Skip to content

glasses666/mcp-image-recognition-py

Repository files navigation

MCP Image Recognition Server (Python)

An MCP server implementation in Python providing image recognition capabilities using various LLM providers (Gemini, OpenAI, Qwen/Tongyi, Doubao, etc.).

Features

  • Image Recognition: Describe images or answer questions about them.
  • Multi-Model Support: Dynamically switch between Gemini, GPT-4o, Qwen-VL, Doubao, etc.
  • Flexible: Accepts image URLs or Base64 data.

Quick Setup (Recommended)

We provide automated scripts to set up the environment and dependencies in one click.

Linux / macOS

git clone https://github.com/glasses666/mcp-image-recognition-py.git
cd mcp-image-recognition-py
./setup.sh

Windows

  1. Clone or download this repository.
  2. Double-click setup.bat.

After the script finishes, simply edit the .env file with your API keys.


Installation & Usage (Manual)

If you prefer manual installation or want to use uv:

Prerequisites

  • Python 3.10 or higher
  • An API Key for your preferred model provider (Google Gemini, OpenAI, Aliyun DashScope, etc.)

Method 1: Using uv (Recommended)

uv is an extremely fast Python package manager.

1. Run directly with uv run

You don't need to manually create a virtual environment.

# Clone the repo
git clone https://github.com/glasses666/mcp-image-recognition-py.git
cd mcp-image-recognition-py

# Create .env file with your API keys
cp .env.example .env
# Edit .env with your keys

# Run the server
uv run server.py

2. Using uvx (for ephemeral execution)

If you want to run it without cloning the repo explicitly (experimental support via git):

# Note: You still need to provide environment variables. 
# It's easier to clone and use 'uv run' for persistent config via .env
uvx --from git+https://github.com/glasses666/mcp-image-recognition-py mcp-image-recognition

Method 2: Standard Python (pip)

Linux / macOS

  1. Clone and Setup:

    git clone https://github.com/glasses666/mcp-image-recognition-py.git
    cd mcp-image-recognition-py
    python3 -m venv venv
    source venv/bin/activate
    pip install -r requirements.txt
  2. Configure:

    cp .env.example .env
    # Edit .env and add your API keys
  3. Run:

    python server.py

Windows

  1. Clone and Setup:

    git clone https://github.com/glasses666/mcp-image-recognition-py.git
    cd mcp-image-recognition-py
    python -m venv venv
    .\venv\Scripts\activate
    pip install -r requirements.txt
  2. Configure:

    copy .env.example .env
    # Edit .env and add your API keys
  3. Run:

    python server.py

Configuration

Create a .env file in the project root based on .env.example:

1. For Google Gemini (Recommended for speed/cost)

Get an API key from Google AI Studio.

GEMINI_API_KEY=your_google_api_key
DEFAULT_MODEL=gemini-1.5-flash

2. For Tongyi Qianwen (Qwen - Alibaba Cloud)

Get an API key from Aliyun DashScope.

OPENAI_API_KEY=your_dashscope_api_key
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
DEFAULT_MODEL=qwen-vl-max

3. For Doubao (Volcengine)

Get an API key from Volcengine Ark.

OPENAI_API_KEY=your_volcengine_api_key
OPENAI_BASE_URL=https://ark.cn-beijing.volces.com/api/v3
DEFAULT_MODEL=doubao-pro-32k

Agent AI Configuration (Claude Desktop, etc.)

To use this server with an MCP client (like Claude Desktop), add it to your configuration file.

Configuration File Paths

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json (if available)

Configuration JSON

Option A: Using uv (Easiest) If you have uv installed, you can let it handle the environment.

{
  "mcpServers": {
    "image-recognition": {
      "command": "/path/to/uv",
      "args": [
        "run",
        "--directory",
        "/absolute/path/to/mcp-image-recognition-py",
        "server.py"
      ],
      "env": {
        "GEMINI_API_KEY": "your_gemini_key_here",
        "OPENAI_API_KEY": "your_openai_key_here",
        "OPENAI_BASE_URL": "https://api.openai.com/v1",
        "DEFAULT_MODEL": "gemini-1.5-flash"
      }
    }
  }
}

Option B: Standard Python Venv Ensure you provide the absolute path to the python executable in your virtual environment.

{
  "mcpServers": {
    "image-recognition": {
      "command": "/absolute/path/to/mcp-image-recognition-py/venv/bin/python", 
      "args": [
        "/absolute/path/to/mcp-image-recognition-py/server.py"
      ],
      "env": {
        "GEMINI_API_KEY": "your_gemini_key_here",
        "OPENAI_API_KEY": "your_openai_key_here",
        "OPENAI_BASE_URL": "https://api.openai.com/v1",
        "DEFAULT_MODEL": "gemini-1.5-flash"
      }
    }
  }
}

Windows Note: For paths, use double backslashes \\ (e.g., C:\\Users\\Name\\...).


Usage Tool

recognize_image

Analyzes an image and returns a text description.

Parameters:

  • image (string, required): The image to analyze. Supports:
    • HTTP/HTTPS URLs (e.g., https://example.com/cat.jpg)
    • Base64 encoded strings (with or without data:image/...;base64, prefix)
  • prompt (string, optional): Specific instruction. Default: "Describe this image".
  • model (string, optional): Override the default model for this specific request.

License

MIT

About

MCP Server for Image Recognition using Python and multiple LLM providers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published