Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
tex
 
 
 
 
 
 
 
 

README.md

Learning to Pivot with Adversarial Networks

https://arxiv.org/abs/1611.01046 Binder

  • Gilles Louppe
  • Michael Kagan
  • Kyle Cranmer

Many inference problems involve data generation processes that are not uniquely specified or are uncertain in some way. In a scientific context, the presence of several plausible data generation processes is often associated to the presence of systematic uncertainties. Robust inference is possible if it is based on a pivot -- a quantity whose distribution is invariant to the unknown value of the (categorical or continuous) nuisance parameters that parametrizes this family of generation processes. In this work, we introduce a flexible training procedure based on adversarial networks for enforcing the pivotal property on a predictive model. We derive theoretical results showing that the proposed algorithm tends towards a minimax solution corresponding to a predictive model that is both optimal and independent of the nuisance parameters (if that models exists) or for which one can tune the trade-off between power and robustness. Finally, we demonstrate the effectiveness of this approach with a toy example and an example from particle physics.


Please cite using the following BibTex entry:

@article{louppe2016pivot,
           author = {{Louppe}, G. and {Kagan}, M. and {Cranmer}, K.},
            title = "{Learning to Pivot with Adversarial Networks}",
          journal = {ArXiv e-prints},
    archivePrefix = "arXiv",
           eprint = {1611.01046},
     primaryClass = "stat.ML",
             year = 2016,
            month = nov,
}

About

Repository for the paper "Learning to Pivot with Adversarial Networks"

Resources

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  
You can’t perform that action at this time.