
DRAFT

OpenSHMEM
Application Programming Interface

http://www.openshmem.org/

Version 1.5

17th August 2018

Development by

• For a current list of contributors and collaborators please see
http://www.openshmem.org/site/Contributors/

• For a current list of OpenSHMEM implementations and tools, please see
http://openshmem.org/site/Links#impl/

http://www.openshmem.org/
http://www.openshmem.org/site/Contributors/
http://openshmem.org/site/Links#impl/

DRAFT

1.5 — DRAFT —

Sponsored by

• U.S. Department of Defense (DoD)
http://www.defense.gov/

• Oak Ridge National Laboratory (ORNL)
http://www.ornl.gov/

• Los Alamos National Laboratory (LANL)
http://www.lanl.gov/

Current Authors and Collaborators

• Matthew Baker, ORNL

• Swen Boehm, ORNL

• Aurelien Bouteiller, University of Tenneesee at Knoxville (UTK)

• Barbara Chapman, Stonybrook University (SBU)

• Robert Cernohous, Cray Inc.

• James Culhane, LANL

• Tony Curtis, SBU

• James Dinan, Intel

• Mike Dubman, Mellanox

• Karl Feind, Hewlett Packard Enterprise (HPE)

• Manjunath Gorentla Venkata, ORNL

• Max Grossman, Rice University

• Khaled Hamidouche, Advanced Micro Devices (AMD)

• Jeff Hammond, Intel

• Yossi Itigin, Mellanox

• Bryant Lam, DoD

• David Knaak, Cray Inc.

• Jeff Kuehn, LANL

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• David Ozog, Intel

• Nicholas Park, DoD

• Steve Poole, Open Source Software Solutions (OSSS)

• Wendy Poole, OSSS

• Swaroop Pophale, ORNL

ii

http://www.defense.gov/
http://www.ornl.gov/
http://www.lanl.gov/

DRAFT

1.5 — DRAFT —

• Sreeram Potluri, NVIDIA

• Howard Pritchard, LANL

• Naveen Ravichandrasekaran, Cray Inc.

• Michael Raymond, HPE

• James Ross, Army Research Laboratory (ARL)

• Pavel Shamis, ARM Inc.

• Sameer Shende, University of Oregon (UO)

• Lauren Smith, DoD

Alumni Authors and Collaborators

• Amrita Banerjee, University of Houston (UH)

• Monika ten Bruggencate, Cray Inc.

• Eduardo D’Azevedo, ORNL

• Oscar Hernandez, ORNL

• Gregory Koenig, ORNL

• Graham Lopez, ORNL

• Ricardo Mauricio, UH

• Ram Nanjegowda, UH

• Aaron Welch, ORNL

Acknowledgments

The OpenSHMEM specification belongs to Open Source Software Solutions, Inc. (OSSS), a non-profit organiza-
tion, under an agreement with HPE. For a current list of Contributors and Collaborators, please see http://www.
openshmem.org/site/Contributors/. We gratefully acknowledge support from Oak Ridge National Labo-
ratory’s Extreme Scale Systems Center and the continuing support of the Department of Defense.

We would also like to acknowledge the contribution of the members of the OpenSHMEM mailing list for their ideas,
discussions, suggestions, and constructive criticism which has helped us improve this document.

OpenSHMEM 1.4 is dedicated to the memory of David Charles Knaak. David was a highly involved colleague and
contributor to the entire OpenSHMEM project. He will be missed.

iii

http://www.openshmem.org/site/Contributors/
http://www.openshmem.org/site/Contributors/

DRAFT
Contents

1 The OpenSHMEM Effort . 1
2 Programming Model Overview . 1
3 Memory Model . 3

3.1 Atomicity Guarantees . 4
4 Execution Model . 4

4.1 Progress of OpenSHMEM Operations . 5
5 Language Bindings and Conformance . 5
6 Library Constants . 5
7 Library Handles . 11
8 Environment Variables . 12
9 OpenSHMEM Library API . 13

9.1 Library Setup, Exit, and Query Routines . 13
9.1.1 SHMEM_INIT . 13
9.1.2 SHMEM_MY_PE . 14
9.1.3 SHMEM_N_PES . 15
9.1.4 SHMEM_FINALIZE . 16
9.1.5 SHMEM_GLOBAL_EXIT . 17
9.1.6 SHMEM_PE_ACCESSIBLE . 18
9.1.7 SHMEM_ADDR_ACCESSIBLE . 19
9.1.8 SHMEM_PTR . 20
9.1.9 SHMEM_INFO_GET_VERSION . 21
9.1.10 SHMEM_INFO_GET_NAME . 22
9.1.11 START_PES . 23

9.2 Thread Support . 24
9.2.1 SHMEM_INIT_THREAD . 25
9.2.2 SHMEM_QUERY_THREAD . 26

9.3 Memory Management Routines . 26
9.3.1 SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN 27
9.3.2 SHMEM_CALLOC . 28
9.3.3 SHPALLOC . 29
9.3.4 SHPCLMOVE . 30
9.3.5 SHPDEALLC . 31

9.4 Team Management Routines . 32
9.4.1 SHMEM_TEAM_MY_PE . 32
9.4.2 SHMEM_TEAM_N_PES . 33
9.4.3 SHMEM_TEAM_CONFIG_T . 34
9.4.4 SHMEM_TEAM_GET_CONFIG . 34
9.4.5 SHMEM_TEAM_TRANSLATE . 35
9.4.6 SHMEM_TEAM_SPLIT_STRIDED . 36
9.4.7 SHMEM_TEAM_SPLIT_2D . 37
9.4.8 SHMEM_TEAM_DESTROY . 39

9.5 Communication Management Routines . 40
9.5.1 SHMEM_CTX_CREATE . 40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

iv

DRAFT

1.5 — DRAFT —

9.5.2 SHMEM_TEAM_CREATE_CTX . 41
9.5.3 SHMEM_CTX_DESTROY . 42
9.5.4 SHMEM_CTX_GET_TEAM . 45

9.6 Remote Memory Access Routines . 45
9.6.1 SHMEM_PUT . 46
9.6.2 SHMEM_P . 48
9.6.3 SHMEM_IPUT . 50
9.6.4 SHMEM_GET . 52
9.6.5 SHMEM_G . 54
9.6.6 SHMEM_IGET . 55

9.7 Non-blocking Remote Memory Access Routines . 57
9.7.1 SHMEM_PUT_NBI . 57
9.7.2 SHMEM_GET_NBI . 59

9.8 Atomic Memory Operations . 61
9.8.1 SHMEM_ATOMIC_FETCH . 61
9.8.2 SHMEM_ATOMIC_SET . 63
9.8.3 SHMEM_ATOMIC_COMPARE_SWAP . 65
9.8.4 SHMEM_ATOMIC_SWAP . 66
9.8.5 SHMEM_ATOMIC_FETCH_INC . 68
9.8.6 SHMEM_ATOMIC_INC . 70
9.8.7 SHMEM_ATOMIC_FETCH_ADD . 71
9.8.8 SHMEM_ATOMIC_ADD . 73
9.8.9 SHMEM_ATOMIC_FETCH_AND . 75
9.8.10 SHMEM_ATOMIC_AND . 76
9.8.11 SHMEM_ATOMIC_FETCH_OR . 76
9.8.12 SHMEM_ATOMIC_OR . 77
9.8.13 SHMEM_ATOMIC_FETCH_XOR . 78
9.8.14 SHMEM_ATOMIC_XOR . 79

9.9 Collective Routines . 79
9.9.1 SHMEM_BARRIER_ALL . 80
9.9.2 SHMEM_BARRIER . 81
9.9.3 SHMEM_SYNC_ALL . 83
9.9.4 SHMEM_SYNC . 84
9.9.5 SHMEM_TEAM_BROADCAST . 86
9.9.6 SHMEM_BROADCAST . 87
9.9.7 SHMEM_COLLECT, SHMEM_FCOLLECT 89
9.9.8 SHMEM_TEAM_COLLECT, SHMEM_TEAM_FCOLLECT 92
9.9.9 SHMEM_REDUCTIONS . 93

9.9.9.1 AND . 94
9.9.9.2 MAX . 94
9.9.9.3 MIN . 94
9.9.9.4 SUM . 95
9.9.9.5 PROD . 96
9.9.9.6 OR . 97
9.9.9.7 XOR . 97

9.9.10 SHMEM_ALLTOALL . 101
9.9.11 SHMEM_ALLTOALLS . 104

9.10 Point-To-Point Synchronization Routines . 107
9.10.1 SHMEM_WAIT_UNTIL . 107
9.10.2 SHMEM_TEST . 110

9.11 Memory Ordering Routines . 111
9.11.1 SHMEM_FENCE . 111
9.11.2 SHMEM_QUIET . 113
9.11.3 Synchronization and Communication Ordering in OpenSHMEM 114

v

DRAFT

1.5 — DRAFT —

9.12 Distributed Locking Routines . 118
9.12.1 SHMEM_LOCK . 118

9.13 Cache Management . 119
9.13.1 SHMEM_CACHE . 119

A Writing OpenSHMEM Programs 121

B Compiling and Running Programs 124
1 Compilation . 124
2 Running Programs . 124

C Undefined Behavior in OpenSHMEM 126

D Interoperability with other Programming Models 127
1 Message Passing Interface (MPI) Interoperability . 127

E History of OpenSHMEM 128

F OpenSHMEM Specification and Deprecated API 129
1 Overview . 129
2 Deprecation Rationale . 130

2.1 Header Directory: mpp . 130
2.2 C/C++: start_pes . 130
2.3 Implicit Finalization . 130
2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign 130
2.5 Fortran: START_PES, MY_PE, NUM_PES . 131
2.6 Fortran: SHMEM_PUT . 131
2.7 SHMEM_CACHE . 131
2.8 _SHMEM_* Library Constants . 131
2.9 SMA_* Environment Variables . 131
2.10 C/C++: shmem_wait . 131
2.11 C/C++: shmem_wait_until . 132
2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc,

shmem_fadd, shmem_add . 132
2.13 Fortran API . 132

G Changes to this Document 133
1 Version 1.5 . 133
2 Version 1.4 . 133
3 Version 1.3 . 135
4 Version 1.2 . 136
5 Version 1.1 . 137

Index 139

vi

DRAFT

1. THE OPENSHMEM EFFORT 1

1 The OpenSHMEM Effort

OpenSHMEM is a Partitioned Global Address Space (PGAS) library interface specification. OpenSHMEM aims to
provide a standard Application Programming Interface (API) for SHMEM libraries to aid portability and facilitate
uniform predictable results of OpenSHMEM programs by explicitly stating the behavior and semantics of the Open-
SHMEM library calls. Through the different versions, OpenSHMEM will continue to address the requirements of the
PGAS community. As of this specification, many existing vendors support OpenSHMEM-compliant implementations
and new vendors are developing OpenSHMEM library implementations to help the users write portable OpenSHMEM
code. This ensures that programs can run on multiple platforms without having to deal with subtle vendor-specific
implementation differences. For more details on the history of OpenSHMEM please refer to the History of Open-
SHMEM section.

The OpenSHMEM1 effort is driven by the DoD with continuous input from the OpenSHMEM community. To see
all of the contributors and participants for the OpenSHMEM API, please see: http://www.openshmem.org/
site/Contributors. In addition to the specification, the effort includes a reference OpenSHMEM implementa-
tion, validation and verification suites, tools, a mailing list and website infrastructure to support specification activities.
For more information please refer to: http://www.openshmem.org/.

2 Programming Model Overview

OpenSHMEM implements PGAS by defining remotely accessible data objects as mechanisms to share information
among OpenSHMEM processes or Processing Elements (PEs), and private data objects that are accessible by only the
PE itself. The API allows communication and synchronization operations on both private (local to the PE initiating the
operation) and remotely accessible data objects. The key feature of OpenSHMEM is that data transfer operations are
one-sided in nature. This means that a local PE executing a data transfer routine does not require the participation of
the remote PE to complete the routine. This allows for overlap between communication and computation to hide data
transfer latencies, which makes OpenSHMEM ideal for unstructured, small/medium size data communication patterns.
The OpenSHMEM library routines have the potential to provide a low-latency, high-bandwidth communication API
for use in highly parallelized scalable programs.

The OpenSHMEM interfaces can be used to implement Single Program Multiple Data (SPMD) style programs.
It provides interfaces to start the OpenSHMEM PEs in parallel and communication and synchronization interfaces to
access remotely accessible data objects across PEs. These interfaces can be leveraged to divide a problem into multiple
sub-problems that can be solved independently or with coordination using the communication and synchronization
interfaces. The OpenSHMEM specification defines library calls, constants, variables, and language bindings for C and
Fortran2. The C++ interface is currently the same as that for C. Unlike Unified Parallel C, Fortran 2008, Titanium,
X10, and Chapel, which are all PGAS languages, OpenSHMEM relies on the user to use the library calls to implement
the correct semantics of its programming model.

An overview of the OpenSHMEM routines is described below:

1. Library Setup and Query

(a) Initialization: The OpenSHMEM library environment is initialized, where the PEs are either single or
multithreaded.

(b) Query: The local PE may get the number of PEs running the same program and its unique integer identifier.

(c) Accessibility: The local PE can find out if a remote PE is executing the same binary, or if a particular
symmetric data object can be accessed by a remote PE, or may obtain a pointer to a symmetric data object
on the specified remote PE on shared memory systems.

2. Symmetric Data Object Management

(a) Allocation: All executing PEs must participate in the allocation of a symmetric data object with identical
arguments.

1The OpenSHMEM specification is owned by Open Source Software Solutions Inc., a non-profit organization, under an agreement with HPE.
2As of OpenSHMEM 1.4, the Fortran interface has been deprecated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.openshmem.org/site/Contributors
http://www.openshmem.org/site/Contributors
http://www.openshmem.org/

DRAFT

2 2. PROGRAMMING MODEL OVERVIEW

(b) Deallocation: All executing PEs must participate in the deallocation of the same symmetric data object
with identical arguments.

(c) Reallocation: All executing PEs must participate in the reallocation of the same symmetric data object with
identical arguments.

3. Communication Management

(a) Contexts: Contexts are containers for communication operations. Each context provides an environment
where the operations performed on that context are ordered and completed independently of other opera-
tions performed by the application.

4. Remote Memory Access

(a) Put: The local PE specifies the source data object (private or symmetric) that is copied to the symmetric
data object on the remote PE.

(b) Get: The local PE specifies the symmetric data object on the remote PE that is copied to a data object
(private or symmetric) on the local PE.

5. Atomics

(a) Swap: The PE initiating the swap gets the old value of a symmetric data object from a remote PE and
copies a new value to that symmetric data object on the remote PE.

(b) Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote PE.

(c) Add: The PE initiating the add specifies the value to be added to the symmetric data object on the remote
PE.

(d) Bitwise Operations: The PE initiating the bitwise operation specifies the operand value to the bitwise
operation to be performed on the symmetric data object on the remote PE.

(e) Compare and Swap: The PE initiating the swap gets the old value of the symmetric data object based on a
value to be compared and copies a new value to the symmetric data object on the remote PE.

(f) Fetch and Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote
PE and returns with the old value.

(g) Fetch and Add: The PE initiating the add specifies the value to be added to the symmetric data object on
the remote PE and returns with the old value.

(h) Fetch and Bitwise Operations: The PE initiating the bitwise operation specifies the operand value to the
bitwise operation to be performed on the symmetric data object on the remote PE and returns the old value.

6. Synchronization and Ordering

(a) Fence: The PE calling fence ensures ordering of Put, AMO, and memory store operations to symmetric
data objects with respect to a specific destination PE.

(b) Quiet: The PE calling quiet ensures remote completion of remote access operations and stores to symmetric
data objects.

(c) Barrier: All or some PEs collectively synchronize and ensure completion of all remote and local updates
prior to any PE returning from the call.

7. Collective Communication

(a) Broadcast: The root PE specifies a symmetric data object to be copied to a symmetric data object on one
or more remote PEs (not including itself).

(b) Collection: All PEs participating in the routine get the result of concatenated symmetric objects contributed
by each of the PEs in another symmetric data object.

(c) Reduction: All PEs participating in the routine get the result of an associative binary routine over elements
of the specified symmetric data object on another symmetric data object.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

3. MEMORY MODEL 3

(d) All-to-All: All PEs participating in the routine exchange a fixed amount of contiguous or strided data with
all other PEs in the active set.

8. Mutual Exclusion

(a) Set Lock: The PE acquires exclusive access to the region bounded by the symmetric lock variable.

(b) Test Lock: The PE tests the symmetric lock variable for availability.

(c) Clear Lock: The PE which has previously acquired the lock releases it.

deprecation start

9. Data Cache Control

(a) Implementation of mechanisms to exploit the capabilities of hardware cache if available.

deprecation end

3 Memory Model

PE N-1

Global and Static
Variables

Symmetric Heap

Local Variables

PE 0

Global and Static
Variables

Symmetric Heap

Local Variables

PE 1

Global and Static
Variables

Symmetric Heap

Local Variables

Re
m

ot
el

y A
cc

es
sib

le
 S

ym
m

et
ric

Da

ta
 O

bj
ec

ts

Variable: X Variable: X Variable: X
X = shmem_malloc(sizeof(long))

Pr
iva

te
 D

at
a

O
bj

ec
ts

Figure 1: OpenSHMEM Memory Model

An OpenSHMEM program consists of data objects that are private to each PE and data objects that are remotely
accessible by all PEs. Private data objects are stored in the local memory of each PE and can only be accessed by
the PE itself; these data objects cannot be accessed by other PEs via OpenSHMEM routines. Private data objects
follow the memory model of C or Fortran. Remotely accessible objects, however, can be accessed by remote PEs
using OpenSHMEM routines. Remotely accessible data objects are called Symmetric Data Objects. Each symmetric
data object has a corresponding object with the same name, type, and size on all PEs where that object is accessible
via the OpenSHMEM API3. (For the definition of what is accessible, see the descriptions for shmem_pe_accessible
and shmem_addr_accessible in sections 9.1.6 and 9.1.7.) Symmetric data objects accessed via typed and type-generic

3For efficiency reasons, the same offset (from an arbitrary memory address) for symmetric data objects might be used on all PEs. Further
discussion about symmetric heap layout and implementation efficiency can be found in section 9.3.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

4 4. EXECUTION MODEL

OpenSHMEM interfaces are required to be naturally aligned based on their type requirements and underlying archi-
tecture. In OpenSHMEM the following kinds of data objects are symmetric:

• deprecation start
Fortran data objects in common blocks or with the SAVE attribute. These data objects must not be defined in a
dynamic shared object (DSO).

deprecation end

• Global and static C and C++ variables. These data objects must not be defined in a DSO.

• deprecation start
Fortran arrays allocated with shpalloc

deprecation end

• C and C++ data allocated by OpenSHMEM memory management routines (Section 9.3)

OpenSHMEM dynamic memory allocation routines (shpalloc and shmem_malloc) allow collective allocation of
Symmetric Data Objects on a special memory region called the Symmetric Heap. The Symmetric Heap is created during
the execution of a program at a memory location determined by the implementation. The Symmetric Heap may reside
in different memory regions on different PEs. Figure 1 shows how OpenSHMEM implements a PGAS model using
remotely accessible symmetric objects and private data objects when executing an OpenSHMEM program. Symmetric
data objects are stored on the symmetric heap or in the global/static memory section of each PE.

3.1 Atomicity Guarantees

OpenSHMEM contains a number of routines that operate on symmetric data atomically (Section 9.8). These routines
guarantee that accesses by OpenSHMEM’s atomic operations with the same datatype will be exclusive, but do not
guarantee exclusivity in combination with other routines, either inside OpenSHMEM or outside.

For example: during the execution of an atomic remote integer increment operation on a symmetric variable X,
no other OpenSHMEM atomic operation may access X. After the increment, X will have increased its value by 1 on
the destination PE, at which point other atomic operations may then modify that X. However, access to the symmetric
object X with non-atomic operations, such as one-sided put or get operations, will invalidate the atomicity guarantees.

4 Execution Model

An OpenSHMEM program consists of a set of OpenSHMEM processes called PEs that execute in an SPMD-like
model where each PE can take a different execution path. For example, a PE can be implemented using an OS process.
The PEs may be either single or multithreaded. The PEs progress asynchronously, and can communicate/synchro-
nize via the OpenSHMEM interfaces. All PEs in an OpenSHMEM program should start by calling the initialization
routine shmem_init4 or shmem_init_thread before using any of the other OpenSHMEM library routines. An Open-
SHMEM program concludes its use of the OpenSHMEM library when all PEs call shmem_finalize or any PE calls
shmem_global_exit. During a call to shmem_finalize, the OpenSHMEM library must complete all pending commu-
nication and release all the resources associated to the library using an implicit collective synchronization across PEs.
Calling any OpenSHMEM routine after shmem_finalize leads to undefined behavior.

The PEs of the OpenSHMEM program are identified by unique integers. The identifiers are integers assigned in a
monotonically increasing manner from zero to one less than the total number of PEs. PE identifiers are used for Open-
SHMEM calls (e.g. to specify put or get routines on symmetric data objects, collective synchronization calls) or to
dictate a control flow for PEs using constructs of C or Fortran. The identifiers are fixed for the life of the OpenSHMEM
program.

4start_pes has been deprecated as of OpenSHMEM 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

5. LANGUAGE BINDINGS AND CONFORMANCE 5

4.1 Progress of OpenSHMEM Operations

The OpenSHMEM model assumes that computation and communication are naturally overlapped. OpenSHMEM
programs are expected to exhibit progression of communication both with and without OpenSHMEM calls. Consider
a PE that is engaged in a computation with no OpenSHMEM calls. Other PEs should be able to communicate (put,
get, atomic, etc) and complete communication operations with that computationally-bound PE without that PE issuing
any explicit OpenSHMEM calls. One-sided OpenSHMEM communication calls involving that PE should progress
regardless of when that PE next engages in an OpenSHMEM call.

Note to implementors:

• An OpenSHMEM implementation for hardware that does not provide asynchronous communication capabilities
may require a software progress thread in order to process remotely-issued communication requests without
explicit program calls to the OpenSHMEM library.

• High performance implementations of OpenSHMEM are expected to leverage hardware offload capabilities and
provide asynchronous one-sided communication without software assistance.

• Implementations should avoid deferring the execution of one-sided operations until a synchronization point
where data is known to be available. High-quality implementations should attempt asynchronous delivery when-
ever possible, for performance reasons. Additionally, the OpenSHMEM community discourages releasing Open-
SHMEM implementations that do not provide asynchronous one-sided operations, as these have very limited
performance value for OpenSHMEM programs.

5 Language Bindings and Conformance

OpenSHMEM provides ISO C and Fortran 90 language bindings. As of OpenSHMEM 1.4, the Fortran API is depre-
cated. For rationale and considerations of future Fortran use of OpenSHMEM, see Section 2.13.

Any implementation that provides both C and Fortran bindings can claim conformance to the specification. Al-
ternatively, an implementation may claim conformance only with respect to one of those languages. For example, an
implementation that provides only a C interface may claim to conform to the OpenSHMEM specification with respect
to the C language, but not to Fortran, and should make this clear in its documentation. The OpenSHMEM header
files shmem.h for C and shmem.fh for Fortran must contain only the interfaces and constant names defined in this
specification.

OpenSHMEM APIs can be implemented as either routines or macros. However, implementing the interfaces using
macros is strongly discouraged as this could severely limit the use of external profiling tools and high-level compiler
optimizations. An OpenSHMEM program should avoid defining routine names, variables, or identifiers with the prefix
SHMEM_(for C and Fortran), _SHMEM_(for C) or with OpenSHMEM API names.

All OpenSHMEM extension APIs that are not part of this specification must be defined in the shmemx.h and
shmemx.fh include files for C and Fortran language bindings, respectively. These header files must exist, even if no
extensions are provided. Any extensions shall use the shmemx_ prefix for all routine, variable, and constant names.

6 Library Constants

The OpenSHMEM library provides a set of compile-time constants that may be used to specify options to API routines,
provide implementation-specific parameters, or return information about the implementation. All constants that start
with _SHMEM_* are deprecated, but provided for backwards compatibility.

Constant Description

C/C++:
SHMEM_THREAD_SINGLE

The OpenSHMEM thread support level which specifies that
the program must not be multithreaded. See Section 9.2 for
more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6 6. LIBRARY CONSTANTS

Constant Description

C/C++:
SHMEM_THREAD_FUNNELED

The OpenSHMEM thread support level which specifies that
the program may be multithreaded but must ensure that
only the main thread invokes the OpenSHMEM interfaces.
See Section 9.2 for more detail about its use.

C/C++:
SHMEM_THREAD_SERIALIZED

The OpenSHMEM thread support level which specifies that
the program may be multithreaded but must ensure that the
OpenSHMEM interfaces are not invoked concurrently by
multiple threads. See Section 9.2 for more detail about its
use.

C/C++:
SHMEM_THREAD_MULTIPLE

The OpenSHMEM thread support level which specifies that
the program may be multithreaded and any thread may in-
voke the OpenSHMEM interfaces. See Section 9.2 for
more detail about its use.

C/C++:
SHMEM_TEAM_NOCOLLECTIVE

The team creation option which specifies that the new team
will not be initialized with support for team collective op-
erations. See Section 9.4 for more detail about its use.

C/C++:
SHMEM_TEAM_NULL

Predefined constant that can be compared against handles
of type shmem_team_t to determine if they refer to a valid
team. See Section 9.4 for more detail about its use.

C/C++:
SHMEM_CTX_SERIALIZED

The context creation option which specifies that the given
context is shareable but will not be used by multiple threads
concurrently. See Section 9.5.1 for more detail about its
use.

C/C++:
SHMEM_CTX_PRIVATE

The context creation option which specifies that the given
context will be used only by the thread that created it. See
Section 9.5.1 for more detail about its use.

C/C++:
SHMEM_CTX_NOSTORE

The context creation option which specifies that quiet and
fence operations performed on the given context are not re-
quired to enforce completion and ordering of memory store
operations. See Section 9.5.1 for more detail about its use.

C/C++:
SHMEM_SYNC_VALUE

deprecation start

C/C++:
_SHMEM_SYNC_VALUE

Fortran:
SHMEM_SYNC_VALUE

deprecation end

The value used to initialize the elements of pSync arrays.
The value of this constant is implementation specific. See
Section 9.9 for more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6. LIBRARY CONSTANTS 7

Constant Description

C/C++:
SHMEM_SYNC_SIZE

deprecation start

Fortran:
SHMEM_SYNC_SIZE

deprecation end

Length of a work array that can be used with any SHMEM
collective communication operation. Work arrays sized for
specific operations may consume less memory. The value
of this constant is implementation specific. See Section 9.9
for more detail about its use.

C/C++:
SHMEM_BCAST_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_BCAST_SYNC_SIZE

Fortran:
SHMEM_BCAST_SYNC_SIZE

deprecation end

Length of the pSync arrays needed for broadcast routines.
The value of this constant is implementation specific. See
Section 9.9.6 for more detail about its use.

C/C++:
SHMEM_REDUCE_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_REDUCE_SYNC_SIZE

Fortran:
SHMEM_REDUCE_SYNC_SIZE

deprecation end

Length of the work arrays needed for reduction routines.
The value of this constant is implementation specific. See
Section 9.9.9 for more detail about its use.

C/C++:
SHMEM_BARRIER_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_BARRIER_SYNC_SIZE

Fortran:
SHMEM_BARRIER_SYNC_SIZE

deprecation end

Length of the work array needed for barrier routines. The
value of this constant is implementation specific. See Sec-
tion 9.9.2 for more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8 6. LIBRARY CONSTANTS

Constant Description

C/C++:
SHMEM_COLLECT_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_COLLECT_SYNC_SIZE

Fortran:
SHMEM_COLLECT_SYNC_SIZE

deprecation end

Length of the work array needed for collect routines. The
value of this constant is implementation specific. See Sec-
tion 9.9.7 for more detail about its use.

C/C++:
SHMEM_ALLTOALL_SYNC_SIZE

deprecation start

Fortran:
SHMEM_ALLTOALL_SYNC_SIZE

deprecation end

Length of the work array needed for shmem_alltoall rou-
tines. The value of this constant is implementation specific.
See Section 9.9.10 for more detail about its use.

C/C++:
SHMEM_ALLTOALLS_SYNC_SIZE

deprecation start

Fortran:
SHMEM_ALLTOALLS_SYNC_SIZE

deprecation end

Length of the work array needed for shmem_alltoalls rou-
tines. The value of this constant is implementation specific.
See Section 9.9.11 for more detail about its use.

C/C++:
SHMEM_REDUCE_MIN_WRKDATA_SIZE

deprecation start

C/C++:
_SHMEM_REDUCE_MIN_WRKDATA_SIZE

Fortran:
SHMEM_REDUCE_MIN_WRKDATA_SIZE

deprecation end

Minimum length of work arrays used in various collective
routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6. LIBRARY CONSTANTS 9

Constant Description

C/C++:
SHMEM_MAJOR_VERSION

deprecation start

C/C++:
_SHMEM_MAJOR_VERSION

Fortran:
SHMEM_MAJOR_VERSION

deprecation end

Integer representing the major version of OpenSHMEM
Specification in use.

C/C++:
SHMEM_MINOR_VERSION

deprecation start

C/C++:
_SHMEM_MINOR_VERSION

Fortran:
SHMEM_MINOR_VERSION

deprecation end

Integer representing the minor version of OpenSHMEM
Specification in use.

C/C++:
SHMEM_MAX_NAME_LEN

deprecation start

C/C++:
_SHMEM_MAX_NAME_LEN

Fortran:
SHMEM_MAX_NAME_LEN

deprecation end

Integer representing the maximum length of
SHMEM_VENDOR_STRING.

C/C++:
SHMEM_VENDOR_STRING

deprecation start

C/C++:
_SHMEM_VENDOR_STRING

Fortran:
SHMEM_VENDOR_STRING

deprecation end

String representing vendor defined information of size at
most SHMEM_MAX_NAME_LEN. In C/C++, the string
is terminated by a null character. In Fortran, the string of
size less than SHMEM_MAX_NAME_LEN is padded with
blank characters up to size SHMEM_MAX_NAME_LEN.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10 6. LIBRARY CONSTANTS

Constant Description

C/C++:
SHMEM_CMP_EQ

deprecation start

C/C++:
_SHMEM_CMP_EQ

Fortran:
SHMEM_CMP_EQ

deprecation end

An integer constant expression corresponding to the “equal
to” comparison operation. See Section 9.10 for more detail
about its use.

C/C++:
SHMEM_CMP_NE

deprecation start

C/C++:
_SHMEM_CMP_NE

Fortran:
SHMEM_CMP_NE

deprecation end

An integer constant expression corresponding to the “not
equal to” comparison operation. See Section 9.10 for more
detail about its use.

C/C++:
SHMEM_CMP_LT

deprecation start

C/C++:
_SHMEM_CMP_LT

Fortran:
SHMEM_CMP_LT

deprecation end

An integer constant expression corresponding to the “less
than” comparison operation. See Section 9.10 for more de-
tail about its use.

C/C++:
SHMEM_CMP_LE

deprecation start

C/C++:
_SHMEM_CMP_LE

Fortran:
SHMEM_CMP_LE

deprecation end

An integer constant expression corresponding to the “less
than or equal to” comparison operation. See Section 9.10
for more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

7. LIBRARY HANDLES 11

Constant Description

C/C++:
SHMEM_CMP_GT

deprecation start

C/C++:
_SHMEM_CMP_GT

Fortran:
SHMEM_CMP_GT

deprecation end

An integer constant expression corresponding to the
“greater than” comparison operation. See Section 9.10 for
more detail about its use.

C/C++:
SHMEM_CMP_GE

deprecation start

C/C++:
_SHMEM_CMP_GE

Fortran:
SHMEM_CMP_GE

deprecation end

An integer constant expression corresponding to the
“greater than or equal to” comparison operation. See Sec-
tion 9.10 for more detail about its use.

7 Library Handles

The OpenSHMEM library provides a set of predefined named constant handles. All named constants can be used in
initialization expressions or assignments, but not necessarily in array declarations or as labels in C switch statements.
This implies named constants to be link-time but not necessarily compile-time constants.

Handle Description

C/C++:
SHMEM_TEAM_WORLD

Handle of type shmem_team_t that corresponds to the de-
fault team of all PEs in the OpenSHMEM program. All
point-to-point communication operations and synchroniza-
tions that do not specify a team are performed on the default
team. See Section 9.4 for more detail about its use.

C/C++:
SHMEM_TEAM_NODE

Handle of type shmem_team_t that corresponds a team of
PEs which share node level resources, such as shared mem-
ory, network interfaces, etc. When this handle is used by
some PE, it will refer to the node level team containing that
PE. See Section 9.4 for more detail about its use.

C/C++:
SHMEM_CTX_DEFAULT

Handle of type shmem_ctx_t that corresponds to the default
communication context. All point-to-point communication
operations and synchronizations that do not specify a con-
text are performed on the default context. See Section 9.5
for more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

12 8. ENVIRONMENT VARIABLES

8 Environment Variables

The OpenSHMEM specification provides a set of environment variables that allows users to configure the Open-
SHMEM implementation, and receive information about the implementation. The implementations of the specification
are free to define additional variables. Currently, the specification defines four environment variables. All environment
variables that start with SMA_* are deprecated, but currently supported for backwards compatibility. If both SHMEM_-
and SMA_-prefixed environment variables are set, then the value in the SHMEM_-prefixed environment variable es-
tablishes the controlling value. Refer to the SMA_* Environment Variables deprecation rationale for more details.

Variable Value Description
SHMEM_VERSION Any Print the library version at start-up
SHMEM_INFO Any Print helpful text about all these environment variables
SHMEM_SYMMETRIC_SIZE Non-negative integer Number of bytes to allocate for symmetric heap
SHMEM_DEBUG Any Enable debugging messages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 13

9 OpenSHMEM Library API

9.1 Library Setup, Exit, and Query Routines

The library setup and query interfaces that initialize and monitor the parallel environment of the PEs.

9.1.1 SHMEM_INIT

A collective operation that allocates and initializes the resources used by the OpenSHMEM library.

SYNOPSIS

C/C++:
void shmem_init(void);

deprecation start
FORTRAN:
CALL SHMEM_INIT()

deprecation end

DESCRIPTION

Arguments
None.

API description

shmem_init allocates and initializes resources used by the OpenSHMEM library. It is a collective op-
eration that all PEs must call before any other OpenSHMEM routine may be called. At the end of
the OpenSHMEM program which it initialized, the call to shmem_init must be matched with a call to
shmem_finalize. After the first call to shmem_init, a subsequent call to shmem_init or shmem_init_thread
in the same program results in undefined behavior.

Return Values
None.

Notes
As of OpenSHMEM 1.2, the use of start_pes has been deprecated and calls to it should be replaced with
calls to shmem_init. While support for start_pes is still required in OpenSHMEM libraries, users are en-
couraged to use shmem_init. An important difference between shmem_init and start_pes is that multiple
calls to shmem_init within a program results in undefined behavior, while in the case of start_pes, any
subsequent calls to start_pes after the first one results in a no-op.

EXAMPLES

The following shmem_init example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void) {
static int targ = 0;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

14 9. OPENSHMEM LIBRARY API

shmem_init();
int me = shmem_my_pe();
int receiver = 1 % shmem_n_pes();

if (me == 0) {
int src = 33;
shmem_put(&targ, &src, 1, receiver);

}

shmem_barrier_all(); /* Synchronizes sender and receiver */

if (me == receiver)
printf("PE %d targ=%d (expect 33)\n", me, targ);

shmem_finalize();
return 0;

}

9.1.2 SHMEM_MY_PE

Returns the number of the calling PE.

SYNOPSIS

C/C++:
int shmem_my_pe(void);

deprecation start
FORTRAN:
INTEGER SHMEM_MY_PE, ME

ME = SHMEM_MY_PE()

deprecation end

DESCRIPTION

Arguments
None.

API description

This routine returns the PE number of the calling PE. It accepts no arguments. The result is an integer
between 0 and npes - 1, where npes is the total number of PEs executing the current program.

Return Values
Integer - Between 0 and npes - 1

Notes
Each PE has a unique number or identifier. As of OpenSHMEM 1.2 the use of _my_pe has been dep-
recated. Although OpenSHMEM libraries are required to support the call, users are encouraged to use
shmem_my_pe instead. The behavior and signature of the routine shmem_my_pe remains unchanged from
the deprecated _my_pe version.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 15

9.1.3 SHMEM_N_PES

Returns the number of PEs running in a program.

SYNOPSIS

C/C++:
int shmem_n_pes(void);

deprecation start
FORTRAN:
INTEGER SHMEM_N_PES, N_PES

N_PES = SHMEM_N_PES()

deprecation end

DESCRIPTION

Arguments
None.

API description

The routine returns the number of PEs running in the program.

Return Values
Integer - Number of PEs running in the OpenSHMEM program.

Notes
As of OpenSHMEM 1.2 the use of _num_pes has been deprecated. Although OpenSHMEM libraries are
required to support the call, users are encouraged to use shmem_n_pes instead. The behavior and signature
of the routine shmem_n_pes remains unchanged from the deprecated _num_pes version.

EXAMPLES

The following shmem_my_pe and shmem_n_pes example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
printf("I am #%d of %d PEs executing this program\n", me, npes);
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

16 9. OPENSHMEM LIBRARY API

9.1.4 SHMEM_FINALIZE

A collective operation that releases all resources used by the OpenSHMEM library. This only terminates the Open-
SHMEM portion of a program, not the entire program.

SYNOPSIS

C/C++:
void shmem_finalize(void);

deprecation start
FORTRAN:
CALL SHMEM_FINALIZE()

deprecation end

DESCRIPTION

Arguments
None.

API description

shmem_finalize is a collective operation that ends the OpenSHMEM portion of a program previously ini-
tialized by shmem_init or shmem_init_thread and releases all resources used by the OpenSHMEM library.
This collective operation requires all PEs to participate in the call. There is an implicit global barrier in
shmem_finalize to ensure that pending communications are completed and that no resources are released
until all PEs have entered shmem_finalize. This routine destroys all shareable contexts. The user is re-
sponsible for destroying all contexts with the SHMEM_CTX_PRIVATE option enabled prior to calling this
routine; otherwise, the behavior is undefined. shmem_finalize must be the last OpenSHMEM library call
encountered in the OpenSHMEM portion of a program. A call to shmem_finalize will release all resources
initialized by a corresponding call to shmem_init or shmem_init_thread. All processes that represent the
PEs will still exist after the call to shmem_finalize returns, but they will no longer have access to resources
that have been released.

Return Values
None.

Notes
shmem_finalize releases all resources used by the OpenSHMEM library including the symmetric memory
heap and pointers initiated by shmem_ptr. This collective operation requires all PEs to participate in the
call, not just a subset of the PEs. The non-OpenSHMEM portion of a program may continue after a call to
shmem_finalize by all PEs.

EXAMPLES

The following finalize example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 17

static long x = 10101;
long y = -1;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

if (me == 0)
y = shmem_g(&x, npes-1);

printf("%d: y = %ld\n", me, y);

shmem_finalize();
return 0;

}

9.1.5 SHMEM_GLOBAL_EXIT

A routine that allows any PE to force termination of an entire program.

SYNOPSIS

C11:
_Noreturn void shmem_global_exit(int status);

C/C++:
void shmem_global_exit(int status);

deprecation start
FORTRAN:
INTEGER STATUS

CALL SHMEM_GLOBAL_EXIT(status)

deprecation end

DESCRIPTION

Arguments
IN status The exit status from the main program.

API description

shmem_global_exit is a non-collective routine that allows any one PE to force termination of an Open-
SHMEM program for all PEs, passing an exit status to the execution environment. This routine terminates
the entire program, not just the OpenSHMEM portion. When any PE calls shmem_global_exit, it results in
the immediate notification to all PEs to terminate. shmem_global_exit flushes I/O and releases resources
in accordance with C/C++/Fortran language requirements for normal program termination. If more than
one PE calls shmem_global_exit, then the exit status returned to the environment shall be one of the values
passed to shmem_global_exit as the status argument. There is no return to the caller of shmem_global_exit;
control is returned from the OpenSHMEM program to the execution environment for all PEs.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

18 9. OPENSHMEM LIBRARY API

Notes
shmem_global_exit may be used in situations where one or more PEs have determined that the program
has completed and/or should terminate early. Accordingly, the integer status argument can be used to pass
any information about the nature of the exit; e.g., that the program encountered an error or found a so-
lution. Since shmem_global_exit is a non-collective routine, there is no implied synchronization, and all
PEs must terminate regardless of their current execution state. While I/O must be flushed for standard lan-
guage I/O calls from C/C++/Fortran, it is implementation dependent as to how I/O done by other means
(e.g., third party I/O libraries) is handled. Similarly, resources are released according to C/C++/Fortran
standard language requirements, but this may not include all resources allocated for the OpenSHMEM pro-
gram. However, a quality implementation will make a best effort to flush all I/O and clean up all resources.

EXAMPLES

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

int main(void)
{

shmem_init();
int me = shmem_my_pe();
if (me == 0) {

FILE *fp = fopen("input.txt", "r");
if (fp == NULL) { /* Input file required by program is not available */

shmem_global_exit(EXIT_FAILURE);
}
/* do something with the file */
fclose(fp);

}
shmem_finalize();
return 0;

}

9.1.6 SHMEM_PE_ACCESSIBLE

Determines whether a PE is accessible via OpenSHMEM’s data transfer routines.

SYNOPSIS

C/C++:
int shmem_pe_accessible(int pe);

deprecation start
FORTRAN:
LOGICAL LOG, SHMEM_PE_ACCESSIBLE

INTEGER pe

LOG = SHMEM_PE_ACCESSIBLE(pe)

deprecation end

DESCRIPTION

Arguments
IN pe Specific PE to be checked for accessibility from the local PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 19

API description

shmem_pe_accessible is a query routine that indicates whether a specified PE is accessible via Open-
SHMEM from the local PE. The shmem_pe_accessible routine returns a value indicating whether the
remote PE is a process running from the same executable file as the local PE, thereby indicating whether
full support for symmetric data objects, which may reside in either static memory or the symmetric heap,
is available.

Return Values
C/C++: The return value is 1 if the specified PE is a valid remote PE for OpenSHMEM routines; otherwise,
it is 0.
Fortran: The return value is .TRUE. if the specified PE is a valid remote PE for OpenSHMEM routines;
otherwise, it is .FALSE..

Notes
This routine may be particularly useful for hybrid programming with other communication libraries (such
as MPI) or parallel languages. For example, when an MPI job uses Multiple Program Multiple Data
(MPMD) mode, multiple executable MPI programs are executed as part of the same MPI job. In such
cases, OpenSHMEM support may only be available between processes running from the same executable
file. In addition, some environments may allow a hybrid job to span multiple network partitions. In such
scenarios, OpenSHMEM support may only be available between PEs within the same partition.

9.1.7 SHMEM_ADDR_ACCESSIBLE

Determines whether an address is accessible via OpenSHMEM data transfer routines from the specified remote PE.

SYNOPSIS

C/C++:
int shmem_addr_accessible(const void *addr, int pe);

deprecation start
FORTRAN:
LOGICAL LOG, SHMEM_ADDR_ACCESSIBLE

INTEGER pe

LOG = SHMEM_ADDR_ACCESSIBLE(addr, pe)

deprecation end

DESCRIPTION

Arguments
IN addr Data object on the local PE.
IN pe Integer id of a remote PE.

API description

shmem_addr_accessible is a query routine that indicates whether a local address is accessible via Open-
SHMEM routines from the specified remote PE.
This routine verifies that the data object is symmetric and accessible with respect to a remote PE via Open-
SHMEM data transfer routines. The specified address addr is a data object on the local PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

20 9. OPENSHMEM LIBRARY API

Return Values
C/C++: The return value is 1 if addr is a symmetric data object and accessible via OpenSHMEM routines
from the specified remote PE; otherwise, it is 0.
Fortran: The return value is .TRUE. if addr is a symmetric data object and accessible via OpenSHMEM
routines from the specified remote PE; otherwise, it is .FALSE..

Notes
This routine may be particularly useful for hybrid programming with other communication libraries (such
as MPI) or parallel languages. For example, when an MPI job uses MPMD mode, multiple executable MPI
programs may use OpenSHMEM routines. In such cases, static memory, such as a Fortran common block
or C global variable, is symmetric between processes running from the same executable file, but is not
symmetric between processes running from different executable files. Data allocated from the symmetric
heap (shmem_malloc or shpalloc) is symmetric across the same or different executable files.

9.1.8 SHMEM_PTR

Returns a local pointer to a symmetric data object on the specified PE.

SYNOPSIS

C/C++:
void *shmem_ptr(const void *dest, int pe);

deprecation start
FORTRAN:
POINTER (PTR, POINTEE)

INTEGER pe

PTR = SHMEM_PTR(dest, pe)

deprecation end

DESCRIPTION

Arguments
IN dest The symmetric data object to be referenced.
IN pe An integer that indicates the PE number on which dest is to be accessed.

When using Fortran, it must be a default integer value.

API description

shmem_ptr returns an address that may be used to directly reference dest on the specified PE. This address
can be assigned to a pointer. After that, ordinary loads and stores to this remote address may be performed.
The shmem_ptr routine can provide an efficient means to accomplish communication, for example when a
sequence of reads and writes to a data object on a remote PE does not match the access pattern provided in
an OpenSHMEM data transfer routine like shmem_put or shmem_iget.

Return Values
The address of the dest data object is returned when it is accessible using memory loads and stores. Other-
wise, a null pointer is returned.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 21

Notes
When calling shmem_ptr, dest is the address of the referenced symmetric data object on the calling PE.

EXAMPLES

This Fortran program calls shmem_ptr and then PE 0 writes to the BIGD array on PE 1:
PROGRAM REMOTEWRITE
INCLUDE "shmem.fh"

INTEGER BIGD(100)
SAVE BIGD

INTEGER POINTEE(*)
POINTER (PTR,POINTEE)

CALL SHMEM_INIT()

IF (SHMEM_MY_PE() .EQ. 0) THEN
! initialize PE 1’s BIGD array
PTR = SHMEM_PTR(BIGD, 1) ! get address of PE 1’s BIGD

! array
DO I=1,100

POINTEE(I) = I
ENDDO

ENDIF

CALL SHMEM_BARRIER_ALL

IF (SHMEM_MY_PE() .EQ. 1) THEN
PRINT*,’BIGD on PE 1 is: ’
PRINT*,BIGD

ENDIF
END

This is the equivalent program written in C11:
#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int dest[4];
shmem_init();
int me = shmem_my_pe();
if (me == 0) { /* initialize PE 1’s dest array */

int* ptr = shmem_ptr(dest, 1);
if (ptr == NULL)

printf("can’t use pointer to directly access PE 1’s dest array\n");
else

for (int i = 0; i < 4; i++)

*ptr++ = i + 1;
}
shmem_barrier_all();
if (me == 1)

printf("PE 1 dest: %d, %d, %d, %d\n",
dest[0], dest[1], dest[2], dest[3]);

shmem_finalize();
return 0;

}

9.1.9 SHMEM_INFO_GET_VERSION

Returns the major and minor version of the library implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

22 9. OPENSHMEM LIBRARY API

SYNOPSIS

C/C++:
void shmem_info_get_version(int *major, int *minor);

deprecation start
FORTRAN:
INTEGER MAJOR, MINOR

CALL SHMEM_INFO_GET_VERSION(MAJOR, MINOR)

deprecation end

DESCRIPTION

Arguments
OUT major The major version of the OpenSHMEM Specification in use.
OUT minor The minor version of the OpenSHMEM Specification in use.

API description

This routine returns the major and minor version of the OpenSHMEM Specification in use. For a given
library implementation, the major and minor version returned by these calls are consistent with the library
constants SHMEM_MAJOR_VERSION and SHMEM_MINOR_VERSION.

Return Values
None.

Notes
None.

9.1.10 SHMEM_INFO_GET_NAME

This routine returns the vendor defined name string that is consistent with the library constant SHMEM_VENDOR_STRING.

SYNOPSIS

C/C++:
void shmem_info_get_name(char *name);

deprecation start
FORTRAN:
CHARACTER *(*)NAME

CALL SHMEM_INFO_GET_NAME(NAME)

deprecation end

DESCRIPTION

Arguments
OUT name The vendor defined string.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 23

API description

This routine returns the vendor defined name string of size defined by the library constant
SHMEM_MAX_NAME_LEN. The program calling this function provides the name memory buffer of
at least size SHMEM_MAX_NAME_LEN. The implementation copies the vendor defined string of size
at most SHMEM_MAX_NAME_LEN to name. In C/C++, the string is terminated by a null charac-
ter. In Fortran, the string of size less than SHMEM_MAX_NAME_LEN is padded with blank charac-
ters up to size SHMEM_MAX_NAME_LEN. If the name memory buffer is provided with size less than
SHMEM_MAX_NAME_LEN, behavior is undefined. For a given library implementation, the vendor string
returned is consistent with the library constant SHMEM_VENDOR_STRING.

Return Values
None.

Notes
None.

9.1.11 START_PES

Called at the beginning of an OpenSHMEM program to initialize the execution environment. This routine is deprecated
and is provided for backwards compatibility. Implementations must include it, and the routine should function properly
and may notify the user about deprecation of its use.

SYNOPSIS

deprecation start

C/C++:
void start_pes(int npes);

deprecation end

deprecation start
FORTRAN:
CALL START_PES(npes)

deprecation end

DESCRIPTION

Arguments
npes Unused Should be set to 0.

API description

The start_pes routine initializes the OpenSHMEM execution environment. An OpenSHMEM program
must call start_pes, shmem_init, or shmem_init_thread before calling any other OpenSHMEM routine.
Unlike shmem_init and shmem_init_thread, start_pes does not require a call to shmem_finalize. Instead,
the OpenSHMEM library is implicitly finalized when the program exits. Implicit finalization is collec-
tive and includes a global synchronization to ensure that all pending communication is completed before
resources are released.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

24 9. OPENSHMEM LIBRARY API

Return Values
None.

Notes
If any other OpenSHMEM call occurs before start_pes, the behavior is undefined. Although it is recom-
mended to set npes to 0 for start_pes, this is not mandated. The value is ignored. Calling start_pes more
than once has no subsequent effect.
As of OpenSHMEM 1.2 the use of start_pes has been deprecated. Although OpenSHMEM libraries are
required to support the call, users are encouraged to use shmem_init or shmem_init_thread instead.

EXAMPLES

This is a simple program that calls start_pes:

PROGRAM PUT
INCLUDE "shmem.fh"

INTEGER TARG, SRC, RECEIVER, BAR
COMMON /T/ TARG
PARAMETER (RECEIVER=1)
CALL START_PES(0)

IF (SHMEM_MY_PE() .EQ. 0) THEN
SRC = 33
CALL SHMEM_INTEGER_PUT(TARG, SRC, 1, RECEIVER)

ENDIF

CALL SHMEM_BARRIER_ALL ! SYNCHRONIZES SENDER AND RECEIVER

IF (SHMEM_MY_PE() .EQ. RECEIVER) THEN
PRINT*,’PE ’, SHMEM_MY_PE(),’ TARG=’,TARG,’ (expect 33)’

ENDIF
END

9.2 Thread Support

This section specifies the interaction between the OpenSHMEM interfaces and user threads. It also describes the
routines that can be used for initializing and querying the thread environment. There are four levels of threading
defined by the OpenSHMEM specification.

SHMEM_THREAD_SINGLE
The OpenSHMEM program must not be multithreaded.

SHMEM_THREAD_FUNNELED
The OpenSHMEM program may be multithreaded. However, the program must ensure that only the main
thread invokes the OpenSHMEM interfaces. The main thread is the thread that invokes either shmem_init or
shmem_init_thread.

SHMEM_THREAD_SERIALIZED
The OpenSHMEM program may be multithreaded. However, the program must ensure that the OpenSHMEM
interfaces are not invoked concurrently by multiple threads.

SHMEM_THREAD_MULTIPLE
The OpenSHMEM program may be multithreaded and any thread may invoke the OpenSHMEM interfaces.

The following semantics apply to the usage of these models:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 25

1. In the SHMEM_THREAD_FUNNELED, SHMEM_THREAD_SERIALIZED, and SHMEM_THREAD_MULTIPLE
thread levels, the shmem_init and shmem_finalize calls must be invoked by the same thread.

2. Any OpenSHMEM operation initiated by a thread is considered an action of the PE as a whole. The symmetric
heap and symmetric variables scope are not impacted by multiple threads invoking the OpenSHMEM interfaces.
Each PE has a single symmetric data segment and symmetric heap that is shared by all threads within that PE.
For example, a thread invoking a memory allocation routine such as shmem_malloc allocates memory that is
accessible by all threads of the PE. The requirement that the same symmetric heap operations must be executed
by all PEs in the same order also applies in a threaded environment. Similarly, the completion of collective
operations is not impacted by multiple threads. For example, shmem_barrier_all is completed when all PEs
enter and exit the shmem_barrier_all call, even though only one thread in the PE is participating in the collective
call.

3. Blocking OpenSHMEM calls will only block the calling thread, allowing other threads, if available, to continue
executing. The calling thread will be blocked until the event on which it is waiting occurs. Once the blocking
call is completed, the thread is ready to continue execution. A blocked thread will not prevent progress of other
threads on the same PE and will not prevent them from executing other OpenSHMEM calls when the thread
level permits. In addition, a blocked thread will not prevent the progress of OpenSHMEM calls performed on
other PEs.

4. In the SHMEM_THREAD_MULTIPLE thread level, all OpenSHMEM calls are thread-safe. Any two concur-
rently running threads may make OpenSHMEM calls and the outcome will be as if the calls executed in some
order, even if their execution is interleaved.

5. In the SHMEM_THREAD_SERIALIZED and SHMEM_THREAD_MULTIPLE thread levels, if multiple threads
call collective routines, including the symmetric heap management routines, it is the programmer’s responsibility
to ensure the correct ordering of collective calls.

9.2.1 SHMEM_INIT_THREAD

Initializes the OpenSHMEM library, similar to shmem_init, and performs any initialization required for supporting the
provided thread level.

SYNOPSIS

C/C++:
int shmem_init_thread(int requested, int *provided);

DESCRIPTION

Arguments
IN requested The thread level support requested by the user.
OUT provided The thread level support provided by the OpenSHMEM implementa-

tion.

API description

shmem_init_thread initializes the OpenSHMEM library in the same way as shmem_init. In addition,
shmem_init_thread also performs the initialization required for supporting the provided thread level.
The argument requested is used to specify the desired level of thread support. The argument provided
returns the support level provided by the library. The allowed values for provided and requested are
SHMEM_THREAD_SINGLE, SHMEM_THREAD_FUNNELED, SHMEM_THREAD_SERIALIZED, and
SHMEM_THREAD_MULTIPLE.
An OpenSHMEM program is initialized either by shmem_init or shmem_init_thread. Once an Open-
SHMEM library initialization call has been performed, a subsequent initialization call in the same program

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

26 9. OPENSHMEM LIBRARY API

results in undefined behavior. If the call to shmem_init_thread is unsuccessful in allocating and initializing
resources for the OpenSHMEM library, then the behavior of any subsequent call to the OpenSHMEM
library is undefined.

Return Values
shmem_init_thread returns 0 upon success; otherwise, it returns a non-zero value.

Notes
The OpenSHMEM library can be initialized either by shmem_init or shmem_init_thread. If the Open-
SHMEM library is initialized by shmem_init, the library implementation can choose to support any one of
the defined thread levels.

9.2.2 SHMEM_QUERY_THREAD

Returns the level of thread support provided by the library.

SYNOPSIS

C/C++:
void shmem_query_thread(int *provided);

DESCRIPTION

Arguments
OUT provided The thread level support provided by the OpenSHMEM implementa-

tion.

API description

The shmem_query_thread call returns the level of thread support currently being provided. The value
returned will be same as was returned in provided by a call to shmem_init_thread, if the OpenSHMEM
library was initialized by shmem_init_thread. If the library was initialized by shmem_init, the implemen-
tation can choose to provide any one of the defined thread levels, and shmem_query_thread returns this
thread level.

Return Values
None.

Notes
None.

9.3 Memory Management Routines

OpenSHMEM provides a set of APIs for managing the symmetric heap. The APIs allow one to dynamically allocate,
deallocate, reallocate and align symmetric data objects in the symmetric heap.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 27

9.3.1 SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN

Collective symmetric heap memory management routines.

SYNOPSIS

C/C++:
void *shmem_malloc(size_t size);

void shmem_free(void *ptr);

void *shmem_realloc(void *ptr, size_t size);

void *shmem_align(size_t alignment, size_t size);

DESCRIPTION

Arguments
IN size The size, in bytes, of a block to be allocated from the symmetric heap.

This argument is of type size_t
IN ptr Pointer to a block within the symmetric heap.
IN alignment Byte alignment of the block allocated from the symmetric heap.

API description

The shmem_malloc, shmem_free, shmem_realloc, and shmem_align routines are collective operations that
require participation by all PEs.
The shmem_malloc routine returns a pointer to a block of at least size bytes, which shall be suitably aligned
so that it may be assigned to a pointer to any type of object. This space is allocated from the symmetric
heap (in contrast to malloc, which allocates from the private heap). When size is zero, the shmem_malloc
routine performs no action and returns a null pointer.
The shmem_align routine allocates a block in the symmetric heap that has a byte alignment specified by
the alignment argument. The value of alignment shall be a multiple of sizeof(void *) that is also a power of
two. Otherwise, the behavior is undefined. When size is zero, the shmem_align routine performs no action
and returns a null pointer.
The shmem_free routine causes the block to which ptr points to be deallocated, that is, made available for
further allocation. If ptr is a null pointer, no action is performed.
The shmem_realloc routine changes the size of the block to which ptr points to the size (in bytes) specified
by size. The contents of the block are unchanged up to the lesser of the new and old sizes. If the new size is
larger, the newly allocated portion of the block is uninitialized. If ptr is a null pointer, the shmem_realloc
routine behaves like the shmem_malloc routine for the specified size. If size is 0 and ptr is not a null
pointer, the block to which it points is freed. If the space cannot be allocated, the block to which ptr points
is unchanged.
The shmem_malloc, shmem_align, shmem_free, and shmem_realloc routines are provided so that multiple
PEs in a program can allocate symmetric, remotely accessible memory blocks. These memory blocks can
then be used with OpenSHMEM communication routines. When no action is performed, these routines
return without performing a barrier. Otherwise, each of these routines includes at least one call to a proce-
dure that is semantically equivalent to shmem_barrier_all: shmem_malloc and shmem_align call a barrier
on exit; shmem_free calls a barrier on entry; and shmem_realloc may call barriers on both entry and exit,
depending on whether an existing allocation is modified and whether new memory is allocated, respec-
tively. This ensures that all PEs participate in the memory allocation, and that the memory on other PEs
can be used as soon as the local PE returns. The implicit barriers performed by these routines quiet the de-
fault context. It is the user’s responsibility to ensure that no communication operations involving the given
memory block are pending on other contexts prior to calling the shmem_free and shmem_realloc routines.
The user is also responsible for calling these routines with identical argument(s) on all PEs; if differing ptr,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

28 9. OPENSHMEM LIBRARY API

size, or alignment arguments are used, the behavior of the call and any subsequent OpenSHMEM calls is
undefined.

Return Values
The shmem_malloc routine returns a pointer to the allocated space; otherwise, it returns a null pointer.
The shmem_free routine returns no value.
The shmem_realloc routine returns a pointer to the allocated space (which may have moved); otherwise,
all PEs return a null pointer.
The shmem_align routine returns an aligned pointer whose value is a multiple of alignment; otherwise, it
returns a null pointer.

Notes
As of OpenSHMEM 1.2 the use of shmalloc, shmemalign, shfree, and shrealloc has been deprecated. Al-
though OpenSHMEM libraries are required to support the calls, users are encouraged to use shmem_malloc,
shmem_align, shmem_free, and shmem_realloc instead. The behavior and signature of the routines re-
mains unchanged from the deprecated versions.
The total size of the symmetric heap is determined at job startup. One can specify the size of the heap using
the SHMEM_SYMMETRIC_SIZE environment variable (where available).
The shmem_malloc, shmem_free, and shmem_realloc routines differ from the private heap allocation rou-
tines in that all PEs in a program must call them (a barrier is used to ensure this).
When the ptr argument in a call to shmem_realloc corresponds to a buffer allocated using shmem_align,
the buffer returned by shmem_realloc is not guaranteed to maintain the alignment requested in the original
call to shmem_align.

Note to implementors
The symmetric heap allocation routines always return a pointer to corresponding symmetric objects across
all PEs. The OpenSHMEM specification does not require that the virtual addresses are equal across all PEs.
Nevertheless, the implementation must avoid costly address translation operations in the communication
path, including O(N) memory translation tables, where N is the number of PEs. In order to avoid address
translations, the implementation may re-map the allocated block of memory based on agreed virtual ad-
dress. Additionally, some operating systems provide an option to disable virtual address randomization,
which enables predictable allocation of virtual memory addresses.

9.3.2 SHMEM_CALLOC

Allocate a zeroed block of symmetric memory.

SYNOPSIS

C/C++:
void *shmem_calloc(size_t count, size_t size);

DESCRIPTION

Arguments
IN count The number of elements to allocate.
IN size The size in bytes of each element to allocate.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 29

API description

The shmem_calloc routine is a collective operation that allocates a region of remotely-accessible memory
for an array of count objects of size bytes each and returns a pointer to the lowest byte address of the
allocated symmetric memory. The space is initialized to all bits zero.
If the allocation succeeds, the pointer returned shall be suitably aligned so that it may be assigned to a
pointer to any type of object. If the allocation does not succeed, or either count or size is 0, the return value
is a null pointer.
The values for count and size shall each be equal across all PEs calling shmem_calloc; otherwise, the
behavior is undefined.
When count or size is 0, the shmem_calloc routine returns without performing a barrier. Otherwise, this
routine calls a procedure that is semantically equivalent to shmem_barrier_all on exit.

Return Values
The shmem_calloc routine returns a pointer to the lowest byte address of the allocated space; otherwise, it
returns a null pointer.

Notes
None.

9.3.3 SHPALLOC

Allocates a block of memory from the symmetric heap.

SYNOPSIS

deprecation start
FORTRAN:
POINTER (addr, A(1))

INTEGER length, errcode, abort

CALL SHPALLOC(addr, length, errcode, abort)

deprecation end

DESCRIPTION

Arguments
OUT addr First word address of the allocated block.
IN length Number of words of memory requested. One word is 32 bits.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code; nonzero requests abort on error; 0 requests an error code.

API description

SHPALLOC allocates a block of memory from the program’s symmetric heap that is greater than or equal
to the size requested. To maintain symmetric heap consistency, all PEs in an program must call SHPALLOC
with the same value of length; if any PEs are missing, the program will hang.
By using the Fortran POINTER mechanism in the following manner, array A can be used to refer to the
block allocated by SHPALLOC: POINTER (addr, A())

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

30 9. OPENSHMEM LIBRARY API

Return Values

Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

Notes
The total size of the symmetric heap is determined at job startup. One may adjust the size of the heap using
the SHMEM_SYMMETRIC_SIZE environment variable (if available).

Note to implementors
The symmetric heap allocation routines always return a pointer to corresponding symmetric objects across
all PEs. The OpenSHMEM specification does not require that the virtual addresses are equal across all PEs.
Nevertheless, the implementation must avoid costly address translation operations in the communication
path, including order N (where N is the number of PEs) memory translation tables. In order to avoid ad-
dress translations, the implementation may re-map the allocated block of memory based on agreed virtual
address. Additionally, some operating systems provide an option to disable virtual address randomization,
which enables predictable allocation of virtual memory addresses.

9.3.4 SHPCLMOVE

Extends a symmetric heap block or copies the contents of the block into a larger block.

SYNOPSIS

deprecation start
FORTRAN:
POINTER (addr, A(1))

INTEGER length, status, abort

CALL SHPCLMOVE(addr, length, status, abort)

deprecation end

DESCRIPTION

Arguments
INOUT addr On entry, first word address of the block to change; on exit, the new

address of the block if it was moved.
IN length Requested new total length in words. One word is 32 bits.
OUT status Status is 0 if the block was extended in place, 1 if it was moved, and a

negative integer for the type of error detected.
IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

API description

The SHPCLMOVE routine either extends a symmetric heap block if the block is followed by a large enough
free block or copies the contents of the existing block to a larger block and returns a status code indicating

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 31

that the block was moved. This routine also can reduce the size of a block if the new length is less than
the old length. All PEs in a program must call SHPCLMOVE with the same value of addr to maintain
symmetric heap consistency; if any PEs are missing, the program hangs.

Return Values

Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.
-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

9.3.5 SHPDEALLC

Returns a memory block to the symmetric heap.

SYNOPSIS

deprecation start
FORTRAN:
POINTER (addr, A(1))

INTEGER errcode, abort

CALL SHPDEALLC(addr, errcode, abort)

deprecation end

DESCRIPTION

Arguments
IN addr First word address of the block to deallocate.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

API description

SHPDEALLC returns a block of memory (allocated using SHPALLOC) to the list of available space in the
symmetric heap. To maintain symmetric heap consistency, all PEs in a program must call SHPDEALLC
with the same value of addr; if any PEs are missing, the program hangs.

Return Values

Error Code Condition

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

32 9. OPENSHMEM LIBRARY API

-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.
-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

9.4 Team Management Routines

The PEs in an OpenSHMEM program can communicate either using point-to-point routines that specify the PE number
of the target PE or using collective routines which operate over some predefined set of PEs. Teams in OpenSHMEM
allow programs to group subsets of PEs for collective communications and provide a contiguous reindexing of the PEs
within that subset that can be used in point-to-point communication.

An OpenSHMEM team is a set of PEs defined by calling a specific team split routine with a parent team argument
and other arguments to further specify how the parent team is to be split into one or more new teams. A team created
by a shmem_team_split_* routine can be used as the parent team for a subsequent call to a team split routine. A team
persists and can be used for multiple collective routine calls until it is destroyed by shmem_team_destroy.

Every team must have a least one member. Any attempt to create a team over an empty set of PEs will result in no
new team being created.

A “team handle” is an opaque object with type shmem_team_t that is used to reference a defined team. Team
handles are created by one of the team split routines and destroyed by the team destroy routine. Team handles have
local semantics only. That is, team handles should not be stored in shared variables and used across other PEs. Doing
so will result in undefined behavior.

By default, OpenSHMEM creates predefined teams that will be available for use once the routine shmem_init has
been called. See Section 7 for a description of all predefined team handles provided by OpenSHMEM. Predefined
shmem_team_t handles can be used as the parent team when creating new OpenSHMEM teams.

Every PE is a member of the default team, which may be referenced through the team handle SHMEM_TEAM_WORLD,
and its number in the default team is equal to the value of its PE number as returned by shmem_my_pe.

A special team handle value, SHMEM_TEAM_NULL, may be used to indicate that a returned team handle is not
valid. This value can be tested against to check for successful split operations and can be assigned to user declared
team handles as a sentinel value.

Teams that are created by a shmem_team_split_* routine may be provided a configuration argument that specifies
options that may affect a team’s capabilities and may allow for optimized performance. This configuration argument is
of type shmem_team_config_t, which is detailed further in Section 9.4.3.

9.4.1 SHMEM_TEAM_MY_PE

Returns the number of the calling PE within the provided team.

SYNOPSIS

C/C++:
int shmem_team_my_pe(shmem_team_t team);

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 33

Arguments
IN team A valid OpenSHMEM team handle.

API description

The shmem_team_my_pe function returns the number of calling PE within the provided team. The number
will be a value between 0 and N-1, for a team of size N. Each member of the team has a unique number.
For the team SHMEM_TEAM_WORLD, this will return the same value as shmem_my_pe.
Error checking will be done to ensure a valid team handle is provided. Errors will result in a return value
less than 0.

design feedback requested

Return Values
The number of the calling PE within the provided team, or a value less than 0 if the team handle is invalid.

Notes
None.

9.4.2 SHMEM_TEAM_N_PES

Returns the total number of PEs in the provided team.

SYNOPSIS

C/C++:
int shmem_team_n_pes(shmem_team_t team);

DESCRIPTION

Arguments
IN team A valid OpenSHMEM team handle.

API description

The shmem_team_n_pes function returns the number of PEs in the team. This will always be a value
between 1 and N, where N is the total number of PEs accessible to the OpenSHMEM program. For the
team SHMEM_TEAM_WORLD, this will return the same value as shmem_n_pes.
All PEs in the team will get back the same value for the team size.
Error checking will be done to ensure a valid team handle is provided. Errors will result in a return value
less than 0.

design feedback requested

Return Values
Total number of PEs in the provided team, or a value less than 0 if the team handle is invalid.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

34 9. OPENSHMEM LIBRARY API

9.4.3 SHMEM_TEAM_CONFIG_T

A structure type representing team configuration arguments

SYNOPSIS

C/C++:
typedef struct {

int disable_collectives;

int return_local_limit;

int num_threads;

} shmem_team_config_t;

API description

A team configuration argument acts as both input and output to the shmem_team_split_* routines. As
an input, it specifies the requested capabilities of the team to be created. As an output, the configuration
argument is conditionally updated on whether team creation is successful. If successful, the configuration
argument is not modified; if unsuccessful, it is updated to specify the limiting configuration parameter(s).
The disable_collectives member allows for teams to be created without support for collective communica-
tions, which allows implementations to reduce team creation overheads for those teams. When its value is
zero, it specifies that the team should have collectives enabled. When nonzero, the team will not support
collective operations, which allows implementations to reduce team creation overheads.
The return_local_limit member controls whether, after a failed team creation, the team configuration argu-
ment is updated with the locally restrictive parameter(s) or the most restrictive parameter(s) across the PEs
of the new team. When its value is zero, the most restrictive parameters are returned; otherwise, the locally
restrictive parameters are returned.
The num_threads member specifies the number of threads that will create contexts from the new team. It
must have a nonnegative value. See Section 9.5 for more on communication contexts and Section 9.5.2 for
team-based context creation.

Notes
None.

9.4.4 SHMEM_TEAM_GET_CONFIG

Return the configuration parameters of a given team

SYNOPSIS

C/C++:
void shmem_team_get_config(shmem_team_t team, shmem_team_config_t *team);

DESCRIPTION

Arguments
IN team A valid OpenSHMEM team handle.
OUT config A pointer to the configuration parameters for the new team.

API description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 35

shmem_team_get_config returns through the config argument the configuration parameters of the given
team, which were specified when the team was created.

design feedback requested
A library implementation must apply all requested options to a team, even in the event that the library does
not make optimizations based on these options. For example, suppose library implementation must always
create teams with the same overhead, no matter if the program disables collective support during team
creation. The library must still enable the SHMEM_TEAM_NOCOLLECTIVE option when it is requested,
so that the OpenSHMEM program will be portable across implementations.

All PEs in the team will get back the same parameter values for the team options.
If the team argument does not specify a valid team, the behavior is undefined.

Return Values
None.

Notes
A use case for this function is to determine whether a given team can support collective operations by
testing for the SHMEM_TEAM_NOCOLLECTIVE option. When teams are created without support for
collectives, they may still use point to point operations to communicate and synchronize. So program-
mers may wish to design frameworks with functions that provide alternative algorithms for teams based on
whether they do or do not support collectives.

9.4.5 SHMEM_TEAM_TRANSLATE

Translates a given PE number to the corresponding PE number in another team.

SYNOPSIS

C/C++:
int shmem_team_translate_pe(shmem_team_t src_team, int src_pe,

shmem_team_t dest_team);

DESCRIPTION

Arguments
IN src_team A valid SHMEM team handle.
IN src_pe A PE number in src_team.
IN dest_team A valid SHMEM team handle.

API description

The shmem_team_translate_pe function will translate a given PE number to the corresponding PE number
in another team. Specifically, given the src_pe in src_team, this function returns that PE’s number in
dest_team. If src_pe is not a member of both the src_team and dest_team, a value less than 0 is returned.
If SHMEM_TEAM_WORLD is provided as the dest_team parameter, this function acts as a global PE
number translator and will return the corresponding SHMEM_TEAM_WORLD number. This may be useful
when performing point-to- point operations between PEs in a subset, as point-to-point operations that do
not take a context argument require the global SHMEM_TEAM_WORLD PE number.
Error checking will be done to ensure valid team handles are provided. Errors will result in a return value
less than 0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

36 9. OPENSHMEM LIBRARY API

design feedback requested

Return Values
The specified PE’s number in the dest_team, or a value less than 0 if any team handle arguments are invalid
or the src_pe is not in both the source and destination teams.

Notes
None.

9.4.6 SHMEM_TEAM_SPLIT_STRIDED

Create a new OpenSHMEM team from a subset of the existing parent team PEs, where the subset is defined by the PE
triplet (PE_start, PE_stride, and PE_size) supplied to the function.

SYNOPSIS

C/C++:
void shmem_team_split_strided(shmem_team_t parent_team, int PE_start, int PE_stride,

int PE_size, shmem_team_config_t *config, long config_mask, shmem_team_t *new_team);

DESCRIPTION

Arguments
IN parent_team A valid SHMEM team. The predefined teams

SHMEM_TEAM_WORLD or SHMEM_TEAM_NODE may be
used, or any team created by the user.

IN PE_start The lowest PE number of the subset of PEs from the parent team that
will form the new team

IN PE_stride The stride between team PE numbers in the parent team that comprise
the subset of PEs that will form the new team.

IN PE_size The number of PEs from the parent team in the subset of PEs that will
form the new team.

INOUT config A pointer to the configuration parameters for the new team.

IN config_mask The bitwise mask representing the set of configuration parameters to
use from config.

OUT new_team A new OpenSHMEM team handle, representing a PE subset of all the
PEs in the parent team that is created from the PE triplet provided.

API description

The shmem_team_split_strided function is a collective routine. It creates a new OpenSHMEM team from
a subset of the existing parent team, where the subset is defined by the PE triplet (PE_start, PE_stride, and
PE_size) supplied to the function.
This function must be called by all processes contained in the PE triplet specification. It may be called
by additional PEs not included in the triplet specification, but for those processes a new_team value of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 37

SHMEM_TEAM_NULL is returned. All calling processes must provide the same values for the PE triplet.
This function will return a new_team containing the PE subset specified by the triplet, and ordered by the
existing global PE number. None of the parameters need to reside in symmetric memory.
The config argument specifies team configuration parameters, which are described in Section 9.4.3.
The config_mask argument is a bitwise mask representing the set of configuration parameters to use from
config. A config_mask value of 0 indicates that all the field members of config should be used. Individual
field masks can be combined through a bitwise OR operation of the following library constants:

SHMEM_TEAM_NOCOLLECTIVE The team should be created using the value of the dis-
able_collectives member of the configuration parameter config.

SHMEM_TEAM_LOCAL_LIMIT The team should be created using the value of the re-
turn_local_limit member of the configuration parameter config.

SHMEM_TEAM_NUM_THREADS The team should be created using the value of the num_threads
member of the configuration parameter config.

Error checking will be done to ensure a valid PE triplet is provided, and also to determine whether a valid
team handle is provided for the parent team.
If parent_team is equal to SHMEM_TEAM_NULL, then new_team will be assigned the value
SHMEM_TEAM_NULL. Otherwise, if parent_team is an invalid team handle, the behavior is undefined.
If new_team cannot be created, it will be assigned the value SHMEM_TEAM_NULL.

Return Values
None.

Notes
It is important to note the use of the less restrictive PE_stride argument instead of logPE_stride. This
method of creating a team with an arbitrary set of PEs is inherently restricted by its parameters, but allows
for many additional use-cases over using a logPE_stride parameter, and may provide an easier transition
for existing OpenSHMEM programs to create and use OpenSHMEM teams.
See the description of team handles and predefined teams at the top of Section 9.4 for more information
about semantics and usage.

EXAMPLES

9.4.7 SHMEM_TEAM_SPLIT_2D

Create two new teams by splitting an existing parent team into two subsets based on a 2D Cartesian space defined
by the xrange argument and a y dimension derived from xrange and the parent team size. These ranges describe the
Cartesian space in x- and y-dimensions.

SYNOPSIS

C/C++:
void shmem_team_split_2d(shmem_team_t parent_team, int xrange,

shmem_team_config_t *xaxis_config, long xaxis_mask, shmem_team_t *xaxis_team,

shmem_team_config_t *yaxis_config, long yaxis_mask, shmem_team_t *yaxis_team);

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

38 9. OPENSHMEM LIBRARY API

Arguments
IN parent_team A valid OpenSHMEM team. Any predefined teams, such as

SHMEM_TEAM_WORLD, may be used, or any team created by the
user.

IN xrange A nonnegative integer representing the number of elements in the first
dimension.

INOUT xaxis_config A pointer to the configuration parameters for the new x-axis team.

IN xaxis_mask The bitwise mask representing the set of configuration parameters to
use from xaxis_config.

OUT xaxis_team A new PE team handle representing a PE subset consisting of all the
PEs that have the same coordinate along the x-axis as the calling PE.

INOUT yaxis_config A pointer to the configuration parameters for the new y-axis team.

IN yaxis_mask The bitwise mask representing the set of configuration parameters to
use from yaxis_config.

OUT yaxis_team A new PE team handle representing a PE subset consisting of all the
PEs that have the same coordinate along the y-axis as the calling PE.

API description

The shmem_team_split_2d routine is a collective routine. It creates two new teams by splitting an existing
parent team into up to two subsets based on a 2D Cartesian space. The user provides the size of the x
dimension, which is then used to derive the size of the y dimension based on the size of the parent team.
The size of the y dimension will be equal to ceiling(N÷xrange), where N is the size of the parent team. In
other words, xrange× yrange ≥ N, so that every PE in the parent team has a unique (x,y) location the 2D
Cartesian space.
After the split operation, each of the new teams will contain all PEs that have the same coordinate along
the x-axis and y-axis, respectively, as the calling PE. The PEs are numbered in the new teams based on the
position of the PE along the given axis.
Any valid OpenSHMEM team can be used as the parent team. This routine must be called by all PEs in the
parent team. The value of xrange must be nonnegative and all PEs in the parent team must pass the same
value for xrange. None of the parameters need to reside in symmetric memory.
The xaxis_config and yaxis_config arguments specify team configuration parameters for the x- and y-axis
teams, respectively. These parameters are described in Section 9.4.3. All PEs that will be in the same
resultant team must specify the same configuration parameters. The PEs in the parent team do not have to
all provide the same parameters for new teams.
The xaxis_mask andxaxis_mask arguments are a bitwise masks representing the set of configuration pa-
rameters to use from xaxis_config and yaxis_config, respectively. A mask value of 0 indicates that all
the field members of the configuration parameter argument should be used. Individual field masks can be
combined through a bitwise OR operation of the following library constants:

SHMEM_TEAM_NOCOLLECTIVE The team should be created using the value of the dis-
able_collectives member of the respective configuration param-
eter.

SHMEM_TEAM_LOCAL_LIMIT The team should be created using the value of the re-
turn_local_limit member of the respective configuration param-
eter.

SHMEM_TEAM_NUM_THREADS The team should be created using the value of the num_threads
member of the respective configuration parameter.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 39

If parent_team is equal to SHMEM_TEAM_NULL, both xaxis_team and yaxis_team will be assigned
the value SHMEM_TEAM_NULL. Otherwise, if parent_team is an invalid team handle, the behavior is
undefined. If either team cannot be created, that team will be assigned the value SHMEM_TEAM_NULL.

Return Values
None.

Notes
Since the split may result in a 2D space with more points than there are members of the parent team, there
may be a final, incomplete row of the 2D mapping of the parent team. This means that the resultant x-axis
teams may vary in size by up to 1 PE, and that there may be one resultant y-axis team of smaller size than
all of the other y-axis teams.
The following grid shows the 12 teams that would result from splitting a parent team of size 10 with xrange
of 3. The numbers in the grid cells are the PE numbers in the parent team. The rows are the y-axis teams.
The columns are the x-axis teams.

x=0 x=1 x=2
y=0 0 1 2
y=1 3 4 5
y=2 6 7 8
y=3 9

It would be legal, for example, if PEs 0, 3, 6, 9 specified a different value for xaxis_config than all of the
other PEs, as long as the configuration parameters match for all PEs in each of the new teams.
See the description of team handles and predefined teams at the top of section 9.4 for more information
about team handle semantics and usage.

EXAMPLES

9.4.8 SHMEM_TEAM_DESTROY

Destroys existing team.

SYNOPSIS

C/C++:
int shmem_team_destroy(shmem_team_t team);

DESCRIPTION

Arguments
IN team A valid OpenSHMEM team handle.

API description

The shmem_team_destroy function destroys an existing team. This is a collective call, in which every
member of the team being destroyed needs to participate. This will free all internal memory structures
associated with the team and invalidate the team handle. Upon return, the team handle can no longer be
used for team API calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

40 9. OPENSHMEM LIBRARY API

It is considered erroneous to free SHMEM_TEAM_WORLD or any other predefined team. Error checking
will be done to ensure a valid team handle is provided. Errors will result in a return value less than 0.

design feedback requested

Return Values
On success, the function will return 0. Otherwise a value less than 0 will be returned.

Notes
None.

9.5 Communication Management Routines

All OpenSHMEM RMA, AMO, and memory ordering routines are performed on a communication context. The
communication context defines an independent ordering and completion environment, allowing users to manage the
overlap of communication with computation and also to manage communication operations performed by separate
threads within a multithreaded PE. For example, in single-threaded environments, contexts may be used to pipeline
communication and computation. In multithreaded environments, contexts may additionally provide thread isolation,
eliminating overheads resulting from thread interference.

Context handles are of type shmem_ctx_t and are valid for language-level assignment and equality comparison.
A handle to the desired context is passed as an argument in the C shmem_ctx_* and type-generic API routines. API
routines that do not accept a context argument operate on the default context. The default context can be used explicitly
through the SHMEM_CTX_DEFAULT handle.

Every communication context is associated with a team. This association is established at context creation. Com-
munication contexts created by shmem_ctx_create are associated with the default team, while contexts created by
shmem_team_create_ctx are associated with a team specified at context creation. The default context is associated
with the default team. A context’s associated team specifies the set of PEs over which PE-specific routines that operate
on a communication context, explicitly or implicitly, are performed. All point-to-point routines that operate on this
context will do so with respect to the team-relative PE numbering of the associated team.

9.5.1 SHMEM_CTX_CREATE

Create a communication context locally.

SYNOPSIS

C/C++:
int shmem_ctx_create(long options, shmem_ctx_t *ctx);

DESCRIPTION

Arguments
IN options The set of options requested for the given context. Multiple options

may be requested by combining them with a bitwise OR operation; oth-
erwise, 0 can be given if no options are requested.

OUT ctx A handle to the newly created context.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 41

API description

The shmem_ctx_create routine creates a new communication context and returns its handle through the ctx
argument. If the context was created successfully, a value of zero is returned; otherwise, a nonzero value
is returned. An unsuccessful context creation call is not treated as an error and the OpenSHMEM library
remains in a correct state. The creation call can be reattempted with different options or after additional
resources become available.
A newly created communication context has an initial association with the default team. All OpenSHMEM
routines that operate on this context will do so with respect to the associated PE team. That is, all point-to-
point routines operating on this context will use team-relative PE numbering.
By default, contexts are shareable and, when it is allowed by the threading model provided by the Open-
SHMEM library, they can be used concurrently by multiple threads within the PE where they were created.
The following options can be supplied during context creation to restrict this usage model and enable per-
formance optimizations. When using a given context, the application must comply with the requirements of
all options set on that context; otherwise, the behavior is undefined. No options are enabled on the default
context.

SHMEM_CTX_SERIALIZED The given context is shareable; however, it will not
be used by multiple threads concurrently. When the
SHMEM_CTX_SERIALIZED option is set, the user must ensure
that operations involving the given context are serialized by the
application.

SHMEM_CTX_PRIVATE The given context will be used only by the thread that created it.

SHMEM_CTX_NOSTORE Quiet and fence operations performed on the given context are
not required to enforce completion and ordering of memory store
operations. When ordering of store operations is needed, the ap-
plication must perform a synchronization operation on a context
without the SHMEM_CTX_NOSTORE option enabled.

Return Values
Zero on success and nonzero otherwise.

Notes
None.

9.5.2 SHMEM_TEAM_CREATE_CTX

Create a communication context from a team.

SYNOPSIS

C/C++:
int shmem_team_create_ctx(shmem_team_t team, long options, shmem_ctx_t *ctx);

DESCRIPTION

Arguments
IN team A handle to the specified PE team.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

42 9. OPENSHMEM LIBRARY API

IN options The set of options requested for the given context. Multiple options
may be requested by combining them with a bitwise OR operation; oth-
erwise, 0 can be given if no options are requested.

OUT ctx A handle to the newly created context.

API description

The shmem_team_create_ctx routine creates a new communication context and returns its handle through
the ctx argument. This context is created from the team specified by the team argument.
The shmem_team_create_ctx routine must be called by no more threads than were specified by the
num_threads member of the shmem_team_config_t configuration parameters that were specified when
the team was created.
In addition to the team, the shmem_team_create_ctx routine accepts the same arguments and provides all
the same return conditions as the shmem_ctx_create routine.

Return Values
Zero on success and nonzero otherwise.

Notes
None.

9.5.3 SHMEM_CTX_DESTROY

Destroy a locally created communication context.

SYNOPSIS

C/C++:
void shmem_ctx_destroy(shmem_ctx_t ctx);

DESCRIPTION

Arguments
IN ctx Handle to the context that will be destroyed.

API description

shmem_ctx_destroy destroys a context that was created by a call to shmem_ctx_create or
shmem_team_create_ctx. It is the user’s responsibility to ensure that the context is not used after it has
been destroyed, for example when the destroyed context is used by multiple threads. This function performs
an implicit quiet operation on the given context before it is freed.
If ctx is a handle to the default context, the behavior is undefined.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 43

Notes
It is invalid to pass SHMEM_CTX_DEFAULT to this routine.
Destroying a context makes it impossible for the user to complete communication operations that are pend-
ing on that context. This includes nonblocking communication operations, whose local buffers are only
returned to the user after the operations have been completed. An implicit quiet is performed when freeing
a context to avoid this ambiguity.
A context with the SHMEM_CTX_PRIVATE option enabled must be destroyed by the thread that created
it.

EXAMPLES

The following example demonstrates the use of contexts in a multithreaded C11 program that uses OpenMP for
threading. This example shows the shared counter load balancing method and illustrates the use of contexts for
thread isolation.
#include <stdio.h>
#include <shmem.h>

long pwrk[SHMEM_REDUCE_MIN_WRKDATA_SIZE];
long psync[SHMEM_REDUCE_SYNC_SIZE];

long task_cntr = 0; /* Next task counter */
long tasks_done = 0; /* Tasks done by this PE */
long total_done = 0; /* Total tasks done by all PEs */

int main(void) {
int tl, i;
long ntasks = 1024; /* Total tasks per PE */

for (i = 0; i < SHMEM_REDUCE_SYNC_SIZE; i++)
psync[i] = SHMEM_SYNC_VALUE;

shmem_init_thread(SHMEM_THREAD_MULTIPLE, &tl);
if (tl != SHMEM_THREAD_MULTIPLE) shmem_global_exit(1);

int me = shmem_my_pe();
int npes = shmem_n_pes();

#pragma omp parallel reduction (+:tasks_done)
{

shmem_ctx_t ctx;
int task_pe = me, pes_done = 0;
int ret = shmem_ctx_create(SHMEM_CTX_PRIVATE, &ctx);

if (ret != 0) {
printf("%d: Error creating context (%d)\n", me, ret);
shmem_global_exit(2);

}

/* Process tasks on all PEs, starting with the local PE. After

* all tasks on a PE are completed, help the next PE. */
while (pes_done < npes) {

long task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);
while (task < ntasks) {

/* Perform task (task_pe, task) */
tasks_done++;
task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);

}
pes_done++;
task_pe = (task_pe + 1) % npes;

}

shmem_ctx_destroy(ctx);
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

44 9. OPENSHMEM LIBRARY API

shmem_long_sum_to_all(&total_done, &tasks_done, 1, 0, 0, npes, pwrk, psync);

int result = (total_done != ntasks * npes);
shmem_finalize();
return result;

}

The following example demonstrates the use of contexts in a single-threaded C11 program that performs a
summation reduction where the data contained in the in_buf arrays on all PEs is reduced into the out_buf arrays
on all PEs. The buffers are divided into segments and processing of the segments is pipelined. Contexts are used
to overlap an all-to-all exchange of data for segment p with the local reduction of segment p-1.

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

#define LEN 8192 /* Full buffer length */
#define PLEN 512 /* Length of each pipeline stage */

int in_buf[LEN], out_buf[LEN];

int main(void) {
int i, j, *pbuf[2];
shmem_ctx_t ctx[2];

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

pbuf[0] = shmem_malloc(PLEN * npes * sizeof(int));
pbuf[1] = shmem_malloc(PLEN * npes * sizeof(int));

int ret_0 = shmem_ctx_create(0, &ctx[0]);
int ret_1 = shmem_ctx_create(0, &ctx[1]);
if (ret_0 || ret_1) shmem_global_exit(1);

for (i = 0; i < LEN; i++) {
in_buf[i] = me; out_buf[i] = 0;

}

int p_idx = 0, p = 0; /* Index of ctx and pbuf (p_idx) for current pipeline stage (p) */
for (i = 1; i <= npes; i++)

shmem_put_nbi(ctx[p_idx], &pbuf[p_idx][PLEN*me], &in_buf[PLEN*p],
PLEN, (me+i) % npes);

/* Issue communication for pipeline stage p, then accumulate results for stage p-1 */
for (p = 1; p < LEN/PLEN; p++) {

p_idx ^= 1;
for (i = 1; i <= npes; i++)

shmem_put_nbi(ctx[p_idx], &pbuf[p_idx][PLEN*me], &in_buf[PLEN*p],
PLEN, (me+i) % npes);

shmem_ctx_quiet(ctx[p_idx^1]);
shmem_sync_all();
for (i = 0; i < npes; i++)

for (j = 0; j < PLEN; j++)
out_buf[PLEN*(p-1)+j] += pbuf[p_idx^1][PLEN*i+j];

}

shmem_ctx_quiet(ctx[p_idx]);
shmem_sync_all();
for (i = 0; i < npes; i++)

for (j = 0; j < PLEN; j++)
out_buf[PLEN*(p-1)+j] += pbuf[p_idx][PLEN*i+j];

shmem_finalize();
return 0;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 45

}

9.5.4 SHMEM_CTX_GET_TEAM

Retrieve the team associated with the communication context.

SYNOPSIS

C/C++:
int shmem_ctx_get_team(shmem_ctx_t ctx, shmem_team_t *team);

DESCRIPTION

Arguments
IN ctx A handle to a communication context.
OUT team A pointer to a handle to the associated PE team.

API description

The shmem_ctx_get_team routine returns a handle to the team associated with the specified communication
context ctx. The team handle is returned through the pointer argument team.
If ctx is the default context or one created by a call to shmem_ctx_create, the returned team is the default
team.
If ctx is an invalid context, the behavior is undefined.
If team is a null pointer, a value of -1 is returned.

Return Values
Zero on success; otherwise, nonzero.

Notes
None.

9.6 Remote Memory Access Routines

The Remote Memory Access (RMA) routines described in this section are one-sided communication mechanisms of the
OpenSHMEM API. While using these mechanisms, the user is required to provide parameters only on the calling side.
A characteristic of one-sided communication is that it decouples communication from the synchronization. One-sided
communication mechanisms transfer the data but do not synchronize the sender of the data with the receiver of the
data.

OpenSHMEM RMA routines are all performed on the symmetric objects. The initiator PE of the call is designated
as source, and the PE in which memory is accessed is designated as dest. In the case of the remote update routine, Put,
the origin is the source PE and the destination PE is the dest PE. In the case of the remote read routine, Get, the origin
is the dest PE and the destination is the source PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

46 9. OPENSHMEM LIBRARY API

Where appropriate compiler support is available, OpenSHMEM provides type-generic one-sided communication
interfaces via C11 generic selection (C11 §6.5.1.15) for block, scalar, and block-strided put and get communication.
Such type-generic routines are supported for the “standard RMA types” listed in Table 3.

The standard RMA types include the exact-width integer types defined in stdint.h by C996 §7.18.1.1 and C11 §7.20.1.1.
When the C translation environment does not provide exact-width integer types with stdint.h, an OpenSHMEM imple-
mementation is not required to provide support for these types.

TYPE TYPENAME
float float
double double
long double longdouble
char char
signed char schar
short short
int int
long long
long long longlong
unsigned char uchar
unsigned short ushort
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int8_t int8
int16_t int16
int32_t int32
int64_t int64
uint8_t uint8
uint16_t uint16
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 3: Standard RMA Types and Names

9.6.1 SHMEM_PUT

The put routines provide a method for copying data from a contiguous local data object to a data object on a specified
PE.

SYNOPSIS

C11:
void shmem_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_put(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_put(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

5Formally, the C11 specification is ISO/IEC 9899:2011(E).
6Formally, the C99 specification is ISO/IEC 9899:1999(E).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 47

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.
void shmem_put<SIZE>(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_put<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_putmem(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_putmem(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

deprecation start
FORTRAN:
CALL SHMEM_CHARACTER_PUT(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_PUT(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_PUT(dest, source, nelems, pe)

CALL SHMEM_INTEGER_PUT(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_PUT(dest, source, nelems, pe)

CALL SHMEM_PUT4(dest, source, nelems, pe)

CALL SHMEM_PUT8(dest, source, nelems, pe)

CALL SHMEM_PUT32(dest, source, nelems, pe)

CALL SHMEM_PUT64(dest, source, nelems, pe)

CALL SHMEM_PUT128(dest, source, nelems, pe)

CALL SHMEM_PUTMEM(dest, source, nelems, pe)

CALL SHMEM_REAL_PUT(dest, source, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest Data object to be updated on the remote PE. This data object must be

remotely accessible.
IN source Data object containing the data to be copied.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The routines return after the data has been copied out of the source array on the local PE. The delivery of
data words into the data object on the destination PE may occur in any order. Furthermore, two successive
put routines may deliver data out of order unless a call to shmem_fence is introduced between the two
calls.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

48 9. OPENSHMEM LIBRARY API

shmem_putmem Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_put4, shmem_put32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_put8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_put64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_put128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_PUT Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_PUT Elements of type complex of default size.
SHMEM_DOUBLE_PUT Elements of type double precision.
SHMEM_INTEGER_PUT Elements of type integer.
SHMEM_LOGICAL_PUT Elements of type logical.
SHMEM_REAL_PUT Elements of type real.

Return Values
None.

Notes
When using Fortran, data types must be of default size. For example, a real variable must be declared as
REAL, REAL*4, or REAL(KIND=KIND(1.0)). As of OpenSHMEM 1.2, the Fortran API routine SHMEM_PUT
has been deprecated, and either SHMEM_PUT8 or SHMEM_PUT64 should be used in its place.

EXAMPLES

The following shmem_put example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
static long dest[10];
shmem_init();
int me = shmem_my_pe();
if (me == 0) /* put 10 words into dest on PE 1 */

shmem_put(dest, source, 10, 1);
shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", me, dest[0]);
shmem_finalize();
return 0;

}

9.6.2 SHMEM_P

Copies one data item to a remote PE.

SYNOPSIS

C11:
void shmem_p(TYPE *dest, TYPE value, int pe);

void shmem_p(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 49

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_p(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_p(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest The remotely accessible array element or scalar data object which will

receive the data on the remote PE.
IN value The value to be transferred to dest on the remote PE.
IN pe The number of the remote PE.

API description

These routines provide a very low latency put capability for single elements of most basic types.
As with shmem_put, these routines start the remote transfer and may return before the data is delivered to
the remote PE. Use shmem_quiet to force completion of all remote Put transfers.

Return Values
None.

Notes
None.

EXAMPLES

The following example uses shmem_p in a C11 program.

#include <stdio.h>
#include <math.h>
#include <shmem.h>

int main(void)
{

const double e = 2.71828182;
const double epsilon = 0.00000001;
static double f = 3.1415927;
shmem_init();
int me = shmem_my_pe();
if (me == 0)

shmem_p(&f, e, 1);
shmem_barrier_all();
if (me == 1)

printf("%s\n", (fabs(f - e) < epsilon) ? "OK" : "FAIL");
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

50 9. OPENSHMEM LIBRARY API

9.6.3 SHMEM_IPUT

Copies strided data to a specified PE.

SYNOPSIS

C11:
void shmem_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);

void shmem_iput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_iput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t

dst, ptrdiff_t sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.
void shmem_iput<SIZE>(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_ctx_iput<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

deprecation start
FORTRAN:
INTEGER dst, sst, nelems, pe

CALL SHMEM_COMPLEX_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_DOUBLE_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_INTEGER_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT4(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT8(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT32(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT64(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT128(dest, source, dst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_REAL_IPUT(dest, source, dst, sst, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest Array to be updated on the remote PE. This data object must be re-

motely accessible.
IN source Array containing the data to be copied.
IN dst The stride between consecutive elements of the dest array. The stride

is scaled by the element size of the dest array. A value of 1 indicates
contiguous data. dst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 51

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

IN nelems Number of elements in the dest and source arrays. nelems must be of
type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The iput routines provide a method for copying strided data elements (specified by sst) of an array from
a source array on the local PE to locations specified by stride dst on a dest array on specified remote PE.
Both strides, dst and sst, must be greater than or equal to 1. The routines return when the data has been
copied out of the source array on the local PE but not necessarily before the data has been delivered to the
remote data object.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_iput4, shmem_iput32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_iput8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_iput64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iput128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_COMPLEX_IPUT Elements of type complex of default size.
SHMEM_DOUBLE_IPUT Elements of type double precision.
SHMEM_INTEGER_IPUT Elements of type integer.
SHMEM_LOGICAL_IPUT Elements of type logical.
SHMEM_REAL_IPUT Elements of type real.

Return Values
None.

Notes
When using Fortran, data types must be of default size. For example, a real variable must be declared as
REAL, REAL*4 or REAL(KIND=KIND(1.0)). See Section 3 for a definition of the term remotely accessi-
ble.

EXAMPLES

Consider the following shmem_iput example for C11 programs.

#include <stdio.h>
#include <shmem.h>

int main(void)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

52 9. OPENSHMEM LIBRARY API

{
short source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
static short dest[10];
shmem_init();
int me = shmem_my_pe();
if (me == 0) /* put 5 elements into dest on PE 1 */

shmem_iput(dest, source, 1, 2, 5, 1);
shmem_barrier_all(); /* sync sender and receiver */
if (me == 1) {

printf("dest on PE %d is %hd %hd %hd %hd %hd\n", me,
dest[0], dest[1], dest[2], dest[3], dest[4]);

}
shmem_finalize();
return 0;

}

9.6.4 SHMEM_GET

Copies data from a specified PE.

SYNOPSIS

C11:
void shmem_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_get(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_get(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.
void shmem_get<SIZE>(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_get<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_getmem(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_getmem(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

deprecation start
FORTRAN:
INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_GET(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_GET(dest, source, nelems, pe)

CALL SHMEM_GET4(dest, source, nelems, pe)

CALL SHMEM_GET8(dest, source, nelems, pe)

CALL SHMEM_GET32(dest, source, nelems, pe)

CALL SHMEM_GET64(dest, source, nelems, pe)

CALL SHMEM_GET128(dest, source, nelems, pe)

CALL SHMEM_GETMEM(dest, source, nelems, pe)

CALL SHMEM_INTEGER_GET(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_GET(dest, source, nelems, pe)

CALL SHMEM_REAL_GET(dest, source, nelems, pe)

deprecation end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 53

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest Local data object to be updated.
IN source Data object on the PE identified by pe that contains the data to be

copied. This data object must be remotely accessible.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The get routines provide a method for copying a contiguous symmetric data object from a different PE to
a contiguous data object on the local PE. The routines return after the data has been delivered to the dest
array on the local PE.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_getmem Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_get4, shmem_get32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_get8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_get64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_get128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_GET Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_GET Elements of type complex of default size.
SHMEM_DOUBLE_GET Fortran: Elements of type double precision.
SHMEM_INTEGER_GET Elements of type integer.
SHMEM_LOGICAL_GET Elements of type logical.
SHMEM_REAL_GET Elements of type real.

Return Values
None.

Notes
See Section 3 for a definition of the term remotely accessible. When using Fortran, data types must be of
default size. For example, a real variable must be declared as REAL, REAL*4, or REAL(KIND=KIND(1.0)).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

54 9. OPENSHMEM LIBRARY API

EXAMPLES

Consider this example for Fortran.

PROGRAM REDUCTION
INCLUDE "shmem.fh"

REAL VALUES, SUM
COMMON /C/ VALUES
REAL WORK
CALL SHMEM_INIT() ! ALLOW ANY NUMBER OF PES
VALUES = SHMEM_MY_PE() ! INITIALIZE IT TO SOMETHING
CALL SHMEM_BARRIER_ALL
SUM = 0.0
DO I = 0, SHMEM_N_PES()-1

CALL SHMEM_REAL_GET(WORK, VALUES, (SHMEM_N_PES()()-1), I)
SUM = SUM + WORK

ENDDO
PRINT*,’PE ’,SHMEM_MY_PE(),’ COMPUTED SUM=’,SUM
CALL SHMEM_BARRIER_ALL
END

9.6.5 SHMEM_G

Copies one data item from a remote PE

SYNOPSIS

C11:
TYPE shmem_g(const TYPE *source, int pe);

TYPE shmem_g(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
TYPE shmem_<TYPENAME>_g(const TYPE *source, int pe);

TYPE shmem_ctx_<TYPENAME>_g(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
IN source The remotely accessible array element or scalar data object.
IN pe The number of the remote PE on which source resides.

API description

These routines provide a very low latency get capability for single elements of most basic types.

Return Values
Returns a single element of type specified in the synopsis.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 55

Notes
None.

EXAMPLES

The following shmem_g example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

long y = -1;
static long x = 10101;
shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
if (me == 0)

y = shmem_g(&x, npes-1);
printf("%d: y = %ld\n", me, y);
shmem_finalize();
return 0;

}

9.6.6 SHMEM_IGET

Copies strided data from a specified PE.

SYNOPSIS

C11:
void shmem_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);

void shmem_iget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_iget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t

dst, ptrdiff_t sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.
void shmem_iget<SIZE>(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_ctx_iget<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

deprecation start
FORTRAN:
INTEGER dst, sst, nelems, pe

CALL SHMEM_COMPLEX_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_DOUBLE_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET4(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET8(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET32(dest, source, dst, sst, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

56 9. OPENSHMEM LIBRARY API

CALL SHMEM_IGET64(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET128(dest, source, dst, sst, nelems, pe)

CALL SHMEM_INTEGER_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_REAL_IGET(dest, source, dst, sst, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest Array to be updated on the local PE.
IN source Array containing the data to be copied on the remote PE.
IN dst The stride between consecutive elements of the dest array. The stride

is scaled by the element size of the dest array. A value of 1 indicates
contiguous data. dst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

IN nelems Number of elements in the dest and source arrays. nelems must be of
type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The iget routines provide a method for copying strided data elements from a symmetric array from a
specified remote PE to strided locations on a local array. The routines return when the data has been copied
into the local dest array.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_iget4, shmem_iget32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_iget8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_iget64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iget128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_COMPLEX_IGET Elements of type complex of default size.
SHMEM_DOUBLE_IGET Fortran: Elements of type double precision.
SHMEM_INTEGER_IGET Elements of type integer.
SHMEM_LOGICAL_IGET Elements of type logical.
SHMEM_REAL_IGET Elements of type real.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 57

Return Values
None.

Notes
When using Fortran, data types must be of default size. For example, a real variable must be declared as
REAL, REAL*4, or REAL(KIND=KIND(1.0)).

EXAMPLES

The following example uses shmem_logical_iget in a Fortran program.

PROGRAM STRIDELOGICAL
INCLUDE "shmem.fh"

LOGICAL SOURCE(10), DEST(5)
SAVE SOURCE ! SAVE MAKES IT REMOTELY ACCESSIBLE
DATA SOURCE /.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F./
DATA DEST / 5*.F. /
CALL SHMEM_INIT()
IF (SHMEM_MY_PE() .EQ. 0) THEN

CALL SHMEM_LOGICAL_IGET(DEST, SOURCE, 1, 2, 5, 1)
PRINT*,’DEST AFTER SHMEM_LOGICAL_IGET:’,DEST

ENDIF
CALL SHMEM_BARRIER_ALL

9.7 Non-blocking Remote Memory Access Routines

9.7.1 SHMEM_PUT_NBI

The nonblocking put routines provide a method for copying data from a contiguous local data object to a data object
on a specified PE.

SYNOPSIS

C11:
void shmem_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_put_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_put_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.
void shmem_put<SIZE>_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_put<SIZE>_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_putmem_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_putmem_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

deprecation start
FORTRAN:
CALL SHMEM_CHARACTER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_PUT_NBI(dest, source, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

58 9. OPENSHMEM LIBRARY API

CALL SHMEM_DOUBLE_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_INTEGER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT4_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT8_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT32_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT64_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT128_NBI(dest, source, nelems, pe)

CALL SHMEM_PUTMEM_NBI(dest, source, nelems, pe)

CALL SHMEM_REAL_PUT_NBI(dest, source, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest Data object to be updated on the remote PE. This data object must be

remotely accessible.
IN source Data object containing the data to be copied.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The routines return after posting the operation. The operation is considered complete after a subsequent
call to shmem_quiet. At the completion of shmem_quiet, the data has been copied into the dest array on
the destination PE. The delivery of data words into the data object on the destination PE may occur in any
order. Furthermore, two successive put routines may deliver data out of order unless a call to shmem_fence
is introduced between the two calls.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_putmem_nbi Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_put4_nbi,
shmem_put32_nbi

Any noncharacter type that has a storage size equal to 32 bits.

shmem_put8_nbi C: Any noncharacter type that has a storage size equal to 8 bits.
Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_put64_nbi Any noncharacter type that has a storage size equal to 64 bits.
shmem_put128_nbi Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_PUT_NBI Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 59

SHMEM_COMPLEX_PUT_NBI Elements of type complex of default size.
SHMEM_DOUBLE_PUT_NBI Elements of type double precision.
SHMEM_INTEGER_PUT_NBI Elements of type integer.
SHMEM_LOGICAL_PUT_NBI Elements of type logical.
SHMEM_REAL_PUT_NBI Elements of type real.

Return Values
None.

Notes
None.

9.7.2 SHMEM_GET_NBI

The nonblocking get routines provide a method for copying data from a contiguous remote data object on the specified
PE to the local data object.

SYNOPSIS

C11:
void shmem_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_get_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_get_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 3.
void shmem_get<SIZE>_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_get<SIZE>_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t

nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_getmem_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_getmem_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

deprecation start
FORTRAN:
INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_GET4_NBI(dest, source, nelems, pe)

CALL SHMEM_GET8_NBI(dest, source, nelems, pe)

CALL SHMEM_GET32_NBI(dest, source, nelems, pe)

CALL SHMEM_GET64_NBI(dest, source, nelems, pe)

CALL SHMEM_GET128_NBI(dest, source, nelems, pe)

CALL SHMEM_GETMEM_NBI(dest, source, nelems, pe)

CALL SHMEM_INTEGER_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_REAL_GET_NBI(dest, source, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

60 9. OPENSHMEM LIBRARY API

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest Local data object to be updated.
IN source Data object on the PE identified by pe that contains the data to be

copied. This data object must be remotely accessible.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The get routines provide a method for copying a contiguous symmetric data object from a different PE to
a contiguous data object on the local PE. The routines return after posting the operation. The operation is
considered complete after a subsequent call to shmem_quiet. At the completion of shmem_quiet, the data
has been delivered to the dest array on the local PE.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_getmem_nbi Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_get4_nbi,
shmem_get32_nbi

Any noncharacter type that has a storage size equal to 32 bits.

shmem_get8_nbi C: Any noncharacter type that has a storage size equal to 8 bits.
Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_get64_nbi Any noncharacter type that has a storage size equal to 64 bits.
shmem_get128_nbi Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_GET_NBI Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_GET_NBI Elements of type complex of default size.
SHMEM_DOUBLE_GET_NBI Fortran: Elements of type double precision.
SHMEM_INTEGER_GET_NBI Elements of type integer.
SHMEM_LOGICAL_GET_NBI Elements of type logical.
SHMEM_REAL_GET_NBI Elements of type real.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 61

Notes
See Section 3 for a definition of the term remotely accessible. When using Fortran, data types must be of
default size. For example, a real variable must be declared as REAL, REAL*4, or REAL(KIND=KIND(1.0)).

9.8 Atomic Memory Operations

An Atomic Memory Operation (AMO) is a one-sided communication mechanism that combines memory read, update,
or write operations with atomicity guarantees described in Section 3.1. Similar to the RMA routines, described in
Section 9.6, the AMOs are performed only on symmetric objects. OpenSHMEM defines two types of AMO routines:

• The fetching routines return the original value of, and optionally update, the remote data object in a single atomic
operation. The routines return after the data has been fetched from the target PE and delivered to the calling PE.
The data type of the returned value is the same as the type of the remote data object.

The fetching routines include: shmem_atomic_{fetch, compare_swap, swap} and shmem_atomic_fetch_{inc,
add, and, or, xor}.

• The non-fetching routines update the remote data object in a single atomic operation. A call to a non-fetching
atomic routine issues the atomic operation and may return before the operation executes on the target PE. The
shmem_quiet, shmem_barrier, or shmem_barrier_all routines can be used to force completion for these non-
fetching atomic routines.

The non-fetching routines include: shmem_atomic_{set, inc, add, and, or, xor}.

Where appropriate compiler support is available, OpenSHMEM provides type-generic AMO interfaces via C11
generic selection. The type-generic support for the AMO routines is as follows:

• shmem_atomic_{compare_swap, fetch_inc, inc, fetch_add, add} support the “standard AMO types” listed in
Table 4,

• shmem_atomic_{fetch, set, swap} support the “extended AMO types” listed in Table 5, and

• shmem_atomic_{fetch_and, and, fetch_or, or, fetch_xor, xor} support the “bitwise AMO types” listed in Table 6.

The standard, extended, and bitwise AMO types include some of the exact-width integer types defined in stdint.h
by C99 §7.18.1.1 and C11 §7.20.1.1. When the C translation environment does not provide exact-width integer types
with stdint.h, an OpenSHMEM implemementation is not required to provide support for these types.

9.8.1 SHMEM_ATOMIC_FETCH

Atomically fetches the value of a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch(const TYPE *source, int pe);

TYPE shmem_atomic_fetch(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the extended AMO types specified by Table 5.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch(const TYPE *source, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

62 9. OPENSHMEM LIBRARY API

TYPE TYPENAME
int int
long long
long long longlong
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 4: Standard AMO Types and Names

TYPE TYPENAME
float float
double double
int int
long long
long long longlong
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 5: Extended AMO Types and Names

TYPE shmem_fetch(const TYPE *source, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_fetch(const TYPE *source, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FETCH, ires_i4

ires_i4 = SHMEM_INT4_FETCH(source, pe)

INTEGER*8 SHMEM_INT8_FETCH, ires_i8

ires_i8 = SHMEM_INT8_FETCH(source, pe)

REAL*4 SHMEM_REAL4_FETCH, res_r4

res_r4 = SHMEM_REAL4_FETCH(source, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 63

TYPE TYPENAME
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64

Table 6: Bitwise AMO Types and Names

REAL*8 SHMEM_REAL8_FETCH, res_r8

res_r8 = SHMEM_REAL8_FETCH(source, pe)

deprecation end

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

IN source The remotely accessible data object to be fetched from the remote PE.
IN pe An integer that indicates the PE number from which source is to be

fetched.

API description

shmem_atomic_fetch performs an atomic fetch operation. It returns the contents of the source as an atomic
operation.

Return Values
The contents at the source address on the remote PE. The data type of the return value is the same as the
type of the remote data object.

Notes
None.

9.8.2 SHMEM_ATOMIC_SET

Atomically sets the value of a remote data object.

SYNOPSIS

C11:
void shmem_atomic_set(TYPE *dest, TYPE value, int pe);

void shmem_atomic_set(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

64 9. OPENSHMEM LIBRARY API

where TYPE is one of the extended AMO types specified by Table 5.

C/C++:
void shmem_<TYPENAME>_atomic_set(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_set(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:
void shmem_set(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
void shmem_<TYPENAME>_set(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_SET, value_i4

CALL SHMEM_INT4_SET(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_SET, value_i8

CALL SHMEM_INT8_SET(dest, value_i8, pe)

REAL*4 SHMEM_REAL4_SET, value_r4

CALL SHMEM_REAL4_SET(dest, value_r4, pe)

REAL*8 SHMEM_REAL8_SET, value_r8

CALL SHMEM_REAL8_SET(dest, value_r8, pe)

deprecation end

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest The remotely accessible data object to be set on the remote PE.
IN value The value to be atomically written to the remote PE.
IN pe An integer that indicates the PE number on which dest is to be updated.

API description

shmem_atomic_set performs an atomic set operation. It writes the value into dest on pe as an atomic
operation.

Return Values
None.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 65

9.8.3 SHMEM_ATOMIC_COMPARE_SWAP

Performs an atomic conditional swap on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_compare_swap(TYPE *dest, TYPE cond, TYPE value, int pe);

TYPE shmem_atomic_compare_swap(shmem_ctx_t ctx, TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 4.

C/C++:
TYPE shmem_<TYPENAME>_atomic_compare_swap(TYPE *dest, TYPE cond, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_compare_swap(shmem_ctx_t ctx, TYPE *dest, TYPE cond, TYPE

value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 4.

deprecation start

C11:
TYPE shmem_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 4.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_CSWAP, cond_i4, value_i4, ires_i4

ires_i4 = SHMEM_INT4_CSWAP(dest, cond_i4, value_i4, pe)

INTEGER*8 SHMEM_INT8_CSWAP, cond_i8, value_i8, ires_i8

ires_i8 = SHMEM_INT8_CSWAP(dest, cond_i8, value_i8, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest The remotely accessible integer data object to be updated on the remote

PE.
IN cond cond is compared to the remote dest value. If cond and the remote dest

are equal, then value is swapped into the remote dest; otherwise, the
remote dest is unchanged. In either case, the old value of the remote
dest is returned as the routine return value. cond must be of the same
data type as dest.

IN value The value to be atomically written to the remote PE. value must be the
same data type as dest.

IN pe An integer that indicates the PE number upon which dest is to be up-
dated. When using Fortran, it must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

66 9. OPENSHMEM LIBRARY API

API description

The conditional swap routines conditionally update a dest data object on the specified PE and return the
prior contents of the data object in one atomic operation.

When using Fortran, dest, cond, and value must be of the following type:

Routine Data type of dest, cond, and value

SHMEM_INT4_CSWAP 4-byte integer.
SHMEM_INT8_CSWAP 8-byte integer.

Return Values
The contents that had been in the dest data object on the remote PE prior to the conditional swap. Data type
is the same as the dest data type.

Notes
None.

EXAMPLES

The following call ensures that the first PE to execute the conditional swap will successfully write its PE number
to race_winner on PE 0.

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int race_winner = -1;
shmem_init();
int me = shmem_my_pe();
int oldval = shmem_atomic_compare_swap(&race_winner, -1, me, 0);
if (oldval == -1) printf("PE %d was first\n", me);
shmem_finalize();
return 0;

}

9.8.4 SHMEM_ATOMIC_SWAP

Performs an atomic swap to a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_swap(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_swap(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 5.

C/C++:
TYPE shmem_<TYPENAME>_atomic_swap(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_swap(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 67

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:
TYPE shmem_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER SHMEM_SWAP, value, pe

ires = SHMEM_SWAP(dest, value, pe)

INTEGER*4 SHMEM_INT4_SWAP, value_i4, ires_i4

ires_i4 = SHMEM_INT4_SWAP(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_SWAP, value_i8, ires_i8

ires_i8 = SHMEM_INT8_SWAP(dest, value_i8, pe)

REAL*4 SHMEM_REAL4_SWAP, value_r4, res_r4

res_r4 = SHMEM_REAL4_SWAP(dest, value_r4, pe)

REAL*8 SHMEM_REAL8_SWAP, value_r8, res_r8

res_r8 = SHMEM_REAL8_SWAP(dest, value_r8, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest The remotely accessible integer data object to be updated on the remote

PE. When using C/C++, the type of dest should match that implied in
the SYNOPSIS section.

IN value The value to be atomically written to the remote PE. value is the same
type as dest.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

shmem_atomic_swap performs an atomic swap operation. It writes value into dest on PE and returns the
previous contents of dest as an atomic operation.

When using Fortran, dest and value must be of the following type:

Routine Data type of dest and value

SHMEM_SWAP Integer of default kind
SHMEM_INT4_SWAP 4-byte integer

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

68 9. OPENSHMEM LIBRARY API

SHMEM_INT8_SWAP 8-byte integer
SHMEM_REAL4_SWAP 4-byte real
SHMEM_REAL8_SWAP 8-byte real

Return Values
The content that had been at the dest address on the remote PE prior to the swap is returned.

Notes
None.

EXAMPLES

The example below swaps values between odd numbered PEs and their right (modulo) neighbor and outputs the
result of swap.
#include <stdio.h>
#include <shmem.h>

int main(void)
{

static long dest;
shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
dest = me;
shmem_barrier_all();
long new_val = me;
if (me & 1) {

long swapped_val = shmem_atomic_swap(&dest, new_val, (me + 1) % npes);
printf("%d: dest = %ld, swapped = %ld\n", me, dest, swapped_val);

}
shmem_finalize();
return 0;

}

9.8.5 SHMEM_ATOMIC_FETCH_INC

Performs an atomic fetch-and-increment operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_inc(TYPE *dest, int pe);

TYPE shmem_atomic_fetch_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 4.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_inc(TYPE *dest, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 4.

deprecation start

C11:
TYPE shmem_finc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long}.

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 69

TYPE shmem_<TYPENAME>_finc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 4.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FINC, ires_i4

ires_i4 = SHMEM_INT4_FINC(dest, pe)

INTEGER*8 SHMEM_INT8_FINC, ires_i8

ires_i8 = SHMEM_INT8_FINC(dest, pe)

deprecation end

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

These routines perform a fetch-and-increment operation. The dest on PE pe is increased by one and the
routine returns the previous contents of dest as an atomic operation.

When using Fortran, dest must be of the following type:

Routine Data type of dest

SHMEM_INT4_FINC 4-byte integer
SHMEM_INT8_FINC 8-byte integer

Return Values
The contents that had been at the dest address on the remote PE prior to the increment. The data type of
the return value is the same as the dest.

Notes
None.

EXAMPLES

The following shmem_atomic_fetch_inc example is for C11 programs:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

70 9. OPENSHMEM LIBRARY API

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int old = -1;
static int dst = 22;
shmem_init();
int me = shmem_my_pe();
if (me == 0)

old = shmem_atomic_fetch_inc(&dst, 1);
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
shmem_finalize();
return 0;

}

9.8.6 SHMEM_ATOMIC_INC

Performs an atomic increment operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_inc(TYPE *dest, int pe);

void shmem_atomic_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_atomic_inc(TYPE *dest, int pe);

void shmem_ctx_<TYPENAME>_atomic_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 4.

deprecation start

C11:
void shmem_inc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
void shmem_<TYPENAME>_inc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 4.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

CALL SHMEM_INT4_INC(dest, pe)

CALL SHMEM_INT8_INC(dest, pe)

deprecation end

DESCRIPTION

Arguments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 71

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

These routines perform an atomic increment operation on the dest data object on PE.

When using Fortran, dest must be of the following type:

Routine Data type of dest

SHMEM_INT4_INC 4-byte integer
SHMEM_INT8_INC 8-byte integer

Return Values
None.

Notes
None.

EXAMPLES

The following shmem_atomic_inc example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int dst = 74;
shmem_init();
int me = shmem_my_pe();
if (me == 0)

shmem_atomic_inc(&dst, 1);
shmem_barrier_all();
printf("%d: dst = %d\n", me, dst);
shmem_finalize();
return 0;

}

9.8.7 SHMEM_ATOMIC_FETCH_ADD

Performs an atomic fetch-and-add operation on a remote data object.

SYNOPSIS

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

72 9. OPENSHMEM LIBRARY API

TYPE shmem_atomic_fetch_add(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 4.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_add(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 4.

deprecation start

C11:
TYPE shmem_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 4.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FADD, ires_i4, value_i4

ires_i4 = SHMEM_INT4_FADD(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_FADD, ires_i8, value_i8

ires_i8 = SHMEM_INT8_FADD(dest, value_i8, pe)

deprecation end

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN value The value to be atomically added to dest. The type of value should
match that implied in the SYNOPSIS section.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

shmem_atomic_fetch_add routines perform an atomic fetch-and-add operation. An atomic fetch-and-add
operation fetches the old dest and adds value to dest without the possibility of another atomic operation on
the dest between the time of the fetch and the update. These routines add value to dest on pe and return the
previous contents of dest as an atomic operation.

When using Fortran, dest and value must be of the following type:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 73

Routine Data type of dest and value

SHMEM_INT4_FADD 4-byte integer
SHMEM_INT8_FADD 8-byte integer

Return Values
The contents that had been at the dest address on the remote PE prior to the atomic addition operation. The
data type of the return value is the same as the dest.

Notes
None.

EXAMPLES

The following shmem_atomic_fetch_add example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int old = -1;
static int dst = 22;
shmem_init();
int me = shmem_my_pe();
if (me == 1)

old = shmem_atomic_fetch_add(&dst, 44, 0);
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
shmem_finalize();
return 0;

}

9.8.8 SHMEM_ATOMIC_ADD

Performs an atomic add operation on a remote symmetric data object.

SYNOPSIS

C11:
void shmem_atomic_add(TYPE *dest, TYPE value, int pe);

void shmem_atomic_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_atomic_add(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 4.

deprecation start

C11:
void shmem_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

74 9. OPENSHMEM LIBRARY API

void shmem_<TYPENAME>_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 4.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 value_i4

CALL SHMEM_INT4_ADD(dest, value_i4, pe)

INTEGER*8 value_i8

CALL SHMEM_INT8_ADD(dest, value_i8, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.
OUT dest The remotely accessible integer data object to be updated on the remote

PE. When using C/C++, the type of dest should match that implied in
the SYNOPSIS section.

IN value The value to be atomically added to dest. When using C/C++, the type
of value should match that implied in the SYNOPSIS section. When
using Fortran, it must be of type integer with an element size of dest.

IN pe An integer that indicates the PE number upon which dest is to be up-
dated. When using Fortran, it must be a default integer value.

API description

The shmem_atomic_add routine performs an atomic add operation. It adds value to dest on PE pe and
atomically updates the dest without returning the value.

When using Fortran, dest and value must be of the following type:

Routine Data type of dest and value

SHMEM_INT4_ADD 4-byte integer
SHMEM_INT8_ADD 8-byte integer

Return Values
None.

Notes
None.

EXAMPLES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 75

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int dst = 22;
shmem_init();
int me = shmem_my_pe();
if (me == 1)

shmem_atomic_add(&dst, 44, 0);
shmem_barrier_all();
printf("%d: dst = %d\n", me, dst);
shmem_finalize();
return 0;

}

9.8.9 SHMEM_ATOMIC_FETCH_AND

Atomically perform a fetching bitwise AND operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_and(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 6.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_and(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise AND operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_fetch_and atomically performs a fetching bitwise AND on the remotely accessible data
object pointed to by dest at PE pe with the operand value.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

76 9. OPENSHMEM LIBRARY API

9.8.10 SHMEM_ATOMIC_AND

Atomically perform a non-fetching bitwise AND operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_and(TYPE *dest, TYPE value, int pe);

void shmem_atomic_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 6.

C/C++:
void shmem_<TYPENAME>_atomic_and(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise AND operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_and atomically performs a non-fetching bitwise AND on the remotely accessible data
object pointed to by dest at PE pe with the operand value.

Return Values
None.

Notes
None.

9.8.11 SHMEM_ATOMIC_FETCH_OR

Atomically perform a fetching bitwise OR operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_or(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 6.

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 77

TYPE shmem_<TYPENAME>_atomic_fetch_or(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise OR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_fetch_or atomically performs a fetching bitwise OR on the remotely accessible data object
pointed to by dest at PE pe with the operand value.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

Notes
None.

9.8.12 SHMEM_ATOMIC_OR

Atomically perform a non-fetching bitwise OR operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_or(TYPE *dest, TYPE value, int pe);

void shmem_atomic_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 6.

C/C++:
void shmem_<TYPENAME>_atomic_or(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest A pointer to the remotely accessible data object to be updated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

78 9. OPENSHMEM LIBRARY API

IN value The operand to the bitwise OR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_or atomically performs a non-fetching bitwise OR on the remotely accessible data object
pointed to by dest at PE pe with the operand value.

Return Values
None.

Notes
None.

9.8.13 SHMEM_ATOMIC_FETCH_XOR

Atomically perform a fetching bitwise exclusive OR (XOR) operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_xor(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 6.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_xor(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise XOR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_fetch_xor atomically performs a fetching bitwise XOR on the remotely accessible data
object pointed to by dest at PE pe with the operand value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 79

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

Notes
None.

9.8.14 SHMEM_ATOMIC_XOR

Atomically perform a non-fetching bitwise exclusive OR (XOR) operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_xor(TYPE *dest, TYPE value, int pe);

void shmem_atomic_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 6.

C/C++:
void shmem_<TYPENAME>_atomic_xor(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx The context on which to perform the operation. When this argument is
not provided, the operation is performed on SHMEM_CTX_DEFAULT.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise XOR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_xor atomically performs a non-fetching bitwise XOR on the remotely accessible data ob-
ject pointed to by dest at PE pe with the operand value.

Return Values
None.

Notes
None.

9.9 Collective Routines

Collective routines are defined as communication or synchronization operations on a group of PEs called an active set.
The collective routines require all PEs in the active set to simultaneously call the routine. A PE that is not in the active

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

80 9. OPENSHMEM LIBRARY API

set calling the collective routine results in undefined behavior. All collective routines have an active set as an input
parameter except shmem_barrier_all and shmem_sync_all. Both shmem_barrier_all and shmem_sync_all must be
called by all PEs of the OpenSHMEM program.

The active set is defined by the arguments PE_start, logPE_stride, and PE_size. PE_start specifies the starting
PE number and is the lowest numbered PE in the active set. The stride between successive PEs in the active set is
2logPE_stride and logPE_stride must be greater than or equal to zero. PE_size specifies the number of PEs in the active
set and must be greater than zero. The active set must satisfy the requirement that its last member corresponds to a
valid PE number, that is 0 ≤ PE_start +(PE_size− 1) ∗ 2logPE_stride < npes. All PEs participating in the collective
routine must provide the same values for these arguments. If any of these requirements are not met, the behavior is
undefined.

Another argument important to collective routines is pSync, which is a symmetric work array. All PEs participating
in a collective must pass the same pSync array. On completion of a collective call, the pSync is restored to its original
contents. The user is permitted to reuse a pSync array if all previous collective routines using the pSync array have been
completed by all participating PEs. One can use a synchronization collective routine such as shmem_barrier to ensure
completion of previous collective routines. The shmem_barrier and shmem_sync routines allow the same pSync array
to be used on consecutive calls as long as the PEs in the active set do not change.

All collective routines defined in the Specification are blocking. The collective routines return on completion. The
collective routines defined in the OpenSHMEM Specification are:

• shmem_barrier_all

• shmem_barrier

• shmem_sync_all

• shmem_sync

• shmem_broadcast{32, 64}

• shmem_collect{32, 64}

• shmem_fcollect{32, 64}

• Reductions for the following operations: AND, MAX, MIN, SUM, PROD, OR, XOR

• shmem_alltoall{32, 64}

• shmem_alltoalls{32, 64}

9.9.1 SHMEM_BARRIER_ALL

Registers the arrival of a PE at a barrier and blocks the PE until all other PEs arrive at the barrier and all local updates
and remote memory updates on the default context are completed.

SYNOPSIS

C/C++:
void shmem_barrier_all(void);

deprecation start
FORTRAN:
CALL SHMEM_BARRIER_ALL

deprecation end

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 81

Arguments

None.

API description

The shmem_barrier_all routine registers the arrival of a PE at a barrier. Barriers are a mechanism for
synchronizing all PEs at once. This routine blocks the PE until all PEs have called shmem_barrier_all. In
a multithreaded OpenSHMEM program, only the calling thread is blocked.
Prior to synchronizing with other PEs, shmem_barrier_all ensures completion of all previously issued
memory stores and remote memory updates issued on the default context via OpenSHMEM AMOs and
RMA routine calls such as shmem_int_add, shmem_put32, shmem_put_nbi, and shmem_get_nbi.

Return Values
None.

Notes
The shmem_barrier_all routine can be used to portably ensure that memory access operations observe
remote updates in the order enforced by initiator PEs.
Calls to shmem_ctx_quiet can be performed prior to calling the barrier routine to ensure completion of
operations issued on additional contexts.

EXAMPLES

The following shmem_barrier_all example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int x = 1010;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

/* put to next PE in a circular fashion */
shmem_p(&x, 4, (me + 1) % npes);

/* synchronize all PEs */
shmem_barrier_all();
printf("%d: x = %d\n", me, x);
shmem_finalize();
return 0;

}

9.9.2 SHMEM_BARRIER

Performs all operations described in the shmem_barrier_all interface but with respect to a subset of PEs defined by
the active set.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

82 9. OPENSHMEM LIBRARY API

SYNOPSIS

C/C++:
void shmem_barrier(int PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation start
FORTRAN:
INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BARRIER_SYNC_SIZE)

CALL SHMEM_BARRIER(PE_start, logPE_stride, PE_size, pSync)

deprecation end

DESCRIPTION

Arguments

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_BARRIER_SYNC_SIZE. In
C/C++, pSync must be an array of elements of type long. In Fortran,
pSync must be an array of elements of default integer type. Every ele-
ment of this array must be initialized to SHMEM_SYNC_VALUE before
any of the PEs in the active set enter shmem_barrier the first time.

API description

shmem_barrier is a collective synchronization routine over an active set. Control returns from
shmem_barrier after all PEs in the active set (specified by PE_start, logPE_stride, and PE_size) have
called shmem_barrier.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the active
set call the routine. If a PE not in the active set calls an OpenSHMEM collective routine, the behavior is
undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be the same value on all PEs in the
active set. The same work array must be passed in pSync to all PEs in the active set.
shmem_barrier ensures that all previously issued stores and remote memory updates, including AMOs
and RMA operations, done by any of the PEs in the active set on the default context are complete before
returning.
The same pSync array may be reused on consecutive calls to shmem_barrier if the same active set is used.

Return Values
None.

Notes
If the pSync array is initialized at the run time, all PEs must be synchronized before the first call to
shmem_barrier (e.g., by shmem_barrier_all) to ensure the array has been initialized by all PEs before
it is used.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 83

If the active set does not change, shmem_barrier can be called repeatedly with the same pSync array. No
additional synchronization beyond that implied by shmem_barrier itself is necessary in this case.
The shmem_barrier routine can be used to portably ensure that memory access operations observe remote
updates in the order enforced by initiator PEs.
Calls to shmem_ctx_quiet can be performed prior to calling the barrier routine to ensure completion of
operations issued on additional contexts.
No team-based barrier is provided by OpenSHMEM, as a team may have any number of communication
contexts associated with the team. Applications seeking such an idiom should call shmem_ctx_quiet on
the desired context, followed by a call to shmem_team_sync on the desired team.

EXAMPLES

The following barrier example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int x = 10101;
static long pSync[SHMEM_BARRIER_SYNC_SIZE];
for (int i = 0; i < SHMEM_BARRIER_SYNC_SIZE; i++)

pSync[i] = SHMEM_SYNC_VALUE;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

if (me % 2 == 0) {
/* put to next even PE in a circular fashion */
shmem_p(&x, 4, (me + 2) % npes);
/* synchronize all even pes */
shmem_barrier(0, 1, (npes / 2 + npes % 2), pSync);

}
printf("%d: x = %d\n", me, x);
shmem_finalize();
return 0;

}

9.9.3 SHMEM_SYNC_ALL

Registers the arrival of a PE at a barrier and suspends PE execution until all other PEs arrive at the barrier.

SYNOPSIS

C/C++:
void shmem_sync_all(void);

DESCRIPTION

Arguments

None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

84 9. OPENSHMEM LIBRARY API

API description

The shmem_sync_all routine registers the arrival of a PE at a barrier. Barriers are a fast mechanism for
synchronizing all PEs at once. This routine blocks the PE until all PEs have called shmem_sync_all. In a
multithreaded OpenSHMEM program, only the calling thread is blocked.
In contrast with the shmem_barrier_all routine, shmem_sync_all only ensures completion and visibility
of previously issued memory stores and does not ensure completion of remote memory updates issued via
OpenSHMEM routines.

Return Values
None.

Notes
The shmem_sync_all routine can be used to portably ensure that memory access operations observe re-
mote updates in the order enforced by the initiator PEs, provided that the initiator PE ensures completion
of remote updates with a call to shmem_quiet prior to the call to the shmem_sync_all routine.

9.9.4 SHMEM_SYNC

Performs all operations described in the shmem_sync_all interface but with respect to a subset of PEs defined by the a
team or active set.

SYNOPSIS

C11:
void shmem_sync(shmem_team_t team);

C/C++:
void shmem_sync(int PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_team_sync(shmem_team_t team);

DESCRIPTION

Arguments

IN team The team over which to perform the operation.
IN PE_start The lowest PE number of the active set of PEs. PE_start must be of

type integer.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set. logPE_stride must be of type integer.
IN PE_size The number of PEs in the active set. PE_size must be of type integer.
IN pSync A symmetric work array. In C/C++, pSync must be of type long

and size SHMEM_BARRIER_SYNC_SIZE. Every element of this array
must be initialized to SHMEM_SYNC_VALUE before any of the PEs in
the active set enter shmem_sync the first time.

API description

shmem_sync is a collective synchronization routine over a team or an active set. Control returns from
shmem_sync after all PEs in the specified team or active set (specified by PE_start, logPE_stride,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 85

and PE_size) have called shmem_sync. An active set is specified by the triple of values: PE_start,
logPE_stride, and PE_size.
As with all OpenSHMEM active set-based collective routines, each of these routines assumes that only
PEs in the active set call the routine. If a PE not in the active set calls an OpenSHMEM collective routine,
the behavior is undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same work array must be passed in pSync to all PEs in the active set.
In contrast with the shmem_barrier routine, shmem_sync only ensures completion and visibility of previ-
ously issued memory stores and does not ensure completion of remote memory updates issued via Open-
SHMEM routines.
The same pSync array may be reused on consecutive calls to shmem_sync if the same active set is used.

Return Values
None.

Notes
If the pSync array is initialized at run time, another method of synchronization (e.g., shmem_sync_all)
must be used before the initial use of that pSync array by shmem_sync.
If the active set does not change, shmem_sync can be called repeatedly with the same pSync array. No
additional synchronization beyond that implied by shmem_sync itself is necessary in this case.
The shmem_sync routine can be used to portably ensure that memory access operations observe remote
updates in the order enforced by the initiator PEs, provided that the initiator PE ensures completion of
remote updates with a call to shmem_quiet prior to the call to the shmem_sync routine.

EXAMPLES

The following shmem_sync_all and shmem_sync example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int x = 10101;
static long pSync[SHMEM_BARRIER_SYNC_SIZE];

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

for (int i = 0; i < SHMEM_BARRIER_SYNC_SIZE; i++)
pSync[i] = SHMEM_SYNC_VALUE;

shmem_sync_all();

if (me % 2 == 0) {
/* put to next even PE in a circular fashion */
shmem_p(&x, 4, (me + 2) % npes);
/* synchronize all even pes */
shmem_quiet();
shmem_sync(0, 1, (npes / 2 + npes % 2), pSync);

}
printf("%d: x = %d\n", me, x);
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

86 9. OPENSHMEM LIBRARY API

9.9.5 SHMEM_TEAM_BROADCAST

Broadcasts a block of data from one PE in a team to all other PEs in the team

SYNOPSIS

C/C++:
void shmem_team_broadcast32(shmem_team_t team, void *dest, const void *source, size_t

nelems, int PE_root);

void shmem_team_broadcast64(shmem_team_t team, void *dest, const void *source, size_t

nelems, int PE_root);

DESCRIPTION

Arguments

IN team A valid OpenSHMEM team handle to a team which has been created
without disabling support for collective operations.

OUT dest A symmetric data object. See the table below in this description for
allowable types

IN source A symmetric data object that can be of any data type that is permissible
for the dest argument.

IN nelems The number of elements in source. For shmem_team_broadcast32, this
is the number of 32-bit halfwords. nelems must be of type size_t.

IN PE_root Zero-based ordinal of the PE, with respect to the team, from which the
data is copied. PE_root must be of type int.

API description

OpenSHMEM team broadcast routines are collective routines over an existing team. They copy data object
source on the processor specified by PE_root and store the values at dest on the other PEs that are members
of the team. The data is not copied to the dest area on the root PE.
If the team has been created with the SHMEM_TEAM_NOCOLLECTIVE option, it will not have the re-
quired support structures to complete this routine. If such a team is passed to this or any other team
collective routine, the behavior is undefined.
As with all OpenSHMEM routines where the operation occurs over a given team, PE numbering is relative
to the team. The specified root PE must be a valid PE number for the team, between 0 and N-1, where N is
the size of the team.
The values of the argument PE_root must be the same value on all PEs in the team. The same dest and
source data objects must be passed by all PEs in the team.
Upon return from a broadcast routine, the following are true for the local PE:

• If the current PE is not the root PE, the dest data object is updated.
• The source data object may be safely reused.

Error checking will be done to detect a value of SHMEM_TEAM_NULL passed for the team argument. In
that case, the program will abort with an informative error message. If an invalid team handle is passed to
the routine, the behavior is undefined.

The dest and source data objects must conform to certain typing constraints, which are as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 87

Routine Data type of dest and source

shmem_team_broadcast64 Any noncharacter type that has an element size of 64 bits.
C/C++ structures are NOT allowed.

shmem_team_broadcast32 Any noncharacter type that has an element size of 32 bits.
C/C++ structures are NOT allowed.

Return Values
None.

Notes

9.9.6 SHMEM_BROADCAST

Broadcasts a block of data from one PE to one or more destination PEs.

SYNOPSIS

C/C++:
void shmem_broadcast32(void *dest, const void *source, size_t nelems, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_broadcast64(void *dest, const void *source, size_t nelems, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation start
FORTRAN:
INTEGER nelems, PE_root, PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BCAST_SYNC_SIZE)

CALL SHMEM_BROADCAST4(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST8(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST32(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size,pSync)

CALL SHMEM_BROADCAST64(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size,pSync)

deprecation end

DESCRIPTION

Arguments

OUT dest A symmetric data object.
IN source A symmetric data object that can be of any data type that is permissible

for the dest argument.
IN nelems The number of elements in source. For shmem_broadcast32 and

shmem_broadcast4, this is the number of 32-bit halfwords. nelems
must be of type size_t in C. When using Fortran, it must be a default
integer value.

IN PE_root Zero-based ordinal of the PE, with respect to the active set, from which
the data is copied. Must be greater than or equal to 0 and less than
PE_size. PE_root must be of type integer. When using Fortran, it must
be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

88 9. OPENSHMEM LIBRARY API

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. log_PE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_BCAST_SYNC_SIZE. In
C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enters
shmem_broadcast.

API description

OpenSHMEM broadcast routines are collective routines. They copy data object source on the proces-
sor specified by PE_root and store the values at dest on the other PEs specified by the triplet PE_start,
logPE_stride, PE_size. The data is not copied to the dest area on the root PE.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the active
set call the routine. If a PE not in the active set calls an OpenSHMEM collective routine, the behavior is
undefined.
The values of arguments PE_root, PE_start, logPE_stride, and PE_size must be the same value on all PEs
in the active set. The same dest and source data objects and the same pSync work array must be passed by
all PEs in the active set.
Before any PE calls a broadcast routine, the following conditions must be ensured:

• The pSync array on all PEs in the active set is not still in use from a prior call to a broadcast routine.
• The dest array on all PEs in the active set is ready to accept the broadcast data.

Otherwise, the behavior is undefined.
Upon return from a broadcast routine, the following are true for the local PE:

• If the current PE is not the root PE, the dest data object is updated.
• The source data object may be safely reused.
• The values in the pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_broadcast8,
shmem_broadcast64

Any noncharacter type that has an element size of 64 bits. No
Fortran derived types or C/C++ structures are allowed.

shmem_broadcast4,
shmem_broadcast32

Any noncharacter type that has an element size of 32 bits. No
Fortran derived types or C/C++ structures are allowed.

Return Values
None.

Notes
All OpenSHMEM broadcast routines restore pSync to its original contents. Multiple calls to OpenSHMEM
routines that use the same pSync array do not require that pSync be reinitialized after the first call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 89

The user must ensure that the pSync array is not being updated by any PE in the active set while any of the
PEs participates in processing of an OpenSHMEM broadcast routine. Be careful to avoid these situations:
If the pSync array is initialized at run time, before its first use, some type of synchronization is needed to
ensure that all PEs in the active set have initialized pSync before any of them enter an OpenSHMEM routine
called with the pSync synchronization array. A pSync array may be reused on a subsequent OpenSHMEM
broadcast routine only if none of the PEs in the active set are still processing a prior OpenSHMEM broad-
cast routine call that used the same pSync array. In general, this can be ensured only by doing some type of
synchronization.

EXAMPLES

In the following examples, the call to shmem_broadcast64 copies source on PE 4 to dest on PEs 5, 6, and 7.

C/C++ example:

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

int main(void)
{

static long pSync[SHMEM_BCAST_SYNC_SIZE];
for (int i = 0; i < SHMEM_BCAST_SYNC_SIZE; i++)

pSync[i] = SHMEM_SYNC_VALUE;
static long source[4], dest[4];

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

if (me == 0)
for (int i = 0; i < 4; i++)

source[i] = i;

shmem_broadcast64(dest, source, 4, 0, 0, 0, npes, pSync);
printf("%d: %ld, %ld, %ld, %ld\n", me, dest[0], dest[1], dest[2], dest[3]);
shmem_finalize();
return 0;

}

Fortran example:

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_BCAST_SYNC_SIZE)
INTEGER DEST, SOURCE, NLONG, PE_ROOT, PE_START,
& LOGPE_STRIDE, PE_SIZE, PSYNC
COMMON /COM/ DEST, SOURCE

DATA PSYNC /SHMEM_BCAST_SYNC_SIZE*SHMEM_SYNC_VALUE/

CALL SHMEM_BROADCAST64(DEST, SOURCE, NLONG, 0, 4, 0, 4, PSYNC)

9.9.7 SHMEM_COLLECT, SHMEM_FCOLLECT

Concatenates blocks of data from multiple PEs to an array in every PE.

SYNOPSIS

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

90 9. OPENSHMEM LIBRARY API

void shmem_collect32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_collect64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

deprecation start
FORTRAN:
INTEGER nelems

INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_COLLECT_SYNC_SIZE)

CALL SHMEM_COLLECT4(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT8(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT4(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT8(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

deprecation end

DESCRIPTION

Arguments

OUT dest A symmetric array. The dest argument must be large enough to ac-
cept the concatenation of the source arrays on all participating PEs.
The data types are as follows: For shmem_collect8, shmem_collect64,
shmem_fcollect8, and shmem_fcollect64, any data type with an el-
ement size of 64 bits. Fortran derived types, Fortran character
type, and C/C++ structures are not permitted. For shmem_collect4,
shmem_collect32, shmem_fcollect4, and shmem_fcollect32, any data
type with an element size of 32 bits. Fortran derived types, Fortran
character type, and C/C++ structures are not permitted.

IN source A symmetric data object that can be of any type permissible for the dest
argument.

IN nelems The number of elements in the source array. nelems must be of type
size_t for C. When using Fortran, it must be a default integer value.

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_COLLECT_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
shmem_collect or shmem_fcollect.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 91

API description

OpenSHMEM collect and fcollect routines concatenate nelems 64-bit or 32-bit data items from the source
array into the dest array, over the set of PEs defined by PE_start, log2PE_stride, and PE_size, in processor
number order. The resultant dest array contains the contribution from PE PE_start first, then the contribu-
tion from PE PE_start + PE_stride second, and so on. The collected result is written to the dest array for
all PEs in the active set.
The fcollect routines require that nelems be the same value in all participating PEs, while the collect routines
allow nelems to vary from PE to PE.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the active set
call the routine. If a PE not in the active set and calls this collective routine, the behavior is undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be the same value on all PEs in the
active set. The same dest and source arrays and the same pSync work array must be passed by all PEs in
the active set.
Upon return from a collective routine, the following are true for the local PE: The dest array is updated and
the source array may be safely reused. The values in the pSync array are restored to the original values.

Return Values
None.

Notes
All OpenSHMEM collective routines reset the values in pSync before they return, so a particular pSync
buffer need only be initialized the first time it is used.
The user must ensure that the pSync array is not being updated on any PE in the active set while any of the
PEs participate in processing of an OpenSHMEM collective routine. Be careful to avoid these situations:
If the pSync array is initialized at run time, some type of synchronization is needed to ensure that all PEs
in the working set have initialized pSync before any of them enter an OpenSHMEM routine called with the
pSync synchronization array. A pSync array can be reused on a subsequent OpenSHMEM collective routine
only if none of the PEs in the active set are still processing a prior OpenSHMEM collective routine call that
used the same pSync array. In general, this may be ensured only by doing some type of synchronization.
The collective routines operate on active PE sets that have a non-power-of-two PE_size with some perfor-
mance degradation. They operate with no performance degradation when nelems is a non-power-of-two
value.

EXAMPLES

The following shmem_collect example is for C/C++ programs:

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

int main(void)
{

static long lock = 0;
static long pSync[SHMEM_COLLECT_SYNC_SIZE];
for (int i = 0; i < SHMEM_COLLECT_SYNC_SIZE; i++)

pSync[i] = SHMEM_SYNC_VALUE;

shmem_init();
int me = shmem_my_pe();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

92 9. OPENSHMEM LIBRARY API

int npes = shmem_n_pes();
int my_nelem = me + 1; /* linearly increasing number of elements with PE */
int total_nelem = (npes * (npes + 1)) / 2;

int* source = (int*) shmem_malloc(npes*sizeof(int)); /* symmetric alloc */
int* dest = (int*) shmem_malloc(total_nelem*sizeof(int));

for (int i = 0; i < my_nelem; i++)
source[i] = (me * (me + 1)) / 2 + i;

for (int i = 0; i < total_nelem; i++)
dest[i] = -9999;

shmem_barrier_all(); /* Wait for all PEs to update source/dest */

shmem_collect32(dest, source, my_nelem, 0, 0, npes, pSync);

shmem_set_lock(&lock); /* Lock prevents interleaving printfs */
printf("%d: %d", me, dest[0]);
for (int i = 1; i < total_nelem; i++)

printf(", %d", dest[i]);
printf("\n");
shmem_clear_lock(&lock);
shmem_finalize();
return 0;

}

The following SHMEM_COLLECT example is for Fortran programs:

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_COLLECT_SYNC_SIZE)
DATA PSYNC /SHMEM_COLLECT_SYNC_SIZE*SHMEM_SYNC_VALUE/

CALL SHMEM_COLLECT4(DEST, SOURCE, 64, PE_START, LOGPE_STRIDE,
& PE_SIZE, PSYNC)

9.9.8 SHMEM_TEAM_COLLECT, SHMEM_TEAM_FCOLLECT

Concatenates blocks of data from multiple PEs in a team to an array in every PE in the team.

SYNOPSIS

C/C++:
void shmem_team_collect32(shmem_team_t team, void *dest, const void *source, size_t nelems);

void shmem_team_collect64(shmem_team_t team, void *dest, const void *source, size_t nelems);

void shmem_team_fcollect32(shmem_team_t team, void *dest, const void *source, size_t nelems);

void shmem_team_fcollect64(shmem_team_t team, void *dest, const void *source, size_t nelems);

DESCRIPTION

Arguments

IN team A valid OpenSHMEM team handle to a team which has been created
without disabling support for collective operations.

OUT dest A symmetric array large enough to accept the concatenation of the
source arrays on all PEs in the team. See table below in this description
for allowable data types.

IN source A symmetric data object that can be of any type permissible for the dest
argument.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 93

IN nelems The number of elements in the source array. nelems must be of type
size_t.

API description

OpenSHMEM team_collect and team_fcollect are collective routines over an existing team. These routines
concatenate nelems 64-bit or 32-bit data items from the source array into the dest array, over all PEs in the
specified team in processor number order. The resultant dest array contains the contribution from the first
PE in the team , then the contribution from the second PE in the team, and so on. The collected result is
written to the dest array for all PEs in the team.
The fcollect routines require that all PEs in the team provide the same value for nelems, while the collect
routines allow nelems to vary from PE to PE.
If the team has been created with the SHMEM_TEAM_NOCOLLECTIVE option, it will not have the re-
quired support structures to complete this routine. If such a team is passed to this or any other team
collective routine, the behavior is undefined.
The same dest and source data objects must be passed by all PEs in the team.
Upon return from a collective routine, the following are true for the local PE:

• The dest array is updated.
• The source array may be safely reused.

Error checking will be done to detect a value of SHMEM_TEAM_NULL passed for the team argument. In
that case, the program will abort with an informative error message. If an invalid team handle is passed to
the routine, the behavior is undefined.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_team_collect64,
shmem_team_fcollect64

Any noncharacter type that has an element size of 64 bits.
C/C++ structures are NOT allowed.

shmem_team_collect32,
shmem_team_fcollect32

Any noncharacter type that has an element size of 32 bits.
C/C++ structures are NOT allowed.

Return Values
None.

Notes
All OpenSHMEM team collective routines use symmetric data structures associated with the team to syn-
chronize and share data. By default, new teams that result from split operations will have these structures.

EXAMPLES

9.9.9 SHMEM_REDUCTIONS

The following functions perform reduction operations across all PEs in a set of PEs.

SYNOPSIS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

94 9. OPENSHMEM LIBRARY API

9.9.9.1 AND Performs a bitwise AND reduction across a set of PEs.
C/C++:
void shmem_short_and_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_and_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_and_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_and_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

deprecation start
FORTRAN:
CALL SHMEM_INT4_AND_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_AND_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

9.9.9.2 MAX Performs a maximum-value reduction across a set of PEs.
C/C++:
void shmem_short_max_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_max_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_double_max_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_max_to_all(float *dest, const float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_long_max_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_max_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_max_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

deprecation start
FORTRAN:
CALL SHMEM_INT4_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

9.9.9.3 MIN Performs a minimum-value reduction across a set of PEs.
C/C++:
void shmem_short_min_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 95

void shmem_int_min_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_double_min_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_min_to_all(float *dest, const float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_long_min_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_min_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_min_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

deprecation start
FORTRAN:
CALL SHMEM_INT4_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

9.9.9.4 SUM Performs a sum reduction across a set of PEs.
C/C++:
void shmem_complexd_sum_to_all(double _Complex *dest, const double _Complex *source, int

nreduce, int PE_start, int logPE_stride, int PE_size, double _Complex *pWrk, long

*pSync);

void shmem_complexf_sum_to_all(float _Complex *dest, const float _Complex *source, int

nreduce, int PE_start, int logPE_stride, int PE_size, float _Complex *pWrk, long

*pSync);

void shmem_short_sum_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_sum_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_double_sum_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_sum_to_all(float *dest, const float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_long_sum_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride,int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_sum_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_sum_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

deprecation start
FORTRAN:
CALL SHMEM_COMP4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

96 9. OPENSHMEM LIBRARY API

CALL SHMEM_INT4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

9.9.9.5 PROD Performs a product reduction across a set of PEs.
C/C++:
void shmem_complexd_prod_to_all(double _Complex *dest, const double _Complex *source, int

nreduce, int PE_start, int logPE_stride, int PE_size, double _Complex *pWrk, long

*pSync);

void shmem_complexf_prod_to_all(float _Complex *dest, const float _Complex *source, int

nreduce, int PE_start, int logPE_stride, int PE_size, float _Complex *pWrk, long

*pSync);

void shmem_short_prod_to_all(short *dest, const short *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_prod_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_double_prod_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_prod_to_all(float *dest, const float *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_long_prod_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_prod_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_prod_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

deprecation start
FORTRAN:
CALL SHMEM_COMP4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 97

9.9.9.6 OR Performs a bitwise OR reduction across a set of PEs.
C/C++:
void shmem_short_or_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_or_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_or_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_or_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

deprecation start
FORTRAN:
CALL SHMEM_INT4_OR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_OR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

9.9.9.7 XOR Performs a bitwise exclusive OR (XOR) reduction across a set of PEs.
C/C++:
void shmem_short_xor_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_xor_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_xor_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_xor_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

deprecation start
FORTRAN:
CALL SHMEM_INT4_XOR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_XOR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

DESCRIPTION

Arguments

OUT dest A symmetric array, of length nreduce elements, to receive the result of
the reduction routines. The data type of dest varies with the version of
the reduction routine being called. When calling from C/C++, refer to
the SYNOPSIS section for data type information.

IN source A symmetric array, of length nreduce elements, that contains one ele-
ment for each separate reduction routine. The source argument must
have the same data type as dest.

IN nreduce The number of elements in the dest and source arrays. nreduce must be
of type integer. When using Fortran, it must be a default integer value.

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

98 9. OPENSHMEM LIBRARY API

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pWrk A symmetric work array of size at least max(nreduce/2 + 1,
SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

IN pSync A symmetric work array of size SHMEM_REDUCE_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
the reduction routine.

API description

OpenSHMEM reduction routines compute one or more reductions across symmetric arrays on multiple
PEs. A reduction performs an associative binary routine across a set of values.
The nreduce argument determines the number of separate reductions to perform. The source array on all
PEs in the active set provides one element for each reduction. The results of the reductions are placed in
the dest array on all PEs in the active set. The active set is defined by the PE_start, logPE_stride, PE_size
triplet.
The source and dest arrays may be the same array, but they may not be overlapping arrays.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the active
set call the routine. If a PE not in the active set calls an OpenSHMEM collective routine, the behavior is
undefined.
The values of arguments nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same dest and source arrays, and the same pWrk and pSync work arrays, must be passed to
all PEs in the active set.
Before any PE calls a reduction routine, the following conditions must be ensured:

• The pWrk and pSync arrays on all PEs in the active set are not still in use from a prior call to a collective
OpenSHMEM routine.

• The dest array on all PEs in the active set is ready to accept the results of the reduction.

Otherwise, the behavior is undefined.
Upon return from a reduction routine, the following are true for the local PE: The dest array is updated and
the source array may be safely reused. The values in the pSync array are restored to the original values.
The complex-typed interfaces are only provided for sum and product reductions. When the C translation
environment does not support complex types 7, an OpenSHMEM implementation is not required to provide
support for these complex-typed interfaces.

When calling from Fortran, the dest date types are as follows:

Routine Data type

shmem_int8_and_to_all Integer, with an element size of 8 bytes.
shmem_int4_and_to_all Integer, with an element size of 4 bytes.
shmem_comp8_max_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_max_to_all Integer, with an element size of 4 bytes.

7That is, under C language standards prior to C99 or under C11 when __STDC_NO_COMPLEX__ is defined to 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 99

shmem_int8_max_to_all Integer, with an element size of 8 bytes.
shmem_real4_max_to_all Real, with an element size of 4 bytes.
shmem_real16_max_to_all Real, with an element size of 16 bytes.
shmem_int4_min_to_all Integer, with an element size of 4 bytes.
shmem_int8_min_to_all Integer, with an element size of 8 bytes.
shmem_real4_min_to_all Real, with an element size of 4 bytes.
shmem_real8_min_to_all Real, with an element size of 8 bytes.
shmem_real16_min_to_all Real,with an element size of 16 bytes.
shmem_comp4_sum_to_all Complex, with an element size equal to two 4-byte real values.
shmem_comp8_sum_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_sum_to_all Integer, with an element size of 4 bytes.
shmem_int8_sum_to_all Integer, with an element size of 8 bytes..
shmem_real4_sum_to_all Real, with an element size of 4 bytes.
shmem_real8_sum_to_all Real, with an element size of 8 bytes.
shmem_real16_sum_to_all Real, with an element size of 16 bytes.
shmem_comp4_prod_to_all Complex, with an element size equal to two 4-byte real values.
shmem_comp8_prod_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_prod_to_all Integer, with an element size of 4 bytes.
shmem_int8_prod_to_all Integer, with an element size of 8 bytes.
shmem_real4_prod_to_all Real, with an element size of 4 bytes.
shmem_real8_prod_to_all Real, with an element size of 8 bytes.
shmem_real16_prod_to_all Real, with an element size of 16 bytes.
shmem_int8_or_to_all Integer, with an element size of 8 bytes.
shmem_int4_or_to_all Integer, with an element size of 4 bytes.
shmem_int8_xor_to_all Integer, with an element size of 8 bytes.
shmem_int4_xor_to_all Integer, with an element size of 4 bytes.

Return Values
None.

Notes
All OpenSHMEM reduction routines reset the values in pSync before they return, so a particular pSync
buffer need only be initialized the first time it is used. The user must ensure that the pSync array is not be-
ing updated on any PE in the active set while any of the PEs participate in processing of an OpenSHMEM
reduction routine. Be careful to avoid the following situations: If the pSync array is initialized at run time,
some type of synchronization is needed to ensure that all PEs in the working set have initialized pSync
before any of them enter an OpenSHMEM routine called with the pSync synchronization array. A pSync
or pWrk array can be reused in a subsequent reduction routine call only if none of the PEs in the active set
are still processing a prior reduction routine call that used the same pSync or pWrk arrays. In general, this
can be assured only by doing some type of synchronization.

EXAMPLES

This Fortran reduction example statically initializes the pSync array and finds the logical AND of the integer
variable FOO across all even PEs.
INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
INTEGER*4 PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
INTEGER FOO, FOOAND
SAVE FOO, FOOAND, PWRK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

100 9. OPENSHMEM LIBRARY API

INTRINSIC SHMEM_MY_PE()

FOO = SHMEM_MY_PE()
IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN

IF (MOD(SHMEM_N_PES()(),2) .EQ. 0) THEN
CALL SHMEM_INT8_AND_TO_ALL(FOOAND, FOO, NR, 0, 1, NPES/2, &

PWRK, PSYNC)
ELSE

CALL SHMEM_INT8_AND_TO_ALL(FOOAND, FOO, NR, 0, 1, NPES/2+1, &
PWRK, PSYNC)

ENDIF
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOAND

ENDIF

This Fortran example statically initializes the pSync array and finds the maximum value of real variable FOO
across all even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOMAX, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOMAX, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_REAL8_MAX_TO_ALL(FOOMAX, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOMAX

ENDIF

This Fortran example statically initializes the pSync array and finds the minimum value of real variable FOO
across all the even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOMIN, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOMIN, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_REAL8_MIN_TO_ALL(FOOMIN, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOMIN

ENDIF

This Fortran example statically initializes the pSync array and finds the sum of the real variable FOO across all
even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOSUM, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOSUM, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_INT4_SUM_TO_ALL(FOOSUM, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOSUM

ENDIF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 101

This Fortran example statically initializes the pSync array and finds the product of the real variable FOO across
all the even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOPROD, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOPROD, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_COMP8_PROD_TO_ALL(FOOPROD, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOPROD

ENDIF

This Fortran example statically initializes the pSync array and finds the logical OR of the integer variable FOO
across all even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
INTEGER FOO, FOOOR
COMMON /COM/ FOO, FOOOR, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_INT8_OR_TO_ALL(FOOOR, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOOR

ENDIF

This Fortran example statically initializes the pSync array and computes the exclusive XOR of variable FOO
across all even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOXOR, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOXOR, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_REAL8_XOR_TO_ALL(FOOXOR, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOXOR

ENDIF

9.9.10 SHMEM_ALLTOALL

shmem_alltoall is a collective routine where each PE exchanges a fixed amount of data with all other PEs in the active
set.

SYNOPSIS

C/C++:
void shmem_alltoall32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

102 9. OPENSHMEM LIBRARY API

void shmem_alltoall64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

deprecation start
FORTRAN:
INTEGER pSync(SHMEM_ALLTOALL_SYNC_SIZE)

INTEGER PE_start, logPE_stride, PE_size, nelems

CALL SHMEM_ALLTOALL32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_ALLTOALL64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

deprecation end

DESCRIPTION

Arguments

OUT dest A symmetric data object large enough to receive the combined total of
nelems elements from each PE in the active set.

IN source A symmetric data object that contains nelems elements of data for each
PE in the active set, ordered according to destination PE.

IN nelems The number of elements to exchange for each PE. nelems must be of
type size_t for C/C++. When using Fortran, it must be a default integer
value.

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_ALLTOALL_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
the routine.

API description

The shmem_alltoall routines are collective routines. Each PE in the active set exchanges nelems data
elements of size 32 bits (for shmem_alltoall32) or 64 bits (for shmem_alltoall64) with all other PEs in the
set. The data being sent and received are stored in a contiguous symmetric data object. The total size of
each PEs source object and dest object is nelems times the size of an element (32 bits or 64 bits) times
PE_size. The source object contains PE_size blocks of data (the size of each block defined by nelems) and
each block of data is sent to a different PE. Given a PE i that is the kthPE in the active set and a PE j that is
the lthPE in the active set, PE i sends the lthblock of its source object to the kthblock of the dest object of PE
j.
As with all OpenSHMEM collective routines, this routine assumes that only PEs in the active set call the
routine. If a PE not in the active set calls an OpenSHMEM collective routine, the behavior is undefined.
The values of arguments nelems, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same dest and source data objects, and the same pSync work array must be passed to all PEs
in the active set.
Before any PE calls a shmem_alltoall routine, the following conditions must be ensured:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 103

• The pSync array on all PEs in the active set is not still in use from a prior call to a shmem_alltoall
routine.

• The dest data object on all PEs in the active set is ready to accept the shmem_alltoall data.

Otherwise, the behavior is undefined.
Upon return from a shmem_alltoall routine, the following is true for the local PE: Its dest symmetric data
object is completely updated and the data has been copied out of the source data object. The values in the
pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_alltoall64 64 bits aligned.
shmem_alltoall32 32 bits aligned.

Return Values
None.

Notes
This routine restores pSync to its original contents. Multiple calls to OpenSHMEM routines that use the
same pSync array do not require that pSync be reinitialized after the first call. The user must ensure that the
pSync array is not being updated by any PE in the active set while any of the PEs participates in processing
of an OpenSHMEM shmem_alltoall routine. Be careful to avoid these situations: If the pSync array is
initialized at run time, some type of synchronization is needed to ensure that all PEs in the active set have
initialized pSync before any of them enter an OpenSHMEM routine called with the pSync synchronization
array. A pSync array may be reused on a subsequent OpenSHMEM shmem_alltoall routine only if none of
the PEs in the active set are still processing a prior OpenSHMEM shmem_alltoall routine call that used the
same pSync array. In general, this can be ensured only by doing some type of synchronization.

EXAMPLES

This example shows a shmem_alltoall64 on two long elements among all PEs.

#include <stdio.h>
#include <inttypes.h>
#include <shmem.h>

int main(void)
{

static long pSync[SHMEM_ALLTOALL_SYNC_SIZE];
for (int i = 0; i < SHMEM_ALLTOALL_SYNC_SIZE; i++)

pSync[i] = SHMEM_SYNC_VALUE;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

const int count = 2;
int64_t* dest = (int64_t*) shmem_malloc(count * npes * sizeof(int64_t));
int64_t* source = (int64_t*) shmem_malloc(count * npes * sizeof(int64_t));

/* assign source values */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

104 9. OPENSHMEM LIBRARY API

source[(pe * count) + i] = me + pe;
dest[(pe * count) + i] = 9999;

}
}
/* wait for all PEs to update source/dest */
shmem_barrier_all();

/* alltoall on all PES */
shmem_alltoall64(dest, source, count, 0, 0, npes, pSync);

/* verify results */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
if (dest[(pe * count) + i] != pe + me) {

printf("[%d] ERROR: dest[%d]=%" PRId64 ", should be %d\n",
me, (pe * count) + i, dest[(pe * count) + i], pe + me);

}
}

}

shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

9.9.11 SHMEM_ALLTOALLS

shmem_alltoalls is a collective routine where each PE exchanges a fixed amount of strided data with all other PEs in
the active set.

SYNOPSIS

C/C++:
void shmem_alltoalls32(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_alltoalls64(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation start
FORTRAN:
INTEGER pSync(SHMEM_ALLTOALLS_SYNC_SIZE)

INTEGER dst, sst, PE_start, logPE_stride, PE_size

INTEGER nelems

CALL SHMEM_ALLTOALLS32(dest, source, dst, sst, nelems, PE_start, logPE_stride, PE_size,

pSync)

CALL SHMEM_ALLTOALLS64(dest, source, dst, sst, nelems, PE_start, logPE_stride, PE_size,

pSync)

deprecation end

DESCRIPTION

Arguments

OUT dest A symmetric data object large enough to receive the combined total of
nelems elements from each PE in the active set.

IN source A symmetric data object that contains nelems elements of data for each
PE in the active set, ordered according to destination PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 105

IN dst The stride between consecutive elements of the dest data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data. dst must be of type ptrdiff_t. When using Fortran, it must be a
default integer value.

IN sst The stride between consecutive elements of the source data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data. sst must be of type ptrdiff_t. When using Fortran, it must be a
default integer value.

IN nelems The number of elements to exchange for each PE. nelems must be of
type size_t for C/C++. When using Fortran, it must be a default integer
value.

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_ALLTOALLS_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
the routine.

API description

The shmem_alltoalls routines are collective routines. Each PE in the active set exchanges nelems strided
data elements of size 32 bits (for shmem_alltoalls32) or 64 bits (for shmem_alltoalls64) with all other PEs
in the set. Both strides, dst and sst, must be greater than or equal to 1. Given a PE i that is the kthPE in the
active set and a PE j that is the lthPE in the active set, PE i sends the sst*lthblock of the source data object to
the dst*kthblock of the dest data object on PE j.
As with all OpenSHMEM collective routines, these routines assume that only PEs in the active set call the
routine. If a PE not in the active set calls an OpenSHMEM collective routine, undefined behavior results.
The values of arguments dst, sst, nelems, PE_start, logPE_stride, and PE_size must be equal on all PEs in
the active set. The same dest and source data objects, and the same pSync work array must be passed to all
PEs in the active set.
Before any PE calls a shmem_alltoalls routine, the following conditions must be ensured:

• The pSync array on all PEs in the active set is not still in use from a prior call to a shmem_alltoall
routine.

• The dest data object on all PEs in the active set is ready to accept the shmem_alltoalls data.

Otherwise, the behavior is undefined.
Upon return from a shmem_alltoalls routine, the following is true for the local PE: Its dest symmetric data
object is completely updated and the data has been copied out of the source data object. The values in the
pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

106 9. OPENSHMEM LIBRARY API

shmem_alltoalls64 64 bits aligned.
shmem_alltoalls32 32 bits aligned.

Return Values
None.

Notes
This routine restores pSync to its original contents. Multiple calls to OpenSHMEM routines that use the
same pSync array do not require that pSync be reinitialized after the first call. The user must ensure that the
pSync array is not being updated by any PE in the active set while any of the PEs participates in processing
of an OpenSHMEM shmem_alltoalls routine. Be careful to avoid these situations: If the pSync array is
initialized at run time, some type of synchronization is needed to ensure that all PEs in the active set have
initialized pSync before any of them enter an OpenSHMEM routine called with the pSync synchronization
array. A pSync array may be reused on a subsequent OpenSHMEM shmem_alltoalls routine only if none
of the PEs in the active set are still processing a prior OpenSHMEM shmem_alltoalls routine call that used
the same pSync array. In general, this can be ensured only by doing some type of synchronization.

EXAMPLES

This example shows a shmem_alltoalls64 on two long elements among all PEs.

#include <stdio.h>
#include <inttypes.h>
#include <shmem.h>

int main(void)
{

static long pSync[SHMEM_ALLTOALLS_SYNC_SIZE];
for (int i = 0; i < SHMEM_ALLTOALLS_SYNC_SIZE; i++)

pSync[i] = SHMEM_SYNC_VALUE;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

const int count = 2;
const ptrdiff_t dst = 2;
const ptrdiff_t sst = 3;
int64_t* dest = (int64_t*) shmem_malloc(count * dst * npes * sizeof(int64_t));
int64_t* source = (int64_t*) shmem_malloc(count * sst * npes * sizeof(int64_t));

/* assign source values */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
source[sst * ((pe * count) + i)] = me + pe;
dest[dst * ((pe * count) + i)] = 9999;

}
}
/* wait for all PEs to update source/dest */
shmem_barrier_all();

/* alltoalls on all PES */
shmem_alltoalls64(dest, source, dst, sst, count, 0, 0, npes, pSync);

/* verify results */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
int j = dst * ((pe * count) + i);
if (dest[j] != pe + me) {

printf("[%d] ERROR: dest[%d]=%" PRId64 ", should be %d\n",

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 107

me, j, dest[j], pe + me);
}

}
}

shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

9.10 Point-To-Point Synchronization Routines

The following section discusses OpenSHMEM APIs that provide a mechanism for synchronization between two PEs
based on the value of a symmetric data object. The point-to-point synchronization routines can be used to portably
ensure that memory access operations observe remote updates in the order enforced by the initiator PE using the
shmem_fence and shmem_quiet routines.

Where appropriate compiler support is available, OpenSHMEM provides type-generic point-to-point synchroniza-
tion interfaces via C11 generic selection. Such type-generic routines are supported for the “point-to-point synchroniza-
tion types” identified in Table 7.

The point-to-point synchronization types include some of the exact-width integer types defined in stdint.h by
C99 §7.18.1.1 and C11 §7.20.1.1. When the C translation environment does not provide exact-width integer types
with stdint.h, an OpenSHMEM implemementation is not required to provide support for these types.

TYPE TYPENAME
short short
int int
long long
long long longlong
unsigned short ushort
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 7: Point-to-Point Synchronization Types and Names

The point-to-point synchronization interface provides named constants whose values are integer constant expres-
sions that specify the comparison operators used by OpenSHMEM synchronization routines. The constant names and
associated operations are presented in Table 8. For Fortran, the constant names of Table 8 shall be identifiers for integer
parameters of default kind corresponding to the associated comparison operation.

9.10.1 SHMEM_WAIT_UNTIL

Wait for a variable on the local PE to change.

SYNOPSIS

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

108 9. OPENSHMEM LIBRARY API

Constant Name Comparison
SHMEM_CMP_EQ Equal
SHMEM_CMP_NE Not equal
SHMEM_CMP_GT Greater than
SHMEM_CMP_GE Greater than or equal to
SHMEM_CMP_LT Less than
SHMEM_CMP_LE Less than or equal to

Table 8: Point-to-Point Comparison Constants

void shmem_wait_until(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 7.

C/C++:
void shmem_<TYPENAME>_wait_until(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 7.

deprecation start
void shmem_wait_until(long *ivar, int cmp, long cmp_value);

void shmem_wait(long *ivar, long cmp_value);

void shmem_<TYPENAME>_wait(TYPE *ivar, TYPE cmp_value);

where TYPE is one of {short, int, long, long long} and has a corresponding TYPENAME specified by Table 7.

deprecation end

deprecation start
FORTRAN:
CALL SHMEM_INT4_WAIT(ivar, cmp_value)

CALL SHMEM_INT4_WAIT_UNTIL(ivar, cmp, cmp_value)

CALL SHMEM_INT8_WAIT(ivar, cmp_value)

CALL SHMEM_INT8_WAIT_UNTIL(ivar, cmp, cmp_value)

CALL SHMEM_WAIT(ivar, cmp_value)

CALL SHMEM_WAIT_UNTIL(ivar, cmp, cmp_value)

deprecation end

DESCRIPTION

Arguments

OUT ivar A remotely accessible integer variable. When using C/C++, the type of
ivar should match that implied in the SYNOPSIS section.

IN cmp The compare operator that compares ivar with cmp_value. When using
Fortran, it must be of default kind. When using C/C++, it must be of
type int.

IN cmp_value cmp_value must be of type integer. When using C/C++, the type of
cmp_value should match that implied in the SYNOPSIS section. When
using Fortran, cmp_value must be an integer of the same size and kind
as ivar.

API description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 109

shmem_wait and shmem_wait_until wait for ivar to be changed by a write or an atomic operation issued
by a PE. These routines can be used for point-to-point direct synchronization. A call to shmem_wait
does not return until a PE writes a value not equal to cmp_value into ivar on the waiting PE. A call
to shmem_wait_until does not return until a PE changes ivar to satisfy the condition implied by cmp
and cmp_value. The shmem_wait routines return when ivar is no longer equal to cmp_value. The
shmem_wait_until routines return when the compare condition is true. The compare condition is defined
by the ivar argument compared with the cmp_value using the comparison operator cmp.

When using Fortran, ivar must be a specific sized integer type according to the routine being called, as
follows:

Routine Data type

shmem_wait, shmem_wait_until default INTEGER
shmem_int4_wait,
shmem_int4_wait_until

INTEGER*4

shmem_int8_wait,
shmem_int8_wait_until

INTEGER*8

Return Values
None.

Notes
As of OpenSHMEM 1.4, the shmem_wait routine is deprecated, however, shmem_wait is equivalent to
shmem_wait_until where cmp is SHMEM_CMP_NE.

Note to implementors
Implementations must ensure that shmem_wait and shmem_wait_until do not return before the update of
the memory indicated by ivar is fully complete. Partial updates to the memory must not cause shmem_wait
or shmem_wait_until to return.

EXAMPLES

The following call returns when variable ivar is not equal to 100:
INCLUDE "shmem.fh"

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT(IVAR, INTEGER*8(100))

The following call to SHMEM_INT8_WAIT_UNTIL is equivalent to the call to SHMEM_INT8_WAIT in exam-
ple 1:
INCLUDE "shmem.fh"

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT_UNTIL(IVAR, SHMEM_CMP_NE, INTEGER*8(100))

The following C/C++ call waits until the value in ivar is set to be less than zero by a transfer from a remote PE:
#include <stdio.h>
#include <shmem.h>

int ivar;
shmem_int_wait_until(&ivar, SHMEM_CMP_LT, 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

110 9. OPENSHMEM LIBRARY API

The following Fortran example is in the context of a subroutine:

INCLUDE "shmem.fh"

SUBROUTINE EXAMPLE()
INTEGER FLAG_VAR
COMMON/FLAG/FLAG_VAR
. . .
FLAG_VAR = FLAG_VALUE ! initialize the event variable
. . .
IF (FLAG_VAR .EQ. FLAG_VALUE) THEN

CALL SHMEM_WAIT(FLAG_VAR, FLAG_VALUE)
ENDIF
FLAG_VAR = FLAG_VALUE ! reset the event variable for next time
. . .
END

9.10.2 SHMEM_TEST

Test whether a variable on the local PE has changed.

SYNOPSIS

C11:
int shmem_test(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 7.

C/C++:
int shmem_<TYPENAME>_test(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 7.

DESCRIPTION

Arguments

OUT ivar A pointer to a remotely accessible data object.
IN cmp The comparison operator that compares ivar with cmp_value.
IN cmp_value The value against which the object pointed to by ivar will be compared.

API description

shmem_test tests the numeric comparison of the symmetric object pointed to by ivar with the value
cmp_value according to the comparison operator cmp.

Return Values
shmem_test returns 1 if the comparison of the symmetric object pointed to by ivar with the value cmp_value
according to the comparison operator cmp evaluates to true; otherwise, it returns 0.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 111

EXAMPLES
The following example demonstrates the use of shmem_test to wait on an array of symmetric objects and return

the index of an element that satisfies the specified condition.

#include <stdio.h>
#include <shmem.h>

int user_wait_any(long *ivar, int count, int cmp, long value)
{

int idx = 0;
while (!shmem_test(&ivar[idx], cmp, value))

idx = (idx + 1) % count;
return idx;

}

int main(void)
{

shmem_init();
const int mype = shmem_my_pe();
const int npes = shmem_n_pes();

long *wait_vars = shmem_calloc(npes, sizeof(long));
if (mype == 0)
{

int who = user_wait_any(wait_vars, npes, SHMEM_CMP_NE, 0);
printf("PE %d observed first update from PE %d\n", mype, who);

}
else

shmem_p(&wait_vars[mype], mype, 0);

shmem_free(wait_vars);
shmem_finalize();
return 0;

}

9.11 Memory Ordering Routines

The following section discusses OpenSHMEM APIs that provide mechanisms to ensure ordering and/or delivery of
Put, AMO, memory store, and non-blocking Put and Get routines to symmetric data objects.

9.11.1 SHMEM_FENCE

Assures ordering of delivery of Put, AMO, memory store, and nonblocking Put routines to symmetric data objects.

SYNOPSIS

C/C++:
void shmem_fence(void);

void shmem_ctx_fence(shmem_ctx_t ctx);

deprecation start
FORTRAN:
CALL SHMEM_FENCE

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

112 9. OPENSHMEM LIBRARY API

API description

This routine assures ordering of delivery of Put, AMO, memory store, and nonblocking Put routines to
symmetric data objects. All Put, AMO, memory store, and nonblocking Put routines to symmetric data
objects issued to a particular remote PE on the given context prior to the call to shmem_fence are guar-
anteed to be delivered before any subsequent Put, AMO, memory store, and nonblocking Put routines to
symmetric data objects to the same PE. shmem_fence guarantees order of delivery, not completion. It does
not guarantee order of delivery of nonblocking Get routines.

Return Values
None.

Notes
shmem_fence only provides per-PE ordering guarantees and does not guarantee completion of delivery.
shmem_fence also does not have an effect on the ordering between memory accesses issued by the target
PE. shmem_wait_until, shmem_test, shmem_barrier, shmem_barrier_all routines can be called by the
target PE to guarantee ordering of its memory accesses. There is a subtle difference between shmem_fence
and shmem_quiet, in that, shmem_quiet guarantees completion of Put, AMO, memory store, and non-
blocking Put routines to symmetric data objects which makes the updates visible to all other PEs.
The shmem_quiet routine should be called if completion of Put, AMO, memory store, and nonblocking
Put routines to symmetric data objects is desired when multiple remote PEs are involved.
In an OpenSHMEM program with multithreaded PEs, it is the user’s responsibility to ensure ordering be-
tween operations issued by the threads in a PE that target symmetric memory (e.g. Put, AMO, memory
stores, and nonblocking routines) and calls by threads in that PE to shmem_fence. The shmem_fence rou-
tine can enforce memory store ordering only for the calling thread. Thus, to ensure ordering for memory
stores performed by a thread that is not the thread calling shmem_fence, the update must be made visible to
the calling thread according to the rules of the memory model associated with the threading environment.

EXAMPLES

The following example uses shmem_fence in a C11 program:
#include <stdio.h>
#include <shmem.h>

int main(void)
{

int src = 99;
long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
static long dest[10];
static int targ;
shmem_init();
int me = shmem_my_pe();
if (me == 0) {

shmem_put(dest, source, 10, 1); /* put1 */
shmem_put(dest, source, 10, 2); /* put2 */
shmem_fence();
shmem_put(&targ, &src, 1, 1); /* put3 */
shmem_put(&targ, &src, 1, 2); /* put4 */

}
shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", me, dest[0]);
shmem_finalize();
return 0;

}

Put1 will be ordered to be delivered before put3 and put2 will be ordered to be delivered before put4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 113

9.11.2 SHMEM_QUIET

Waits for completion of all outstanding Put, AMO, memory store, and nonblocking Put and Get routines to symmetric
data objects issued by a PE.

SYNOPSIS

C/C++:
void shmem_quiet(void);

void shmem_ctx_quiet(shmem_ctx_t ctx);

deprecation start
FORTRAN:
CALL SHMEM_QUIET

deprecation end

DESCRIPTION

Arguments
IN ctx The context on which to perform the operation. When this argument is

not provided, the operation is performed on SHMEM_CTX_DEFAULT.

API description

The shmem_quiet routine ensures completion of Put, AMO, memory store, and nonblocking Put and Get
routines on symmetric data objects issued by the calling PE on the given context. All Put, AMO, memory
store, and nonblocking Put and Get routines to symmetric data objects are guaranteed to be completed and
visible to all PEs when shmem_quiet returns.

Return Values
None.

Notes
shmem_quiet is most useful as a way of ensuring completion of several Put, AMO, memory store, and non-
blocking Put and Get routines to symmetric data objects initiated by the calling PE. For example, one might
use shmem_quiet to await delivery of a block of data before issuing another Put or nonblocking Put routine,
which sets a completion flag on another PE. shmem_quiet is not usually needed if shmem_barrier_all or
shmem_barrier are called. The barrier routines wait for the completion of outstanding writes (Put, AMO,
memory stores, and nonblocking Put and Get routines) to symmetric data objects on all PEs.
In an OpenSHMEM program with multithreaded PEs, it is the user’s responsibility to ensure ordering
between operations issued by the threads in a PE that target symmetric memory (e.g. Put, AMO, memory
stores, and nonblocking routines) and calls by threads in that PE to shmem_quiet. The shmem_quiet routine
can enforce memory store ordering only for the calling thread. Thus, to ensure ordering for memory stores
performed by a thread that is not the thread calling shmem_quiet, the update must be made visible to the
calling thread according to the rules of the memory model associated with the threading environment.
A call to shmem_quiet by a thread completes the operations posted prior to calling shmem_quiet. If the user
intends to also complete operations issued by a thread that is not the thread calling shmem_quiet, the user
must ensure that the operations are performed prior to the call to shmem_quiet. This may require the use of
a synchronization operation provided by the threading package. For example, when using POSIX Threads,
the user may call the pthread_barrier_wait routine to ensure that all threads have issued operations before
a thread calls shmem_quiet.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

114 9. OPENSHMEM LIBRARY API

shmem_quiet does not have an effect on the ordering between memory accesses issued by the target PE.
shmem_wait_until, shmem_test, shmem_barrier, shmem_barrier_all routines can be called by the target
PE to guarantee ordering of its memory accesses.

EXAMPLES

The following example uses shmem_quiet in a C11 program:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static long dest[3];
static long source[3] = { 1, 2, 3 };
static int targ;
static int src = 90;
long x[3] = { 0 };
int y = 0;
shmem_init();
int me = shmem_my_pe();
if (me == 0) {

shmem_put(dest, source, 3, 1); /* put1 */
shmem_put(&targ, &src, 1, 2); /* put2 */
shmem_quiet();
shmem_get(x, dest, 3, 1); /* gets updated value from dest on PE 1 to local array x */
shmem_get(&y, &targ, 1, 2); /* gets updated value from targ on PE 2 to local variable

y */
printf("x: { %ld, %ld, %ld }\n", x[0], x[1], x[2]); /* x: { 1, 2, 3 } */
printf("y: %d\n", y); /* y: 90 */
shmem_put(&targ, &src, 1, 1); /* put3 */
shmem_put(&targ, &src, 1, 2); /* put4 */

}
shmem_finalize();
return 0;

}

Put1 and put2 will be completed and visible before put3 and put4.

9.11.3 Synchronization and Communication Ordering in OpenSHMEM

When using the OpenSHMEM API, synchronization, ordering, and completion of communication become critical. The
updates via Put routines, AMOs, stores, and nonblocking Put and Get routines on symmetric data cannot be guaranteed
until some form of synchronization or ordering is introduced in the user’s program. The table below gives the different
synchronization and ordering choices, and the situations where they may be useful.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 115

OpenSHMEM API Working of OpenSHMEM API
Point-to-point synchro-
nization
shmem_wait_until

PE 0 PE 1

shmem_int_wait_until(...)
is completed

shmem_int_p (addr, value, PE 1)

shmem_int_wait_until
(addr, _SHMEM_CMP_EQ, value)

shmem_wait_until is a blocking
operation therefore it waits until

value in addr is updated

The addr is updated to value

Waits for a symmetric variable to be updated by a remote PE. Should be used when
computation on the local PE cannot proceed without the value that the remote PE
is to update.

Ordering puts issued by
a local PE
shmem_fence

PE 0 PE 1

shmem_int_p (addr1, value1, PE 1)

shmem_fence()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 1)

shmem_int_p (addr4, value4, PE 1)

shmem_int_p (addr5, value5, PE 2)

PE 2

value2 is delivered to
PE2, before value5

value1 and value3
are delivered to PE1,

before value4

value4 will be
delivered after value1

and value3
value5 will be

delivered after value2

All Put, AMO, store, and nonblocking Put routines on symmetric data issued to
same PE are guaranteed to be delivered before Puts (to the same PE) issued after
the fence call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

116 9. OPENSHMEM LIBRARY API

OpenSHMEM API Working of OpenSHMEM API
Ordering puts issued by
all PE
shmem_quiet

PE 0 PE 1

shmem_int_p (addr1, value1, PE 1)

shmem_quiet()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 1)

shmem_int_p (addr4, value4, PE 1)

shmem_int_p (addr5, value5, PE 2)

PE KPE 2

 PE K is any PE in the
system.

value1, value2, and value3
are delivered to target PEs
and visible for PE K after
the shmem_quiet() call.

All Put, AMO, store, and nonblocking Put and Get routines on symmetric data
issued by a local PE to all remote PEs are guaranteed to be completed and visible
once quiet returns. This routine should be used when all remote writes issued by a
local PE need to be visible to all other PEs before the local PE proceeds.

Collective synchroniza-
tion over an active set
shmem_barrier

Active Set

PE 0 PE 1

shmem_int_p (...)

shmem_barrier(...)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed
before any PE returns from the call.

shmem_barrier(...)shmem_barrier(...)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_long_put(…)

All local and remote memory operations issued by all PEs within the active set are
guaranteed to be completed before any PE in the active set returns from the call.
Additionally, no PE shall return from the barrier until all PEs in the active set have
entered the same barrier call. This routine should be used when synchronization as
well as completion of all stores and remote memory updates via OpenSHMEM is
required over a sub set of the executing PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 117

OpenSHMEM API Working of OpenSHMEM API
Collective synchroniza-
tion over all PEs
shmem_barrier_all

All PEs

PE 0 PE 1

shmem_int_p (...)

shmem_barrier_all(…)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed before any PE returns from the call.

shmem_barrier_all(…)shmem_barrier_all(…)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_barrier_all(…)

shmem_long_p (...)

All local and remote memory operations issued by all PEs are guaranteed to be
completed before any PE returns from the call. Additionally no PE shall return
from the barrier until all PEs have entered the same shmem_barrier_all call. This
routine should be used when synchronization as well as completion of all stores
and remote memory updates via OpenSHMEM is required over all PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

118 9. OPENSHMEM LIBRARY API

9.12 Distributed Locking Routines

The following section discusses OpenSHMEM locks as a mechanism to provide mutual exclusion. Three routines are
available for distributed locking, set, test and clear.

9.12.1 SHMEM_LOCK

Releases, locks, and tests a mutual exclusion memory lock.

SYNOPSIS

C/C++:
void shmem_clear_lock(long *lock);

void shmem_set_lock(long *lock);

int shmem_test_lock(long *lock);

deprecation start
FORTRAN:
INTEGER lock, SHMEM_TEST_LOCK

CALL SHMEM_CLEAR_LOCK(lock)

CALL SHMEM_SET_LOCK(lock)

I = SHMEM_TEST_LOCK(lock)

deprecation end

DESCRIPTION

Arguments
IN lock A symmetric data object that is a scalar variable or an array of length 1.

This data object must be set to 0 on all PEs prior to the first use. lock
must be of type long. When using Fortran, it must be of default kind.

API description

The shmem_set_lock routine sets a mutual exclusion lock after waiting for the lock to be freed by any
other PE currently holding the lock. Waiting PEs are assured of getting the lock in a first-come, first-served
manner. The shmem_clear_lock routine releases a lock previously set by shmem_set_lock after ensuring
that all local and remote stores initiated in the critical region are complete. The shmem_test_lock routine
sets a mutual exclusion lock only if it is currently cleared. By using this routine, a PE can avoid blocking
on a set lock. If the lock is currently set, the routine returns without waiting. These routines are appropriate
for protecting a critical region from simultaneous update by multiple PEs.

Return Values
The shmem_test_lock routine returns 0 if the lock was originally cleared and this call was able to set the
lock. A value of 1 is returned if the lock had been set and the call returned without waiting to set the lock.

Notes
The term symmetric data object is defined in Section 3. The lock variable should always be initialized to
zero and accessed only by the OpenSHMEM locking API. Changing the value of the lock variable by other
means without using the OpenSHMEM API, can lead to undefined behavior.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

9. OPENSHMEM LIBRARY API 119

EXAMPLES

The following example uses shmem_lock in a C11 program.

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static long lock = 0;
static int count = 0;
shmem_init();
int me = shmem_my_pe();
shmem_set_lock(&lock);
int val = shmem_g(&count, 0); /* get count value on PE 0 */
printf("%d: count is %d\n", me, val);
val++; /* incrementing and updating count on PE 0 */
shmem_p(&count, val, 0);
shmem_quiet();
shmem_clear_lock(&lock);
shmem_finalize();
return 0;

}

9.13 Cache Management

All of these routines are deprecated and are provided for backwards compatibility. Implementations must include all
items in this section, and the routines should function properly and may notify the user about deprecation of their use.

9.13.1 SHMEM_CACHE

Controls data cache utilities.

SYNOPSIS

deprecation start

C/C++:
void shmem_clear_cache_inv(void);

void shmem_set_cache_inv(void);

void shmem_clear_cache_line_inv(void *dest);

void shmem_set_cache_line_inv(void *dest);

void shmem_udcflush(void);

void shmem_udcflush_line(void *dest);

deprecation end

deprecation start
FORTRAN:
CALL SHMEM_CLEAR_CACHE_INV

CALL SHMEM_SET_CACHE_INV

CALL SHMEM_SET_CACHE_LINE_INV(dest)

CALL SHMEM_UDCFLUSH

CALL SHMEM_UDCFLUSH_LINE(dest)

deprecation end

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

120 9. OPENSHMEM LIBRARY API

Arguments

IN dest A data object that is local to the PE. dest can be of any noncharacter
type. When using Fortran, it can be of any kind.

API description

shmem_set_cache_inv enables automatic cache coherency mode.
shmem_set_cache_line_inv enables automatic cache coherency mode for the cache line associated with
the address of dest only.
shmem_clear_cache_inv disables automatic cache coherency mode previously enabled by
shmem_set_cache _inv or shmem_set_cache_line_inv.
shmem_udcflush makes the entire user data cache coherent.
shmem_udcflush_line makes coherent the cache line that corresponds with the address specified by dest.

Return Values
None.

Notes
These routines have been retained for improved backward compatibility with legacy architectures. They
are not required to be supported by implementing them as no-ops and where used, they may have no effect
on cache line states.

EXAMPLES

None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex A

Writing OpenSHMEM Programs

Incorporating OpenSHMEM into Programs

The following section describes how to write a “Hello World" OpenSHMEM program. To write a “Hello World"
OpenSHMEM program, the user must:

• Include the header file shmem.h for C or shmem.fh for Fortran.

• Add the initialization call shmem_init.

• Use OpenSHMEM calls to query the local PE number (shmem_my_pe) and the total number of PEs (shmem_n_pes).

• Add the finalization call shmem_finalize.

In OpenSHMEM, the order in which lines appear in the output is not deterministic because PEs execute asyn-
chronously in parallel.

Listing A.1: “Hello World” example program in C
1 #include <stdio.h>
2 #include <shmem.h> /* The OpenSHMEM header file */
3
4 int main (void)
5 {
6 shmem_init();
7 int me = shmem_my_pe();
8 int npes = shmem_n_pes();
9 printf("Hello from %d of %d\n", me, npes);

10 shmem_finalize();
11 return 0;
12 }

Listing A.2: Possible ordering of expected output with 4 PEs from the program in Listing A.1
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

121

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

122 ANNEX A. WRITING OPENSHMEM PROGRAMS

deprecation start
OpenSHMEM also provides a Fortran API. Listing A.3 shows a similar program written in Fortran.

Listing A.3: “Hello World” example program in Fortran
1 program hello
2
3 include "shmem.fh"
4 integer :: shmem_my_pe, shmem_n_pes
5
6 integer :: npes, me
7
8 call shmem_init ()
9 npes = shmem_n_pes ()

10 me = shmem_my_pe ()
11
12 write (*, 1000) me, npes
13
14 1000 format (’Hello from’, 1X, I4, 1X, ’of’, 1X, I4)
15
16 end program hello

Listing A.4: Possible ordering of expected output with 4 PEs from the program in Listing A.3
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

deprecation end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX A. WRITING OPENSHMEM PROGRAMS 123

The example in Listing A.5 shows a more complex OpenSHMEM program that illustrates the use of symmetric
data objects. Note the declaration of the static short dest array and its use as the remote destination in shmem_put.

The static keyword makes the dest array symmetric on all PEs. Each PE is able to transfer data to a remote dest
array by simply specifying to an OpenSHMEM routine such as shmem_put the local address of the symmetric data
object that will receive the data. This local address resolution aids programmability because the address of the dest
need not be exchanged with the active side (PE 0) prior to the Remote Memory Access (RMA) routine.

Conversely, the declaration of the short source array is asymmetric (local only). The source object does not need
to be symmetric because Put handles the references to the source array only on the active (local) side.

Listing A.5: Example program with symmetric data objects
1 #include <stdio.h>
2 #include <shmem.h>
3
4 #define SIZE 16
5
6 int main(void)
7 {
8 short source[SIZE];
9 static short dest[SIZE];

10 static long lock = 0;
11 shmem_init();
12 int me = shmem_my_pe();
13 int npes = shmem_n_pes();
14 if (me == 0) {
15 /* initialize array */
16 for (int i = 0; i < SIZE; i++)
17 source[i] = i;
18 /* local, not symmetric */
19 /* static makes it symmetric */
20 /* put "size" words into dest on each PE */
21 for (int i = 1; i < npes; i++)
22 shmem_put(dest, source, SIZE, i);
23 }
24 shmem_barrier_all(); /* sync sender and receiver */
25 if (me != 0) {
26 shmem_set_lock(&lock);
27 printf("dest on PE %d is \t", me);
28 for (int i = 0; i < SIZE; i++)
29 printf("%hd \t", dest[i]);
30 printf("\n");
31 shmem_clear_lock(&lock);
32 }
33 shmem_finalize();
34 return 0;
35 }

Listing A.6: Possible ordering of expected output with 4 PEs from the program in Listing A.5
1 dest on PE 1 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 dest on PE 2 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 dest on PE 3 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex B

Compiling and Running Programs

The OpenSHMEM Specification does not specify how OpenSHMEM programs are compiled, linked, and run. This
section shows some examples of how wrapper programs are utilized in the OpenSHMEM Reference Implementation
to compile and launch programs.

1 Compilation

Programs written in C

The OpenSHMEM Reference Implementation provides a wrapper program, named oshcc, to aid in the compilation of
C programs. The wrapper may be called as follows:
oshcc <compiler options> -o myprogram myprogram.c

Where the 〈compiler options〉 are options understood by the underlying C compiler called by oshcc.

Programs written in C++

The OpenSHMEM Reference Implementation provides a wrapper program, named oshc++, to aid in the compilation
of C++ programs. The wrapper may be called as follows:
oshc++ <compiler options> -o myprogram myprogram.cpp

Where the 〈compiler options〉 are options understood by the underlying C++ compiler called by oshc++.

Programs written in Fortran

deprecation start
The OpenSHMEM Reference Implementation provides a wrapper program, named oshfort, to aid in the compilation
of Fortran programs. The wrapper may be called as follows:
oshfort <compiler options> -o myprogram myprogram.f

Where the 〈compiler options〉 are options understood by the underlying Fortran compiler called by oshfort.
deprecation end

2 Running Programs

The OpenSHMEM Reference Implementation provides a wrapper program, named oshrun, to launch OpenSHMEM
programs. The wrapper may be called as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

124

DRAFT

ANNEX B. COMPILING AND RUNNING PROGRAMS 125

oshrun <runner options> -np <#> <program> <program arguments>

The arguments for oshrun are:
〈runner options〉 Options passed to the underlying launcher.
-np 〈#〉 The number of PEs to be used in the execution.
〈program〉 The program executable to be launched.
〈program arguments〉 Flags and other parameters to pass to the program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex C

Undefined Behavior in OpenSHMEM

The OpenSHMEM Specification formalizes the expected behavior of its library routines. In cases where routines are
improperly used or the input is not in accordance with the Specification, the behavior is undefined.

Inappropriate Usage Undefined Behavior
Uninitialized library If the OpenSHMEM library is not initialized, calls to non-initializing

OpenSHMEM routines have undefined behavior. For example, an
implementation may try to continue or may abort immediately upon an
OpenSHMEM call into the uninitialized library.

Multiple calls to initialization
routines

In an OpenSHMEM program where the initialization routines
shmem_init or shmem_init_thread have already been called, any
subsequent calls to these initialization routines result in undefined
behavior.

Accessing non-existent PEs If a communications routine accesses a non-existent PE, then the
OpenSHMEM library may handle this situation in an
implementation-defined way. For example, the library may report an
error message saying that the PE accessed is outside the range of
accessible PEs, or may exit without a warning.

Use of non-symmetric variables Some routines require remotely accessible variables to perform their
function. For example, a Put to a non-symmetric variable may be
trapped where possible and the library may abort the program.
Another implementation may choose to continue execution with or
without a warning.

Non-symmetric allocation of
symmetric memory

The symmetric memory management routines are collectives. For
example, all PEs in the program must call shmem_malloc with the
same size argument. Program behavior after a mismatched
shmem_malloc call is undefined.

Use of null pointers with non-zero
len specified

In any OpenSHMEM routine that takes a pointer and len describing
the number of elements in that pointer, a null pointer may not be given
unless the corresponding len is also specified as zero. Otherwise, the
resulting behavior is undefined. The following cases summarize this
behavior:

• len is 0, pointer is null: supported.

• len is not 0, pointer is null: undefined behavior.

• len is 0, pointer is non-null: supported.

• len is not 0, pointer is non-null: supported.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

126

DRAFT
Annex D

Interoperability with other Programming
Models

1 MPI Interoperability

OpenSHMEM routines may be used in conjunction with MPI routines in the same program. For example, on Sili-
con Graphics International (SGI) systems, programs that use both MPI and OpenSHMEM routines call MPI_Init and
MPI_Finalize but omit the call to the shmem_init routine. OpenSHMEM PE numbers are equal to the MPI rank
within the MPI_COMM_WORLD environment variable. Note that this indexing precludes use of OpenSHMEM
routines between processes in different MPI_COMM_WORLDs. For example, MPI processes started using the
MPI_Comm_spawn routine cannot use OpenSHMEM routines to communicate with their parent MPI processes.

On SGI systems where MPI jobs use Transmission Control Protocol (TCP)/sockets for inter-host communication,
OpenSHMEM routines may be used to communicate with processes running on the same host. The shmem_pe_accessible
routine should be used to determine if a remote PE is accessible via OpenSHMEM communication from the local PE.
When running an MPI program involving multiple executable files, OpenSHMEM routines may be used to communi-
cate with processes running from the same or different executable files, provided that the communication is limited to
symmetric data objects. On these systems, static memory—such as a Fortran common block or C global variable—is
symmetric between processes running from the same executable file, but is not symmetric between processes running
from different executable files. Data allocated from the symmetric heap (e.g., shmem_malloc, shpalloc) is symmetric
across the same or different executable files. The shmem_addr_accessible routine should be used to determine if a
local address is accessible via OpenSHMEM communication from a remote PE.

Another important feature of these systems is that the shmem_pe_accessible routine returns TRUE only if the
remote PE is a process running from the same executable file as the local PE, indicating that full OpenSHMEM support
(static memory and symmetric heap) is available. When using OpenSHMEM routines within an MPI program, the use
of MPI memory-placement environment variables is required when using non-default memory-placement options.

127

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex E

History of OpenSHMEM

SHMEM has a long history as a parallel-programming model and has been extensively used on a number of products
since 1993, including the Cray T3D, Cray X1E, Cray XT3 and XT4, SGI Origin, SGI Altix, Quadrics-based clusters,
and InfiniBand-based clusters.

• SHMEM Timeline

– Cray SHMEM

* SHMEM first introduced by Cray Research, Inc. in 1993 for Cray T3D

* Cray was acquired by SGI in 1996

* Cray was acquired by Tera in 2000 (MTA)

* Platforms: Cray T3D, T3E, C90, J90, SV1, SV2, X1, X2, XE, XMT, XT

– SGI SHMEM

* SGI acquired Cray Research, Inc. and SHMEM was integrated into SGI’s Message Passing Toolkit
(MPT)

* SGI currently owns the rights to SHMEM and OpenSHMEM

* Platforms: Origin, Altix 4700, Altix XE, ICE, UV

* SGI was acquired by Rackable Systems in 2009

* SGI and OSSS signed a SHMEM trademark licensing agreement in 2010

* HPE acquired SGI in 2016

A listing of OpenSHMEM implementations can be found on http://www.openshmem.org/.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

128

http://www.openshmem.org/

DRAFT
Annex F

OpenSHMEM Specification and Deprecated
API

1 Overview

For the OpenSHMEM Specification, deprecation is the process of identifying API that is supported but no longer
recommended for use by users. The deprecated API must be supported until clearly indicated as otherwise by the
Specification. This chapter records the API or functionality that have been deprecated, the version of the OpenSHMEM
Specification that effected the deprecation, and the most recent version of the OpenSHMEM Specification in which the
feature was supported before removal.

Deprecated API Deprecated Since Last Version Supported Replaced By
Header Directory: mpp 1.1 Current (none)
C/C++: start_pes 1.2 Current shmem_init
Fortran: START_PES 1.2 Current SHMEM_INIT
Implicit finalization 1.2 Current shmem_finalize
C/C++: _my_pe 1.2 Current shmem_my_pe
C/C++: _num_pes 1.2 Current shmem_n_pes
Fortran: MY_PE 1.2 Current SHMEM_MY_PE
Fortran: NUM_PES 1.2 Current SHMEM_N_PES
C/C++: shmalloc 1.2 Current shmem_malloc
C/C++: shfree 1.2 Current shmem_free
C/C++: shrealloc 1.2 Current shmem_realloc
C/C++: shmemalign 1.2 Current shmem_align
Fortran: SHMEM_PUT 1.2 Current SHMEM_PUT8 or SHMEM_PUT64
C/C++: shmem_clear_cache_inv
Fortran: SHMEM_CLEAR_CACHE_INV 1.3 Current (none)

C/C++: shmem_clear_cache_line_inv 1.3 Current (none)
C/C++: shmem_set_cache_inv
Fortran: SHMEM_SET_CACHE_INV 1.3 Current (none)

C/C++: shmem_set_cache_line_inv
Fortran: SHMEM_SET_CACHE_LINE_INV 1.3 Current (none)

C/C++: shmem_udcflush
Fortran: SHMEM_UDCFLUSH 1.3 Current (none)

C/C++: shmem_udcflush_line
Fortran: SHMEM_UDCFLUSH_LINE 1.3 Current (none)

_SHMEM_SYNC_VALUE 1.3 Current SHMEM_SYNC_VALUE
_SHMEM_BARRIER_SYNC_SIZE 1.3 Current SHMEM_BARRIER_SYNC_SIZE
_SHMEM_BCAST_SYNC_SIZE 1.3 Current SHMEM_BCAST_SYNC_SIZE
_SHMEM_COLLECT_SYNC_SIZE 1.3 Current SHMEM_COLLECT_SYNC_SIZE
_SHMEM_REDUCE_SYNC_SIZE 1.3 Current SHMEM_REDUCE_SYNC_SIZE
_SHMEM_REDUCE_MIN_WRKDATA_SIZE 1.3 Current SHMEM_REDUCE_MIN_WRKDATA_SIZE
_SHMEM_MAJOR_VERSION 1.3 Current SHMEM_MAJOR_VERSION
_SHMEM_MINOR_VERSION 1.3 Current SHMEM_MINOR_VERSION
_SHMEM_MAX_NAME_LEN 1.3 Current SHMEM_MAX_NAME_LEN
_SHMEM_VENDOR_STRING 1.3 Current SHMEM_VENDOR_STRING
_SHMEM_CMP_EQ 1.3 Current SHMEM_CMP_EQ
_SHMEM_CMP_NE 1.3 Current SHMEM_CMP_NE
_SHMEM_CMP_LT 1.3 Current SHMEM_CMP_LT
_SHMEM_CMP_LE 1.3 Current SHMEM_CMP_LE

129

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

130 ANNEX F. OPENSHMEM SPECIFICATION AND DEPRECATED API

Deprecated API Deprecated Since Last Version Supported Replaced By
_SHMEM_CMP_GT 1.3 Current SHMEM_CMP_GT
_SHMEM_CMP_GE 1.3 Current SHMEM_CMP_GE
SMA_VERSION 1.4 Current SHMEM_VERSION
SMA_INFO 1.4 Current SHMEM_INFO
SMA_SYMMETRIC_SIZE 1.4 Current SHMEM_SYMMETRIC_SIZE
SMA_DEBUG 1.4 Current SHMEM_DEBUG
C/C++: shmem_wait
C/C++: shmem_<TYPENAME>_wait 1.4 Current See Notes for shmem_wait_until

C/C++: shmem_wait_until 1.4 Current C11: shmem_wait_until, C/C++: shmem_long_wait_until
C11: shmem_fetch
C/C++: shmem_<TYPENAME>_fetch 1.4 Current shmem_atomic_fetch

C11: shmem_set
C/C++: shmem_<TYPENAME>_set 1.4 Current shmem_atomic_set

C11: shmem_cswap
C/C++: shmem_<TYPENAME>_cswap 1.4 Current shmem_atomic_compare_swap

C11: shmem_swap
C/C++: shmem_<TYPENAME>_swap 1.4 Current shmem_atomic_swap

C11: shmem_finc
C/C++: shmem_<TYPENAME>_finc 1.4 Current shmem_atomic_fetch_inc

C11: shmem_inc
C/C++: shmem_<TYPENAME>_inc 1.4 Current shmem_atomic_inc

C11: shmem_fadd
C/C++: shmem_<TYPENAME>_fadd 1.4 Current shmem_atomic_fetch_add

C11: shmem_add
C/C++: shmem_<TYPENAME>_add 1.4 Current shmem_atomic_add

Entire Fortran API 1.4 Current (none)

2 Deprecation Rationale

2.1 Header Directory: mpp

In addition to the default system header paths, OpenSHMEM implementations must provide all OpenSHMEM-specified
header files from the mpp header directory such that these headers can be referenced in C/C++ as
#include <mpp/shmem.h>
#include <mpp/shmemx.h>

and in Fortran as
include ’mpp/shmem.fh’
include ’mpp/shmemx.fh’

for backwards compatibility with SGI SHMEM.

2.2 C/C++: start_pes

The C/C++ routine start_pes includes an unnecessary initialization argument that is remnant of historical SHMEM
implementations and no longer reflects the requirements of modern OpenSHMEM implementations. Furthermore, the
naming of start_pes does not include the standardized shmem_ naming prefix. This routine has been deprecated and
OpenSHMEM users are encouraged to use shmem_init instead.

2.3 Implicit Finalization

Implicit finalization was deprecated and replaced with explicit finalization using the shmem_finalize routine. Explicit
finalization improves portability and also improves interoperability with profiling and debugging tools.

2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign

The C/C++ routines _my_pe, _num_pes, shmalloc, shfree, shrealloc, and shmemalign were deprecated in order to
normalize the OpenSHMEM API to use shmem_ as the standard prefix for all routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX F. OPENSHMEM SPECIFICATION AND DEPRECATED API 131

2.5 Fortran: START_PES, MY_PE, NUM_PES

The Fortran routines START_PES, MY_PE, and NUM_PES were deprecated in order to minimize the API differences
from the deprecation of C/C++ routines start_pes, _my_pe, and _num_pes.

2.6 Fortran: SHMEM_PUT

The Fortran routine SHMEM_PUT is defined only for the Fortran API and is semantically identical to Fortran routines
SHMEM_PUT8 and SHMEM_PUT64. Since SHMEM_PUT8 and SHMEM_PUT64 have defined equivalents in the
C/C++ interface, SHMEM_PUT is ambiguous and has been deprecated.

2.7 SHMEM_CACHE

The SHMEM_CACHE API

C/C++: Fortran:
shmem_clear_cache_inv SHMEM_CLEAR_CACHE_INV
shmem_set_cache_inv SHMEM_SET_CACHE_INV
shmem_set_cache_line_inv SHMEM_SET_CACHE_LINE_INV
shmem_udcflush SHMEM_UDCFLUSH
shmem_udcflush_line SHMEM_UDCFLUSH_LINE
shmem_clear_cache_line_inv

was originally implemented for systems with cache-management instructions. This API has largely gone unused on
cache-coherent system architectures. SHMEM_CACHE has been deprecated.

2.8 _SHMEM_* Library Constants

The library constants

_SHMEM_SYNC_VALUE _SHMEM_MAX_NAME_LEN
_SHMEM_BARRIER_SYNC_SIZE _SHMEM_VENDOR_STRING
_SHMEM_BCAST_SYNC_SIZE _SHMEM_CMP_EQ
_SHMEM_COLLECT_SYNC_SIZE _SHMEM_CMP_NE
_SHMEM_REDUCE_SYNC_SIZE _SHMEM_CMP_LT
_SHMEM_REDUCE_MIN_WRKDATA_SIZE _SHMEM_CMP_LE
_SHMEM_MAJOR_VERSION _SHMEM_CMP_GT
_SHMEM_MINOR_VERSION _SHMEM_CMP_GE

do not adhere to the C standard’s reserved identifiers and the C++ standard’s reserved names. These constants were
deprecated and replaced with corresponding constants of prefix SHMEM_ that adhere to C/C++ and Fortran naming
conventions.

2.9 SMA_* Environment Variables

The environment variables SMA_VERSION, SMA_INFO, SMA_SYMMETRIC_SIZE, and SMA_DEBUG were depre-
cated in order to normalize the OpenSHMEM API to use SHMEM_ as the standard prefix for all environment variables.

2.10 C/C++: shmem_wait

The C/C++ interface for shmem_wait and shmem_<TYPENAME>_wait was identified as unintuitive with respect
to the comparison operation it performed. As shmem_wait can be trivially replaced by shmem_wait_until where cmp
is SHMEM_CMP_NE, the shmem_wait interface was deprecated in favor of shmem_wait_until, which makes the
comparison operation explicit and better communicates the developer’s intent.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

132 ANNEX F. OPENSHMEM SPECIFICATION AND DEPRECATED API

2.11 C/C++: shmem_wait_until

The long-typed C/C++ routine shmem_wait_until was deprecated in favor of the C11 type-generic interface of the
same name or the explicitly typed C/C++ routine shmem_long_wait_until.

2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc,
shmem_inc, shmem_fadd, shmem_add

The C11 and C/C++ interfaces for

C11: C/C++:
shmem_fetch shmem_<TYPENAME>_fetch
shmem_set shmem_<TYPENAME>_set
shmem_cswap shmem_<TYPENAME>_cswap
shmem_swap shmem_<TYPENAME>_swap
shmem_finc shmem_<TYPENAME>_finc
shmem_inc shmem_<TYPENAME>_inc
shmem_fadd shmem_<TYPENAME>_fadd
shmem_add shmem_<TYPENAME>_add

were deprecated and replaced with similarly named interfaces within the shmem_atomic_* namespace in order to more
clearly identify these calls as performing atomic operations. In addition, the abbreviated names “cswap”, “finc”, and
“fadd” were expanded for clarity to “compare_swap”, “fetch_inc”, and “fetch_add”.

2.13 Fortran API

The entire OpenSHMEM Fortran API was deprecated because of a general lack of use and a lack of conformance with
legacy Fortran standards. In lieu of an extensive update of the Fortran API, Fortran users are encouraged to leverage the
OpenSHMEM Specification’s C API through the Fortran–C interoperability initially standardized by Fortran 20031.

1Formally, Fortran 2003 is known as ISO/IEC 1539-1:2004(E).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex G

Changes to this Document

1 Version 1.5

Major changes in OpenSHMEM 1.5 include . . .
The following list describes the specific changes in OpenSHMEM 1.5:

• This item is a template for changelist entries and should be deleted before this document is published.
See Annex G.

2 Version 1.4

Major changes in OpenSHMEM 1.4 include multithreading support, contexts for communication management, shmem_sync,
shmem_calloc, expanded type support, a new namespace for atomic operations, atomic bitwise operations, shmem_test
for nonblocking point-to-point synchronization, and C11 type-generic interfaces for point-to-point synchronization.

The following list describes the specific changes in OpenSHMEM 1.4:

• New communication management API, including shmem_ctx_create; shmem_ctx_destroy; and additional RMA,
AMO, and memory ordering routines that accept shmem_ctx_t arguments.
See Section 9.5.

• New API shmem_sync_all and shmem_sync to provide PE synchronization without completing pending com-
munication operations.
See Sections 9.9.3 and 9.9.4.

• Clarified that the OpenSHMEM extensions header files are required, even when empty.
See Section 5.

• Clarified that the SHMEM_GET64 and SHMEM_GET64_NBI routines are included in the Fortran language
bindings.
See Sections 9.6.4 and 9.7.2.

• Clarified that shmem_init must be matched with a call to shmem_finalize.
See Sections 9.1.1 and 9.1.4.

• Added the SHMEM_SYNC_SIZE constant.
See Section 6.

• Added type-generic interfaces for shmem_wait_until.
See Section 9.10.1.

133

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

134 ANNEX G. CHANGES TO THIS DOCUMENT

• Removed the volatile qualifiers from the ivar arguments to shmem_wait routines and the lock arguments in the
lock API. Rationale: Volatile qualifiers were added to several API routines in OpenSHMEM 1.3; however, they
were later found to be unnecessary.
See Sections 9.10.1 and 9.12.1.

• Deprecated the SMA_* environment variables and added equivalent SHMEM_* environment variables.
See Section 8.

• Added the C11 _Noreturn function specifier to shmem_global_exit.
See Section 9.1.5.

• Clarified ordering semantics of memory ordering, point-to-point synchronization, and collective synchronization
routines.

• Clarified deprecation overview and added deprecation rationale in Annex F.
See Section F.

• Deprecated header directory mpp.
See Section F.

• Deprecated the shmem_wait functions and the long-typed C/C++ shmem_wait_until function.
See Section 9.10.

• Added the shmem_test functions.
See Section 9.10.

• Added the shmem_calloc function.
See Section 9.3.2.

• Introduced the thread safe semantics that define the interaction between OpenSHMEM routines and user threads.
See Section 9.2.

• Added the new routine shmem_init_thread to initialize the OpenSHMEM library with one of the defined thread
levels.
See Section 9.2.1.

• Added the new routine shmem_query_thread to query the thread level provided by the OpenSHMEM imple-
mentation.
See Section 9.2.2.

• Clarified the semantics of shmem_quiet for a multithreaded OpenSHMEM PE.
See Section 9.11.2

• Revised the description of shmem_barrier_all for a multithreaded OpenSHMEM PE.
See Section 9.9.1

• Revised the description of shmem_wait for a multithreaded OpenSHMEM PE.
See Section 9.10.1

• Clarified description for SHMEM_VENDOR_STRING.
See Section 6.

• Clarified description for SHMEM_MAX_NAME_LEN.
See Section 6.

• Clarified API description for shmem_info_get_name.
See Section 9.1.10.

• Expanded the type support for RMA, AMO, and point-to-point synchronization operations.
See Tables 3, 4, 5, and 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 135

• Renamed AMO operations to use shmem_atomic_* prefix and deprecated old AMO routines.
See Section 9.8.

• Added fetching and non-fetching bitwise AND, OR, and XOR atomic operations.
See Section 9.8.

• Deprecated the entire Fortran API.

• Replaced the complex macro in complex-typed reductions with the C99 (and later) type specifier _Complex to
remove an implicit dependence on complex.h.
See Section 9.9.9.

• Clarified that complex-typed reductions in C are optionally supported.
See Section 9.9.9.

3 Version 1.3

Major changes in OpenSHMEM 1.3 include the addition of nonblocking RMA operations, atomic Put and Get opera-
tions, all-to-all collectives, and C11 type-generic interfaces for RMA and AMO operations.

The following list describes the specific changes in OpenSHMEM 1.3:

• Clarified implementation of PEs as threads.

• Added const to every read-only pointer argument.

• Clarified definition of Fence.
See Section 2.

• Clarified implementation of symmetric memory allocation.
See Section 3.

• Restricted atomic operation guarantees to other atomic operations with the same datatype.
See Section 3.1.

• Deprecation of all constants that start with _SHMEM_*.
See Section 6.

• Added a type-generic interface to OpenSHMEM RMA and AMO operations based on C11 Generics.
See Sections 9.6, 9.7 and 9.8.

• New nonblocking variants of remote memory access, SHMEM_PUT_NBI and SHMEM_GET_NBI.
See Sections 9.7.1 and 9.7.2.

• New atomic elemental read and write operations, SHMEM_FETCH and SHMEM_SET.
See Sections 9.8.1 and 9.8.2

• New alltoall data exchange operations, SHMEM_ALLTOALL and SHMEM_ALLTOALLS.
See Sections 9.9.10 and 9.9.11.

• Added volatile to remotely accessible pointer argument in SHMEM_WAIT and SHMEM_LOCK.
See Sections 9.10.1 and 9.12.1.

• Deprecation of SHMEM_CACHE.
See Section 9.13.1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

136 ANNEX G. CHANGES TO THIS DOCUMENT

4 Version 1.2

Major changes in OpenSHMEM 1.2 include a new initialization routine (shmem_init), improvements to the execu-
tion model with an explicit library-finalization routine (shmem_finalize), an early-exit routine (shmem_global_exit),
namespace standardization, and clarifications to several API descriptions.

The following list describes the specific changes in OpenSHMEM 1.2:

• Added specification of pSync initialization for all routines that use it.

• Replaced all placeholder variable names target with dest to avoid confusion with Fortran’s target keyword.

• New Execution Model for exiting/finishing OpenSHMEM programs.
See Section 4.

• New library constants to support API that query version and name information.
See Section 6.

• New API shmem_init to provide mechanism to start an OpenSHMEM program and replace deprecated start_pes.
See Section 9.1.1.

• Deprecation of _my_pe and _num_pes routines.
See Sections 9.1.2 and 9.1.3.

• New API shmem_finalize to provide collective mechanism to cleanly exit an OpenSHMEM program and release
resources.
See Section 9.1.4.

• New API shmem_global_exit to provide mechanism to exit an OpenSHMEM program.
See Section 9.1.5.

• Clarification related to the address of the referenced object in shmem_ptr.
See Section 9.1.8.

• New API to query the version and name information.
See Section 9.1.9 and 9.1.10.

• OpenSHMEM library API normalization. All C symmetric memory management API begins with shmem_.
See Section 9.3.1.

• Notes and clarifications added to shmem_malloc.
See Section 9.3.1.

• Deprecation of Fortran API routine SHMEM_PUT.
See Section 9.6.1.

• Clarification related to shmem_wait.
See Section 9.10.1.

• Undefined behavior for null pointers without zero counts added.
See Annex C

• Addition of new Annex for clearly specifying deprecated API and its support across versions of the Open-
SHMEM Specification.
See Annex F.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 137

5 Version 1.1

Major changes from OpenSHMEM 1.0 to OpenSHMEM 1.1 include the introduction of the shmemx.h header file for
non-standard API extensions, clarifications to completion semantics and API descriptions in agreement with the SGI
SHMEM specification, and general readabilty and usability improvements to the document structure.

The following list describes the specific changes in OpenSHMEM 1.1:

• Clarifications of the completion semantics of memory synchronization interfaces.
See Section 9.11.

• Clarification of the completion semantics of memory load and store operations in context of shmem_barrier_all
and shmem_barrier routines.
See Section 9.9.1 and 9.9.2.

• Clarification of the completion and ordering semantics of shmem_quiet and shmem_fence.
See Section 9.11.2 and 9.11.1.

• Clarifications of the completion semantics of RMA and AMO routines.
See Sections 9.6 and 9.8

• Clarifications of the memory model and the memory alignment requirements for symmetric data objects.
See Section 3.

• Clarification of the execution model and the definition of a PE.
See Section 4

• Clarifications of the semantics of shmem_pe_accessible and shmem_addr_accessible.
See Section 9.1.6 and 9.1.7.

• Added an annex on interoperability with MPI.
See Annex D.

• Added examples to the different interfaces.

• Clarification of the naming conventions for constant in C and Fortran.
See Section 6 and 9.10.1.

• Added API calls: shmem_char_p, shmem_char_g.
See Sections 9.6.2 and 9.6.5.

• Removed API calls: shmem_char_put, shmem_char_get.
See Sections 9.6.1 and 9.6.4.

• The usage of ptrdiff_t, size_t, and int in the interface signature was made consistent with the description.
See Sections 9.9, 9.6.3, and 9.6.6.

• Revised shmem_barrier example.
See Section 9.9.2.

• Clarification of the initial value of pSync work arrays for shmem_barrier.
See Section 9.9.2.

• Clarification of the expected behavior when multiple start_pes calls are encountered.
See Section 9.1.11.

• Corrected the definition of atomic increment operation.
See Section 9.8.6.

• Clarification of the size of the symmetric heap and when it is set.
See Section 9.3.1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

138 ANNEX G. CHANGES TO THIS DOCUMENT

• Clarification of the integer and real sizes for Fortran API.
See Sections 9.8.8, 9.8.3, 9.8.4, 9.8.5, 9.8.6, and 9.8.7.

• Clarification of the expected behavior on program exit.
See Section 4, Execution Model.

• More detailed description for the progress of OpenSHMEM operations provided.
See Section 4.1.

• Clarification of naming convention for non-standard interfaces and their inclusion in shmemx.h.
See Section 5.

• Various fixes to OpenSHMEM code examples across the Specification to include appropriate header files.

• Removing requirement that implementations should detect size mismatch and return error information for shmal-
loc and ensuring consistent language.
See Sections 9.3.1 and Annex C.

• Fortran programming fixes for examples.
See Sections 9.9.9 and 9.10.1.

• Clarifications of the reuse pSync and pWork across collectives.
See Sections 9.9, 9.9.6, 9.9.7 and 9.9.9.

• Name changes for UV and ICE for SGI systems.
See Annex E.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Index

_SHMEM_BARRIER_SYNC_SIZE, 7, 129
_SHMEM_BCAST_SYNC_SIZE, 7, 129
_SHMEM_CMP_EQ, 10, 129
_SHMEM_CMP_GE, 11, 130
_SHMEM_CMP_GT, 11, 130
_SHMEM_CMP_LE, 10, 129
_SHMEM_CMP_LT, 10, 129
_SHMEM_CMP_NE, 10, 129
_SHMEM_COLLECT_SYNC_SIZE, 8, 129
_SHMEM_MAJOR_VERSION, 9, 129
_SHMEM_MAX_NAME_LEN, 9, 129
_SHMEM_MINOR_VERSION, 9, 129
_SHMEM_REDUCE_MIN_WRKDATA_SIZE, 8, 129
_SHMEM_REDUCE_SYNC_SIZE, 7, 129
_SHMEM_SYNC_VALUE, 6, 129
_SHMEM_VENDOR_STRING, 9, 129
_my_pe, 129
_num_pes, 129

Bitwise AMO Types and Names, 63

Constants, 5

Deprecated API, 129

Environment Variables, 12
Extended AMO Types and Names, 62

Handles, 11

Library Constants, 5
Library Handles, 11

MY_PE, 129

NUM_PES, 129

Point-to-Point Comparison Constants, 108
Point-to-Point Synchronization Types and Names, 107

shfree, 129
shmalloc, 129
shmem_<TYPENAME>_add, 74, 130
shmem_<TYPENAME>_atomic_add, 73
shmem_<TYPENAME>_atomic_and, 76
shmem_<TYPENAME>_atomic_compare_swap, 65
shmem_<TYPENAME>_atomic_fetch, 61

shmem_<TYPENAME>_atomic_fetch_add, 72
shmem_<TYPENAME>_atomic_fetch_and, 75
shmem_<TYPENAME>_atomic_fetch_inc, 68
shmem_<TYPENAME>_atomic_fetch_or, 77
shmem_<TYPENAME>_atomic_fetch_xor, 78
shmem_<TYPENAME>_atomic_inc, 70
shmem_<TYPENAME>_atomic_or, 77
shmem_<TYPENAME>_atomic_set, 64
shmem_<TYPENAME>_atomic_swap, 66
shmem_<TYPENAME>_atomic_xor, 79
shmem_<TYPENAME>_cswap, 65, 130
shmem_<TYPENAME>_fadd, 72, 130
shmem_<TYPENAME>_fetch, 62, 130
shmem_<TYPENAME>_finc, 69, 130
shmem_<TYPENAME>_g, 54
shmem_<TYPENAME>_get, 52
shmem_<TYPENAME>_get_nbi, 59
shmem_<TYPENAME>_iget, 55
shmem_<TYPENAME>_inc, 70, 130
shmem_<TYPENAME>_iput, 50
shmem_<TYPENAME>_p, 49
shmem_<TYPENAME>_put, 46
shmem_<TYPENAME>_put_nbi, 57
shmem_<TYPENAME>_set, 64, 130
shmem_<TYPENAME>_swap, 67, 130
shmem_<TYPENAME>_test, 110
shmem_<TYPENAME>_wait, 108, 130
shmem_<TYPENAME>_wait_until, 108
shmem_add, 73, 130
SHMEM_ADDR_ACCESSIBLE, 19
shmem_addr_accessible, 19
shmem_align, 27
SHMEM_ALLTOALL32, 102
shmem_alltoall32, 101
SHMEM_ALLTOALL64, 102
shmem_alltoall64, 102
SHMEM_ALLTOALL_SYNC_SIZE, 8
SHMEM_ALLTOALLS32, 104
shmem_alltoalls32, 104
SHMEM_ALLTOALLS64, 104
shmem_alltoalls64, 104
SHMEM_ALLTOALLS_SYNC_SIZE, 8
shmem_atomic_add, 73
shmem_atomic_and, 76
shmem_atomic_compare_swap, 65

139

DRAFT

140 INDEX

shmem_atomic_fetch, 61
shmem_atomic_fetch_add, 72
shmem_atomic_fetch_and, 75
shmem_atomic_fetch_inc, 68
shmem_atomic_fetch_or, 76
shmem_atomic_fetch_xor, 78
shmem_atomic_inc, 70
shmem_atomic_or, 77
shmem_atomic_set, 63
shmem_atomic_swap, 66
shmem_atomic_xor, 79
SHMEM_BARRIER, 82
shmem_barrier, 82
SHMEM_BARRIER_ALL, 80
shmem_barrier_all, 80
SHMEM_BARRIER_SYNC_SIZE, 7
SHMEM_BCAST_SYNC_SIZE, 7
SHMEM_BROADCAST32, 87
shmem_broadcast32, 87
SHMEM_BROADCAST4, 87
SHMEM_BROADCAST64, 87
shmem_broadcast64, 87
SHMEM_BROADCAST8, 87
shmem_calloc, 28
SHMEM_CHARACTER_GET, 52
SHMEM_CHARACTER_GET_NBI, 59
SHMEM_CHARACTER_PUT, 47
SHMEM_CHARACTER_PUT_NBI, 57
SHMEM_CLEAR_CACHE_INV, 119, 129
shmem_clear_cache_inv, 119, 129
shmem_clear_cache_line_inv, 119, 129
SHMEM_CLEAR_LOCK, 118
shmem_clear_lock, 118
SHMEM_CMP_EQ, 10, 108
SHMEM_CMP_GE, 11, 108
SHMEM_CMP_GT, 11, 108
SHMEM_CMP_LE, 10, 108
SHMEM_CMP_LT, 10, 108
SHMEM_CMP_NE, 10, 108
SHMEM_COLLECT32, 90
shmem_collect32, 90
SHMEM_COLLECT4, 90
SHMEM_COLLECT64, 90
shmem_collect64, 90
SHMEM_COLLECT8, 90
SHMEM_COLLECT_SYNC_SIZE, 8
SHMEM_COMP4_PROD_TO_ALL, 96
SHMEM_COMP4_SUM_TO_ALL, 95
SHMEM_COMP8_PROD_TO_ALL, 96
SHMEM_COMP8_SUM_TO_ALL, 95
SHMEM_COMPLEX_GET, 52
SHMEM_COMPLEX_GET_NBI, 59
SHMEM_COMPLEX_IGET, 55
SHMEM_COMPLEX_IPUT, 50

SHMEM_COMPLEX_PUT, 47
SHMEM_COMPLEX_PUT_NBI, 57
shmem_complexd_prod_to_all, 96
shmem_complexd_sum_to_all, 95
shmem_complexf_prod_to_all, 96
shmem_complexf_sum_to_all, 95
shmem_cswap, 65, 130
shmem_ctx_<TYPENAME>_atomic_add, 73
shmem_ctx_<TYPENAME>_atomic_and, 76
shmem_ctx_<TYPENAME>_atomic_compare_swap, 65
shmem_ctx_<TYPENAME>_atomic_fetch, 61
shmem_ctx_<TYPENAME>_atomic_fetch_add, 72
shmem_ctx_<TYPENAME>_atomic_fetch_and, 75
shmem_ctx_<TYPENAME>_atomic_fetch_inc, 68
shmem_ctx_<TYPENAME>_atomic_fetch_or, 77
shmem_ctx_<TYPENAME>_atomic_fetch_xor, 78
shmem_ctx_<TYPENAME>_atomic_inc, 70
shmem_ctx_<TYPENAME>_atomic_or, 77
shmem_ctx_<TYPENAME>_atomic_set, 64
shmem_ctx_<TYPENAME>_atomic_swap, 66
shmem_ctx_<TYPENAME>_atomic_xor, 79
shmem_ctx_<TYPENAME>_g, 54
shmem_ctx_<TYPENAME>_get, 52
shmem_ctx_<TYPENAME>_get_nbi, 59
shmem_ctx_<TYPENAME>_iget, 55
shmem_ctx_<TYPENAME>_iput, 50
shmem_ctx_<TYPENAME>_p, 49
shmem_ctx_<TYPENAME>_put, 46
shmem_ctx_<TYPENAME>_put_nbi, 57
shmem_ctx_create, 40
SHMEM_CTX_DEFAULT, 11, 40
shmem_ctx_destroy, 42
shmem_ctx_fence, 111
shmem_ctx_get<SIZE>, 52
shmem_ctx_get<SIZE>_nbi, 59
shmem_ctx_get_team, 45
shmem_ctx_getmem, 52
shmem_ctx_getmem_nbi, 59
shmem_ctx_iget<SIZE>, 55
shmem_ctx_iput<SIZE>, 50
SHMEM_CTX_NOSTORE, 6, 41
SHMEM_CTX_PRIVATE, 6, 41
shmem_ctx_put<SIZE>, 47
shmem_ctx_put<SIZE>_nbi, 57
shmem_ctx_putmem, 47
shmem_ctx_putmem_nbi, 57
shmem_ctx_quiet, 113
SHMEM_CTX_SERIALIZED, 6, 41
SHMEM_DEBUG, 12
SHMEM_DOUBLE_GET, 52
SHMEM_DOUBLE_GET_NBI, 59
SHMEM_DOUBLE_IGET, 55
SHMEM_DOUBLE_IPUT, 50
shmem_double_max_to_all, 94

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

INDEX 141

shmem_double_min_to_all, 95
shmem_double_prod_to_all, 96
SHMEM_DOUBLE_PUT, 47
SHMEM_DOUBLE_PUT_NBI, 58
shmem_double_sum_to_all, 95
shmem_fadd, 72, 130
SHMEM_FCOLLECT32, 90
shmem_fcollect32, 90
SHMEM_FCOLLECT4, 90
SHMEM_FCOLLECT64, 90
shmem_fcollect64, 90
SHMEM_FCOLLECT8, 90
SHMEM_FENCE, 111
shmem_fence, 111
shmem_fetch, 62, 130
SHMEM_FINALIZE, 16
shmem_finalize, 16
shmem_finc, 68, 130
shmem_float_max_to_all, 94
shmem_float_min_to_all, 95
shmem_float_prod_to_all, 96
shmem_float_sum_to_all, 95
shmem_free, 27
shmem_g, 54
shmem_get, 52
SHMEM_GET128, 52
SHMEM_GET128_NBI, 59
SHMEM_GET32, 52
SHMEM_GET32_NBI, 59
SHMEM_GET4, 52
SHMEM_GET4_NBI, 59
SHMEM_GET64, 52
SHMEM_GET64_NBI, 59
SHMEM_GET8, 52
SHMEM_GET8_NBI, 59
shmem_get<SIZE>, 52
shmem_get<SIZE>_nbi, 59
shmem_get_nbi, 59
SHMEM_GETMEM, 52
shmem_getmem, 52
SHMEM_GETMEM_NBI, 59
shmem_getmem_nbi, 59
SHMEM_GLOBAL_EXIT, 17
shmem_global_exit, 17
shmem_iget, 55
SHMEM_IGET128, 56
SHMEM_IGET32, 55
SHMEM_IGET4, 55
SHMEM_IGET64, 56
SHMEM_IGET8, 55
shmem_iget<SIZE>, 55
shmem_inc, 70, 130
SHMEM_INFO, 12
SHMEM_INFO_GET_NAME, 22

shmem_info_get_name, 22
SHMEM_INFO_GET_VERSION, 22
shmem_info_get_version, 22
SHMEM_INIT, 13
shmem_init, 13
shmem_init_thread, 25
SHMEM_INT4_ADD, 74
SHMEM_INT4_AND_TO_ALL, 94
SHMEM_INT4_CSWAP, 65
SHMEM_INT4_FADD, 72
SHMEM_INT4_FETCH, 62
SHMEM_INT4_FINC, 69
SHMEM_INT4_INC, 70
SHMEM_INT4_MAX_TO_ALL, 94
SHMEM_INT4_MIN_TO_ALL, 95
SHMEM_INT4_OR_TO_ALL, 97
SHMEM_INT4_PROD_TO_ALL, 96
SHMEM_INT4_SET, 64
SHMEM_INT4_SUM_TO_ALL, 96
SHMEM_INT4_SWAP, 67
SHMEM_INT4_WAIT, 108
SHMEM_INT4_WAIT_UNTIL, 108
SHMEM_INT4_XOR_TO_ALL, 97
SHMEM_INT8_ADD, 74
SHMEM_INT8_AND_TO_ALL, 94
SHMEM_INT8_CSWAP, 65
SHMEM_INT8_FADD, 72
SHMEM_INT8_FETCH, 62
SHMEM_INT8_FINC, 69
SHMEM_INT8_INC, 70
SHMEM_INT8_MAX_TO_ALL, 94
SHMEM_INT8_MIN_TO_ALL, 95
SHMEM_INT8_OR_TO_ALL, 97
SHMEM_INT8_PROD_TO_ALL, 96
SHMEM_INT8_SET, 64
SHMEM_INT8_SUM_TO_ALL, 96
SHMEM_INT8_SWAP, 67
SHMEM_INT8_WAIT, 108
SHMEM_INT8_WAIT_UNTIL, 108
SHMEM_INT8_XOR_TO_ALL, 97
shmem_int_and_to_all, 94
shmem_int_max_to_all, 94
shmem_int_min_to_all, 95
shmem_int_or_to_all, 97
shmem_int_prod_to_all, 96
shmem_int_sum_to_all, 95
shmem_int_xor_to_all, 97
SHMEM_INTEGER_GET, 52
SHMEM_INTEGER_GET_NBI, 59
SHMEM_INTEGER_IGET, 56
SHMEM_INTEGER_IPUT, 50
SHMEM_INTEGER_PUT, 47
SHMEM_INTEGER_PUT_NBI, 58
shmem_iput, 50

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

142 INDEX

SHMEM_IPUT128, 50
SHMEM_IPUT32, 50
SHMEM_IPUT4, 50
SHMEM_IPUT64, 50
SHMEM_IPUT8, 50
shmem_iput<SIZE>, 50
SHMEM_LOGICAL_GET, 52
SHMEM_LOGICAL_GET_NBI, 59
SHMEM_LOGICAL_IGET, 56
SHMEM_LOGICAL_IPUT, 50
SHMEM_LOGICAL_PUT, 47
SHMEM_LOGICAL_PUT_NBI, 58
shmem_long_and_to_all, 94
shmem_long_max_to_all, 94
shmem_long_min_to_all, 95
shmem_long_or_to_all, 97
shmem_long_prod_to_all, 96
shmem_long_sum_to_all, 95
shmem_long_xor_to_all, 97
shmem_longdouble_max_to_all, 94
shmem_longdouble_min_to_all, 95
shmem_longdouble_prod_to_all, 96
shmem_longdouble_sum_to_all, 95
shmem_longlong_and_to_all, 94
shmem_longlong_max_to_all, 94
shmem_longlong_min_to_all, 95
shmem_longlong_or_to_all, 97
shmem_longlong_prod_to_all, 96
shmem_longlong_sum_to_all, 95
shmem_longlong_xor_to_all, 97
SHMEM_MAJOR_VERSION, 9
shmem_malloc, 27
SHMEM_MAX_NAME_LEN, 9
SHMEM_MINOR_VERSION, 9
SHMEM_MY_PE, 14
shmem_my_pe, 14
SHMEM_N_PES, 15
shmem_n_pes, 15
shmem_p, 48
shmem_pe_accessible, 18
SHMEM_PTR, 20
shmem_ptr, 20
SHMEM_PUT, 129
shmem_put, 46
SHMEM_PUT128, 47
SHMEM_PUT128_NBI, 58
SHMEM_PUT32, 47
SHMEM_PUT32_NBI, 58
SHMEM_PUT4, 47
SHMEM_PUT4_NBI, 58
SHMEM_PUT64, 47
SHMEM_PUT64_NBI, 58
SHMEM_PUT8, 47
SHMEM_PUT8_NBI, 58

shmem_put<SIZE>, 47
shmem_put<SIZE>_nbi, 57
shmem_put_nbi, 57
SHMEM_PUTMEM, 47
shmem_putmem, 47
SHMEM_PUTMEM_NBI, 58
shmem_putmem_nbi, 57
shmem_query_thread, 26
SHMEM_QUIET, 113
shmem_quiet, 113
SHMEM_REAL16_MAX_TO_ALL, 94
SHMEM_REAL16_MIN_TO_ALL, 95
SHMEM_REAL16_PROD_TO_ALL, 96
SHMEM_REAL16_SUM_TO_ALL, 96
SHMEM_REAL4_FETCH, 62
SHMEM_REAL4_MAX_TO_ALL, 94
SHMEM_REAL4_MIN_TO_ALL, 95
SHMEM_REAL4_PROD_TO_ALL, 96
SHMEM_REAL4_SET, 64
SHMEM_REAL4_SUM_TO_ALL, 96
SHMEM_REAL4_SWAP, 67
SHMEM_REAL8_FETCH, 63
SHMEM_REAL8_MAX_TO_ALL, 94
SHMEM_REAL8_MIN_TO_ALL, 95
SHMEM_REAL8_PROD_TO_ALL, 96
SHMEM_REAL8_SET, 64
SHMEM_REAL8_SUM_TO_ALL, 96
SHMEM_REAL8_SWAP, 67
SHMEM_REAL_GET, 52
SHMEM_REAL_GET_NBI, 59
SHMEM_REAL_IGET, 56
SHMEM_REAL_IPUT, 50
SHMEM_REAL_PUT, 47
SHMEM_REAL_PUT_NBI, 58
shmem_realloc, 27
SHMEM_REDUCE_MIN_WRKDATA_SIZE, 8
SHMEM_REDUCE_SYNC_SIZE, 7
shmem_set, 64, 130
SHMEM_SET_CACHE_INV, 119, 129
shmem_set_cache_inv, 119, 129
SHMEM_SET_CACHE_LINE_INV, 119, 129
shmem_set_cache_line_inv, 119, 129
SHMEM_SET_LOCK, 118
shmem_set_lock, 118
shmem_short_and_to_all, 94
shmem_short_max_to_all, 94
shmem_short_min_to_all, 94
shmem_short_or_to_all, 97
shmem_short_prod_to_all, 96
shmem_short_sum_to_all, 95
shmem_short_xor_to_all, 97
SHMEM_SWAP, 67
shmem_swap, 67, 130
SHMEM_SYMMETRIC_SIZE, 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

INDEX 143

shmem_sync, 84
shmem_sync_all, 83
SHMEM_SYNC_SIZE, 7
SHMEM_SYNC_VALUE, 6
shmem_team_broadcast32, 86
shmem_team_broadcast64, 86
shmem_team_collect32, 92
shmem_team_collect64, 92
shmem_team_create_ctx, 41
shmem_team_destroy, 39
shmem_team_fcollect32, 92
shmem_team_fcollect64, 92
shmem_team_get_config, 34
SHMEM_TEAM_LOCAL_LIMIT, 37, 38
shmem_team_my_pe, 32
shmem_team_n_pes, 33
SHMEM_TEAM_NOCOLLECTIVE, 6, 35, 37, 38, 86,

93
SHMEM_TEAM_NODE, 11, 36
SHMEM_TEAM_NULL, 6, 32, 37, 39, 86, 93
SHMEM_TEAM_NUM_THREADS, 37, 38
shmem_team_split_2d, 37
shmem_team_split_strided, 36
shmem_team_sync, 84
shmem_team_translate_pe, 35
SHMEM_TEAM_WORLD, 11, 32, 33, 35, 36, 38, 40
shmem_test, 110
SHMEM_TEST_LOCK, 118
shmem_test_lock, 118
SHMEM_THREAD_FUNNELED, 6, 24
SHMEM_THREAD_MULTIPLE, 6, 24
SHMEM_THREAD_SERIALIZED, 6, 24
SHMEM_THREAD_SINGLE, 5, 24
SHMEM_UDCFLUSH, 119, 129
shmem_udcflush, 119, 129
SHMEM_UDCFLUSH_LINE, 119, 129
shmem_udcflush_line, 119, 129
SHMEM_VENDOR_STRING, 9
SHMEM_VERSION, 12
SHMEM_WAIT, 108
shmem_wait, 108, 130
SHMEM_WAIT_UNTIL, 108
shmem_wait_until, 108, 130
shmemalign, 129
SHPALLOC, 29
SHPCLMOVE, 30
SHPDEALLC, 31
shrealloc, 129
SMA_DEBUG, 130
SMA_INFO, 130
SMA_SYMMETRIC_SIZE, 130
SMA_VERSION, 130
Standard AMO Types and Names, 62
Standard RMA Types and Names, 46

START_PES, 23, 129
start_pes, 23, 129

Tables
Bitwise AMO Types and Names, 63
Constants, 5
Deprecated API, 129
Environment Variables, 12
Extended AMO Types and Names, 62
Handles, 11
Library Constants, 5
Library Handles, 11
Point-to-Point Comparison Constants, 108
Point-to-Point Synchronization Types and Names, 107
Standard AMO Types and Names, 62
Standard RMA Types and Names, 46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	The OpenSHMEM Effort
	Programming Model Overview
	Memory Model
	Atomicity Guarantees

	Execution Model
	Progress of OpenSHMEM Operations

	Language Bindings and Conformance
	Library Constants
	Library Handles
	Environment Variables
	OpenSHMEM Library API
	Library Setup, Exit, and Query Routines
	SHMEM_INIT
	SHMEM_MY_PE
	SHMEM_N_PES
	SHMEM_FINALIZE
	SHMEM_GLOBAL_EXIT
	SHMEM_PE_ACCESSIBLE
	SHMEM_ADDR_ACCESSIBLE
	SHMEM_PTR
	SHMEM_INFO_GET_VERSION
	SHMEM_INFO_GET_NAME
	START_PES

	Thread Support
	SHMEM_INIT_THREAD
	SHMEM_QUERY_THREAD

	Memory Management Routines
	SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN
	SHMEM_CALLOC
	SHPALLOC
	SHPCLMOVE
	SHPDEALLC

	Team Management Routines
	SHMEM_TEAM_MY_PE
	SHMEM_TEAM_N_PES
	SHMEM_TEAM_CONFIG_T
	SHMEM_TEAM_GET_CONFIG
	SHMEM_TEAM_TRANSLATE
	SHMEM_TEAM_SPLIT_STRIDED
	SHMEM_TEAM_SPLIT_2D
	SHMEM_TEAM_DESTROY

	Communication Management Routines
	SHMEM_CTX_CREATE
	SHMEM_TEAM_CREATE_CTX
	SHMEM_CTX_DESTROY
	SHMEM_CTX_GET_TEAM

	Remote Memory Access Routines
	SHMEM_PUT
	SHMEM_P
	SHMEM_IPUT
	SHMEM_GET
	SHMEM_G
	SHMEM_IGET

	Non-blocking Remote Memory Access Routines
	SHMEM_PUT_NBI
	SHMEM_GET_NBI

	Atomic Memory Operations
	SHMEM_ATOMIC_FETCH
	SHMEM_ATOMIC_SET
	SHMEM_ATOMIC_COMPARE_SWAP
	SHMEM_ATOMIC_SWAP
	SHMEM_ATOMIC_FETCH_INC
	SHMEM_ATOMIC_INC
	SHMEM_ATOMIC_FETCH_ADD
	SHMEM_ATOMIC_ADD
	SHMEM_ATOMIC_FETCH_AND
	SHMEM_ATOMIC_AND
	SHMEM_ATOMIC_FETCH_OR
	SHMEM_ATOMIC_OR
	SHMEM_ATOMIC_FETCH_XOR
	SHMEM_ATOMIC_XOR

	Collective Routines
	SHMEM_BARRIER_ALL
	SHMEM_BARRIER
	SHMEM_SYNC_ALL
	SHMEM_SYNC
	SHMEM_TEAM_BROADCAST
	SHMEM_BROADCAST
	SHMEM_COLLECT, SHMEM_FCOLLECT
	SHMEM_TEAM_COLLECT, SHMEM_TEAM_FCOLLECT
	SHMEM_REDUCTIONS
	AND
	MAX
	MIN
	SUM
	PROD
	OR
	XOR

	SHMEM_ALLTOALL
	SHMEM_ALLTOALLS

	Point-To-Point Synchronization Routines
	SHMEM_WAIT_UNTIL
	SHMEM_TEST

	Memory Ordering Routines
	SHMEM_FENCE
	SHMEM_QUIET
	Synchronization and Communication Ordering in OpenSHMEM

	Distributed Locking Routines
	SHMEM_LOCK

	Cache Management
	SHMEM_CACHE

	Writing OpenSHMEM Programs
	Compiling and Running Programs
	Compilation
	Running Programs

	Undefined Behavior in OpenSHMEM
	Interoperability with other Programming Models
	MPI Interoperability

	History of OpenSHMEM
	OpenSHMEM Specification and Deprecated API
	Overview
	Deprecation Rationale
	Header Directory: mpp
	C/C++: start_pes
	Implicit Finalization
	C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign
	Fortran: START_PES, MY_PE, NUM_PES
	Fortran: SHMEM_PUT
	SHMEM_CACHE
	SHMEM* Library Constants
	SMA_* Environment Variables
	C/C++: shmem_wait
	C/C++: shmem_wait_until
	C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc, shmem_fadd, shmem_add
	Fortran API

	Changes to this Document
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1

	Index

