DIAL

Standardized data format for lighting design – Structure and Features

Friedrich Wilhelm Bremecker Member of the Board DIAL GmbH

www.dialux.com

Motivation

Cooperation between two software manufacturers

→ Competence

- → Long term experience in the challenges of precise product data definition
- → Luminaire data is complex
- → Physical correct data is necessary
- → Lighting design is integral part of architecture and electrical planning

→ Market relevance

→ Unparalleled market position in the industry

→ Win-Win-Win Situation

→ Advantages for planners, industry and software manufacturers

Why a new data format?

→ For better software

- → Planning software needs good data
- → Correct information is the foundation
- → For increased benefits for the planner
 - → Comprehensive and up-to-date product information
 - → Everything in one place
- → For less effort for the manufacturer
 - → Reduction of data maintenance effort
 - → Minimization of errors

Standardized data format for lighting design

Current situation

Historical Data Formats (Photometry)

- → Eulumdat (LDT) Axel Stockmar
- → IES LM-63 (IES)
 Illuminating Engineering Society of
 North America
- → Various others CIBSE, CEN, CIE...
- → Objective: Exchange of measurement data using punch cards or floppy disks.

Problem: Inadequate technical description, no BIM or commercial information

Modern Data format (Products)

- → ULD (DIALux)
- → ROLF (RELUX)
- → IFC (OpenBIM, Building Smart)
- → RFA (Revit family file)
- → ETIM (Retail/Wholesale)

Objective:

Comprehensive technical description of products and data transfer to catalogues.

Problem:

Insufficient for BIM processes or proprietary and incompatible formats
No comprehensive format.

Future format (BIM)

→ Among other things, the new uniform

Global Lighting Data Format GLDF www.GLDF.io

- → Photometrically and radiometrically complete
- → Mapping of all necessary commercial data
- → Mapping of all data required in the BIM process
- → Open format that can be used by everyone
- → Freely available
- → Curated format, future-proof

Current state of development

- → International stakeholders have analysed and identified necessary data (industry, planners, software producers).
- → DIAL and RELUX mutually design a data structure to exchange this information
- → DIAL and RELUX make the format freely available
- → Industry (manufacturers and software industry) can now create the interfaces and offer data.

Standardized data format for lighting design

Unification

Current state of development

- → The industry maintains and updates parameter lists (ZVEI, CEN, IESNA, ISO...).
- → The data format is created and curated by DIAL and RELUX
 - → Information, tools and documentation is provided
 - → Interested parties can submit suggestions for improvement

Standardized data format for lighting design

Design and structure

Container format, Global Lighting Data Format *.GLDF

Container format, Global Lighting Data Format *.GLDF

Standardized data format for lighting design

Possibilities of mapping

Format description

- → XML (Extensible Markup Language)
 - → Platform-independent
 - → Structured information
 - → Readable by man and machine
 - → Validatable
 - → Variants can be mapped
 - → Extendable
 - → Complementable
 - → Easy to implement

→ XSD (XML Schema Definition)

- → Provided together with documentation
- → Facilitates the implementation of interfaces
- → Defines the structure of the XML and the data types
- → With the XSD I can validate the XML i.e. I can check if the generated XML file is valid when I create it

```
K_TK.xml ⊠
  <EAN globalId="gztdtrd
   <Pre><Pre>coductTexts>
       <Text type="name">
           <locale lang="c
           <locale lang="e
           <locale lang="e
       </Text>
       <Text type="descrip
           <locale lang="d
           <locale lang="c
           <locale lang="e
       </Text>
  </ProductTexts>
  <MountingTypes>
       <MountingType type=</pre>
       <RecessedMounted pl
       <SurfaceMounted pla
       <Suspended place="c
       <Suspended>
           <SupensionLengt
       </Suspended>
  </MountingTypes>
  <LightOutputs>
       <LightOutput id="1"
           <Shape2D type='
                <Length uni
                <Width unit
           </Shape2D>
           <Socket>E27</So
           <Photometry>
                <FileRef>"
                <FileConter
                </FileConte
```

ch View Encoding Language Settings Too

XSD describes XML structure

XSD describes XML structure

Product presentation

Split in two parts:

- → Global properties
 - → Properties that apply to all variations, e.g. item name or family.
- → Properties of 1-n variations
 - → Properties that provide the product with different possibilities. e.g. light colour, beam angle, driver

Content

- → Mandatory data elements
 - → The content of an Eulumdat file (LDT) would suffice, but not an IES (missing geometry)
- → Meaningful data elements
 - → All contents of the BIM parameter list (and others) are planned for 3D models
- → User defined data elements
 - → Each user may add further elements that are found necessary

MUST

- Must be included
- Without, it won't work

SHOULD

- Should be included
- Without, it won't be useful

COULD

- Could be included
- It's for yourself only

DIAL

Standardized data format for lighting design - Geometry

Representation of the geometry

→ No geometry data (L,W,H)

→ Parametric geometry (Type + parameter)

Dimension	Abr.	Val ue
Housing Diameter	HD	
Housing Height	НН	
Reflec. Height	RH	
Lum Diameter	LD	

→ Realistic 3D geometry (L3D) successor to M3D and M4D

Parametric geometry

- → Approx. 50 basic types
- → Indoor, outdoor, ceiling, wall, spot, bollard, pendant, recessed, surfacemounted, round, angular,...
- → Variable parameters define the geometry
- → Type + parameter no CAD model necessary, only PIM
- → Contain connection and mounting coordinates

Geometry und mechanic

- → Parametric geometry with joint (e.g. spot light)
- → 3D geometry with joints
- → Default orientation
- → Max.-min. angle, step size
- → Multiple light exits

Geometry format OBJ

- → Open data format
- → .OBJ
- → Grouped objects (e.g. mast + bracket + luminaire head)
- → Extensive material model (colour, reflection, transparency, texture...)
- → Many CAD programs can export OBJ

Tools for generation

- → 3D modeller / editor for the creation and attribution of luminaire models
- → Add Ins for CAD programs (ACAD...)
- → Any software with OBJ export

Standardized data format for lighting design

Benefits, opportunities

Benefits, opportunities

The new data format in DIALux evo

The new data format in Relux

Roadmap

- → Spring 2021 Publication
 - → XSD, XML templates & examples
 - → Documentation on the web: www.qldf.io
- → Summer 2021 Libraries
 - → Components for writing and reading product data
 - → Components for writing and reading model data
- → Winter 2021 Tools
 - → 3D editor for creating models
 - → Plug-ins for CAD programs
- → 2022 Further development
- → All information subject to feasibility