1. The SPSA "Process"

We analyze the SPSA algorithm in 1 dimension as implemented in fishtest. w, d, l denote respectively the win, draw and loss ratio. We use the Bayes Elo model. I.e. we have for $\beta=\log (10) / 400$

$$
\begin{aligned}
w & =\frac{1}{1+e^{-\beta(x-\delta)}} \\
l & =\frac{1}{1+e^{-\beta(-x-\delta)}}
\end{aligned}
$$

where δ is the drawelo parameter. We score an engine game by $\pm 1,0,-1$ for respectively a win, draw, loss. We assume that x is small. We have for $E=e^{\beta \delta}$.

$$
\begin{aligned}
w & =\frac{1}{1+E e^{-\beta x}} \\
& \cong \frac{1}{1+E(1-\beta x)} \\
& =\frac{1}{1+E}\left(1+\frac{\beta x}{1+E}\right) \\
& =\frac{1}{1+E}+\frac{\beta x E}{(1+E)^{2}}
\end{aligned}
$$

and similarly

$$
l=\frac{1}{1+E}-\frac{\beta x E}{(1+E)^{2}}
$$

Hence the expected score and its standard deviation are respectively given by

$$
\begin{aligned}
\mu & =w-l \\
& \cong \frac{2 \beta x E}{(1+E)^{2}} \\
\sigma & =\sqrt{w+l-(w-l)^{2}} \\
& \cong \sqrt{\frac{2}{1+E}}
\end{aligned}
$$

Let p be an engine parameter and let $f(p)$ be the function that maps p to Bayes Elo. We play a match of $p+c$ against $p-c$ and replace p by 1

$$
\begin{cases}p+\frac{a}{c} & \text { in case of a win } \\ p & \text { in case of a draw } \\ p-\frac{a}{c} & \text { in case of a loss }\end{cases}
$$

So we can think of the dynamics of p as a discrete version of the continuous process

$$
d p=\frac{a}{c}\left(\mu d t+\sigma d W_{t}\right)
$$

where (μ, σ) are the mean and standard deviation of a single game and W_{t} is a Wiener process. Using the approximation

$$
x=f(p+c)-f(p-c)=2 c f^{\prime}(p)
$$

[^0]we find
$$
d p=\frac{a}{c}\left(\frac{4 \beta c f^{\prime}(p) E}{(1+E)^{2}} d t+\sqrt{\frac{2}{1+E}} d W_{t}\right)
$$

Hence

$$
d p=\frac{4 \beta a E}{(1+E)^{2}} f^{\prime}(p) d t+\frac{a}{c} \sqrt{\frac{2}{1+E}} d W_{t}
$$

which we will write as

$$
d p=u_{1} a f^{\prime}(p) d t+u_{2} \frac{a}{c} d W_{t}
$$

with

$$
\begin{aligned}
u_{1} & =\frac{4 \beta E}{(1+E)^{2}} \\
u_{2} & =\sqrt{\frac{2}{1+E}}
\end{aligned}
$$

Example 1.1. Assume $\delta=220$ (a realistic value for self testing at short time controls). Then we find

$$
\begin{aligned}
& u_{1}=0.003950 \\
& u_{2}=0.6631
\end{aligned}
$$

In the special case that

$$
\begin{gather*}
f(p)=-\xi\left(p-p_{0}\right)^{2} \tag{1}\\
d p=-2 u_{1} a \xi\left(p-p_{0}\right) d t+u_{2} d W_{t}
\end{gather*}
$$

If a, c are constant then this is an Ornstein-Uhlenbeck process

$$
d p=-\theta(p-\mu) d t+\sigma d W_{t}
$$

with

$$
\begin{aligned}
\mu & =p_{0} \\
\theta & =2 u_{1} a \xi \\
\sigma & =u_{2} \frac{a}{c}
\end{aligned}
$$

Remark 1.2. The parameters in an Ornstein-Uhlenbeck process are actually just location and scaling parameters for p and t. Replacing p by $p-\mu$ we may assume $\mu=0$. Putting $t=\theta^{-1} s, p=\sigma \theta^{-1 / 2} q$ and using that $W_{\theta s}=\theta^{1 / 2} W_{s}$ we end up with the equation

$$
d q=-q d s+d W_{s}
$$

We deduce that

$$
\theta^{-1}=\frac{1}{2 u_{1} \xi a}
$$

acts like a natural time scale and that

$$
\frac{\sigma}{\sqrt{\theta}}=\frac{u_{2}}{\sqrt{2 u_{1} \xi}} \frac{\sqrt{a}}{c}
$$

is a natural scale for the range of the parameter p in SPSA.

2. SOLVING A CASE WITH VARYING HYPERPARAMETERS

Now we consider the case where f is quadratic as in (1) and $a=a(t), c=c(t)$ are time dependent via

$$
\begin{aligned}
& a(t)=\frac{a_{0}}{(A+t)^{\alpha}} \\
& c(t)=\frac{c_{0}}{t^{\gamma}}
\end{aligned}
$$

It is clear that without loss of generality we may assume $p_{0}=0$. We have to slove

$$
d p=-2 \xi u_{1} \frac{a_{0}}{(A+t)^{\alpha}} p d t+u_{2} \frac{a_{0}}{c_{0}} \frac{t^{\gamma}}{(A+t)^{\alpha}} d W_{t}
$$

We consider first the unperturbed system

$$
d p=-2 \xi u_{1} \frac{a_{0}}{(A+t)^{\alpha}} p d t
$$

It can be rewritten as

$$
d \log p=-\frac{2 \xi u_{1} a_{0}}{1-\alpha} d(A+t)^{1-\alpha}
$$

so that we get

$$
p=C \exp \left(-\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+t)^{1-\alpha}\right)
$$

We now find a particular solution of the perturbed system using variation of constants. We get

$$
\exp \left(-\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+t)^{1-\alpha}\right) d C=u_{2} \frac{a_{0}}{c_{0}} \frac{t^{\gamma}}{(A+t)^{\alpha}} d W_{t}
$$

so that we may as a particular solution we may take

$$
u_{2} \frac{a_{0}}{c_{0}} \exp \left(-\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+t)^{1-\alpha}\right) \int_{0}^{t} \exp \left(\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+s)^{1-\alpha}\right) \frac{s^{\gamma}}{(A+s)^{\alpha}} d W_{s}
$$

and the full solution is given by

$$
\exp \left(-\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+t)^{1-\alpha}\right)\left(C+u_{2} \frac{a_{0}}{c_{0}} \int_{0}^{t} \exp \left(\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+s)^{1-\alpha}\right) \frac{s^{\gamma}}{(A+s)^{\alpha}} d W_{s}\right)
$$

If follows that a time t we have $p \sim N\left(\mu_{t}, \sigma_{t}^{2}\right)$ with
$\mu_{t}=C \exp \left(-\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+t)^{1-\alpha}\right)$
$\sigma_{t}=u_{2} \frac{a_{0}}{c_{0}} \exp \left(-\frac{2 \xi u_{1} a_{0}}{1-\alpha}(A+t)^{1-\alpha}\right) \sqrt{\int_{0}^{t} \exp \left(\frac{4 \xi u_{1} a_{0}}{1-\alpha}(A+s)^{1-\alpha}\right) \frac{s^{2 \gamma}}{(A+s)^{2 \alpha}} d s}$
Let us now investigate the asymptotic behaviour of the intergral under the square root sign. Put

$$
r=(A+s)^{1-\alpha}
$$

so that

$$
\begin{aligned}
d r & =(1-\alpha)(A+s)^{-\alpha} d s \\
& =(1-\alpha) r^{-\alpha /(1-\alpha)} d s
\end{aligned}
$$

and hence

$$
d s=\frac{1}{1-\alpha} r^{\alpha /(1-\alpha)} d r
$$

We obtain

$$
\int_{0}^{t} \exp \left(\frac{4 \xi u_{1} a_{0}}{1-\alpha}(A+s)^{1-\alpha}\right) \frac{s^{2 \gamma}}{(A+s)^{2 \alpha}} d s=\frac{1}{1-\alpha} \int_{A^{1-\alpha}}^{(A+t)^{1-\alpha}} \exp \left(\frac{4 \xi u_{1} a_{0}}{1-\alpha} r\right) \frac{\left(r^{1 /(1-\alpha)}-A\right)^{2 \gamma}}{r^{\alpha /(1-\alpha)}} d r
$$

So it seems that we have to understand the asymptotic behaviour of

$$
\int_{K_{0}}^{K} e^{r-K} r^{-\psi} d r=\int_{0}^{K-K_{0}} \frac{e^{-r}}{(K-r)^{\psi}} d r
$$

for $K \rightarrow \infty$, where $\psi=(\alpha-2 \gamma) /(1-\alpha)$ which in the case of fishtest $(\alpha=0.602$, $\gamma=0.101$ is slightly bigger 1).

[^0]: ${ }^{1}$ We see that a is the learning rate. Using $a / 2 c$ would be somewhat more natural.

