1. THE SPSA “PROCESS”

We analyze the SPSA algorithm in 1 dimension as implemented in fishtest. w, d,
denote respectively the win, draw and loss ratio. We use the Bayes Elo model. I.e.
we have for 8 = log(10)/400
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where § is the drawelo parameter. We score an engine game by +1,0,—1 for re-
spectively a win, draw, loss. We assume that z is small. We have for F = €.
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Hence the expected score and its standard deviation are respectively given by
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Let p be an engine parameter and let f(p) be the function that maps p to Bayes
Elo. We play a match of p + ¢ against p — ¢ and replace p by*

p+ % in case of a win

D in case of a draw

p— % in case of a loss

So we can think of the dynamics of p as a discrete version of the continuous process
a
dp = —(udt + cdWy)
c

where (p,0) are the mean and standard deviation of a single game and W; is a
Wiener process. Using the approximation

z=f(p+e) = fp—c) = 2¢f'(p)

1We see that a is the learning rate. Using a/2c¢ would be somewhat more natural.
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we find
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which we will write as
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= 220 (a realistic value for self testing at short time

u1 = 0.003950
ug = 0.6631

f(p) = —£&(p — po)®

dp = —2uja&(p — po)dt + uedW;

If @, c are constant then this is an Ornstein-Uhlenbeck process

with

dp = —0(p — p)dt + odW;
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Remark 1.2. The parameters in an Ornstein-Uhlenbeck process are actually just
location and scaling parameters for p and t. Replacing p by p — u we may assume
pu = 0. Putting t = 6~ 's, p = 06~'/2¢ and using that Wy, = 0*/2W, we end up

with the equation

‘We deduce that

dqg = —qds + dWj
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acts like a natural time scale and that
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is a natural scale for the range of the parameter p in SPSA.



2. SOLVING A CASE WITH VARYING HYPERPARAMETERS

Now we consider the case where f is quadratic as in (1) and a = a(t), ¢ = ¢(t)
are time dependent via
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It is clear that without loss of generality we may assume py = 0. We have to slove
ap tY
dp = =28u1 ———-pdt + up— ————dW,
We consider first the unperturbed system
dp = —2&u dt
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It can be rewritten as
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dlogp = —@d(z‘l + )l

so that we get
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We now find a particular solution of the perturbed system using variation of con-
stants. We get
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so that we may as a particular solution we may take

2 ¢ 2 i
us ™ exp (‘ S (4 + t)l_a) / exp ( L s>1_a> el
0

Co 11—«

and the full solution is given by

If follows that a time t we have p ~ N(ut, at) with
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Let us now investigate the asymptotic behav10ur of the intergral under the square
root sign. Put

r=(A+s)™
so that
dr=(1—-a)(A+s) “ds
=(1—a)r~/0=%gs
and hence
ds = ! ro/(1=a) gy
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So it seems that we have to understand the asymptotic behaviour of
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for K — oo, where 9 = (o — 27)/(1 — &) which in the case of fishtest (o = 0.602,
~v = 0.101 is slightly bigger 1).



