleY^+ZdV%-~9`MhTUe!VL&{G8-M`^ zR~wYecvcbUMAt=%mk4@Jl-_*&y4fMM1TtF)2G)>~9gyn_gamy?76G%EY9+;YoQUP> zi=Vb_R+yWPYB7#6PCa zl&)W}Xfu5K(LWoev~6v%GGr7cldLAkSFUeC--(rZlsLPGr@|f8vtx2Q8b1g*Q=F4( zHJFYH%8cL|HGZe(;z@k(xk)2Cclus5o4%g(HWTDZK&6xhRajVP%5(D}UUAzV>yo!( zGY9%{aQF4~aBx?+UA(p@e4Yj93-Dd8(#-V_i0FNu`<`!VaTKgZ>ofTwW1KT8!wM^C z-7F)DrgNXv8u2vvi-Pjfa{KUbqd)EnA3j~Ug1RDC@~^7mDQTqErUw~G18mQMwZ?~^ zkmR6?4OZDWIwU=WJcpgImE!KnLRfsv_PB*KCV`YC>Z3~trxd(j*<5;eaytyEzs$xc zbfg-gke698R%N*P17e}1FbHHVsbXU#q%a8Kr&6dH?y#Z64Qy=;D~)smtZKPnio5X} zi!?9n%47Fr7M9y^X-o*ZO-P+BvZ*%g%5OpUkFJ!77E)TLH#Y~Li49scmrD*kT(6&6 zwRraS4#JwWc#igZjK(ARoBFj}H=~$ONKyA_h?ifqTql`vQVL)bJp4J-dJWdLxssA# z77vJwPbp>s4_swG;eK}wwkx4eQkNUK)7D>4P3EuPe86c+QYJ%a<25>0DE6xvVmSbn zX0BCTD$Mq^HJ8O21XuFAEov+$Oemh(UYBniqtvUF>CyiBsoa~5TDG*{s)hJ9NYWK$ z@_OvW*pm-YoCwazHNC1`^rLBA01rPKLNLF{LNJ zOuv-Y^hnDrgpF?JP($R13>H*NIs7jWL4%tw?k8rRpptu$A2Y#2NouM%3QXK0F-)PB zKbMBIs;8l-=tvffgkFCoy6>%Riakh=1)SyqSEXV7Qc&iu>SKDXf<}aaeR+jJcc=`2 zRdgrlYAJy^3Y5n-kv~sx_mt$l*@8}e*dqiN6+pg@@Wmp^t?0ldZxlC!^-^-}XnwUu zLTb28^owNJ#@{;PBpzhZEoY64t5Gq+7|y}fAp-j%D<5=Eqhs0y{xjl==!Nz`zbD;i zM6rcnf$Y@|^h)dL-Cjft)?Z(Gxwr9VRzsz4%umi~2Qnh%a?kVvju*dtF8ZFEJl_r^ z2KK5r*Wb4T#i5|Sb|^X|i*y57K+E=v+*rM*ut&sD$GWjHzJ#@iil_ou zTYe__K2CN`$=Ze^s&9WAL%2OA-nn_~JZ*0+@y^)dv6P0?q+nIHDNi92_#q+|C{tab}!Fd;+2q{@Hx z(U@u}m}beDMsf)q&x=;XXx9DAfFN37w{LGtN$4*alV!mXr-w~%-u30cWLPHF^f`1E z70Fbigd0@#S#y;`aKqhY6jVx~74#|pn42`s{-JhZFU*_WXI@jqq1m{A-khw|ZZ+xi z@zkV-ohL)-5a%ZYo4O|NT!*?ef$>EXmP2Q;uJ?GXW71W+o7DrXnZGt97$lb0Ui+Kw?zs|1A-3N&n61-!;oH~ ztVeD>2|fO{^PcN7v;01DaTRuAxT}3iP zp3g2=8q6+1i$_OgYxom1%zVI6-w6#&&iav$CK6T`mfGO02{WN|0-F=OJAt zXu%L?lk4?2pqe;&ElHIPt4e(ipL!hKUNv+^!!Wkap9`eW-GI-mt^h}o324KGY!}| zqAv5^cYZ#9UKRH9c|C=+(ZD?pH6Wq2Z?LqUNyDCq9jA+2=*-GcX|B{`|R_cHO+CCWrkX+dZd=J86X;R9MkO+G{f|~-b zw6l_Bd3wCjOS;mR`sok$N_d&5f9EyQXzKtTA0lL?R({Wen9T2WgLfeHNMy!oUuC){ z_zD{wi7%aWKiReoJq$CQ4HKw``wRN&xz>L`s|1+uP75wBWk3@N?8}MW%zGqN7%C)dUt3i|Z(30^D6to$KmHJ5FLVMZKC+Nj)wP9`F}i zbcIccuW+GInQK*QM+A{+54x=O;ZRksU#z{TFQN&YAkOE`7SB*{?1tPEGZH`-vm$F-KFl39Bu-neu&kd9dyVE3moOU%rAA2Lp8SBX&q*(Z69$ zWqW87=EgLWCZN(Kp>0}L8uE6mc{+`8T#i0<3kqk-j3IaN6+tnqA)UBC% zVAj0_C865}xLXCOCtnpecZc}U^5HJn2#@{lh+gNw(ixKb6>p*^G?LqeVO<)z5xq}8 zykW_EHF<7%OgqnhLu-=o@MYUMH6lb7??bZD!)F7LpCL0;dAE9!<@I$W!qkNO3;7Yo ze#(tH5??I$zUGiBMRk8cEziB!fMIw#oJ@HBUW4>lVK9YgNV#dyg4=*}?e=6FvWYLoI znpQ{PhIZ4l)$kWgo~5ABp5|g7pQlH$e!K7UWub%7EB_bG<*{1^-aRlgDr8-ma1AGp z<#OUS{%j6mj@iIeQB|Iu4E|D%Xj8#-Y=R+af~C~N7+~|fmr?7rI(KGbc0imo8#yU+ z{Gw2_7&qqPj=`5UH}**4e$E2`0A62#0A+a~6czv`{yQ2h)I56GaI(V?_;r2?ex0Me z3K^e@SboP2ePGE`GI@W)O{N&g?+cL1HO)!*8CzrHKsPqKKvMXDorGE^D*eaGN2vRc zFXPMS9_{ZhWZJ!&-{I@3ks}%+Gx_Z3e$&Js4L|U+^liwT4-L+z&``qrwKuk)YSk+E zdSA$MEmHLqXL~P4ZkHDaWUm1w$xQ=$W9Q?NB(l!aG#?fN!{g`#v2K-^`)KW&&7yXj zV%6eut8{&xB7}?>!y*jNY&9n2xTK)WC9IyDb*8GSHAzj&aMZ0iq#ntsYRhWt<36>k z#Od|Hh1F*Lo@u-hOs^)=$e+S=NekeI6r~^1(pg22%h4(WVPChjp-X}Gt$it#W52{| z&O0xlmZjip+Dtm3Or16}2Rc8SI=KOpwHX#`ARJ8 z<2c^nK>s3eTy5HPJ6XaBQwj1gbn`U#?XQl;(9nMbp75L;QxSa6DNAO$Mo_4A9+sZm z?-Ur2*x019)$guM@9_g $qT@J1}n=&``J&PAj8+S|?oYw<6A5Dz?>rrYA^^_(+* zctonuOzYd>b3Jo)G3944uh^K}?~Y9{xJ8^mWw#eV~4vdDK)152bTW-Gje6 zrSo}ny>iChQ($BFRpjyf;D&@rWLw1h6^TmhzBw{Ee(5m|OtJ^z_3y=TWDfSdmm~{# zFV6yXButwnnvyTNC5-)nsEJuADr)yO@S7Y3^KcSfu|6s47?*AdgD(t0Su37*z@kr5 z2KIfa@etD5SPmx5SQ=~QFd;9GYj&6%7l+f_ZjVv}{q7AVfU922oVpM>g(v?pTH~KJQupReuOi))iZzw7q>j zA51M!DXZMY#fR8c?NSqbmm16xCnqonf45P(O8d85nFg0tnt zx%t%_e$;!{a;dze7|~`$G!b#uxTJ0;jfR${www91hNi5^;q>j~fg)kVL8q@l)JMPB zH;KgBNK-&-SOGe8;}Sd3*yx{wnR$g9?4Fa?GLm9{nwpi@6G&>6T%7nPpJBD^-4<~_ z({b&5^xkN>W?AAznV7oq?bBnCJ2u)lWF0;FQldA0~ zQby$~>FE6kZQSniqnl(0f{O|}f5lp`4TOS=X2O-dv2U8W`$q_JbS5+tEYwnDoSDb< zU+pa=kAYZPmR(60bV&3Mmc~r^rH@gR7trM~4aQtQ4nT_;=LoXb1E(2*dEUVW=)Eq> zeMQQ$W$r@4=0fSCgG5GEJ~}4!glJLlaRZ=AI-BvF>B8)3B1CA@Pr~l9_SV>CEf%x& zAf1l6^F)Gx8Rg)t53&$+#Zw(eSpf+uMaDz4DxG*716l8ZbId1C7B)WpM(>(6u-+q|4*FrvY!ZDhARTckzgkic#fLH6WqL)Adf#Q!kw6)ACGslsoeD0vD;G z#jb*Ul76&K<#_l~@eER~5V|ux4^(=xu5bjQ{yj)OMw9EuO`%m+0MU>9Az@%YfLRV+ zh>V;K_LDEQcW^FzYzWSAFodf+;(KBa;ho;oJ1a>@d$@t~z*sS+t=34UbIDMm*v0}) z-O~t=$UMY3m0vEWgE|BzOGL|AWt3P-hYX>mFO(mgudr8f9L&R(*%Uu2LsjB><(2}; zjs)n@OqBvkG@zHa_%?GP?r3Dk(V|l7`N&`aamCtS16AO#Y>65pNyUY3p zO0HP1S3Ooc-X@lXPMnorY_}HSuT&So3sN9aESRy=$ToM6OtE14K?IBK<+#nmg0_*P zcw`A`wLtXcVto|BSwuTHyOg7ET0$x9kvKfx@`P{IZqjNb40PFhuA(nl*>-OIY(DP9 z@uc2+hc@Wu$d7Q)9?HkL7)otK#lCxoh$O^ZvPjz^vAZT|aE*N>YMnKoW>lc}IuQxl z%$}|GH9DLL|Lh)jUzyqcV#bc&9Lp10--ONYT-@?rqkOgf`El{q;WbmVrW4D>gqdx$Nz8nwIZK_i4%ULs9;_(8l2noKeeoa+-jz#~BJqXvxCSfh zT!~3B`>sMoV@sdTG>*8^@Cn;59jgN#^1V9jA%r4d4g>?d-@N-(`TB>to24U<>R*59 z{ua)D_-xLpni~I(OT4ytRyXuW!FA8zndgc0ZHA9boLBXD1O)(K;{gEV$vG!L(q!uGF6=56!3nZx}@T-CG5DOz5Au z2cMpEvta7~5W(z>T=ahW_C6eba9TrGTu=XC!b<+yrr5%ayr$tZ-mmXHlg)xIoBPJ2 zw$<|;OLOX0)Ee-&`ozsD78zj?mX-w?lq@U`mQSfR(1{Op*9_O19Q2vfwHe8+Ge8E= z(KpFx8u{8MQNvE^hIl77jKPQw#UeiuBpRkz6Sq$?CO!lj&0!^eNj=}WM7iSf#UA|| z$rOOYTRCx9wZHtA6a4_3vxHw5zcQVcGX7F;8Ff_n!70DRe8ZQKjWxS1HQ-u!2YF8} zmRK-55>pNr$okUI}GR>bo&4?I!E9lJV!|U`1vzP(ezG`h zk;|E8^6J5bp23UJl=-W&K?u92uEC0uZVY;~k}k{CPGtVIX8Nl2R9;BnNafOVASD0GTu2kmA1*=s>u zK9yUW$tJn{Vv6B@R^JRZXCBO$U+$4*=lWM1f#Dhn;S7saf5~mVy?v$)1KbiFJCXFCvSVo}UROv;q>N7Ev1%W0w9<_vhGE2a28)i* zFUQ|k+dz-ENRTggz~>d5ndFqPuV{1%?Fg)2>sR=r30W*hn1=aR7OzNtf70DFaP_`X#{>_Y3IWHc{MMJ7)z0EIxJ zCDZ3}`mBXQEUPYAEI5)<%wBcO@RNy{vUD>s?Yh`vTr1t)E%35f4V8tjO0uU=+0(&4 z%m(&GL}%3PjmJGg{DsmdiP-di|1PT(n;ANyb7FvJG>;)CH>ur18x;3rDFi74hT!Nm|AEt)2EqNsyl>IGH?C4n_EvYO50lz za4M<%rC9ESDI+^T?R@Q2h3lT)=}$FmFdnP`j32avgNg}vo^~r$TU`nF@m7q2V$w>K zR~v`uiAha(!-vGILt^S1$&{~(;$m%B=}k04t?61sdnRJxM-Wy~GKQ9}k%=@QjQKm| zyR|=PxlBwnh=*hEp>7C1y$pYtJ97!;66FZvsM_HCO4s@B=K$Bz7^(7c3NsNLoby9s z3~i1*gt@))(@|tRC(?o)&%Qg2eL|EN&&`)^yGW_LpOaBf6+EA9nUzqK-BjXgw9Bbe z%WGW}AoArhl>_J7sIFNpq3vdGK?cG?XsCR13!m`WAv^je5O|X->DRBDmn=qp z7UV%vT!zWaA}lnSjci^AzvSxqJM)`=>6yoH^qsVBKRjI>PF_x)Vontk8>Wpwd_QL> zIKftHuX4?E+RCzX*!`hu34@jmQrDll9uK5;w0{ien_RNEAs76ci)qC zAo!?b7RS&w2A;ScjvT>MQxxZ+b#ozpx7)U`s>S=fiRGu z5JTQE1%@u3DdU>FZAkd5W62~fC*Q##KqzpFbj{>+f{2{D~7-j6MJTe{d znnZ-&P)<>UG9U4E;+ncgwtqDGcFOx885$Fb9q<&fwU9PCY+h!seh3j~iE>+&+8-m_ za#|(4+PwG4g0|v3C4JDe-oh&Oc4!s?2|c}B-JR{iwOZr6$2Um<0ye&Rma=8V=vL9j7p)w=rQv@o^ z&=Q<1-Aur0Xv@Zax8DBF9D2ubFl#7i-C~W|d9sdimC;f2z|MQ7KrmCOIz@ldQ!^%x zhbm$#rR(mHv&8z3rkhC#UQvKl-3keYk!B2&@6)A8jtxf7&KY1|E5=KpAG53*S^#e% z4*2CJ<6NC^LylEe!9b8zOhSDGWC5DaZ?dS`KYq%x(xLdNi?D3_YH4y&moeC}Wc89S zwxp+^Ltd_oZs%0=#Zms;Cd|UDv$nzOZ9=fWOk$f6b(5_)9nd&l)K`qZH0WxZI3nKT zlAEKUY2D)HCcgQrR#UZ4I)634UW}73+$OPZdpEH74;N^_STLnE5iXMs4kVtMdkCGq z@2;59S7}FU=`7i1Ui)o0f^es}7Z;euD0wK|AoimnLJa})x^jKUMreI7qt7!d&s_vQ z)epw;ndhqRlM#eO%XkHba24?vDLxzq@bQ&o*-6-Tf*qYFjZJk**`C@D4Ldvopamha%`SCf=7&c$iwW0mT=D)b{R3ZR!nqh71K4JsJPVqD$$gZMI zumQi<-jYcFCHL^^Add7161A}}eayALCJk7+1b=I!z?EsW00ke#4Zi!F;v@D^mqu4< zhw8M04tK<)=PRe_GJNJ{kSV`u1-hHL>wDHulfWQ{OMH)7X*erxMX4X|C+_5$^~{Bu zVV6ZK+R^IkQ_o#>E!hTTzii2rzQw@qag<3jur|lOchsa=>!3&|`&56nK&@w2N>pjn zdZ56h(R}T;xd?L3C%(152XCjT^RzMTE;%(Mq4EVNN(p?(w3+QCEXd8nZ1R8w5Fu1To8IK29$UwRIBm9x?6jZiY3>F>(k zA+Cxl+8J_@%pZz+$M94Is@*N2={#W~hnV)>2$MY32vKUF(yF3!so7r@C zs)Bpx4uU;sE#Rv%$>MbQze&uH-ePow;}H~0OMSFdUcmNZo-vn$O{^Du-XXsM$mjL8 zo^4;0597yaQB%`|lagbXb zSlLp*UoA)I|M%76FG~ZRjJ5+r2OU_JR#y-=)5RzTy4^tFg+>KW7hxUGG2zV3T9aCQ zH{-)Hm*s1U8Y7I){YuKmvBeTbDs)n%zNo56Eh#iJo?2kT86C#kf7<(yycmqWr~5~i zB)+C^Uwd^@?$z_dCY z5xbnuMu{4jS@6S7Co46UYE}c}uJHP?R*vGcibQ(EPD==D8V2)@QCWPIwdFQjP29Mg zvDxWM!d)BIN|LN=^CXv5PhBp={_gKf%hVoSCH8U0cnP1bpEogQwcM1{G5LxbE9`PP zNe&>3?Wz`&s>A7<5Gz?EI#BSK;`LYd_~?60%^~UK({y_LV@<{{suB{5k#4aKf=_8< zQXcx@2R%RSB4=ht=cEqrIc7d__|M~GwG`9dP7yad?Q*Zbn;z>d`P8Q2r6Xa)z{Cn<9U-HjRZqDKOM`F0pS3t9!&vTx3aZ)^W7Cusw7v&BT_@v}6_6rjuk368 zjy~#@C`{-W$!k0}*NN^NwXnkQo%YNb=Urc*RdpKR#3!uef`;dD%1e?WBW z!bVC^TY@AL<&o;iH>&7hF%gZM1$}t@gw_?As?r4}Ii^2(p6+AY5EAE(gNU)4M8m*A zASzkdZjC^Y?;MgeWEnFW9m1Zwe*m#RDJ>u%*WVDa=C}h`jp+{(Q4wheUJ<7@V)~1y zbYw$A9^d6(y(KGvSNgBr`G9S&q8u+Dal8Qg=-3F|zv3Dq@QUE%N^}&^Q(?WTkd+=s5RU9|<4BhU8RHqnIirfrU(8PysHlqAq-_pAj#X!{ZiW`@7 zW*M=XC1iHF=RMO+JlBzv_3J|wu4h{00->=hkHHuYncU$9&gPq|V8vY6f81(3Y7NzK z(zMtaMK<{uM8oHh!T2ig91{6$Rl+QlhHbi>dww~u!Bf0j(kB}6syfGOGuUgQ=?`ww z>3b7PW2D2G8!<|4<5e`+vwI(*S^@79(iuDGtlf|9z09-VVe0<4_Z9@JT~cM)2Kp2H zq_3$zU4twiL^)}-H(zaRtq@zynh`$6LxVWVg~RNgG0&MYboNB(Gf8QI#YWG9`0_2? z24+j3(Xub@8@5K}hJ{LO5g}qVBMBWtxP+lDnY;mqtt>*-24$~{z>=BHP}#d}Tk>=H zGoyrej}iliW%^X9SktMt^zl!IWeBk|P(BX!RwE$Dw-pvBbW6_kXZvLmiTo@OUOuDiA?TDPZL;?m^oaQky^h15!_erBFdAX{1-r=Pg78=Re zueTZAuD(XCD;h|(5;6masoMsPI23L@F1o9ur5@>1QA||Wil1h(WDc*NcE1~P zsr6qFw(RN!1M-s81ghl<(m+LaL z2czLGBbT|^_>DXBbriJ+B2XsUqEA)%kwjx@E@K3uR2?ak(c-F)Fmr*d*45Q9^R&9! z=cRngqce=sT;;|l;@FgMP-38tPiZD0+-8MC-1D|jJ5`WvWFp}2N|<0A>dv*~X%G?uP~_58ZkviHbS0w$b~{#epfg$S*k zs^|ej&u8#}FdPYd9ar$mBA?+A(twY_cjK|$SdB5_F8p_VgX{dS7-?3}jNQ=C4jwdh zYcI>^XZ3JJCBSU7(l00Z{E4;WVRc8wKa zCKhA_jYd*S3F;ZBcu&H{1NCBw7L*|tWD^_E9S)b4yq;GC3>STAAq&yE9Iy-n?b+O> znn*v6!iFV)F4?&g+cE~@luw*!sT9r1+D;u8P0^5%+Q%eoM*8gEnQ+XN%5~a`Wy%Q9MCmkR+Vzw4-7TLmIGMkJpzt^z zo#d zNvuvEu0nr5e{b@s-Cz}79fzPyvNGdFobVILVQr%m%8yl#`i6F$Z*tMuC<{o8tWG7r zqWoZGvs=7UPgi#a7cndEoj+47fWX_QB#gy6T>Zq8=kNJpb3NaGHrR+;t$2!;-~xWs z{Ti~%oJ;;oy3JNlgcy!Gsvk)j+EVhNpwvo1AWqfAQwzmX z0wv2-kXRVGYQo=6i)3?$2_b2bqrjY22H|>Rl`=H4h)J}V7rLsF5l@{5&A8hhq^27U z%rkx-_PfADLR5W?Fp|Xx>U`bDoz*PcKau9!UA@Y&;}_pd6EImMZy4VexQp0As>6|+ z2{QDz^bv^WHA>oW26e3M`s3@t*S6rXwE!yhGa!6)&%YX+8<|RyOt<9RETyqz_iW?x zdb1k1POsSJ3Nw0CADC#oWTW6Zu2|xLu6yDc&+_`RsLrQQs#S~&vxF;`$1SmXRQ8}- z$7fIQ82pRr8R8Oe8AR>19@P19z@1i+uJgKlV0z5sx$i~*Z&CjCw>ZkqYDxHe#gOd^4BXdRe)cjE#_g_=NdaLQxEusaA6sec1j^Pa zYw?vV2+gh^aiC`;{+PaAs^c>-_0?`LVeuDd3)4#{tGDNzx8Af!6OK@C>3njx3(IGh zp6qVf_!@En1Pc^cpuqwI7Fe*rfdw8c2w*`33ldn6!GZ!7RIs3d1syCHV8H|n7Fe*s zf&&&@u;76OA1nl5Ap{E%ScvOGE=a;ek;C@qMXSI&otDIJ9~J%yBv{GynlxyjBklh? zZ9!&93OoJ4GXGO;PH727W-(id)IZ5m4^GmW>X?QY;i|Uo?au=;u`kJtZq>HhDxgZG z!p+#*&C@6gA&`?ArbTe$PrT#iPL5SKRwiwoaj#Wh5Z8_KEIP(G2D+5fYU`ihzD^gH zA4bzj%rU}eWn_kk&p=|5sMpKE35vfa(f>fs$_SVu|2VVj@rw2lBKZ6V+y&f$QCKWkk7?m~hZem}x0h)93zlS(pB6 zBnQo8BA-C{*_@v+L5aZU&Xj$vrU@|%hr6Y)pB@~WwVxpcP)gBm&NZLi6Hr!V3M~`= zNa-=IteEOCj+|7U%)#^P#TWlv__K^mTeIHs`zKVOK8E@lG^N}Oo|S2{=eT~whAwY{ zs3Sr+_e`xMqW@v9pro z>M@KHlA8Q82CWVpi_hbr>uxv|rPK^M8aeGnk}=aS8Nein|Jx9GQK+F&sKu#B0UDzJ zHVwV${D2+_0Wty;3%ay5o@ghNl-S6q5vc;8Zwh*>dH1_G&#$QKYG*kK<^97B zpTrV&od_g^5lHV$?^!7eR{B?;Z8`gzHaQ%Ykl9&Cwo`d{hbc!%BdSFCNrL)$AGa1F z1CEn4B73JnKKv1kjc@qAf6C_j*ZLo3@)rg?AWJQO(#2tvhzrelMg~ zHlwg|+i7dps$%6r8XdoLU$`93sz@pmHB1u!ZfXw1>aXHkYtOSwY5du4XSqt%Ebmpr zo%b8gTHz^Mzys6vG znT_|wU(*#evC$8f7sP;7M#&2A_!$`XQw+7}IfE{!x!sDGQp;9}cRvG3-Gw@#^9sbz z5aNL#frEpyirx~*Kd2r*y)G)c*z}wmdFS$eTx$tvR>Knc=>-;WclJaS5ig8XY`tT* zrMXQT=I(S&iMHf->8oaCt$6hEhki&?Ko56Sb{L;m7<^rz6kvZdE*BQl;YO1jI3 zHEcwvs3e^11e@qkFY_TeA-!qkyKI+#PJ8A`l#QrV+E%BksCT)ce_#5h*h3`H%vZ|%Qn7mNx4RC%scq%pPewz4 z!bzS5kKgr}{G@y^$$DBeXvuIYq^QXq-q5)9%qpbu{Rld!PSEpV0Kj}$vM44Lb~3IC zDK09E2mkl zM#79OlRg}RumDuG0zwV+AcaKmf))Uf&(rjB6Mc3G!h#lY{*DFy(;oo9DGvfbkyVag z*Qa0fs>;6I5^;eN0i-$Q!M$B%^FfjUhGSq5-!2HK0FYw@V8NfD|4%Vi(lAHaDi1zu7EoB#Z#828U282|)1M)uDn{u_z^OE542 z5SCe-+HWc`DPZ$m`JHd({jb2@Es!JQyaB2=hfw}%laWK9`QylZ0l#Je04s2YHPQr( zZ)q6`093Z%gz=jvA{5{(m}38CF@X-wVix2r`Sujx`Ypp`H<7nA8N{2d$ntik0n&Q8 z|4Ma04bDm^JO>EIBExS!(EjydN&#%%{Ga(}Ft{N52V}rCi~0{lf&u&gfIJwG{sW4j zHcH%NP}06JG2djy_Ke(Df z_Wz=*4y-ta{I`r9IN);d8@oO;4FUeO7Ci<4V((vDXH$R`PyXrs2jKo@_@71l|7oCs zHE{j`NU#RVKTwPg1|A@D{j`CbBd?f|An)F61d5~{Qn{x z6&yW#%zqWv(7~l%z83x4B3*AKk^38po*Cdku9y8Aqo{9raa)1@>rQJBU>#zbzpX9s z7E+J@;@ump-}K?HeuFd^Z2kjA;26L9^0$XnNPz+AKfnbxCHODap59Ce4?({9?GFyf zY~fGfK?(djfdgxI?>#Jna-W<^{%a0!jAc9gvmy4Dw*NauygeEAHy_702S9(HF+Kx( z_VBNh!F&J%i@yK>uD7~Qfb<3buYMSq0RE9NunN-Ge=6YNt-~?puPx&@5cCg( zf(j`ZfuRVJAE|6|H;Ec&m~RTda@M3lGxjRTO#DYzk#;{U-k09=_4 z32BQO!WhBdaN6U7K+~-h5W-6oRvP?nS^)8Hi1cs61mrMD-}*uR@5TxS_{Q$}u8Sl@ z+24Tnf4k*0xcO!BqL=sOP$E?1{ogjq9)%LIRM)@U^Z^|UM-IHY|1`_y`rG%$@5+yG#P5%E4yL$`}Xar#IQj&y~Nbgs1#J;-!EtkkC zoPUfylApfdIRj3j$Q1u2o1Qo6gl zrH*cn5{^FlfIE)w@%8=w)JU@D9@d8_m&Y*es7K><@pU{cOrJ4gZ@R_{T{HFJCfj=7kY7Xae2} zG-BNK|LR#L8l6j!|LS|sQ3YE08=kACVz65wNI!!>ws81m@_UXiOf)eUMP%pzuKx}c zj0}L7a+^*oTzctX*5SuyjHFvU|LL6qi_E=NLW-c^LuYZcnC2!&{1fxlzfNove;Q(H z$GfDRbf&S;xp6e?lIeG!IN`7N*pdLp;>c}kWIq@;WMn7bV*XDcAr=|C-YXA5mGaAw zyP?H@=M2ceUk3KXCG_F1A1frC@xHteBz#P)_uu}F@Z)?`=+R>~j;QX4ZoguVA^%Sn zxSk7n-QAz)qY6dl3*F1t1#<4s={Txn{#`8x`01}dt6eNPn@kHg1|*h1Zb2)#>1MscQw7m{`_9-)g6vEPs?EO88(E*(jIs$`lh_6 zay@@OlA%t<;&bA?Ah+~W)}Iei8^JdJ&#{kcW3%A=(U+rp*ouO_qbIk*%ra5=^W6VV z+#s$D9((YL0*?zTix2Z((_;7t0`SS$bwq0nHXXy}0``(~{`hYhw%Y+j$}c*iQc~ zQ2A@K8(%=Om;cO-6?JUudTpQF71e#M+cL})#GG+UHuEch{MR4{l#)TV3zDvO1mc!N zX~8vEz4<3&8Y4RNjT|>{_&*i$2kVEKd?5^1Nu& z%aHsR{^(IawzKN%JxHo(D~bGz8>D0C2ljr_;i_F_|Gk9RSTX6J`Ds2RUB?1GhYvli zSv)ioRtr*aqd`OfZa{!4IGYR`=fsf$&inEsMPfnBrmU}Y2OpJMeeFcY-e5+&Sq}ey zPwrsFV7w;QJeCtOsGa>H#W)6_@HL0PPyQm0{&a|9TeHKexX#lu z)wM6-jhsvuj&a8)f_T2?XOl7qUYCq!Q+NFTbDxGRkZ}s^etN1^ zHs-@Jbx)UU0^+6#{k_QW@ITZE^rt`+0S3Vf!-zGmCGA2z=3Swj#>PTZ*8bO6-)%bO zXR`)}Ab|UFKfpJ47XoaDy{Fbk{XM_tFCp2?J0w8B z$CbW67C?_4pTY`Ic1NEiHlZ~PCjBPnSuF$G%VtJYLhSJW%z=&#GVaW)tDaX5>qCIJ zvW}B!T58vxA>M*-{>Twd>EFjeb`f7A^XI$$Q4mFBq}}3lbA9UN*!;rcA1CzghL*Dl zbDhY(VNXSX2F(@tMF3Ly5Hjw!o>Keg>e`8emc?O`x9eTy`ttBIOu8OR`HR07>BA%N zYd88`LeCG^9|fB=uuK1}ZI#HqF68?pt{US_)TsLRdzIkr^+V-G3_Q3XpHO0)s&0@z zzgY0`9i{r?fsBZtt|8U!(~ziR_Rpu49zYY3HrYbmXem8ieU`TYW7UjN~x52Y{1 zj*8zIoCy$L22XhYi$jXP2Drc1G2A4k^DVWN=wAQv1d&IA| zkfENp*|S6h1f(+T(3IS^DbEf67bVt$w)Yi*|6*+mh4W$Sftxg@>5?wWxwQuo)v26t zEN(>{zu@Ie{hik8P2CIUwoZ8A;tUS~7Y(2Ce>ePAL?)?%ZqbjkTjA?082E!F2*!7r zxEnGc6nq}Z5z2&pdxNcb=|k-Xre@WL1;|FDDW|=jN}DCF@N}cTWK#dpObI`ZIZY=W zu_OOn;$%cRP*^k+zGG8PBBxZAYdO>HM%9V&1pjd%I=r#l`Gr3~_S9-79S2xOIi}x+w8!DfG&)wS-h=@i!8)RQ zTcATM418f@SY=SFhyRG6N=7w>eUOJfn*&O{A&t=%Xj?huOE}5sffA0Wg*S!FbU}}B z0P2xzjfQ0e|DFEW-Y^g{d(N_#SA2oSW?&YCxGBCt<36w9ZY}Yfw(h_kPS(CzVM7jS zuwo8SK3z9Zi?I`%Sg8wMpy)^!u8;AjnU%JyES?EsF{YP@PwZLZh}w8<@#bJ=Va=iC ztFgN{8hL!v#=)l-7y8KUq*kIYt4r(+UHg2?Dzg$61d0pEd^ru-Zq376bmY@Rn!Q~t z!H=B}qoe=5P>NIe7PomjN^TZf6}qEGpsPiEJS2?1iD}%m(-R&7?rxRQ{~H3!q=Gs@ zR0waik?Pj9xDbObRgCSVv94hQ(Ps1W%iww|hpjI9x?n=r-{{*i|Eu!-a+xdbOWKBS zKJefNe|9ZX1)F85&hvL$UHTO}2a(Ytr#I|l1nvUbWpG*gOW$HB*`AVHtMOh;;m!tC zn>eR5=mCMN$J5CnU;q6%CpHTsvcJ>mr1rIOk4!uKNAj)4*F%_#)+I*Frb@&ai#(b2 zuAA697PH0;q;DB_5KGI$zb?Ck9I_pD*#bBUo@sY=M6>j?0~KcK8~G)&=%hPEBl10J z=}JD@Oz__@tGE80Uoy(X(|u%PFd)kM6MqCugSgTAK9RTDnlzLtnR5ISRS>iAXG@@X zXl9@`eCpj+Rf4K4fxq9<*(s$*M>e7$f~iP>w?EeQ=vaHcnj+B+88Rnl;dlGYx>(@P zN~}|8S+2|97Cj&`$*8HJ;KY?q5rJ`wqlb5EM`V?C+#1$1!dB)i2%boi189Q4=!xzy za?7vHZhFYjzxJp4IcS_WkKm|UDk;bN7ZqYKc{z)w$QTma#dm%LRU+_S{_c1~zl>n!uoy)!)(d&BpvXZt%(c>l+!`DJRXHvA*UR-yVW=QG%VK`t6H3E8+ zb!~c_9?o0Roz6m)Fa9B7{V3aDZ}qVG>DxO2-Ph@fC`L_EM*AaS?I6hrPWOjshuJXF z-31cDTpcvZ**Vc+w`8#C#3B5&U}CG4Y_{|oW(0GQ0vuep_hKU|C9G}_oRoo=2;7dS z80;dpdEJZVoD~Hp4d?P!t`kO#<#*XTAmFKAT=R{3hMv#6)5ibo0Q*B*Vn!7TZaXNy z3)NR;dm)+K@gw}>ECol=mBc22W2 z!{dBl)nA}m%Nsl-A+2vzK*PCp_i6d;TQJ_KIh>04ku|A<+^Zt#*Gq-7=XTz~ieTRk z>%@ki+*y!VIH|8CPEi>&tG6~wpr`@vIIil?rn4inQgIiE7rv9^Ge|$4KZs?&1LEMs zB&^Oipitk8;n7|(Hs=+;imr^!7(6@5^8CBqHnt{qiF~|-*(fkl=Y)kxHNejOF<~zJ zZ{+`-5EyRggAp6&{B3_+E8;Sg^RjPWn@`-YZNh?bpoyxb(FRJ}^{d z@GY%mQXH4>Td(za8mDppOo>^SD2-i{xSG_0>g%ZvsD85B0p%J*{>mWYOHJx5us>nE z;rg{OB);E&R_8MYb*ykxGzqpZ568MANk)XIZkx@oV|7yWmP#E{Sfr7;$}ytPk9Pg_(! zx>|3*tCehv$qqjUMw2OumpIq4m5w{a;YDy}D+W{Uz<%UyJiev`WiFniJ}}AY6_6K4 zJdbred^l^>)+qzibHKkhjr$aUqU_3n7IQ;qP zX@mPxo3n#W`E=AS%KO;{{6p&c(*sMhkFwn-HPCEDYP2q|6U=WM_*a=zoC7|W5`WS4eg2VkP#Uln4-7UUxKxza@R{l!yLE%if0Y`l15HC?YoHvq1v7 zQ;Pp84@{}imebG>?D{D$EJi-K9*P#jAH^)LJF+#*eCFXX^zVEhW7T80lWY;%bQxAu zM-8T|0d~(g>n7pSJSBVFf1`~p0dVy2?W9(!{Z^G_t@)xE!Q6}##8F+CHWe9ER)lQ> z4nmeH^o&lAA&+_N;6X!>k7+J}^-=3(tAa(f;wb|q8dQ4b2^f}IgNX_}!9USoYLkXQ z-KGK!PsU_rR@0;;YAAebF+kI62oUC_xjSwaqDJt^;GRcErjX?)#lR^XXB9@fz|jG} zDl41W>_3M!Kmqhop%$RP=_}8fbBBAwT%JsLL)1O)5x&wEMtf2$$jaVpYXb%WqKs6Z zGh5BYTa%q^+4*!mAJlmDyNF^i7h0Z!--nIZ8Xf(gT#>8C|9gCyfcs!#+PUJyW&xZb z4f+$#Nk?|?aHyM%J0nfX$H1J6b05cVef-N#ByX@{rPrVp&%Um4#kl9t%&z#*71IQi zG+|nHJ?FBO07312aNS!tPs{OGi0TtFYN^FZJ6VPi#3N_|)+6|nI5(Lf*%od3pohGX z(+gn8oIC#3SRXKNkV|7~s`Swi22FPj%2I9I#80t$X{L|?l;#Jp2)+H$;ccNa9 zdslt=^j%PvjT*y+6W{;p)9WA7FH#4qMl)ErOoZ z0Ib)Sgc&#Yq_G3*)LN7`uB?Bj*Gws2)Y#?gigU|L2tSl>KBBv*d~=?GJ?(S%&*#=sh3d-ASIpZQn7IIL|jaD37j3D8=)*KwsW2!3Bc=R z74bA~CbvHgH&8oT!UKtntNfCZ_2P@#H->uRJ zX2{U*cQ{+i`6K0kIzqRsOY}R!8zW@EtiUL3tTGukC7OSd?$(x`e1V z_j2BS8le;C+2%bL2uD@sVvbgsW-e7ENQD0Yoc2=j6p;IT$t$o+^qyUm&c2N4BEYv&D3s<^R?jf$U!&{E9mmFaz|FWNE4B~CT z{zUx~EK#5`iN^vH4%l5 zPC+8=V-?CJCV#1++*R%TLqii~a^2pqCaG-HEs4t}{-{ zecQB}OR0|}hEfiY-9D>(pA&^p2Be8Ng<%W0GH>?3>*Ix-N&3g~LJIHnf>FUO64#T!?+yfvpe z_58t4KTiu(&Bpr8WWnvGWup}a#P&`WDvP_?M{Ib%Xr*f(q-6nztsB+#q-kaHm+RRQ z#?{Ct((5}Y3G#iKjR}( zDyw1E*{5CScZJIJX?pRLA8a#C@4YLM*p zcO*Tv%SqA^j9~@?>jk0R%*1Y2g-Q7xZ6fb87k|}N{Vn9@mt3*b0^IOiE5pfehH{ox14XT1ZFWCf#)Oa zhex$?RiEWhytsL);r_SsX~2M+BqI3QbhEF%XG!EUajwC8C4{>4@N?+9WOJjVJ89Z+n-HVG4CC${5oCv2c4Y$&ES}nuZ6y7E;H+ka{R-byK@_kqWEW(~+IiNj9P==)-bY_w$0Sq7EaXfSE2Q-RD0&>C5&5M#w@6m4a_sUCC;^4m@vld54vO}c`w_1 zR52o{#=HdLVdhWp>F__!lLR$0sCz9_NfHHhFYcFJ32iY2uNmGBGQSK($qZjPNuK^z zL0Bc@TNtyJhC#j6N#XJUGMJ_1m3-1m6nQNxWLy@EU2QJct8>b3U|xfq7a9q_vaS8k z70MCsKYpgWp6IF`AcBz2`=hc6@>i@g&$z)P=OF`Kk>-tH)YFd8<3+<-iF%%V_tCdx zA057z>BRzc2@z6wnPNMS65V+1T8-TV4WSQa{EEsQwxuk0?h^ww%*LYJuAd=_ech^; zO$n`1gDVP?mdSfvVl1StztbCW8^zMT4@5q-DbLr^zMInlvY1~2Q{R6<#4EVpHYbqc zzky{jx@_|84qe`HjDhkkwZw6i@Q%5#`5AaThLx#)hs`rSE)HXpEC~x@xlBuxU(F#A z`v;OOx0Z@+x)cp)5E{4L@#o;@NaUfp$kFJb7R&mU5ziK^oj92Jx*HZ?%9f zv)J@)L}f=#-k1I4TB_DGqVi_$8XK|4xW!b-`xBo-M$#fe4|Ie>GVQ77X%i*O!i<HEb|7bGmHP~dz7;_b}{f(6Pxl%MBKs3UyP4tv_nvXL5eHPiR<0yG@;UEt*P96Q5Du? zms5#hp_E=Nv&A-x517Ou$A6m3>FZY85xrGt4IEl7yUCDD9U6<3+K2nq-;d&f}EaIH2Yvy zc;1f&%1i1hBo|zYZvI3lVY^2ZRyUOY?ukvg<}jcXi`j9G%aZblpfVCttjJYU_=x3( z6Taj;c6`}LhVJiO89y=?p-@^l<03m$l6(|=a`)hKx|+EPB%A*EPEjs?zYD2kz+U%StYC+jz0Y$>kHF|u?U4t#JHK6$thww+#3w)xrJ4k4ghDE22eU$_P0 z`*|z5o%rA9N=X$x6U zf{3%xpsmZxOoIL?$8Z*7XXlw*{9a=VCUpPPv#G{%vMZ_JmlT3b{^WT6dEtQoacf?O z5|79|y2Cts>2uBOws0tDh=mBN`0bwF%=+uKT+&M2pcLu3C)cIdp$kcyStTUzC(fiN z2lZ4oTG-)Tx-&Q066opuA80fq0IQwF!>ALXEs|}R^V z@aJRgC%cfe)l&=2=Qln#!;cl2(sedkxx%k3#boV4O}fJlk!jU)?WJ3070a0_h4@{t zw8}&EU71U{IO6=&<3?R7JllfltnX6>HxB&P?a;gSI#)$IXSR8Oyn~s7pl@fuYVA|* zsOee?|Bo!n1O&?hQyr0KZQCfsiQx`<9y0aFVcluwI;s!d(oAuSnVCQ7+*ram&NDro zS~@5w72_}!MQVR=xHi^Y;_ecRBe5#Z^;Sed;YgHsZjFZYnSp+hiw8Z_c*e4(+0i>d zI6VSx2fpOIA?^t5=#dX(p+~&NekNY5Wn#?tTV3l{{i{D^C?S6m%fjppgc!-9EKbBG zylLi%Czz(Yq~G}^YoVJS!1Q&HbE#B_imYpaPwn@X9zeb#A|2-sGY5;CWk>k9w&nOkDxv`2=f~DrwAFVLP?*6>75=D+6DYB`ZdSA8W~bd%^$(IBsTEK z0&cx5%**kSgw&(dB<|&2cdm7Noki>xv2;f?C$KwBVIN1vBFZUkJP2GD)xR1`=4;WN zb)Yf7q+5_LxSn&;i_Q=$J-iuEqfx(Y!8m|6jCDWcTzoB+u#9ZTI(z9|L!$VkipR6o z-S6XxThdAjK`;jpzw8pfC3={o_PI{l@xcWZbYj6XYJ{-Lf!Ss3A0GChi%-aUkDdc= zIUs7S0sU-*<>iS?V^Kz$K`QIeI1%z(7ois6Z6slMYqX1hy^KaeSEuia89`qd7N<*E zCicg1&-12#v+%8%_W#aWe-rwlE&Qya;vCp()2$2NBM30}=I2OBy(VX(D*J$tq4X#y z+Yy7AGsa8a`2RTX3MS4E`I`Cep|t!pU}vY!H`Shas^gQO!!UWRn@vBt^vHJ^j*qAF z!ER=6i7Gs}s)*(F#iXEm&AyZ%x$D(z*W1LZ{Ca^z9Wrzd{t#VFDM1WnwXaTZS;HzyDS4Fl93`^(#G9 zT~Jn|2Cmkj*qHl5%B=_2+Dxn!d%e!*9c>ZJ{F3wcMmDt9+`E2+ta~#JqIgQ@drxW;&nOXg90*a=qZ~Pi40l z^6Io(drhrs!m+N7SAfGzDk=VExyeIPS=51IaLcUI+cTw{$$v|R@jd&+`M0053ES%& z?`9PtkGjHKg41@Ya;Zn>vm{jQIHD&R2gL?Htg#0i2-^PYH2u->O9# zSpD*Y&#No5LfK2IX{`$wNjMI!DUVZ%zTuOd)Y!!r;(~6el6m)(CRl@5ZbRqf*IXzE zHVZQ~oxy4wjXnYu<^waunfYfQImtR+J*D2Oa6}8+S;d(BmM8ggG8o8{8xfv`tCts98bpn{IIpBD#EBwtkwut!TqDD}2qf&OvA ze)1cTBEk4rImE5V6F6e+$&@{)subU84&Jti%h3<#hvXK@3&Gdz3H{pc@dF=J-6j$f z38g_qn8&$Dtw{v50#9dqO=F!{Glhsn??Qf+Q!KQ5e0McjioWM)J48Q=Xkl)i#tOuL z87!aE>q|Orvc&2=sCHH4?^8lRM=_uGx@VO3>1)ZUr8?bQZ&5oR!)?E!3fobowu1_cLn`#Q zMo{hebGPkjzx!My(l!lD>F%p3`#uX}9Au%-A&mRv?&0Y}H7YlPNtA zt5CQ2xCtex;T=i20(hB`Lu}I;wPWf{kZGC$-R4y6P)y_C^vmMuPv=E$#Ii0 zOF1dL`q$F0vfJJg5@l3aFf`7i!@k{*e+dap;P83ykAUMGxvsB_O^6NM4 z8xO$g%27Kv5vq_M0#P*56be=4lRl5W9Suw$R-pB|gjl)oJ!1rPtLI{FCTp%3#S`#s zYaSLXGlyrs{*ZBB8+G!y)x^@oPPhQ?)W!RL)(B=(GhTy~-?~a4-(2`7$2RiKR9@xVAf=Wad_)| ztal3Z@)JMThr%$ob75i$k36POpU&#MGj$dR4{R2Y$k@+g@Vn9MHnrr9qZx-OW;)EL z>kK!Qm1^cAei>Mk%rCS9A@(g~^EIJ5+GB-VA>tn_Cp)n1NgJ<{DG>|maOyJ&ba5W! z*ba~MhW{ZnZnwR+0=ny5%I*Tgs05O-sNR8p&O(Yy?HVmoteXnPO>&fg961~(wi&GD zd3;f`@;-Yktx}D#lx+@R>;36DQGoH=4L02~+XLLKO8->bDddCgo6Q zsJ1o5Q&&+V3Dl zEWpz%JEQFRpQLG-H$J+*8<+-Xw@0RzZ||(misFav2+POBTMPrlKMiIu1QF@XLh1=s zQ6Ax3#Cg~Lq(^3l=`uYv z$D4pC9-``$MKKQBDhp=uk3{+M+%QBl3wUzkD}=&wH~i?zHWewvPTK#5u^ zdi{O9;fDp`t1~C~?o1W^1$bZqdVS%BVTMl)v#B)Y?_Ktz-Ljl{=UnJbuNol)==lKS zZ^&=@jK1ui$y-u%wW1}a;^W3=uRPDgd?uEU;C#*ZVu5n|n)Ejo){Gbnj&<&y=#}vY z7F<`A%`*#b52w;n4rreq5blljYTYq!FaET|aR-a+4_Df&zy+&WO_Wjh{U>9=Q#ZC` z26sk&Z&ofs&u?I~9P2_?Y!M#d=eydz@}7UQf@|nCo*2_auSe~kC796R{Dw4$&pXg} z4=*g#1+o^hJMi)oK?SC5y`>v>%R|lDSshSGw%O+M`p0R&tD^!yV&}@|-If@m>sA~L=_4Vda@Z`ipLbtO#=e%Q z`}UGK!V)%4V&O5}h3D!S=dpPw(D)!341K47-3L$s-Em{L!Dh5U(yh^?R9zU}BU5oR z`EniL?tHB}F68WrSw6nK+*2K!6n?N!C1K2sD@{i}ua;G8eA}M~LMRWZ=Z0iIhJ4Ks3!>I@9Z3ZG z@Ii90jhr#{2U%mw`OnKU-42MgffAtYf&#;<^mipxOs;wfXZ(Sz zc;;Ckmv9_(SjxWit{I_+55my>#N6IYQAq9Fywg|23p9xvqV8_(!N?(}w$o4^?d&^5 zdvyIV7l$8t^_8DUP{p9`-W^ zRa>nSrs8L~C1B;xMJ+E$n5AYwd-&UpmEbvLLw1L^F_NTvj&t02pBuM2+thYM`4D7A zD87U|GDZzy+sG@o@Y)|fgNl7kY>Luj0eyBJNJiIk`nF{RmY|E}zYA)jDnwgqL@G8F zTvYm=m*3Vj)RzG~RPJHPwBX9{QHn2HiKCaA|**FZ`%^;egKM8P#<621M;EUIaS{MNUWI-GDd@yKz-i4QJy)%Yy)cA@ksa z2wEXX{x2}zN8#;N`d)<0kudZ7@nld9lQb_TSbUhPQB~Aab$h>q5@W%$UIA#`3K{!pWpbH$sn_?@CQ7dtUWQkXZ@4eB8`j#q zWi4FxD+@Ez#`pXLQKU}y1^bK!@U;~OoznHz%eUR6gW^)6@8ddc5;s59)?qV$Hws~D z(FqN3rZG7el1Tj+ARBIS6-JD_y0=}{8$ui815le;+tn$V!ZVqdS+yDgOS3 z{l+<^N3kQ?O*+LjnMIwv7TF+?PW?HU1w4z-gXOL0nW$lFR1j0MJif6njXa+)vk_Q8 z-MF!Z9n1t}qq#^dA;Eo4?+XkqkbFZX;w=>JT1dWBcdY(3i}KRSPG+Pjt$N*)IwhJ+ zjm@H!$WDeV0DDOA`sr88Rtx!pdfdDEhbS5#gc&LhY~W%eU#-1k zSG_tJ26rPzUozw?W{tcE?cnlE>G@Ldj$y_qe?bmfw1B%^i@jZT?DL|mF8R67w&DH5 z*ydt0uQF_v(Sn1tb9Hw>^SovVJL|aR{%S-tf|8p@0Gq|o_pT8@7~$5+&ctN?Qc?u` zCsYa;4pTj@gX_GLdj;k1R%|sUHq)E#th|JIW*5#|1xg%Gmz?S(*A?x+EWdM#Yd5x0 zseFxu4Wkc(2n@d!!+NRv6T&_7d5?(^!?_jD z_XI-Mwc8eJJ->jb(`!e!-Xm-JTYln7HV7-BWV8#?Z8Dg)tf#M)nS7WgA86CBr~Ocw zr)mT^lP+bg9;Zasuc;uGl<(GRScNBsYv%U5I70B`!Gg^|*vtahTtHkIzM=*`47KFC zQ}m56qfCr}G=2&Y7;~Lyq|!^vzbucfCI$D3c-p)Dq4rggu&S}WePrVT)%|jzH`Sz9 z;vGVH;qg(gXd%4oCc@kx7r9e3>&G|lj8LDh=j1qYV0j$}WCfdMZs;AEW$n*1f3vW{ z*b}B*MsyQqNKdVbs2v*C38qJXP9ar;QCo>6YJC$UeghN=?-k#~mepEr61izi)M^HE zX}NtU>w=xauBFm^1h#@u6mW;qXn;X zZA8)ssUie=ILHXI*qRz3Zi)) zUw#h`j8K9c+b;U+$0kp}Y9gypuBt8UeG>6lY6!HBr{r>Ra_;Ct&OR*ik4$G}J*_%K z+Q2{jw4DAUa+*Vs?dR$ilRuA*@_U2*NFpiDNn5sCQWHPd-3$n-;n}x>mx*675DR1{ zW{KhJzkRFwfob{0mYJEE(S$pzt=Ri!Y9JK#34|<1d|;?Wb=DSB{@|LD^zy4oD!@Li za63RfFWVk9%i5?lv><6mPoUf~{>CC$?u^U?z-D>>0oLguluU6}(ECq#UC{0hM>GYO zJE`Bhx5CLRy1su+sg}exYe@~eV{bOPS-Y9s^2}Iky+cWIfkh&2NayQ$u=POSf8M|f2*9P#z9%HKnbYy3Fp+T%TJT!C$T`Tqme=!8YPEKk z;oHqm{0+wRr&a$zi=8+K6E{pAlXmyX*enEpH+&oSXs9tm$jPYl((}#l79MXA$NR6l zqzMV@g<&~1TbS}YLBE;4kV03M32m+eI6-ce)9&U0aj;F7vG}WRswNpxo}K<}kHOkpm1%oXsmzD)tA*1qsS)?8?5A~$z3X8D zN004fW4s9aXb#xg5>cZ$frBTxBd;#K$PrkgEzMO1;*O3K%QyW$nL-6+jVugE)z<3A z04>5yc2K)6^PL_>)rV=?fY=(;4l~jyMo%$yk3AMILJ1m70%DDAfyY}KGtKqZ3=AoP zA}mf{Pdn@B&GYTl{lA;sJdg1i1M6(LO!bj{{4N$G#~~>hOI4# z_rofg=@FIszTb!LK3i3xft$b`U!qDTShu$>{1utFq=%Wf6=eXRpMR&F3nao>v#{Xa zf(f8&suGwiwZ&-TQrfCY*BPcHt#SOo#u)v6$#$pT_a4Wt>CJZsbRg^MQ)#}jx0$_} zoA-l(V~4GSgMZIoY*P<9)#~DTgIuVvNlqVg6PiYZxTLQKQ^N7)fPU3w4LrKJ@chq&^Oh;zXco>D&TCb?xX4=J+u%bDg;a+ zE+_0T3M#?n1+Mkl8`@x|L|7&CjWvFHtvYF<-PxgDF~8eP*W7%|da^gc{p1gwtSm-}QuWJvdV$w-| z{95U2F#{SS`>J^!mu;D$Svu=SF0~S2RLvY zpzow@?joYs6)=y`nB}8%SMh+30bz@V>i8NH%B_~q*R#&eiJ{Q8>5;M37N4FEB?wx~ zCDao}^?4@h!RmFE#Er0hHP$=H=18|4j#h!{MnFeGn>3;Z-s(*Nl8!%SbPFr@5d-!k zRnpVqyEV9UopMs{qq~O&B_XzHy~mCERCqD79Jq9rvejO=&qyt>N&nCFCCuo0DQo7IgY+vE-yUaiaG3sU+)9 zj{I9V{flkN_lqN^u+O>Qc|rM~?pmw~03yHPO62A?no``VlsF)Yd-#}MCNUYSGn#36 zNo)RPm$A>-+Wi~5)E6&?m;Ll7gxa`2a!Ipl9cO{zpzViO!DsVNZL+__wd^x2fAyu8 zawh(Ac)P%Y>CXF-ak-Dz$?(=gc#A8|x@U&u^62LGT%yfx_c5g4t9KCI>INpCWZ*IS zV7a0g-k>w-W8*|(rk8quTG}-8`boOu@m;DP>2>iz1V2u6N#WtxCSXVMw4fwvJ$EAz zbtH5>eE7mCGMLPb`(vxRpJ|u8Z=%10h9YyP}0c$Ef`L#{CAIM-XuL`(jbP2;E0 z(r3GSC*Mme&H`jfL#*bzHx~4DoPhwBf+v+H6%xYG@AP~HVZGQ8p&0B4RN4(|i{qtd z-9FE>C}H-9a3~l|O?kzAW&fZQ{P<$*i-y5OkYw?&L&1m0$oN^;+yo|f8%e_hfbiVpy}nm@ zKX~EcCXPA-O=Got^pD4U6oRVe#5i#CLGyX17wbI>q*H0)vS)$mBLm1+b`xgbNx8+R z;g_`ruDZ-C>rww zl&AELr&DsfD!{b%IgbwAgSU=#fBKH2??UcddtdpIJhjI3n=tPf5io9zNPcp#7Khxw z);{SCnN-&QmxS$}YADXTYsrSV*Rj%nmI3&5tnl0GgZ&S^;n*uy*eu0#?^POyvYkh} zmnC|hZ;fJu%+}{%`s^KiiYUhYJKeYC!qQNzHb0}>SeRAQaeBQlQG#&uiL|uw60|>? zN%h{XcCe*iOk=e}#NqIn6$r!ziNtoA7+gxyB1H)Ft>p0Y!3HVzC4GJ0h!KcYlbGZa z@Y!gzFJS*f_D<7Jq3-!WJgejx8EryuxfCcIUMKu>l=?60q|uzYnWz+w|2#3?tkKR_576LAt2mGt_G~E4pqXT%gB)tGcgBk2PeDmE@V7p;aNcKcBS^gS-8iGsA&VDh@pTSOaRXa@=ML<@tVZH@`QoZ*uf)nr%hjCmE``z95^ zp}m(*5N1_HjW`5?lGF;$nUX|LqJ+`j1jSPgGLD6MkLNbIqW5FerxD@9+&$lW1GhC8 z;SJ^I_-aV|O8+i#JmRk6=xsTabihix2y8~m<5G8>pKX%=y5eBEt4NnL8UR^1HHm=( zxH6$7zrtWD3lSN8VHR&9Ybuqg*?Q?f`s1+GA(YZ$| zBw!a#w0uZ{y1Q_g8WbuA+&&EPc~0Ytna>eE>hcpAfn9oNIPQSFk}zf+WCTf0y2O{W z!!lh`N$Nk7#AA17P4yl18`v_#Q~~hUfX|ttBEW zWI>8-N0I)sxjgNppCLUQx8t%OZI0C~`CdL{5$E{koqN;e>7!wd3;0NU z$aGZQLDbC;w81x&bWuHb7UNk(&aqK(Jkq}Nn56H5PvbhJ?>Jp&G4Y=Lxl`$`Kh}y1 z{(-EOe9N{KX@ok}DY5YdU9)RBzs@)zFiqej$$)oNoyW%u&Xh%W1q>*R0}OZCg@;&BTV9LelJ@eT-|>9h9p-C^M!u#0II^| z6N}_+G?Iz3EOi4k8>UAmGC6gXyKeN*iHr(jzOsfJ(eV9c_)*?TpV`@=5KMTdG%Tz_ zlH4Cd4n$Fks)Po4`C*KMKX~Etdg*dzUPgulM6eEj4T{z^9o_Wn|Ad9x zm>&eQ3a4WV8-`uirzX#}Ldz57f$WvI?G4ghUlx>e=KJ*9QeW-Iax!)(8;_;jsYy?il)(`FR> zw^{Y{3jpaq6cDXXe0@~}XA}`Wp@XUsT)0X?_|(dWL9SZSdh@E8XgK`bqb{@956lq! z8Q)v(PVp-3BK8(YRy=%hlZ^x4d=^w_ZzC;LbPV zneTGwc9*&ZQCz8Pxk0*XIhsxS?}GuE%%Cwe_wpSzcR+E|GG1ku688vqzb^FY?eZcm zJn+%sCjR@NN+ugP1B=NOk6{;)6`E68k1d8NLk9(C;%{6{97EVZRzd1-!x)#pudOty zLCkeizGHoT#dQ6XD=o9$K`HHjRDA_hRZrCKrMsjQNu@!$JN_t*N=S!vNlC{6L9hr# zxKbBTLg^Belu%N-TM$XSlv9@sAP>-@wuZc|=o9R7OVUY{LWf()L097?BdPSUn8ECwE&AYV8$Fv>}W z#P{V*NDbP-CPg*?v1UoYj;k0KbQjVyhg!tg@ICRA(L7~zLG9=s$V_4Mn29{s`RS4Z zPA`_}Raq<`l8DbFaAC3&j0=NW9at2Nw}#<<{hz<$SH_>e6dJRLUR>H~u3D!ps5g?aI})EJ8HO5}%rbOQUb%H8%{t+*&(?aTgw!pW&& z*Pa2%1C(OY?Ec0}U7gG^z$x`O6(V6rB!bL6w7M$)YJLmr@O*Xs6fs2_cVN#F$A@q3 zz$0O?Z%3!jpP#5g8TAc3{5}4_L_no!lX?HxXuNG!x z;(&7)4=4_t>1tgk5Uo9@!?)DOv+6}YUg)j}GMm2js`2r)yP_D=QWZw0jK?OB^`JralIR##w^G61$H%-%EUryqTn=lm*c5R5Z>T9(|S505(sSyS6ltc$k z>rUc-ReIXrRn7P}FC%f4RuVrzQB#j@!QM!bje^N6v}$Y5-R*7}76$IOKfGnmyrJ<= zRA8_l_Z=1|Y;sz7j31D8zcDmyc3HDLnU0VDjX*3_-RRAKastDBRu$8%=th@;A3Fz9 zs1Z#dMJs=TbKm-fh`<|WhbY3RGQNMA|AR$Ars7wfzLvsQOGmrJ52luvaXw|PMhiyWS!v-HEwCN7|pG>6P@7vo)*RQb-#I#L8 z^!m@qG>vbv@SXp!UB84IwChofk+&=H8$quJFKk>FRW`~cn04j?`PpW zdoh)O&C?3)T|IP8K6NFoRAS~u3ay0Zv2$bGodB;N9ozdngx+HF6{r2*{NLg2h66tp zW!$Ic8l;WPQP$%smk#TGYk_r>PF^N?863NEjNyQ_B8`3(M+~f5zuyGjRex$vM);58 zJHYWQ#e0#g@9NcE(uDa?oH@vA^UcW!Flv3Dz02i+@k^uBh+ec20mv8~#x~&GAw;js zx?AK(T)zvIM!V{`|Ejw}g50QMMY+o^d!Yuj>b%ESies8TqxZS!_CiZtt62T z)I@D>z}%Wip@d&+y9+;obX#lJQ8xVoOKIH>;c~2btT@fhn}J@6$5f@OLL}SlevhzV z*7kIh&yONm%E_)xCJE9|DFJ_X(S?bTzGTH0I4op;-~WFBo|h{df?Ej?(yjZ z59s6fV72}XGyCszNGmlwn9{11Vc4e)K|LB;B}?##FZ#e^cE3-^WdHYmUXMkoG6BV$ zek)2fM??fA!ev+Je4LHXYBkH0hBv zQ-t#qg;PcuXgpvV?D^mIFS z!=qPZwn^jH(`(_q2@v*6)*LqzKWoKANueN_j}Z9uB4{C@c#RKxb4DM%Tsoz|2yOZm zaTQ&zmrYfbZNyD6%IeEz&Z&99`9AAXa}++>{Vnc~@u4@#0c+_(GSnp9*s`ZywWE_) zXo9OXRECg~on4ImN3|XPZ}Vn>%^CvSanj8iLA@uj_E-t1UJt^s^pX0BPkhUD%P+zS z{;jGa;K;9`FJSI`X@7%D;D%(WS0XU%$O9Wsp{Z5%zY7uT?)NUUCVc3(B1sVe&ziaJ z^C`uJCLH;FVD_yOV0&Wmn)B&M;}5csc1nD{R#Vo*+Fr2c%zt#_COy%Cjy`CY((h6Z zS~H=Y(uDK(boC+M;VosKPkp-aceX^T~dgr9r^$Nr^9e$b5XKsWg z()rDHorf*grq=OtzRW|{qx9B*J|e|TdK4)PSn+ndKlL{8h2~WQ�i$0f&IKucK|@ zV<_cnr2G5OO+F;^5Xj#ATjkLCk5AJ`vNJas%p$q3KB?@4xT zmxflP#?}tIA$cUh`kYVQuQN%DWD5DM!s&MUqd3>EzrK*WHa7Zwh5PTA9E^MMSJz7v z6nrp8oNl_84AAsNS|Pmj4n`I$e+gM8O6U3^NVMOY!~F0_R13iC5#qq23zx@s; z=CFpc+RRj}7S&n$R>rb4iWOr)SGRG-bH!kP|7nRg5~MW9(OE&RC)pk$uF_AkZ1?fRb!RL?xcD~u4FHbJw)}+r|`PZ&8xb&b1@QWvQ@Wnm9AV!<-f?CNYcI%i+{ST ztjGl6Q?2UQt6z_v;WXm7*AsdJ)>6xy&LaA&wiS}K6d=%N0KwTzJMUd);T#Ce?9KXfu>cPJ7eE_jV*S{lA8yFM4I`8pAJDOXbbolaz?8wKb@*9IqzPNm_Obb7LUk*+R1 zTe*5W#=KA1{kY4Q1hosj2xlU5P18<)v&$v(#y6{wAHKs=GW$}GF7uPxhF9?n-}7c- zXju^#@TWXmsoj1&r&YLMy0kY6#XOIM+v6%S>+!a6h0cuyn7<6*&sF?LHMb|$sjI60 zCval=L7WVtm}~f@Dd##@Lti&(*v3beWbm|@u;s$ zrZ>P!LFYVW(uu0Oa+vmKIlooRp~wW3q5Em0wtBk2wlKiFlYA9L5m-^^svFl^%p3*8g+hCLSP@6i&)*ZRR<1fj= z7G>wK_R(Bqu>$Cfhf1KESH&TC1H#8qKPZe|<7G*IhW^>fC`Y}h9T1JGP zqj8Bn@5xH;ah08s46GyVqqQ+4Fe#MfnmzIDKBwO&t1|6TYN{jg&{?@peh=-99%S7* z{ABqcfd3b`BH&{>_}|eM-o>U|3Gd1zakWYM)go8%X5P`yCb45KQi6th(--g3wMVg@ z)W*5L9;U|)wDOVvR2X3{Iby zo`+HQj`%t`I7hNDoO)?^1ZFhOz4zeJdAPl(bszO7eSc3Tn72kj-b3{zx%MJziQP4P z{KLLUw_W_V;Asl$JI#P1_bcKDhZUp{L7ESpdll`zI`qWTh z%)`K}eVTA2kB||JN7{LbuR|IUeIT~MlUvIOqjq0e+4<>s|NWiA;=W}sk0fWN&|}-p zTs7nx5>aYl|Fv&CYr%Cj|J;PgH)u{GXb9iP^3IC8Z0KC1tM}IY9k)8>BWj}aUC3{k>YI5RK4$Z(0+oT-hdo;YRTs8&9lPXBor=8bK*9BH9BqEu3J(!?r|?}8I^A+(4_&EY&lUjx@wb;B+ZaTt;@fOmUcIouyx3}PP6VaBJWwSrC`Wx{SNza~@aPnMz4sQM-IiMsT-I z$*=EACAW&9j`r-BHZqsb(kOFKh>pi)Us*yXyv|ES&S&T$wXsgu-O$$db_ zV@1ku7Wlr&B6*UQB}!1{^;C_wvyZIQ^S|@^9p~Tdn-!Gb8JjRq`TtByCm*vpB|i8o zGXd=izwLylL&(q-ML}K#$!z{6jwL__Kc){LD z6!LxVe5qrL@q8xV7}}jY+sn!OSzojESgKLgD6LWJ0_EG>$I#wKd=%~9X+wRS&Diwa z+Tg?3;0N2Ox4(pagRX4(kKwHoGMagG*K_vqHgc*qG(nxx2xsqOoM&n4r5#>9!^~Id zuqbyK@S}g_JyAAwjAS)q64bN5m)G~gnzCZD*I8t`^Q83J(R9DAI@Q>g-!^-x-rd2d zc_cQp$0IH9k(%?O)cgF8>eJ;vIV}oZfz4vRhQ)C+IqW3Vfr+8L!J|0FW_&?h9HD*N zITtm@jdjr4-utegGG8~x&Yg&^c?(O;?10Vg9YqprI>shZYe^6QSPo zI5FGY+xLvX_4{yzKh2#W(&w5dMXh{AC~~LlUUQ5F$oa)oV z@PSXP9i!Bb+x_b2d5pqIm&0niJye+s9nT)U|5F7O+?tk)wKB}KPWM9fB(`$lE(cO< zwMjI-I`vB#y3)1Fqo$R=BOoh3E@*>h*um)6Jg0w3Fp12Y#1}Ge%2u7UB1fP=oKI{7M)X~| zq6O)=w?w{rujr?+cu$^GzL`3n^VvMg&D(rVEp3R;GP@iSW*AX!yOg^z$rXRrnCB&! z!n@`}l}q63&1_omoftzuml)OaDr$D}9MXo8KjLK=R?Q!D9Q!rDsv z`YH5&h+awP>2N{=4fx9Lr(P0UP zT$*Q`CKPInUx@9JJ|DG@I&9i^X-yd&q7>em7*d~f7mcu(A?ZK=lv@tgOI#aTxA;@! z0;T%8g*;C7VJTfOp8a#yxQ^8N6ALM@_X`-BCz>3sdEM7x-L>fbEa_ihBLx;MCd$7j zM;C^68HeQyM-)tHMmcRSBH{~krt3c?v=b+Ub(3rhM4JjpuRftG=$-#9pY+uOV&9r& zKn$|LLr51>*L{;H5<;A^&UjI?w0I4EPzJodZ}oo339x+cCRXqn+}l~=wp7)-@NTer z<(DAQS;u)HH7^gYV)5dPI7*K(3sGXT+8vD^&Jl*rF17kLLg`!f-&rar2oEf%+mE@o zy;ke>_r&QCh;*Lkvt1;cVT_&=uS82;BHM@un@3{Ohu^S>zMMScetdUiP_p4+cx!h~|AlgX3m~&YWzv~r# z1!q6e{`Z}(wt~Zm=FTZq+e}udLvArO-DvzzyiduI?*5EV!yb-=5u(I9r7!3^g?z{_jOJ^l9)#jUOYB@vhsU05 zRd!6+{xQ@)sJ(e~T8|tkOb*+MzlLfO8jveFL8dRs38Oyq(L1Pqa*63zgpvmEqlK%y z#2T2fKko;}W-wgE2S@IVN&`<3owYcYNBZhESq#{0bE-iFssxt84Tj_92SI!*RJ$T( zGpbVogQZR0nKHUtmHC~}w$YQ{I^>TeNXV5bv08q;d)r@X&bV{UaJ_{$p&musYkHgk zLR}e!xz5YRdas$nCsCZ7yfOU``s$Kj<*sTXr}JGyHVj&Y&djLpzAt6EI2TNBxj32b z50`wbq!LunJ(9MZ7NK-?K6>e}`}Z=}haYB4$#cvokChg22}9Bbhz8-3`TK7+td(;Yk%6*M*_(*PcP|ly+}v{fwY3wc8fPZH-EZ4C>>Z2x30P%AcZL9)p8h>GZ}f zYqL~{?WVbVnGc);1r7`eZpnT0eM41`RHYKWYs2h(|5xyq%i=zTwNeo*``LTFhkmH% z4rJEIUi%for$m*MG!PNeKV%|k=Euc_$aw}9$IRCW^~e$QbD~);v_X5ckogY|H@rLj z?VU7lA|7$8{EKTwT|EZ*mfa-hv?j{JeXDm2K2e0mFHtS$^8`|xE|QNqp1K!>3EgcH z7dt9*DvO6zJ)>o%p+em541Tkwz;)qGPZ;h-{1Eka^2Tc!VyJ*d1_^8^wQOiR+=B#f zRpqN`qr_h7nKk_lY##lZ8H?x+uxewS|^LnpInqO zW~s!0{~s}b*VVJ4!<6}K(LXO>yo`9@Y9elp4Mzu-?@g$xP;zzMq(T?RcdpW#==ys| zmi@?k#iLE_ zM7m8;uMg#Wukcja+yyFGeUl|*Wq>tg;qk>V5mte3DPfQY0~eBl!R~vgN{h?$MxEmr zjjXMh>N?0PGvTGNz^~=|hU-P;H=Ih=rv?-X)|s+`d%ZXRKG2X3Zo2j6Y=osrmPv>o zoAs@*XYK01PRFhD%C9%VHA9VXBg;}Ynq=%oR2gX==^Z!eol+4J+3#@NO4Pf9`>gsw zca;2t`DRP1|)=Dz)SFF^;zLOZqp~2}lQtSoa++GDydd!}1r3T*ixR_;bA5WaHDu{Tit4 zj64Bs^q;ujNtgRFAxYq`u@-i^@l^jj(S9(NaUc!r`xs8|k;6A(uUco7>C!B|F@^); z$eIMc6W@rcC>zC;%80jGU#uXlZVoxM0K>A-tkB)bjl?IuHe=FsFrI$grG2a^r}QC2 z$r}gGM0$>4uspu@5sYjM_Wtfo`UA4cE2U`9`xVFc6qur60T*i>%v8l(v?UDZ489bN zVsB@z%0OF27b${x2f(Qy1+r&R2c4SKs=2Fs61_ znV%;ncdOmDa+sKp;yyWQD60PQ%*v-1B|>H1yMEN`|90+u?pUvfbQ4AU(0@Wuz`d-Z zYbAlbtx?P^AC7E~U(NsUt-pi#?uS&ZcOX7+w}maa*B`m=ML?9WY?5Sg2=RRLa5S=? zs88Y0x_L8Lggnw`0b)Dkqsju&yl_Dmg4lD=*&Lg@Hgav}|^rS4#q4*;<$Wg?zb{YA!bKB&{ zRx7ix6-}_i$xqQR7UqR7U|h(tp6;b@$rV@XI!^1U2zeBxk_EfzXDPtlCw9EM>l|`E zY)~v;`It`2`dDp7uS{D-2JicMlWuTEMkd^XJnWnBLgGCw4&~m^H~8IZFM1aH3{9gS zNJEudL;a2>sOo@TD7|JTPue$Zv}Kos??K+RIq9lg-vh2KpTo)%3)<^dM*)!_P;JTl;@#dPglh?@-9z-`gww=+6w6Yssz6;MU z7`OgOEH{2|`0Qvdu=JH}fdB!~?qo!1!2>;ptOHeI5Z}Q-0~S@{^nTBwvgI^ApDEMl zJ4`Xe0C$6ubFzYSR?l2gk7hCm+k4J1L(n_yLfKcYV?CW~DY6@94tbPr$lA@$bu8kU zvNSumD@&A?4LOD^d-jD`?D&7_2n<-hKfj^uC|Pw7{W3 zI&--^)=M`+6WoU&^0L0?Z|hXqGXCJxF{;nj1&%Z(6)2+gEW~ z=2hWQ;6ir)OHAgUs)?@$HBr?rM)xwkD@!#-+(+1#kC++Ok{<*fh=i7vdymHEG@$1q2)GD%|_5s6zd1+$jhI0(8;SqatU9hA3YFwFyL zQejUPe5jjV8uGb&j=~NN7aBiLep`bT>_jnlBt&cXj$8Jp*$LJ9cDY`6j3H}fkq9X& zZr`KDzxLM7wET!86W7et@u|$MG-Q#+lyO*gh@zo+7#H50BJQJ-io>MmbJ7}JGaaEu z)(5-3EtF4#Pt+{8Zw^mg*`&%o&-^`Y)yn%(kO^`xY>5gS{T!Oad{JmO&Sza`m-@Tt z#bl4-+espm{AU?CrE^y(zP4DKV5z{xUN7r26s-}4eS3s(TF(=*=96`5)V2~NnHHQv zIB0@)gC|t2rP1m0#28$)4ufZiuJ0t2W!VK5lB9qFsdQuijuM zP79Yovm@XI9lJ+0)WUBVxFC z^@ymMBC(=%_vVsmJ$xBYk&~l(D$sr8eXIM325Fq*#8FuJt?6#d!rFt+!gz;iyceoN zuB;p16B}E;o^yP1gt)Wp!OfpHfjF6~L=m5%3fZrs%@iF>MFMaCTMmhfEEEzB@Up9; z?SUz8i2v)xp#EVk{IAM>gRxIcK5*=ArG=<9urYf>-%i;*O9H=PSb^e}@qC5w0& z5=Xal5t}V-7s-)4mwm9QKgukWwl1Fc;Hy-YM;+6A>Jre*Fe5L&4^86nz5#y!)m6Rn zT{C&zgH?_Q^{d(T^ zg7al7Zg++Hg?nXYw-LkFIltj{wR%g6;&==1>)jrWjwd?RYmnv1trztd%q@;#8claL z8%cx%f~X_g9c4Fv5{#@LBko)I7XAc=U1ujo1?lwVy0M6rmp^SS$PbRgGLcI4`N=79 zE_DsT7W1=VwZ5gn2W>moPPYTXV1L-&RDz9L?AEX1up-V5Gxsa;jwx;5B2LYY<(~Q&7(y@)(dSLv0Ywe6 z(4A8nu8)U2O(qo=E+0iQ+D`Xt=lunIKij8=h`%2F8*FLM=gIe|vhRgL)!0DrjQeZh z-&D(bnRVyEzT>KYO|F-m>`w-cE}e_r1s7Bw>re;o^b!AN{##dpkG-s;u!_ZWJxY+; zxokXpy*d6xcV5wa`ww3zL%Oi_D_PoNUg?&+qTa8FWZnmY?g){j-u*ATX?`2QF=5D> zTK%FnTK6X`ViOK?fBrtzS2m-aY}XSHG0z^3zH|5$?&4Bxni%H77n|xuzyA(A3tic( zC!-flhqyh}cA`SmA*E>4Z&YOqb-&OhJ4ov1QCI2@=nI zSg738=mc2&Y`x4WlU+cBq>amlA689#C=P-Qn}v03&BVjrL&d2ho*^~DqI#%`_c9wQKx!;^t zC?3J9hq=vbsq}_9+N4|8hGatZWEjq#QJ>j2Epsabq8ffQuhk`_78ETKg}&UUMM#`g z*upNVDd=y@LA{=cRP(PiU6Sc_Q!h$}5{uXOMONpibJD_9IGp`j#A&;?`mS^f*0=lC zJLH4CoTpx6+;Y$xCFJBr_dDW}o@y5#3TW;8#4NV`@aA756X(sAoM7!m-@-$qN9F5m zZ;HdcKdF8SAe;Shcv0|eobT-C;HM|&C-56tADFtgG$537nMx$eJ8Owarq7D}Y}p29 z(9z`YJ#-fh8x3&DL9I!#vy4sH4mc~|>h#0zDS7N#n&?9l|eCC>iv zcJ_V~$lSMwQcymZ3amdlS34Dnmkg7a-bGNZErEbMvJ&ohi<%OPPp5uZe~YjEvUL*t zUZ8Pu(Hz>j2{Q*Ga1A4 zQS;6tS{G)fv+bmEy@kCg9`2nVK9I)Mnd7{Nfe!$Xp`%*!Ln= zG3aeKg#S2}?(?fLC3u$yQnrs|Iyil6llO|biTez}?&O+X;Vl=Ry8ZapSYK3pdUb(T zdsQgKMY@lisYIF*Vse*N_Tq9P8*V?n=++*`vrl!s%ACS%D=dB;MnMH$-s=N@l$(95X4stZ~bd-;t@x13bxk0*JtFTh?)acSs>Z0_p^>EE9O6= zGzkSj3Q__3q`BqGyQ{VH{Cs3a=6K$g1CD)z zW0mzWVzz6ApY-ui955A@49Vk(q49vjfr@W){0532L3|X@F8VXXLH8G#MKPW&o6+qu zW8(uaW)|itp5D1>8MS^7Agb;wXmd{NnD!C!D(-WhAG;xjIN5anBz<)7=R{+aB`Pp| z|A5~_u|KFIGHK5)Lzl1UIKYBkyk?$&v>hCD$sZ_~cvSli_Ake>3@nlo)s!Pcu~R3W05XA;mqeY%5O^Q5o#XazqP6*TCstH(cAL8qu(Q%aJnv|MfcO%sP6x`ulxP& zgE{JEimQxRltGaD<0HyL>=f}6+Bac%%I96j87Rf9S)^G2uO>Qd^U90WwV!()tFGo_ z1ktEFgJW>J25kG^G~c!f!-a5dXw?%7sax*%>B;kS2maV9f<>Hy$qo8GCQAAZ+6Zwe zrtRAu!l0<(73%NgtzfLSzUSw(hOrjnH~q-z%tb&Prp(8(S*ggWqF=$+L7=Bu)s%hT zhM>K(U~L`47YU&^>#fXpsIXb|)yU4YsDx;oailb$5a(l8^R_B;3xRgUM6Tr6y!Is! zht?b%6CZwKPF`KN{joKdS6coMJLn-|Lw5vOs6bQYXq;Fygantm6l#NwH-(vr`7}9K z*P)ty-#qS!*q`RPL|V}!?@KcIoq{-itnXvjZ+Tt|(>VVc@;HTgNK~AZ;VY*q*G1wR zFqWqxJsRh_l_;raCz*B`xB1?2^IFqmQASU_XbcQXI{)JKg-uaMuthDtOHeM`tH4j$ zc5Eq;uM(7mMLS(CaH>UT4_4z%60IP%(3$Azw@kNG(lS($(|kb9Vd0rX;X>*k>SD@x zPK%mLDU)6OeD(KFs4wR37eBdu*}pKDA~0(%Go{3pez}@cYxIci>Dbx8g}hGuQidsB ztOeW#uS4_ldioi#R8e+Sru;4P$a-3wCG+^AWXSep_}8#yzc0A%4fG%8Mg_Ck2CRsX z5wB#8-0Bb#6wT>dt2^2w{2%{CYc#`EVs(}yykevsvSu9kbiO_2)gqB{hT!V@e}A7$ zmS|xN8mbAym1rVaCCNh1I>D@2kE1o=E-dOC)i^y(W*#f9GQN8qlMw_}9v7(%{-O>+ z>5}_9TeVdz>Oi;e&FkfN%G?@FQX(_}*23tnSh0EmJLlQ7p)#@?mbYPfLM(X4pQ4*Q zX#~u}$qy?#Plrt;g~PGmLOSOY-x|<2)3d~H`%@@BWHAc=HbmdSkMc?#&eXeTKflJr zSF$JH#ltvf|4@z4;Gbm&1Y(~1G0e#G53+z|<^7*{1Xv8Av21VCJjK~9WZ#tt%8y+H zmjUWn@#ucPNZey%8m;P$*RjeMCLBugp5&q()o+*8vSO)ydro2+A|Iv)y}Ar|FZADi zYvrAn_DPK@srfHu6eU(Id5gw6fAO@o>_i(1+NgE7pQe6<0zGLi`y{-X8W!;ch%Two zfP9kvn4i{&8$QNSKOzrrqk0OKLn&4Od7sNk)Wcv2lWDUPLE#s{MC+SHiw{O@s_iBUh;Y6;R+?f}2q| zn2?xAiT%xPwRESI0=|Xe=hIh0OQw4dAqvBQR{QBsH z;@rUzHkVky&(F8;m_VbIz}ZF?8`$NPzBzD7_%O@a@C;fFkltq_tSBAYum5R*C+67@ zJH#@FnWDh{0M>EAL;Ml7P^SsiYoA-nd-hKO4aoGXXKYd66cxvI`8wNza>!-}%){BJ zU=jGQHkn)gvm<=c6Bm$HBhMW}iTm~5%`7^W%i#1v?AWaR2?H~&;4-%**ZR-uBk||X z?zNWW^sDhc;@G_YrRcG|WE33>80A2A#$?{=L8+C9x6S-ixDf@VmG&5;A0bx23ftzP zNa$16j>gq2%Y%=k4xPUWZNeX7tXc3?VYsI3d6AP`ghHzmJ24|d`OjGi4KQ|p*5F~9 zWq+vi{4+RK9;{rXXh-qCE+8oQ(wJOw3y6UBwv_dBfgQ3pCKBe`UgnaQJ0D?gr`W(m zl((h?$+;?&tf5b1o9C9#R!ead!>kqm%@I}@_AN=Ud}%`Ij%S^nu(-KDD|ctbKWqOJ z41}_mv3`6cq=nCjJMM2q!wSDNT11ChSGv>2sx(e-`%yW;{*)Mu{q@gSahS-#{UCHf zKO1`4$9`C*oM4Pk|NO17=Z0^UHq>)DT>Zezre9c?a5rfE;#B6F2%%o7qL%i2i!i3z zARSPx6R1}2eD-RnaKDIgZfO|;Ptlee))0<%$Ml%cRuq>@+W<@okLz-CqQXfqVH@kmG+ z3|A?-3{4yawk0b`UnJFyiLMw$^&}D6SqXxn0L=PkDjnqwsldSZduBs z;}4(y29KhwcR(MxR^u!856n)9FXSipZs~#tk`IT*%k^V-;J^A(PXxdo{_I)knb|!U zO{15sV6!l9N1f^N1_A$?MI+<(Kthw-Ka|qxF9fk*YAwY3j3yr z$@Vw{WGj1#nZAxh;V@VoIO_-Hl^&ph9(Z#046$fkE{2a^gS-hC^+U%t1jZbg9?xKh zVZ%1Wz_yDWLtsJ^eqZ)D1X}^yP#9}Grix`kz%>OkpKH~D?A(|z%~|?rejs!)x?5z_ zKtcz{W$4v@aUiYIzv$i>Y=AG#zl3Y(1U5{C7GPC}ZM5=U&TncotI(dy5b*sF9y*&1 z&^r55+w9BHt44Rm;Xf`x=+0=|#7uraG_d?99Z+(ZR1`++LUd=uU@YUD#6f$kJunr! zbAgH(FW((uS)b7rt7=^Ke--#l2=k=;*Z;sr4Hhg8V@27oiLT|JPMd0=YcbZ26n}tz zrYTLK`==fA+;w6C70nxCDk=uE8pde<_^3=1e6xqa!jq{0%dTyc%LvWx==Q&DCcbRH zAzF+N|HOb|fgE?~FxoVVo=ja2@h&x&0o^e?n8r?mT@s8t5z|;cv<&tYm-_022V}?+ z``1`>_rJvip3m|^7oWha4?2S%n;^d$PXjmrX7tuUn|OacR130!0S|YJd1y=CC5(j#A{J?0x0b0?VQZd86icZMGOq;jpWyJ~jI!2eEMJGsLCO>x) zm`?rpnE8-<1xzOf%#-J?1bR$wVWiVUOILOIk`BR?oYCct{*_Nem*>RT!QKUz+JFJx zzcOectA4C(+9VM^0oB4d(35rY5BL%ae&Wy_Q58$e3jY5#aLEv}pmRr}8Q#VSbO)^y zlO308Fwc$du5}30QbzQPwG+lJJ3JDt&F=P>YTzk^mf_#bio28{<+9n|lrNiId8r0c z;C3ji-&B}vR9gc`07If%K8YC@YjDs2Qz`_z9TkS6B=qYe>=4c8aYTa>48{lx2O*Nc zX$|Y;a#jYv5c~!+{!i{}D!#ZH+_MyyA*Pvu75uW*G&9_2J0eOA-Ob7aiqQj)yK<8O z((#xQB8}d{Ic33}(U;Zu<##*%y;`|N5O+e6zw$#yvTF8cnrpwu;K>=oC*MZX{%Z_5 zNqFKAuVYbuD`0q(CL|=y8~?Uxu8zsJVz<=?f?grQ5C7Sd(S#6muq;a|Ita|U90%;Z zA|?Ivetw2)1|M>$;u1i@d)c)DB0B zmyGQ*nHhd%>wiERy3jEZn4xRq1~XTo#*ZYst?-@6-&}Q6c}2#FL7F0w zv0*Vx(DcIr))`*c#pw8>wJzqqmWze!I;@;SF&o6crSECP*L$iAX4<^z+N#u;QrjeN z?|qMawx^f)nv%B0jOJ$jH9U`w?%R$vi~=`Bu^?_gv%4fSE7nDKKib;*vmvT&7&tmz zLXm1_?sZ8P(HF8-z0w+TGw`RCIJs&Z)c?t`NV5hek$lzYHjoiBs{JYcqc)Ed&xH9Mj*~zuH-(q?c zK3zUE&?*r9TRtSD>kl_s$nN}=g;W1)&z;nrD8u}IS`24KEtN+?vC6~OIzw-(Fr2(i z5M5+dN5%<4#;0(b?^v`kUxaRgU-p_WLL9dzh}1dgj^e;}=MYXn%xQpaNS~NpOAYrV z<`lp(hG!CUs$knP!^;z}sNsib8Vb%q!l{Dw0qz9;V4sS>v$?UU;Y}o*0@w=D@GTNf zWvp1ZFeyk&)P%oQ#-V{fCk1K#253N?Xk~y0H&WxIOnhujNs88U%uliPWip(Sj8hP6 z9sOI4K&Ctzig5a z1>oHSx26ER%Udr=UjPZ4z8C#};>AxqI4v2F%yj&JOO`l(nNx`p6ds3rQi8%NbC;wJ zK*IjAbXhoS>0jZ`fB$#k&A*p9?^1!nQSfjoP#Aum=yrY;K10RHi`|6>e|?3M8qRnH za9X3l0BZoS4B!b@KxPs)3~dFSfu0)!F1WBTmBBRyu>N;#kph?up45QDIXsIRa9CEr z(E1cWArv*J^qv}qB1Z#w!qwsBG(duI0I+P~Wi+4&oe73UNDDIfJ;VTQGzfFUfCMy< z^@2Ckf_@hb!Vs_00ixFv3@}H7%;y-81pwAGyq^v*w|ocxMGq?Erbn|##{f4pxR!+h zWdLAl!sqEh?%7Wmn$%U0;a)iggrGrp9R_>@0IL+feHG+Z?8VU3uYnB8V;JxX4d#Bq zu^2$D{QzK@Br|}_#YY&DF#||{f(56#4${-nU=0@o<^jOE52w5ia^IoC&;+Tl@!;;) zK{wvKhM^Q)2Sv)6F<=`2tOPhKBPi0t4HsqtJOda(h8z(Ls7Hfg*-Mbj1Tz1D3o(Jr ztGbxc0hG)j_dZ;S8RVAs!_eLV8g_I9227)YN-X>y3#gQp1px9C zG*H3b%ft{rqKSG17_fl`9_1Jy#0r=@z^z#U^Wbk7+802>-fqKyGc*wEzyKvS0ARgv zFE+sZ#soa#2B@(EP2Bl~0i-to;9SFiy8vLlf`{J#%uy#8+BiDHb1eAlo1iG;O#r5F zF~AxCEG>A#O_2K&9fr1o&Ty9n1NhlN1~}ZDo%27eUU)Y6gTp0*14l{YTutWS8RP@oUo$<2ZY-Vkp64K(<1l z$QeS!WkpaBSrI`HkOgGf6+tIaF(2q)reb2)_!u84%BSK3vD8H6;fwNxsi`SGDyN|d z3Y=`5QYoVu#Yg|MpE_;KFlT@N^FQ}~-+5flo}FQ_9L~OjWa2WVmaN2>xlV6J6Ken> z8lJ^UP!^OP0Z6kg5NSqOSbnoVGFxV4m?EKgJj1NV=tLFH#7O_v}j8z!)_ zWCD~4Qu#cGm0dvyydjsNUBV9&8KMUO?oDD?D`Dun49yY-Pi6=T1|;P%ECOhzQ*E$F z(M%~DD8}MRlq!pfR3VE>YL~@hGV0L@|IFZ4`}An_7q#ex!E0*p^VbGp!*@h=aPWQk zH^o*SnoF92=-q8|RVPXbK@L8JqzQ-OS_oyERC4CgpOH{f=0WKU;yL0>?FQkZ6u!@Q z3pSwBX3wWqBaFH8VMM=csmvgBGIRq*rC|YEs~7O7XldC(^}o;O6AQV|s}`bp!64lE z#v&P=j*blygOsa99O}s;w08+b^`*tEq=(|>=Rahql+dt*p=JrZozi=N5m0?anHeGl#&Fw3=bqYIv%LAiB|OSovF4$F5}2ERpbSDZ@1h*ETYo-uN=A@JK}U%_f#-L?XdAs2v)ez-uL7v#dx~`fXu@ zWf;U+TN!e;;v%+Xb)uYybbmQkfbHqw7KO_m-^TK&D9qxh_nnRhxGaZcXD@VXIjc`rjY z04e@rM2c0i!gar_NLG4Ov7vK6XQid${>UNq0L%CW7TXgeP)Rz-%CLhk(;t0^m9Q9G zFSeTDV+qC@8Qfc>uYtEE28qnAWyNnKs%O0&09Wy2^eODioM zB`nIsvt&vX{mSBSu_<5KUXxYAjB^Y};)Kp?c|-E-5FD&Hx%~gibI((4g76`yc;W74 z>G`OADIPN2@hO^p0Bx6~?QJs03y&^MZU-BwAYOPXl~-BbBjqn0OK#B_DVuJx+#zM} z-F2PhG8*!@TP(+p79L*u#`IV}+^ZBvP4@RH{*i5^(iSpp_2maR@_P^cVsC3}W?P%I z?WvD9T}Fbva7Jct)3&lr;|$xW+4_*pu>FBEF?(CDJ8UaX5FWkVriGU8Kx{GS2ixJo ztHF3cH3?#H@6&gGF8&^dzS!j38yd?J@i1?t)I?!Xe|xCXsfX$SewyA*6goAoLnW^c z)mOev2vmA@@*wr-#JnjU1Etp!R&I>J7{2|KAutKh?-_&lGkDh~!5jFTm6jwiSPgN& z79&phZ3^ttgYTD-jD;{nLj}nq6Faes$zp`+EI`uAVe16%*0DyQ5Zq;QHbxnFgfd&C_>O zAd5;mj6&@!??yMvyLpm}3EP+ZG}MH;dsJi+Ba|=`oiT|7O)5F1VY78@oJ1W>O+##@ zL{e+Eu+{-hy^`%ryRw}@JE0enW(g$V{t(rIa(hZ%j2VFOdK=pW~FX;n7Zdstn6@EN!<}6I(S0_N2 zg0|D$R~PKPhE`;WD5ZTZU6f_idUCXgXhpYy;w?gW*-jud4i1N~r0iQB*hecZXpvY& zmn>qKvZan3t-`2=hYCutB0PgxQ1ws#9#mmPKz>sMRs8P%Vj?`WVrr+%5u_b2gkwpG HKtTTj0;ccA delta 24477 zcmY(q1yCH%^T2y>xI@qY!QCym2X}WTxLfc8g1fuBySux)yGwAFJo5d$|Eqd?^|_ks zot>M#+V1J;?prTQ18Z+g0jthMg`-7j{Sbo$076jW>~JwbO!ThSR`Y6Fwrk(fy$P!S z3LKjQ3y(!N!pSqpGz5cO5Kl4tzL|%F)Q`pr%tl7!{`CsV-`9#|Gxr0#|1A;|bd-L{ zjip$nYnzCusWf<2$;+P3vL;YZ*IH|1I~gHI;K;&^f|XAvG1qXnzN~1|-ud)gr1tL5 zPUg2kmlf>@%0tV|QpaSVZY6yyKQo87T*B8v1FJe8q{eB1tQZ?~u;#8#%(sa!;P)8+ z`18_AZ?=e0MrIwL+G{2Z;W}B?dX(4r!L;fw%2}+?7Ny+^Fdk^9I*5BDz$tK;uVm2R zzpP5u{BZOdkk zbmfMP(BON83$aEnh3koL6jZJ%>)FimWvG#8b)dPR-7X;?$=@-gZ$wmK=y+4gWVCA` zVwNxmS$e197MG_ie<7wn6hXYMATpg^P*v8UIY9|UKk=FUd10+d!hl@27jZtW2A>1t zpyx-}scGidJ#5l-03tb!RV1G#$QOa#SQnm+i+^{>-%e}Ww^*3JII1rRn+ld8ojR8( z2~OZ*E!*7{<$6XopTcyyeJv$UpA+pKn;S<2$$q??D|fdE`BKZYBHlzYgGs0u(MG*? z8_-^!0CbO`P+gR*p&Rjy@bG{AMrm7i*48-yL*kL67}r&rYHrToKpO$8mVnQ3B|mG@ zHk(oSA={**%O2q($L-ACHBCnnJwcZafHKULXfp}_c3DINMh!Kg`9XEkEU$CN`olH{ zw9xeS+RH7NTgu6Geg(6+Q=aWVhgPu~D-=u}swisUhWOj2#a{`cfJ*X1^lAL#qW@-h zt&r@6!gYj7gh7dx`VlEiB-0x&vdhp%&CKa^-IBFtUDJxL+dLsY(bPZei<+61E~+Ts zdAd0+OUee=o50SUGt<78PI_V_e~Dtuu9#_#&g7x{o0iCyCZhW zvMl41j}gnS4zt5Rw^R2XwU#wl@~@Ulohus>>D!aM`Wjf}dm9ZLK*>P(0apfJ8lT@m zS|NA0Qig2?v8FL8WNtR@IFaM#hsGur6sRu0S7@`i^q{|WA6=KoA18JNRhkpVf|9R2 z#c8$^WZjVO-JImlIk>HG+eSo`9&7bg6nn8}edw{2O?&&4TW8Q)L(-BNbbas|xozWQ5``Y9+VJGde~@d4=E zr)+w-e*D#kM)cZ31}+E)4@G)9gW}I$i{O>)kIz0%o~NbXkM5>)=IUKE{_2eoyitx^ zHgiaMF{U5ZbxRlajNh%Vv)tN!J<`bJlE`e=zqu^JKC_{bl>ESF^Hrz#C>3F=3T{{D z3|-?EAvQwRV+AL5S8d{I<~N(D7FrD968=3L;arLgnP<*bfnDG1wUpqK0qU-)$j+LV zJ8!ec9xC}qNfS| z@%KLbX`aeygk9Q7YhLECv!Woc>>{HRd68I`CbG(ipP~H@wGC~!Sc8jF64|7EY} zkg`A&2rYpIZS$4PWOsYLUrqxL9NO3RkQv(?O-9Lvs=SCk6x7~1(+vwPr)h768X|k17gO_H62jmvc*~ChC3*|CY z;r@gxxsbbj*<%z^1a$d$gQ5`8mS*w@qc^(!Mo?*Y$pg|0w3G96G>1CfS=H|#hY~VA zx0agY*$~v+iF~tqEmO*Vs5vmH6dIDlUOGuzYx*sq%pj)_T9_qHst zL%S3zS|$#jJtWy(I{?&REyF8Im7-;VEu4nKikUwcdgKj z9suXqrr{9>=ZG>^8`)?hx<@Rakq8DQZDGLB*-KA_KYxi|Cn=!8BzJ^{uf9XA(wZq# zRbvuM__b-QByL%iglfu6!Tx)_t-8@)r<*BIdnL3?%sWUDcf=p^yDLk!um{yo-sAgJ zrxD53_EL+%99!LxSjlFLFkSLvv1%Pm-Yw@mT?t2|0%KN+FqSf5 zIlNk~E|;KvXE~a)MEB+r21ujQfhGR1ms~!qr@&ulj$q$=@~!PPg*+3$&ZjM0$Cj3l zH{3l9Ql0F0u?kv+TxqXRT~?j^vY595r$O3nQFdW z6T!uFW2U;f8;wmEsMXfwT4K7BN9zu)rMpIi1F$ZyAz_GtlF54l$>Dy}OTAt8pt0F# z6`eOl4@kW+a*bo6`Rk&P%4N|-k&9O}*9?M86UO~}V+4cfbm<+h?S8AnA>pR0(hwyfH;RALXUZaAd}_8LAz#~+Z_$dgH`_|J zPVrCZrO>CMJLEb;`Q4S~tN=J*Z)Xd7W`dO$B->~V=FfwR=wmVuyl~#3lAJaKqp1dg zXG|==0fUt}c-gf5^QmvFQn3bjX^`DE=*5jEf6{~qFR?j3inesDt)8T?8z^zlHgY2o zn;(e;lD>5CXG$;3A4~5Z&lAllY?Eg4+po`<{m6}W6$IS{S#y9%$GMFZJ{yuPzpB6w zSXXMvP*FhUc`6z2hg`no?4b=IHnxMZ%I>l4d`*v(SBRZy!mwYvGj zzErp|K~JNO{H-kZVLx6sQ^SlJLEMFcmF0Mi{q6cqLf63|8DnxzD(Z4* ztET`S`5=wi1ZHRKv*aNSPQ6(wGrgcNdw4&4Y=o>nsc#Gl36Ut;R|zxHm>7Ww4NT51 zKmFn`>xr`6BvpM)>j+%)Zt6#$TD<1XE7QpO4Su{c=wF#159;K*CWrg zjx~jRho5&n2b4-)W|+G`#d9uxQd3GgB(HxOMO`okPv@=GoRuWmJL(qNLYuhPWgBcV z+6{&9fAiHlSkCFt;h|y9a7r%;ziu6X(uGc2qBl?Vl?mF|nz&{~*E*XZk5K2XfSvx&DGC=3B-`U1bq1OWiRA|){%0*U{(ODj*(vRUIm58Q%I z=7mW$6?sfkXsgEeU=&D&aBc-?=33{Vj}VzJ{mB++VyjE9Glcrq`*0zLtVB^qM-QL}BgTHXz~6s(?YZpg$m5M1 z#jPf>G?0J-9r8{$sR>PIp4}KiT6R~#1gLv!p{N3h^j2o+aGr=)*c^aUQtMxpmu&{? zlENv%L{z#h70WGy1AG~SeWD+3RYcsR@)&Xypj!HmXNJf_@DnyeB?-;6T5;Egp|-w> zPle%7(;--_TxGkfvnVIXgLdzH1&b|QZz=Lv+^6n9!D|z|b)|}^sWFXfo@T8lYV9)^ zkH$~66@Hs8Jr*jX0_tm>boZ+zMP;kos_Fsew5^MV&W}H~4B6aro7QBvze$(2GY|5* zP?&8n`CdKhHas}E3x`gv_x^avTW9}s;enl{BB3TT58uODabnSVCTThq*K@T;c*C<- zcnK{CO7u4slW+q+fZbmI0Kh_*O1%==JW;X zS=m`os{Eo!#S#{a;3vu7)uu0OWhuocmZ#7NrQcR*$f1d{zZ3RP7Nw-fA`BK&^J)31 zSC{+WgV}+l6sQ%i=b+{K2pJ)!Tl~^wuQ#2t1mQGlPA)q3A<`33=uJhWJD`!xYSadX zV7VGRgqM4x4VmZCfkMjp7iyu-MQtPDl9YbzSTl9VPCFbAdsKr_Z9sv~ z4T53r_&aGtqu(csyljr%DKcu*2>$)N+=%8Xt)9p5Q$C5jEKwe}FB?J=r2n zAGWIPf(TLn2bFR=G+R+N9|U`JSg*Lug-7FqX|2m*|7>nJSI3v;br%-7DU`_&kM(yy z@0t~1cNwQ>q(7vvZ+hfS|J=22hf#7DG>m+^)AUfUD5)l*(r4bF&EndGsX3&CN~;^j zT98FVqn~e@jh7(=|+`SCC|`oYZCnu!PejRy`jgy^wp})GnvZ=_Pc>$g(ejm zWcWA{H>B96B&PdfN))Y=N~Rn#hNfSG6j;Cg?6c>1E|mT7o~OZ{XAkKbeL&h3i?Shd zR$=TN5z@xUx2a^IC(|R$%b#Wc%CTknhY;7tIQOB0BZ_4!-A&tCOUuGC;fm#;ix%}2 zaJ(VP5UY8#P-ByOGrCY7QyF&C(b0?e0sYUhhNBqCg7*Oe0C4dC8IvTu5gx&J}Zn<4H4TSmJk}!C3OzS!b-p7&u_&YIUk)mLZm(ed85&eKkZxx?ZwoZ(NYRl zmc26YxiEcDZ%eq;&QauYf^nf{KK4ajzedizR-s((EUpjIb%hF3QEfNf$fP#6~`_Um-tm!_66(-v431wn#W+lsgnhuM}gp`T-!X z)Y`vsiGo>)+Ay!69Ukd$rD4l2N;nH9hmUlscEVZdESMp;%*^LF8Z4SZBz><9M7TV?3`W+*eH-$-j(BZ9tw(kVzlJd&zq3(R9PF01pom4{sjW$ zrGOCV04P9QHVPD6(dgKByU$hr73F`cJj=gW?6~@x4K6#17sE7&uyN|FW6OWomsH9c zZ0I}j5%5@NRMTI|MnW=16Jpr5AuEo7DyXe20b@wPvgazybtPpdg+&;tgx!`ML&TEU zcw}YzW>Om-HSspr_)++*?_yk*jugWLvM@a+r-5wN-Q(j{&i2$de}HWBCP4_a3Ka+B zsZW$#01m}G$11C5UZ*m?Tla_rBzz0?C_;IPYt&H~`n9oKVmDH*s)v_1g%!q3fyJYz z;$JctOo&bsp+`Ta>9TlgRKDORZarwm@1Nh;@Sqy|#_k6Xk0V&KsFdkk={0p!FMy!t zZYb*@FGeWt|4e+Hcy}{dY=wWA<{~VbjOJo8-*cdLQC=iac;V;W1+E;`XMikDG?Tcbqo zIxd$ynbL$b+I>sS7aP$I{35Lr1GtpREfU1MerTjfKlrgubnR}?axbELa|#x?saVhb zES5h!wpOzN@)A7SRQ|GptKdz+75FfwZG8~?y^{XL{SIU_-DdO9*=q?Wg&u(}U}ab4 z;fmbA?#{(Sp&d{=koMpTc7FYOL3aJ`s>UGp$k?TpEx`UBB;K^8@5aDsi67ra)t>yY zG)~e~<(`4s5Qw3g82PlBDs`%2FQ67-Pf8j~hu4KE(R0DE+I!S65YI@9nMrPMUcG?!|A+Ewu(w?xg@+%3Uowdq;mJ~m-)ee= zs-_{2pqncGqNUF2qa7ZY*b!x3wp1bIu({$}CmseS938C4pq4%L-36i(Z~u;!7`b5-1x; z_UtiV<3LVUQ5|+BL0B4wQ6~1rQ@Ml)6njpru!UJW8D{~%wNY+eKRS*xH*}vS`r4=+ zd&u;P>(bRO;5SR2DTpm}Q^nek8mDX=IZQ+N{=QRQ$YLQ@SR$$izv8Vg(P3QLd3Ai} zR7_!UHY_}i-Dskk4f8qM$ih7O3;utWDX#SZ0j_`JfPUc9SrGl-&Lb&o=F?gD%m3X1 ztI-e59U<0eH&v>&3qFp06pOdQ6WS`IO6W$>vdIEyJaBWk(!-w61X@* zZ;+jFyb!DK*sey1#V~`}@8CC(s=TW3=UyWtfyI@f#?q>#5nq$7Ja}fpv}n9YMB(Rg ztjX9{)EPfU|D5QL+gc0PsKs=@MaF)z@XYsRvKn*a`rS<3t&g7o>mgN#ex^a@JF7@X z0ew1X%tv(6co^6`{%eyS6h+?JmkhSs!@v_90yTC7Y343}hhpj=(zr-R)_6EZVi`;tz@-6~AHCR#;mMR=I zxc)X*>SDfMxO150U#>d3uiKwWBsGuY;%16@%CA%dhhkYglD`~);$&g@qvMLUQ$zQ* z9pe>Zf#Iq!Sw6)|&Up3;s^?Aumu}th^eL2bqIYrv<)I`#3`&h4=@qWlIx4NWzr;U- zWcNSfALPutWLE_lE~F@@Npvj5Hr+c9dY9MQ*5)2*k93F_D5yh0P;;dB>x7JPl<6tn zT-W2v_Fv{QrOCZP*iVt{$(|RNTrCJH%50KlZDhhrQqCDG6u4KKq}YPBDlOP;jkw8; zwyT?wt|z}g*2KMmIB$;pKdU69mW#*=l;1g!zvO`~o5%}M$|uIRq=xt5yc{w)HS}WB zZ<*2V!^iCtNUrQPw)l3)c%T_>N*QvH6>rBE->5g-lU&e2&%b?7+$5W9I2iZl!^Syo zOzKwVkv25y7wFVtzMO27IJ|#cY;ARdUM~?e7i2&iNoh|QSUSkG8f3r}S?HX!ekI4# zr;-yrBx1+dK;IOo%u9+n*I3uOs!}VvH-o|GO5u;;SGd9JM~mdvQS5_y6fB&IHp5|y zV_rkV3MXFn{be1vpA|5;fV4j zu8?zSLMYIC=Yuda;Ti(ES<1WvFZl8N2I3QWIS-5V*v$l9k#g12?f0`4Ed3b+{zs?O z6*+YD&L{N+FKi1ewJ4g}yx~i7dnX&2E!R%frj09B`ZiXj^<<^~9+i=G~(uIy&t^Wgh) z=~Qu&$uf`?loyg1!#Sdf($gFivS&WJ20UA}gW)h{p)afmv4J<_;ski=7<(|N8lvp; zB&Y{G>9LIegqc^+_3CIRAN4|Cjz-q29LxDV&*@q=X6yW1LI0QGv=&rMFO0)eL2pYz zHykWRQGsP~D?005HeuV~#?tzmytS%^P%GymEAKl6D7SPRmmsUyBEKDbx7u=yBi$I* z?E2UI8M4Y)?=kd8w_T9V5KPPld$~>1*-K_vdhu(6xel44O3a~gGT$UeOB(F3THD~_ zsP-L;-wE~TK!Wv3ra?>KK{+DBPoFu_IFIp~QAcii?m;?(y+k6T(`_p*a*iM)a=*)0 z6CwU%(9iZk&Z7qLd3EFX0@xWF)91cO9m0|fizH?#Quiuz@2jel;%4W{3PQWQVLLpG zrbYssooU!`MmwnAf>Spag4LmGisrHfPS$<*uT3ED*H3k4>8I9Cove`FWiKceTMaK# zjL~Jdx$s_QaUaJ2`o|d^dn4x(M|jG9!<*sU=pmy=Z2?TwhT;%nbreJ@BmA{xN^{oj ztD|adNOQ1;?qlPGA1|tIHTvq>a4GJrBkgS=!3g#7Gi7N9sfcAIVfoFgcnL!l&R?If zHqL%=q=XXWsL*)6MWWiwTxHwUXSKio<jCF zjbWM_<+LfcC@UC$IaCE*+%QiTsaw3B&YxH#*5v{d%%S3egHs|Y-nb|P9wGqrBUJm( zpK;m-uCC=obn9ScNK+sM$1VO3^}$;|I_Sv_>ru`+>+~(LgV3|o-7jKGM-fPQ@EL+5j4@;8$T8|me`L-Oqi zOaa|~VSCdyl$j3S4KL@IAd+;2D|J9*zk^ohE`)~$_e&Qf+m|TT5=g;C=l9qnjp$V! zli|7u!7a)gzJM~=eaV}lv}xKUJdOC478VCo)`=&jOSF_Iw7kGm0+c9H#OpUQNbn-O zS0B98fX>9AcZs02)@ZW~Lb^H^u0h5jxEhL+5&H}QA+ki{LSvFCwwAO+LL{<|4-mWQ zi7~2u!|9lug6wBE9~cbRRIa|AV3kpdMhyKSXWv`zxHFoU9P@_ft(X6_Y_Og-Z^*Ky zNDq2*r#n43mmxSnt#mYLXJvVNxqH8O`Dr!?>&|g*vv?Oc@d{gN0HUv(myqKAEaOAl zpAIH*M%oJo8CkG zmCfG{u&(sgYwANR1Qsn>4{X3B)ouX!;ARv@y)QpKRZHmq9_%K(P2eUNh*THFvM^x> z*Mf0%#=#fj<$+kL43?dPj&cj`2Bcv~BQ==}&XfuN1z$K>GDJ1y5|?xvf+jM8*N5_0j|1^{&xE}V6-E%`sXc9%o(?}l1qk&)dliIB;>pPDHhSSiXU&D=^f zunGgkapp*AvgjKakd1if|$Hi=S$~|KGxRjO0E#4`#H$EZ??a#5Gp0yl#z>h6|0P2PduxLkF2X4MEAx zXvSD0q`j)S@=^?~g@6jfe5kK0?jGWv8iI{?*Hb|Ofu!LRJH7=vf``|na`GYYu8jF) z&`@{j*XW4$WXYt3mEW*IM8wobU3C_U8!Rh#F5Xk}i7=&!LM*HNn#t{SN6d^asr)4< zkC;lT!8FPcbo6W}HdNk-*Wt7rp=m+aFXri+7d?X~X2`4Z_}I7^q2;MP9nwRpCp^YH z6vLW73kJ2+*jYa`^J0bgh~LROFmgvUw9D%0__37fDxa00&U(&46+e!D2x5<->o5Rh znk;vJL|StT#+4nUnS?EmHyc#CdopE@DAs%X(-?=2aTG8r5a3R>AAac^4+%eNSwNyB znwtVt{tet*Jg4yqX8)?XE7oWp~j^-LZw}{oL@`a?nlDq@H$u;}spc|XA@MqMX66RRCit3GHqHjc zbh(B>_k6gbKLm{@kQWwSKY{i_V>bY=!uxFSI@}hZ=}&MZTA>vS7x*fj+J(VU)V9U4 z$$3RkgO(n9C!N@;eN`eut+wy!VADZ5H`3CLhAiRSv8d}X6o!FWP;Y=7;rjJx;&h|1 zUbigaI+L;pcC&*Vr?1_RvzAcLqE5W=5Z+?`M7~CT(|nL;e|_&f^Qb)d z@osy%N9L>SrW$Skz-qK_Ggy$=79i%_6U5nbAW7i;Gp(^Gt*F=5X z7ynr{W7LG*kXcEI@R3mTv(_hPmCYy}Gnr#Zc?Zkjp79n>_L~-J#`S$A+ zwA&@7v%Q92{Frz+9OyRN?p!(X>F0?5!eg?v=AZ4W`Eq=<$@et^s?avdZ=t+T@v3*=G^yum`8U;$s#AjEQ})pr4Im zXpXeHN;+HhI~gSM58y^hYMh!xZ$I{tm(sm@7dEtIV}(*r<@ri$Z%Q&qEQ5!2GLE(1 zA(Cp+ffzs)m%t?I!%z1^k-{i0;9^a2}oUl_(sbQ<%B-t%!nVsd4vcFVg2yNvad`%s4gHKJl0O)E&F7yHI{HZl$4@@XKsW3x_nKHmXZ*F61~w^Z8XT`&uGSyW6;`qL)r89 zJSMFK4Pp?qL(p*kx_BX;g-10XU)DD`rdimCUY}-N{v19y?ciETN?71IJLVAST>^nuC(4#<|Zvw2y1g@yW`)1$N|F{8WcpSEg z@VZSn(2kva1!e@QfCw8XZyaDS=!kd70!xTqjNG7q9}u{@eTv6301%;2fzX80k#dsA zpVDwHfh~AhX*l`Jq_3)^P4P;{58_s`Gf1^dUdvHBJKe%C&{j%HEls&Aik88#`AS=` zm3xrx{OwnY-9$o}^&fg{Kdd{!*dXp7-d;c7S#1D_g2I;K1ROqrcfLTg|207WwVrAN z0lHt$kz=ax^-MOD;H@}5&F_|%#kJ-^OMWiMm`IpXjyUre$-?k9_o`SyF9G^Ko47eX z3uSviZ^oEwsPaf-t~*P^m~T)uc)jExe8_0m17gSQt>T?fBEO7yVui;m`lvpwLB7Qk z&oysyfYqpe`AAH=Ir0pofmDO%3Dch5cf|nFB{SAeOLVZ&U+lQz@ud#EePo=#a`XVk z+F_GJ<0EMw0XHT)VwhO!i-~sC?W>smbx?5F+qa}+Q{me|_}hHvFoq05LIq<3gtNta z5}NeA?pWxn6|3*|p1&~9m#h&pu^e26{!6!h91J~zpw!Ds%|KlP1#j95LQCOnas?!D z68mj)c7`%2DO&r?aOKzQkL4{vuqm>=*XUE7J?y;1dC4r!8dqAgx-5h@`?*ANM!Jg! zis=JCD{X1dOW#IaRSHjM!8u=24TM>u69A}LpQfTVT}!KUMQ9gmyNj0PBSe)Qw?W*2 ztW;@1xnSV8E*uH;m#dDBf|e(&f7w=uYefgzB(O6eBWNvh?fd`oIP<0ze>#a=^eroL zyUE*%Gdfw&8i<8Ls6RufVSwj~2ge&Se8t?3woR*yeg^W-s(QysyojTPGo6X)L>LJ- z7H2=2Ey4T|H^H>ml3SaM77}QQfHZKH&FGRkidi?_*UysriyyVSP?yi5MBQfl5ONuk zB`%;{H|8qwhyx5;3E-t9y+!%9!n#L5Hvw3iiSF?$uxha0{^fQz{kEOfT(;7!vqU0~ z3q=rH6{V}(jD}9r14)x67y{ez#a`TE3tS6DwBi>M^J_n*D!3`s{4EBJ{BKKjb)^9q zaNlWy>XgIe9JUpzI+;dG!Qf1`H9e6wi%XC{=evss1qvOjX4J0hdzg2cn^mL9E-$CI zZINp&jYx%cX=$2mLV8NqHkKOT<7H$}mx#CyJ|I9J--%+O zq`X4aX$&dQUE=US*qIGPQt2tWQ3Tp1e@p67BR#sJW3DATNBBYVI2L>s8hQ(s_ZNEn zNwoOXs{aY$hh`_>$@*JFg;-S$aa6f^@p~~Fe0A;{yakI%0ozYCEBYI^B>5z^u&$vn z*05eu`?($clfe}p2Qk6q)(=m(+E_r2-CCec3Me3gr z?9fSN8plB)XG4_)_yIxK((l%x+_YDhMO3eu^`zhFaE@O3+>){Pq6uWAOMWD!@UyFT zBYx-HQey6mO&_CXt`057rh{>BE7{_oA#3rcpFRNG)y*dF+8b<%E`8WxM-ADan{NgF zuHhcd&EftkI(Fc&gWP*?wXFpzNnuCXXmNSJdCt=7^!#`P*Jb;CVUr!aCB85*pE^Z>U+l1-I4?c`fm(I;U+n zBITTL+jYL%ZAW+8~>F^XHc`7WQEt^%jO6Q3gmSu=#j~ByoJHwtEC##lm>L|IDA}v4K3ziT zYb41n8C6aDE?dd=nqL?ijVt=2EYX!|H+{-po6UKAvZ^Y#o;Gt9112lQ5|3U&z9M2U zAp*^?9=$mocl`@my(S6>meJ&4FMhres*x}}RcT-nMm|8w z^%_jbJQ9cb8U|h1u~vaxdeKoZxU+1rE6iPW3zp^e;zgEF)2tqIz+n~HI@zs!@o5ZuKzQG8e#@2(&~1rE;d;p{Utqg zd5jmldvWX>GWHU9lto&~filO%%JT~q(T#U;Z1GD$4sAaqI=Mb$ zm(9%W@?kvr+MoHY8Jf63Bk-SMy?&uky!vh>xXUrgU5V+j#HP-Hg5}!1%G%%J~h72AYx(&W1!$<-Fq4+GL&7Z~MH*YDUGQF65(neWEl-<@q<4cDGxe#@hm}Ty1w0 zu}5sb68E^MZ-)Cvzl&I&0=8HV)}5$cn^8HSG&GSk?~z8(M(stJ3ln!lQ3ktbp>lL# z`q%rgi!k;Y;zO@6(&1LwKP_!D8v6*NQ!tepY)Lw}{(L%T{IZ+MZuWfXO}=1;?&wELaY(=Ai^?yM z?(!5Q6P@@Wfyh$2`;LN#=Io~~Vx3YS{aicZV*4xoW1_^|nYYPWc1fK8(`FfdTRwbu zk$kuUSEh0GDdiBE>CorGDeggLi{3i&X zAbx`M3Gyc>pP+t%_Q{t|&_BWW1oIQDPq071`Q+;-xS!yCg5NZ8^DR^mQs*e}xIRgn zm4F^({rP7%ln*}rzk<_zNTv5e9m~Z^%d+cG;%nKmAOPJ=BTDEz<*E!9`tjDPw=8HR z68)sfxFqdoU+7DiGZ%hTd(agAl;_88VeVvTaN&OWCDfGX5)ti@$jG7B6^C+_MV4el0q2 zpv~QJ23dxH|Fb{lDQ8Ag*X8gyRTysf$Rn`2oA)9myx2}P`C;RP$Bvs~ihFQb+`=Fb!dt=+khwE)s^}wUcfy6B=2PvE&5zCUKB}sDe2$oxWM?57WsZlKiRy*ER_7Zx%lUQliyt3x_RrHe?yukT!g;j!P(>R1 z&%YJ8#0P&fek;n-Zeyz6s4X9E2BkAVy0uyDpnBvxq)J9o_E_Qj@W8$^K6vgw$7n{* zhozQ;zRl17NKE~riP_Itb>*3qGqZ#PH_J^Q!K&GvJDgqOix@Q1lr!MQ#*V%Sdo6=5 zTdO{YuKpE*@@5Tj{$^>O8FIbLwoW@e7K7@_ z3qAZLGW{6s(tn@5a^yWf9Y5TO8Bg+GszLw0q7^Ob#47sj8x;7_eFicqxy&i|aKUs5 z%Co_)cwG=h{oQkjzgp=1{5Hg($M^Rcg16Lr*#mr8XBm%#Q%XUIu+M-UR%~S&7s~8B zXO5nAbC2|4(B6OAEE!RBW`)Ap88us%KDcv%gW=pu+~?1Fu<}oO*FMu5jY%5EhS`#5 z=+E+u)3t=B&Mbe^Ow#tkX9-s51X{<5a=upe( z!dv+hp#t~>B+~RFe~D^FzXgBQy2g-l^4hP)Y{M3YWg!*hHD5XCFzbz%0D}SxH=h>i(-2#f@q5^N|CK_OSu&gL6@4G0#{MOJzFp~(~_sl*+^{7)v66i2;;vhm^-Od1>bd z&zENckm36DGD@+|V+^AbMudVF}iuP zA8~7^SQnNarcOx;-9W6QS4jkdCQ~i~YACpEvkEqM6ac^-CCN5{5Ce=U=^&R-1PQnY z06<}X7P}Gx04T0W9C?IcAOIO)4G4w`07nG_qJsVH2aEy006;J>u+O5r|2x2e5MYqd zpR)hI7y$Np0tEmD@$UuvzYD+ssNg^}6rwK>jD!MAB*e_mnRAefLgL-l^M*skHTHj1qk_A&)Q_P&HEH~H9 zRAegqB=Zt0X*$_Yj*Yenj)m6A$#x$A7>+wQ%osOubrLB5XF|dlHz!@{1jl-%5t~g7 zui)pjVLpF-rr1go`w+*YjE3$T!LGvaAj?Wa+k90IR+unL z3N9jz;MD!R*e_==GvNuKuB--}1IqQjGGl*>b9=Z-|M5b)531p%g=R^W75NAU{NTBj z?K7d_Nl@43dU_c8GcFB6pdm(>8|uDDf3B7MNalDuel91u1%C4643!!-?E%p9;Ae)c zuDWNhi$1yQ9@S{422-n`gN*2yL`+Jxb_?w&yZVf`9z>1)MD2=I-fxBhFAXnOFAgsY zZTM699lg-M0Pd*(PzD0?+<*56{_p;-xIj*4q`YB88j#VlwXln;99o1y)rrZ4RFTO< z=;LWFbm*veQ9LovGC9;-;8|j_8GMl${Ece@tJZ~^QU8qt{BIm)FlMG79w=XECA-Td z`wOL=41=k~Ut#DH&HI|?SWUjPdetHmhklDY;iDwFu5}tEieD4@Vm5|80tyUIF}h%% zb8clQJm%V(`QO~Yq4>eQ8#d51t^fBO|3167Q<)a@KsIjuCjtZe6up_~z&1G-M}V&8{d5{^!esr3fd9Uv1&FsOTua6z7TrpWTbuH2j-p0|*v`#_~^ z*AeXz0YnN0|WQjt)=%4=B81ld94?T65IlI6{YUn-uLH~M(&on z+0@F2j^jVhBr>UD_A~lU`<-?DClu(W)R5H!97&=ZTMKF4{d`Wsvt+ zuCO}(8}Ws&RQKTzr9AXZj|jPmB4w6Sp|Fp$dYDNYGn~mvxixH<%>Se{viC36MVF_c zb!h|*8I!%o&CH%hp1d6;uuol}$R<*|Y?yFiuu3_RLymkLw{(e+v-INp_aGoe*Wn4# z%&`2hhW-=JubLy5e#|MxuykJBjJLA9bcwcff3)xBE-r?Es?)d4)AnNhTzul|Y2%yJ zwh#??c!HR`4oSnWukZ|$c-|P6o0K&gITAw$xleSkH{1|7n)AnlW?vo^zAWXXgl@S^ zXC7I)dZeUL$)Vo8n1PC!fH3FW7U>&*Fz#aw(Ox$>6qavsKke;4FRli%nVpm8c$(`D z;+ieAj&l1oG!f-*y{-xtb;%~i`FXrlV!n^qI>2C_>z8$>O9hj}zqyICBtP@d#nG0 zF5avmx1+sb^QK-UGM_bJKnCvg;{ydh7T;d`?!t|)7qo=jt{2=^Q&e7NJyxo7xMs4y zYQ59c!vwcSEmvL*8@W$NPDOpS5*az=^IWs=KJC#cb7$zWwK+H5=?7=c#|%!zuI}4V zr@;u+j@78V5;Oc%A+~YXNB-;&U(vqwb9uEh8Z1&G04v1H(%q-6E4U_%L!oQI|baw_7l!@-gVK5KYDUB_oxL+C{CcA+iLO!k?Te> z^TW7d%J7NTtNOeRh7Wa-To2|pWgb1%UBk+`%YQgL-&sw5e@#cQv+Q)QsI@#-^5i)m ze#xPXW?r6v@k~R`o$JdEE<329aB8c^=m7uYV9VJB0@^ZvHkA`-wO3QzP?cZ~}2TFsa+!S)~CPn39hqX3q9l_3teo4ZA|F?Or&n$arK*$BEQ8}?Ur6GtYFH`bBVS{TwHk4Mj7k zaU5$^QFSi2V}nm>tyuSyg5&e0s>Lni$m9cg=WW_fbM&()SL_`d1Qr)uoGMx%kX4M? zG27Zm36Y-5>Urtndg^s(s_YDK%zA5WC- zQ13}Bb4yme7cKe2{p7Z6lKBwXvDssMe7R-z&1|3ELjD33Gik?fvAb?oPh0Jb^8Ng2 zy+d1IaYI~r!O=rk78Ua~KB0S$>o4yOG<_*%F!!S z|7WM7%=Inxp=`HvT193mybC!q7&R`gtJ`>VBYB#KfOX{6(LGEkOo|R8F;<;Uwr4dH zg5 zaeeb-AdEv2SKd;sepcP+pm@(2_=lF4{o3r{8`n2PQ@N4J2z~-#VmnEUy~mz*xAY;@g7*-YcnR%LM%~{zWn@CL}wTO%v7fDj%OOF1X%TC8dF7$y>8rf z7GyEI{TAi*mNq4~NmzKVJyJG)_nFOwdfP*@pEA|IhN&fY9%sIzF4y1BFX^H2^?kZ= zVt%V{+-SH7=VV&t>pMAt?L>9|J9|mN)5kJaF~{DkPVk)gk>+nSJ@sAvny7^PwxVqp zQ)V4HCIiPqsjsGt9u|K6Ve`OK_x0KLfqF+rHGa6=`TR8e_ENdJsoK`}0$Z4S{@I%; zbI-^}jTQGW&FM=66gs97UT*1T?u&e7N^G0i$PqRdSK};YR9%oVvK@8x79BSIi-fsh+{a(WB(Q~9p<=UbB+ zulpn>rK~ia*>H9Rmygictg(_2;Xv|=Bf5(iCVFN!eVKeG{q8$}%xIF$skJQ+vNb7j z=C_}la2JQSb+l{o1xbFm=VLACr|&z-=5SvlK+1kzqj`?LLhV2JpKRn$x!{R4vuG1UGd@R3DmVR_2DnAbX zlz1m4MvUq7aVGp_bfUPL?RDxg`YKf?AH7Tl+qmvNQBmHcsKiAedT}{7D~jWLf*n=< z+QDux+j%U^dF_VqEphJs`)$X?LuR71yc5*=U9@Ays)+BxLS6`*yt(8-6pzsPFHc>* zaLKbQmKsRgmkNF8yBSN8mHU-*M-3j_EwbKqJJ zCJT7`HTK|B>+@#*Y z-UF5;C$kLxda&_j{M!MOr+xkc3fI@DJvgwXi(_6=Rctw59d;)tD8@)y&2Jz3jUIiT zw!l2N=1_}cQ)|G3Hjb;3wX3_U!U_?7T zd+I}#(?0HnvLO2sB2Pk~)!eJ=@8dm!+WZ&UpFU5ily3dJD)$s=m)Y4+W~ne>tq*=WEHgoBNa!9O4K+i(+3>da0N!H9Ks?^DFkLYiV_p7NdQdv!8zWex?EqSx2 z!6}c?diS%j{{AK%%arS1KS}Ms{>d>|W_~Pe{fO!p&pnb|l4+9Z)|4+{Z&+^}G~aA6 z3K-}(K~G$3{by;Bs%jB20UP~f)3NW~a&7^KN9=gQC#TfDwEjhd(p$I2uX#ytukv2x z+vITBa_>j`s|P!$rFM~p!W`fSq= z3nvA=>3(U`GUmvvn;HB=)2DbrCe&!~NZ3qMuOfc8XslC-3j9^AaVk+W8(8$u+W|pg zG`5W-4DV@>k^&AXm}siEoQMGag%SD@1shLd#w2-#RHlLyIDZn;AXbAGTyoY*t=EzQ z)EFpL0;?D(ebWVJV=yD48R)^$+7b-MVq!o&7SkfpwjuDxVXrHKatOq8U?>(dA@LkS znr<94n1><=!yzFK0SAYVso+Z-EF9z@(fkw?&lmoLR7w%|&rX1gr!X1P?uyig3TYsj zi&0VsZ&LoRS0^)0!y5gXV6Vkehnl#7%V|u5)ZK|Q$UY5Aw0`pQcnBU7lL6%nw9mcx zDfyg%;e&5~9+%?Bg`a*NkHcf40iecXCPW7Cgb68%8)zrM0jP_IwtSJFkdXjwLV%V4 zK zz%U2)XJOscv#P$NxdArMS~(3^{Z0f9&ctQ6=5#YlUC z8~7^_uquAlGH~l(-HN`246doL1Rs!;3QL&oMA|#3k!Bww2<-n=f>9c5XXY@-OM`6+ zOoRCr19lqBxAz;;rlCgCBZ7)_XwXlGkPmM@#DN8YC;-aSp_?FzG`4DL6NqNRTAn@uN*7?&KG{&bGK_%w z3TB+DhpSWPJ?Z~f=gU!K7>91+CP2LatFE3w+R+QJ1Y;u5&Vj|%;gH7l6Ebq3nG4Wz zpxIp##p9qxTBL}8sYw2HGN_aP|9oeF?>U$$F%}r*Vy2{_^&mDEo~1{?eTYPTKw)FH zBwceL%EqL@Q8u=Qq+@~Lngv+^oGyi%1I-dCC6;7pkjj{ z#|GvWx(L0Bwn#Z|3l(Qvk+VYz`y$LB#XvBIgP1)6!+Z!LTM#7RAg~owT*73)^L$K) z#Jdf_ic6RdJeS-qVYb8tJdp*Vjxe4Az8LmW5wMFfJGiNh*e@DhQIUV!|Y?U{q08DI6n>5D;+-hL>E$ zRuk2L{Z-6{6nYF9YOg{=@NqPv zu%sM3yzsa38V}DUqVTFJ2%<@7gwG^F@0lv-6-q`*Hy&oBAW*yxAt4pP0US=HA-Ijh z$#et@>8R}#fK|git1AP^yQ*PtUjrkk0hi2QmS%{=mmmpOXP|?$>^!oY*FXr)LQ^=F z1s4-+7zMOslPN%`3gagQWuw@KY#1A_fsKy4fE1ltxQ26b5Jcfnm5X2{8+xDDLhn5` zQj~7M@K7FtKpdtnBB;kf=n?|qn-CUVMvH9sP1rQW0t8oah%Q7hUx@mpLFy_(iq$RH z>w7@^7VO`7{P-?l;m7onUn4**fP*AZitM^|ur%JQ2x4&{mmxS&1~UxR;q&;nqIMgG z=dR%mlmUlvSXqIf35R8WAXt0{f?6el+)7x=zB{lK$10?h<6-u71PeH1S0k{khmcu= z;6gnnyX5DqLwN~=&)Nin(!b8$v|2KlswFD}?;bcwt{gb2l0b=r?I6iFfG^FMDqwS9 zY08ZVW^qt&LQvWS+qAm@qsae$DcgU`*K7v%&6px6ZotIlf4^?&zqXt<+@=7&HDD54 z_{(1ar4f@PxpW}etP#ri`xn3-To&v>ayl-1z^AxD87@;EAsIf$%?(ByVY_}m^!eWk z^#+l5brU8b|N9ZT|Jt&jBU>bH`~CFTe{J`MkS#9;+FaoC7n$%OvybqT_P+&4Q^0nZ zkT+bQfSd~yN$~a_JVpB6i2wg(5)(Yft*ZdF8z$kv114mzGzHL}rmzw`>V}p0Wb|O_ zOMc#D2VXAlv*f?4f~2De_Ub79JOwpKU)O`w9t>Oc`z8(oLHu9K!;r4{^9!8)UY@>g zTE6?;yuGwF{Q|u~aSx_Je$P+@(!JP5Ql%`|(TmYZV(K6Zreq+bf~M_TFI=Sm{YL0_ z4Iztx`a{fsWFro|@$|eTD0m3V3y}gN4>3&s=a&!gN}vorbBceL^!sO#CRo-7b6lYT zpFT{VG_wvA^x-w%Py?fV*hX^7Gc{nh9g_g`N3f+)AJhPSFZTDirar=C$z@Y&p!^Yr L@x124V7dPTN6;^} From 2068af65ff655b56bb271fd3fd7cf12deb46af53 Mon Sep 17 00:00:00 2001 From: Geert Jan Bex Date: Tue, 18 Nov 2025 15:43:43 +0100 Subject: [PATCH 13/14] Add slide on array memory layout --- scientific_python.pptx | Bin 2545116 -> 2602252 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/scientific_python.pptx b/scientific_python.pptx index b7b54d5e23610f1e0b137be7aaf312d9dd9d7e64..66230d6af6939417764461566af0e306245ee372 100644 GIT binary patch delta 114761 zcma&MV{|6b5;hu}lVoDswr$%sC-xgmY}=Z6k~g+(XJXs-%{k}$*1BumKle{{)h_gE zR6Vu3YrQfHH2O3blt4)q90DB#3IqlO1cVr5&7?re9UKItO%wzK4Fm=(tuB}Xt&SNU z4B+^W2@7ibP5KR)su^wHH&e!^u79yf!{!NmeL$#fpvgpZygLugDyu;0U&&HdRt2|j z-jbkRKEPDano>yw(#DfvjKASGoHMWe>mbinpHd_v!XQ2 z&HpilVWdqh$r0K6iDA^fw`w$P!)sE>B??CQC${qI-%jI~ULw^lEp+TjucjK;(de}M z+s9aov3j4kt%w8RuR@#K4cIn56_tqXd^6SkG8UmD07)BALR}O998UmJ27*27U=NZNmL!U2-VN)CvxhN`ac5wc9 z*WUGptIZRizaw@N<}mud41s|pa&1xA@@)Uv@s8X5HP5RjzF$Y|CyYT7B*Z*`H3(w| zDO73*BPA|x@6@j2jlXFAO|7)_w&GAE^Ep{}?O82IUid18%+tn~CQxTK^3osaOSQpX zAy&#k*1Nii-0!LKvcZ4RbQgN{w(*}Ji#x7G@xO=9Ejf#QoYc{1vwoJ01bZzCR$#Aj z#)KSlm^llpAztd}1cdYVBCFDvaR!3lu9Fc}@qUiw;*Mwcsdi(|quv#T_jGqwhJItU zAzX3g+GtqLO=cH=-(E8f+oEa#?yL?5qhN_(%pYCkE{lJ@2_g!2xpfzhS)5Zze-C~F zTOmon0UPwfiFwcL1xL9{~P_5;KmlAySn>7eu9mIvZMxe{>LI8uI%>l)u}CK4z5Tq zKw8_atlQIbUFGZU!hO!X_GX*0$M56s7+8AW43xDWLI9}L@LR_6x$W73SI zcq!5>)n%qwxi|CgE6F#LZ> z!hmmmwjk8oO$PGg-psIxAd(;5|6zt5za#B6uf+A==$;Q3bPxLbHoXt}gH16;eL&m; zR}?3fx*@BawIRqb_uc)gVf_e2gcY?P`d@0A&5q;5kDq>LU#|y# z?SICJJ!&%dm)q+&uj5~3<)<&xO;@{g88^tsUX#Y#&kg{6_;&^Go=G2CkQK3kXLqdX1tsS5N{?9%Zk88Ij!h z{jq-R+2}S$F_yIJe7VV}1{V!gGQ5@naX)Kx7{C1O659x4=^QIqtp1FZ8!tm5wqIuK zr3IS0JzN9W&NC#W_+6hDEyZpG-dB%;u1{I>Jqd5lMO#ZxF^&s&1Ia*G7(jg>+x~bG zJs=F|1@U%48U#XNAQywi|9pSI_EWzRI>fe`@$!>0ROgF_6p}ez4!c)3*K6G+KYSVb zxLB^gtQ|D<(PI3HkA|aR&2myd7Q4ib%4GhNoNWm#ZW5j~;MW;IrXtHa^u^NUkFZSV9w zjt`B7_O~<(y&Z`PDO$gCf>X6KIYMLMiXQJvhgr98+Y)2w;1eB}8a+ubHDm_#$CNe- z-h2*V@x5(+*czmcnImraE{PCZnlog~EOSOLQ>;ZhySOzzVxNK&(u0(Ii>aR48a^oD z6R89V@7_m6n8}1GndLjy23(M8BnCv;J{ydLqijQ7o$)JT2@%#?+ZGR8(6=C8NQ8x3 zx`hN6B;fO2BRzY8v@G4rA+&U;6PnS6tN&MJD{{q=wju zyrpB-9Yd>|TrW~78Q|x(W@u3!a#)Re8oDBZ>`gD)V*HLH+0FVLC)OXC3T6m^_u-(3 z5bShwlI@>nO`d}%n;8N{F*Qm)UNFMw~d$K1X7UTE!IZ1fF^QUGcN7@Qs?%Mg7UYI zifjtp^2h6<3aq;&@y zMK5Bu{fDMCd{Z|XgRgR;_x-FeGmG5$eQ_N-tRqXry&lOFk@&v)eg}>D08K+RDX{BF=-mqVRD;Hm&X}@H^iP8cTz;V)iYrvO)g{VRv z@STQ@f9Jn}x|a(y>1GWhtvj3o3UHn??m)`x9q#PSJr(vA&MTQun1I-9gG{?g$6@UtQI1oGW--Jp zLGbHq@8N5Zv0IKZIE&6O_6X=fdCcp{GGfvHV#U|)>v7vY4I57xY@RSB0XQ)e7~jlU zw-`?{^#3{nJVp(!I9!(mFcDw6w~@E?J^mLy0vIp|9BCiMS#WlbVdniLyuH13bP(7Nz8N`K9yLl;&~M7l zUcx+G8_NS`-EQAc?WIi`dp{nKOpzR=Wou;XN!+{2)lV-0H%rC;e)V{5xijN z66j*g>O{R_Lt11|XrGi{Y`d2Ie6%hvezf%Ajwv&)d=p3GFXA^FP6E|YZ3$SKT;WT% zyQ(jexGtm7k%1&^U=b1sR*|MgatJ9gWWju|syUzxlan4VKg%B8mKZnD2b^!tUap4^ zj5s_X55^m5njd2;08AfGyEaPe40;3@0&%Br6;TJhG-wamJ^T5&i zXSH>O`rF|?K=SB_zObB%;X^(4^F~=xuT?f?r3pjV7jf3qovz39#e3WJm3pWCixUT~ zpVZyGDeh41mM$E|7Q#V8^p$H$&AbH3&pqRh!o3~+QKJ|$K>ACS(}TseaUv41^2IFq z0Q}TsBvn*1sxgYDb7KC)$e+38T2nH3$IL*_e7yU0obk1G9QlJl&jLuN2oGpPa?IRB zngaH&oaFLNhYou1r*v{zM5<1KG>CyDYr#hU#4_q9#W-6Lv3^YML9wpt7U@KCTV72WD`=`oJvpz|@yrKFt)z&Sb z(BOgg=l}AeH_6Aq5bDuVk|JjrQS*|Yu1U-AiE=f;+~WYA6tUtiW%wm2Xn?h+BrM7% zV>FKdO*{{f8Q0(ZTwB%o=MA{@0dExsn?>H_2~$vjWF8D=GHlB%opd8=Y>^cAlHbH4 z`}+90kbXML#V6Ntijj1A+}w^f@+pk-I|4s#G7kj}7z4&jLy~sxZp`%7Q{7LC5!Uo3 z^_TcX6#x_dZ3Miw&zA!sDw*A3h!Bp5zsJ+8KFxc)b>yWX+_IfuoaESq=7com?GfyP z^z35*DZfJn`@|4B>g_64N{tPdpPoiAG)E$k$|2yX#bH;`>B!J6&^3d|VTdn1^=q=d zN74ps>t9^Ak@Z5{NDL0Wz4sDzZSP-y0=zk%3Ju6>Wfqzcao)4b6lN#z=5i1yt}MrY z;6)x1IU-H1u?`MQjN@o)%lhfJSe>p^GF`C)Y!w(=#N?+B1&asONk6w_d@grWFh7CH zFFQrqxrkA|D&k${e8VL)`U>!@qjTCxo{G`Hxlltcv_m=_9{%a!lb*6`v%gZ7cO|^= z%*FA-yPv8f8_jPQHL*D|(sL)CyHWE6H`g?iY1(xv>R#nw8lyb+Xqhi@EUcxA5hqRn zZ9nzAhqH;=PIf-p2SaL_&wpD;S*oIGxY`C1OMGes3x?+5AJd5x&>GmlcUQknUqGYL zv~0%tXnU24UY8W3DxX{SGvMoS`fGpwj9o8dVxHoxGW*KD54A1poMq5$sdm#;^0C|I z_3Mf7>+IXTV?C{Q){yv$#cPXURv%F2tm^$%P4wxOmwEW`r2nunZu69ftl4f*`qbS` z-C3Jk@-!-{Wa~Ji)c*Tx++gg|P5qh^T+Ap`snwv-nSV~?t+r9M=oV-f@s?j%`qG6z z4fv|cnJlx1)>utTDNY*o;(2Fw6}Y(c{fAfn%*DtXdUZnUUgn>^W%jT$YzN@}6ul!Q zh>1eJyQ$JzqP#zTS{~nZoLjZpeFItUAHRE<*3{csP8@$*#fV6F8eBxt zc|pClN^KzNulRLK1n>YO+daU?<)1tgzC89@bA4PQ;i+YR4e6nRE|zk!Myv~}N3j0XD}N1j4^R8`gzgx$-M1Ru-rtD~;e0i6#f&5s z-p)}_!N`xt*}&x9v;|g41%`U?Q|zA!$}cfU55jPY90VyoDzyu#wBLY8PxMy9!dNT5 zKJW=(jC2FBM$h9LFaKl7QdRrK)%t6PDQTP|-fxEcnUF3U%&LeZZ`vIUPr>8IqQj3V z#94*)GUUCk`JJA+Y&1#aPqiQFOV$BcrthBrK!(G^ZfoFB`PGT(QYFYUK|-k^lG|Lh z;IX&ml&tjosAAePYDoZCNi8-ZTZXhLtRi&V#y$N3VUodNlI&s|f{BP0$1OfJ?M)fH z(oMN7?Uka;=9cmX$m_dD=CsZg!2XW|T? z`S@V?#I9?Ql>PKOVp7~Q`Jr%N;nI_QQTnN%mKvE+6#Bf1~AXg9eOwI-PlcIoHfG2>`GDrq%ssF%+Y|554W&pw&< zEGCf!{Ta$7PXd6I+7$yinKLq;FcwjwWU4IQ{xOgLkjPTD3^oCkj>z*C1-Kcr{KCA*G`Z3mmtq?GVq z2-a?(_m2T+&NKAv!mn+0Xsi(=>tGf6U=)FPVl_x0Wn?DBNn$qt5S?MlfA>)lNeaaV z;0dR76oeq?({^o)D0j&T#RiMUE~RNzQoNJ;siBcb|3OCuRiOs^frYy)@e7W0_9qLT zsrfI?tViMzDpix=j`1G6K<-Tv7YK9bb8tp|+pZ13jIskae*WHezNzh<=fW~#m8psJ zc}|o~EO9v9f{-l@Xx*4|>@PbW9isAh60wkil>dYXV(^lk4{F!&ZU5eDDWXdTEtn?F9ex;ki}lrIscKpxz#90y^F z!Qgw6Qv)isK!cUQ(lO*vjZM;WC9PIEvFzi0{Kl#70p?u|rhU=Mf)C@EXsCZ4m4T%# zzXSdnOwXXNI7}Xl=hFr0zuL0UVl4Qw5CGV1swO5T6C6a#(Wa}*dXZ8`bFC6O`KF6!m0k^oP$ z@0N~g_||2z(7zd8RSt0qRvE@E5gbzP!|cZy#DkifNQC@0qKH!YEN0+{(7*y4p+Lph zpyr$^5swlA@Fz=y#hOa{3Xu02$*s`Cg}~~)y##lVlG@xgzN#l%`8U?Nr||NR+}xh9 z8muLiY#UC_p39jcl;zspLkh99zU#kKae@%Bu~QY@j+tTQ6IsI!9%}Ek>WqYurIa+r zfNYU`JMul$zk4@UtG#eVENPHCa(i|ca(gd?^uUC_Y^gk66EcBi1u^kpsw#2(&<(Iw zccrryw#Gb{SADKzcoJ4d*didhsNnLyA^pJ=$kJ`$TvjKm__yMUXdrJbW&u#$1pgYq z8`;0lkgg#ej1WhXkLB7lWsDeJ5R6xtGnv2>s^>9hTf`*!L&N^XQ4F_)D75|($kNmHM4vk-z93_6ZcKMHOmF?mrG{oXLbimAt(WEIZ@pJmG zmTg1+iA*?M%#iA+*wt?DnakdO?=XTTWv4p-=xC{?Qtj<71z~u4VVGCBNOW ze>zt?dt>Omn@vnZ1V9|>7fR6p*a$P23JC%U7G;g`Flm|G>#jAws~1!@BA1Vver{F` z8}e_|V0XY>*HZiW?RzBfVdlUqJ-UTm{JY{tss#OQlo2(GQ4`YLH_^m-^OBK9w;gmt ze;Qcxc2dH|VrDWqzC91Id6$`Mz0q^?}&9&0y)3W<%Z9i--(vsoSa;bo4aIvmRag#g{jXyG#|@MFTbw*yc0kwnDkJjSpwIzSaFNVW5H+EI z3SPir^_%9SaKuXykk(&Sy&v5v5MvnM$8tT5?eW-iD(F3Jh`+XZ6)Jr;N+Vzmp(~NC zhpAQzMTj{^qy+3T%QAk)-fp99x%B?ItnX^;LH}=gqfw0PZ~RJ7_%Bd|Mdo{U#^Z zP=gYnxaMVH|0EhdSLly!fZj{P{niHt*duymz^VY?iY*Np^{bD8S@&pHOXa zi>MOkF5AUd=J{$#x5}03Mmcxo!*Z9cd7+)a9bb8nm2{>MU0-1&#sb2n5UHYml=+Oc+7 z8KX+A0X5F3UtGUq)oF??6KT82E~h9IB2AG64R)y|Yg7PyNdtmKJLmO7bYI&-LEcO4 zv@icwhYy_Nw&)JqGp!Q_Nd=&?Lk$NxK z*nu$0lnxrO`Djx@eR_3SQZ}L{j7RWd%?G}9SNHXU??-fo&#N$JtP^7-19+ke*p?}! zbn{ET&9{JeYZjV8uf(r-27ez_i-f4E5ogt0oo5-fjkdNy^P!cxA#*Rb$}Qgn4UE0J zsw!)PUOisfvnoe-=G+)~MwHchDHqBL;5o(k$3&PiKVo6JfA)0eeH%#4P}1xX#e(@` z664g4TW)({^`UIb{n<`?l6mTf7QeDredMhIX!LvdB{Y2X*-K@G;m%f!K#FH1$~ z5r%~T?xIKgLNrv7UE-$0fSPV%46nza$WvTNV*fD2<-ZE}v{mh!%~WlT4<;l)Y8MZ; zOr@ejiMTL^6zkJyG>M9Fl%bd%8y#wz0piwJTNzp$ihYK4W^cTnM)rw$8e}6;g8xPJsbAIRr!36`ouUUz;4khN= zA30z8JmoaT*ki@0$bb#Xe@DRp2YQdpg}kMZmxgiOAH+PUHZO@H)kv~`K9)A{rQDgo#FbrRMkbLHZ659~zKr)2f#ue+?Tp!jY?X!g;N^6KzrkbTQ5yGGm{` z*J7W0aN>%ShDhzbp|*;R-eA4(VVd%CUz~$3JVyDcdM}G_q_)^h-{{%eQO+^#`Cb8t zEV&dbX)n7UfB4qw!ae4qiyb4H2wTo;4p%2P=q4Q^Jt*&1p*>E_Qo6ISPlDR$ph?z} z1mvDvF^(+$`1hOyO8KiQ(7u#Pafr~n+?4s<7T`Pb=CQ##OA>0R)KNU0*zv_MXjVpM zN%}H9faJz`vb=tNfr5a1eSw2~|C3MhR)dGrKn*;jg$Ds))J|j02mJ}g%n5{uaE1ou z1bW1efy2!=#(;Xjfq>vB{#TuZkOvF2Ngeb>O_OGMKUVkUy%w$PV*=JD+n|ORKry>U3~g0y6qzLc_@&aam~PvU}?0 zWCWxkPf_n%PgqGqzf+aA3S7@nAJbbv${%Dv&(Aue#7S(NNU-k0L z!&w23wralVQocgwGu`|z6;h*0{Y9f-LsEf{VYjizshA01M~LM}f@G%o*U4m_@rlXs zDm~=T=K*dvVj$r&5L@_8_y{&WP=4x@ z-GXDd9Mzc+rqt6+n~CuEf3ynA*Xiz4r~jxQwI#Vc5xnk0y7|*eHIO^$Xk>*4x2+y3 z&wd#q3YbdZLu5a2Bsk*sZgmGS)`&#KxlcO66$C2vUm`Dw=nky13Ij%c7e}3PaVD88KIoJ6lcym!~j|x%v1uzhB8l5;>~OBq|zq)6~zEYLy;=GQ=(I70PVvaziJB`lzta zAkJ^5C_ZyE3v-)ls2*)nVsjn5Rf4;6=69(UXKZaSANM*HR?4Z_pM*)j)X?Eh7T2h5 zz9(J?CH|LKEX=^gx_U6sNnm)xBN*WDv9(^npT5=Ef29qwW`S)-+a2qbw)IwaSEf?n zxT?s*!R2$+yD=jZ>Z^7h_eap@@#Y_TGH~Balyaq1s@at`>?m%fpZI9(+yRZbP|3 zy<0}x3%jDD3Rn4)cj_yhCQHaL=sNHXQw33V({ST!E65lXS3!}DMJ7+G) z>6nju|8H`UHX>?>Lnhd0xdXr?P3qvjilM7~w?#%Y0}7LZm9Mrm{RlF;IbEhxP0iV8 z4DZYr71%Jve!GLRyEUgP_mv3FVbHtPv8lL=6h`QFuF+@oP=z-!6n513zkK;<6Oo$> z6-AszGwh6@Ti&%C&l z@`v$&-NJZ2GS7z-6X$Bjk__2XqVSmMx>p{~cX^T_%Kie0>B)tV+{NKft#;!QkLGMI zThhG|*j6)}T#4P^sc9>cU>L2B@G@x6|!Ym`2j$+of;-X*MAZUC4+$M3%T@PV{-EATnk-Vn^gO#JN#0W#2R&{ z5pb8cW?zs!lHlNPFGCUWx;UE{TSV6t7v6qKrwfO>+T^n#asLcR3?7ZAk#<<_hB7n$Yvzc>#dc}*>;HP7Bga)C$Z%<1E0wbL@Z{S9_m;zVX&bYeTlDsqyG+E%y{KM$O_iy$j2 zh-qBEMR@qIK1mYHLERy+_MQx^sa)jb`hL374QHCeRJ9W9MWo@94h!c?E64(>ctuo@ zENKg5?6x&Gpfmd7wj0fa84;j`Bj7LDA5T$y>U1!EPeGK+jLBb!DTgAO)!d1kE@klz zWT~kI<63@@l%NSoq|yOZ#&N~V^=}?9$a%-46zHBOT92?~iJ9r* z?jsei4Vacr&e>tR3C{WJ;lSORueehkd|u3nY8OnzBDy%sYpMwos@emjnPTB^SGi%` zdxKJA3|;0NxuqdFXPB*enF?Bsu+^zvu|&n2R?FW3&M4{?5theS7Q&)mrd5S+03 za*k7FuoY~41hpOOAFJ}$RSz{4p8_}D%2=1!+MU@L@5JViUP3l@l|@|^okKYl@J0%m zY01s_hjT{3lEh@V-Es+YcIS%^fNRbL;TB> z8Xp`Zcg5bS`f+_~lOI+;kv~p+XP%Beil}6gX4&|8eCkaL zabqG19fExADT(d6G6c+plV?oKdBl<@vEYk6i)AAFQZh9U-)Uo~A*+dXslil%tH_~SnrR@h5O+|dO78u#Bns1NvN!pS2 z{k13>sc{Q1{8IJSw-{afk3uu%NefRDHRpn2H1-%dV9vweZ30i_& zku*>gP|UQesPFo4 zet-Z8IuCp~1qX-RKD#(KO#;2d191O$>Q86GVUOcy7vtY6p<@bNwx&;W-ao1X3M^Pg znNUd$oZ@vxWdA5a3)#pnR_NjGtsi?IrM;zOQZH6mGa@K)ryWpMegKfBUp$|0u4lHs zn5MBaQHia4-(t5O@x(lJ%#!2Yrly7RpEVyeyt z#q-%t<{>bBf59dXey7%_Y6wW^P=`Y>mp*06lo@Gz_p^M^kLwDD`|koZ3p=Q5L(01{ z_2I=>d&Y(FjzFUJG%(ZwtaoFUhrJue0yTs;qrPO$ABar_UR$8on6LAT=4LfYHt_SM zY&q`@CH6e6D|7#=5!Tg8wEmO_p{k9FKJN)hocI4y2n8Jwf<*VBOY6OZL$qly*D8;u{eh{ls9XJ(pAPyr6-&06WHzyo0$aduj2cv11&ej4uhBU^i z0fJzW7JG|F;+=$bkxEtI>Bm|+7FU2&Wnw+iVNEhnn;we0P-C+MTBJYZwAVSd)mwj> zCal&woO?aQj~_l(Czug6ggWrhv|(bU2KovP260JIanPj$a_QPNrb;VXic@l%hAq9C zP9O%R5k+H+0#6@!FwmEdF^ns$abqWegX=$2gYX3Nw|PW+ko7 zM(1IMK*A>_zUA4daU@Ax6zyjq&hrfj=M2uXQtX`uFyOlPp+KGeJZFFIwTA2UyCnh% z`ehGd7Rmn3!B7!p=&pC)_s7k@<9Vh0!W>npXj6EubQy|~e9LRIZVRbHOc4K70i`*Z zjEtULbG!fuoCfZehGXe z*^=6DDJ6|e98lzNe`}PJ{6TK4HNEo1iqGgNnO4O&QZ#pCoTp5!c@ntG5Iftw{WUXh zR&OU;;+TtdpkDF9lw|JR{PJMsf1g4D+eCo`h#rk9+9JrJTIn>Wc!>1^_kj@BoPS4R zGwdXZeEPLVp$%1NKa1j%@Bptt*CUaJC!rOGCFn)Q7wsNrMeP8@eHEyDgbkecZ8Zoug0j>x>1d$cpPY7qLG|@L};UVNP*Sy6)cc z!v!b0K+CTwYZ^H1Xf_J z1{*SEa_`~ec@{&0Moj5j1=KXugqoML05(u2D*#vdEMCx0jlxtw*Ir#Bb4ySHsaPh0QgeR6bqq-D>p;7m zdi)cL(1fsxP>|3{eAOIXSKxJ=j|!n1AV^0vuUBE*3#?$bN;+8}G^mO(6V`DAyc8%G z4#$~99IE~v?$Lc6hBsgz)n>Gmi=&>oxGo7AaRt(hvHW!pWRx%x`jM>D+)9m<5ww)&7jT- zx0jU;*q&>^VGD;S!kXw7SPGi)UGyuE)I1QJA=UG^M>5rdci)D$|3=SWX;q`}=`%{3 z44#$Un;4i(B5g-_sG_WS$oNF+o&2bF@6A38zF}c*pOc%vi*iq`ncqhgh`t#r$o zlz@T(Cw!O#vGtA4kwX6iZ&s$Hh6g(E2sNpsy$1#WnFLy&_<+^0b2A=1D$ZY~!v5HY z{uBQaYhq$%#9tFsCt9o|RaZ@4&tZ=9P2r*tMdem|vFwQ~_G?Wr5@fw5Q6;}c)&g!I zWIYc=dH0{e{!r9ia4T#mIEhu;@pX@Sa$t#puA2995v$>lWDjTs?VF&Nkd&ov{?-|b z0AcY4xJnn>r)xX?2s@>oQ&kA3nH`1B%`KMH<0Mpw<%$%UNeiJ;5TZ}bVK>{jr_DJI z>SXgx$Nc5PvmN2xw?5Ng8hC4YT3dZOqE^_W26gw(=>8?LtJmr(a?^dP$H1t&Jm)+uz&oA0(vnBSITeh$T*~}Iu83hGWHgz) zO#kN;dXfO28@a=GU);-~>z~Yhm;v)T|6F0wv(}z+n4Kn^#i~l_;{MX8$Y1@!$+c5kG0w5~M z3_uzQA0*xx>CW>na^ktVwW{C;K@75ymJXC)Z!QE@+6lw0RZ)11vT36D?t?aG?!@mg zfz1o%50eY~P^SJ?rIWtYf_h8brr1t1^5;;X1(j8SN$^LPbS@=k3R60NO*W@Aw!AH7qfF*{BC;D4eOO1ZOeBHE;r42MNrw-x= zw)y zrIMQ0hu-}bp4|aVCdc_ec19IIZh;#FlKjIQD@Z=%`k-{4Bo?(bOQkbu{`%*Zp#MjE zqMmq(MM8t<$FM65SzOHS)g)F)ItyrH?9sErWO*N8tGpj=vw%IZ*NTu*xyl#4t0f5a zFldAu!7AgTRnDE5T)WKsv#~h0@!IPv4uXodS2Egob4~{?FPEL9_+kgx zze2^gGSw*FWy{!P}AlAM~4?mXutjCnN4Hs97tTLf| z_oCZ>N)N3Y`$spom#rTSgEYQKNt&IgnsdC^C}Sn=W`23QN@4%{E4iXU-aw*5K2ZQP z>N>8#G97*tHb0pLDgTT)p6z!eR7x#?8b&|qvsE6hDO+WXPw(KzV%Lkx(!C8}B4?(9 zo)WqCX=JEga*2?J^=Q#1#zr4^)%F#!yFwA~P{Ls$)4wwV-@2j0rqNrG6#l2Av4eR| z6iH_~Y0m5^GHWz8B{UtI+hpe6K3&x1p}oS%nYO?$fuVN+udZ6MY}6fJafDUhczq4SKAC_);`mFYDSxZ!q(P+VWP@o+8E}4v6X37UkSlcgRBQB#?)-Id z(aE`J&{ZxFXip{_wpWZCL}w5-`8fa7?m)MTB9)cg`7cuk3)M^3-<_ z3r1`_Pe;rA_FTdrUTxlO6Verxd?sI(Ez2`9#xi&A9S*<+ z6&-Hn&Z}omA0EHWlds33{3)uPj_*9OpU#}(1PWF}g{0_G5tJ=a6fkQv!CkQ03O~|~ z7O)D-%}UCWx`{z|M3-!$F!F-Imr7QvBb6f(@Jj4IQJ#3tjAPL$oQV=bHU#`ZiDp_6 zBPXOF(Vq17P74^+f(a=|JW{9J>x$qnBSXTuy*K@1dlcCnzHjBo#01;;76G5_X6|9O z&Xm@ktG(Ho=A107P~J4JbUC=ns2=(wVu5OyD8pJhE=-CX?g827J{ggJ-l50XD*Wfd z-{g0c9v(DGz{XEF$YzR!k;~{xVe!3PSz?PCkkJXUmpp)zot~^JwLf;@zZ5zdN1OE^ zj=R-=8JO#}FNw75mpJ0h&MSvJMFowqRxrC%T)Hk?EvI515xc#UyTo6AR#rS)Itnou z{u&=2AHwhHY!oC^K0k%KU*-tnID|-D>SzKy=*Pc`KsM3*K^9ng=AR-Aer~gKU|eU$ z?I2Zep>AtbTZL*UP>kbDatKMzG<1AX-@_D#zP7ae(OXBNS61ik!jMBMIEj^$QEU7; z?N}IQ(!Unx5}5C*W;75qA6L|A9XYv-avB$CH#{eJMvG`oht$g^)0X7@NegSa4fOc> z-k%$$85eMS>>qq4A%-}gDliW1Oe$X=;_ zWOQqkAMS>Z=qdRCe=NN}L|4NH%C|3{EoJIo5yw}1>R882f5b=+0QP0GyECCpRH^$?QOXSEF>yL31Yc~!nt0RI{G6du7ujZ~f z)fA_a26DXD<@L7hc%jjt`$aCBo_swi_prkBew~%6<*@>i0O>Zx&SCJFW9w3%JmQCJ z!v-BXDfs-HmxZFI;i(IMmu|rd8!^i~`IRXU2qym&E+;E@GDVH`E~cqW^nvJbkss8i zb6aWC98Bh5bJkz5AE|A4Q=W#INMQL$cuwP>I4rF-FT1c$=#m0b2{ed;acdHW$+?& zS}~=up7V(cyWW;Px?({nN}S-x*+x!dFt)n0D`(@6SChH;vQ5sZl$6I+o3#FCnXcC} zqsgLOWK;d@kI9=H7O`A~0;7{g9;@*!ymN)x5{3HjeI*%-=acWLX8p!lgV6p+oIkf6q3pt{XQFrews5Mq)7y=m{r zp!lGy%{VBa_F#Yy|Dx;^1h3_aBZ-nK?kQ6o2Ci*G$njDOO=W|UKh5LFWauOIgHxAO z>jiq{-$Ou#`$9UI$H(Wl#Ty_UYi(%0__bS4{P-F5UqMfRCk$1o%`kOsp;8uV#Bq{sCOryeYH zWcU4&;h<2vq~*?^EI}n9rDs>5I+j?^sU-&81h`#}+zcJUFxuU}YwlRIuAVTg!3^-M zqaWy$s;~hX9gI$ibibZ&Sed~JgibYAeT}6rQlvjU^`R0ufVC-0Y&B4sRJ8~ zq&~@PkpN-%*j^73p*DTg#t1Rr{7Zb5GH9h9uq_5XLy{fnKOjdz$ zqbfLAfjL$1B*Qn!m8Sg74nHrJrmH0NSR1-)w4)8)Oqd=VxXiinxz0k_YhptnXaBeR z#f&H8%F3gLuGA9?a`~_f&m4RXe|Q$Vm~Rfy@wPcrr~U~}z&dkFl3it7fCNc~nH_Oe z9v){(x9llf^bd;V?>>M$p4|;mjP)0MnMxBB&Bwwv%y@#?&u@0@_ zTjx81bs1duM*Sm-x9!g%i(c>`8}1eX6x+hQ)TYHQ&RxMX3nh>@Ga|kN;HEULRqwsh7;(D0nK3*8w_p$))AF&&N@wM3$yl&#Yc9JV0dcq3mW^4I^v)Hg*}60P0#j-7OD+a0rG+Z|gS z+u1?Kwrx8*X2*6qwr%I;obx~2mwH)ajjBnx9>zt(OU}A2lgP&lYN8 z6Bp8MIYn!ks@n38+=N{RCX$!ykx?NlEvMP|M0HsW84nJVR?QTq*P-ZlLno$$N)E#o zl=A>&ReVt*j-V%8b0ty`P7ObNdBuY3RT$5MT2s8G)cuOe*--nK`)+TNa$gn_uwvzp z?Q+cMV2e9EG3GrL4jtH9o|c&xbaKFhsa^*S5WQRtA9 zb*ybWOx*X}l$UJ7MS4MWPT-Wx;~u2h!|bZpC*g@mb`;FHQmmn zi=_I|+3--sZ*r-9`RL0@ns!Ra)$Z}~@kl(QCae<|++^pdfkmKN)}LQrDOJfKE}fH z&w;?s!lM~exlWzGLK|lx>yCN5#^J-YLea04I485bTxUanS~r8y4^l2qD5+lg3jdVv zmb`+oP67{Rhb{2T-%NEF=p2R)=H$murtQ(sZmjg&L^4Y@Xi^LfVU#XPg|QHjIcn9r z9qc4&eQyqX1w;`>6(5%1&(EA~H5xU8gB}0D-Dwm}F!>4Y+2zE80HREC+u~Q0)Z@%0S)yk_J`%wmCr|?^(uv_g> z!0#@!?K^z$=I~fgy662%N37KAM>6I<12K20t#$W&gZd3jvB$yYwkU5wzVfF4e7)`s zy%xhZ~re>7&&opJ1hy}CUqh%m!d-0g8NL}@>#W- zv^_*NpB-|7a=3xH_ANz;a#Q6W5Jmkf)LP;(tm*QL6V(#z!pbycIhj~Shrs`-X-4DY zmVsZu*Npl9xGgr&A6!5q7yt{zO#s*ehqxZtK~5nc`9cHiAYKwcG#H=?G)e~0hJed? zKrP_E6c(UedrGSmP{ASp(;YrO7V_hoFNHJw9SZ}9}ljuYV~Co6uphnqf& zxq^utBvJde*cQ(pVSe$8UfDO|Q5UfCN%0>Rg_9+FRc+sd^Lb;nSOnk#{Pjsk*AKe9M||q^fGV<%{%#c8 zqi}J5NFbA!w6zwh8c!%@X{COn7~8tZdctRKL(<)Ws*~eU_;+3(>$OxhX07!vY6?Z* zd&XS2XaSf@b{y%(W}}a0TLNuemLV3--N{8C0d|w`%aB(@cR>A`IIn$!_RyFL_t)of z&5o=r?sE{_8(Pr{ozEH8MorilkKsK*id(0}Fb_^M1Xx@DI`m@zdY@8fumjc zj(GpjP>47B-RXCme~h>=4&S&-Uj!ZbOiCd7WXEwO-2msyTY;`G5Pt3U>R#&!GZOP} z>sk^WX%<~D^FKKC9${PadlKDAa}f@bh6% z_jEreV8&VLdcwa$9Cr4%_Dem(vNWZOSZ#e!o^HJInhh-N2~sDth(g6*Lx%wi_L4}P zbc3_u@BS8Gc6%YD97n=FProXfmCwi_tMj+XVP-8(Oy7xbQ%-5WOcV=WfgSWU7TSaT zPg2M9G|BmxRxbWx|K_)v6Gavf0*hlWzw??QVbA+Ug>|{~{cZoN|Ba;Iw~AcJ-6|i^ z+h*}S0r3+Z7O#Ku&Q5v7ihC^A*B3#O$6`KuDkBVnvD8NuYT2seBqUe1K3m}na38o$a4D4T_aUUu zzbZj}kzXz)2i`qJ9GBo3 zT_JWa2vsXq*#LIaw)@3MT*liG^6WwG*c7TfEacs3nFh88&u98H^IJ>Yd$0*pNMhWG z)#AM(Huat8VQIy=9sJo-ws&nedKwAVc9&1nqCz{BU7+bs+L}xPHC+1IDYR6Lxix?B z2C*cx%>nza29SIsftn58X3RCZ^Q(Vc^q>8ST)+FpfJeF@CDO}A$7aN?HBY8Vr{)-8 z@?Yl=q7}x+B=q#c(;>y^JoJ(&r)7?u)DeZ!mkv&@Kt}fi)&|vMdXPkn#Fktkg>~w8 zJN%khxp)e@_5~wo1;TwuO%-_z{~prmbs4|(gw6{xt{?M@MK)`rOu`m-LOsd#M*pO% zMydiKhj?l70-Nm!mIZpR-q0M4?bv7w&=9X+Ze#!{%nSfBniHd1DtJe$#Cck@4vR{# z2sj4wGdSDdVZPfqEbo~B(*iTOBSy~AGP)FR1^_ldCMAghKu52L7!^(9^Q(WRlF5~B zl>|!nAO^x%ZpFH@ndXy6#X*w|v8)MjaFyJ1-in@b#sH8&>imWh0(f(w6`73+3|LGN zVgx9{A^f2ml=w2Vg8iSLkChYD!1$k|Sqli`2jCG3VwGilJq3m9s~B^E7`XtNU;uMa zC=b8}0&Zw%{D$MJ829{NF$RhOpg?#600c0wF(eR;5P$;$_N5F%?>{c1_W!z!Qix){ z@(C){Y!tpsMjt;dKYK?XV;c)=@`>YTVJ!ul`jG7jK-c!xQ?4@YVV_+M35}*b^K#x{ z1g{rwd{fWf=2#i=1?&sKQa|9ds2u!CiCN5zxZwyds0;-J2aV#486gQEwSNah+)m|8 z&QD+A`-7N8_~78I7MQ~kXe`1e!csM=2pW7JDeu=&Y+zlR(+X@8&zo!7)% zr$j)KIn$4n7xt+OvF$H|IjS(5rdyn(T1cya8+JUxOCI(_j=Nuo7hJFx*-|d*H>Q`B zJ*_3IuIj*uTsSqJ(jgi~xGY%N&f1mCJ&#ciW(>4BsR zr2lH-cP2r8gzl=LY)*d!&lc8@gfTrn}s zIm^NRRRt(629=+e%L)7oEE}lLP(9Fg8^#y!4h>mbPFr_80Vck>W8+>qp4n1kZ1>X( za?dR`h^wCBViB&~;#p&)Bsa98^#eVnydh|BXcnJV+x=;u6D3v!BXG|*G_IUWa%DCX zjfLSyoXVA6$^JUeLfB86*?lmjx25@!w&-ZK8Z_^;Z1Skv+@eKa4qf}}Ojd8n@|k7E zNfd_2Blu)_Ey~}WKzLoy&IwvFrZK4BqLGeSJp0IV&O|boNUWy5W z$^hW6ZBMus}Nbc4O9NqU7vQO4mu1@T*`5?J2`?Y>^ zW*WfaldbvYV96?9$EC<0_6V$JTH}2cXII|4#jqx>Xc(X3Xjwwx&pJ=rn7^~h zYLAf14hHJEb053*Ngc9D)i(muvh?`dhq{sw!iu|)bvWMHGqkSD2yG zJc~BPk3SZu>u@%)A6%h2Lraw`oFb+}fH#}nS?Erl{uF8H>OJ}DJw%ak*=6l6%r#tG zGPc`k3EWJ{(*wtZ>lySlPW_7BdSv+@Dq{Nq8j=KfLwqenQ8@quI9z0r#y{YfB#82V zk{}xkC_xbr4hdic5vl{Az~TIv0R{A5OPT6_rgk73>wk?q+BOQOT$mqSvmelOZK$j( z+Ubvl7NeobEN!U$x$q6`MCxR%VXNXx9=#4SyrE354G#+E`pd?=Qu@?u%DHrsaTa>k zL_`9IPjy+wpLe%x#TLT92#ch&S&>{2Z1PYPe4r#3lcT55(5=lqxc|(6kp5ahPbZ z5)W;Wq3o_bqir`~c{Xw!QA7vR!1z}90SCfG`D)UwArn8w4s;|kQB72NtQ)1KmfGf$@&ZRe3&zWEmAF&lYDLkav$6X)JLLQ4mVb4e+iTKL1Hv`GFShh_TF zuTN(QYvb%WHk)3*aiG&}2D`P(tVI#I&bGZ}aumPg7paVk8a$rjj~g`Sk-WZ*6AUL0 z;R93E)1oIz?ln}Ndn|6MA>$9*4@{ZoS*=&U$}fr^#Tg}{CNg$qeAP+(V_@Mx_nk=p zn{y`l89M{H!Iw7x2}TIB8>906H7)Z;ZoeT6_Oc-{^@nJ zD|Eyk^6fMX?^ILrgM9p78=~4r)XODpAW2`UpFSp30#$qxw4g*l)*wBYcpEVYcho-q z;7Xa(MNrSKcVV933FK1i0K~jDa1P!L4Nz@|%#C3l3v+g7|F&;O`irahH@CnfwLqpc zs%IN#jqnv9{iFX@>&-uM66xplO4{pO@8M;nE79@}cq;4uOirPzx*gs_Ow1I=$-r$x z`VHUodiU?u+viYw9f6EnqDSxU!&inS{fm>AF^|Celzr`FE9nvVQy|l7qipxnnn`M# zZCcek*csWQs-sH#&+wJf4dWZX?Oa#&Zun2;8DBzmrh?7Qpf}`OLeDqA%j)83ZA_2H zO$-6s?={F1DX;!lUe9i-uC@t>2XBoVUA~Pkt4Oh@S6js@UrjR<@+p>d`=@g)ayhyX zhJ5k8lOGYnyW(f$9Z+Pc>{{Xh*SBpoMD+w)`I-~4%tT31R5ag!y>ur<2t#t$SUgq( zQZ0P#S0a;}jjMzo754}$>Q&KsM$*whi_Cq!LV@gGY807g0n(psxQ2E5>K?h0qGzFh zeZb)AnDS`!!2@#+I}rN6{joWpyi;)QGsn`X5n5!BgitK)kj4;O zhQK8$prL<)TP7a1!A&k9@f*3fQ4yKmkb7@_i1M`$q@D&H=zhxM%3>kqq? zO{Sc6rZ7s!MNy{Q-qrnqkQtZQ$%fR+_;W1!;ac%<*z-_(O8|R`-VP&Vn~xHEB3*q} zE%f%^Q`hXzhvFHLOT)Avyp#+_0W$IUSY}k)7JZ-2aiC4#$YlAP)RH@7$u0ioEWf_Z z;eyXm3!Tq`^>MT=&w9n5gw2>GSd$+Flr{`ovb{HdZkJCpsU*>Ir+&m*i_h(Aegw*$ zuBuaLvqxZwUsq_ZDIA|rzik3P551yaO}zBvw!yxt=Qg$qj|jP;67$L#c`vR9krn?F zzN5zx4Dhny{Z`y|C`NB2Mne!4LO0UTcQ85nQBuq6IIS!*m{`jY$T}E_R*XRf+`G+ez&%|umpFgzEINlGMbK0xnb7h9!PW>0MfV2S+<%jU9#~6`z+QfXzT6njl1BQ zN1Lv$M+0Y@JdH3jd+E6hM3EZxM{gtk6(?-bcT&*Hka>LAdk|WCwwbr-jU|hishp_m zE&Or!t!BuP;wAf08HT zkR4$NGuXbfu+UP&lhaj*gj;_mL%lia-yKwBV#lnQP>@mv&pwut73bKmYzM0CxF)s# zBUFuMSweD&0pEE_BH>Z|CajbuJ<^2~mwGp{J5oO)oh_|##;ht#XPN5c3b58K1*-fc zJPd$BrcxrjC&Rr?qgJJ0{Hgjo`PV3cmcidYjd&{z zcs)uVMC!5(J5}0P&vaV?b;RbAfR_m7oPQ3xXtq1u`8Iz{oSWdMY}Q(xF16zfPjC_p zPq^{MX7J(+FG!rGd$zRR8+~~Ed@8PRyp>Dd=e@qlq95Pq?n!rlBKvA{8aBb0*^!y2 zAg}TbEw_hI62bXiuE*$`q7_H`vy)$W1d`lFb0l6hY-fU!OI4rnwNVx3f}gSCek@=q zreK4u-)I{wdYLG2xjDH^!4+QYY=D$2Y-h4IoSxCdiF0gmg+Alff}`~?7p&-QhxRIO z`}*_0F02U1;*EtbM71FOKe~x2_CN7z+BSBpT&N$uJs;4*`krp3#!`zJfi9SJ3Fwe3 zY?Ad}L|BoctHPGbMHWM?10Rog@%i+;t|uLYTD*evVNCtoS83a^_#ZE;-oi7Hp)7}$ zhwjkTfiN;2$qhx^?h(zb5=u>J^b#74j-U(tx4%Wi4s^5ofUx)eM>9FCWrMA)3%ZZj*4z$%oW^%atk z!VI8tF%5YrY5gAHn1>URCN8jIs&j_mm#MKR&Ng*mfKjrueh@;}7zmpFch~^$e}k~M zPaI4|j9H>r6Iy0_3-|CT&JmF>&$eRrB@!Dp_s?ay(8C#Es^ zB^)sYMp=30$UGCg8Li=nM~=B$c^sbmiKw@vj0eRf^$bza%ZxS5R*DfYNU=|=Tc4YH zEJ#OEgwQ8jISp$%Xgje8mpGJF)Ja@Xs8uySPU~knzTrPe%%}R|QHu&-n`~3nsvXml zwYHEgruk5~Q%@R1Z618M3d;c-8QAj_nr-$3me_`DHPx>jifx=aRe{I7mf%t4pmSXQ zNfz=}!j?xf1et+XuS7@S=m1`nsbU4xk!jA9lDXwuEUBr4iRNtvS-tq7&lEh5UTM?6 z$93YcKGXM0h;?Q-pMoVN6c-+|WvoOvrBUQR3bCHY+yRBNO2_UGWr=FQ3Q}D2%!7ZL z@?{^2l<^3qf~>M$lM};pYRAquY37s+u)0g5RgAV>>50@T-H{bQJC$EW7BjejO49G^ za0pyX-EwurNT~5hTxudFiQDe9{^|qWWpx(mMe_&F?!Q<(4!5KnY&pCNG zKbi}b?8EJJ&%NgWb5~142$v3XEQU251P=x#5uXLL6OOwNKUesc&f;ek9GfF}HdpB0 z^^S9PDuODyw5}Yxv>8+a>0y_c=fBZTiKcIN)w zwpfnPexLHOXX}J7yof$cIKT{Z$Bqcs?)J^Bl^Q2k*Q|yJulU!0w%z0Zn4BKEHhj|> z^bgMRy1yP6Xj$89x)ot{1Q?U_=9jlEVIyq^+SCNP3TZXUQJisL-6_5DwQK zzU@;DRj=N^RtX&;Y5C*jG)K1!t%a}8VUwr2gWFw!%FiJ~=HkCCrDmhIA_m_FcmYZi z_%J&5L_A_|q%cN)gBz`OowllRRsQU2DENl(ufzx++_z*^2libScEh?KHLvIY0q^kAd_h8{_XOg+r!j zU9v6^7*N4oW#)EpgNqs z;IJgJlaKPp)2%}{+Uv+cHMB#?uGYLL<8ncWkO;Lw6FKsB@y~ueWRf3kWdJt&h0Vtw z5DG5VHj;Yrd9cmw4@Qs)Tyn4pgMEp{ncowDl}Ou5Iek_E<##CQ)s`9%i*p<%Xx~)7xz*0wD5zzR*e3r`H)?X5Sj9MJ~QGSsIi+`c%jlfXMj#C3kq>GsQfdVLk zL52oAMp43eq;5IbH5rwIet((J!DkgGP^Qm9=#pog63Epd(Feho?z641v4n8#@UxVF zLB=VckY{vUOkNxr3ukB61?dc}sw-aqSiD~;(tb5wqcqNPH_QzQc5Y<+)QPC2qp|;q zE8|QL(Jcl(iH$&mRjMsgU7TBN^i+$oKx<(f`pe8|$1M8V8<&r*cSX{62LrL!_QUWz zJS){`DX4W#5Njhq@l>>*$L)Q&rqXE%=wcY)f!%7laNRak+!}?(*QR!h$(6r}(=O+V z8yn!{Ia+`6TZ#s@*zt_I&3TVlI@MPbZ@O`^(9Y0xY4wyr_CkC0G{~)SP>&7)hff={ zWqA6pst&P_>c|^Tui;l)SA56c_1t(f!4(To8zga9Y3wDA`GHt^}RbQo%4tr{9=*uW;6_6F+g)ST^fbn`k&%D zk=JNqG10?pn#rPzHoja2 z>@;9IKCKUV z7pIj&V~R2*v!WFPCekTgSG%0zIaqmewhSfL`2d&b3Yghfi*~axUz&agTw-gr5QaSn z_tu^pggYdFriu8r1N}ZTAY;neP|jwbkQb@w4VsUi`H>`H)(Gt|Gu zXUK;O7>JeT6_w2|ajA9fh>gfCSV_)3s5A5Pt$m6#P4MKc#AwRNy4=aoN@aj-ceX)0Kogq0`nfNb^@?S|GA z$51+S=jC<#Wzr5xZo%m6kYe3gA?x`|m|wA@XoVW!%$^Gc%BPHQ2l}E0?tZwgBepvf zdWtp_{9ofOvp1q#O04yNMaXJv04f9^Ev45U5DEc1Cdii}=kPVa0kU!ch(diabhU1P zI54<%Q~qVRFNV&F{eN&VCjbBqvhV~rLIQVOIx9EWJlR`rqHyvy zYIDt(ke%P2HqILfGOBDBYMlC9nv_TP?0&s<)xP-+7yv_>rLb#UMV3UqA*73hbOLFm z#~@wjI~dAuimj0dt$!0zHs-E$sF6y8yM5EGXNI747q`_dQt+K8_@4PD=#M0i6= zClSbjGYZpRQI(XLkoL3w8^6a7VijNm#=hiN_;BsoqUulML0(#$s;flTnU9s$tyhM= zZR>^so0r|zpp|t59Q9E?2n$X2_3@#}=QjqIY1QzUG#g!TAoS3Z1&hOvTaS~z(Pjr` zC$`GFi)3CRK6v~F5>U{3Nf}|1`RKVS83jI*4z&~ij%WC|ra=T@)rfrdsT**{@Z`_p z?3a5FHQ%L7-o>k27TcP!G~al%R4+}+a=Spa?guwj}x-MAVXe&Yd(#t?{LOT?j&*M z?iRj*r&JzWKE4=OHOU04l|KCR|5Jw3GDhl{g+ri9hL0}<(3NVOBh^V2I zy0EWLp8G5DQx?A<})E_2Rg?7ZQkS9UR#QXq~$o>I0Ti*r9bs$ zNJRJN`RjpB9bB(<_2l)mw#9np<7>H2EN%ts3<{DDD+$o5a$9NgHRl^w=Ot>tE< zus__q?+dIi(zPwy?bJc2GjLZoC`0T$JNK*6uBkqIbY61;sXs4mub(|Bt(+iNr#+7V zPsj%#yA|NDR>3TL^6H}F^=(|;zLB?ybGLSGcSC92D9vLRx1ssupWot&wRPol8tgS< z&*~(MJ%q+xtahw@|E#Mgz>Y(pL@mk62@ZMAC)Cq0={pI-PI~ECf+}qO9?Bl`zW0Rs zSd7Q0i3D^ZWWZ2#JdS0B(9+&xBKln01+bSp1mXfI8+(Pc+0IP*DzxdZGolbCJqxb8 zBD-{}x);hfdmp&m1Ccs}?Gf{WY;hPzgloek(SIUKYgK_n^biKLzfI*n34asMI0~F5 z3S-AT^ACU&YPD;y`hiDt-XWoQJ}_i`g2jM^Ll~Z)hBbN(6KCqyzF1b7rFl&3q+9FyI9fb;^SiJ!4{4LN|(ZIHFX< z@%j~rY3^!NnJzGwr+pcrB z#&k31aLE!gt9KHk;>Qdhp8GU6j+76)Eh5cjH`72o$37zVjJdC}qzOW0^-&LRD~jR8 zY$JN{-*lW#_CH?x2Irztk)J2q12a}Qe1m8Zm};2#MtzO4m1rV#K+etfZny}z2jtU^)N|n?;439jI-qF5S<9#*Itus;NT?#-aN+z-)_enc7l&WR zT&sDm#~HTkBxbbc6~1IBdS`CRAU$_J!C!kBrXDz?Yb`@*qCVC3J{ZE!@!AJXVHCz#d?ErWFh&w#2*mFZDuZqlJxTlDOT%);T}syVS_1uukIZ0k zlrOTd$@O=x#OmNgc?UKb>L8dqADDahqnI4inT?a!Phy@}?rtmC&VqK|%CYvzx>NQo zS0Vx`@~PtsuOtctI-_h2xS`LZ)t%K&1HO;D>0s__b54u{)(fIv{8WHvMZ62A@g1F3 zr_&aRREBX;o(05h7h)P7EA1WfI~y*1q4`FMx|o4=Wg>|4dCI6>eoy7RFgDp*!MK2# zC79pHERS?bDB_m*!lNhnXVSCk+Pk+8e)T3dRBLY?_1Az1e<1wod@Al?ux-dUZ1k?& zgNJBPGUsy8!5=rO^aUX5D9%1cnv#6e2*0RhD1l%~rR+BcrMNKOwTev`LsSZwUyAB- zJZ0e>fe3wLMTvh_mtg-2eU72N$q#FD7U;6@)$h5&296VWxS2$OPvluo5;uT-)cT*< z7s2;dxUyNO)|ErEL>>S5Vk;W9`$r1-Rn{3(ky)$~A@0h{1Sfu5{TNE8DAiqN z2Ud=(UsfLAtqn;V{Cd<0iIeK8Gc=~E0;y6Nlj|W93{gz8NLM# z{=MU?fD)CBj!z)A{?D4%PCrR~^5TXXoVjNwV^78mjU*eNe@95NX`d(CHe+vLe;&!! zr|CvcP?YKe>Pem$oISMN9~~f+oL=ENEZJBLo3)+v%gY2}=pDgzb6SV9RU>xVOSWoh zx>XiwAlyJ1xyxamrvbq!TpDaeDLd}y|*FGH%! zwj94}=p)$5Z)TYsI<9xs;-1Ik(w{O+Fo)FAm@59Q{8k8fC^f29TbET`m#C3ZbMde-qv9#SAUS+?Dj4|<3l}aw^CTT@Tcm@T3>8E5`8`H ze}d5xQc;i~ip_}cQsgoL1SyK~UmkqBOaL@EP!xIvUb|Zmw)d7>{b_9E;s7NRV}Mw?ao9J$rORm~(?qeNUTl9WMsyMVA zmZ+WQI~1^df;OEdPt0)5!z#Q(5N>!_SyAKgzOVUL<&VI2zLS_8J>-)nb&{UNCZwtb z{En(kmg0}zn>^P;@J#=%GQ9XJ*`}f0+P{NHuL+8Hn2@Fq@M3Q%^tk|h;C~hEMzvMt zFaLBTq9pk1cl7X0=HLV z`%p={a4rLDG97o+ibNI64=J_5eNWu=4V}LQFq#r3;(y|;ag)ZyOQ>=L2u{N=aKNlA zsZ4P9Cy!wVlMgD1A0&a6l!kUivO@T8>FkpTt?ZV-S`4 zgPoDZfhwYYx+n%12tNZeC~M|qH2kRHqZ&5{un2_XH1y(kU-!A{aC8!)9!nZd70P-H zEr^kZz&b}768M?v%Za74Q4}!8YeJb_+ByzKMl>BB&3g@NPO`hWwx6;8T@6z2^H)8A zo+6UvAc@Pa$FUYC|-R^}?VcrbwsZa#!vGaBBfbTR^3rkPKq#}pTmF=u&xqS7@FWDsMDg#OiDB|e@W=9^$hkJz?XC{ zAPOs@l0*WW>C)1enjW;@iY4C_q9UMhn7z>b+xgEOJ4YAc5Ae0~BVgvR#{{SpRBE+el~*wSX=*e7%67q3YFBe>VECRZ+s%K1%=2zofMQ@Z z=(lL4$B9il&Y52W+V)Z9jtizh%&PY#3?a+rU494rFB9s`)@~?8r{Jr&uz@@a07T#b z22gr2Kp7mu@)1EZ<*Mv!f&0~cnX%By0aakYD9AIB1dbX93eI-NTp}-;C|VjJ@v|_T zaE%QBOaAD$wsfbIxOU3b;0f{R>UKWdg@P6Wt&xcF)w6kC6fqs~s(zLA&g`H<9oqN! zP=vIMYAUIG27C7xEsX0He4|#a!JsNskyfjy z;a0lK-m)TZd}!^27AKA+8+0V2)L|ZV*T2Wj#vTHV0`K$L;k(*L+Vt14PTn(tpvCw0 zR`Abi34&1Pf#_4W@|S((g^p3h3-`Obk+%^-TF!-a8E%qQ^YRCt1Z`de#{%GjZ4+1q zIFR)j%j8CBz{D#cga7@?@Zn4oBBR#)Hpc5n1hLx70!fZYz*gMSi^j^ehniT_A*AOU z7yP|vmf5`Bfz<`VVm+6w<~f~xk?ku67$zI~sb6RfNu!O)T`LmGMmZ5R_>hi{J62u7*DA^VRt-M` zD9VLzVzZ#x&C?v)8uGJWIxQ+T*>rBeWD9AxH=M_U{8ppPM)zAPbGkPV4w5d)n!Nt6 z6^@6&XoaGki5-k!?L46IvgZf`uf)qAjQjgIaauQ~Wk{8!gl;?%w6*g?7^{Ya!ie@*_W%@ix}tLPFF+E} zJ29>;+|amKV^KR8yvVq0KwHF1De}rVZ14zye6Vi2^p3&G;|4@M=~LrbcdUe`6BlSS zz)FTaCCt}V6>YDFdvnj%{RPb3W{kXyL2?j+)=u`-ab6zLJ7PStkMYVA7Yd=}{z=Hg zH$S21PSu`wdOS^kWMCB;6M>WkEe);G+{VPy2*;D?5;PF*$X6@`6Md|q;h!L4WOA3tjqzm~^9%%UGcDUf`v=DBGYLUN4 z-~VKfJ6Z>Tqc|`F>U5dha%fYE*^)~Pt6A$1Cz5>H#aoAmIy?1l0k4f&tV)e;WW8Fc4NWq2ej)?Oz3LV*miv z+yTG_1MA2I;dTKEpkXOgr?BAn%x~xQXAoG~J{Br5xo2%2z2~TM}&6vt4&IPxV4!1zo+oOO$@({+v_eiq^hZUzm z<>aArplec;L!7!q$6th%U>)?bKN>%NACh*0mqXgTR^x#p5}Ajhu~s7w`$$F;(929lHWG!xw$u#e>56cK=SA zI6klo|L-i={7$1y;CZqBKUJ(1t9}WWAN<*fV!*s?V!ZTwe8mr)FIko#TPiVa)LJPc z3b;PaiI-z{v|deR!6a8+_+{$F`cjo!N#c$6*p(OF)c2?OUX@7(g$OCSzSkTZny61X zM(%Y$C@aU+|0iC9KDBN%zTxN8;qQ2D_mk1PRP`IJNt#8bqW`I~#c+A4O}_1}ia_~4 zIu;_?nTA5ewaqFzGz^ke@a#>+vwGu;)eG0P$~#&#;FIKnP`Wd0{l@Z6^oorc;gUbK zow;*egZ~(^W!B2}0t183kjAzT-iH(tTsB>No&>7n%&U9INkz}>7q&n;>2Syai8kPk@MD8fo+PH8 zd8C5=_SLCZ9A6GuhoDF$DFVeyx-v3d-jadYnN59#m(6WbC3A3{4ZQ{^L*Ssz&oN7P z@DUt)P`SIf_Pf(oODuS}N^{|TX}jX9qF4)JD0>0kpPx2LeU!d}S0}ePa6t9NZ#2qH z{o05zW9h3X*zePFJH)djQ^=$O(ri&;v5^VH$4?wj1BUnzW-eHX(n=#SsaTR2p3&dt zX2NAk1TNCE=AB3bT zreWHm5uB-%drXQ1g9*sV34r$Hi<93Tok^b|>%7yyYm0q@4<7uuBeo}%HMW3R%->lN zMPW{r@jlFDG3^MDUUK8L-J-m@TZj1&!BPj2v*76$LgooF$O^9Ss;d5CM2$PqgrO5K zBu}Q|Cd}VzV| zWyjoVjU(DzopgC`!2`B^@WfHzxic!-H5r~&^FmLo`(_4Wg?#ud%&(mPt;6G(G)yqc zKEfB&qiEm0?7_5gGEFk^B&nRNsJHn9|3gKP(LC|efK!3!nHzpuDwDpZAD$RFh?)i0 zdx>H_jZ?{jRl3?UjoK2@P0@!eXg|R74q>7{#@+ud(eQhV=LXOb**nR!aeI1se^dB7 zW=GUjCtiWgK$@ zA6})-klWtXH{qGIwl!xhv-JKdosz=!*-u|)BL&=c&%0D&5t@UYW~?aON3p7IwC^)W zQo0X>+)(cZbu!wfydg!zqxl%0wLYw9MxZ;RAvd32)lxn8Xur>|(bk>G*^3V_Sw5et z_7hPi{6YXat4S>n>ygp7`BkA#?@6YlCUwY0d2H0aoN(oYW{do)uHFq*-T1D-f?)uO zps*kYzRTV915`R-KAFS`1!gRKo00xIs5?Kh!I~6;zP2?E>O+CGhiOoM9EP{3+i-LM zU7B_2=`@&okqf#ee;WGbkZoz5&a}Gq9C2-rdWa2}RWoj~7WunhWh!EF$EH&85JNGu|SrkT1E;$u0nc%oaUtbbfn6G^a73- zCURG$+6pUN1LSeILh5FQWww~~UgvK(;byI|u`0#=TgWz5uOyDIS*QC6e8tyRQMKTP&CDWatKMH8R@pf}6}#h}Gu+l%vb;wH@TmGL++cQ%?ol z-iHk0-iHuaYwM+Z1>ux{Ecs&&d;BXCef%qQ*xo_$an!e0e=`dV_qJ+fFJcc!xl`lA zxF}Npc}aaiwxqG41S{1A*fa119pO2FOp~DU#hoRayJ>vE&DnGkYF+jjyOAt~;pa+O zwPkSf4S7H7DVm9q^VwK?56Mx<86tM9WSRB+^R_aTNa&X)EIvB!v$(eS%!8C%OmHlS zc!A!v6s5^8WMaScb<}d61n7bRx2O84W}5G!c?5#Rv^r~qla0Jx#yG>1vXSid@LOkn?aOTQ#aNaIHJ z|Bos$$EWITMS=|^n9b{_nCpRt(d@-FkxEKL0rhvg?Zf*E%1~b!jm+vz{?oN|v2U5= z(o(WXMJKCSu<#6pBSoXM72jCcpTG1P{zZ>EUX)A5R5Hkm4@|)Y17iR};h6PR+}$(2 zIMx~bktf$QQ(c}7EymXtv{f#awUIkFlC%8XBb)aQF^ioV$E~ntF<(?XKk@e@L*0pe zZs6hhcky=_Vm(4suE1J%p(dp;jBX<}*#L(74A1b8)1b+wD^{ZfoI@>HKRoRBGG zSLN8w+}q|kif}E%bt&2{yk`F7jG_Smk;QTDOHvZorxZCk2Nae?mekMKIfW>otOUmCL(1zc`po zYqDa}G{Y!h$Iin9G*>0^Rb~V5PyVf`Dh~F=Nh^BHtr7mF-_BFT%u8FJ9T5Dig5*w)^8~Me2ZzI&CvUBjMnx% zGF4zUknP;{&C*-|VYd{Beo3_1UcCkv0&(HARI6|j0!{zZ>H&vL3%9ivu|>IDLnL>P zU_rWmXM6g$dQA+*fg)~|e8b%7pQ_qX6oZN(u&ObSdtzdp97C5n+7s|hA>Umisonv# zq#^OY4$z$f|3`GDXr2L(Ad_%^tgxoMLxAA}{~K&wskR!wN{!;PS^frI6w+ZCdzlhN z#U4MDp=ye@}-`C;4|-%#ol zCmJeM?#Rg5aCAFCN+>bRL+V7DXwq=hV}18YD;8UE9BFW!s#L$@b*Qwr!g$*VIg&IN5e9+itRLyGiq3d++z; z`wlu;_tn!u&$=)D@E83zHF*JJ!t25*QGeRj=!TJ0&HeANv$*ymQ9-ya3Mv_xMv0bI z>w&(S^>CD~f-W17c^ixTfmTn%V*~t%2=JNZ(aQb`y$bE*BsnFAG`{HI0qS>)N6_>y zUv&@XryX}a-hZZs{L<wu^VBEfAHzXQz+J4NmfD? zFa@+sUhU~zk~Eyl+0(;Y6k+mll)hpjJe|b!%zjXPF#0?RAfP?io~id5B>mi5P-4vg zG#Uu=v`58PFh2e>WPDBD**9il9++gZc?8)++xfW79Pm^-Bh0-H7H5aiz}b9jxAg1C zC-#Mn6vk#jt5(MpI7XY{sWgMtYvM{CoDn2ozB9dc=MyBg(!)Q7gX&H?3CukCxy>g| z23jDj_s_oBlrtxWg-olidjnC!j#wjsw=|N5fslJcp)cGmr!+}_N{PH`fV6ilA~H$d zf&@Qy1Ff_-hO}F(b+^4fh7%yQWEU0ZES!tT!A~w zAXz0u#sBTjer~zPsVML+xt^mWb+cf~8-*8Y*qu|fS5fKpzA>Gz2$V%ZGCK_raNN1x zjH=+}8Y}M$cdfFbUOYwO;MToiWfqX(aPyM*VnbD62wq&Z zBMoc#%D|+xB%c4yc|cwm03B#x22w-ZgeAc#k&7p}eT~Pcqpr zdsU$jJ^re6Y`>??5?-*vU1_SLCZL-l5f`FG(rX9naivr`Nw|rs6}4A@w?>RrH?1O{ zqtf57temX4g@Xv5K~|aUUs=dVV?G%pXNW}x>>9e2TBQ7jnO4F}q^CkUKp;>-9cM{4 z%;y|H)lQuNFVqs^kwCMGTL>nL2;^Wr)z*-M>X8WlZb`Ruhy{;LlLSlT>rs=VFNv7RuyCiJKVh?tgC-yp_}MduZMN z(97Xfhw+mtG|JLVYE2~tPquCgEjBsRPz^9OQU*lL(mQ4C&-#Mc3T}oQW=EKg*G7>l z9n8FTcj@s2Z<#9{El9Ac@Ybb{v~$>igxrf?Ev9;_X2`XLCbb4nRob?~viyyn>8Kat3X$cIXntdn<j zjM^j=5-}4QD&+31x}(fUu|3oGX$$x26EUGMF`*I*u_qvxl#=){Du;p$b=K>x@jPj` zSLx8y%Imqzv-Y{HS^91Mo_^Nf7w1;_MlB%jx$K}HnD?;Xmls(2T-F6XecYJ|^xbhT zeI8v$y}J0y-Ca;h`bIr?5wtv-wO|H4KzdaGkO!z)ph(Z9GAm;@a_X9@r_08xCSQ3MVe z0>TY766p4F|;8B^|3&eK`Niq6F%9FJSKtP7@a<+M7viV?j zgM|+FXW&50NdH}cAYQgs4Tww9jzVK_WddQ!9}Xksro+^W2a0kqvWuX zPQH72TXQn}R+i5fvLUZg@w-a%LXeZr@?9AWMUx(wZ7ZYu+09>2{l+wU+c#DV1vIEE~!dV3kSIR+O> z1U8}OK*~W?eYw|H+W;n&pHN1qrY*3##5M1;%njnr%_LXWuLetla}J;E<^bG{S$tnU zru>CCq?-vXCe0Ut)0PLXSauD!w*$5{0zK_srJ@UTPh7uhL*3MDWR+{B7fvb$^s)og zqg;B-wt21}83`wfaj1U_K;}1MEL7VCt}52Z%cX462yUf|JLWYddCUGZJSCy_B%c^A z|0HS@{UaRnFi@MHuBPyEW#;HW`MkKa943{}9(6&`NF^T`NV$4zI*6WPWcCfXDQ7mX zz>HSp^Qd35G<^o|pEe{aZ8nw;ODVpDZB@9>NsAf&_xn7<)}!19hp-dxs`DQV2L^+D zvZI(!4CQ9RM8$1!31CP~d7MyjE33KV)ruruRKj<<@B`FWHGZP!Pd=leIbkEa7m;5BFGo zE23zNJ3alT_v3;~_v~&<1n9GzY6u%99UhJcb6}%#2n^X#Pxd1?r$pA#>~JUIznBHG z_#wBS1M9-PWo8!2yI>S9yVdfKyx&B>LFDI!JbN6z)%U4loir-pzoPnP^TEb@GeM?dZxG>_~6QMbl&IX0esVSu*CtrO>CL zKqWsD#4xy|*PKH4HFpgdbM=u(2ee==hzP20Kxq?xnRTitTu08h;mbi&PItV1QS748 zeF_r&Kz0pTbOjC>d&oOAt*G98twALNi$q4l=5fE_HrH3MYB0+4|MVO#Tqc@&ToL4pK6cay-cMSdP5kgNK?d*_eQ;#EVQ2dBaVRNbG#^!LW!flRjWR8NQ zu7Er%&kF8*HJIPqr-(+X3m%r|-fek0uMtS}N4gL}YszR%c1RQ(=r;3C={1A_F z>#Ls^qtif7vdAPoDgVGcTttQSX%O8&t>9qOXN6wPoV4Xy-|PzqzCnRvf;KbLF4tSW zq1e3D{N)YZ4bF|3as{DjAj72dpJ+e7j5^D^vnjrzp**iiHs?-(%2Bo+hwS1c?dqNT z&g}Ag4>&0=d$|*o_3YjB(4AZ-Jt(aWT)3;Bf({|oFZAIiJx%q+_GzdzF)a@*qjOS3 zJ~G*XBl`$TXw*D3O4}Psb4h;UPR4CemEMk9D&+nI49!yR7Bg3NK&bwP$N>(}{l2Cq z9Vd;LRo*>~%zkiB1XTi*v6{{nlMJ>ruuA>6f_#*J^JtD6e+2w9(R>ijJp1^=JU8(; z#>xKE2<{T)h+Ok?{7U|e!o#1KvBE)>leB6i$TX|==!%3qu@}_OuHtjb5fO?}N2@|g zWX{7Aob{(^&MpGOz=_|C8CEt_UC()CMNWtboZ~dwO%58GOwdjXP8UH3se&QAfBUCD zI$InD7f5 zgEH{7xb?BBKb%c zIbauIAF-XmS75aCy>5W7g%>0|BSQ6<@6#K=`B@K&=M$pMxe?2EDmP$YoFO2`X7@K+ zPINsrNVobk9~YOD=R=omBrLISmrk5PWVHfB}XpYI1`#zibEWr|yfX?$(pqmL<~ zDLp3z7I@ZZxiWtOv>C!D{@$9|=!VF?OA-X;-1R*Sy#kvWb!676s*FeRE1|ex{m6#M zmma}__#2Kj+7WI>VI5fbH*m9Ya2{_y{r#C<=+eEZ(#=kW^M4GjrDYo{CjUl?3Vgty zk?$x{zOurp2>Mrhmk_){3f`$eIvqXuPqTtjJ@nN-va1ZPtUeu)VfzWTAF?o$B^umi z8N@j)xdPi)-MH*OB)rKY-b+V$Yph9=O|GbshIf;~rw3|z)+5^aI`uVebiDY(^~Nnq zbQ8YVevTf081%%k{l>u3=zzZuwcd6_j-(!r+wE8o**4{kp@rN#Ym-&g*mtGFnPw%d zq}GGUV)^BC}N zoY&J}+;bewKX(;5i1aIf6B>Af`1p;lto!Et1dCSjQHAWPe-qx5dw~dG8iZ1yvif7_ zUBwQ2h_>pP?xG1*35;%|IvKd}o);nZiWNya3t=T)4k7Nl(+Qvi{2<#9!{$s9`}WPz zD!;UvBR8mnq8@vG(>hGlgUJ*mV-kNK+PHPHL<-nAEm>H6?r19;Ndx)^kEbGyqiG|* z2{bEEAIwFQR(yhhWyk0RE}bb`m># zo6Q^aFggfpzzC|AFYvRs;SX2`*JP}SR3gS!a*hCVNMA%@3bnmx+rm*1*w059tCW@< z1;2+7bAB^-b$T*C`G32HR!s*R-%Q7Tp1(Aks8yxOv(@3rnr1P$h9Nr5E&H5v(Ch*8 zhO^MHH#$H9SXVI6Ug3_ljE!j8+!(vt$?9Q4ZQWi}QVWMWCm#cuBfDqv3tB&)(V zEDmWV#-dg>j&~`%(9CpDgr!5(R;_Uia;Ffr_+P*HUQ*D-52vfecMOi-HIwm1$=~}F z_&40jk%*+WXn~y^QVpQ3v@Mf&fhRKa_R=xW2ejqsq>H|(?BaIT4^sEq_Nc!yUH`7l zb?hm1HTgJ)dDT(COf&Hp~g(W0IP~IZUy2(01Kp1s283)~rV2#~9Pz zvHVl|L)(6z#Z7%x1ZQS05P=fl4hpDew@h0s>akaL#Arq0N8hIVg}w*=4@rnQ1Q~3o z<2=46Y?CND=~7?6W4os_ag*(El_fqZTvn*b-EquGB8&-3%0TwpCeDv9_#MCfRDHo38fH$p`^YeM^?FbwiU>Mqbz~NW%OVq)SvofF*gPYGz>BOXY zPVtC8_Ofud$I6M@T`WnlqD|RkN3~*5m781iaDauivy&(eiJH{I82rzqOthkO7_d$> z?Lkgj>wLZLm{eUlPc#1d_jTBea8O`6jNa%>VDae8iX{6o)M~@Gi~iyobE&5;WFJ~~ z#PXB-5p}#|g7>r&5)L3?j)+Sj+@RkjQLO=`Rr@Z?qw6xWwXj+nQlCL#sL;>9rT%!0 zp5orKNtl~S9n)T7-U2=aMoQi$ir$Y~<*Ab18&Ybuj_`)&IWu3Ch1Pu+FY_Wv1kmxUJGc}ih z{-Ri4egOD8Os@^`DQ6PAYXljOje>WLTKnT6e22V|?&5==W<*+miI;}u)>$iHA<+o- zzU%i1`JoMUA_Ax!zN`2yUBorD-VD_ggN(61x!ovya~y(02DSWNLxDMB#ED$*R%m~A zBq~{R~wj$;_E#o~ShPgdIX=?4oSH zWr)!;0`D8ETMbKqU4j;mMoa1SA-U#M^&b-u3tyDJ=$ea9HxjuY6XkPpeJyB7m0K4s}m`v?#%l>=Eqg)`0GQZL5Kd!q14wK0n4FA&Yv$vROJRY`S-;`3N{Ui z%@$SLK9gwj^oC0@+2*yQG@W^!2u@!K6hxesNz?r*fN{ZX2kJ+XNO z{IM$?e8-(rc9H@b1*#k+PD2pDauxmSpxV&s+yRTnz>pK)>!9{ z2v;X7@z!qOPvy(5VtWs;HYy@}wpLlynBkW>f0brUs`%40tdf@l_aC0IHEYP zi@(exz$?d8jeBLS9VhKUup`hs!e;VH-0_J)u!bdEiZ=(KKJrIja!pA@*qk_PNxx#Z zaLcdLVp|HvhnSQ{JB2jOkmXPqYX0%q543+_+)1A5Xoy}NWS^tJl?%dujTj^k$l4fS z3I!HP9XA8;Kq3ACSBn_ncuI*>6;A*$h|UUt1`Twzd-O9f0VcC#k6;cm%k39CUBg6a z%boUE85cGXq+eGMAXz!%uydLOjjQugsv9O)b5pCoRTkCp%9YQbV|8qudl}b(hHEDh z%PYrU51EvKAf4GupYI5L6Bpk20!H5m5{?tYyvHm?pv8A!4wIA>Yv48TqHDjtufwjz zGy$~*5YN~$^K!lbL(9WzgM>d(l(Eye+T&M5<$WdOmWPR<+gkaK&Q3vRnt~#IU5YJW z&a2~;?kE?u*AUs784Ui(FZ>+MZ}+=fl)KC5@aE64(jElNv?$Wfz9;G5_P@^*%bvUO zuIoO!#-rx$#CeQv#KG>_L)b2P%PvvXGe8&k)o_Td9!#>xV?>fjd$mp;4tm<0F zywF#I3J5CfyThN_#D+gf9N9$h?iCK}yNAb$OBh7KGf1tPG5>R7eq@t|SXL^CI*Y@P zn%8C`%6ky7o6k5;dD|9z%J~%48N72b=;ah&jg1ozJL*#CIPxfcDytK;_jO|ghy(xY z`#n6iQaOt%PY@qY)HZ4Mq0EEi=@1*035?4eR2ky}-sm`_1UaPGa6+4EKth`eN(^A>zr5qz)qdPo{J0Gy-rI9GUf)T($uG(pmD{=O z)i6dx)(fv5)4khZMhJNLTC9PfDil`7Vt>}w)i;3GtYKhea*C9xaI@Jrfyb?R#WWFM zBK%eRx$gq{5i8c;q`_cIZ#jjVWRX)s`%j;3TGDw7KIySpyCOGmVw@A>W+3uUx+Pxr zGpo{EaxWIyp{7QabQ|T7Goa5iSB1sr)`Ch9vOPOL{O! zk^i03Hf_oP-4Kip2&TH!Qe1<7AUpCb7oULk$P{j#bD4r__5Do;p2R>Ceu1HU*$8StIUW6st~9hL$Unw+`$NgWeWym)an z?M$fIv0%fHAQ}&&(`xt7TB#%?I$8$^j}QzP&opdbV@FS5|CFHD^r#^_bf3#a{&U{E zsd?d|6B!!1;Y;0_d|OGPOvE>Zh`ep?7)QbjsR?DlBJ83?880qZq3{H^?I?N{{q^FB zFF;;q_`{KM`pqFgXT*M(h!ETd6N)*0@uSIqQ8;W z#^bQnB>`@b38r({m1(M&!o+-c+p9eFj)2(O%xqeHQ??T12tIp|0#PGXs~E|~V@^$e zf?z@ZC^+eXu;^U|S1Y*tI=i<2#e&q62r zSe>tKn4e+CRqV`1LX;<8M&nEgSJLCG!~8|O^h8T~RENq)!-9V_`u(vX_C3Hw)dr%V z-|`V=&;S*Q8P6=ezNKue-P0bimAlj)~eY%_18rI;t=hL!IdDz0Ep5 z@cgbAJSZ6AQT0OzI(d#hi(G9O%Z{h;@|`x_v;5gz>`l9@=w)D}4aELgaP55Hj$|!*+AZ zo{`2pa)%-~yn+_4)^cP@pRXq%3!7rr!2#mig76)IH$Tnq2R9??TC~GuSaa1K3)Sdc zbQc|O2)RhxNd8Uy%QMaiZ}B-wk)_@c)U>nVX>wOmLqdTPs&JqThsJscF8E3nE5Fj^)#OgA5(j{xa(ddz7l9-dnfX*t2w-}#Zbi|sA zg{!Z1FB(oIq8o`^jTmM=Msj{A8!a@rp1|o40DO2&E{FJ_hpT9anN9)bTIT9EMq@O; zmS$?w&C~OL%NBPX82Q6rOP$NwMIf7YYHk5KmIqm)X-ByzJiX zo7J&MYr~TblbDsc|0PZc!+l`<$;Q`h-1s(1uO&!9C5M(nK}3H;pphZy=1XO>fApU` zsBgHA{2XGt4@W6tFk$*YHev8#lmkyG^gbuhkse!g#92X8%+8qwE3F@e4X!*Xgw z-L(C#gNcW{kT?e>l2!o8V4$$D1cwqmcH{y8`C|?y1Z3`3q~)@Ph&)hm)OIPBc}=MO zU72oatrchF=qN*374%Bw-h0GhGn7j%I66{mEdJ=C*w6cDAPYPZ8)O3_AH*AR^r#k2 zw`M06s0-Aws+&Fy3Vc8lPx58be9h6v4eL?)CAKXUD2AL@@AgVgyqx!LVqL;&96!dR z_aww?S%Dq}e}@C0bV-UrSgd@S@9QyGzDxT^A2xG(YI*W*Q#uG|W~<$#u6H`{W+;zr z{}Dp}`!DJVuRCzagF%H;W7dKOjidTuPbVAaWYTPv z3dxQ8xs5@~!*8`Ikl24!Bi63qyvcB&qA|i$rrQv)QJmbM0tIM?*jB1Ua^>l%S#(0d ze0cb0lH>4pCJL3Tbb;eq#4l7f=iJg)_1)~2>?wHVycUS&uGBKUTRCPF%FmLs1r0Ot zBk&K6(nHMLA(dOr-qm420Aw3iN~`M!SNfO7v@sdpUVGenIh=4jj^2KPWFLF}1Uxn0 zqIbLSl@9{jmX+xW%>y^xsHY0%{X8iuBCd{bw?ot7Nt~!E?r2-NvG2LS!OY*7eSh_m zlY*bl@%s?_xMF&TH19VMLyFT6F64J=1%Vp9f`&kzx%%28t8KOxmux(&xitLFECZ~Jv}UA-n>P?h%NJf-Tidye z6Rk$~7T!A*By$#xg1C8TkEG3jxsZKX}{{p8&#k##0B{W z6=R7CRt-gqJl6HosBIiLL~ft@?qQRZ#KmCR^Z6`yh0V)aGcn)U=#OOmkAqN1a6L-^ zURm^M{@ZIp@_}qT0ex_gd!WyO0Ba~j#$UvpQQ&is)_?K{&OZQfp!Q&ZJ3K(J3d9x- zAcI2m>|eY~1ILu={u=|}WdphX0A#>}_aZ1M05m9Qf&9sjRPuE2?1mjAoDQIX2E?R* zOtSzv0K`9wn#Z)@UUyCAzvl;(gP%{A3t)f)CZ8<8Y#(QKb|pPCEtl0CPtL{A*&BuhqPq)>+AN9uRm+<93N651%qxe!Ykk3oBo%&v zFqTkDNcAzoag=(L3(-v2!cf^)2g+~rKgK{`#E?Q)(!mQ&n|ow{PL13u4%Y*z;@NM2 zNX&s*)~`Xm#)0iGDx!aSGKL!w=t2RBsP{OaMDejI`i<2fk9nz117>;yfxozVm5~n{(9^~fTMWx(qpI>IJn=yNjaPXjy1xTQDrIoz%-&!-gIASnjWhu0rTAA zzGijf;$(}GVpl$EC#cDDcqJFS%IPf8p9)dp(Z${L2|3e^<&z4jJN4?yV%<4i#L4zA*ToI{j!IiOBYGnlUksS_B)|?PAWX)~jt~A9L?~b zC=2BCQ~UoqT{D~q!+$#6mr3jYb-FcV>8c%7cn;uBml@pYBK_0pc3*-!UCrxGaHspB z3>00@e25&zsNxRhiHNnuvV1zs)#AOvxlp$-MRP7GCvNW-(8%-24!$Bde8hYNdqQ=t zJ_Po)w9oNYPkry0{8HVV-K|BA=0INK^8S}5zCv8ei9O!W4`KiC`;eccppyu=$+e++ z+SI0cdc+((Q$2X)Jbw>!bt=hQ_iM;o2X4vHd2NA7M!Q@cIOg@Gs(L>=L$qQfSN@sL z=RT#MMmBJ*!jzXIcbdk_c{d%9yMaCMx~stRdBiO<9C2q44O(vwOOfKECm79i5^Yl_ zWb-(paC)O@cLb|;V@2sK(M|)tIr#;NMO(Zo`=t!_D(E^QBw6>Athaxg-6RinbZB-toaasWx{Oa^!e6j~0zhK5`PrBwqC0MN-bpY>9M>;4&ursmXv5eydNb)Ec@_Oy~g z+$b6DHIPiR+*;AIy9x-Il>80ULzB8dN# z{~ECnJAx2dpAb*5cnxG2HetA-{yM3RuTe3{+Mf*9)!Cuo$3{3ChAhE83BRNmMTKlP zqpx6HjcD`7q3|G)4&6+zrmPVzg}UT3m(tH188P|j>CN#sPLYJ>XKzmm4251J$X#A2 z5Of~P^};!0&Wc3KtiL{$izDx-EyDy~K?a68V->@_#vix@e~l=l+TpaT2}V2K%t?+M^3D;_WbS-_ zAuVexIg5^l`wrUQ;V0(sN}1mTMT>4qUS&T89Vr>wLidUiwBMDAbDyWDa-HJRzw>LaMsl z`8`yNAC?)JZ-^{up=l{1T_LhvKa+Y4;7>l%U?vCxK<<@Yv? z12m+(D6w-EfP19w&EUoVkfyUw4ui0t$8u9Q5+`NP2O@s1y4zq#sWxd_y>uj&<{CFq znJ@4E%YW9i>sg>{C%_%EtEnGnzeQaV%%ytrBw;>6)fOD4j3O_b9iY5QbY8KHj`6)X zGMVkw)DjlVW}Rd`gY9>j25SM#dIgj%*V*VLlrz9Pl?!(|*qNsiD@pe7Sc8#`(d9@qrL`!c_)x50_He)8?G#jljqrfC83OAn@A{+NN!=suAxpDiZpe z16PzQ8R8M=hAe!Z<7iEH_XojDGC{~KaN{Sz-chY%g_%WQc8ow^zcA%e_x4Haj?GO- z37+7)a$rWn14~TRP|~C?52yb1_q3NbfFz>zj0PLe_v|V9pxJ(Bwwa&K=Ltw(U6nxyJJ; zim!%$F{3xVXASw9_&70&UC01D(^)6-l$n#EkT;DDF2^W+Jgw;PoISj6Wj5=O$nLRL z9kvAA*Y^z+&yNzvEk3)3xLrlaiE389 z7i_@iAe2tSc7g}JPT878-bzl`i;b}l6OL-)p$DmgExU`SGq|k@l5pJuGx`L?K%lyQ zf6xS@78!fS*SvwRS5y>tUUYr>`k3iRwl&~4@q;-c%f@b!u3WmxbAcIBtU~XmaW#YO zX^9e(Mr8MGZekaTKlJ8et@77xUF2{*B5$arva#B_9%`crb=J+Uuq1ytee&)6FI+VT z8an_LY&D>2gZ<0g3%rE~H!{e!hr&KhJua1>c)pZr(t;C7`$_9dubzBBkaR zks`P|Vj@=va?}#?W}8t4h6hlE;r)mxWN)Zy4 zi3!oc?2o$td{(wH!6IH%g8)weq+n|1FrWm{tRgfa4Gar3Ao;J(WS#;e2dzf{SO56A zXpaM$0f=*PB*K^AQnb+{H4hRB3=0IYP60>(0JM9M@(f@b9??8JPB0UU0CMO3Hz1XK z7yJyZ6#x(uO9a9ZaCb=(4w0g&gQ(R+Xx476BhK|m_n z%fCBNrWXJL0FoBO^9C@6fx(wBA}34z1qnr*l1&2xwwPIST_gWjA|!ZLd<)xL=cdYo zKjoJ@`y5R+|2srTtz>8r!1LVm<;ox)o7QGkM!*LH-ZNFmYPzresa^MfDj~koGGS?j z<@>HeKf3g@2LDwFk@-g@$~TJCBbCmG~ml@M|_Jr{>|>leP+MibmV z=qot-EC}{C>>{$NF81$#($@o7earA@?2YX4U~e#=qvNT#W-xa=3%HQFU5RL(6JFag z6Gt5_Y(>C;#!RU%ADh5BBQu~tq;5+&`uO9=lf<+yU0OD|pXa!-*`jV(4QG)UuY!FPLFI<pw0%?DdoC0Y?j~jldF!Ma9~^DtDDiS5mnPo|qwaueBQ2ic#uA$qlitpB zQ)650O35WRA95;vGX{$@DP&c4R@P>`#v^w(nZT@Qta~5 z1?RjZAe@l(Ha1f8GrP?$0rfN`2_wf);fzbVzQhPk>jM|oo8{gsynpco8*gf_sTa^t zB;frK5)2eB6u=_|Lc*D(lt#O4! z0HrT;SQ9rVh%L?6emSx=Y_8X=P@X^Dip0NQYE&hR3)`!>+jXR3Nuxfi9Hi<`Bbc&i zKbo7cxc?eiA|1QS>Tyeb$9C>#y!jR+I~LhBC_|Bae0^RbiytwGS;U0A@0Wbg>YK0$ zepO;Ed9U>F%%p=4=XR}tDW`R%R%;I_ldkWJrmF1ozp77R+jj9A>l1CIJ`YF=o3{!I zRkgjU^~SP`mqd8S|6m}8S5UW^g+G_{C3UtoW*^=k6SJU69K~R+CtiGI`|2LzBPl_I zUJe%`Yqz8x6Q`rXjw;RLw$u`WHz;G;VPM4G@TxNey$7+ia%IF1bkj;g4te0qN$gCW zLJSd!cZjxmfTY0krsu7r&UUnb#+WL)duhgYO2zuM8JFM`7VO2cDOjjzLHU&~Or=W8 zg!*=R3*F4(fw1Mzp2*(-6#J3wL>%^*Kv2Q@Qml(v&0rK&s1`4lNa7!XBcT@o<}o1o z>&r3xgHcO?#1g_z~IZTx7*z$1=hr5^^k@?f!TlM7Je__y4+_f*yOrb zjhv0zF8-V?cX(`q%{9=P%i+yTp$q&al?yl6fX7=7CZZc2w{;$C3$q!KPpq^3h(;gd&y8+ipDJN$rgscKgpSAarkoe?NCAFW}_PE2t8+S;a4`yGuI zAx~`0i>sG@w!dDZu1hNqy*wM+eq);(esOQndcv1_bQa$HH$*1t&{7Z)d=p0jlXHT~ z(9)-owX6qUCLlRe8rR0p=9~~#1sddaLy8vRmrMohmCC+9Y0RJ7X6ffXj)Jr5otxB( zC-yM-EsVVlu_af*AOkA_#w>Olh`dJN0)5hyu^dcym5Qf$4%sX^H|H!}fzq-V$A$XU zcCbxZaLHW$uPwCDV2Lz0!M{PUIf_^Kc8PYn!x?%0`aq507Ml{J*oGU4+<>VS971;4 zoo51Rm4X};KzvzHs&39&9LkvXX?o8@X<&yVh$X(ZbOotDX6%QQkLHJ30D6*Aj-8jf zz&%}bfRTXv^vwmYa$z$fSy+u1p5AP}bB-dYi&jYG9tlmNBbJ;@3qJst+XeBb1FUI!YIn2a&tHyQ{u3JF9QEnW5+Z9Rf2 zvYJIZv~@1@F9lUw+%nL9676NhVrD{Ra~2g%pEk?dqzLXSOVA4(kmz^>}vj zdU~W2!_;9hUg#cUE~`w(=~o2?;)`n35iXsRBl{7CAHj8DaWiHx_xe&j#o6(U(USyZ zQv<6X^6{7bV(iw2nvy5#!^q34Z!4ieD1%RS@J>v2dXkODk5Rarn6oLiEhSObnZ#md zvVp|B*=*E2kG{>!gj-^(X9za3+z$&{yxzR@cVRuHFN;p0qQouz)-wdWA1cElQT?j41gX`x+e>`8d&^m3!EU66Xe*nugBQ6GJQR~=_a*xk$4}I5Qp`)|bz-e>nrN$V zw^lyoDO$f-)fxy(WmIHc1&vl^kZgPomOO8+x?&z{pF~kDg4;Tn0(q4w=2-fPwSFS= zg)E6%%^_VNpHsWy4y5es+#VSt&t{22|LztIm?&4fqL`Eq7c9`Q*{X^Nr zhS_V}N2W13G)ymEQ6XT7_|S8Xhm*n|wTa;~KXM*JrYU30F8 z3vn-UU!M!hiVgdz6DFF|H0N(9Y3WJLONAqAjch3bkW_M2S_g z$R)C5W^CpNZ99yht1xy;Mw->6c$vnb%BzXg?5r`(6KM?KkwaGTSxTOZfMCr9oer{_ z0@*5TTM~YyDgg&2n3oYAlD;sm;8pwER1Aslj$ry$MWT?C(U`U$cd&|!smDnkT2}_K z+D-J5I9Y{+8ta!T>|F>md8Tn$)TRUSX}a2vrK8_x9L}Z5x0zqBTQIQ#wc@lWL{1Bm ztS@q=hL*^HPJL%?-q~o5Lt1M0NWQrAzK2dVQebi!P zjr1DNl#d3IHD#ILqKGCi&OmJ{DhhY=y&I7~b#LZPGry5=J*&=ShA{*rGb#(!b$9Z; zpVVN(0dqDepMtTS920T)7RmPm@Jga@4US8hMg!Zr_^wZ0yixI$F#Q~BvKacbL_)_7 z{9iGEobHn~Z@aA`=UjC5Q)=|R{uwiaE|(#+PH?v%tdYMD2m>FR+_6i0@WX#^-u#*x zD7&R9NIlT><;cErdB2757pS;&%NImy&0pL`uTnW_KVV7yaTu|7k1?M{c0rGwc$eK8 zt?!txSW?4O>lnvhPMFj&?r)T5fyatZM^={tQW%VKERQA8qHJ$w3`xjO97LWIu)V|z z#>Et()z5<8A6aFQ=m628V@m-^CN{zKo?QO?#YR2?OiIihO*{qrQ3wYv z+wxm+GERpV>*wL@(-byR88dL>03r;b><7#0&r7ecd^zQM&^n5j9G5=_=bm}3N8os- zQqMSt#_~0+euk{MfSJ62eALkatew62nz%RT$)EE#2KAeO4kEKm9FAd=dP|EgXBsIy@ z>`>4&2zE1e;`a5RL1T{X>d0s$u)v!dG$tlGpP5F5zJ-=v(TO?U5x~g(g%}5tAcamO z`}6he1@9Yc3~@sOdrbxOPtf}u*j6PBv9Thq7=O9Oms9>FO5HxuckO@2-Bo}erQuS^ ziTiBsLv5~2k7eBSIkULJC);#ib6_QuiG9blLwkSohMhh*&w-ex73b$}b9DHfVc562 zSppDu>--*t??eh=+2<|PTY@#9Vr5fD5K4Zoq2_e*Xg!~Sn&eTkN`MoMgTND`UUiYM z?mqi?4(oWpjOvOdb4DQLzv`?|CD@x`cnv8)S)O~@`oJhUolql$Kp2B5)J=xiFSa&j zyUnvRVJm#o3>tf2OTN~iYAg0K|EGy4;2LnBIwcCeWH~_>qEH_I zp!C_X{G>@YrLf~GTD~cnMkK`W161p(<1Z+j{pKNiOl83#t{K9M&46L!jN0-6IhuFfzKI<@H*6a z1mn3*d{-_YD|dWBH@`uDpq>PwXkJRH3e{%rh(91HJ5;SQA|ig+`oUQ6nM6w!r&aRX zwhTQracA`j;B^`kUhor-W2Dx~dY)@lA2|mFNWgu)fq3ebo|r61#5~@hnv)p#US@={ zSm^A^-m(6BzkXsOfp3}qIcP$j?oC#$9$8zMQ)8;vSGtG^MWmj2b&Fq1Bb)M#_e(R+ zV(JmD?Gpw^Wiq{vuBLc_>u!Bbmj!Bw;vIVv7#)4J{fk7ggv#YcXh46)9u6+Oz{J99 zO}fhkotK8(%yEx%PW+GslH&(ZeaCypHa(MGczWB>+#r0nF6HRZz$1+>kI@FK{0noi znyD6$&7cMscc?y#@DGf?cmcd)7@I(ZVEUDGi}tS$zs8)y;SVNQo(AxaZ)|O*VY~JO zPW|-F9#<%)b|ZBn0?fb{HziELQ;du_`D#c{Mkq{H-n{$Q|C-GQDD@fjEBx`WAuA{*e-T#1CoY4=L9_edmYm6g-5&dl0}zoq@OI~p|$BpZ2oHv8$;J?di(?vQeh zm2vbf5dID4jIj7}t5&lov^4!uv88tsX-TN;Q1MSxB4gT%47HvrQ#9yxyS7bLN!tQ! zI8meBm_SWU!i;#1`@+OYFM2Mc{5+%4{zC$2z{A}W{+A_Hv>Hk<)u#q(0W8r8MGNNM z*2zH4BTSe4?70IgSg56{=s=MGx!L})Ze@10uy?CWoR)=RLyx=)xk5j5tT$--YSWB| zffz#m09ikJ?#TJ~tE$J=CN>LE>2}_*yk*zcFzea|h-)9q?DwXN_AD$s|H)5J%1F@v z(e@T_QGHwA_zXig(j5wdbb}Hj-QC?OA)OAWgmjOzgdim;Lx%{6l!SD*G=ika{{a5( zbMNnepZ9(4^ZC3R_RN{HPprN6cdxa+YtEe0G13o-OA68a=o3a|qg1i=zPz^FPKra) zewaR9;_0i7B=-rfl$Dn{_ckF7uphjqcG4V!LREAtVPx?il&fu?_5{7RNN8TdKiMSt zY>s~i|Run8et^&#?L_y^S=}h+exw+$_%K149W~0#y~v z1x3)rHJ)L$X+X5k`D*$8L4SQ68BwV<+VdANT_`0B9s#fbu=)cONlolhvo)lPXFn@0 zR$e(gdXT3m&8NVO*<~=oYB6-z{{asZt`pCv?V?&9L#6!I&pgfzYR-{oDd5ZJEVwd{ z#a`otFK3)`ZVO?n92$<=4(80gg035SK{RTOh~-{oMdvwQeb+BA1Mm5lUXA1_4eX=! z9~hAe2wrv$>(qvu@)|WYw_Yc#P!{+t9shJPu8;`}RvP!WZdyM7;4IM=_dtl2ORm}= z{u@Ldcd|8BiGs7vb%Q9s$M1mHcweKGQjE`^u?PlWtb~I7{H>0WH-0+`{ zru6@0G==hOj{bC$i(}8sT>1PU^D#+s}xj(o00wa2A zZ643LmQZzrhf7rDp62f3 zrfg2uk*D06k%$w)YtX_k%mLfsYze_cuvtJP!0`TefPuL-Bgo(PyY%7oIS>YTkTqa5 zgx)~#;U+ndY&b_8kb`BzbU%ZeSVQi@vuz-lu%>urML;{Dd(W@v`(~{gr3r4FKvw?m zAo|pPR6$xRji*=51f0gqOOHhc#t+4~8ZTvEcRnIMW^tJKjEgLtSQ@L+v32l$jRsja zie#NgzC!~0V)5MJM1ptB>r>(&8wF!kXwlfOH$>^LkgAkYEz+ZkkW0(hRIK@2HsrK_ z8haOh5r%{kYf_blx>XqBcQcN-OxRO3=X6`C1Y0!Y=LFbI;)Hjqf1`VgX(jsX#09}4 zi?&%Mdj+GpRHaF8JzAJF^y^~G-2Adu+G?-~D2YcCZfXNzLU?Y9UaS7SjU{B+9QrZ;2EnUtwLkmV$Y(N>_+}@5tjU0jXI)=nMO)z zFvu^Vr#AX!g;PqKS6+9kmF6@>^kDu8iE-NFaG}?zrr+c)k}S11xa1dpHHniy@RbRA zEy!AK@AX+JO-TPq)VUaZ=6o}uYw39?|3kHWfv3vH-3xNheo2cF{FZ+I{tVo;_TlxA z(9b>AU1RSf{KV#xR^UcEiTH%@3I_-?5av!gKy<+H*}OmcLJ>uGYP+3MFg~9DiXYC&Tc2xw=@%AV&&dWEKB3RW)?YhQOj1A zR*Owrg~iRpszrNhaOX0Fx_gMyFM91x_*OLfs${P-v@fO@l|`Fw>j2RjnDmPJ-84=5 z)e&-|7K9Fl2bVC>A~>BP*kITQ zlqlpxu1Ru5^x)Ukn}@S>`5bZhNoZU>_bOeV^a_MDiRwh=-pjquR$6_;mrCQidpXeT zJ=J(IALe(Ebe`jo&XA}W&#qDJET~=0TICW;J0J3dJIcD6WvfT=Ev}D#xkM{1loT(WVT)Gai*;nTCH%MTp;u$s*muds-@bDFr?K<#c%C2RM?$Sz6)odM#eW-X zdkH(iSIa-gv5_P7a7EnfkYnzswi3G6VV{6q_$I0?VKF|+OpfPyC=Y|843y^{ERyn$ zn`DH(=G(22{d$-C23a*3DQ~bzTJC*<+bk+d2H2Cd@O^??FZN0V=##XteS+IA_DTl$ zlC+3)!Oh-A5OL|U^?r{JXV%NQlY>3h8@}(vtYgPaMjj!pj>6)gN5mhO8!D|1VcFCp z@{G%kkyb}zq0pPzkE0Ckj0V-y!|YR#>gn}o;^HXNI&pC7bM$Av#!;puR~*Ysc05cj zYWpZ*BML8kaM`dqt)jTErzeD{W43uZ`Z&gqL{{{@jDEkz%YF|lWg&(v*S_~ln!-^< zt;0X6d=4-+cuL_f=5bif7@f)V)U@M@BCI_z4Ki&)LPIOf^n1ZA$)G{^d1=F%V({fIa zPfCwZ0C~5<1c*?eqKN}q9?9k`^*Q=;)r?PG&+2TKc}BGo3JoT!#A5u{E?l3@w&(Cq z#5`L{N6{jw+TB8dCraIi%dlRC7PbOwjQ75JouR>kw04laC|laRS~JJX)LUvQzxB#AdA2{h0NLfJBQ3`Lgy9aiQf zvV@#S9>w0{zU9CK#&U#dpl-ktewlYNNIwF}c!zRpN}*{dn>Hmkyr-_qW6qp$fUMKY z9fo+;IgtNLLu3j+(x|gjfl3oIR-yAey!q8In#b8dJ6;rzo9kzoz54g6jFQEw z(1|DqlE#8N9q)TCPu7EAMLT$ChRccNs-g`ZZ$qjAcQdilayqpzShQoK`Nfw(Jaszn zwy3xkA*qRU0WviO(9@T3Vto5&uhr?WS}-&c2&E2#<0OIx!ra7UVmL9tOvAIY9(>OG~OdH!=KEf2eKu z;mhkhRfocdU3>Mks13-AXuqyzccHOrJ`07V;Ak{|AtC3Ca3m?9Q0wRGk-Q%+!4p$+1&u)@8HD#w-~r4|>~|EAXRn0Dd$p(01&;ujzJ5L%T()W#9F@ zR_5}63lFB&rShKCQ zB5<5MMAd|vy&-_<+G)k5dF`mzt8KtvYy4>cZc8nimha;8TIoQ) zGkr;A!(|TPviIMUWbzKAResmiqx2Jda zU^B*w9kG8{GY4VI1?l1h%id*UPC6IV|~ zd8J|d$vnto*>Dd{QXmA$_Y@Gt5&=mh7 z6DzDHwg_UpZt|KetAsKVz9*j2JY>f5aR1619F+_PXQ%*-_WywG{B7Qr33uSS0C_MjcE{mFnl`$ zz}|n^v0e3G-9Jo~G#i2g-vlx&@C9SY8**`%|6^9hEd6KVpB>rX09l!Tjl-Wu{J)RG z|0N7pqtX7);_!t3K^%@EQvOKbwv$MF{P1}b2pQyQ&PzCf8AMQ+JzOK6eIOp-nkdH| z%N@IkHl;i7l*EXKn2q?9J{0J_jYwrSi{~al^pLr?O?}zcl5m%hE#7M&g$J8K*#B?p zt+H1A@khO`^*0%WzbW|L|5CxK|8t`APYTv(+4@fvobo?WaKwTa{7*L@H~~QQu!7(t zy~c-!T0va6REuYL%=EZBha8w?r(XzhrvCn@a-BtFa>pRr%DkmkZ2v{Aw&0A`5PrB> zK44*8^Zr;^WaI}(n%9|#yKuY)z_osF^^AsFCg*V}BE zK+2KCPv8}1z~Ouv03)=K3>cxyLcj>+6+jHZaK%O-5sUurIwzY3EW%Za0n>gRcEH6; zfL`1jbvd=1|0Y6U01Ln$mq5s1h-u>Ze+dc>H4{n!gU%p<)wtAIWn#nQKG01C@cD|+ zCiC#AN4Qu9pvU){hu<&nH#N34fbS%_Dv<5Pb%YZL{9Nrk$B35mWj^)`zgJTCIY-sL z&YJBDOh=f5sI=*%N!LNaxX=eGGgF5r?qrvpf;lRDjeayl(#HP|8u`B9?7z z_t7Fr4~pEc#`XAv9dpB(D)(W?X4igCmE5C4DcjxXrg&dL=mFjxQM(fmREO4~bco(66y znA{2%X?RmoE%Q&!2TZOGL{cpe;9ax(MpCn#*4J!u56R!4S6(J zG`oQ!|NNn!?GqK!sgV5uCgu;$``%0sW=QJtDRH1!_-WChpNUw%8+|@rc@W}aY8>6a zMcecAvXP4L>(tM)x5DD40U11&*=Z-HX|@S=r$U`URi{@^#4Y0pZR8YuC9EX22f?u4 zF&FlN_+-AuL}S~iGvgERtVlDv`>RSbN5YZL;k!cJrLx@THmr;Y?7*GZHkge{;RPfD z*7jqRiXpi!rUYUhcv(*SFC7=ixd`nmpunSqzX*nq&AV`r2PLHtkS+Ihvqgn$n@NJ` zmavMyuO@!{o<;#JGxyKaxmfM|a3>gcb>z==HPLH>c=Bw|saNiv5|;-Bo2I67(1N=9 zB01sb$f1oN);$^M&Nj@CRdYe#8MRniTyZ-U64Wavx(jzsM~xy?_r6XPF{N0mnOn&4 z=Y1rZ^U)j|;NISJR0wH+48!%AP=f2HuNJ>kpGeFTf z?FKjrg*lVxG$vSSHJ$|YG#hdPa%ea9+EI$X;5PLNX%?0<9_s^Nm z3n=MbP;%DR>2+X0s4-;Ca+fS?&J#o1SY`w!&E@7p8JpV9$fRkb5#ICjdA`Tm@fWRa zNUxWfumKiZUUcGEL6o4X1>+$j48anqaYxY=rl#+P6W`b76mz$ibcN7Po`|0W&w&7y zDng67=VhSu`@$3{4LV~@s$MDVv!N7D+|S98>bv&?NOzdpG-rQ*IRKZ^l$(2=?yt5L zjCsw_C+!?VchlkgN~JU8#rgQB-Woe&CSQi$+1l%S^)J-C0Mb+Ix|yM~Nz z@;$SRJ6*LrAZwYY=z!q+>&45N;X`{boO2T$n`M?N9-P>xn@0Y$g<6gNn+)>2_b=tE z_y}qI3&ij!!gkINDzt?~c3>Y^&HY_j-v4_zA4t#dmN0uwgw-)la@?-MQmO_Y9eOj`G&qZ*gW@is{%G!aFS#`&$GE!*($=T9`U3pBZ(r{6#D z#hNlz)WUQ8X%K(4)1UWj=E=A84?4VTd@pO*=d%n74;dIAEuEVd&kc%*xpI%X%YOE+9Pc(hkVz?b3N0;GQZzLVjJ-;oEhH zH|-EqFhb)3a)g5HN-_Eyp#Vk}2E*3raX-yV8H^K|?+huoQ`cA)x^q2C8a?kVHC&&J zA+nisDA+db_BSoOz~X+cEUG<0XA;b4mffJd;o~_eu)Eo8!co1!?WyHV&B+5R9tluV zYEK_{masZR`t1t1AM^EdTCZIJ@EeSqLJ#tOWL|WF1Oi=GA`sj?nT`OyUye+Q2a*G} z;6n!zpdgx&m_fL=4HF&8do?93>G;R*6-+*Bz6DwydT6LM@bR zz)|v2kG13!cajWspR3`A$eLkMF%o^Ki3IDLo$xjOx)L9IND5V9gon`>1gQFFvQL{2 zU`tU0DE7C#sB^L#0 z&c2V{K?-EK2Ltrt%gp8tQZ|Z+827YI8LUQkaKZqoxJ&gLM>tOpA zQri!n3oI2o8Y-Of4aGQX8E)4PxnDp1cz9v#qseV4v&&2B`ZB`8Hzhxnv`n49ROOft z=f~413w?Q_Wv|XoV?S}2j|deXNJgTsl$(pyS3RoGmg6H_+holJInKY~03r#S$-Y0P z(smsA4s&U|mC@i7xAl_6zke<%+^aKO8*PZdCC@Giq9+zLBd>9$9;b!Mowee8R*Vyj z$bDHcGy8>(!9O=8MPRR!#U-weM>_fqt+|bGp_7`J#KnE~=Pm0s*i%IrpZeit+G+`3 zUd4z-l(8$@DxV&+TG0^%z7Jj{H}ao-kf4P%rRZ#=E!%B+fO1EI!geN;V;lY$6O{s! zA`ae14M2e!0zdFaA%WlBzeb3{KM+E}Wb)${Atkp6DUs*nuaN@Ug>Mjo?%FzkHCQg^ zv!`aaUKqrMAcLMT?ev`g&MuvwATo;R7i?a<+Wbu2-B|r7+~K-} z^ZO8{%;wg*za8(}sB>+kL8EFLkCgF&ma9rZK#~Qz%61SD(!R+etb;IDX;rCDU{%g^ zGYAeN`?$e_ zE<)7u?&SyYM+Aql^b37FTm13BpiNDl(oTW6lc)9G?D{Dh&B-33LOh5$WmbxtWaP)D z0&3%XB*X>lPv)+XYJ7(hUfiaPBbuTKNG}b9nxWNjMxr(;@cnQTY#ICc$Vm>y5m}j_ z&H~tpLP&@EZK}xdy-X!uHj@rPg`_j}hi9hkm_P7dyg2#DB5#c~6y`cxcen(N8Nts^ zQ8oVxNi(Tz)~|n2_9Tv-Re(9yl=Z3j15x6~J9p>arsOjv7ML}y+&fM)eW^rUgfS&& z?Y3J2-2F@}!|?3TNK3N&bCM=QOc|e9uCTyYUETP6o&-BqO^#g5bzW!J)E}HLBn*n* z*)h_j3cX^&Ez{DHGDUAy&Tw$}ol2`lPD`__27Y!6rE=ogV-)~ODmPGK#{;SV14W&7 z_jYbk)NzZV4t1z&2_4Y>_y$GHfSrk@BSXxi<7ZzD?)jMMg>kJH+Lf!hj#DQDA&1KD z0_LUeOh6(R)7`O3j=tXln(1U5-7S4YEF{9qN}l{oDD@ATy8l9xzI!?sQHaZ3bL=&t zxuvwOkk_By;=CeF7=wgE!s8N7w7 zwW9N*Pd1RD<4;8vh>SIBaz;@0UeST@Ul*f1Bi-n=15sa6ckon_1f{Uh#`d-w6UPMc z!Zd5m(4!*v?{aZ#QHs#9NuZrty(5VNc|@F2k&#!Sh$b0UptwrT_9X4>L~DK+0>94L zH9M~_n6_MylIB2T&=h#Z8AKtgGZm%YzaeVVW9`E~zelz~g;u!Z#x=qz*Lo+=vdxnz zAa0I%Q6SH!a{j5Fl1)#CzyhIkpaCOj45rV4DMiG&;{N99oqLm}ZGHFMN?v1FxLxv$ zt?(G$cke~f$$a|$S_7kXIdLo0r7+L}m1qR)&T5=z^q*zdcFeEpK+rP@6>yrfAk$I?B-mnSJ3((JeKd= zh0h>GQ}3z{$Ol##H8MU=T@>alwl3k-mb0GETPC61!V3+xuTKtum)svqweW=r1s;Tn zdgm5sJU0%Fkh^>T7HE~XK&w=|H;pt50PWEY(CiT7S9*JD^W{Nd>t@}|bm%A9vG`nr zu0BvQIQ2EaT5~aFcin{mgdtanTw`nzz!)!UsCOg3Ps$&NP5uQjNB1-+QK;$)3jI)9 zt{tT%w@wjaLMMIe>dHK`+LoX?FUI-d2&ahY#A0wq{kDXbCQuIN>l}RcDa6j&lgl#f zLeX=#(n*ls*ejAwwK*wCVSw({dbXj7yw#<_pBe*yllVe@M;&crVk(&9D}OKgDcXx3 zm_}RvXYCWV9Vq2Sx-}|tiYI+>#BU@i;JvKYjP}$)AB|^wY69YFd(ry}jBVwMmtVyx z-boG8@3iO78*IC;y8iAw+JURX<+H35p5?;DOFIL)D|(C4&adGwpiFrbbJ%tC3b|2h zC_$Z8J?m8CC9;7(U)l9DFx=f%3q{|6*%Hm8Ru1BweB??c6~C{@_H4CP*sG=|o$nhs z>UGrw&8)qMIp}e$O~B*VUpMidQW(*!pB(j73ds_fD1NF8A5{W-)WK(o$}W_4o%5AG zd<(W`hvO~jeUsv2^31~F!>y*$YzC~%q;$tNrQ2{i+}H%Uc}q*Ll)BsIU8pO z)~9+KGb$erxR{1F)g$IyEYDsMI*GKIPs4SJ`x?gk_NbMx0l{!TRzc!R>N4;&ipO zWu>&Ysr@Amoiuh=U?{ZWRvdx1FQ5FgIA68U{v&b7p!js?W>-N)lO9t4jX3f_H{#G= zi<4rK)z+qE(%!aUGIy&Tv25JqqaeoVTX8B5XsP~L97+b9|41BsC>=WURZ#XXM!tgo zMjT+Uq~()?+vQn6Oa<42l>unS>@V%OzrsOhO>scF6{mz8xUdHZzCDp{vBQ#atsPka z8@Ivt-o!VFTkM40Vkb=W#DbL`XlK8{j@or(6+|X9&ea`zlD)SsSMJJeX9oA7!-t|H zs1yEpMMumkJ@T{9WeE&7BE!I9*Z2bB?ZhqT=TI`KdMZ0&1l2dytE?k0Gq}spskiOkN-kvDidg()|~HXFbUnZV67>fBiSiJNc(R(4Q2Tm0v}T( zj-kzrw2w|bPUihsYr{sSpLiKvwzbhNVWn}A%%ybHf4?0?-K0|`F<`2T{c$@~6_~&% z{=3ko`F0eWRkw!S`+!jtzZpd`c1y*1x=tx%)5_KNPVNd=L4-q8*Edff}Dfl7yOi$?vP| zZ}l@F3*SL=q_!C%rd7OqeI2_tFXSYF($Tt`5eMgY))dtghN9dRGnF zVZRMADV5E3oSzuD!h0?E+bbi(!G@thV!eb)S+uQ{EcvxfA%^!aGbgF31n2gmPoTZg z#%qzJi@mGrmU`rzjpdscSxrp-cYg>3dDkDuH4CT>h#M4o;>T` z%r!#twS>_@ zdoRW7qVo6_SuYBqBDVzn);`>l^M7X_{yjOzj|Ip%LeEESZ#_FGjH{e^&~+S&E@VeW zeM`O)ZrHipd?>)buIYKd;}LN;+#;GhqSEy652*ek=ZOG02d;dQO;tsaiXTn*g3XK7 zFkgCg)ot)ONC*=va3iPlq-OldfJs=Y`^$GlMMY;Wd}*OlwNtq-iu}>OR#r5s40b(l zan|VuBj{g}$;CD3XX4hq`qB1v_6znsubF84k04nD>+;7}36f;?&erF2-3p3ouuSS0 zh%uvT`^d~D_M%b`6CXcNAUM=Pb?jez@DN`bQfP+2MQh| zyVvQX&zt$BpFdQrNa9;i=~-9Lsj_g_JR=iL9ptRf$d5G}*kWKGB?CKh zR~m0HhW(yqaAc6>TECQhq?igWgdKGGzpsB*ziP`P;qTU!PU3y=hM%A}XMCd#?h|KX zK7ctjH57Vk04mQ(ikM6!lzBTno?<5a)Dvsh?|aPl%BeN%LxH%OMN)*Q@WCpPs1CWo zz=RNoOfL&%rdzFBOzh-(g*+eHv6s z?m1ll8bIte-fdmK>UPDK%Z834g5Y~6LW62#Vd$}Xbhil{vs;4BRZhR#UzaQEenebo zvB-RFetZDyV}c(c`v)h>e~eGEq2@Gj9Y%XH=y?37))TDAHZ6Kvs3nwM|A8SR3uEV@|WOC3AXog~VGmaAeRxk;d`_T3qz)1B3U}*vNB>kjLltl9yJIdM{!29LOrd z)i6=9Fg>m=R8RmkqTHepZf1fFctUw#)7yCFfME6DHlF$S_UhIX%Atorg8*L$xWe&y zS0I-dD@2`O_a~S!D+I!sGl5(Y3xp4SX1}p?^bs++cS__BkBLaLXA(>LRcQ z%p)}zf~`#s3N7Hl@3#;_vvcHmVMs*araoY8x4&x%dZYD4@9j(P8L23cZnD@yiJJ(x zPG#rC2zuD8YTm_yd6$P@UuHw*eX}HE?CfbbW+46zLi`DU&FtVlK=@mz7kk6jZ^$~` z|DUWwFS9BBAZF;VuxVNYc+zYr{D&^{sG5O#rA{eka^ky%v&;G3Nh)TWw%{n>!VSC&L28MNK?Gt=nBk|;upQ8uKRS3 zZqsI(;evZ`Ve zu8hO!491lk511apU{EYDlB}eJ_2CzOW5Zgb#e0*(k4C9lg8VF_k-SRZ!k9xQEmXDO zMwBN_LwN+ejK|$g6u(z|b)-G2v8$&kY`H7LcG?cc5bS!lmhFeW;v$cgtGZ%} zcCYl^M33Mdde&FvJyO{8ei0f^{V6M&}c zn@Hc#^bmaP``s@bKHUlwGe*1c6*&CYKLVBPUkmi_vIbUXFDhVD zAmqdEE+Atr?T=BT0e0#L^)|{9LJ&catqsp$S|na!1aNjCS@;D#4lS4uu5QCb3WsK( zi6fpe;Jo*O`}YDzAkP4vOT@>0eFW_=SOywU(SeGAfMsB25F+v2_8`o?0u$k0ffb&H zkW$AMh9L3rB4AqB49JKreQX@yBR}HY2-_Nr#3z6-H^ENpfYYYp&?4~(!huhu2;Ed1 z94{n3p_|YZ5rBuwv53SceA5=zv5$-B*vFIP2X4Z8Eg^!22|vyoiT_3K&jGBEDo2vB(0O0)Yn*OK6jehbgWS0hJi2BtRuaD6Wzjx&m8V>p84Nn;fVVK&1pK z6{1C(8tWyZB8dh9PW0Epgy-mC17h+aKI&n!fZ@zTO!$Sie6*+t3PtP(sPGE~Y}zo} zhu4)3sPsT(K-fOKJE2U3383-1(1V_{2k`}kgFr#yaF=8{V&Hl44z9LW6ITl$d<7YK z84wt_NCyo3fv$EyFV*Z^JY3xETwLjRIk-SV67tH(z!$ebv7ws z0U;3)Aps!?2?-$yF);}_@JDh7jDmuKiH3=efq{;Nj){(iiHU)MiHVJYi2=jJz{bJC z!~*_tu(7UBf{l%hg9B7dEKHp1B|;)XLc)xzk01hcq&g&A2$%tcL;!{mfUiD*aREgk zLBQ8K`>UX$L6A|9!05m_pyjW%*Y6M%FcLBMBbOn{7Xhg+SHo{Q(PhWS%q zKRO19;CNoBWKQK>i+!{9p?hj>K?#d@uJ?stVIreIkgv~nyYC%(ZhS&Ip2zCuPu-2; zE0Gzvc%g2=IaNav8twaP7S9tFiSF`Ay1w{md0>`1On5CHD(ZDFZ~F-b5zuq1KQ@0F z9KVlGms8n3#06bEP;)g4x|#xE1ARs!fDizus)xourh$pkLIY@_AV`q+yjak+`2SS+ zz3OF{*I7L(O<5)SbjIY~l}$XogD9f(dB;Rxf5xIKq{!2yH?-UL6yym#C$IwjfTOHtf`w32pKCQpZdyARWt>~4L-KOZ3_rZ~2 zr1Y&p!OP=}TIEvmPTJv&ONJ4#<^ac)q)R%(Lp|TgxRov`4AS3jh#IE%DPCt&3_I1eIbvR z-Rk+Y7NMFxJgh2Iogb#Twru=U^vUb7vzlJjfkWdO!w%`DE)OqW?u<(g9^7=wMtQxX z6F2it^Sri{@D%b4C_L!qlwp1JKr(}C2wujlul?jBk8z!^cJN%7Vh*X+9a`y5TJb@7 zqM7+jUXks_sLeZ4*uYLO5OxqYf2~1}h4-evWv}1~c1*Mtp4dvV~5u?dHIeYxrkDz|?qQ3WF^YuB$f5V{@j9kIX&XO0}~0 zdI}ZmcO4ugo|#?lp_NS?9B|yWIvDEzz6jjB%lxD^U7Y{-&U@1=1buq;UU?(YFY$!3 zXu(k544ZL>L+bLc5eD9cPlV6wE?UFLI@aL;Y8_GPj|k-TbezKAaRB z+b9&OI&tvx*4Nf9y&EJNdtURi;8>ydR9|6yOF#jQDZ;rTMvVX?;9tfBZLmpc%hYUi z`lp!4L*d}qv}qIm#O$)+$xv9JsV|Qr*812%5C~B9XD;j)pwBqQ1&tn0&fVnYH`wU4 z-NF@@kehD0fGlQ?_Zq~&v&(cami4nX&?N$==BDBL1r^GFxGXN?ip_03`l4Xx;&3nV zTIcjh|Gck=KezmLKb=@)?+zB`R}d-;42&R9y2FfX)0CXjRdHJdO^)~aE~(n@(FxWa zXKHubsr&K$U5jY66$7kUI6a5uq4AwwGUvXmQq$P+`-ocp$+KmWqzao=r|qL3hrCC3 zI^N7X#lU8N=?&y@hOZo+*xqxqJKON>ni4w^@SM(sB^JJ3wTxRI@tH3YthEqg<5&B*rwEXjH0q7_5lgqhjn$z!}NshSe4xiPZb7((K5oYgH-=drL8vJHI2flIV(y00=DcYGrCvOIAi2}K?DM?|E@SLf;BJJzTEuHmCRi#u87){E zV8Bq^{UkpozsIpUqQjw6n%%d|hJUWIx+O3M8e?N| z`6v^!RbO|B!3sN`Xa47@4QZi}s1?t)f5`M_0jValtF91fG*)3C#M?p=SJ~g;?BP$3 zL8TQV?Xo1@M~|AG+oD!j+$Y4dRN7NAPvn9JQ_>T`j7qnr%m$-g(EZEtkV!2^+d_LU zgD5WWJ5-=Wz1M^n{X`~zYw_aHe50wW5S9|*NLjDo>EP_-&01pUfE{$OS(<|LTMW^7 z1rko*MLlpn@?l=hl>5GIWPD;7GFx2#HAd<66lIFxKid;n8wigma9T3)HQyZOv*4$! z&zBrER+kPp!0V%mPV{w^n|?6HM9aZf^pid(Y*2^3yALyrPuwM8{eG1s(WhH^7;oVRr!a9bK5#lCK80b(PB>?_6fn7qAnac zFYb(W*#vG@O{{LGd^--|&QGJrEHgB4F{DTjG$K=k3!Y2Xe`lG-s5bdR@sQ!g04{g5}->ZYwg%J1Y!P_!>YitrySo@=p60qk ziW!C)F97xVZa;8bz4YXSn_8Ru~t2@hO{v{ZmsvrPgWm!0}%vOgRf_bOmKDr|}zKbDrAH6H3X z5iJvIG4;`(`q}rRTf6tjMQLjqwE;HZz#@wIcPEA7-Im z^WmG0^;sjQ_00O}{_!PioNA#b_ast&7Z0U;62*Ic#OBZ*WF0owl3+QQZG-!2&wqWM zdrOiM^ld7V?DQEzo)1r~USMa#B{a(8wUn4I6ZDULMa!0;rK!>UG2-VP7Sr-jNO7kp zM(+D=NaHSxV+r0!MB81s&f9ts)qbV5tZw%2LS=n{A`RQE?$H5(^}3u!G{gM~1slTW zLGh32VJtarMgMRA0akd;hQTOES0Kw|(RbaKj>UX$@!q9{2uQtvjc66#kw$%-5c0H> zT`Rl@@xgtDCEZ5TFv&{KZ=gY$iT7msrw!ZJ;n9ozjdwoj$Zl_o!m=%7zPx#N-#z8< z)3hgQbe%^wMIQTTvs%nk!>GkC=1N(=XEfzHSCox>nG^NzlL@8?5+X?!#hn{@9^Gfb z%$;$9GXW1%V000r@q<;>q$WflcjMSSQ-WK`dp#uS8&jZ4h@0+y&LGU;==%0yn5moM zZcz^xTyL^145n!*)>a1CYprt(In;i$d1r+(A0t^!{&OAUSD1+(JasFQWEqgOGbcPSqfpAr5Jg+)KFDInKC@8r-d z(JeUCRSUNYz00K}AjF|5O<%)mE$bJ+wH!mtli3haOq-BqJvPMisPs#Us**$8+eA&5plD#XQPNV2o~ zxcW&dXg0BvzdLzYa=Azb+1M80a$~Y3o*wBKxY1 zvo*>DAJ~5|*{Bt0YES0URKET?<*HJoIi=#Iaad5GCPJOHNu9@Sxl`pOut&&fn zSdx?9uc0YbIM78^&Z4CWNg?d;J26$GuvIFkh!!ff<+WADtz{l(srvF}tTd(jbUF#Y zaoq5Wjf###_UJf}v4D`l>|*8oUOG=p*Xs>b|AV>-nD98jcGprh$pX2>!7@& zVaDs3Q)BPoO!7HszT0gGVF{Ab=j=xt7c6Kf`FiSOl)8`(Y^j+a@&=!Bk18jYPxYdgOp}L6DJ+wR(_@%2g#QL5Q^2=nZLYqBDpT4QUJ)(RCtFq3pErGjGbjkeOM6w$>lZ>R z@p8j;D#}Vdanv?+eoBiV`kxu+OKUm31S{g&nX&V|-IFqN%Whznw2l`YrK8u@%C$>6 zNmjq^w0KQ!_tL}8V7e_~nzm8gnvO1-;ek)<=PRVZK8TJ%rf0SGwvuulXd)Bq-0oU- zqD`dwj@Ud1m{YQ#a`lz)^rq@JfKK!0(lV(Pnq8_k*Q^ub`l!;KL-qFu^xHrlJ3*4t zI-dFroANv0npI{V4}_voZiG046C;5-Z`_6xyQ~Al4o%20WoNDPPoo3b0?Oq5mKR18 z5}1(m;Vty4CR$B;`cMbr=y~}LB+6S9yhU_n#ZY-PR#F0X40?8YTN-OZoXO`u$URBp zOcVzsla;YX0*A?14A=?&5!;;?*R3ji${_-(nkLdAc`*~&fU7I@4e9Mc5;rLUPoteC z#>o9!&a{DaA0qGP29S`YBB~nSp-3J;u(0tbS&V793>8(B)IqshXRI@;$E#_C`YsVr z7*~Be0rp{Zxh-f>>V!5vkKRRNIx4Cl2Z;0yaS=`{9|>$hK%_{Z7iS{n1UXl!xG34raKX4{3tiLDcmyY@r>bZv?K>R`rjxNO>H3}_=owa_U~ zr>4!Ikdk2TUe+Qg`+p%4tbRV>r9<1~f1Q!38oso{0 zz2wEG537*D%&kA&KGU?4Ep)omYlP2@dyx*$y8_qW;`+zJK6B9?_)kS+993qD18GNj zQTuoeK+Vx)OLE6oZzBeF)JI+S`?NBMwwe;dc8SB;&dI7VJ8i5AJ1tFTmbKy@LkYexKm*XBs29;<0$LVz175#jC zQdrW*^{}fx3ol|)#4cm8Xtbv(fmZUOj}ynx50X-nQWD(~ao`ha+<4%$&AD`HQBWx; zVo@Z)%oSMUu5aZyyPqSc{#?;PSeF<5)we{0q$=raKoK2sJ8dB73&t@gB(VlVI8lvc zCy9VBYRQNz!5a}s+8Lol-1OI&g%a!UQ?^wt$|{B|*!NM5Y5&G8Gm#cM{Xb!B6QfO9 zOdI&+jUw&aN%F7ZWAxbc_lGGdEc=Je*i2`KsR(rv)*)#^i5KX`4FtJ3x_^395t7JW zF6212j0O=-R=OiUV;=M?_+vsj^X5o4nPU7Rj4iH|h%AHNn!onbb0;7w5?>QxEVHsY z%yfQ{^Vi}sO&N=_4lmD4)|+$P+DIF~XMat$TtOB=T=+ofi(Pue0kkD5xG1*%M;RGv zAo+*SduC`0EQLj6$tWohiQj;y(LtJX_W^R3Ld93(w4xtJUj=BBYvElAEt+6!8FTgE zl##pR^5}5dI2jq8gj>9TrXcl2@43 zEYni)s3C)G`TTg=6YcRp{3Y;;8yojylq0I~vh`!-95Y6?j*3dM4kOV^jhFY!ReLc7 zuXSW|;+Z0uYsrontmr$H6uy1R35trs-;z!`Pt(p0dv``7NRiltZA2$uahPpXlcRPhk1r6j*wF{yE0!8`mL`{{Y4IW(kT6d*77f%*!Nk7ZmiOU zbeLezu(2xfW|zuWvIb6k=~1T+2QbE^ia*}7SUFUny`q5e_3?S#9Qhsnv=SuHU@i`{ z=o$y%Rh^Ulkw3!>!~BdG@G-96{XZVmB%DAuRo#<+4JNn~WIRG?4t9rg9By@<~L`VswXT_N6WQVT4=P(TrYRM`HMEdV} zl-2BR^JcAuqZ&W=SREwB;2#`5)AK>nDYMdWS+%`qjT>@5m{eMw(kF6*cFMuNOzN-$ zg!-tiS%Ur-PM+ZnOp|1!`1%<>NKtKRv%=}ab3hwNkg~XPMpm^37Q=JgLEDl@ET5KE z-P}mmSj-o~s+LXH@y`ou{vf7etNDxT)kMVQ-0X~d6{INnATQ?H$iuou6ZeV-MK#?U zsw?{r*FVu+Jr~={>7%aP{zXt!$Iyy*Ycl*8tu`sNBkP5r?^ZG3*NYsy&8uUn8~By{RWa7Pd$Mp$BQ`MzyF1MyC3A#XGX=y0YLlD zQIE@^HT{9lAwhdR_6T_)?)YXVa?6Oz8Ss`lTf3z2GxG8tOaG5XQj6M29Ui)J3fvv zfvWp${sA_y`oYh7Y7Tfd{&6-NUG?vVv}$bT&?gAf`D7Ie20^ZZgq%)$2dv8fKcusQ zarbje z^o^Jy#d6$MMVvW)d~q#~W@;R@Pf} zz63}R?*L1wau9ix^cRe0inT5`Wu`X!Z>{Ex^{}@orB{vP!UIVO-4I$@CzylSNLuNb zjzorZ7Fq@=stt`RZYw*JtpTjn(V*&8@L#{;ce`R)hoJj+&Jo(qR^^bh4BE9*65N@^ zR})`Gm*p6`GHug_L>~l1LqlT7!+a)yrZsTdzthV3jDUkTAn1BhBQxff_EV4hMqG4-cjQmTzG?x!%x_hsWSH0 z2*0w7+96|SFN}qqz}|M4C_N0}Q+3vt7!(ovRQ-j!g2Mt}}uh9Y*NDG0W8@X+1 z1IQ~&s8-Ts>*hzBLo-{=q#T6?fHMe_%S#3fbo|wgDVK${14zWOGl*qwV&ll^OomDB z(Btmxk#|O-*7UWm2v;FiB|atoxySH4C;t-eH=xEXY4wz2wr^B$WJ)lAt-(LGZ;Ce{ zxVd%abCg~wm)-=+`dDy-HQsd%x3)IqhmpcKg#NauZbH@zePNuB*bbdJJ7?CWp&%6VL$@%_lknE5UyqZO`c#AK1=H)*(y!(%;&@&xdx z?d31;6MwMY2bBu( zA8dmz|H}JWHsTifLmCsD7TZ2Ku|t=J(I6+GPi5=N^e)2Hn3$9U7P<_p40u`==_3~a z!?AWQLxU|&2kNr36s|HjAl_Z2cfSFsQqIvgdL%FX>-5U6dr?NVndBoR3J7}W&KdM@ zV;7}6W24fVXgL<569}W&Pu9xao8Mr(A`78CH7&;>L@ruyZr|aj{cdmw+%{1X$0T-r z8D(w1|1xtaP@P{lb%o5Kv2&4I({kOD#0Q~Pq%vMtG(`5GwpN4ZEremWLfV@b?*`{4 z1-;fi`rR=#R`UQ@qA}(wL%zwlLASNlRGR4G z^4_>^B`sxq!=n{kCQYT|;4zmi9kCu*_~c`Py!Rd5l@+whaDp#dVrNpeREp!WLe=Sf zD>|aV+g~H*iB>%>2WhMjI_1G=8Q)cHJjCkIaQ5&PQsQ5Yn%K(KE*$NiGt7;f0}n($fmqIAy6hgat1?EW_Lc(t2&rsuibgoy)oJJ3OC0Ct%PY~#>HV5p-b;(k|bA<1bBAVQP1Lpi% zW}f%(95{MPNO4)%6zuPk`ch)#H1%AC^vZ=2*3HMrBz)NF&A1HR{c^rjfhJ9n`8xRn zp`jga;b_0kqdJ)1+MdZ(eL>U{?Ip0$quR%r1g=9uwHbSsBf~dCb#qzF`_SJ23VUI_hv#!T7xTM*5s@rF5UC}V ziCNL((f9$~Gx0b04fqPHi_PmNG;tPuE=BoIDL2`GHwru2ln!k@{F)oK$rOY(cDK`a z0LWkjUbR9;ybgn5%!*Mf{zg9M5=r)heE?e_)`IwRM%8y{Q@ii&+iN4I?SOZ9i()44 zcDRh%h9+x5s{$dsK6>`wa6AW##${(R-Jy}t-RGwzPQ5mkc2yJTB`Yo*Co8)2x{N&} zM2klKiMjaLL+feuEDQ(qm*zEMZ%2C>?e*Uc)135U6fW03! z6e6_Q*Xaovz=@i5tmM+TP1UN3hyRA@Olt0xHf*!iN2F>&7#?OwbRC`UcJ}-g^`ioh$&hi=WaKu-~1VX)#7pK5qQr4;Ta;M`xBE$KTX zi?ZaJixg);&NH*ibmRjCNQj&*!x-^0{At2q%I4D~)C;j>ML zPv`AQ6!RxDNDo1TXC5qU%9kp5U4E1s%1W5quF_G{>eZvzWEv}qN~*>Jo#$ixVefz4 zvGP1b6JxbOFxYWiw6ELeyTebFKjOa23*zWSbuHkJVk35Jljz(*`+A?UMX&mG*$FSP zWWRi#WG7Qk#@G1!ZvfMTx7y2D^sUsZuP>DDqpcV|%M)lrKFB8%Jn38@%6wx;HU^S5 z&&Ksdsp6H5?U<@DTwHhxYLtyh=q_7XRLt*Sy-q2>a1}4-e=Qp;lYAel5nY&4ICIuO z9pf{^V5PN=tV8ryD;6#0UF0MpY7b}wNM}k#Uxa!#LcP8&o4FYA8rIUg0MQI zJN+=aC?gr9i?pD|e25U?BPk&1Szc1JjZfH4i~| zDo;G&0&oArg~`ixrYx6+9*iZLt_n$}P664C7gWvOyxn7Q*-u;+c{Nfp4eJXk7D`*iIk_f_*usewTqtD`51)Wk>s*JHim;jWYLdu=8 zzPZ$^&85P7@%87vP6_5t2L($*647c@Tz_R>DqNm+UFIa`5cZ6Q4JVrY0mmga*r*+hKV@Ol8ZCR_|-QpkD(R`ZE8 zuQz0tM9@(xy4>oQG(yRBT=i+&@c3vqdLCGoOzTdg7DjA! zbA#_3_Xz6zxtQRW{fl?69K;Yx3R>=6HPs=xj@Npmhx~FgSRbO^Wb1o=`?a&FS)@H9 zXu0E{8|sa>9o$t?+guRo%RT7I$JG;wcPa zY0YLx-;T`*p66Idy2)e8q`f&_s+ZP8>uRZ4!Q$(C|$(YP;RM#TiiV z-h~Hi3W=;@7_bKngrL8^nzL%J^?;5qxi0pDbxYwsEP8uw4U56{@VH9%BVV3|CJcn; zU5kDxVtA#%)Hi!tmz9)Q+ghtvYpnrkqKqJ{+g#a98iKmAw}s`*@Eel|SmcA%%f~Pl zTnA?Qe|R+(GjzQnbWu^wp?pUL)GVQC&3r6iuqg`Fqh!A9ecx3$e(2n#cHwJt>t~D4 z9O_T{RkDgi-g-l(anm;{*DQ9R?^65(zr)#Ab_JAiHeq)a`5$Ukt7!pdNF)b)uLoc~)r64RDacjT}T+r-s$QK|e z@af%!QJ8rKl9~h4q2v#IUWWm69yY zq82|yqIMT-=&|-ZaQ=c6C-YG3dV<4A4`~8kG`Ft!A@7pe*sVYON>PhXZz^#4Qi@;L z)z^j5|BZ!!2%hX5JhEh_IyoMVcQ6C;_VnOgEjZ7~6M!>TsehDp1s;;RTSzn;PaVk!by0)BMwzz@Br7#{$L%y@=Sjq>> z1WnQN!qq6EWwO<5rG)S@3JhXGA0?EM?SIJsSmhoQ_KN%Ta?`qMxM8S}np z2x4eg_H>ApLeyjy0#)E*t6EvPbY46Rq$^gi5D&q7VQ2#d$MGCbYsXFEAfm=iK zQ(L4mrh?AFsXrhQK1}jA6Gk^%zD)j;5qv@^l{Rr2h$82}nIDZA-0u4ejqS-=`V(mz zow-RzOjJx`!I9;0-qv36VARSiWUaO`9lSw-#7$dKX2;9)*KYfRhmaNNm2XT%lVf-- zZ215_y)uD^v*zY>Kjq|g@&Jc4;pq=JEg6vr$Gi~F9Crwl|48)CL)JRiR!G8SW*Qaq zb%^TrM7+QrF(HoTVeHMuhPZ1Pi_SM8^YR4$TAxUI z^EV*-sT;CKro@|-`Li~{fv7Y8lScKgLM%>x!qy72d{o%`o;tpxKGvym1)8}Rliy4A z>UQ3Fn16X0ugW=AKD)vP@-n!#;7{7UU}GBiAT2c7E?mk*7c`&>i+8zMEyN^^*%s_s zpyhj{l?hg<=bH7)RTp1MMdmoFdenD~V!JV6Spjn-UGy6ze2d-) zL&bdI>g&O}0W#rwo`Ck}oMX30&T6Ibw4^++w`-`A72Mm9&O&zY;`p^yqA}0HVlMkU zG>UMDd6^WAEzmab=0w|D1>2gldI`o_C6~_&mI)qQx?Qa~eoHoE$j_usABj5c_%p*BXAE_>g)j#)nap3yH|C>gqa4|Y@ze8A#vMjbn6v2m zGD-17$AGC@aKEQ{yUn!Ms^4qe?#$=pu~R1csI=yydFX}7+~5bsOcL%CNyT)_>sx%2v0pwVyyYQB6iXIJ>(#E7 z_klPGv-c8VM&-Rvx^38z%Onjs-9x;9Z(!}Y$Ihx-w45!MfvUZmM@!QwG=7ieu&7Pj z)p<0?0CpfV*hh%7u~Zv$P-VjT0fb zQdMK|iiI=*@am?O?LPZU+WM*ynX@PQLm;HRm>pkko@8Ql(%d<-T+S7>sYQy6z<_I= zVn47KK&q0Btub_XFkPN?y4#X&Ftz;=tCL19ri*xVnSk-N>_QCdA~EA8HmY<4^Ms#j zGAZnNHOHz_7kHCUbX(Y1=1^zc5OrF!GMS~TZhLhN__L3_y$dGGpdH*e&DK~Wm<8d_ zvLZzh1cePV%lRZd;)cVOje*iRS`jDSS*w`YD&>n3GbX3+ZTTlBX5A!pZ-Q6QtFiVl zpEF16KW3?IKIi&r+TZ**HYtGc1`zl%?cD@vJkJ35yf>5^AZE)w>4gbc|7ys(Q&{}K zm?A-};aB@Ad&iQFf{RrbZ)I#Pxlz48{6{k1;Fe zd)>Dbv}LN%RK2%5W|p)2oTknjzv+GAkGn;jE6S%2_f>ZNCA_kG}ywO-kfVetMHZss`V? zU;QF59CJ}t%dbpZ6D{g?{N{CH6uTg~8U2ho8j=_F$q&b<2*oO4v9cxFb zMSL2vv!b#O9uGj+`PtIMOj+z8NNa^i*62xd;~hw$T6>Gx?Ylf5NqFapB3{8!`GyLI zRg{>so%f7HpH9j?4?~Ygl)P0B3wN(1*G){q93m~YEv8I?a*~?%^pvc3+-gOqh-+Zp zd>v4^-M;zAp)WD-Lb9fvUP@IWo7s8AbADT<9^Yj)_3M|q)<+ItF2PwFggPYQQ=&jM z89Vcymz{>yV)jP{AInI2uNFF$>(Nb}pKl z7rt53KmFv(hOW*Zm@O2Nf9)3ZD-4QA;y&#*y7Em9Bif*Gh}cCBV$x>NsApl@n{A{o zKo^_vkzufBBk4eq?3MzZ6XUH9X0W~hSjMq*8+!P>X)O`wT6B)XPfJ*a zL0>L{msiLjAM#e;^5S8e7#llV&`&8LPK#g6_)|2wJ8|ltI`Pwty%O|RD#n?nky;n| zhefAo+?{dR8IV?!tg%}L|Ii*F@=3z@^Ay~SQkM|(qjY8DzjdpNMZQjbq&($uL{esT z$9+q~U0kX4iiB?zTA~Do*r40M>?V>f0Gynj1Vu-sMTI+ej|j5Lt=6uGUoP3#sm&D- zdVd4Xu|MVNfraH*i`OTK zgf@C$18AELeS;rRUVb%%>)&(A8K4*xjJaQ-Tg-90CE%gX> z1UZ_#izb{|TS|TKp)ZWua`?9hr3@M|c;>>LUY}@ehY;qrRVx}nT!pw_e+l?bbcxea zGeJJ`k44poS`xj+{4-8RS)lADXSKryYF%k;w&~9nYlW8g+;g-9-76$~klk+EId1a% z4LArfUWpAfH8_MiP*Ebf4w#8Y_al5fV+}ZjVoP8Y;skXHYBke!H-M*z0%{v#S$U(1D(#7~(XS;-iwfI+r(+E3QP|Mj&WBLhG5zwhnqi;%7oG3&7s%DmT^ zV`e3PW0ibhg>|4u_EO`{kT7A~s?DlVH=#{W&S^ro?*!cYXtCv8hO70G9H=M!l!|1|u->##M;lu-Jjh!TDV0win((Z9LWC- zZ8O3zc{AOLkEkXrKUla)<}aix`LSjvKyP^d>i;#XB}v3rV@>!zZP?&Atfbch< zH&FmdC}b^=Q0_1u@`#Fg0!N(%e&(zUELW)t>Eq2&+*5oC{ri@uY4gLuJ8p?W2V&Xa z>hhf$H9)f?+pVtBfj%m9T{qf5H`*#YLGO97>(#iGsHZ{AwXQa0udmv6UqzePyT0cb zop9fac=w-A*I+36#3xhpf{Vvh#)5n4X3mU{A%l?YnE(l;&O{rWgOyG|q zX5$p!{3NG0TJ|mdZ$M)Dck5qJUNRVmO}$97*NL&Y&;CTl#BV_T=Q-&&Z7GSs6F0fw zU`hx&gXCp5Id*)fNRDckvzjjoZ_xsyv6JgH#vy+bK@nS>e!8}MoG`kNeEZjlOi`qW z&8&_0hZ58?-w6er=$Kx{Nh43RTbnxWuN!H1l0v?t6MMe3I)0V+8vs2i7&(!qdck95 z&%;nPimKGxK>_7Gkix?#aTM|T+$F=98IuQb%cC9LJ@QN5*Y4_0h(UqvVq_&P;H=2n zPk%_IiNvHOOm6KKjBWS5%I%N{_9-1BB|^(G@N*>1zP_PVtCa}kV;z(5Y>=Hk)e$I^ zA;SslC1UGMu>hPmYb$8=NN+Wte*Et z640k{_Jy%E4G%9a7cHSjDa#a!O2P`T$}1yMRh0`*cXaF0N~gVxY^2(~rd#~eiF8pG z4=ZF7S&y}OkRpErid6HFR*`0CE*_a%$Mi>C&-(LhO_@1wDt{eZ4#HA@#=gd4B!$ar zF!AO0rZltGJm(!)CpaWM(_`+;$$o+itJ=e$zJbZ61m);&t@>uErW${4KYzhiOOc)? z0-_z=TA{rCvf|T=n+d-GEHAIArXK5l1A2lPV};%(>A$wy!2SmZ4?4}6Vve(+an544 z{MffTQ;e*v-BXnuFMrC@H3?~neGiPDks$Rrzh4NJQ14X`A2ltPrJHs1}nTpZ-zN#Nuih9G~VetAj^GKQ%Tb&s4Wu^eGG2 zE5I5bwI%`q$FQ$nvVhiB4ziV07>sicRE?I`?1^o-i)}YbB8US#|3%UOzAClqm0n*t zU5vSVQ-fQBXO00U(}E*p1k8OuU;ol@KG7^z!5a)^eg3daq`q~k@%Hiq=@zihd(^y&`kPpomllNVAb$TVC=!bu=iH-gf9i2qybzjE zyd#DyqMc>`SotY}QTVLFKjwc$pFn4$_5qBgFl~8XR7bQ)A5P(d(j7650H)a=Noi*l zAE{0L$Ht;>?|d+YWE2le>#^W?71||GeYn-Cew`n91py)QUSc254)0(6kEDUYZ}0eg zFc*wgrC(5DDHzC<$L}g=N;*pQ!Vqq;Q#fPS{-+1tzQ!|Oz8cKy2a|*=semXElH!lC z(iSsDl%GOV7y~T+B_O7tKE|RMjjbau2ygBMC4p2mFpu5wdKw~BbN9BGLhbwiWQ#uf zdR8H-h_;udd_C+~c!`M(M_K8es(kIVY`Gr7#V@xJ+bR>IpQ z0N-Ql(FA7eroXlRsPF^4ddw-17m2Y}0UgNe?y3iG;E~@{hj3dRv)dYJG*u>M1vc0@|lh}sx z)rikBhCN0u%+vlOO}&w{-smL!(kwS2bltgrs zS&}}OKtBJgBVea~FQ!O0yCBu&hv?l~**?BQj`^yC_Uz1 z*N`zRy1u_Ic^`{G0ry=k`Th2po2}n8-eErOrd+_^7=5!;83-x^`*gCJ{-nHYf?WEy z7q1Bl(W2`n9ifkFWUoG}YyJ_^D4|e3%>g-b?F#}h%3U>8Yrc_zoR;1IkK}xrT4pTN z65rRQJ=zJIZLdmMPBcTb3Wlv^o3(sS%7DX0pVmLwIuBaE$&yK5sKCpp+_c-ZT(GK( z1umrk!_(I+&66#(fLELBf4xURq}p( z)WiA+jJWu9*WB_c=tJ5&KL^SGWs0swFUTvH##RVF|Nv;bTa1OYFxS5|K)l!@Vm z=UZ_NhRecw30#ch>Rt;}B;scC2;`yGWLuh|0iaq%GBoh?ayIEw(0rN~01EL>HI_uH4f{L!z*e#=j%_N|V$E#>sm~ z-hp)S;yC?~hEU#+N=k_`aM6|%N*-HWul8_oNO@Y^z#VZdAzzi62n_eq2oYAUbrkq@n2V0daCTTZL}oeSLVtG17#N z4(rnKAlalah$PYS0yh0I*$|bb$Bi-;Ix%-xJUnGS)`W`#jeK2eIhz$~nM^2Y?svd6 zGLan7Jw4{TQxA?juE=r*cf)9g!cO{Yl%`u2eRPWifS)JON>BxPe?E`UH49T@N)!+W zALDQ!Bb3+GlMNK(=tlhM!y!z9i7rvIWVE^a##EXXLPLK{iHvEOrt_=za~Oys-A1(& zG&f;-mQ4_G>?X|8lGwgI#A7^z1J56hm}IC}Y1?bk`ThbK)i@CUvPT^UL<(=8hJOf% zQ4`_yZ{ydL4bMm3R@qYWL{!wYz)blX!0Gp1vh`cReMXWdS;8L6i}nCqcph5R355ML zc6KQr$niT{$s|)_wCD8qM%i=*OMYq;bc#uMvO}UfEr#$YSH$!SbQraENwM#dJG5}sZN@iGA?T%CY125%JlGQSK?X$VdLq(c7+0gHQl z|72GH`FWyfTb2S56()zt7C=nl!)+CLsV5JfkEd;>GzQxhMiMzhtfPSrP7g* zMmQ9IfJFMl{TO(u7sc>;I)GWEAQA>t9rz*|j)g*`lw%*&=1cgYZfNGa3THSvAy0b1 ztj*qyfeHvZZ=J|I?Gur}glNsQKdlDAe1#j2ilUeYfbq)R45tQ4FK@?<;U-;8NYau} z<)_d|AGL!*GQ5kre*;>%X*>||Jf#uBCsAH|L%yJe^E$B)F77?C{|5a3INDsgkx>6^ zn5Q5lw7!SPYkY~M0Rd5i#x`Hi7U*O)HHQK(MgJ3xbL zDS`diAq^}Fzr4wkL5Ayqzjt9vZ$Oc;f)`P3_sv@J3Q*6b>_LE zI?s>FVZ+QD54Tj$l;g&uH%MOM6FC~fSfRmRe@48?;8C8`_xK}8^EwPN41ij%yOQ$x zDjH-&AyZI<8bG+r1#R~HG?OBk<9VD6FVxR0CzVQf(4OUmAVb>2@4}8R2?&%;| z6kIdMbQ@}ZWEsY$Z%xqX;aDOPPj+~wYMUgn34H0I8s4x2WWm~jV=&kRQf2+7SX1Dll{j?srut-=;; zi^GB&+`pzc2l^xLn4vXph|w_YEZKjR_oJV%MmyHXm>fE29YUlSNOLiXw01ZE22}eL zF>>%|F#HfHw;0Ek1}zncN@K+-10b%43@E5A2f9NhI&3ifM_a<=jKl_x6w}3rguXyda4hY!^qvM8v@+LpGeLmPNy#YC@{{1qG+4;;|2| z4IVJ!P(hOdr>sZ4R{3)U0zE7L{K<`093yxG) z>&xU4`+AnCB&ln3sY+u}7)?oP91YGnGq<2FgzySsa)WSG_wlgL2?(w<56c19f$Jm( z7aRg9KyWzlEX^#CZC#SEGyo?7-mTxM-jA0en_~$pbD~l z;jv)C2QFLSiIjyQ38Eob$bQGuI?4fXh&0Njv~;n(()*&1?C|sKdzEk)HR>Y;{ljIv z)IsVedfh_|VLbeFBop0UD5?;i008c*Uy$%9K_H0l6Ky$!HhdZ|MAJv_L4j#vYKzrS zK>?aMLAoHyi(Sqp6awK(#k_Cuo)PY5kw}?S;C)VnBT|sHn!sPmVFDQP0osWozcI-g ze71N}ABu6!j6CP>8z^BgDziWmLR4YYFt6C8ZU|v$$_pn=UB$$mfG6;jd)s?+t@Dbq zB*h}H3XuYWiKnF;WxxwC5D`P{!u=#n)0Dx3j=oRnLDL^+ps|mNJx_Ua3BoOPz(v)N zhVuzMXQh5S!kM?RHpp?Ju&{A}fTQB#!RCulH+AQLOAh>wVvUh?!zp*-;OaV{VXwYcOc z?Zs;~Kls``HIeUmnP7<>MESmq zm6{KUW&w|=m~d3*8|m}Dhj>CQT53R+=by4!+xz{?;vg3%)lK#G(v76KlkNU&Y6bhs zqfkWINo~tZXvtZs?Lh?#&u+EuMlh?NU>b^o7L7;fadYARB`m&+o}e>l-!Rp2+3B^2 ztw>psD^N8tOm3&PnvpxrpT!BnV@7F61^pu}Gl z({M&daHRC%cJ!Jqamv8jU56hur#Ifz^YPqc6X@SY$HhjQAae%Z3<3CaqLj2(1g196Z5(1LnWE&;` z=!NEO+{@v(ZHfxzAkIigcG5ZOoZzUnlT`lEs^qePLOY*s&^BCm!6TuR`E ze?)=R*6KL4=QVHBA62DC)+Cgz3>#wu-@w65|DdUJzJj>Ed|kQ+ZfOVPx4x`iyZ=RS zK-P~^=v8@k3Hj=kr3J9&(%JO4=Vps1jaE>kLo3y6!-+$#mOaTM^?-Xj{)v01wD67?xVuu>f1?)-WF06o-!Cf-jFhr`@?w z=T&&mEeKDJI-dz}!R*mGAeZVmCl}PH{k>Tzm!6f?4t~u7fus zZZ%C98jR6gisNr%bBlUpZ|ZJ)#bre}qERR*-J)g&_DgJ!liSb);8{HEkIf-N9vYFB zE4~Ga$#C>!1X%Wg4R3GtT~7;I^YR5gdhW8s%13N`?hgL(BJ@XL&F_dVXWFQrC zR0ek8TFGg=Ht&dzYzs<5l@QB)e=yU8E&g2YKbrj-BE2oAh<)MUmpKImE6_3zx$b;X0SHgmJUz54@Vkh7Dt3MuV9e)80Nt#Iw3LO_L{Asss7i!e=O=LYh>mVCZE zs3NEElf<~9-k*@b1ffc2WuXE6-6m@Xlt0JL^gaV@T(6gF zg&NPUxIQkF7F32${PTE-NeGiL>~nQ}lU;V04-=3FKFlKy(ux;PZidSK=EU_AQ--8t znj#HIO=8l{^*|nMiX0=Z?@=Q{bluO4_}!O5m|7{$e!n~RdBxf|!UInAfEat*ftac= zZ7AVk6$U*+jJu+;lQ<2yMB_zz0wBjm{MnuJ!S&#CY4VVTM3=aj;rCZAv7Hz;Ruaqm zr-K&ZHkcTYb-k3JhDN%dbd!_#6I?=&IM}{Jq3jsULy$<@I*u9@$96#xU;#MX`wI8; zIclhYW5%IN`*Wm#YJ6lq9FP{58Rmn_pk%?TfHmO<6jp*EN&=*M#z2Nt9aaEYxpb%B zfGQHJv~+sDmpP5I@7GO=G(J zCt@7zqOo^82?|IVVHsRdayHy@RPg{(?XP&~_Kw^> z3xIy01qZKOjY7&%9mDJLt7#I8TxVKqO)5ybC`X;3C)z1&t2#5@O;Id{U7<2{CKTPwion9wHJGC@!fr4O{-KizY(dS!_)0bIvJywzL5& z2Nd_f9pRUDByAimj~^8a0Uz9Z3xxcf7FtE`F$=sL;yg-4b*cS$0`#`L;a~E+ZuF3y z9pIE)cveIohzOGqrAOndaC;Q06{UR!Bur9?4N*zXnwJ+&R!LrQ8xFwoo(k}ifYVv# zN*Y`Gf`ZoV{}A>SU{N*S|91medg+#>Q(9VBx;q6yT0lCaS(+uJyHi4t4i%*(r33^- z1QbN1TP6PczP|7G_x(N3|M~y#-sj%knK|b(bI$C{xp!vHAgcKXzA||{NViS#uhup4 zNPm?Axx$z>o@Jq|L!NERs_HPz^G9#y*POJlI_wd}1qHc8t;69uRWoBC>foT$?LMkq ziZ-fe_Z<0KVdZWWFqV^{IO=bHs-@c-D>4Nog7G$PIKQ%1{Qw#J(>6ueq>y@$$OVjs zQ&S5+5oRSHs$qm397pN!;ICig#5FN2-*KPpz@g)Mk*33|qKetDIemggglRUd1!A=pGDVTDI`&zB(=*!po2KtDWeI8K3Wtd! zhaY69f<0DO!zi2Hu5{Tj6e7(+c)ex;ugDfGKuG%c9Q_|FCKL58L(`O^7o{4g*#06} z_2Y|@JcWU4vNOrjWCSHQap0^|^=;D?`JK7fpzE5~TeGwE8w%ph>+!i1{=BwSY}*Fhc}M*TWbom|VOdXQ8}ssDFmqvPZXT zQ%h}uD;w#^!Q8Y`+;9n>?SzG&$KPTsN-~a?V}OI#HO+~h$EyOqUKnc~?|T^@0`34j zOOr*gXZF__UDtzgx7AEnmWby*OS6Z1hx>V>BGm*5%1&Z%ZjC~8CCmrCx6r;ed;Yjc zO;9zC<)2>sohL*8q4uE27GE@qRwC!bhema;?v*s(&kIv25Iq;>mDS)1XSrc}f)%?g z!Hzt~?I4!)Kiwie-H^ed`T$?p<9m4_u^BEg_UB&vjIqA41Y9pepZ`=oe~4<>ro@uG zA2Fflb5|5t&c}2??&Z17yHs10$Mr)>)}F~6E*ba-=^#}BQ+uB)Ezz2Axr(}L(up09 zuJ;h;74rJ;<((>heH!JTnTRTF?If@c@ZP?I{Qk#CD($6Lqpnegprhkkm-S=?ZpCZf zLG(WGBnZD$TiDt1A+uaAv9{Md84i@XmA5By9L^RrUQ~8}#m2#5@5j(d3&_$Y9 z9j24g_k3ya;3?XvmvawDUf+>=p1#({qJQ`H3aawe9nh$r(Spw{bzA&(35h?3+vZjm zfFq=+XkM^L*=yTKn-ZSah$yO@Kj+I|3p`*@$07QF2<$3(Z=^1;$;pciSfkM_ge21o>eqsF}`?A+|Yw(SdB(L3TxT;O`5ckWpVz!_fW(z zrV2<2r>ga#=I7x*J-c;w{ShbjP#=GD+5~%X#WLj-vre>N2yhX|VQ0_^J2%Yvlo7&L zya;{6rDJ>RPaPR2*(d7mrX-_H{eC}1GI^aHIxS<)G_0_+vR+9|94mio3;I=|#DGu( z|Mdg($=%QNa}$3n8}+a}59N5Nvi~Y_Lwtua{8ui|>T}OvO&vpz?Yr@e1kV{pZP|HS z?t*Q|@v+L~e#P9L7$inBf9U;3yj2(S@_8JGK!g0Y5hwmC#}qk*tGT|HFwQ|~+Yy|PdY4ljEERn4fn6!NFi6Xdham#2{$6=t^QdA zf)#-9kzl45!xdbTkiID8)mJYRrMXsfUh`X$j;l(P7?2=m-8f}c%jk&hpjl9n4z=1a zA!NH00(-jQR#?f0)qg-fJ|aDxyn7vg4{e$sX6)fguHPU*RB`A|{_Dl@0Untp&>0|c@hb<=w{7(`=>23_M|+o${wRq9eo_l-ZDisI@as4w#eIZ zgvLD=##81_g@2lwLE@$X!gc}#{@4(Hr{+X10ysUGglMaZ^BaqB$Mb($r|dwC8@IjX z0m=3?egBbq{HgJR(fG~Je%=Gma~(ll!HCxFszgniqGwDjc&^)wgHZv?)xg)=iB(fLL{8axV0jJT=Zi@Ce#@?x?wShr|dfzbf~LGupqA$5Uoy+Myt;kbM4JT7N67 z5gaCP12p|LIEL~04FQuu$S~tq$CJ|kuk+nsvG4yo4GQyPl=FB5rmC=&WRARW7^V69#@3I_Ud5978oqJ;ki-@u2$#`18T| z;&bQx8wQ0*!YeQ=O?Lyl`MoFlJ7?qu*yt+%gM_(`QQmix_R!Ni{SKVnmp)4VhvU)i zc&1O-bi`cs8wH(^&g0R4k;<uB5C43IGFfb|Dyl*9kt(vNf!Dq z;O)=*7|Q)OzxUt#K;eGbYxoc1L66#w{DXoKneN1lj|32@{~$&|v{qX1$c8@(X~4># zcTE0^HzwPicO8Ubg(=y^@%1K3`d<)ElN$i_PbN_RNaU}dmtc{9;Kl`xHAOM`=*HyZ zuk+iFcg;xPgxJ@rahNbk}h({tXav|KB<#4VM=?Lewd{#DGNe?@nczI%-7Cn?JREA(3*auOr@&;N>Vl;!wGx8B@eQ8xgt zsqD}9XBh80{|Lb(`L$91HAb@6MtV2E&;5n}psihFD%om5%l-{;@jmPib;G}a$Ak44 znm(7mg@0Oyd2G2s0oM)xLXKg^u`n!Y)BljoJmvrE%T@5du+rWb9dT4-{hcZ*;&1%_ z0GB@4re{{gq}aXuSLC0Z}ie=r7u-cvDI&AN-3qN%8@MZ|*RGDR-UF zhe_!)VoWper-;&x$6v1}x%2Z`Fn_Sae*^zZ6aOUpJ4B!#(-QpO&c8?QA!Hy~_zmzy zND&~TED3Pt|H1!_gsQr`vtnSJ2US#xqV7&a&fme!q&o+WRY( zk>=s{@R52Mro>=npOSDip^&A&mQ^d&?@(^(ruFPJ%sc@__0N&zrAtj!c;vEOmhV!a zR`0Lvz=kZg*PZVznY zMTXIp&O6dN;^frELJg^#t8IWD)!_Ff&C|vlq!o*JvqR5Fa#+G|Q`C7VD=a12d z1Q7XvSWbD${hTt{;ecTia<$CTj*ZuSJ9!R$L04eGe(C6!p2E0I#3`}b2gyXYhnGtv zQ|Xwy(Gfz_8+rV5$2Lct4B;+)F2p$e_tWp|)mA+KC2=0SpOOXc z5KbOkrr*m*!~;tmjvl`g1go2=`T)E$E03h*s6pyum(0(*u7UxSpPFdj%YY$l{EBG0!f}=li>SE(x0o{ zL~)}W6Fi7TL)|R8H8_8QXEv$ z*-#vsw#3J@GF1=|=v;4GK}d(GGD0t`mGvm$n?G4RoTEih>u4)nanU4E(_tfWS`U*s zF`H--l1K6YY@O*8I~4gnJ!>AcQ!R(3xp~MLH6U0Tu3bcGpYs%mga0ZSMQ(q?2hWl? z<}3FO%e`3c-w>kC!D=!Y72F-N#HIBttF)C&J0M+Ad*Z@1Gq2_}P&7Q89jr9Kqv%fu zcl4)bNvA;_Xm-+*G$Bdv1AF4kU;LN`j}qhQ69MCzrj`d&JTU4EDA34TfO*?g#jlas z0z%k+mSM7LY-G~Q119Vtlt=RWKc85OAtRESSVvhEm|xm3&!_qtc!0G)K&dtIe1p}B z*@>9v5&UX(h?vKqPbM0lqt-%B5g}*8YM|4^YR~Z#NCS|TjK1Jt;dVzYB8Y@To^9X%< zM43yR72D$D*Du)V8S>FwHX4f3UR@@^y)L#nQ3kk3=9#a#if4FqC23TZRh&-#vLbcj zT_|t`7QpXTdm1LGB$)S!Qujc@jK!OMvbBE{mhF{n((!KLi};IpD|f`UiR!l1b56!P z8Bdr7aI_;^aeV#nF{I0sjtaMcS*bq5ZV16fJ_A~gA;;!% zJbDO=kiX5uw>0quYJTV8g(fziuLvYA7!_OOp@{&OFHHXIOHM>Y^xg~ZO%kS542uyF zSXCN{1S;P)#DzvrcscC$3?fP&pKTc${%4$COpy+g_|* zhBq%y!&2brw;i@8PkI^5--9N?EB9tp&k_(V_Ys6{&3kJB4iPOG1~a`(6x6qUxuhqPkINwQ<)g*gQbCpPp(RlQ1l=*l)u)P1bYwgW20f9f zu+)*uQKgb)WK{fzN(#^pUsXFasILa}V;?QIl)M}<@@K);eU+6?nBz?PtA zJvH>Vrq2dL?ZT`;?+EJ!VjtY+V8S>LK2~1Xy(9a$62?3IH4&RiR{txE?ANrGy$Zci zXOMD^NeBuqi>eIRYLHCALPPNP;;!O`gZl-UZK41HdICAsJN)XOM06T*MiO2M2*$n( zTJ=&Ow({UBo}}m@GgA3hM@|o?>fTaRe;v1^djrU$R;5{6_sd@Gv-z#uhqJ!;aZx9) zG)>jlGhc7QrgOkFM4x;$CCn_2qs$mQ-4NI1V-QxOky682j%3qf2>bV zAn*uJB1I4`tJ^{%be;h(qZo<+6C|wl2-(oX(Kd295dvgsR*mbd>c~d30Bnb*qp&y* z;*sMrCJ9nCu4Xdl$M+Nx7WznO?vQV z6lT;Bbzj7U5X_oGpAG_Yd7F`A9&mX{jns)GFIad>nxNl1&`KeZC%^%Q-A-LS zBk-@hfK2cws@vnH^pm$!wGqFC(7oE}KU= z6iX1qr{WhmdPZBX-6EhbSQut&`T%nR$I=`_kot)o2kVB@Zsl4&jtm-Ra!cPmJ=qYnJifcRR1`tCf z=G21-#e*C4up)t=L$-A6h^s=XQm>UnmX4DSx6+P^{M>>8SXKwmc<4hpZRVh*>o`=7 zsm;04^Ht~bv;++j$ci|AHHSQ!nW~A$^qExz6Im}8V@_uf4w3*Z?tx2&<%ZR4-yRp2 z{hX>HjRn|^$X!Ta)!5GNK|K>9FVV=$2B)u*{UVqNet_&AYV+2uYSV|5+yKM>Gldaj z2tC`JmZfx+0rNRp^}R*q;Vw3zL|u2oL+1kN9oUISe!i;u)%@8{)gajXp~?g1hxB3##wQXSZaZX*`AIi z29~Tw^wo6?|AX8jC^s|35kdhkEQyW9j{#fQFi#8JvNQZOU$nGfnp-(tDF^POEWLW6 zaY;e^N+YDbOMhg9DLqfn$+~v6GI0?ko-joJ;{`VyYXGbOc(LQuE^MYm@ZcM40#TkN z^x-ZduhGy|6g{ss<(dODb6saa!laTH!3_@vQc_7GGhvZvtU&hz&Bb(kzazbhHc~Q5 zNfqF}Bd;`(4XdnGwVng+G)#}CGq0R1D{;?e*DAc6`Rn%6UL4)}S;>qD!Z5MA)Obl& zGPV@7Q*vWI6^DEpxJe=8>zFoHlt&p9xioJ$HvmU*bLvj8a0AV@hg18hd`p>jjLg{3 z5M#0nwOG7J16wL&r88SFQ)*GBUAh(V_z`${i^~N~`_}YzsqZb=3mzkSg1(~x@W6($ zSwueV_awcOOTMvK|1uwtZ!UEzfi?E{KC|}VG5shV+S}$lV#|1Gp7b$O@QR`E=N!z7 z_jJ@2^1j_wuPQ;ANIuy2J_DJEOqph!rPj`GtEWAQGabrt`NJHsft(=V4Q@8ZjWrfz z#=9DnMrjGn{G!W9AF=8utV~iVj#TAW!fj8Edh8qXG-EMp3xcm|8d~~vf(4ECm!g&w zPi(r^5Zg+UXGyelV{wh=(1qy01ve@4=VyH=N=O znU7s4+s(oab*=g@B%;gi?C+*(lMcqUnw;R?Qz7{9T@A7%f*3W1nm-x-j_8uuK)D)2 z16OdfyXcsA1;jfmlkTT5kyci!zw;+Mxo4{%zO{-243Ic7!y;X(C{?0x6}0zweZq)L z1@rJ~pIBK-l;`nF3=wVQS#>gFsS+h($=${Sj!Jy_Y}Dce*T(Ib`hzSREgX>Tgx=)= zx!eL=9rbEvf|9&pECTK{0hEQ`Q7t}Zeen?jMo}Il#5hlCot6CQzbe^_A!ogN60xTe zRa~q!EXH3rxZeOy7FGX0TK%Rp#Z? zLPl(K5rVWjzgX(KFDGdNr1X7#lPUD#0Rl)ofizPfOd?K^fmBYd=K_1lvS&j`Yb4yB zOd$v^Iw>!NBO?B@*OzWJBTeu*-X4xYxbWi=!gL|d5H1oY8!r6;7-@sbHmba`AGC{A zO>=KqohGYPQRFFuGf436^Up6LI1h0FtrjS3$PBhcrm(>Y&&qOm2;&XcPIhmw)7a8m zpl699C8^+Bl&P(o#A+D@fd-QLJbXWuBt>p`)cSei+aPjd(-ZYiOd|3l_?pnt zujRd3KX?c&*T2l4Zo_Cd%x}3yE=k=N`)(Nzn)z;)PD3Hl;xb}tr-}{hMRMg;>`J;QNKto}+bUBBoi zCqj&FfC(;Io+Gqi?f?lXpo}f6=+Z|?t^^?7PNhw`hxMYEZAES^eob>_kHIIS`rc37 z2ZF&8@b~JX?mL#xrn_q5W$9*}cY!=PCgR|bM9+wtpA2&9E@_0$P4b$WB*$JJk4gri z-yNwb5AHg(aO;{J@EQ$E$zWsf5g z_Y(jTSmhF7NmiZM&~2=pSbI~Y^eF0H5lv}96i7>T={JIoK!G!1=hIS@CS@9=6f{xU zMCRhfmSwXhKha~lmf5ZCH@{^R1!hKCm?MGi}iC%0ns9~ zCqA5VcXU|cnwthqo%LWA|5rF>ssb!-0gBAyqs)*vC7qd{Q{2lOlNt19aC67^_E(}r zVLf$cgRAC}^Npk1)HW7k*5<*v1Vvvx)V}p^pm-xhM4T*5kP#l(-*>bJQJ`HF$JQ%d z_V=}J}J+!c{klodAR{j%v8LT5_&&QW6rq)OSlEhf10hf0Q9SlG&*WCEZk4i^E z1o>M+1@z!c6^fv-@-l2I`jnn8yj1+C)$AjUpM#g{zzG&VDz(o=6KUYezJo3Y8;@{8 zPC}l=R4sLGhm^TbpT*U)_g`rRCZsO+K9+CBVlT+EM-U}Y z9keiUdNKn&o{!S|1ivh_zDrN+A+nNrJFmZ0)nf&QwWZ2^diXkr5w{u4odrVqtj2<4 zn?{3GUM|%13AZ9QVt-MWYH*%eTm4F=mQK3GR7lQ%B|2S6`TTc#b_92iJQcF)L~9Q( zo$Y5lgSxsyB^<2V9Yu{qtCW3{Qgmxp2&dk8Z{iQpCb~!eJfD}rT`fV9%=RQf?uXr8 z8&PA3ZLAn2>yvNH5tMSd@~e25=O0F|`RV8DT;ggz+;NU#J)C3y+!Lg`WWV8D91(W+ zDmEi)`>2(@)gD*5bsORiDiMX*tlR*0SvsQu)U@*!-M&si(2;b$=7J{-+g*TR3x|^U zlFk53kOb$uC|hAHgjPaQDR&!)2Q$z%Ye7q3{Y$#wNVDtuhCWJis6MQ zme5*zfBH>MJvr5f4~GP>S+QhBlkFX;gM`{17Zwt>tr6u=o>fJ<+I;%dCtm*Il|2;N zu)XC8B@o2fXd7Wj0x)wk0kb7uh(Z{QHimMoa^D6k1V$L5tJ1t#+eE}A?nKnd5Or~? z9d-p(dfmO8m*a)>r?y4C(w>3@$e%zWEgb~qNOpqC9u{sSC9sxK#A;mt**H?g@+bgKGTJQW@>AHxMVFd~&6 z;I5MNaJCy5!UV-uTD!7T-j&mD;oZHvOsslhEERMY$itJFJ0Gjt`#=6pPil?K3H9R-IVNK zgZ!w(P7Brza;!x5fCkesJwEBo!DgOly47tSFp4HB-ScHeC%@7~1<(T;IxEEDQ^E_0 z_=*+Mk45ULK-&n5fttl5j5tw>rzbikdfEKCmQT4}_m-ljA1pB;?(1u6su%VnxPMoN zwSV+Vw`mz+((Xpd;(rQg)9P7a7c#DraDCse3U3WsJiDqi9VnhZ^BOLi0?1p z{#;=~d=RA!*ytK=tKX|hX>F2w3WHNYsUrwszm2nV7Lz4|IOdvKvbDWknB957xic`f zFf4Ek4WkFRB+#;i6qlT==abx7JwGe{t=<)*NRJzUp=KWmnM(OBlHFl_%oHtMO^12# zr7%u;Cs8hAJMg5oPhn@tl6s*Iu$`)=J?rtdM*W^XBoho!&S_G$gr8fq1$-+?Wag}E znZE&CDqGF1=n{8s%cYUM?6l=2USNA#`H;C*0D56E{6?;fc|XUoR{b$%#*FGz%%-f@ zJ!L;L7u{P1K{`-IxA_@zeWNHw)&p=Qj?VBFbDhQ3&$dM}GMe%$4i|a%KxX!NwB!R4 zJXHJbr}e8JDPKM7Eq^~-gKg_9LHjZ%5ms@p_tn!A587Ex*=Hxj8jtmRF{28U14mt2 zm&OSkmx>I?5=EBulinS{5qvIaBaF_brD{Sv*tEif`w4@Xi$Y_t+ zfSegHN2(qLsa$YNgndxddf5riylUfmHgGkf4k49u zJl73tmqBCqt2D(eLh^fL?wh+TvNYPp_d4$Tz`kK#fq&YI9Ue4a6!c&vZqYcnX?^;4f7(1N&^Mgmph6m*?r=+P!uw~b7F}}A4rYb~q zxF2UIt*G7Z!M*n1uu2`jLXByxmLSSxPF%yqqeK{sSHE$r6bP~qs^fR5ZG);=S>gB6 zpC5Ssnh)co3F|De8@ZoC5rX-zbd3V5`{|bXxPXgFs9OBuF&O zhAy?Naj_5AGy)E!Gm*pXU`QAlPy)GPfeQS{K%l72bg6rR?9%2)foR}iCqfW^p=T9T zAlMo1+cpiN|K=TCD58?Mt`#S^Dg*EOJ_hLlJF98lw&Iz~*Aa886TH_0%8g7Awt%Xj zb`4dO;6>)o+4N@}kzo1>QUOF0%ub*<`+=Z>{e4YQFkT`lCjm?q#H(_;=SKz1 zpy%9>ExRWKv^wFOFs{4|JsA1uf;7)Uy_ZU5CADTI;!6o9tNd{T7=N&V7p|;an5!%5 z`jF9+ghdF@Bp!TKdr*vf*9yzqqm!xH;)`$qt)dIDEA&#HG0K@+@iVwE9LLNexLo$? zRauHp-z+!p3j18{1GE&E&f!a+@9(RAi@z&i2@?;O&*@Ut?k%WwaQ{l0HtxEaL^PxV zc)Q?!CBm#tcptGlHJ0#J4kwvepxDk#5>NH z#KL?{zcaGKYOGY_!c=_qlV4(X(?jaBumJn4B#IPR#Br)vOvrhk!=`y@Kc_N!B1GPK znXWCElDYY?oWv{{1pkV9|gzZ36!fkNxdx5daol-ID@(62Wn;R{5;7D_6c=L55(92N(2q zvPQHw4UfN86}1}CFQ}mX*rmk#)Pw9dsi%T(1o+pCClag~vA~NchYI>jiV2604N0lE z|Mq3O0j6~$uoBZ9O$bA>wtmYG)7;r!bp5_Y_Dl5@s4=Y0rP}w>hpQwUmapDq(O^g> z^Of6MIDs!CP=*hX18g3mq)hT1q-9NEr^-#`O+s=`s7$_^SqE3Rk6Z$E6xcDBSYkyu zkbiX*XV=U!RNyQitUIld%!T?@+9=X_d(2)6x4nO@n||Bh#Q4j$>0x?pzl`ClSx>(; zDAnbi-$s=iu7=+-J`=PBDdFQ4mbpAB*=yue#f+{64&|jDq+|_ybhI}&M@yl@#Cs2c zaK?wzs9`d-OsBCjVna}Sa`m>%TumiCNxs!cnNsp&w}}dBeok_&j+;hsBR`i&cL}6h$}`9|7ALo17&fn-4s>kk3Y>|F zIQ!+6+|9kruuYCX53H^nE3pk*sj+-!(v3QY=$ViCd-Kj&EI747H8P@}X+ zmQFmW7%E;NtOV#co}Y=C*~~xO8%9)!6e!sDd^EUt4B&^ej!!MKe}XG#VHP}7HeJZa z1z%NGZa^##6ronRy1FvQBHy}n1TkCpMrN@{`Z)SMKX#699g>3{PcuXlvU#6w~sPEP)wX*8b|@HBmCt! zI)|zr_)x9R4}ZA_eU>DTYj=2$v>`oK+#+#HX z;&zo+5eKwk2g$+*GlUekz0>=2^&H@4S9;6Eg#4l4#x_Uv+fChdXi0qk*eTdlg80z@ zm`X>Un0-$1z-13~R`1I7aq>eh>Fmo}SczYt>_hc$O{dszMUraDQ>#!fBWm0{TxlP# zYH41TdFhnkNH@U~`=8cg ze90AJmKo%V{)<%~tuZ<`YAM(ZNMx=?fZ#^c!gZQf;d3rOwMcV9eSj=#T?kQR*lZlb z(FN`Y8~#g9VWm`R{*xG+MX*PQVC)cxboE(yDznY~=uPW12ON}`%_(e;dtKkQBz#^t zP~-S@M$RJH0byobsaQeo*>~3wvOO)3|53_Tf$f8eBlcYXv+ieXDWI@GyPgj$vL0oy zTAccmVvuTJ_>VhY6iZX`5XJO1U-LFHlbH2e)TQ{QWYPra1UbMhX}sbMLY%YG7{(C1i4b7j8LhUZs}w z{n2ru;eLPyWXK1BQ2b3@; zVOeJ!5r&h8h?Vt{TFQH`1_BYBq6}8cCJk0r`TZ%Np=md-Fu(?oql$zED?QPcaKQIG zwW>^f&R}lvxSV0p5xVwVRz?d^3m5e08G30Z_bMa#6Ki^Oj=bnz!CnRzjbgr!c>t%x?!=|)YMcC z={KY&iJGFEp}*yB;bK;^Bs`h|4~Je?Pipt_S|`9*E({)NhjY0$6)ff&(ceC< zTNCws#P08-BIIe24*B?ILS@5)ZMu*Y+UK(~!CE5buI-A7sez@aPW4aq=Yg40IPsY? z%T-?@7z@zVb{|&OczqQPwHv(c739j8Hg*h99@@9A;L}~5Q?j(GPaJQbNQ#9*mN*B| z&Fj&ej^BmJAAhIP)(vfY(a&)wg*(e<=0`yej)*}#RatqkINMPM&+dVOPbM*y48sPT z)dtUP`@M@J>nXi%^#=*We5)a=N#JdwcQ=+3 zh*v=xL{U<*jBo3lxKHV)3>qLLkB%NV52icvFkX|^C*b4j_`0o(%`b-@@k`2nUHK4N zc?ROCt291zTn^cP`HFnwDo#pKrn9Kr3-xVg%)*MRjn>m;A>={$uV;cEmW#wjf4}Fk zYj{Jwbm}E$s&+N3JM%pHpXvDdf`ZzlDL{f@7d+`O)TnD;ZG4LA`!XM3f408%xQR@F{Ct;Jo;8SrRnhl%O;bML=^Vmx%w;`D`^e zMeYlv#c_1j{v{2!o>TEe3=YY6UsM*3Ude|Lc5uOFZ@&e}y)ZWGJkQPH)fX&_$u0IO z2aXa}3$(gZ&T_idK3nt~MTNI{j@!TCP#%zE?1i-jT8;0kDWWRV<$R;G^$Oj3+R8Q$ zdJu%}qjHQ>OhjhW6P?g2%B0CK@82qCEf?W@!mgfEqeb{ar@tIidfB)SK{D7_e8RiE zZS3DDPDY)fL$;@*le~$kW+oTG$oJ`mb3JC0FTVACeAD(R0)qY7z`Ykl@A8HKr(naS zyx>J$6dh0V*gQ(|)f_I(qc_@3yNE3E*+G5(YWmj>(YAt_MORC^?nTu>r$7AO>3e>4 zYtu^TH(H(Y&Yw@J7Jo%p-A8nvXMb{|VX?sZani*w_a@ESL>S?rNsJXveele?&@YMa z9^SZ!naoB!0Ds6c?sOa^h`4Kh3)*XG4UqzN-OpcOLP$|^lMc5Ui(UKM9%nr6mE*~8 zn6ThlO`Y*s+Jf+pFJ~3VQ9NEXllW>Qo6z+0_71nt>L6JGX9q#-C+# zk@@Wl{XAX&!53$Uc&818C0cwHAiNy>s(+2AT)M?A;Nzs+kB)bK5tD)o{q+s+7HT4m z>yG;jViP#rQSaP-MBh#d;WKNhfru81lVUBLX*|Sa_FXI?F^_CDVc!`RPJP$8jk}CY z5K-VJSlF*>)vQU0u3i2bVujsXbcNGH5D}|^Lqy3ps5~l*P9gq>}Kf9 zNta3K^G0h$tnt;cq-@2saE1b{s5m_dt;iq=lhi5%<=l@gU4qS+OfSB5sCweD*CR*# zt?Xeb4v{mFs90bis;8i5Vz^2}xmyC~^=<4ogice9jIp~$PdcF7JsnUlcgDNf1eYrZ z@HY_u9{SZAtlk@zTf!G%z3y+n8Lfz)st0pgrNF=N({R(H{2aGRZbdj~Y2^KUp5cV?=8@MK z<=CEfdDp}C*7U0SyESjSa76uod2TrbO!7K$=$NB|^ld*p@1C})(>g9%oK`PtKdazN zBtjGR@fU;K^3KPTjE`E|IPUlm7dpOsBeZ|-PCL!C;nMK?O~hOxjML-Jn=I~1W=!xI z&GZs>mf2wK$g_U^WWmk5&#*_)^Fk%F&Ndgfu%o@QqzqPCIusvfw>l1^&-i;QwyE&k z-Z`LlbuDhw9Ty#92WM^Vh%O#qJq#@?eQ)QQGD|$NBrTRL@r8o(^XHUvO*Nl(=A*O2 zGry;gv!0K~s$Qkk?H;{x8}#RtDv0TN7*HnMYu$9}l|JAXpPp%vOPp#}Sf?d2)|8XP zFesICTx72nU>Bxa{S)h@5F__oL7nT|@S3(Mic`2lV*eg%h`H#2QNiMVQ-OAA12K`#DdmrBjol*~<*mj+`n62=KHg6D?vOK-_+=kA(R?rQZngMk@}5O=``@&`ZS%{X zEm@L&(&ST~c|dh*T3GMHD?8UreXSArQf>F)Fx5|DveSq`9iNt+Y&kq^TD%{H`+4DD z00;;FZFGUevJV@el*E7v#^4h9+w9t3n3Mn8?81uG)ihK}m5aT5Zo~7J{doIt3(T?O z!;PuczV7FSupv$ajQYGd8U9UR(x0IlnFftf*_+{At9pdj9Gfjp^D`pW*7c7y22%ga z8dKHSO<&aSL&BBlybuW~(NPHI&dBPUn-F74^!-NXlaXexqF)pB`Qtvm`KKo*Czn## z3dHW>%}uhpKX9N-p*|Gh#Nl~+iPl1QTBs4mA96|j)hq(wwLdhs(~UX=TWH2-AG61H z-DbJ)%}*d$`msQ--c(4_Uv?XXe=z9Fv0Zd0LiN61vzwiR$0wSx{P)SVGL@?fMIw=N zYrz3Qff940aM_@@7cRE1_?2+18S~*=y zNy=^Q-9-d(J3?HAABBGi4<#iWF8l16AvOchIs~F(NF_A;NfO_+Vhwqe^@A{O-sWQ{ zHGNEDSy&$R!aUwj(e)3H@9QK7N3$am6jx2P&G=o8dPm%Fs^*Idk++}3AjJr)gd2^$ zj=b8|YR(_7{rtKirLSE)O*2NOXRHp7YdP(&y1P#6|E=Cqaw4 zW-%kxO?l#UR`|~NzvNHswCb$Bq8NU(M9)Ze%?47XA@HLXn~qK!QRZ=0M#jAL zOd2{M=(BVy6_1iXIXH4v}KQks5RZ8INQCs?0 zoJ^xgW>M}+s?p|eEdTz8k9o^Yc)J>!X1eN$uF~M=1FR(%MBZf_-BtFQIsq+;x925L z2?Bt3n7TuPsSO?;KKzfJ?EQ4T+&#Sc{9RoV(|g_41>iCJJiAh+Z{9=ADqR$j^~SHV zZ*ljYxh*PqWG-Y4P4&F@TZhu(EuCffZx*B8(2TVx8JM`>+-kdn#rV0RAUxIB$$;|m z^Y*0UC=IrCMs;0y#6IY!%{A(HXnaG8(0#HfHN5vec`#YTSUPkA+c{ipKD=~!>6aN) z@|TdFWml@F1zWnvyEHS${@;N&g@LauAK`Y_FV9=aKU^;*4PW&vXSnrg*>AZ3hc(|c zBu1oaO_Qh2@+FDbJmanC2WeTxx(Ui3egWKgBdn&x+qm=LYo)7S(`P7AgQ5#Kr!NO} z4>C9uzK_1FzVywu7tAa;f7E8`gvF@xqRx;wQn@qp>PMUN6Wiv=9hhExJbXwnY1dkY zOhPn~@BBJRxR$1>i9_i;d-|*4hSv|@8p21872j_^{Jr-v?pIcQ-7@KSvKSdp@b37; zkbo%gyaYFL1Y5ZHI7zCJNqz_6Qz-JJU`S7U#j}^He)<=14c>TmxBc16=3$++o5LsU z=^vdQV;u?WsdaSu$j_8pr;YBnsC`u0OYSaIIw$?MpPmY*=(tW|>7v2K>QL5U!v+AW z4(n$ud?1u)>&~SJ_d8AQMO(kRVS|wg8fFt#Qn(dJH_L1L{YmdHR*SINV!|oo+DL4u z%nsifBU-jjT|28pBz?W>1Il-X1)-lSm|A?k=aAifxx})ho2ti$Rd7CE62zFsh(fz( z)*)%I^ANbDlR?pfbBK5!Go;!n&wa|y=9JnB%)Vnrw?+mdDh1M~FRliHt|9K}d>)frc?!Eu}Jm=oK*7~jA zUVH7e_u1#%<8fl~->!L2@+EKDskfSx7bySZHzE_$w4`12^gxJV{oa(-f=ha=E@nE? z;vTKKX=hT{?>%=-gkwtGtkrWwyWU7|kd<*+rEh;c{d3Y6sHN$HA*0aV zS3(!ka+;$h1)EBI77e;SS(Mi06S%$o=q7v1wj4v(icY=a?HDqg| zK4Eu=JSV*rp2#Q|B}biR{o#bYHjU+&P8K zp5@W~A`IVr9uN5=s>|+CDwv_6K`ndvKR#XL;9+4tL#Z)IR&&TTB{blMVH|~T}9??+C&fV=iDVe#_*@re%SZs7G z<82svq@Ae5Xs6pOQ|X`>*G7GVzcwrpH+@+mS#@_vTy%PV&py*LpNF@biKw628uX&% z`4>aPICCpKiU%k={Q~ zAU#S-KE7*N?Lm8uSfzld!h3wr+~$`Vy$u=|OrEmZdFT0j^D^ySCjZquoaZm($+)lQ z=iK>TRbxid(jeyahdU3SdHCeV#J7y#SuK%jFGS#tjdhNlg zYaKDNE_XJ}u5cf)Oy!xeEicaHrFEg&;gv^A&gV~kaV~0IZ?1OR_JI5Sat|K$UXm^8 z7c&|=p>7~|;f8>;;(iCUH*Q|${%>%9W=yD-Tpy%UcqCFQNsDrlnI+m z-7R#Tj|vg5ecZ1`b_IVn4I1vzn){5VJ!_-F)DNXw1g8=L=N$btx<1NoGL&_Bt8~@a zwM8i|;D+;l_<_J{MWxKFTZtD61XXTd$QIgeU0f%3F5Jd+)pDyfUA&K8R26ks1YFWf z9ap;$bfF=~Kgb;o?5H;?>ktk}FCRUQcI*#dyt?n|am_nl1h1`ew~txmm-l3k^yb{V z##1^ZJgrSXY9^N&*lv6HMt7s?D>GTCv6V{iO@3-z5B+)Q>wl-TyjS{HEo^Tzbn*1I zyG7IG{o%e(esf9ep@wnSx(^$8$GXj4oWHwFtNU-SOWHZ~qMo38N-xgbowYJ4B(O;6 zTlh{t7yadB1 zCbKCi?XY;-a&Lo6gV|e7KiuSUm7h7`tSh{+`}Nfw#PXp}sd+W^xAtzZ@v>R2)4yn9 zr}7iE>I?-io;1uj4DdDu&kwNd9;qIRB;M=o=fc zcG3EngqoF&jT2k_Z>mmHbLf@V=X)*@ zZzEJ7T;6@1Ha!(?<@T8@#PNex@PO13WO-*RA`UFx)rioTA z(<8pkMv*-PBfRqB95@s!D=#V?38_@xN^F)v*8Ech_)orS=e;h-!*g8_jUM0?r5GUF zt%P`GfE`gRC{Cfy;}PMR!ZQ^%X9_%hTe2(yV5@cor5z?#Q;O01!-TAKKRiB{!NpD zb#a7H{5I*C(|^-!L5sr(Gg$ZHgJi`~N*JL^UZa6uf zYfi+{bC}5D7!Yat9dzq}q&KhRguO3g!QvVDyr?3aV9@Kc4~HO^V}uy>Lv?&zsRR*|787HEz1I9u)exRNgZHff0$8IBOIuNrr zSFdXClSq^nNr=)9hidYmeF_FE(r1#wiV@=6;3 zVh8*X!;TmlVexE_0-j-eD_t|#Tv8=CQLD#Ts0)CiU+M0zMIliTL-SXbb_BFC1H*6M zxI+8p>YTnmsFe7uPvU5PG<4JS#cBFuNJyj!CoGX4X&;A5-5U*&Y#S)s^AjR*(&U8Y z3u9O{!04j3!ynPfXhMwAhqR6pB1y-=cj@v)bq0{hVLeXYZ;GU^3UfSul zaM#4_5hT%Q!;_i!0j8zF31b>ySR26T8RN6gpseGN4;5pqW}EVPS9$i=R6t$|s3Jv?yoP zp-;+O6H9p)hP@$SQM|d2dI8qEg0sEwJs74H3oxy~8CJ*WJUsjYoUmA!Y_Sm5v{sXa zHz6!rQ%;1{QA|`t67{faSqz3{hC+r|GnxNdsuZhjK+SX?pT6un+_x)-hSH17-k7DdP=IpUq~Sd21;K8t7A!Trmy$@0{FKl{-T`T z^}47o3Bp*?U%r?RW|}W-LD>6~Js));$c_X8qSlX%6KA2zrd(&Meq#)C1Q@;Aqw7A> zMlePds1v~$Ws=U{>um2nf)Oy^z}d!g8`4>YSuvnD(gCF#LvSKKJ7Rj3WFXoR-6hrl zuqG8w*jHB!^8y%MzoG0XGEIhLeB6Q6C8YPBYB}`?@Sdj4>HW7q8cc>T{xja^Bs7zU zXAW0g^9Eufqf;re zgLghxHr8a5Fcs#4?At#|A<#8&&z*ft{Eegi}O`J zQ>Y+)t{RK##W1-B>f{o8@;*}v{gVo@@cfHy10;oO!Qqq1P^Oz?ID4|R9|@&FEZs3O zi{3$B%l$bKjHgK9G~{-B8W6dK#VkyPN#$q63DbFpVe(HPmhtPbaa-hT?u$awAQsAJ zY#SjdYTP7O>Hr0utHum|k}wtK8EelGW5~-sCTAmQd`LSTV%d8dh|Frv9JB{mlN2Xx z#!L*WCSejwo#f?UrDz2x`(U3EW5JTr0oDI~&9{YsNa0$v-$;@u6{fLtcCRXAs284} zVdrsFz|BRFM8Xy-R=&_ZO|FT2MGeD(+uPBXTUi8WsTZEqrG7F z!Lc|fhyNrweLB|DSU0JCy*%99eKlDh+FE*OFaxe(k{nUURYDRe)eurhD+}K4=fazB z4I$0!$V;sK2=T9hGbs5>*6-Je%}6K{yy|NRJrs}!4no%mX_h~=+8Nt2%4qy3H4mU-B>tI z3SPdb^ejZDeir(;-46|(C#g@o||CSR%=x+zwOxXYZdfDv9fGOmlvWQa-V9h#GBM)!Xq(B^Fi6eBbC>LhA zPU{1HB$Nl$6?YKZKI9V8^lD0BJE<0@9KzcE&ER1PLrfpgcZGC<2MQ<#-q<{V@A@fT zj9KmlWBg-MZFIJL46EOTV6{d*^yixkje+>{34SW?VXQt#s#!7H9>JP6(9mCvG&&$k zIh-!7kZmcXBiJ3HfFWft)%kt@dkkG)&Q-9kM=?YCR*Yq$;B7SeABhSHC(CCQ^-u&F zJqJY%?Fw*W4je-2;3kgB0aT4ZjzW}vkgiJ{Yvyhx@$)rINW$dL*Lj~Cc z6S45ePGNi%i8+#jV;$KK7)BAEa{?H6Dis3@RzTUwXMv4XNC|1U!|RJ6rr6VXKAtTC zvgmXyOdJGfg=AoeA-i?sz5g01=CFo=}hG~|7 zkJ?!*93lnf94y=>g*mxcV3vX)mxq()Nea^Wq+mr6N8029_$nM%hALI~JVx1H{55Vf z3$P}S)LcDAWBgG#(=T9~bQFz0sSHvv7RhE`T8Qn-%An2jMOZj^9P*G}26@OW#+s*P zzZ%Of!5W=%&`f}unqG>BH!2pqqRM|Qf8`gkx)XrR{WZ(Ncp*{VP&(|1Dk;M-xe9=p z+IIH*gsSS}njvH57`Ced;?%i>g&Od|rK?eiH9r#}2G(Rd#aj?R9a^;DYEiWcV>ey` zZvx(^ewRs&E~Ywm1)Ki^3sW{_LH_?{3A>767L~vv3~$tqYFu{jQ(>rn=Ye?*tB2D- zJyJ<9Xzy%8P+cw|PL;ThO^0D-(VbI2#p4O52@{VzGtA2bkNzrHzZMoRFu*qRI&4$8 z3@#Vltv_J(rW;u8L#iVO0uWaF)nm2l&R^9NbrWl@lR&yEbq#B+qJ}qMwcwRsi`r?p zI3x>i^A%VOBHj)aV#ZTVSX~Hev=`o}CCym#BX2VGsEJgIwqW(jt1w_rt)wuS;EiqA zVp8yHte&1K*8kttVRsv2jjEwJ)+|nK$C_|bQwe8a8tR~-@haMEw5)5=p`P zGZtccVNdqz228S)?^vTt27$=1zW>CUu6ja~M(3rYn42^iB!3g6zG*B;7Wv!+v~w*a z;PMRk-)nV*F_x|i(vj&8+8p$?me8X$%$$@&p>r6}%9vDTl7KFuNlB~`qEJ zOh+RHQ^b%;E5XoQ<0aSizi|pGbk<&Wr@Nbni>Aj;mu>Fau#;^eL}Uzdj(GiVCzZK$ zbbT$K81e*inUYaC=KscNs?w2FJH%Na$t?DVoRJ56oCa!il-vpsyM!;6i=e0E!47#e zkB<6U;hZ|$Lhx%I&NEr~YY5nJ*4o@%na}Eqrp3stjhlg(JlLJ~>2W#fXyg9-{rt9y z7aYig-HG3bj;uEeh#~oQ=zo@3mG)A=kOw=?Yylm`lKsEnm$dgGj1hUTLoP3(qizy% z;;!64Cz#2D9n!p*j>I|uQnq6E>wYkk2Ro$IgpM3Y$e#VxN^M{!4|YhODIKMsX29*C zJ1{B!HKQZvHdrh_-+?)4*-Qw`VTWH?&Yc${w7;3qppC7V^u5_kC@8bL=~;8T&DYqo zb1UlYBvd62*>ain^)!5TZ9~&`*qb+u5!Ekb@adkBN$+(0zY z0^NLlixA)d>&NqQmcK5_Y6q}-3n3-Cy_?&NX9w~o?UqhcxZL$w)q^(jPhtGA3fI2n zMjDVv4N>zLJ}weNOk&Xqjffge<+2-LyHP9HzklGi7tr8C?T3V z3nPj6ZbPb_Zo?^|dE2Ba@iw6;dT9r@uReNk8`34?#cg6`QUv*u-Mz0lldIXubY3Fu zKXSP3lj)2a5&Uz^mWDI9m?jguumhMftA#l2`jd$bBJCD>v$*V&iS2nN@@GrO4~TIg zbR zFH!0pg6RQwdsr_8p3r&0dchI!j|kupnbhJBk=t`P!_wE-;WJr5zZri2Efyz3<2prT zZ3o3-(n~Njem_3UiTmiJ$k`Gee5c=!r*it_ZsGDV`d#0@fBEKoQ1N#chujs>+-_na zt$Ldx+D?9%wnGu+brXwdFW}2iH=(5Z|4+ujeKE#wSNOI!M3KkM+m-daqo#|G4=N3Z z(=Y4M2-uPo!8wzBEb{lOJ3vLE@obDuvaxO3wr$(Caq|BDAI_Ikbw1oz^~~H; zHB&X+J$-dg#AzmAy(|rYp(q0ejtT+^0u2HJLIg5ZruFCu1_HufgFyxgR9Iuggxr3U zdP7vREn+{K6W#e8Qf5QgTe7jj$O^%6LlR-$(5B;o9p8ic$3C3)-4@r zg6i-}+HW*i+#kDaH!W@v3#9xTLFu!+S^aJhO{Gs89&yO4tcDC6njCBb5{((!TC zf13?dVtcs+*TttQ5w%yWrE(m-Fa-jG3_b!_-`;2}wMLtCpFV?u87HHUxGmIy@A(Rx z%)NXoxCqsgaJB-nX(SSsrD9hu$JjpkU4>Hi@4}BS^baIeiyXWA;q#{$CHI<*NTcX% z39XfUZjX*dbBIBwQ#;+Z*|AjZI8m& zlduDK691ooSd|yDG}Cu>yyJ3z&F$%q=hGg=uO|Tn2gX5w&jACFV;#f}_RNa8ajtx; zoISHf=T-F||?n0H+Xo^GR*<;^-jPZ=i1i(A?)HJ?5PP>&p;iu^SM|ti^GgSYc5?it&Q8 z7VE#ip73HxUK}c83&PRt{PXqbZwoMUu|A< z4?@N@Te?67EHo|5%D_6Ss^CzooUw(8Gqv-xiJGd`ssTX?(O28w`i{C&Uzy@0Xqb>V zorq~Iq}eHZrm(3HmYEX{xa;jJ{-$W`EG0s9gA>(G0cnOu=xj8cOw#r|=~#GGQ|%c& zuHZwcAs3QSRDd;PJe8k~Bs_)NE_s*=LcHM*^XFWTecrIQO6Ns61bx2PuT1}6g4q+_ zNTu-V6=nW?<3cHeg}?`(QaA>!uY91bDod4E}b z@0@{Yu$oGd}?&FsK2@3>$P~NNj z{|d+F8&Myoc6N~;r1vw+3c>_vMt+!{kw<=TwhOR68r8X;4{d+s z)er>mL%uN`8&&^Ls98CM{eN3b$9CV{Pyc#+abGddhs^kw|A`R%{ouT>S^n4eqJ2KJ z^G^4;Xa9-*=5TCRLy$#hSCjSUDQUnL^i}hmB0Foq_jh9_8K&YmdNVj&IB*3v$v~J% zd-ta`rKyz;GqJoB>bSG*mzH%`^LvES*)7LVtxvliHOa)a;kl!1(!1eN@C~I*P%~~r z+2v?RD^SDd#O`gVwberxp{B`B`)ldSZcR)Vp~PW<^vZ5%rd#B6ijA+u2*Kp-(DOuI zX^}uzOP2xTGTH4QWUXt`4Cp*}dUg|C>OEJ!rXb?kf*HF!2y~Wvx>TiC@qL@Nexv$m zkH~f6Q)0QlE3ph2-;ndRzKVMA)i^)%d}rM6SSYl`$dYku{2Yr9f|Q6f)4l&k!SPWs zcJt+99@|O~MO#(MY+gKCVz>qYzjhh6_vB~fa&ygk9wsiy_v3lM3@CcT|2}dQalOlu z?M`sBFVa$Y3UOS%>qiR0O#kHx;4X6~d;ss)@#X1+(E9_4hL{hCMt?uR@=>}GJcKcy z_VAF@SLKa{5R^Vm3b_|E(P`NwJ3JZvxLB&atQrt$>(cwA!$MOvW#1{C4%_CEnPsDi zZ6LGgnb$fLf43`^04h2xsIBFA?!0nh@D~df{Oj{w!*AQu{j&7pea0R=b$+k2R2cgB zC7xqU?LE$|%X-iwN0%1d(VUSx=HT+_mI;%9)=Qd#&W>CX6K2>V*{t63GgwQhoFTwl zt2RqOcNC>>*9#pt{AbK|yy19&uMsVD)XKP}@8-!KtKTwi8Ze~qWM(QN|4i6~SMzqqIDK% zar!Yu$53!1mfJU>yX-A+SpOQVmy1k7%(R%TWf=cX*+<=_uC+^srL2m-I@XIGwd6r< zb#PBvY)WaOia;6Il$iPam%62`D=df}%$zMeSbrwrE<{vtqd?yw3g|)Tk4<@`hz(R< zjPHi&{*#se_P=*pL=#}?Kc9}T?J7AUXpMNYuocD3P`Sg*aB8wkA}ObyNM_f*%no*6 z0ZQmW+>c2GqzJB8zV9_T-M4WGF&-X2+4vjmPhvI#-$;6vNt{+gUpDoJ_U7hhex=7o1npXO{2>wh$`V#*`AQOV# zObv<8#rHa^y%WAMc>hdHh>@K{-y;Lchl>Y#u(F;(2dZaz+b4`0dQi~2<{Kfe#%6`C zCGhjk_KHqF-(8J@Hk&bYh*@2_^b_Wc>C|F=3C*c0x>?=auXv4Wlm{5djx81bhZ;En z2KS|d28G0TPhF1!7jHmgAfYpfSL1~NV6Q{Vbc6!%)P)v|g26iYeSWyX zf`DKv{BMw>&bed^3}9X-SkVCq{wTB@8waSzOCtPD0Z~U%pAG?duIp|Q1cQZ7?~9Ix z0ReH5_-|SqemztjWk(q#5N|0&t_ZPT@3Uaz(>;0y7vzs2RG;`3QL?cJPV2^Wou^RK z23y8hqZ9t?MV-u)jecw6-hFG2=2YjiE-ocw#$K|a$Ktk)iz%ocKW9;N5mO!+-gRE` z;cK@@QFc=@8f$_XzN`pAdNg#s&lD(rb-hADtC~hh#j%r5BGKeBuuAF1koX3WAoTUP zUq(zO0{@R34wD38m0*-7S6fdMHk~7%`#n0suU92@TS!`&UJ{UmTMf22fC3;CM)A&@ z1nd(~q5S{{6}L!SS5=mIhZuJM>&fol{niuDYU1MC%mUMO$nn z?}Vw+tLFb<2tINSB)d|IJzme2^Z%JH_Qb+gB1ArW4St`W|2HI;##vqnqxV;-RVfq6 ztyLALZlBRASD97OvKijaHq-tL#^<9>sutgUZ80qbT0q`HRppQm+j9h#3zGffnrNrZ z4`ABuOwbR4Ms*C!M20pJh(2jMg{StG1P9TOb)*#q5#N{-APc`p)Tr=|uu_UN6+c4E zb^5Jjymf7C(JUIzkA!J0t$r>qMCXcy5_|;{S!Y(MvHC32lI23y1kMk|GEJ;MDhra2 zMU*PjvC5|`Y{a_9#OLIra+-CPHbvq+xR~!?5F*uxjK%J!im$G1`%uHs945mJ!;-Qx zSy88=&YfQFz#&a+pzm+*zijt*1FnsxJS{5EA-{Q$r3pwkQYQJgvk_kTR61EUK9Dk> z@&lV11h!ZvE(ZQB%`F|loPW4G-bfvt{GsE2!~a=b(eZ58V*jP%U}M7@qL1jIz>U?E zY0Tb<5eV#iX)Ys~_w;uyMm~)r6`}5nd!e7EQP+rOHRv)>!@(DYKe+YzaP<7JlrR02 ztF1iZCAnH1i&ZikuCHDr(jmMuMIE$#St>p=&xloo;U-494K{r7Pv~5#Oi{*5MQr_q z7+LD>vidWWC1FB4wPNm=_vO~Y=!@YQdb9FepxKJyan=4PLl{lPYj$1K<%{MKl(uj6 z0m^bLDM|I!?L(;BK(d?sWQ7f029WU(%BZpl!A{dA@O`kZBg9yOOe0!r)VN5LsDDtK9GDc}*4m1` zTycIGm0E-P!1O|$s$^CxdDvO%L6pblD`sc@;=0B?+wL@8xY%?DEvC6zfk#P%KJm{- zO70_N1TrUZl>I`Flku5h`$#omZWZk2%(*ckYakR*jIS~8ZE3Bf;J6h0%7eyDi@s_V zTPfI>K4^!tNQS%3%lU^kL8ON1@8$o(f?akRglSAmZxz7K6b>`cB*SMhA8TR^>uFl9 zAnr&$n#wGkUvodMnlxhUb0H243CD9>e^g#o214_aDcVszsiBw4~dOMN%<3 z6hKzwrdlQ4=4a(^l@c`ejD8nLwp>zHK9$+4)j1`;AYY^VRfla;bnibAe$^cNHBado z-v`+i5p0h!gET|>+PP;RtwEhhgI~^!UwYP9#g2c;taSmZ@DS4RJ9j;DwF9Nt`J>}^ zIuHH>VtNdBn$&xwzn{6_>1pu_&xwyaDU}-AICG-Z+GwwYhsl)}Kiw|= zY;I2KAXc+o+L{}|LglN8BP$sV7g($j@zHXSqY2tRX%7yDI8P&`sKY(0pmpX0)bNpn zP?%GG#dNOrR)I_H9OQ(mh75*$LH!p~f@8nD_QqXI;Q^TH;HFDK0orwqvzU;uF`W?5 z%-`P2?myRtp2T280aZDH0 zz+t0gbT*K`xs?Z~|Av9gtn}_S*7a%|wyTV&omus6)s6%|2@Ajz)Jf~-@;^(ap%|lx zl^nmXEI9CTpffRtk;Hk70 zXV~H42orTnE{*tAG<~3wBe`7yPp94%wW@Jj7`_SR(CmGa>8V_ZZtXFLkt$x|XpRfs^vMheIn1&g!71>@S|pBSm{nRc<67UnsaRQ18v2$==N(wNVSAKlPpN1V7+tusN4tTcdOq zkB(Z5(iqs0izgq+XXL)a1IgV&wL$|DZ`Sl{r_C*24eINx@wCZ?%}7jq#zl=jJL}PF zZ0Gg(B7g&1XDJL=R?V#HA-A^B{t?%y-Ah`X?TahtX~@fW`OK(A7@l33ZneGD4CtI=M!7hAP^sT%P z$E!rHPB?)YL?pI9K#yDYJs(H+d4`q$kpd%tK+J+UJ^$m5f``0yCY17&e0a(A zXYXO!i3++X3|(TOi0Dd0jbOM$X+GsT=~?gur;ZV11ye+u11>^tqj0n~jc#M(;Y1*@ ztS*M3N1f{jpeMVtWG$A_GVO7>uhHTU9J!{-;UP7f^M0Hz}Y% zzRj7=Ynz)eochJjz7DM5#-!ed=bl#6VD(_IU|O8VIq&EJ%_29nC-T0y=iO2uu0Ecd zR|hYS&i=-j*H#)&2QnLN{l(M89T@tPmhV7`k~*DEam(w)pN7}L2z6dw0&b~0NKF(# zMb+BH<{vi`ceH6i#pONSwo zbmFD^X0<)|Bx2Fm^C9qUSF{#Y$c|p&x;uqh zE!~-$IVJYTn5!NVg3F$c@vok;WM^f+DE{(H<%Vdgg^U}H?62M{7pvSWgePnZ6SzW!>07Zb_<))3tugL>5$|A z3{Vc~09yH?a!O!YiUvOiVn*a;+$nMv?I7{omI02|4_pvni2zS)1TCtxwc%_$`CL|G zy<8!Nww7BdfSV@3vaH+@apH!?$+qM-xJQFpLT9ae9K{vsF4uD2MAP8{UHQaoTQYG2 ztzi6Y?x<_yEHCS5yg|tTqe7BrG|w}8&~u=aOI~6`auQG&h{*CkY^^ zb{$TaB|X|=QkgjVir+XE>o~0+uf8(>%@=bqQ-KJ z7F#ysjrC5p*dKw5({d7GPoRCw(N|`_kf2}&#JPZTaVATnE3yYk_49L&&$LtQ8GoKz z42zj)6+86I{ClxGh@TLsi=_*bIP-q2hWLOuhX;|C=4ij9=r(9;eqZFW@7vXV^~G$9U`8Z7xqadW9at>;-7e!Q#krMw;OhEj5P@|1cHI$*u3!^LquC5 zL!AJh1N04VqBNt_aPjjFUz#3FuBp6EWgcte8B>+S`nQjtkC&}y9PMdL_tzvYpUMAx zPAhd+uzzY0XQ35$WswLqok2L52Yl$QJCUG>v8VZNzZz!efp(mD*+-nTneHdV33K>& z=U9;j+BPlS$%@u`nlF>>#~~ukm|mk?QauA#O#0+8L4h0o9gqT?QiRR_2*3pyE8+jh z)&y@2imBaUfV9%=UL)=Ta% ziRW?RxAg5~$yea~niOhtp`gk`Nhv`lNv`VW@U8OmDYr9m8)PSlGEXhjfhGnLLQ-ZS zxg#z!;yxMy=W!Z?_1srrr`|ReS4?ml=<^7FNc3&4P&PlS=)-&MND+s&u=(n4_=@ZV z;2cGe6DPg=YKY^dsjB1=^HmUyQE~FRXgNS@p1{3#4$iw0QZzDyb}s9TZ1kKQ(>@6d zBXGExTYrZ70eQ#6ECz89H_Hc1B?p0=$nNF6nY{(oUTQyBU~}aL>&@pSGa4?XXqf`1VG znMjmI#LCRE|B=YV&Wec38f*Y}9RgvTD#JGFq16a!qnz>DH`WkCD|rT_6JV8oepaHL z@eaR+c9;3W6zbsTh+auT?o+mWRL!MsP1#rx+pqi%Eq(zrQfDE%184R(2HdUpHj7T+ zMACY9=3i9`+;!x0o=BbRn>HQyGEiK4MzeHfQDcKL4927y3*C8yxHCDrl$qGIJsLOZ z@50cuWcsATXtFnyGfsgIs+Rm#QziLs@k$Nz8K)IAPL$e0}RP42Uhv>0#4Hp zS{RXOmreerCN@Q`0q}OmzA$#pMV7BY897h5lLmDVA>a9wd9dNrt09>^B|(kWbHxl*B<4~g%}#$-Ua&PIcv@mlscLTR=z9qC5!kO*hC3fo1eJSN%nrE=&+Qw z7{XiM&N*E0Kj#d}%#}0%3!nuHSEWq4hXv3BlXGE^E&4Tw9Gh_AkkPLhfA>W_^qu$? zSmdbwM*lsEb@GcPR%^@V>jrU){31RWTD-14l4ntJG~Z^;f{~a>zR6t}vmU-Vv?fr4 zsb0j7;g6-P&6LBbYXpg@$=-n6;9U

@YpzAd}%N5^~^gnAoB`N+~DH5xHVA|9nAl z;6M7XdUzH%dGq2-3rA{bB{KFG!q~Wd$>YPmkr+WG=+|1LKBnS<+PdKKG+z@G-Rh)Z z#5-bJ1t?;5g=CymS6anS*^dS_ycB8FLd<1{+n%Dv4}qJ`TL1`U^u?%`;Mm68VB{!XPr(#e6r>40Yz+2)aIXr7Clk z>q6IZK8?7+l@;@zy;#IyOnHN}hMc^M4pn!$uI6`OuBNd^4C?>wg;Em)F;p4^ib?O| zLe`Hz>X5fZ$Cj(`eQ7CAX+5`pO$iVLz{?(Ok?}XGXU^`gy1OQVktb#*86W_xfkx7A zoSZCPJ5djc9?_1S*U2(*QHLGKq4KV?f#4nsfUM|pciGuvna^4b@!L=d*+R_$`R6;% zge@a<<%9;!d zs)QLcr-&>OSVK^}tS%F&d;7G1FAr_xPtG(u@4X`id~UtEe7)B??|KHEQXt;bIwe@`~ zAVlm6uQol7aaaR}wAIQ9uQDoCAk^R@uPttDJxLVX5w5ky{w(Q$ZNJd{+WwJQ0m8dv z$6A_s_z~`2721^e+?p{z1(ZEIHGU|XP<=lWzI#8covC4bE@{8CiP+^C25RW76;5Tw2^gTeiCVPgI6KlA4}2 zRlQycU%?w=!11E?_@Qgv@z~cCwys(oq(umAlpie-sl%#k(`vcHfNzW%CQz*Naj#Z3 zLrz+4@Kw7P4X!l4WoN3X72)F9`gi$UnG>>)O zi2@DPqx&n7?|;I<(!DdypFs2sHZv=w=jl}ETs9$`kq4%;WoXmf{UgmXYu{mkoRATr zzg&5AOz0%3dt3xtjC0>ZZWwv?qi>jwsCPiY#gX9^oJy&<#3cY`J-?uPYn?EnffOKh zD2}G$#0V<^z!ip3Om&p(Mpm@nk;j*HR3@I*6q5+XdW;P8Bep)`EU~ry|UJf@K z(!251wR*;Jyq1g)l3JT8XH3&mdOc1(w3a+6Bt*<4ffjSrY!i!9}U18BZ&>)YY3N8CQ4?FD1U%k}h*g z6mcN9Nx{i4+ga71-+%63UWbMM#1hi!KR@fCS%EVecneyD9@_A>q`xQt8d&Mo2b{0( zAYGr~e?hu}2?b=+ItqXq9N18>g5qR!y;6G*H&E<@y7WU4PMGRQ8yX3~{R6VY)n^$` z71Gd2)gtqOJ7G?#O%1C7d*aZ3nh%eCQXtjpZ?y-m)bFYGEDR2o>6Z~3NpTXYc*%Pu zQf6R<^27jqOiT8oDOvf;8J0E%Xqs!)QUzPvrU;?-P5mr()*DV-C~zc+6UbKg3}U*y zm2)vlrNGCVsM3uYZGSW0*u2C$gpjJy-uyeP2#K2VpOi4yLSa3rG?;65tFb9aznE<0 zx{b)A7PJZ)m>-PEjhc{J%oF8L-c)I+W>*dl!Y>POUyA(e!>!mpezf}e@ux^ay4e- z-cSW>2>P*=Ep5*9$LqnIq9|THg;`meDs4$bebOnCr6x0MnR;y#8rmpO1=`9UUxmfb~#5`ME!av;-!P{vS@90aJhmmbw; za+q38Px|@ico7&>>n{Y{TxWk& z+2Nk{{+!wR3EV`^n`yg>xT=1hydYX_@UFMwYc}YX?w2VfPzzJG*+!+JbD_Y`}CzEnU53B9zG+yhZJ~fz_Pxh-kY;0~UiPKf7tnsw5NM z8^c*>8CUIJORRndY`?r~Vn-qTWNi2Wr!0onu?#HO(WNX(2Cna$4$tBiGgt@@1m#v) zC>TM?SV=kXu(R{xB+QS;2dAT1lkFeRu*>~$21iZ+tuityOO)A0cGk3f;K4%w`MN{W z4+3@*qsj%u>X{Xudw2q=VEN%ard*}}4}Pl&7h{t!uv}kw$pfqW=`EZUz!1ec=!s6b z_yb6@iNPtA$oc-9g6XG7_)up3H`uM|qLwAGuc~gpFx<%%9R(K+53Gv9dd)?*Mb^AC zTPoKdE?&rZpgvY>fFIhOm)C#9S<{}l_g4@OruyQO7JLW05?=rG?K#_DLBV!p*?|||t=&-Ppm)pD^G1O-Pq7$_zIBMc zD&$pa2tO*#wAET+{;)u=C!E4|>dB)-HF9F%z&&X6&Ydov)#juMCE~?cGaiSruwnpx zL1+ehAI5jOVP(hg<%2s95H?nFX=Z6s)s(jJiF4{|nC@|}&{t?5+%(yFrKtkBMy`QEOQTJ`Ne9*5YSk-$^IwR{voDB ztM&pV8!)V2w_QJnQ(GZ(Q<{TRsIgj0u^K^v)Ksp2{-Dp&>n zsQng_8EySqfT^1NR}j|Qe-hd;NSx?lZi0~2Dg+W)qiQ0efA!=hu=C7Tspt^aIk9N=3l40WC1_-t{i<^WQ#rKlpNYM)u$x?biFqOm{%F+OjrBz%b)AAqe79fmnx>>>=R^doo;V2wEdtK&*xw*=4-i% zd*g4p%5&c8+BofWr1J%8g=cxcd~GIW6cs#=_++g=jre>m$<%n)m*$$f6|_w$+sc>H z6}{mi>N_##KiLirirB2XC`A2Ro?MZ8<2+(pi>-ARg?%-8VE$LkY0Qdp`Ui>{Ar~=C z*gLY0GG;AeDHCF0!II}$6z{E6YotEk^MdMeZ^NYhW?PzSM?M6oW+TjTuJM`r7pW~o zY7}MP@1^T&p=H57PH3~y&^JyB!BtL~=mW%SB#H&o6HMP?#qq>P#Z|6$;lkrua+hJm)W8 z{ietWKKF*mUjkDv{YLW5LgPqavQNzF^WAZ{*nzFmaf~F0%uTS_@kSCo6!q7p=G!8E z?Nh~*R~JsqxC>(X2CvVTSM)J8(f5g1Un6WFFk*{u_;Ag`uIf5mWIDTmSRUpSpDtx4q`<&xduU*Xx~Y#DSlr?IzcvKo&y7AlFR+hIts}jG;G`VagjE@)`33@ zKoh}`?C0St$)D&jnXm+bA10^kF%2Oc`GAd70sdr>#eBA-ME{a7vD+pWMwYr3Gb_C1 z7b!ZDt7~@4Dwy5c2=lrfBm%$zxm2Q0k}UlH3VQ-G+d=Znw)gb6ZX3AIv)QH&T*S)Y z4U(s?^EwZl?0gL^)wseM_|zia3Sck1a!4v3NL3bF(C=Cae{a#FaaB1Q^-ncvJizC8@2>1~GnAA{zOo=z=sgk{haKqbsSgj- zs7llpw(_yGxK=KSr5m>mX?X(4^Zc6rl0<8jA*Qz~&j!wTPSUHLlrG8MLZ&|opJpUDHhZ@#9C z|6{mVSeg$YrWV|snl`mk{Flyt zZDnE)rG>!0&DNh}%8Y0@T}a0W`HAEI{0+8~LLHl081x*ww5otqlSjS={nGD-OXHrJ^h4 zGUJ%oHkSoUY|T<12vD!}uhJAHAzu*YWBg6t@M$)VWWXT8Ee!M2Nv~6sEsQs#XeR*I znuE(EF$?d_`g3&Kuo6X2hsduJH{bqH&PdRX6X_>8AK77J_7GBOG1 z4ESa!qL}q`(Cf8QX`}KvI7DUc4k`4k`KieV;oWZ1rvLyQCZZ}Rj~MGYjuyoegCKaUuj%#btmw+en=aaM4LP*XN}M>XQZCiwO4%vMSYeq1KzA}`EOp&k6$BBcFa@1?HCc` zd^ZDFNBa^J=;#Rj>YJD1elu1QlB`L_{;nHMt~Q>S(BFF=Vd}CP^bn@QFrCid{Kw2_ zF;|tQ>}GCfz0N#p$1HvWAK1cw#SMKH;&Hy%faiBd2Bf0o9?1%b!XVvyDQAhege_em z$<|6U{8>&lSJ7lTZ=a$-e#1KH*Uk&m;f@)ims(J>G-fu!o2D>VjA2f11v2w%ot=!K zpr-ONwD|k!OS*_>Mj`MlitNDLwCS>|JpSIs^1VuyH_prArt~Q@j?Kzs4M#>{040umhXv+T2d4tcaKF%2+LM<+c*)+tIw`rnf#=+z94Rm{0eIPu`ZsZ09;a`Fo1?OI#7Hlp1*v@d=aB9;Q}du z{!YTbhTNu6Z!I2}QPNDC8a%%W;^Z!~{ivgw^dSt8K=6SeL;!m}Qw`3?fr3a#QWgOy z!dh?=luLXUw1WPxqz{yZy{TUWU4JVAmpqk%6a5y^c=W*kidasW+GfLBwB z0>B0w7AiBPoBi7ocmK~4C)t^O6Bx9rfFGcsGKfvw>Hv0dSm7`c-=E*b6K(%jXT-ww zUpYa!n$q`cE+pTq`Y(e6K2jTzHP!mid`2SpV)bW0no9j_ z*QZa4m@Xkb3y0N)nu#}p8 za?w=9!4mlk;0YnQ4QmXOYnsP&*Y$gkVus+d%r#tMt)OxpdVSgz_s=sA@F{W~dqYd~ zRIFB?>|g??F`pOM$8Cuinu&M%Yhhb&?xfM#Hst`-CG%Hq}HU$QuD+k|nAQwXiW{a^R~$c#0-qECsIe<3*lhM~(~W#r8X zFjYnyJ}c1%Tl<}u3?0KVU~_#sT{`BX%r1$d(s=dY)+W5_SP}0ky4JkqQ>T9i1%&Ra zDK3hZw4P#QD*;hq9QmJsMz1^I%=`p6YR}5*C|Mob(8pqqWm=Z~J7ZMV$icbvWWUcO zR*Qt^e*bh*klBT3l|nU&Mhc{~(|~o09xk$`SlJa^Yvf^|5Fc|f@W#Het^hSAXf+^} zHSu(KxPhECFl2;$|x2g;x|J7sFiy+3;-Gazj?qCSp zN-@6!qM@5WSxd%!3a>i`_|MRt=EstYJd~q zSTCHxJvjqxcl0nF`1?loL9aE*=VWt*qqOGnQwIJu$0t2!z7uUQ%b&+D9LB-H%$t=nX6%HT!~u>^BwcDUfdtaQxNI))%CqQVG9J9J1PvXpR^B$`g^8rnr0|zK@ij(z51_58! zg71Ygg!k?X_P?SX=}m~)jDa`w)5WEFlGrtN0A$6QaisA>iMCs^p6-VWj2O=&K{`62c!Hj?1%VcN zW}T$o-*Z{oi23~=wsb*>ZjC2Q7i9bnx%CR7{;%%~&b-tS>WcM^!|hToj2Z(} zO_wripTF;h6(gED|C-6WUzdog+VNi8+tN ziybU6Y05Ooetw8r+71bvm#C_W5@)IRJUDCH5ijn36`hR|EU@F!B)OQ5{Y}a6Qe4**Bn&)P zcr>j}i#Bw1(hwV*wai$iBC(|h+A##y4UZ_ZwN{OBvV(S{u4!7K+d?aQY*-UKW-cnx zFufEp7hqq+z>LFqvS&02)CEfvd7w+=SWZEBt;4Mq`iYyLRcZp->G`V#y_8TfPU|Ys z3>(GthRQW6m_yGiR@r;eFybIFPm~Ou%V*^46?Fj7XiK0z8f08icmkB5L~O<&FQhnk z!4l-CR4Ur_Y(F`no$GeE9L6Ueigo%BF)m&lDbSQ~;RNKEq!+FfR}WEepbR=OszjUq z(TUu(C_E7Va-s~WJ)rRGx*5HTB=0UmA=lyXv;OXdCvStN@fqY$R_vX^CVinT@ow*< zF4FYoy*!5((fO%r@X?zo*PnIjaCZo?^K1K!qOz-f;UVb__Kbn2+6Iwk1n!IhYK@ap z0LY=a%xbg#^6O8>QKobi_L77W2Ah{GzWq=3$y1IQ0!*LrzEqR@wKU0hKf9cvtL!d5 z54=ZwPKA$~4E2CEK^6-;cdtHMfzT=or*y>5vS)fMpuOH)p(la!QoVEl1g}VwY)$_e4AV7a)j% z!9&Go1+5L2*Pg%sVj$k3LxanjH6)Ax#a3gyzm`j%Zb0Lz zI_woVJ<8e;-Ki&1Y8I@1xb|$7UHv}v=0qD!Y<7&b=a%Avlt3XnL0>G8Ce(47r)hMc z^b^wrTb@`;*<+y2G|;ww#67ayvdy7^>WO8SHIlMuCirb(Y0O)ib4AyM8+d@tu+Sg6CFHwHtNvow@0dCsCI@rnyJa!9M4 zd9bxo|2bc(T4p-ZOXWB(?0}53w)TQqwIxXL5 zLk(rFal6_Kojmymbo!8*^>B^*i^wksz7=qHCEIbsOx9VA-qETbAtoL5EOYprzu-y0 zr`Qx|yDXsWzO?j4-{?zyu8F=tsX{(plxei28=jTl(SnGl3;MUpj3pk4wjGLT;fY2J z3d-N&&JxNS5e<=O0imz)1e4_R!3s1*8SYcs_pK5~dQiY4exvKED#LjO8BoFurI+o= z-g=W91CjhUs6Gm1;?;K9)F#WKhtucE*j&oZZE?&&^60h^@gz+cLm^sW*azdGz zwM(Vkm{Y_lvdt17j}=pM$Emoa{nb(nPaUK6+h&#F5iO3aft4AD$wSZ~D~a5})SbB0 z#SbD`F}cxwND*!aWp_6Pm)?i5+~&h~3^ATOP@mX|u@V7(nYerky2bwwQ)d|z*A``A zx^WK#cPBW(3GVLh?(R+p2=49{+?~b=F2RGly99R_-g{Fu^Rw%;R9D@*&pKnhzRD<(}RnD^*!BDKgCrChgmi+5fl9=rwDsv*7@xFe`EH4<*lX7^X;g!No6 zccX6%_k!=;ixZ4X@`UAn8nzZo4oTS%I%Jipgaw!At)7ia4ZY+Y4XqT1fj)3Ov&I1g{`S`W z$DmV5qMGP$CMAow#wXJ9K{QchHPKT4)(1UnvGSK2cLmClxSM|IltNmJ8jha)w=2() zf99Mj^}FdkUpcw>GxkLpb$_8T4Ush4>^>!~38Pum!Ab2Da#oT@A})1|*Sm52-e1p@ zJL4`DD(h;I_SI~B7x>Srf*`^kp8XJ1bJG6^Di9m%zjT@IZq5~l zyk$^0wEE?hF%HQs>wSo^qeNGPt(1!_hgt{TE;uQ~wA@c;y@<4V1nI+Lw;Ufbx8exi zo>qK?r=!BkH&2HzQFLL^{sB`IkRRMvT+1KlNgJn_jN)=T+e_`exWD`s@Ml1!%OD4p zj+cx0?nV{SqqeWn;wQpaqj*Z;>>{_O8N%lp&yGWP0m?rw-|BIm%RBaDwRJ5P^An>) zMrB>uej}B|BMVfd54g70O-e3Ow->3xC>q0-YXp9}9W=iX_0rOZ z%YLLBR<3)R2vdJ@%^_GSuVeVx%O<+(EtY+v^(63$50+HC?yDuC@_;C56L_jtJA+n*mgyVqjz8i^+~DV|cE;`FzZ zgxuBn^{Phg;tE#;Qq{2MRk(d1>B~1Pvn=OJX%k$Ia)9^JfeQwGG_i8wX&AkYzmMqr zVaJ7+(WaPorr!qgA1>|rcal>vr(OKcn2#9jSS{0+#s6AvH~P(75GN$H@WDly!LOKVQ~2{;ucy@iKlCBvHPpRdNfH?XF^`MlMPyNol^ zycQa^mtJRg&RitFeeKe2Jgx|yJg69$5<9Da7D}QDxC5s8HvNhf*{OI8$b{*#e=c#F z$FcCyu*0WMRVAv_vOfQgKDlvT4Q?(#d0LTpwh{;`F@9es=vp!Y9hzvzq~3?P8~u%4 z4RVe3zXdn^G5{mCLjD4gOTL+-zGjDXEk||JICHOywQsCk$e%56^R!Pa4e*V;+JX)C zPgA*l3>>=0mY7`brZ$*d+&$78&Uvfp>z}x)hSe2zjeW>qy*@&XGhgM4f6zp$`Qg8F z-~c&;c-`h|Cf^*_2INz@*?0MMiUxoxs z#I7MuaI<_aQ)LQ#oqKVAV2NEbK94-d@a(O^bTvs=<>aTTzHgRWHH}i< z1aD9*4m3z7VKKY4I0pheBTW3x88>I=5!fg-mtjo4({D!F@Rz5;vRj3%vYj}+`Knms zQH;7kcB+h^8#RcY4cFr^^_>+)WEA?CJ*XE32!bIs$Fe! z!iuMuNNpxav)!1wxZll)k#i~-%slgLx_*LB0CZ_{vg)FjW_T`PujbKlRA*(s0~KpO z+W{SO=rL%YmW68lLhdw!SuCy>&W@J548ZrE?}pZA`%vbsN#_8X~{JLrtwmuS!Kn+Q6o(NIIabbmW? z_O^4K)H8++=<&`ynf++v8Tx^Wt3bPnOTj5_#vofm%g30L`1>3R0(KG&+1NjlIdhTc z74f2KR*pvW=_54VQE?esw+y;#W+Icj_&dxjqWIRD(wFd2ZsRepyz|BHhU%&VZbFD& z6}0T>XR#r2bPywQ)C0t|WV2HqSrg`i9+0%2wu2n2;oo=5C};BC_f+@8~9fM038aDllmtZ5C-+6 zRQ@N`AmpP**&P6Y1_y)y1Ytgmy51;2JP^TtJHP?q!>F@i|JR0#wfbX0Bm^3h_~Vf(A*#81bgP&^ad<+p-76N(jaJgf46s ziEt-BZ+ewcG-n)|s9{pxx$*W~gkfYYmlxY@AbJD-cCJ|QaOkX+8yx&Nu`Ws)*{FT+ zGkOF>_Pn9kB{J)ug;a+^;IM_F_<+=sQV>r|y>wLfwN%2cN^ z53j~Cp;p!va6@ImKag*tqL_x#@$HJK$H3UJB%y_9=+JRfv-+6=yswM}i$Ugeqw)J= zY=*5>Wxj(^9;(aQTQp}sUz=Qd?sb0jEtyBI+zh!OHnrojR3>@BP1ResrN?GpKk6Lk zm0=LGuC&3tp~Tcon{FHLU(W_7+wBO33-T4$iK%ktwkkwFn7pZ@QcMA zxfdUHKoIZY$o6+EWmWhwS#X~*OH*)kfNk!km~GD_ZS&l7s%d4X42oXZyp1H<>WR$S zs_FgvzD=`Eqi~t=4(k#D>u`&Ms=r6zkvuYl_Lt}=L|+Q4JuF3Q4Ab?D>MMH;iM6!> zXf`^Ndpt%pv6-)an9|knfJ{f3A;RFUCx1eFs8SiOy80NWPUwl7kO7*b2N1@U6SUYx zt=k6vO1YdBh?s#|jOms?GFW?F(0BT~ayg2&n*&QIi<|fC83ugE6uI6+i^Ykenj;4}*G~^1nB5rEcW_ut8>0DDztV5e*u7naFq-XQ2aI zf-;SANn~0H?pb=Lpl(u{$13?u4mc!GDutOdPh5DBum*>(?KM&nl}-Gp zD7L0JKZD8#VTk5BbZC50m2Kvu`)2{N;YjRi&#>^WjG=A#N|G;MwMGHZ;tj1P7 zR?qN_U@HrQ`D%ZcBaLmSGw1vhuFk{vwjjadO13wk|U<^a`ml-@+|H8<(L_?p_b;t=Dm*=zX zq5?$?^l-7Qn)X)cRQ}D3Mw<9maM=}Aty9%LSH9AF$K~0H)gkN%nICMA%Qzxj8}S80 z099JM3M`_JG@t`9`SU>-f-3VcXo@(T{rD^(q_Pw%3AoG-2e<8Eis;Z#-An4I^R zlPWU@tEV9c9q~G=EY-hBsdh13gzA@^PdL6eChwBmgb=miuF)Y0^^=OhO5&=+nGXapYu-9x;KWWyXVpFlZV?DOixvEf&HS31 zYkp}keAJzrRnsj(ePSzlrWm9!vD3F9KfiPGK9>Yq*{0re?0DP%`^V{_4@~$msxHt& z__hH$OFtDTQn>nTS8eI$O>FtOi2^hvyor-ZX0;SY+Q_@B^2Cq}^fNDmljiW1X2n~1 zWI$Gc7yyftDhZ_!U7;CNc=g<`5oCf zMF}C1P4K%)hJ@Gm(_)zhHiRixoSS;y`{|$2WSbtbT8Oi-VdZR-&r&r9;pOya5_JW? znnl$dJ{AA{c)k9?0(gqidI9+sM_k5Us+q4P7`5vr<+kP*wq+{%W^KrzK6bugZ{Kfo z;omfj_00eN^W_I}GpbG!@>Su5QKYvQ3r;$PHE-u6&&bc+i#^rh`oj4N%%i0PRUe_g5E)wyS)!em*isS zq;5V6N7O8njsQHN=z(ty9g6--1yz-*+`16V)}As=@7f8}cHX-g{6`SKDtDS5 zmsrcW{fF3oOb1W>V8Fg2heezg0JJD*-@*~Rsm6-eSf(h3GrYdT{oO6}NWk+?N zDR#LxYOuD6Mbo#qB_4Yra#iLSns44Xwl%7~cK>CS488yf%%@JC_%o5zV}~ET*bLrm zwtnT)xKi8GHsEL@*V*s(_H1VXk!`(7a^BF^e-llr%(I2_N7U=VTK6LmnqBP#I^b2w zrkyRUrdpp&l1HuzE?6+uQ_tl;oYQdGj$R}+A@r=BQGId$N#vp(yT5YZ=^m0iljPFQ z*zxIw7y=>@k_sJ4V|-#Xr5Hevx{(8b1(O#8DxiRWw!l;6fNCJZEZuft*+&RMAMRf@ zm}~u^1`DeIw2+`5sRzauIz3FpQSV+?7{sHKL2QHO=Qxn(5NxA4EY}$Up(#9z)H-apyzVydY>=-5KQ~S?E zUc7p85IutL`vO1$heJ*ox*Nr>?ZnMt#{-G7Xda*W-QCEL-c&Qy*i?igdt0vOF}wmW z;^K?)swYl@?dmj5U_88Li3d7~W^Jm3zgO81YF7|>>2#aPz6R}yoK3)TLHen1Qf#GL z#|{~VM-$$?{!7MzX1kD;eof_X`k+*>{D-euQT~XP_+7}p3+;Fm^zZUhAh`>Nrem=n z`+kp0))Y%om4cVzdGXPx&lU_wf%U92m1_TH5$k@x>#Bp$Xf)_dIi&Plib+aUHrlEi zU66Tl?fHrHBy22PF(JBuuwnXW_qyaWUp<+GA;Vc%R6#E{U+>~fU~)eZh-RGPlp&cW zJjkG-x0UpMvk8OCs>!>BLRY-0(<`!5n~~d0MQnjGvD(==Eu zm8L)d8^GL^)LB5=&kpCBwe`{XMtD+gv1@ed&cNPP7 z6_#a2xg&|qkmen@!0u}U(CNbBJgGLrOdl;nwLX_jQL8( z8prxVi`}#8t^6=sOc_9|(ESrEpyYH{z!rX4S6`m&5AX%IF|;IP{aaJM>V|xQAVJ(_rWD zAOj~%>l%g@eti#(K0nS!xx3v$%7*KV+KB~UerJN&ZXn30o7iLd5B+cN&dTIs)M+Ao z=G5=!W#Y>HM@XMi89zr2OR%^l2Fc497#hTt)W3y(F|sUY0Z}Y#oE+n7G$zbcd z%>~!0-;Y@ih>%-@kL{aDfk{Wruxt7=XPgLtW^*LV&V9F_{9a%3C+pAa63L&nG-sx0 zP7a*7wp)YN0RJg?sH#yQM5Ij0N*sW#{^n!XIwCzm#amnA}1l#WWTduU}P!r!GpJF535V z8nZF}v~l<&*6?B+T}x(!GgXd}^|0BdCVU}97*LLNi;uQs{ikmt3+VyX6fp9%A}rga zWm*QcEHLG(yU~Aghw-6tX*nAcedhsxyIqMr}-L`A++tPeFWwVBc5-(X5u z{{y1NK~@YjS9n|g*2T6^wz>#N?&CrN1gX)6o~dI%pKYkV$%{YoCxb~&_FW6L7z@Se zems996D6&NuLbIQyr(muH`YwoYR(aF{U^G0PTtm513(J}D57n~L$^F?ug+!G`et7| zc)g!Y-%L@HGmp=Uvf|EI)qJu?stB1|r$N?W?SS!s?(`Q#md8@#dcL0V9RCMqpF8?M zxy6RZA-V}74ELf zwzKm1w_NA<%M!0oBiJgCNIOAL6UY08ujTYE!aEv815s4UU%t*hhYv^K73D_Kk%3%< z?9y3~BD71)G*lf#qt#bqDn%aE!B^Hz>=r{mU(%Q#VGbNhuoyLwCc^zzl2rIW0Xxkg1};*!7X zkBnIyLoW@*2-y-ID`uM+A!Kpn__L8h8R6_pnCR{BeN2W*lrPOM5&Ej8KwoV;cT=*- z{dyywo+QbW+p$jr%T7i%qT}Gt?_7Q~EseOmPK-;)TT&w1FietIVIC*NhK}~nz0#<; z3gXVWu$CR``j^hq1EzX$Y2F9NT5FP(=Nja?rw2C8_ZjlFv`;kHG)+Woux*)>X9yGX z{jg1IeF9;x?ZGE+5xChrAb7Ve+H8C7`C!ZfV(nVQ-#^??rx|H~>S;my^G-8X3QRd- z58g|Jw&Vpd$OtfgJ2ho;#dd8O>QpSq6Ge9VfTlk zN*x670RgJuxnTe%98`oO{@2v=sgF9x0Y;hz5CVa`-C(*ufC5;A;-wE%@Q3r(#_`XG zLF}CW@vF2Pb~rxyGflk<9+t_SXo4&Af5S4NoSJb`@dMOiPQ<_h4(0k^D zW&CNjSux^KfNL1@>>7VC=AxkCXPS|UNuLtsDh`L3sQ5}#k)hp++?23`FkCuKN1q*N zdW1Z_+d%8UJy_pgOzi2UqVF>2%ig&kW}3%@SVsZdq-poZu&qpkLoN7j`7cOGPgdSs zBb1Y6*?$Ct;xT;PEou?(^4cW$3(ukwpm42iUF<&k-O>VjQ-es z_1tBxa<4YcYasl0q_$$Ih#}~4W{DnqTCyeE>AmmExac9%j=jq8@5p#80%>Lo@Cy8V z;*MZ|f}XsqL_bczSqc}XB!*@1W9T88S=ouIg#z{qf4(2mvv*Q00}}`i*vr^3;n6Hz z(>#hV%@S2j^$0QMw8XaN=gAc2B#0-xnX7m5n_>&-@>{d&XE$*Jp)f_V@GE9ktGh2z zE5kh*zr&-`q`lkr7wg9fukH=hzOJ>CS3CBOfL){(9W~y9s�`tVsR=c%2#VPYkpC zNoe+v#UN%vbFk<^|r< zNc{QXUezANmYiwK^N- zd`T1|wf}FKge@ij2?y_4CFoZ;b8tSXW@MDjXZc@-)qk^tM}J^qsxDU(F69vR{b_=H zxVO_>O9*rIP2c?iWEX&Oi~X!`R3|A~Zb3@_`Xfa%%iJ?8WMkZ4^!h@9=x(#d02S_y z3+wZQqB9%MH|J?okR?PgH}9W<*6Lw*_r{(!x##D4E2apN6LpR=x4_}>UboB`-N_5f z%)4K`d}q!Zc29Fgtr-VeaM0|Be;|;P>uugpY^SL-QlyG^`i?tjSKMPs zc*_sqduXu<-0*PlfcJmFq7MMLYRwY- zpi>*}l8XQk3ldOcQs+FNh9!!Fz`FfK<4f;0t1C5O6fsU5pYge|I&~*qr>O8D^y$J_ zwb15|h&sxVnfTx@=H+>?%FTiA(!J^pm+&);F1mF_#}sm3Ki}SzgO?W}5XS|{f0;na zfr|FFKC#^<^^C)@yYyfMx%47*h5r&ZDeg|umtg>dLh!tE@Rm4CI);2^K8uR5SeP$Fhu9l2uW6zZk*$<5?+aerAW zeAmqww)yNYGxg&yombUW>AEpFN9o5JsmB#nP!BQH=d^n@HL1m6U2^)i?^WniyOPOi z@g1^_UhDNw$6T3ztHm^_YIefn*3mS`whW<>6!yd*=~#R#9F(pV#7H~8e!}^ju{N(t z_X1r6Ekm8v2Ry;I+I**neldR0ie*-5!!OpAC1rOB>b6ZYiFWx*i|&{A9%x?fLpjdQ z3hE5VL^4aGx=v1S%#645MDWF`43%)EkyQxSE~D>cyIqSob@<-Q+h?-+xZ+ZxH?0yT za-&L&5*B+PJ@-_kkXWAZRqAisu{q0>e80XCY=D#RnChAEse#b5qKy8BFM=?Ym;faxpqH z<_vc2LOpmmKd}))CP;tf*~9CPEuYW(qT*hHZsQc3#jiTH9(A)`7=9%WN>0;IQG%`F6P*EpO7Eio%(C`XM(}4;K}2^?lA|j?k=$5J5N!E zRohR@0lNO+8{Zap16z_*PNH`W5>z=74FklEa>4ViS;2E6inx>K81V7sYM-d{y%u@v zb1zw|Pn=}6L&iE>EwN>YdQ8a)tt~rj!opOeKhe?`bjj#hXi=3`U*1-6wVYr4%p;g= zuR~JmrL+wGOX8^GfSd30NJ2+#;r=q`zQT;=W@LRtBu>nLdcBHSYOsvR%ihO`r@_*u`+xElj3E2VY0|7PQ zy*+>*41!qNw5#=pyg`uvSKfTz`H(l^rvP~%u+<2>bPk|~L#R)$CHzMLVg5$|<6s7p z-2)_mfH|=BBj6Jp)bC9El2m^H@E?pq7651h1kTfe0Z_nkI0S!Y(0%?tczTt8zkSl~ zw8>Jx2nh^DRhJm&HBbv7k3S9LV_yR81;W9a)xc#Gl)JWa(;wo z#(Vg&U*7YX(qqBzD^JCzs_YOF`lr%k0~tWjxaPeTH@A#W&UJ=AVkouDRTpQ%iV1WC z?UjpV?c~mk<*clK$>zU8&5$yav*xr+m(t0VWrojjR+(FuN1jE_sgkD%cJNX-!Wdl! zS{IH=L{$*MMzoH<|$ zS&WdPC&4n3oyZ+EKt|+jV!?6H_@H#I@@wjQs)cavnDy8g-9NX!ZX_=ig`wT|A zw0nH57;n~duX61r&MfJpkKs2rLt`3f`XuBG=Tu!BAUQ}5frC+*64Qt4H*2y$_+|ya zdo!OX)#N^U;ivd?ZEZ;`W1yT%rgYt&>zns^5NuiY=x$5Ex_Bjuei5jvFyk1UUaESp zxSGZ>MQ_5fCUS5A#WEl*GEny(7+5Nn#>vmLykbZ*w}Jn4*GIe=O(kBoZcsqq>3JWL zU>??UPzxkHJ;0LLH{$0T!9(n{BqRg%XX+~`x+7Pnl3`BY?bq++_qfkp-v>`5U(boa znL$q7XJ7>w69EEIIS^>-;@QZCV92Qko3r3>-RBp~7<8Ub27S-#A=D=ej(v>94bT7~0F}b#q7z?2sr*Y=@wxo!8-5?X7;)p`b1h?~&W96!>$9 zQzMALL;hS(!#-F9c;9NXSaRD3iIvO#9EHXZt-A=LOEXtNs(2M+O{sP1Xvto&FofXp zC0ZT4bmq~gu4x8WJ7*Fwzt`dY=~MM&U7IfEEntGA+o`T_bGv-hgnYXtX#K;o{Xg>) zx*yVgjx7}x4@dy|mw{cWw&J|P@vn&p=nL(d&Z9V99>z_q&loEVFLvgK01Bb8!{tE~ zN}la*v_nXZTr$WHGC{$eo_(}ByS#i#p_f@rS`)5IJ>o^fq{aV+c*UqD6E zuU87(tqe!prl)<%r*e93Gej{D_QdM1|M-YxV9bT)hGGL_IehaT*{L_GLK#8vg`a;b z<~T#Xb|*dyMCqR-!!Hou(*=0~e8nUa@GQd}eWoLV4O&t0eHHvx>_$!%GnQ+2;hiToiiD5eeXDyrjnteN*Z%G9e{kuqJF8MMyh%C--)Z4Hq_O{pq%+6xS~B%T%E z`UE=y9}vt~-a29wd!l(7wiq`UQu@+|ErvOIsAzO5ja;1BY_xB?yn@qgg9r1eR}@66IYu_W(LM|LSHJ9zN87g zE=aa07(m6KSX>g1v~NgxmTK^nNS`lPW>t6TpfO0@88`|^CGfaR({Xus6G;iKgcN{_kIXm zJpkKk*XVC1qg7AEcjTI<5!bKhL!j4_BQp6CEp&zA9jB~2EU%ncajyh3g8~)X@4CXS zu?+_8y3Ax3Q~c7Cjj8@fypNx9z5I=i%wap~QRka@8d(XLO_y9}C#kivZfDH07>jov zthw<9e{Yef&ZDz(n1t zPiso9ci?H*>&nhUgR<`~>6jJh#$ znlpi#y6I4NJ}p@^nAC(we5F?|Cg~VOrOdmW7lJV4r%A#&I;fL;4HxGA ztRZS1xGWNEJ&-HAXsm@;P`ZwiiL60gX$yL+NuGaLCC2KPeG6{@v*Hu~LV8(gki#uZ zMU5T!#0(>s-^cG%!#&F)a};<`f;jR)F1`8@^(AxSVi{xz zzQCn&GED#(-=>h|z)&MmSK-b+3JIiG7aFQ=Au)N|&PL4h6PmrU$rsXWAu_R>h)!iP zXR`FC$Y^O!rj*#hc&hN&Dugx{6{GAA1r4MCY5-+n?Tc9a#=PgA6)fd%`kJV>KOMy;DF4Y%P`_OxLip&iqRn)hH zZFj-b-HGF`K;u{s^?mwf=>B_^r({R(ESria`HQM!SRW@$euNNO`Sh*TBHGm> zK2^`!d&Mn&CqaKSHDBM`=#*EVwtS6*rSi|iNV3!q+^*1wvGkclN|MoMC3#{6`S1;d zlV;`nB85I_9RbxJz%9`a;FdEX55|TOvKHef-fV0qS8}BgmAqMa7SF)C0gn}#&%K$S znMmZJQN4IA+PV84W zFx~_VF9Z)4U}UEU>OUTD5Fr`U4zR-;JA!0J$AmAEj45=$N4T+iGW1CxR8AmlpGYxV zs(nFYB14_Lztr{A?_6iYs0veMw@{(xx+WCWoQTX=lgmcsbn!SPDf&vsycZ>#&7d@K za_!LVMM)Kb1?SERV((EYnbDTzRoKI{s{OVT$o!z;ykv+h;&p(DUL#~J(m8c+Qq#lk z()N1w_1Q~no;&^0cj;5H4rzj7rI3r-obc^Tzeypy6h>HGJF4n8SkuQqtYWooadcyE z+gtI7;FgrT`?+K7pKTCb1pSVXja>To1v=)Twq`u*(|7G%ph)UWWsYKKTT52A?=Mx4 z-sUm3Y@;h51HYLX7Ydc*6~8}MbiP4ctmnh1Rje*J_7Y9VRnZ9bps3Z}iAw8@mRHxr6#%aUW0SSu!^^c5fXX-Z=XYH6cZG0=w5vLiH#NFhva$;t)jFbbM5 zeb@j_LUc5n>?w;OlYIQ0k37=73n74P51);Tnch_Nw%8db;yiOSoP-UBN(l$NMTsE3 z<;nXENz#a5Na#~j0M++lZn(rCM@Y-U83#CrxFcCYDd)2^uMY1DSJ)OEW4`Zy+R_%1 zmIL6IDL@72Rm`hbXL^R<8MEsc?6XzR!)HFH_PsMprV-~wGQK)mli*13Xu}LjCYWUC+2iH!f7D&%9eDL6DTd)Fb|W(h z3#3O2b9Ts@+b0!v@yLslb0U~)r3^UjmmE=Bl;D%V>NGF3b>A@ZRft<88Mlg;waHOI&V$NHW?#f*h^b*Pe$Hp+R3pXD-D! zT3$@clSndl6BdE{C0(C_MrtB*izg^GI%X}n9olF|Kl{oRZZ|W~Tszgs4T$~0{=-xPs=Dlnq2^@haO-$RAo6 zU&t7tcJNDAUpw2AIgJfRbN4Y&35|~-`_$On1Tl;?bGEfpiVZ6iWNkJ1ChwZFwh8|r zt$qD!!2L*IGNfpybZTE^pJ8t~SDa%3N;Yrt9q8m6*KBxnJ0LLGnQGt1X;~+n-^JPF zQ1~N7zu@?!ub}qS23f$tzb$qt+LM!5fo|D@qJF*`HjzHKkZLbO^>5L-&nVbDm)%D^kg^Ru!%L$lwGv7OXYV_eDMGAw=gi|Dg~U7kX%e~Jx_ z+F*o9&y+pRND)?wcuL|J^I_q%EPr{UHBJopJDj}~96uoDK{j5yy+Uu1BXa+m+(*63 zi+0Us9@O&EJD!$Lmgr7ug5X8{%q31RFaR6yV>ltFgK64`K74-Gckl|eb|&>ywZs8> zj6hFZ?1L+e*1n&8oOza*F)j_DPZr(>J=U=?2o=5kMCzXO+Vb9c1!*r=7M{(k*P0^D z2jB&DqMF3nJm-&{*@HFc`&yZV*Wsfcf)0m*zP)v9ZH@DU6>R<{U*Tjr_GM}$r(B-f zfA7m91pRP}b1aGXOAGo!#IMouC+Za<=dtuV_}aV6B5mdOH%3~}p<=EpEb?WU_%|Py-x@>xg6=WFkZyB?_0~#XRK(f z+N)Qok|bfr8rXX>ZbxVmO~zj4K)M3hueroQmkUQ4fTuS*sD221 z@q$MD=;wm@FHs8GmrBbvggLH>^HMY6JC~&(u5$tq^8&OHZ!I+UkAsFMaVR{2w%{+8 zRKe(<*Cs@j^ehAcUSg&+rJd7oLC4zt_KCeDN3d4ie`@%k+U680sxH0URN}va9)YP$ z*eS%dI1e7SnbM;rn0)FY5J=jBp?*8bdz9|89h%rDM#?2y7KK}{3j z`U#DJTs-$`Eq2blDfP#3=9Jk@7~e|M#tUJoO}XTaSCI<28C!K)X0%j4LrU)8Nut0U z`8(ExL-*J2z9)}!fnj&0IHutWjQaOKC+Uj+vG@F$)+z|?Z_x{ zZlDqC;LWqj5j2~^+&?=f=$X3^q8(X5i}@OD^`3Up9sJNP+EK-r;|z1lwYwjUbZP7Y zgC^9kSUvLl2LJ8P25j%lsYs?k!W5^E?U~UOcmWCOV?X`;C$H^t_By#CrV~StArHgw z#|w%O%XicuAx>)~o}gtCxLBJlBd{J1SB!Skjyfw+XwXDYt=G+f>quZNwv4fY|3!p2 z36j25R}ou^aCrE7q*#W><%_H?dOEx{zLyZ+1&p@0m3x8tA{@RFb?m1_b=|5as(r5@ zM)NBW|cEO;I|8yo9MR`2CPY z(27VsAoS{);rqpe#j9JB{n2~l=)R;Wr9>fAMd;>f{`F*}+*)Qw=y?mm*_Iz}O&kW> z>Nf0oBLEbuJ181yVm+*HQ_=8+ocNjbNsylOxuu`~{?E zDDKiBAK=vLT1I4iJ<+38bAQNi+d8Xq@pZx8bCd+X>b{;&37-*#Akmpgs{S@UwB>gn z(5OiZDrWIXU7TkBo2oh)L-qOo$~UdGwtTOz%I2z?Yb`ygOik{5n>JHlGyGLHEj&IPr1p08>VzcGatU+%v z&h+Grf>gT@wcANM4yE8Pq}C63NISASrfaA>n5lW69p-+Mb)2(Oc8I^O6p7F&gkD`= z3>1p&NOgs}$D{B(5?H?rUUcIZ8>uG@aQyTF?_d-+XA)AzN0X)f zab;$BKU$0nKPUaOo>WGEy)c0Tdo7+5@PqRCe+#sa`h_gnN87|z>c0Zb4kot&(!qi* zXU+3U&MO5j^h@8$t2=`51F@H=+0Zcxk6f4I7v#Q;$KYqN2PL|%^72Ra?rR;w3V{;| zJYN5F&tZCVa!DFVl#hP>AG+Q$tgWbN8!ZX$?iAPJPH}fAR-EGQ6qn#o+=ElxU4lz- zx8e@Ptyi?t{v7|N%kgBm>1LV_?=pXUqzUa#uCi_GeQ`m?7aOtS`l52olJ3eGHaCHH z-(VakFh#lX&IR!&Mh&Q_1I(mn)xzhToFBvPC(4!V!nYtZ)N3^*SX7(#Q4KNlyJljdvlan#!r)D#eU2SAJQM4B(%w;1z901s4M(J; zCS0(85up4TCjozDhU*-j>>=D*8BLLK3I@U=xG+tf<9rrxBk#mecx{AMK~f6(YX2TN zp$$v@cU%Ssv=_iL!6#eo&Of~XG@u~GLHCW9(GQ?T)Y44>J&}Ebypy%l7ZP=u`Dqdl zgj90BH=yrTAW=mx|IyIUz4~c%I znK-^N+4|~cRB7l$AJah+yLT}K@9K{DR1NU9271SyzNCxQu%4ZnQ{1&+k4!qmE=755 zdQi1NX5}u)-RIx9I&bc?!kN(x70p9 z+Qz9XLA0AOfoCR#?E9zXlsi8$CywjpYcW_$+siXY6rKu-pY(7_QYmhY#Xn6o6hax^ ze|9>O;ps473w&*0!20gcEkj<2w>!WT2(72O?giijBI5*p!ok9L^@>{RkJXSu1pELP zu%Ow+v%B^$&kP@g5^19h(?*oHwox$a)4m2x_sUsuaqehy;ZJQdnOlE(1ul1%DeI(~ zwO1(nrK@P>lBQX{LhseHa@lL@6mOD2tECIRo7DgO?ATba@q-X2G-K_G-J=_ui)xk@ z=_+MB0V(_o$^?CWwh>kZE3Qf6LmSjd+kxsma2L&ZB}Idt;kA%VVEiSd)Gd_0EwjJJ zl1${bPe;aA>uw~XG?#iez)TXit;Xmv;@q&wxsmp2*b2jq4+#B{me<8~Un~NJ*!%TN z?ERR{8-hX34Z;61dM@7H)P`5XiS3D?H<=T=PWqbFRuLQhVyIo-!Z1z=~`st5f{1WQEhpi!<(UabPvFzxE)Ui0ct+I)%yAE4m zr(bd55SkhG$gu~dgKemGKVkgfnq(EaGRZAr451g9SmMU`J`mxZWwb7QW%692ZLjK= zK74Gkj6;6l=HqY!9m+9c@A}C(ar%?#=o7|-L&vB?`qHt*ICO%$kM#B53HCxR)2C;p z`UXGQ0>lGE#$?6aL~Lcm-9;*7`Zn&5rdTa1TW3Lb>b^umo*wG>S+TfJSzepZ@4(&M z3wn8D_ZRi&I}LscPKt#^D*^z{ix#@m4(5y^QTMz-O+-r|B`iRGy*9fA>qK4ewczHo#0>a$;5!TVb|)nZ7iFkYG>Bpb_Lt=}xZz6G%^XX<_8T%CU7WaVR6f%Kle4)haCmr)&zRT% zxHP^l4~PW?m4yTq#P+;0CFWRMUyP}I)YhSL&6fxf(K5(%DdVFmZ89oO7OG^Q1O5j0 zYHWJGmja_gb@GMnHy>o`!(J>6qt;gCj3AJ+0p>)a7SY9N3Mcm1fnpTm4eYcj`BBKdfh5vBTfwEavb~ua#w%L>{N2))*?r+7HR#*}YNP3hrwi8ymbEj}yh=_7{y9PrdXZdVe2CMTuS~@;+qx3#^hcr5{5r$gl5N+ zooh62k?^rb)dWRj6sNWOLP^s@LiPn$#?J|J0MXvCr+Os5h@6$B=`MX_FPPZby$&+1 z?>qcIA~O#Jx@r;fUr(LDdnAmxBgqDzTe6R+(ZjI>*;~ibqzru3K%py&3kw3(+Q`h= z2#v;5khCXIrri6%P@iyeYZ!dEFj-+K+|=25PYnZ+eWsDo(dkjglF2RhpXv-r1~)%z z8NB>NWqu;mug$9PQ#yA^npRv4(v{b4PC{ICWbVT;D$`6`dY-D;Sec)T50QeHkyp6{p;7`2H#leF5FQlVg3!CjBbBL^hx%1dfay z#6g8l`2{m{zO6JVXisJeL2~f?{dh?t_MibBiP*e1F6D6JEjO}GmVt#VD4}LoXf?=0 zi|B-t)aGP0(_WiilZVQ+jTZN-r}4Itvt5~R(7oG24Sxr5P-s&s{JUQ{srLg7uWU_r zqvrin+byk6-}cjpN@`IUd$Cqgaw$%mh|x2*)*OW(%Lg=}6B*zkj;07MPp0DfMzvAf ztUf%S+%amw{MJB!Z$*&D0urATYqQ3qw!c&3tA1Ce@ex}%;#*|m4|iilF%v(&;HY&x zOEFsy9qy%6_wgopY*ab6sHUF=XWs+9s|6S|^Z+wG~4V_vbGfY7J-ViR{Gk0gpp(eMd1l0TC2*RS*33NO^hHH!>8Y ziED5G;!+e?r_lq2+T9jB!bsU^_l+>#9iBSE{C71Fw>JsX(>(b_j(74$!P8cAG2-H0 zNr@(X;b(i<;Vx$#DWJKqD6?n6G0Gmxz+$;PH(^@Yat~9JvVn_e&)-P=nQpww2_kLG zh(U$?VZE`xLkT4;4sXTz>m(ohXH-mjDN>zUE_|IQ-cw>?9lU{+*`>q6snWeH4-4w3 zJLGuciXYy*aJjttm^X%EXlmT0XudUerKySGNdl))^g=f0as-Mw)hw{CC>VF<%-Y2) zTha1@NhT>Mhw^uA=@#HPtPDSymJK`B-Ek?<%dfLAUU!A}f!Yt#sO3@Kha=c(n*BTKKxIX9I4IcO-`~Ggq`` z*S@vt#tZEf{^+mY#0HvPTDWI;b8zhc-aOVLuE}v1dA&_8@2A>RL3SzRR`_WD&Z1nH z6qmWdFJR5KdY(L_h&jn!tMBKs=UDy=!RURN%Dn8G9g0zy5th)F3FU`9n3$a0(><|+ zQkkcUVDCRpM`Y5Rx=G;>jn|4ev--xvK-b=YywWj*KVH zh1&U(8QY56#mR@M?wZf>aSk0gLYkF#Zf>4-y)@HF!y^&a+BNsQW}+s8VSb0hVaNB-?74OIT&ZDni7KXv zg$tT;VYRovU~mOO@)RFmvr0lsdiQ&>3UZkHSIYFkUV5>3pfj@w<&yUCHT1rPn<2)x zD&z#%E3Vgd{z&DiGkOLG^Q{Sj|3XYylZSWCV1sDrh6koAG@}v_4d_OIDTD|o1FV6_ zcG?$9kq-Cy5SB*zRWq2Q<}a^LwFW>13qS!w+!_FR0Aw6t?G6TLY`Z4^XDOK64N9NjZ~hbA zVmrN6^>>#G$OPj8B!Vpw1iXL44+% zrquA|x2n7P7FwLTPDBOv#Nmk-^Uq2vXd%?i+Db*9^6qS)8~=udE4a1MkIxj#RVh1&<(y`HCo2Dfr=XSAWg zEh99zwF7bz-Vt^xkqKOAs1#q@t1Hxz&9G)L0C&A*94BEOXWet(5CQ;_V-0Ijw({Ni z+=s_Hi2km+3wc2=^SB2&3AH5=WOMqQ-##K1XOLVwj1r<`OD5$PU>uQ?%7OUUv|^_0 z?Y8M8iA;W(IMVEypO9s|$`iOu2+BlWQxD2ePs_<1+yC5!#@$FQG-y~S;t8+CONq{y z`CK9uATnRU%V!uquHHvp6mdH{*=m(NoneL`?)*FZxKv|sOHDv%3G064?90f5iIw$4 z-L7B*SFJ1LJhhPSTiU5N@d(JxQZ$!HP7{BK6*VP;Z}8?-`Sw!qvx_t z_zEW#R@0h;54!@)6|P#0niBiyI(~-VvUXBha6h%1dA`%_ySql1evkygxi~G7zm{!U zh2124TcMo3kriUJ)2ZF0k@`uvH>bk&4E<6w?7$oTPug8^nNKVG&UWb$Y41X1uk|h0 zH7~Gj)#uqLNT?~ObLi$JORNT+sB2X0;+!@ii;MUY@2c}j%GIefaoyJ}aeYmZrdBca za=z{kXRIqH-1TxY+!X|3%U}0bT{($b`u;v)v_Qc@>lWFF1>eF>8c-gzX;nc!wP;OH zR>Ao*N}P3PAuVJ=Z9(sMOWf-dCck(s)V>9+obAcR*|=~A#$u6uyd)h4Y~5uk(17I8=#a7ZnEecs_cHWMQ!4R;Bf+T|LE7%wex z--_cWK%SBbqfYz-ma9*mUI!DeQ}EXf7^16R4=Zk0v)YQI)HJnfQnrgEU%!e&wDXP^ zn{$xZ2(-_yMAHo@XGAG)Wpf%k)@0~t4N8VCTN+JNRyhZEFG~; zO4x9w_NP3l=)DcUVrUP_8{Fh0<*!zJGjc3S=kW6;RA>v3e!USRE!|F|_zBmY>A%mF zg~*o~|AWSHT9%VXwGM4k5QZOQ5+Io@dq6zM3gR+47)n;vKN(6cWNGg23~?^jFiX|A zXctg(oDx`w`K(}~RZ}}A68WoA!XQw1$j{11t$)QncLnxX8or zFp*h_Ueaq-Y28vG?--8ymX=HO4{d?d9#g^Vcw9FSo2j{(7>lvXsI?kHh2YR@B$BfR zG_y!q^K=*XYsi5n9F(Z@<|m0tqiDh=UDWq)xQf5qFo$%@eVbUBo7y83N&5XT9bZS; zir@%^;IrI2W8PhL{mX23V}+i23@M7}{i({wi!0Hk-)+*Xs!Q7* z=x6f5JTC0N%7_ZmWbXu%TJnz`%u9IPU%8kU$kfKk(tOyz%Zp2XV4e`e#p$eWg7b9w9v$UiT zrkh1=RADF8w%6cQ7L6L%=Q-VXy=X0H_tjTu5c!zq2#?a9L@1$Vs8UY@lazS_%LOvq z*}ZYD7!33gHjMU_20Osc6GHq10ZHuH9I3coyP*bf425rVQJoctzSa`OtJG;qvC(6= zPnW>^tJwLoC$VG3QDP}`QS!8t93M>C2F zWV}%({s1%a*yO>o&_UuYk~~{C{~F4)5h{TjSN-jo?NCOIv~*hw$gx<7&Zb}ZN~ zbY(F2H8mz!Q-*xphP|vr8t87YEX>(jvbG33B3#_=%zyok<$$()hxf(n_6afC&pSpo zy54v*ay!E*+n-6nAu;a57V={`OB*9sp7>tL75Y7JpOrd*0$|be z1#GxCPhya$UlV=0=)q5y0c<MPUaKcWT zT%A}ke?abXkm|;h;fs<17IgQdR!wv4nKeAe=1nX^h0Nsp6;>FDO8w`i)l81NC2CVT z(cQE8iCy4ZX!ppKs+jBgh~Wlg{*aP)#v1GT=uIZHIX`}jNOOiUrd$tX<7+t3*#T&% zDKYsoh+ersn_qi2Q#>(;f^@9{1CcC7y;-#q6>(8ss}|E3bl4GpelbDaQyI}-`r=9C zaO}Dgb_Lx)S)UsYKUjFxCj^Ji4P##UW&=m)s#!b>mNs-}P*0V0M2RRPC^y)1bQv|Q z)`nr2e;iHuHCIV@$ebR=)_jeJ?>Xtlx-@^4;<*E{|2m|`gH70N8)U+-IWBZ+|Mp{_ zwvh%xtc6GR@_O-JZCNg9tc)YsJ-d6pRn|%lKjDE7-|rFa*WXCFC=S=-=5@$9Kn~Vb ziDRU!q^WI5XFmutZtA-%ER;R24cg2i>T&es`t` zDCS#UKsQhluT|4QeJo8?DZ80*jL_0vJsBQvHYcjlgppsr_d`>7yo)UmglV}?pPliE zv5q8yb_H?e*BnzNz(6C%h&7ClIOWoV2_iEaRuJJ3VInfkb^0a1^eh^7$w?r%JxrsIxPcpFHYjD`6j5{G@3+5^qNJ zcvh%Cob**>KV#%MY=%C6HFr6*jB$3!#?>_m?d8D7Gw^2_EuDeqzdbaOJ8eEB>_CaM zL;u=DR1X1=AvKeLA8;_8kb-%@9Skg&_isdS&H~isv44bu)Sd-E2@u8^Y`Fp`L#{En zQo@Ahh3o$|WC8H=LD*LTJ^&bgaOFCn6j?Xt_$(bt3N$493o}_)0q_v74Z!7}rZ3jp zfEEDq8fgpW1r&%jx&Onk0uZr1z-s{DE(Bt{57{;gJIzuTo*4Q&1@WPJy0c;kW}30iXwA6z>7|a7gjYRV-G&g8=;F@Fx&}&^JGVtRMj;;9$=w<~+gV z7(g=cI}hk5i(>%c05HQ4SuCJ29Nei>8pmsJ6+Vy@#PhEe4V3Or@t5u&G%LA&Ax5^G>`_Gqo zCj4RhE3j(MAFb`{3PmNjOQlIMjF!yCtsM1Vt?|kFm`Z=@)n7%*kV$p(39c{3s|0-# zewQh~tk0x@gV19crYPx1Vawv2Ndq*%fmT-75*q%%0?uy8C^*fOUxMXO!bHeei?Umj zo}c~%tr~(!=Orq4Oqehm#_(i)Q*1IZ{q3M|7DbrPMAh16L^9eh=6Vh5yxRLy zhGcT}?6rRN!!r&2QsJhG_7gPBh@}2Uggj0Sz9uqlVNWPm69u z&7wQM)RNZs7T2_b$4@1kePSmDl1-+@16Su)vbW>>?{uwu@H`hDP68{4Yr8+x|EVS- zJe(iD2fCm7%j1XhxB8!QBI6Mz7bt`;#nx;iZ3{r3Z`0-i^x=L_;J9a5VqN;!uvZKD z)29!}<}M$oB5EnITD>Vh0)Gu>5*pWPC~3rK+ceXzU%viY`z)UsW7W^CqB`8jPjV

9!ag45_fefRck^Mq2drFX zvSY}9xyh&Vdr!GsfM=|t80Eq7HGS0r8kgSHcafW<+r%|Ym^r!dW9yWgc^7>u%8_ak z$(HVe^A5?dd#Rsb9^d$W%k|CWh=u=(AjAr^;ghNT;>(QNgl|P z)pN6lINk%s<$63?mA6k$T^(ua;L-b;O-n&re_+;$w>W65nW~n)Qde81vSwxJ0pww* z4BEBVEBNK|5cnE*+Gx8>ebvn;|MWIZ(WaIF+RN5E6t8~khpC1g-?_Lp-gXIb{2s+c zxzUJer86+e*Ap#755DwWO@F;4PXTDe!3X*7oW{PW>zJmsg)Bp*ltj9v^ic@og8Chu zB531RK7w8Ay|bpzz)+reyzQ-cE_3GMCGA^b5U zEezuC=oc^OtUg^%Jt4jUj$4}w_OVW2rlRJyDawl!C7wKTch3E$Epo_MiNy2|zl_6? zPWEdbwbmqM0TuuSV01lt&Z8u+#dnjY2@r=j$%e~EpZvv||Xlu|I!hU9hn@j#nWx2|_9riSFU9@I{q4eWV@3dCXVzjC8B}^>v!5X!mm!gz@#ZE3&frBezEaSb)w%1U~`ts>YyR{#R zO)Y&90QDbUb98*k&p)g9&$r zD>_0I8xHX45$TAH@&kA1%A8@NMMqc)G%PS^97f)Mts`trK9aXzu4g3QuQX}%dZ`=Pf9(gZU$PM-w=&3a+KMcxazHyT%&?;2 zI%YFVwdAP_ms1T)9V6FD6SVKR+J4R1>vPeh(`AB&+IS_xirdy$4ryoA(Xk!H-}2lT zx}~ovZ_Px0*G+lrqfi|8Ax(W8dcNuN0?$aEdS#BU&WHy}bDHu}>Ac;ruSwLoXte3l z3(L;*=Vd6NDJ^-WLT(iGnnFg^c+7UcgIP|D=Y6Uq7lR9+Y156UQmKsB-W62?W8EC7 zGHG|;@SE|q{JpuW5)z8;$)Bn=ux64s)Zk8G;A<|u+gPj9{Edx{rz~n%T<$y=M&$N=|E_tLdhqskrH~=@~QQw!xWMCo4PfGMn zoa~nf>ez7Phh^W#Slu&Fsb}KVC7VR=E@t9y^U(pSY2cRHC_K@}%HoocR2W0N#R(FW zp{b5bUih1d@}X0=;~OG=O@(`98ZU!SNIjLqZxYFGX62i1Rju|;<3W5oHv&S_2z+~$ zj1O?a@2sC6csNVkmA17(A8IAN?vG7xFM2J1aDVX5u~q+`@!R|Xz04j_Pv<};^tkQ&Uf`f?Yg(OsIXYOYgB7*qGzzCekvqsAeFWkqR!IGUcMeGiCYcFZWdYG z*sy1s)$7+)8o@c8xwHrAd)@C`KUn^HUVSjCx{&@uN z2*!z?K5r}gnJwY*!{v+>!E+q3ALEg-M5@RbURmz))@JtePwl9Xp6QFkN3keAzR@UB zJIw3uXbtIm){kG)%tZ~iNPm6w7ea`k|0E1qQo-A)%oE>t?S4W85w{;`2VAX_-xA~U z9+syVizpxM@_Y6rLxA^dNZ(!_U`;_zB*UjJp?fc0&t0o4i608J;@c5wiZP0ag#yHL zX3JVXl+5lvwkP$bNq`8Q$4R*^G+r;9BxFhR|O&cUXE3VdV&_KeVu|w>f#T zA>!<)GUC-dw!Y1ualD!xm(grvXIq7l==*E7oIyO^GDb6v*kEr(qwiV=>I&41DLO~< zaz)a}n!-4qe~xT2GfcCnmz&2Ixnb)cE4Yi5UE2&+l}Lc>d2+ZiQx7FHYG#mKan$v& z+3~WFVI*r|T6Q&cJ-*%{31`x7BN)xw@!6+|&D;n&_9J(UV_Ub14`=H-qy;YB1|QtM zdaPm&I(HA~Vt>2#j?RNjuXm?z?Ye)ej`wG{Fw88#-6WZ<6`er=b%hlDPUk_f7KLif?_PRg|X02m+;0Bk)JAz zqN$12$U1jtUCpvn$u?RWlix&=24$?AHv=7Z6N}b(a&)z5$r&qIH+L)52*qR@0f1z2 zRaI0mLI7LOswXes>drAB{w)606PFTl9}`>*3fu?9g^61#bdzphiMiG>nPmm`7}t~4 zd_>%7A#|W(i$dzZ!&4EETS$C~Rs8;uwQVN=<%%xUJUO#$S{A>d6B}Ax9jQ()O?iGn zNR`9&&F)zreulGv5wq*1S4K+j3@>`}dX$2T{@@pHwl4$AM=|4Y?W4H<}2AX=EKBO-EUp>*s_FY8*5&qG1j;>$ zE4{`C=Rq3CPG6#R$3=@td}wt=p|x21YGHeVS*;M9@MI~Pn>bw7tgXMCWm~0IxXj3= z8;C7&WoVY^;r68KdVFZM7s)jI4nQTSR(_kxg!Cc+<;1RPk;Ipe-G1{*O9o|4X3Xj{ zIy5Id-+>zu8%s1pji?b}FSq_tp-cVB-N8HWp-)h*7H!}&00dc_&B*Kzko8-?C6^i$ zsX&K`gFf~i`7{;EjJDuIj5>%s5t_xR+smX6yHw843j7T^_#LIygpP6tt9Lx-UAPMZ z09L6sGOU#)$nfOcoC3;4?@TM=u@fKT7?=mh62m^XFxr0gx3Z`-ZCpEP7Spahl!R^3 zQnjl_YIpL$20>GKyYuVVuqon!W`dexhChD)B|@X)+{XG&qnx!09B6r_q|L0Um33&0 zmD9mwkGvBug8w+W&K?<^5@T4H01BUQd(xKCeOpt+;~Y)T>~J^(C< zLFHerzASL^Y53*#ZH%-d51O$|Pj;NJyGdxz)h%8lk2Uj^J_u=*pue6hFTnXj*;lR{ zos3V-z=NJZrr#(3Tb{qNWbH2v+Hwm%GZm6=)n_t~QTFwIh1mz+q=PL3tqVL7KETb) zmW_@!pV+A`!tE!b=`i?mzioC6iqRoWz=W2)G?wAkbK<2fSW^5{qWbCNE2xq2Dgnc( z*~Gfjba>|aqqFA%2#@ToQ!4t#QlaFxW6UQA#)Rx2iu3&w=C3!4JW3lqCe?umYFy_z z&LLR@HNNVTIoDXU+Uz&U3N1x?xK4L{Cho<#bz>A>9Y*!m)QSpk4RDw7Z}hFzgO`&( zf6uS-SK#~qUJcj+cfs0eKw|J@7H}cC4wDYj zYX{sx0Q*PKBmbNH*$wyvt_g&`d^84*|Cs{*9Y~J?$@2jA1HeW;Kzi^=5Ir&^-UlcK z12(n}aczK7Qa zQ^rAuhWw%5!m2}I&3V2)^y;NpYj>(J%fz7Ea<)H^SWaZtb@TpEj?2hTX);!+|&(X!R zm!v=@!#3C9Muly#V9GB*9Ll>8r8BXOyXB`+S>4WJoSG|jK3=}3$vF!Bf%uHoPXFJ3 zGbUi15FkAa4@58os0ago8v+$$hZArdHddS?ky3aro()z4nUuQx3^z({gN?dT3BAs@;G@8o)e1>rO1Sy8 zc9{n@9{}CVZ9yxW$O6E90noIIY8X8-s54Pn5&99~m%%TT6B`pAaOHFMY*e^H z@=q|5oLOj&B68|3FI`w{h77ynLQ_jWMA$o?BJu_W4|h%9)g_W4qQ503s0v=%o1es& zD#t~gQ8;fzRpp>H({)daZJ5D$h zua&|V(fD)K*I7M385+5MD=7*sq)zIBn!k?YUs;4#-eKhZvyz;!e^#;t$%+78z`$7* z@k;{0(NREZa9lXl2wJ0nm>?FW|J<{GV8X-&JYPma(V)NY{7L>BmdKyj>7(CXM7~rl z<~f@C#*8L`>$dUOe`dzqbcNoXk8e=drKIxN(!^uaDb+bTIlXt{uP}IB+!sEe5T%M8 zp532}DUWfaxr;jk&WbD0XiKRl5I@FPC@iZyF&dahwYJKzH?yZ1h_wlHC=CRSmee#7 z=gD7^KKQ{?&RL^%SA6nl8>m<|OY6P20r6`72!7?VS=C*#(#>vj@NGut#-DdRY@arE z5Dv}Cy-3RNAagywFX;F8Xg`|Y(Vd+K2s+w}yD>xcTbe?@p0_D2eU}3M^sNDpMgtkZ zHBmrh$YV5683z2}&+}m14tNFN<^!8p0>2{FuCgY0LiYf8Aj0uLP8iUt7;e~I>I1s< z?O^Up1`}OYg*tv}1+V`r0{A*x`*Dx?>)YleWEfj?LmjJ8SUTBU-yXM1veu3l|1tvA za`K86#!!O;)5J{oj`B=H%5LERKY{^M!f{KDMTcZ$7p0Ka4_*FlceD%p{QlO<+8cH0 z9yZ|;XT$Zrc^3UXdFY`1I{S{VN}!dNr+m^<@DuCl*iF1Em^1Z|^>q3Uvoczk03%D{ zCkDy>!0y#@@ykl*hGV7s!%Pk6wK~`H9>`qM&|$90WaV;BC-M*s(oQv0S^IQ`N0dZM zEz220HOh`X_MMpseH5Bp?`LG7t~2+dp(ad<`J5j!l7y9jIttni4_!~VuPVRREdG%9 z=uxmQKW>9GX1t>);b(*2%{>6N+)Od@9_w+vy{+wy5V4{E1?FoFrdZNE*ZO< z4hDiK$@^Y~b+)?n3JP_+@nhVNZzqw_(9HVlP?yB|o2x*k6JJb~4jOY6mP&VQm3;KR zaOx<9VU2MT#$IOX3`PVEMp(GB;FBP~;bx9O8*acwU>R&=9+XtPVphERbr73c2SaCX zETA7ag|E9FnLv_gQFkRHJKo{b&u^81EQI?$^b2+VB;ohSAUL*9rzVRTMQ$^jJliW&epF4GePI}tyXeQz#?#jLG1qlNoM8FvD^U!pCXfv<_pO)Nzae~e7Z+qnMCHd}qe z_P+CvkuNg6;C`rx4Pxic@LVMuTl2q*B@LpXwVBv}z;6>satF~sg|J0vl_t(3ev3!e zs~l)c+JRQl1ebvf`IGP_6Aed>lpDg)7q4H-n=2bpWp_%wx0Vv}Ht8dKKf>JdX2hf4 zv?Ivgvnc?-!LWXY)upF57##H7mDx++jK0bbjok!@VzdKWd$v2ATltr`0zIAaP7w%; z`wCoR2!jar^rOcFmu3L*!Igec7j0q<6o-M_CIjmc{`hEm$Y?fj5$=ymhv5L%I{_cl zVxf-Rwg}h=4<@RDI(DXb=qiOOAR7!=tO{!UA=N+wn7=b2n>D~W7;sfRkPe0u+&Ks& z0-x0bpJ3SkJq>v85KCcUpmjpP;;q2fAdWxVVyvzf_HF~o8wvyLm|>R$ei7_AUZ8e;OAr` zno)h)xCpaGg}>>ZVx(6J@e&_EFow@I z{&iIQR!7Se-=dEaw501zO)6k+l#u+%pm=BRKp^$Nk5t8><9YQAb*n1?aDF?G>|djS zztZVUnpS}N)`-jCOU#2!^Nztkeny=EG59OO2wh{x>?C=T<_3gsa2#Im`#T{^&L2-A zNh|g}lX4;)Qs>MOwAF#1Q&nu%+`I(O@G-?xa(YV;BX>{ea}f3$Q@EkMVv%`*Xa-lQL7Vi8QFS0GT|CI7 zqh=mEFI$MX=~xMNp3chZGommZdJ1QVLiE;y@DnFl-4Eg$9-j3`wsXNT&9cunYB{e1 z7V8SCTfo_AOCO^O-~VE!^JK2JyeTLz5!g*y+34|K&GcEzWaFd9}KP(p*CkH+^W$_bf>iOm1 z`Qxlf67R#H6P8b8_#KBi??_`U6Y!`kw zM0v62`ETS7-spseC}YXc#~peXP!a}Aobn&Z!5L;Pxc&_sD8cW#p~_a3AZ*tUmD-)e zOGs;1(s_OgwtyldENALZ1kyQO{CbfY#{B0ytz&G-aCEZEQ*Uxd$P03GtGY>ELAa3z z1w*E}|3_jG)k{@2idNI6)*?CL_omD7@faN#dUY+-x&D^342e7w%?H}W%M-W>7Gt<; z<_fgN4i+vm$NUW2yB~kSW6$vNwTt@Eo~B5c88T5Hbnyd79N0$`y#Oa zpW7Udp#MK_^X-}>Bdu$iI-)t#F$RB8BeSVL#s7Vq*U_!6tgP^GU1ws>GqbJ6cz(H? zc}8L>3Vk!!z&AQ=y#aoH%l_Xbn#odEim8ZcapBymkMZh{GKBGna3Xj!Om8*yGg#>6 ztQum}C6|QFx-EKJO`<~75-==Zx#;1%gprkw+5|*D>&ZC$4LgvjmlK-E86SkezFZ@qrNe%8D zfId9_FEc>?>?INGZT{YlLczJny*<|b>EA%)~phjhvZZ|otP@lm_F`mNMGMb{$yE?Y3 zDf8n~+*kD(_xK6}PUCgWt@pmHBUIT{Ld!xTmRz`;t)oV2-PRXVjuN zy{g?39VI0zJAM7cBJ6dQw&|>V*k0dum^Y|St8HNrQ+&uyXcI;p%u)7=q>cfCRe=ar0{v>av zpqKxX<)H_Yr9)rkjzgV^ZZg*fJk*&u{c$E_;P?rs$kHZ(7$AL5X^Z(TEE91|bN@i@ zjF#Dh2%5^<^VrClFEwX_1>lT{>>nHvy49i+Vw>!L5K0oh*o;DH(>cG8(a)0gcY-7m&2fabPu-3xvTLrBH4c+%B7FD2dWBW5a{v^MEYi=t-zJpvjo3zu7J*nx+TOOaWWKAX}g`SlCe<5)d6!bye@;}h$IQL#higzO#5ha-76j(IcG?@va(QS5e!e>LP z+BS*LnDFa~H)-i`vKyfvD(c#snS)1sdz|Wl6LHu7V*{9w5~lIRD}oeXsqWOtsl~}! zidE8Pkup)juIAgiCVQ3km#rs5+Q9F(V-mi@b#F#dxyzJrt( z3&IKg*xyC%MdS2#lfm@StREtcSJTb_xGrBNg48Y5Y_9Y#^&Tu_jlsh0c0OJqwf$HY zH3l>2Wm8!nc@eVSXk-Ictbzg?ZZjY^4EVJfG~t!y3C&$P`9cK> zmG%|5`_Gl51#lcvJPiy&0B>Qza)RyGfM5S!K~S(@;b9;z=+NI_l3b`NL(>%)V0IkX z4oKz!(3uD#whm+kHY3A!p+V@DfHJV)=|8hDFk#0aj$6PFFmN@V8WZv0xow~bntW># zlUP}Tj}7h|0y~&&2gt^$@=ml24pxfBjE*j6yZ`31D=DT~c_bqk@U{=2^!?!Hw5U;K zO9DP>-_@5U8+y5Ft#fd|4)6_3H@IR4NJf|lu^uqH<2}&>wkD-_E!Y;ZHam5v8`^@m zc7Q~nwI5Pe7qOj*-t=NuZ0n6DC&rHQDNugQDue%v*cO8@=(DGLo0z+U+OU?&I+`*dHgxuv@S8d;V%RD*TIi%#iu@gjgCbcl!s58+yTjEM}Gl7RT zz8gqgRI8g3AZzmqy|zp)Fxxyqd9w@VoLpH3O)8mZLbS}QH zcy#p9TAS+N@2%d4e^6LG7>YX!4taTZu~R-f0w|q=7uOVtnSmGGp^BUhjOmKX0Br_( zygxlPE2&=UIFu=PhL3T3*@=1OV~|X=pVK?#X3OUzp7c3xlPGIG%!5)W4@sdK=XcI0 z5HbXg^;iZt0|>P&q=Z(WeoN3G+@-R!rmb!E<3ZNd;DvP~Ar;}OiU1Cu z@Kgaw!P*qZsYy)tioz(1pn~!+W!=o1A@%&DHSJK0jSwpmp&eqchY2ZS zX3T!N;A>^dp}Q`rH&b6Kep=cXCLZhK+&*ysYocW$}&zzY% zbKkvZ&Om*hZ0?_JPrF)DA8W9YcD#Y3 zJz|eV(7bgkX0|PSY4zZeYf6^3j#B@!&5ai$B14$VJaaxswWq#q$m#M<=QfS(4BmBR zD}(3YvEtNouT0vV4a>i8*?G5Uz%6jILkDMaS+uK>1G@FeeMXw((>8Cv(A2B@a)rFq z-7@!Gf9#gKE8gP)--0Va3BISoZa>`jesE=#&$$Djr7OvmdynYF#aOlh0 zJ^UV@eRz*0rl?F?+|c-(?@%yv+V&T{4X+v(n2X5Xv3vEyxFT{)kTI<1{p8$&+<~Tc zXZ0)NH>DGu7-MT1HG)qEk3G6~Ug1koR>ij_A0_J&g|-LL=PaHCjWN#^)xGNOJ#@>} zxV^+iJC#xPkU0NCl`wc`{xvTBL0rthM@h6YJ;Uq@&)a`;+$>M1y^M9tO)qQj(9~_K zh!}~_w;Op=v0J_?{}XZbw&mvG+|kD&lG1lqaa4EoIesmlDgF7zeE;z}cWv&2eec8W zYfYD^R=Fs(q5ZVMkaU}~U#w*LDT|?ovh*Hv?Np1EPZ_y6@1#n<-BZsH8{`WyPPJUL zeKdj@ds}B%Dti8t7_IW8@$4fV4~p+r@#LjLy5fu*G3g&wlvSFf8|8SV7hT$%8|=!@ zyj`s!5)k0y#UILV`(ne|{b$%mYUfs_G{jW5|NJs&s~^xf)a7(cOhnx1VNS@Z>N{KZ zW=VyOt2n&%7nYVeB|60X=a^7S^R_FMyH_9Y{IP5tyk>{zK8X9v_A>q{;?gp8!vlfDNAhzKfWzOzFPUP_Ki$FwHkk) z3G>(|x(yXw@RCpQ=;dwem3EweqIsp;xtp0Q2Q$8Ex3_-Gfh?#;2yO z9KFHM%cs}J!z0QEy$|G5U=Dioy`!OmFc}%Dx+?Qrn9Mv1v&Wy0mqt}rV-5uJ`BKml zExIVvE0{0o67tpoJ6x208}~qmt0oE!s_@I8kfi{UQsw81LK&rC(6AnTCUf~we&s&& zSs(09O%Y(Grp#Ee2z@gEEflttE`oLp ziyNfOj1z%l7965*h%slzi93f<)wL%eDFA^(0uD(yq?kK~rKcw$8+Q(FB&P+=v{w9W zZ>|=ne-kq^6gDG7+imIds2ZvhDwvmS>E4BC9XPD)Yq$(YiUC6g4p}&6!!d_xz>vFd z#e8Z+AEI;R#eXP13U{^F&`)1^afVgMBUPT{x3p0i`jgd5SN6e-df2$$HAXSBD%#LX zlDAQQr}@x}dnl)%`}>8SgDcL(eb3zPmto~vzi@MRk5F9P!Eg=}r&24&clw>~N2Xm@ zU@eHi#xi{zLT?R`1 z(4Uz0S}C_AAg9|%;_1Dyx80BKnp7I#Ivvn>C9lS&s?|j zlQpXAV&0m#IG<;TY&CRpGF&L``g&QpqI|Z;vhua-*ptV$XRk7M7CPur)cuS%d3%|z zm^tb(9=OrGV0XoflkUe_&F6n>>M$;iVTfwBEF1}`bqJEoj`y?JX=k6LwI?iCV$0^>^tns{!*?C_UABgP)m-f7~` z9Na0dL18FHIonKs^3tQqrrg^*dUj!>r}*5ff$?L;&KsKdyC(l!>V92&rS227;{>hL zc&^|IT^ViJE&HdRUU}1barE20M|iWf=PPk>1sWa+h=~>anD@c_qMgGcMLC0|J+Sxp zrtOVw-9p}7OdItPN27SfI2>CE*!CD`!!Zr z)w|p>BY4>N$)>kmmiu;D+@|!L(@nzPXP%|=C5K2()0o;;&c#;G7kOqp{K55O-Iuiv?Rg91Bl`9LSHg0=df9KXE<>VL3;^I066?x-6 z^v>)bjTTE?Z?;}wYgCtOcTv(neIg^>uv_eEyor(c_kEcf&t=WV_NXw{jZQov;!VZ|?6c%PP=VQDY`Adx2WKV4%C~RpRHBO>7nV z62(>a(|FC|?z?UsOJwio@65_(SL`a$di&YE=o9Bodq2w;|C}9rHE=9?*rda zTSC~IzRv#sKINPBRqlPB#az1tM$fDjUCn#gtc-o1{rR?l1dWIab4K7h+kw6LHypX; za(m`-3KkURpGo%!F!0GdTe+ATn|}FXOI+iYlpPw{7%%=gRy0zkR-b zOq7wMbmwaA+p%%2z_#~SD*G3da?D$~(Xp~5Ct`V6`f{wn$$qjBzeacbM*BDz@KGk94 z(@99LnwLzIoZZYw8r~hwVdibpwq%wMwZreqj7sYan*m+pqt`;UOm^(%Dw_GVH$VA# zeDq@Twg?`z=kGV3XEeQb_cwk1q^%^QJmGELDKXx8{u-@KgYaf>x}d>6&f*t2c`f{z z4PM3V#O6=eSFIVa999gG*~vicI3mYrQg|Z5XUsRAw>p`t%VyeX=iE86 ze$FcG8@awcTlXnDvXnYqfT$3f9+W1O=OVNFtBSxT$LfF2^dz@ytFdS1x{RK`Jj1B2 zxY=%@-FezZRUOr+Fn&W(!}Q|JF8dsZC&sJg&h)$#YgY6aw4rnua60U&p`IL0WNi1* zP5B;HRJBO{Nb*c?rnJgS@4W3%ZA)?})0#I)QD4XOtd|i;e`Kw=KxOZUu;-~V<>i@b zqpi1&aecVY`MI;w_+fwE-1R13ccm^!2vyjoWVD6vrMt?TRR zFc|l^E=DRnbvyf=Yr`SR2WPCA$#ZyHNj1ai?MZ7#*#qZP>j;vStD7$W zP}(WQgWHrbHuLYh8`bxXEtBsw>jl$v%~(x>E~BHZV@-v ztUP~Hf4!3bsWC0LrbG8ydZTS=KDteuN&KDcm6zS>(nq%yEbtd8lhVzvH{gD}MXB=E zhBStR%@4)s)vhh#^hUarXj=0wi$sY+{S5Y+#;dj)Lx27lU$rgic)yj%jOm{{oz<8Gj&;0k$Ns|N1{an;G44<>(xb&d9VRVG2%R-M6iNE)Spkx{_wDVWCMKxfk@#e@M?h^N#Hu z`^bbPi)voKcG7pwwTciPl=<3!JNfwh&<4-^2c0PfR~|4fw^`&q?a%OuZGLB*7SiXe zbV+ygX2IosH|i|ZLfa(R=v!@ zku_3JrOTL0JVQeKuF7e!|M1-+>mDjMzH8)4{y+owyE{gHl|9CFw^s%?)|b%vuHBp4 zbEHRbdQO6F_s)36Kh%He&SNbbG+ul$5aQqo@D22RGIWyTOUOUpUfQZ5Q_mNrFCMRP ziY+Y7fBv4^Qns(qAmd5+mpA@}kK6Aj@80DQ&e$=c6q=U!`QZJgHP6phppmE#|Q`^>sTi4m_UEbKHTU3XN_`5cR-e!!6kJ1@$3SswJH=mlf z0ogx)KgogD&FK9JLOdn4Mjnp2%+wl%qy%Q{1>o;t`cVAfa> zwR|WeR)mK+OO>#fLar_ZAJ>gzPG7>|-PU3h=|b3XlN(65lP`-^kf$plEK$xM`zRL{ zr;aMHv5`LmCjYu}TnR(!0Rc2SktT}V{otWdOf0+?i*hBzDf`e~SHg(uFbjEl6N2ca zE1^tXCxPm@DS~Le8xY>o$TI_ojU+KX7Zth@hLj_y*A1jb)zK|esvuh8PAF6Kke@qY zL`g>#@IlQs&!!X#=6Db)lxU>tK`f_MdypKo6Ij&Vz=`kI$nRDW6W;|q0h)mfJc)Vq z@_%&lP`xK1Lhar;QFy?U5S9!}_%R+0>tDs;0i(!d_28SvK0t}01~)=L@{8g9tQ)X` zwcUah^|Ww8m#i1);?2L5nMrQeX3C1{D?_$kgra2i&}RBa&?95QiYTqezA7gbiGLq$ zsR!5*BUae8CJY-UVSCT9bE<>wA&#uD`b!w5>J6~9{VU_m0A_8=3Y&GEgegkwv2b}Z z1A4({XzIV6kc~XN2_bZf)MG)p#=RI&fl$T2QTHF=)BQ`rjD;nZ8Ntm9Rg@KG^bErc zd;m80>=GX;=~7Kr*r@>&<^#_9UL4@*1s0hsU`4zc!HU{RMT#3|89f6#SYhY~*)xB&wD`YeEyGYj>&2|F4tA8_ODNI}?b4Q__rB1NhTuhp zFZA#Gr2bjr-xLx-zn?0rpuISTN%{dSZ2#67_W`D=%nF-68^b(ESmCMjJz4-`&R~Vj zQbc?Gz>EMbnJPr_2Qw0tvEWNmP+gdQuK@%PPpRgQB^b8AA7Il8b1y6g*o7(j|Ix#+ zP!eX8x_s+QX!7PM9mCcb9r6b=%%8H~Ml;rf8ORLPuLo~@BL#Ekn1wQ+Q3R$mink4h z>8=OZo?X1p7l5~kDOaC}BZh4wVQkW~+PeXE*PPWGQC=iWk-kN2gd5Ec05i4*V?oXU z5FE9wymJ}Mur*{ATpEU9=MyOG_!{5XpAf>Rzg6AxjvBJW( zql*Dx3oW^@6sZM*Ek&tVP&5z(*LGd+um(S>+pr2g&cv|Z!r!)Z&+jj(0KdC|J%3+n zZU@k{|mBur6K^R1=%I2D%nPia80Vys9p2ozO!P}w}7 zQcI@v8uKF<7EHnnM8~!DK~usM*wYFOt0Q5PJASj8Wm}K>g1|)+JAT^+gNr(wv7lBk z2u|+y%_>;iieYgiY;sdhR+#>E47)(WCU@p!g&E#M?}Nb%a$`>9xq%R&J?o>Ouwlw9 zWVL}1kRmtalm(x9da+764pR{SSHO|eg4E>hoUFL&uM~7{13^emZqLaI*-k-}jnG6B zTNXkiI!$ToAv%c=MC&#}Z6-HlV^w6wiDCI9Y;s>VR+#Aw4C^Ifleh}1v9#rV!_R!AUL^s1FPVmDTbXPVPwMmR_NDP6j@=ftS4ZQNMBfT zGSN6Is^0;rg@F|l>6Q;(*iG$+E6lbKCeVec*@&qy$XOm2d1MS>Zc?O0IdA(b7Sjf5Mv$+RY{(rni; z_FwWOlgUk3VRIg!uub4#NOvMEIho*u752W5gelU=6ep-}6WF3KgauWee;lo36Zf)b*@mWd1x z@1ww$M|6?{Hz=eancYDNZUgV?vFf+r!7#~afRU*lB48*|nR4Y;h+r6`fDo3PO!~m8 z%|-_8jV2VO$Q82W4PF~e7PJ1kvqp+Ev{e&+HoS=j_x!b9_AlIZRV2Qdm?ufDmi2(@ z#w}#kMCc%QK+q>vgWcK;RX$^gN`QlGwi4phL{rokM~IT^ZzM2>VMcPSsIe=_PcgJI zo=`xKb`pHlXmb>{i%`d~a0^^~AfC{qZnVV2*}QRM9VFqk z3KQKV;bw!0>QE3|$N)hnTg(Y(K=B$oOk5-hyVdAc0vH6Vf5fp3*7lequnmgM;msde z46A`OsU~YMF-{UjYcXM&0EFH;Or&pyGd3r|?=kvz@Pm#c$=1MnlbkR{8%j{-ZYbX7 zj5#-AL8_BM2++xOL&!4+{2Av$xu;eC}d;vK)qxys!fGuP7^rG7e4ZmtaKM2lAixgW>-zMh57U+DGHU_AJ`}7r+hHOpIrk9E0njOLmTlUUV}S>%O;(SVX-RhY5wcy$Y{O+Spt^~}fCyTFcpCBM!ei5}b5f`i? ziHk{?C?tuqJFq9-q=Vt7lQCga4z-46Qld7bU{2Z|D6Zd$iAQ_D1PH$W)1%d?WSIua z&H&dB?!rJaARo;q^;o81PJ0IEF-yn9vl=L#o({z;_F&GVTHu6cLg&7b33?1NFuMT= z+$+{(V%uqZ2?@#nBKTpH|GNj`$~3t6KK-pBG&|XCx_+m%QQ5boi2r}4iYM~{`Ox~K1m(E z_KSK=Qnt5#Q9AiRIo$n4rIOUPhrg)%`Ghc%$^$d{pZsF2%>&j*KClG(ezAxGkP#i6 zpyr_10)17&DZ9l5H^;4Hv_hsm6wE3ki9oI*X1UAWM?rEq*ZBzJ{M5N|XME zZ(0--e+cf-w#7oQAQ_o5=kG_-gH-yII2H8rD4|S~;egbG7IbN}q>PYM_*=@Idy3Rz zGR6a)Ed%$K^GryJAzC>xo8^2wGp0x`L8j$|?CihK5GptYhYU-gaSO`{9)Z8Hmuk`7 zLvTwPb%*`W&iwf;nst~Ukdr&dpY8h~mK`}C2DpC(w5Am|2P!0~N|L&Bj05$NlxihV zhwY~!|06&_7|fp<#tu$HBP2hjmFG|Xn_6z9S^_sM&uR&I+K4$1x?Brwrh5!@Ew<$$ zy(xymj}a=uHugNMURTpbjmN<4*Bvl0rwS@7TuX?{WUre7R#zpxZDT>9E`$_w{(R!- z;W2`n_QdhmNi3@1B%Ll(<OSsG&gh)z9M+T`fWQ37K9b8R`2FSFIFrZp; zqg3*9?S9lreliau-g+?E=P0z_(w%a+#RQhq*-^z&xY+*-!GReBo&o>yCy_3P)*UBw zdEV`jo3JW0+&2Pw9*4Q-^l_-ovb}Ps=QyE96VH-EvrZ6maZCteoFIg0RpoLBogn5Y z{};jl&m{%^(9XtYeoT(dC&b$(JR~$i#WOUNjK)T Date: Tue, 18 Nov 2025 15:44:30 +0100 Subject: [PATCH 14/14] Fix speedup binary versus text I/O --- scientific_python.pptx | Bin 2602252 -> 2602257 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/scientific_python.pptx b/scientific_python.pptx index 66230d6af6939417764461566af0e306245ee372..a0c9ad3cf0b699f39b365260af0285d3f85bd856 100644 GIT binary patch delta 6700 zcmYk92{={V_s89PQKt8$%*l}9poGk&OeIAbDl*TJc?e~?B4o_G%~FU+hP)anr9z~U ziV#v6lHN##|2pmdzvuNl>sdbE^o?GY3nN_WjnUrrSzqQx6omc)w9znrE!&?;ZWPb+p4T_x^{%d(T+fjJQgr zW0C{ylAqm_t{R^->5`FE7tjbzC=UsD{jx9T^y3Y!<*O42%`oGy1;6q;-&em)ggKhk%eD{P9q%6x@Hvnp=5VN5c2REbjKs1TgVFcUdvh=5E(&{e zzf%&S1(yVx8Kpg4I(R<3GVe*7(^ug=Gwl+zWf}Xn{pNM+=)omoi;{eFiFH|D3v?Vy zS2ssqSJcihld|C8EYFwkcl1i-Bk+`PE>Q<8LUhj^e8+NugxK~E^`t6ncm*vR7&O1TO&dO4j(b9GH6&cETeYUDk z;*Pfo?QlDwA18BwZdhHQ`Z6y~`r^2{u2x?HQd(?DHHHxXzY$RJKb0y4R z$MND%5zQ(F8d?G)Z=DiOJ#|~$&6)3-eeKfGd^5X&&kihUVttoPzGYR|+_L!4!=Q1m zY*>EZ8+M}y$=@${hyJ4X9XsLK`RW@Uqs&y}4=o3u znoY}KDQN6=`NdJQEWfg}G(;Z^e-SoZL(5e9IV`H3k$VhvF|-;FtW>DQlj-uZ*QyE3qEOjknHD{#Z{4wrR!c&S{g-4 zu0Fgp^x>MIYI?yw?*O{ke8GiUnG#KxX|cte%^K5|s*GKkEAuI3@3-I9NxNd1s$`&8 zws2w7ME^j0hlN+Sg;1OQVXon%o~H-i`*jMv-RJD z3Sptws_$Ctci$xuZujel)ZGcSsLJ{UV@F=CRxaX$Z{*^&uU)FcO>|!)jrm}OrdO|8 zt&5k2{3{=(MsZD=uw?EeOIn?EwFHXCp1oGTwXHzrv7lPbSOd?&?DCtCxKG zjoHD{Q{CAzmvna~XPF)Fv{qsE+byQ1XQZ%&!PT2IDot2|#sqGru7M*}j7MTeqFLp&y zujCKc-?ogXqm`BAxo&=Ym;d&NjnhAJK6m|f`A(dg zO8&;StAnne-dpy`J`a9F33$*>U#%v=C@uT$<0qd8>tG2_rsB%b)q6cdjXRWAEe9ux zY#{3N?6XzWYu8()O4z_Na4~h%Bg8!~XB~6sfkQmI7;_%)j?0K!=lAB{Cc{f?62j*j z{Oflf9(-o}kzI0FTyTq@zRWdRz*AP+b@8zecuiTO)$&u9zOxED$mR&KGE36w#&;$) zEa>~xZ30`HsP}Y54bp!l$9Wh!Z5)uJt-G(-X5>25&Odi6BYawJ|H0JWwf@lo7Ht=5 z-94$@S9k;l?K|n}V?9-ZHS60B#8h(y9EqO1lgYjI^-j@hH}j?Js4NFTn?uvZ4EMg| z_QuvVncGC%^VIBX+My{oxar`oYI>>cz)PR5i2|7irge!m3RlMMLhiI4KEk=Hr7fH9 zx=!6Clc3usqy2`Fbhdbo3YO)s517;4tc7Zv50`(oBN8nSH5ITro7>LJH>kg7c66yy zmpWJLwujBGPN^lmdAo)0Xzei?cs4O|E|nxE zi=TFy+hrNk^P=m;`I6gN6}F>&cJg!6k^P?EHZ3%a7w^`YoO-%og^EY7FWDV`8L~NY zt;%%Hn*^DR@fnfMhKS`kovL3FDKawjhiSJ`I(GIAGzSL6yYDx%4ED{t9&Eq)MR3HM zCS7~W5bHVf$h|)8re&KioKgCrmP^mysZVQQ+$;$K9 zEew-doMf9Hu}QRw_~=$A%{X>VukW%?1)UZo<+Zty&6~Q zLbvL-+|BT{_k0_g?srPpr~dh~)3z=@+@!>r6K!6_&edL&T+yVq>2=wUKa|`UdeQbo zeEJ3})0pHZ8--6OZyWCm*)re4)9T7!X4yH@e)gjO7sK`=G7S39H+&p&tS~Y(tBQOn zMt{vDuj}J95Ut$x;-4m-n>C9kWtblCdZN#~Ze|U~lg+)HZbyH)KJep|=_#FcII5Y2 zYza;GBCoUXfYdGPxuJK;V9y!uH8Ufkj-CctrYnprm)81frOk%0CJeiaaS8vmCN*wn zUVfoyY0#Q!rZw{oEItBjf@7m6be&qY>$>jI{V!-&ehRTGcYO1>=c1a@t)hwt^ZVyU zZ{>cs+u{9j^=fG#q*+KMf|=?9iM(;!!k3Oz`k!--tO?X{c^y zAfzzyO;8ulccHvSCJ~Gsf5I|Jt$pQIhydsb*O-+OFL+7{SE5Y@p;@?*5OgsVx!QU0~jIPgWzqOx&{2 z@|I1FpmnJ%>!@(vSfbkYzzoTYW{LKFTIqU+_|zZnjr;yAXq@1yiOjcq6j+(4f7_w6 zBRIu|=eZpF7v6a7!u_G=FYXK}Em(1H4(?7GHnvbm^Y!K`a91wp&{0+eg!3D7fVl4zW1P=r+1Rn%H zgaCvf#5xEei1iS{5F!ww5MmG;nh%bOr<60THqvH2+Wh{sgbIb;q$79id`!J=X==(~ z?D5xeN3$fVzfJRbHw~Hx3oL&Q*O-uaGG#K>Bb>!sp3LBQI>#6)(h0RP3OMim`Rkf;Mz08N}k$0KRk4h zOGNJA^*O@X`+VHCe>3_xMSCk63J&(GQCC3TdZEn%=MCl8Sffj-591Vhk}) zd6m7TP4A_d4MnMZZ}IK@)0#>jAC2@XMm(L_>h^lmbfXue%h&g6X21B{J-MfL{jBXc z{#5L)##Zl-$7wF9MXACePYBElI7vTt>63j zldZ+`%3OBt7XM@{pL|R7eK=u#0YI_U~Sn7D%R zB8qYaENnj8<0^lZ(!2y6GjM9#PTXs9vK9GhSJq(-N0J!#H@B^UyKxf^+ z?P7)M-QjxQNy9~344Uo$!LAsh04Or3&K=wdAy`{|6buAHm;)5TwqQqbD9Pr?cRp1fX6I=rgXz znzSeM$u(i{BEj}5hB^Ss7c}fiuIfJ4)V;v)wiiP<32m=2+y;P+nDrv`Xy#KC zL;Ji5S=ztz6!iB3(C;OMQmFr3k`Dz@d|+z5-q7Bb;{(@1yjVKy1H&&1U??QPbv=e* z0E!jj^aZ!tW~{mUf}vdrLk$UK8c56!hMonW3?WfJa5wM9+HpTHOqgJ}Ny4JdZ^-cn z^Dm^}59V(kxPBTms$md@Mk=p2Rt62xjThz5e2 z8JPrv+p!gEm7q~i-p4RS!trhl3dg{mf*g*4oBA4S@~^2(=+-epma0F9m0#eZt{FxC zL2zm9AZSrWenHSeTfmya0G|UKK z5DEdX6T{#DK)H$1LSU1fm1!tanZ}Q1LI_z(4H7s`?4*n$J2Gja^N?sy%xP%K94xY~H6vTV^vIKhvyPY^29G&>AqB(&LMPznWTalkO^Kx0EG zq0o5U5i3)UpbU`8q!U&|!=ORM1%odMimn)1NRT^%!Tty|hK50-j2l*L!l5kbj-fi7 zP^RRd;c#L*?BLOI$8Lo5lAz8Id9 z5bB5Fk{>k6k#{24A1eWLC!xI=6~J+k~N3IqE|D6c;S<=K;1aXJO%RWTU0#z6T7Sw3*; zw~`YJRpVG(H73C|4nr{sG4bS`;YU-kgeo=aGzQH$fQSSPmlJ60KM$~c&FXd;#e zNYAY#44;#*N0!Qyf^R@XJPgj2iYQsI>_-3;X+$|q7*RiEBCa!_tNhhMW}mU#1)vj7gBJz)(zr*adtmW>R3{>nkysRKl`fX2BE% zTQTfwg%!Z_ffGH=fr4F8glau37pd*I!d z1KxyotlVq|rI1ug?&AYDk^>C|4=^YofQE+{=p^uUV(1~ku?xfcTmaig7}6fWkiR!8 zE|(CbSfbKgSY;8KB~u>K$|LsE1p8=6jEQkQx|ByKP&T8td4wfRdEk#|kx$6eoQ7y9 zVu&V(KRoyIVW>N3B%d&%rM~~;+gAX-%`@`s2bcy%!|A=6@b(G3?6Y$%vi23h{2v=Vvnb^?+B-+kxjL3c)v}c#Yk$kX&k(2Fz zUo#nQpons?cB0#4>PEB*NP|cp5^X@25pfwZ!n;V1kqK2*z{PK(=VWDm@9&B*Qo8`( z`c#b>k*P6UAQXrag~~60MR4{{Gp!Q7NJJu~N)Siq8PW1QI8!UZsfMnBNbx|w$h046 zRY7V)(PT0}?PTIZt1m)YMuudvK&fPcw-}jx5O+0v>-Tm*iZz5F3aEzb#G`Yh#^m~2 z%c%jW6DiaXdns2@SPe9ZpcXQ{MwCn7W2iv8E)hC3{di8~7|+RzN-n{?&Y?~yQuZQ_ zT1aP*37K?JCL~&_p9re*6Zvz#c`n2GPDcutq4Fj`1kDGCY(VHTjPVGyU50^q=psmg zF2aM>)q!Y-^y^@+33QrFTTmyNG7x(`IC;Cpkz%(v4|1&s=R=f6ir?%d5T}C#5Bf-o zm593m8a^TO24V+$i<<<4pWiWgzW~=jggE|n zi|CC659I~QZX|Y4g3xoa?uU47OmvLv=rQMnr>-3{24 zH2;#0vhFrh&%D{9I2H0lVVwB!-cK>kkMfT+tM9iS+2i81{_(Pq!?n7I6g4rGW12g* zOqfjUSyK5ecqMUBJ#kLxcFHR0^(9aCem+^Q!2$QHC*xW+tqyCnaShAy*4wAKAEQ;2 z;qwgbmY*pZ@7K2s&Qjv)NVa?~Ij`fkwlF_L`F))7^@HQKRfjA;tD&?*slMZLav6ET z15=6HtX?1C^V!O|d8T_Vt^Js$Z$@3YX1BAJRp@s495;!a*i&lZgKAQld;_e^(Yie{ zAAj-pE`}P{(cg)v_(+FH|jc%)mrlCir@U=D)sC9 zv%fM-pD($wv(zF%wlduTdDA#O(T_*0go$>)j(xAhvK(kcBFYPQTcR6O=Do|N=dJ1n<2?{p}K1l{pk1w!-(wVXq&mBUIh%~x52 z4hm1#jZKW^J4m{LRWTCsPp}eGsdqL3%~DNXH2Ey^qkzPH{{Sh5)d)JEnexY*G9Fq z?^@g>{jZV{&tIFG-P7gtF@ne=qcE$K#j9S6=P`3xAVsN}rTqlenK3T?vGK$0`_B}+ zv}N?J?lD}q*!c6OW%E_wNWhyr3|}^+?WM_%J1qnqMOvPG_lVa$6glx+TwLJk^QHrn z%T;pEh_caiaawtIwiGEAE)-PmOq`OIT5?zYDcfhB-521#5i%v^({Z%bZ)JuBHT-mv zH+U>qJ@$Mr<=`Ww_2+EwlOpfP@lQSNERk0~Sta+&eM+@-io`{&_Sh@SDwOx3f~{=# zhl85U7o3~lGHtYPBUt!kWJyGx`%p!;o_cUC;6~=9B=5f8Rr=4&o@{>;1=h@$ukMO7me`lkv9mH8qqHnLjPl zXL&uOGZ`C#QpKreT_<|qIS#1p;n_48T0I(;%5F_r48);j1NRNCacSEJ z^}`G@f+xrFn_kQ~=gS7%=wXeD%u&*LR5*8R zpHbrI1HKB*y7h*O4b_PCCkf8d=FiY1df9g5IKPT3b1&LEv?Mn+E&bBt+|35Q*m1K` zw;bQ{6Snuwc>GK$u^uN+1Q*Cm^44BCuyEce zY|b#mQN2AyIKA2ZciqKEyKWz%g?njV0o~NnYLDVmk3hG~oQt>hLLOP4-_5R0{a$`O zc2H;A@d9R&eRAS49WOQUDOGtrn}ZAH!9x{iuro;Eww3&E38d9-aic@JGQTw zI4cg>GPyITY6Mr?yXuR9Ug|4xC@k*5a8u&^tQ6sN6{>&rBBb6A1j0SSP5hWs)$w zUbJ?4|9n3S|+d%^nMavF#7eW{;1*^OAxtI`*D>FLeWD{^VjnQb-M(>Zdw zsmt5!Ysa&vcKITvlpT6)br((cO`RR93)OR=4G~yrRNv@4B7bawwPK?6`?_mHDe3C& zapUiQOk`Z%$hT599GEWGb+!wp>dAc5XiqareQ;aGPXDKyID<_bcX;tu8@}1bVyS6? zlQYNs`+b+1Uo&tSm|Sq>@|N#sC{s1)x_g=LdPkbkNTz(0wa6aI#2FqFBNa2AGNX3k zxa_wthr15f$n^^o(;F^d{E_HQnyMDFnC@Fyr8qNoF=+JrXobvfCfjf+u_lQ}^Z8Vm zSL|D-wv+nI*|Pj6-+p^&P?`HtB=%8m$;2Mzj5qqYc5^O;)r4I6o+;$?SGJpS!X3X& z?dNkp&<>~fC2GoQ6wOn!uFA!YpPI81jwwqf_B006+>BXyuPfGF!zHwzI>FXhQl-u-TAuM%C~al*wV(ghl6vnWA2rkcS>8@a_U2kt?f9ts z{7XMig#SUFp}mbkzLJzZr6;Ecw;l@)n>i^ur60=9uEs8L_Fx()#cg` zkJ;%@3%%Q=E`NPYrIcbXVaGF+Y$o)r)VO-cnn$j7%_z>ax}fA$iXX>;0s-kBj)!j( zPS>0Zyh67AX7b(os#T)ktob&PJ*XwwWf##>SuAm5Z*gBOf6AiYUP^)40^d8qE-|$l zLst`%w*Cz6w8TwQR%wZsmdJt5FXXC_MuGUTt6{31j1gPT&E(h59i3MCS{QQBoQf{t z=r=}YJ^^`MRhh`J@FHFv<#iVRTFr@d#rAPw{-+$24w~XTR$XIQ;#gP0yD@KkgZ? z21%GZmk3w-*2-31Y0VlPe!yuIbm`UO^GCfEf+F~`BLTt+*& zN%6R~$i?`1^JS{{7gyK}SNA_|N-6l&sO+2lQrg{EoaMm#9<}SXo_4>y8k}6NmkPxO z*d!i!y)>Yvf9s5J(4;csaa*%Dhr~GEYK<14LdRud1QtFL4+VdP(#o_&_Zm1 zpo5@?*b2b_u?=E71S7-_2qp+-h@B8D5Udbv5W67QAvhp7A$CLTf#8DJ3$YJ^8-fRd z7lQBpk(vGFMKooMFBt6Ze~RLlCQvRG>}nitGtAfS?wUU#=h`84CUNBVvbxK?ulg4` zH@*eRe&qi?tG#P*U*X#nRi^KO?}9D$20M=^RgSf1^PP4S@iIP7-1$88M9tE&pq=j{ z5&8p0BRtYu-g6{rGncW{K5L9Sr0=ptKre?koc^yA(c4E(H*`wd=K3(mEUX_h4W$&z zj8l@?8?$SVk9qBbrKPz?~-Y21cnEt$h#1*3C zy&q>IBqL9DFI}7TRZ20>upjg2`8emUvnp=s%s<<3Wz+Vb0OjQI6R1gtL+o(Wj=1?y?t}bt47Q zbz1DoBg10&Aq4J+#Rztf(*Nhr3UtnztVa+;x2?%1i3M{>t#cfR)`l!X_=FDIfTg>X z3;s9sSHCGogAj0uuw(fBxMi(LD^2=of}~B<~2& zKp_}ZP$z~kMDGNf-pwJPCpoaGofGsuj}kD`qnvCO<4=L{4uy26g}a1Gm?=oj4R%>W*D+Y5VGM?d%^e_(j4*VdYzzfx8p9+K z@BrLHju_sfattfzJBHs#+7s{t`D0K+4>8anf*0TnQo(@GH4Nv_V+`Dg*&9HO^Z+D_ z79t92fzJLu|8{Q}l7c3&f{TdP2M~j70VJwdM8y5--@5aY#Q(l0Wi*GCGNHr1P%1G` zL^|_O8s`hANLV2vo)u8V*ae^3{GWwK&^oLjWFe)CfbA#(LptikFpIYP0Zfq&hDMYE zAX!O~P_Pt<18=ucp7h^sl%jo?$jYQ?6;kRcD7kV8&iW|21s-7t%>jt1rfAro%z*|> zNerkl5b}vA#GkB5h(k{R#8wL|&xvF&lck7Fmbi$*M7y zsXkx83wW%d;7|ZrgeYl)J5Dy>P%uZ_7Iz*6z>Wv(aKRD?f^3fqb9<t0zoK0*&yb~@ouYibk#zi(JqFiv%;(~W7LI_8^K`>)5@&FJ6 z-SPZb5ENhXz(u9UKgC2JPuwZ<1jpG722~6o?A-HWH4mC7kxR48jn$~c5j!ro4&_qC5BLWxaF=2fb7a3QfwmbrALn84zTa18~ zgQ9S8;wp%MYq&_n#HDClR7S%vb5~*EgBaYAh=erDb$nK}>yVC(g!GO$l#l|m4o8xu z;KQ0WihP#%DGBArgU6jrqDSMAF#lgE|MSy8M)^@>4WfK1zLx$PS&}G&@U7htv}}0| zww6r89C*#J^tE*Sl3UYZ&owL^o`Ek=jD~^JGx33+WJ3DyOGwVb`<}$o@!7Z#je#y> zkyQ-bLlmk45X1BE)PuZ#k6tnsjy^aaw;f_(c|rj$?qlLWAuedIgCG~-!n_DpTU>{> z_7~%haWOa*n8RIyAIA@D!Jb>VI1vYe{WdN%Z$oWn9MrOu;?5f^y`u~l;x|Ar+`&Z< zCX~x@@fZ`O6}aGvhvABmPCN`(fbsyuoV)lL(Ivp;)mG!;OEp~HgABM9uLPL1ss^`< zv6`h?T!`EwF{CC!LlSkkp_~ZWgZFWfgb9&)Tv*m)uL@S{(||jr4dBQnfpe`9cY>2( zLBs=G3}IrZ3BP;pWSD@f85eGt;Ap{xR?EK^GMWr+inrqSwiKB16jDloDa}wkfaueK zr^-6;6(Yo#N4TS!3L8dt;-b0p-*k2t-pTt^=p?=SpSHT8YXt;dSM}gd7=kogA1>7U zAU%ntE&6eXHx1Gz1Gw@SYCwG@`i+7zajA;x=d&$_5)t1 zn@JWYu6@BpJ_te+8qS0>az;E^@MQNDJQbG(bs1~8n8d`|CN4y?;Zf8y)JSK7v==GT zP}88`YLcuUIE}}3o zx)T>~F)_)43vO2Ge?H6KWW#6V4D!r_O+K^X*@Zkf$c0_FP|t^hTtOlEWCKDG8p|gu z5eCto0{FhS51C`gMfn(ZqjvxjuMjm-6r$dR6mG&VQz7JZ6LR9H9K#W`fZ;WgEQCs} z!_>&_FjU4BLZv@y0F$s4tzkHU6p8>1C=^2v>cr5G=!ya3NFBo~6jw|>178EiKoOVD zpc}>H-RQ3pxC1FrAhE~ii*mSaQPO95+08-pH7!r+fyU~oa4 zWw6fKk`cuh!)K~r8FUwcN-&dT`;SR;2i|}l`+t-+C_)_yz5~nmq7Do%5p6llu~CH1 zl*8#OqgarHJT!zs74575Tt|8UlH%-cWHGxNuC4+)j78%WWFyiIPi|D<$-N6{RDwB% zE>*${+K0L;VKWv)Uj;Bl>KFvjbqt5l5Qccfd>6oq&SB_6DHwjBQ4Gb1vl{RTnN*XH z!%LrmfgX)jlNAXc(C!+@T|%Zc