
DRAFT

OpenSHMEM
Application Programming Interface

http://www.openshmem.org/

Version 1.5

8th July 2019

Development by

• For a current list of contributors and collaborators please see
http://www.openshmem.org/site/Contributors/

• For a current list of OpenSHMEM implementations and tools, please see
http://openshmem.org/site/Links#impl/

http://www.openshmem.org/
http://www.openshmem.org/site/Contributors/
http://openshmem.org/site/Links#impl/

DRAFT

1.5 — DRAFT —

Sponsored by

• U.S. Department of Defense (DoD)
http://www.defense.gov/

• Oak Ridge National Laboratory (ORNL)
http://www.ornl.gov/

• Los Alamos National Laboratory (LANL)
http://www.lanl.gov/

Current Authors and Collaborators

• Matthew Baker, ORNL

• Swen Boehm, ORNL

• Aurelien Bouteiller, University of Tenneesee at Knoxville (UTK)

• Barbara Chapman, Stonybrook University (SBU)

• Robert Cernohous, Cray Inc.

• James Culhane, LANL

• Tony Curtis, SBU

• James Dinan, Intel

• Mike Dubman, Mellanox

• Karl Feind, Hewlett Packard Enterprise (HPE)

• Manjunath Gorentla Venkata, ORNL

• Megan Grodowitz, Arm Inc.

• Max Grossman, Rice University

• Khaled Hamidouche, Advanced Micro Devices (AMD)

• Jeff Hammond, Intel

• Yossi Itigin, Mellanox

• Bryant Lam, DoD

• David Knaak, Cray Inc.

• Jeff Kuehn, LANL

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• David Ozog, Intel

• Nicholas Park, DoD

• Steve Poole, Open Source Software Solutions (OSSS)

• Wendy Poole, OSSS

ii

http://www.defense.gov/
http://www.ornl.gov/
http://www.lanl.gov/

DRAFT

1.5 — DRAFT —

• Swaroop Pophale, ORNL

• Sreeram Potluri, NVIDIA

• Howard Pritchard, LANL

• Naveen Ravichandrasekaran, Cray Inc.

• Michael Raymond, HPE

• James Ross, Army Research Laboratory (ARL)

• Pavel Shamis, Arm Inc.

• Sameer Shende, University of Oregon (UO)

• Lauren Smith, DoD

Alumni Authors and Collaborators

• Amrita Banerjee, University of Houston (UH)

• Monika ten Bruggencate, Cray Inc.

• Eduardo D’Azevedo, ORNL

• Oscar Hernandez, ORNL

• Gregory Koenig, ORNL

• Graham Lopez, ORNL

• Ricardo Mauricio, UH

• Ram Nanjegowda, UH

• Aaron Welch, ORNL

Acknowledgments

The OpenSHMEM specification belongs to Open Source Software Solutions, Inc. (OSSS), a non-profit organiza-
tion, under an agreement with HPE. For a current list of Contributors and Collaborators, please see http://www.
openshmem.org/site/Contributors/. We gratefully acknowledge support from Oak Ridge National Labo-
ratory’s Extreme Scale Systems Center and the continuing support of the Department of Defense.

We would also like to acknowledge the contribution of the members of the OpenSHMEM mailing list for their ideas,
discussions, suggestions, and constructive criticism which has helped us improve this document.

OpenSHMEM 1.4 is dedicated to the memory of David Charles Knaak. David was a highly involved colleague and
contributor to the entire OpenSHMEM project. He will be missed.

iii

http://www.openshmem.org/site/Contributors/
http://www.openshmem.org/site/Contributors/

DRAFT
Contents

1 The OpenSHMEM Effort . 1
2 Programming Model Overview . 1
3 Memory Model . 3

3.1 Atomicity Guarantees . 4
4 Execution Model . 5

4.1 Progress of OpenSHMEM Operations . 6
5 Language Bindings and Conformance . 6
6 Library Constants . 7
7 Library Handles . 12
8 Environment Variables . 13
9 Error Handling . 14
10 OpenSHMEM Library API . 15

10.1 Library Setup, Exit, and Query Routines . 15
10.1.1 SHMEM_INIT . 15
10.1.2 SHMEM_MY_PE . 16
10.1.3 SHMEM_N_PES . 17
10.1.4 SHMEM_FINALIZE . 18
10.1.5 SHMEM_GLOBAL_EXIT . 19
10.1.6 SHMEM_PE_ACCESSIBLE . 20
10.1.7 SHMEM_ADDR_ACCESSIBLE . 21
10.1.8 SHMEM_PTR . 22
10.1.9 SHMEM_INFO_GET_VERSION . 24
10.1.10 SHMEM_INFO_GET_NAME . 24
10.1.11 START_PES . 25

10.2 Thread Support . 26
10.2.1 SHMEM_INIT_THREAD . 27
10.2.2 SHMEM_QUERY_THREAD . 28

10.3 Memory Management Routines . 29
10.3.1 SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN 29
10.3.2 SHMEM_CALLOC . 30
10.3.3 SHPALLOC . 31
10.3.4 SHPCLMOVE . 32
10.3.5 SHPDEALLC . 33

10.4 Team Management Routines . 34
10.4.1 SHMEM_TEAM_MY_PE . 35
10.4.2 SHMEM_TEAM_N_PES . 36
10.4.3 SHMEM_TEAM_CONFIG_T . 36
10.4.4 SHMEM_TEAM_GET_CONFIG . 37
10.4.5 SHMEM_TEAM_TRANSLATE_PE . 38
10.4.6 SHMEM_TEAM_SPLIT_STRIDED . 39
10.4.7 SHMEM_TEAM_SPLIT_2D . 41
10.4.8 SHMEM_TEAM_DESTROY . 45

10.5 Communication Management Routines . 45

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

iv

DRAFT

1.5 — DRAFT —

10.5.1 SHMEM_CTX_CREATE . 46
10.5.2 SHMEM_TEAM_CREATE_CTX . 47
10.5.3 SHMEM_CTX_DESTROY . 48
10.5.4 SHMEM_CTX_GET_TEAM . 52

10.6 Remote Memory Access Routines . 54
10.6.1 SHMEM_PUT . 55
10.6.2 SHMEM_P . 57
10.6.3 SHMEM_IPUT . 59
10.6.4 SHMEM_GET . 61
10.6.5 SHMEM_G . 63
10.6.6 SHMEM_IGET . 64

10.7 Non-blocking Remote Memory Access Routines . 66
10.7.1 SHMEM_PUT_NBI . 66
10.7.2 SHMEM_GET_NBI . 68

10.8 Atomic Memory Operations . 70
10.8.1 SHMEM_ATOMIC_FETCH . 71
10.8.2 SHMEM_ATOMIC_SET . 73
10.8.3 SHMEM_ATOMIC_COMPARE_SWAP . 74
10.8.4 SHMEM_ATOMIC_SWAP . 76
10.8.5 SHMEM_ATOMIC_FETCH_INC . 78
10.8.6 SHMEM_ATOMIC_INC . 79
10.8.7 SHMEM_ATOMIC_FETCH_ADD . 81
10.8.8 SHMEM_ATOMIC_ADD . 83
10.8.9 SHMEM_ATOMIC_FETCH_AND . 84
10.8.10 SHMEM_ATOMIC_AND . 85
10.8.11 SHMEM_ATOMIC_FETCH_OR . 86
10.8.12 SHMEM_ATOMIC_OR . 87
10.8.13 SHMEM_ATOMIC_FETCH_XOR . 87
10.8.14 SHMEM_ATOMIC_XOR . 88

10.9 Collective Routines . 89
10.9.1 SHMEM_BARRIER_ALL . 91
10.9.2 SHMEM_BARRIER . 92
10.9.3 SHMEM_SYNC . 94
10.9.4 SHMEM_SYNC_ALL . 97
10.9.5 SHMEM_BROADCAST . 97
10.9.6 SHMEM_COLLECT, SHMEM_FCOLLECT 100
10.9.7 SHMEM_REDUCTIONS . 104

10.9.7.1 AND . 104
10.9.7.2 OR . 105
10.9.7.3 XOR . 105
10.9.7.4 MAX . 106
10.9.7.5 MIN . 106
10.9.7.6 SUM . 107
10.9.7.7 PROD . 107

10.9.8 SHMEM_ALLTOALL . 112
10.9.9 SHMEM_ALLTOALLS . 115

10.10 Point-To-Point Synchronization Routines . 118
10.10.1 SHMEM_WAIT_UNTIL . 118
10.10.2 SHMEM_WAIT_UNTIL_ALL . 121
10.10.3 SHMEM_WAIT_UNTIL_ANY . 122
10.10.4 SHMEM_WAIT_UNTIL_SOME . 124
10.10.5 SHMEM_TEST . 126
10.10.6 SHMEM_TEST_ALL . 128
10.10.7 SHMEM_TEST_ANY . 129

v

DRAFT

1.5 — DRAFT —

10.10.8 SHMEM_TEST_SOME . 130
10.11 Memory Ordering Routines . 132

10.11.1 SHMEM_FENCE . 132
10.11.2 SHMEM_QUIET . 134
10.11.3 Synchronization and Communication Ordering in OpenSHMEM 136

10.12 Distributed Locking Routines . 139
10.12.1 SHMEM_LOCK . 139

10.13 Cache Management . 140
10.13.1 SHMEM_CACHE . 140

11 OpenSHMEM Profiling Interface . 141
11.1 Control of Profiling . 142

11.1.1 SHMEM_PCONTROL . 142
11.2 Example Implementations . 143

11.2.1 Profiler . 143
11.2.2 OpenSHMEM Library . 144

11.3 Limitations . 144
11.3.1 Multiple Counting . 144
11.3.2 Separate Build and Link . 145
11.3.3 C11 Type-Generic Interfaces . 145

A Writing OpenSHMEM Programs 146

B Compiling and Running Programs 149
1 Compilation . 149
2 Running Programs . 149

C Undefined Behavior in OpenSHMEM 151

D History of OpenSHMEM 152

E OpenSHMEM Specification and Deprecated API 153
1 Overview . 153
2 Deprecation Rationale . 154

2.1 Header Directory: mpp . 154
2.2 C/C++: start_pes . 154
2.3 Implicit Finalization . 154
2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign 155
2.5 Fortran: START_PES, MY_PE, NUM_PES . 155
2.6 Fortran: SHMEM_PUT . 155
2.7 SHMEM_CACHE . 155
2.8 _SHMEM_* Library Constants . 155
2.9 SMA_* Environment Variables . 155
2.10 C/C++: shmem_wait . 156
2.11 C/C++: shmem_wait_until . 156
2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc,

shmem_fadd, shmem_add . 156
2.13 Fortran API . 156
2.14 Active-set-based collective routines . 156
2.15 C/C++: shmem_barrier . 156
2.16 C/C++: shmem_barrier_all, shmem_sync_all . 157

vi

DRAFT

1.5 — DRAFT —

F Changes to this Document 158
1 Version 1.5 . 158
2 Version 1.4 . 158
3 Version 1.3 . 160
4 Version 1.2 . 161
5 Version 1.1 . 162

Index 164

vii

DRAFT

1.5 — DRAFT —

viii

DRAFT

1. THE OPENSHMEM EFFORT 1

1 The OpenSHMEM Effort

OpenSHMEM is a Partitioned Global Address Space (PGAS) library interface specification. OpenSHMEM aims to
provide a standard Application Programming Interface (API) for SHMEM libraries to aid portability and facilitate
uniform predictable results of OpenSHMEM programs by explicitly stating the behavior and semantics of the Open-
SHMEM library calls. Through the different versions, OpenSHMEM will continue to address the requirements of the
PGAS community. As of this specification, many existing vendors support OpenSHMEM-compliant implementations
and new vendors are developing OpenSHMEM library implementations to help the users write portable OpenSHMEM
code. This ensures that programs can run on multiple platforms without having to deal with subtle vendor-specific
implementation differences. For more details on the history of OpenSHMEM please refer to the History of Open-
SHMEM section.

The OpenSHMEM1 effort is driven by the DoD with continuous input from the OpenSHMEM community. To see
all of the contributors and participants for the OpenSHMEM API, please see: http://www.openshmem.org/
site/Contributors. In addition to the specification, the effort includes a reference OpenSHMEM implementa-
tion, validation and verification suites, tools, a mailing list and website infrastructure to support specification activities.
For more information please refer to: http://www.openshmem.org/.

2 Programming Model Overview

OpenSHMEM implements PGAS by defining remotely accessible data objects as mechanisms to share information
among OpenSHMEM processes, or Processing Elements (PEs), and private data objects that are accessible by only the
PE itself. The API allows communication and synchronization operations on both private (local to the PE initiating the
operation) and remotely accessible data objects. The key feature of OpenSHMEM is that data transfer operations are
one-sided in nature. This means that a local PE executing a data transfer routine does not require the participation of
the remote PE to complete the routine. This allows for overlap between communication and computation to hide data
transfer latencies, which makes OpenSHMEM ideal for unstructured, small/medium size data communication patterns.
The OpenSHMEM library routines have the potential to provide a low-latency, high-bandwidth communication API
for use in highly parallelized scalable programs.

The OpenSHMEM interfaces can be used to implement Single Program Multiple Data (SPMD) style programs.
It provides interfaces to start the OpenSHMEM PEs in parallel and communication and synchronization interfaces to
access remotely accessible data objects across PEs. These interfaces can be leveraged to divide a problem into multiple
sub-problems that can be solved independently or with coordination using the communication and synchronization
interfaces. The OpenSHMEM specification defines library calls, constants, variables, and language bindings for C and
Fortran2. The C++ interface is currently the same as that for C. Unlike Unified Parallel C, Fortran 2008, Titanium,
X10, and Chapel, which are all PGAS languages, OpenSHMEM relies on the user to use the library calls to implement
the correct semantics of its programming model.

An overview of the OpenSHMEM routines is described below:

1. Library Setup and Query

(a) Initialization: The OpenSHMEM library environment is initialized, where the PEs are either single or
multithreaded.

(b) Query: The local PE may get the number of PEs running the same program and its unique integer identifier.

(c) Accessibility: The local PE can find out if a remote PE is executing the same binary, or if a particular
symmetric data object can be accessed by a remote PE, or may obtain a pointer to a symmetric data object
on the specified remote PE on shared memory systems.

2. Symmetric Data Object Management

(a) Allocation: All executing PEs must participate in the allocation of a symmetric data object with identical
arguments.

1The OpenSHMEM specification is owned by Open Source Software Solutions Inc., a non-profit organization, under an agreement with HPE.
2As of OpenSHMEM 1.4, the Fortran interface has been deprecated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.openshmem.org/site/Contributors
http://www.openshmem.org/site/Contributors
http://www.openshmem.org/

DRAFT

2 2. PROGRAMMING MODEL OVERVIEW

(b) Deallocation: All executing PEs must participate in the deallocation of the same symmetric data object
with identical arguments.

(c) Reallocation: All executing PEs must participate in the reallocation of the same symmetric data object with
identical arguments.

3. Communication Management

(a) Contexts: Contexts are containers for communication operations. Each context provides an environment
where the operations performed on that context are ordered and completed independently of other opera-
tions performed by the application.

4. Remote Memory Access

(a) Put: The local PE specifies the source data object, private or symmetric, that is copied to the symmetric
data object on the remote PE.

(b) Get: The local PE specifies the symmetric data object on the remote PE that is copied to a data object,
private or symmetric, on the local PE.

5. Atomics

(a) Swap: The PE initiating the swap gets the old value of a symmetric data object from a remote PE and
copies a new value to that symmetric data object on the remote PE.

(b) Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote PE.

(c) Add: The PE initiating the add specifies the value to be added to the symmetric data object on the remote
PE.

(d) Bitwise Operations: The PE initiating the bitwise operation specifies the operand value to the bitwise
operation to be performed on the symmetric data object on the remote PE.

(e) Compare and Swap: The PE initiating the swap gets the old value of the symmetric data object based on a
value to be compared and copies a new value to the symmetric data object on the remote PE.

(f) Fetch and Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote
PE and returns with the old value.

(g) Fetch and Add: The PE initiating the add specifies the value to be added to the symmetric data object on
the remote PE and returns with the old value.

(h) Fetch and Bitwise Operations: The PE initiating the bitwise operation specifies the operand value to the
bitwise operation to be performed on the symmetric data object on the remote PE and returns the old value.

6. Synchronization and Ordering

(a) Fence: The PE calling fence ensures ordering of Put, AMO, and memory store operations to symmetric
data objects with respect to a specific destination PE.

(b) Quiet: The PE calling quiet ensures remote completion of remote access operations and stores to symmetric
data objects.

(c) Barrier: All or some PEs collectively synchronize and ensure completion of all remote and local updates
prior to any PE returning from the call.

7. Collective Communication

(a) Broadcast: The root PE specifies a symmetric data object to be copied to a symmetric data object on one
or more remote PEs (not including itself).

(b) Collection: All PEs participating in the routine get the result of concatenated symmetric objects contributed
by each of the PEs in another symmetric data object.

(c) Reduction: All PEs participating in the routine get the result of an associative binary routine over elements
of the specified symmetric data object on another symmetric data object.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

3. MEMORY MODEL 3

(d) All-to-All: All PEs participating in the routine exchange a fixed amount of contiguous or strided data with
all other PEs in the active set.

8. Mutual Exclusion

(a) Set Lock: The PE acquires exclusive access to the region bounded by the symmetric lock variable.

(b) Test Lock: The PE tests the symmetric lock variable for availability.

(c) Clear Lock: The PE which has previously acquired the lock releases it.

deprecation start

9. Data Cache Control

(a) Implementation of mechanisms to exploit the capabilities of hardware cache if available.

deprecation end

3 Memory Model

PE N-1

Global and Static
Variables

Symmetric Heap

Local Variables

PE 0

Global and Static
Variables

Symmetric Heap

Local Variables

PE 1

Global and Static
Variables

Symmetric Heap

Local Variables

Re
m

ot
el

y A
cc

es
sib

le
 S

ym
m

et
ric

Da

ta
 O

bj
ec

ts

Variable: X Variable: X Variable: X
X = shmem_malloc(sizeof(long))

Pr
iva

te
 D

at
a

O
bj

ec
ts

Figure 1: OpenSHMEM Memory Model

An OpenSHMEM program consists of data objects that are private to each PE and data objects that are remotely
accessible by all PEs. Private data objects are stored in the local memory of each PE and can only be accessed by
the PE itself; these data objects cannot be accessed by other PEs via OpenSHMEM routines. Private data objects
follow the memory model of C or Fortran. Remotely accessible objects, however, can be accessed by remote PEs
using OpenSHMEM routines. Remotely accessible data objects are called Symmetric Data Objects. Each symmetric
data object has a corresponding object with the same name, type, and size on all PEs where that object is accessible
via the OpenSHMEM API3. (For the definition of what is accessible, see the descriptions for shmem_pe_accessible

3For efficiency reasons, the same offset (from an arbitrary memory address) for symmetric data objects might be used on all PEs. Further
discussion about symmetric heap layout and implementation efficiency can be found in section 10.3.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

4 3. MEMORY MODEL

and shmem_addr_accessible in sections 10.1.6 and 10.1.7.) Symmetric data objects accessed via typed and type-
generic OpenSHMEM interfaces are required to be naturally aligned based on their type requirements and underlying
architecture. In OpenSHMEM the following kinds of data objects are symmetric:

• deprecation start
Fortran data objects in common blocks or with the SAVE attribute. These data objects must not be defined in a
dynamic shared object (DSO).

deprecation end

• Global and static C and C++ variables. These data objects must not be defined in a DSO.

• deprecation start
Fortran arrays allocated with shpalloc

deprecation end

• C and C++ data allocated by OpenSHMEM memory management routines (Section 10.3)

OpenSHMEM dynamic memory allocation routines (shpalloc and shmem_malloc) allow collective allocation of
Symmetric Data Objects on a special memory region called the Symmetric Heap. The Symmetric Heap is created during
the execution of a program at a memory location determined by the implementation. The Symmetric Heap may reside
in different memory regions on different PEs. Figure 1 shows how OpenSHMEM implements a PGAS model using
remotely accessible symmetric objects and private data objects when executing an OpenSHMEM program. Symmetric
data objects are stored on the symmetric heap or in the global/static memory section of each PE.

3.1 Atomicity Guarantees

OpenSHMEM contains a number of routines that perform atomic operations on symmetric data objects, which are
defined in Section 10.8. The atomic routines guarantee that concurrent accesses by any of these routines to the same
location and using the same datatype (specified in Tables 5 and 6) will be exclusive. OpenSHMEM atomic operations
do not guarantee exclusivity in the following scenarios, all of which result in undefined behavior.

1. When concurrent accesses to the same location are performed using OpenSHMEM atomic operations using
different datatypes.

2. When atomic and non-atomic OpenSHMEM operations are used to access the same location concurrently.

3. When OpenSHMEM atomic operations and non-OpenSHMEM operations (e.g. load and store operations) are
used to access the same location concurrently.

For example, during the execution of an atomic remote integer increment, i.e. shmem_atomic_inc, operation on
a symmetric variable X, no other OpenSHMEM atomic operation may access X. After the increment, X will have
increased its value by 1 on the destination PE, at which point other atomic operations may then modify that X. However,
access to the symmetric object X with non-atomic operations, such as one-sided put or get operations, will invalidate
the atomicity guarantees.

The following C/C++ example illustrates scenario 1. In this example, different datatypes are used to access the
same location concurrently, resulting in undefined behavior. The undefined behavior can be resolved by using the
same datatype in all concurrent operations. For example, the 32-bit value can be left-shifted and a 64-bit atomic OR
operation can be used.

#include <shmem.h>

int main(void) {
static uint64_t x = 0;

shmem_init();
/* Undefined behavior: The following AMOs access the same location concurrently using

* different types. */
if (shmem_my_pe() > 0)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

4. EXECUTION MODEL 5

shmem_uint32_atomic_or((uint32_t*)&x, shmem_my_pe()+1, 0);
else

shmem_uint64_atomic_or(&x, shmem_my_pe()+1, 0);

shmem_finalize();
return 0;

}

The following C/C++ example illustrates scenario 2. In this example, atomic increment operations are concurrent
with a non-atomic reduction operation, resulting in undefined behavior. The undefined behavior can be resolved by
inserting a barrier operation before the reduction. The barrier ensures that all local and remote AMOs have completed
before the reduction operation accesses x.
#include <shmem.h>

int main(void) {
static long psync[SHMEM_REDUCE_SYNC_SIZE];
static int pwrk[SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static int x = 0, y = 0;

for (int i = 0; i < SHMEM_REDUCE_SYNC_SIZE; i++)
psync[i] = SHMEM_SYNC_VALUE;

shmem_init();
shmem_int_atomic_inc(&x, (shmem_my_pe()+1) % shmem_n_pes());
/* Undefined behavior: The following reduction operation performs accesses to symmetric

* variable ’x’ that are concurrent with previously issued atomic increment operations

* on the same variable. */
shmem_int_sum_to_all(&y, &x, 1, 0, 0, shmem_n_pes(), pwrk, psync);

shmem_finalize();
return 0;

}

The following C/C++ example illustrates scenario 3. In this example, an OpenSHMEM atomic increment operation
is concurrent with a local increment operation, resulting in undefined behavior. The undefined behavior can be resolved
by replacing the local increment operation with an OpenSHMEM atomic increment.
#include <shmem.h>

int main(void) {
static int x = 0;

shmem_init();
/* Undefined behavior: OpenSHMEM atomic increment operations are concurrent with the local

* increment of symmetric variable ’x’. */
if (shmem_my_pe() > 0)

shmem_int_atomic_inc(&x, 0);
else

x++;

shmem_finalize();
return 0;

}

4 Execution Model

An OpenSHMEM program consists of a set of OpenSHMEM processes called PEs that execute in an SPMD-like
model where each PE can take a different execution path. For example, a PE can be implemented using an OS process.
The PEs may be either single or multithreaded. The PEs progress asynchronously, and can communicate/synchro-
nize via the OpenSHMEM interfaces. All PEs in an OpenSHMEM program should start by calling the initialization
routine shmem_init4 or shmem_init_thread before using any of the other OpenSHMEM library routines. An Open-

4start_pes has been deprecated as of OpenSHMEM 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6 5. LANGUAGE BINDINGS AND CONFORMANCE

SHMEM program concludes its use of the OpenSHMEM library when all PEs call shmem_finalize or any PE calls
shmem_global_exit. During a call to shmem_finalize, the OpenSHMEM library must complete all pending commu-
nication and release all the resources associated to the library using an implicit collective synchronization across PEs.
Calling any OpenSHMEM routine after shmem_finalize leads to undefined behavior.

The PEs of the OpenSHMEM program are identified by unique integers. The identifiers are integers assigned in a
monotonically increasing manner from zero to one less than the total number of PEs. PE identifiers are used for Open-
SHMEM calls (e.g. to specify put or get routines on symmetric data objects, collective synchronization calls) or to
dictate a control flow for PEs using constructs of C or Fortran. The identifiers are fixed for the life of the OpenSHMEM
program.

4.1 Progress of OpenSHMEM Operations

The OpenSHMEM model assumes that computation and communication are naturally overlapped. OpenSHMEM
programs are expected to exhibit progression of communication both with and without OpenSHMEM calls. Consider
a PE that is engaged in a computation with no OpenSHMEM calls. Other PEs should be able to communicate (put,
get, atomic, etc) and complete communication operations with that computationally-bound PE without that PE issuing
any explicit OpenSHMEM calls. One-sided OpenSHMEM communication calls involving that PE should progress
regardless of when that PE next engages in an OpenSHMEM call.

Note to implementors:

• An OpenSHMEM implementation for hardware that does not provide asynchronous communication capabilities
may require a software progress thread in order to process remotely-issued communication requests without
explicit program calls to the OpenSHMEM library.

• High performance implementations of OpenSHMEM are expected to leverage hardware offload capabilities and
provide asynchronous one-sided communication without software assistance.

• Implementations should avoid deferring the execution of one-sided operations until a synchronization point
where data is known to be available. High-quality implementations should attempt asynchronous delivery when-
ever possible, for performance reasons. Additionally, the OpenSHMEM community discourages releasing Open-
SHMEM implementations that do not provide asynchronous one-sided operations, as these have very limited
performance value for OpenSHMEM programs.

5 Language Bindings and Conformance

OpenSHMEM provides ISO C and Fortran 90 language bindings. As of OpenSHMEM 1.4, the Fortran API is depre-
cated. For rationale and considerations of future Fortran use of OpenSHMEM, see Section 2.13.

Any implementation that provides both C and Fortran bindings can claim conformance to the specification. Al-
ternatively, an implementation may claim conformance only with respect to one of those languages. For example, an
implementation that provides only a C interface may claim to conform to the OpenSHMEM specification with respect
to the C language, but not to Fortran, and should make this clear in its documentation. The OpenSHMEM header
files shmem.h for C and shmem.fh for Fortran must contain only the interfaces and constant names defined in this
specification.

OpenSHMEM APIs can be implemented as either routines or macros. However, implementing the interfaces using
macros is strongly discouraged as this could severely limit the use of external profiling tools and high-level compiler
optimizations. An OpenSHMEM program should avoid defining routine names, variables, or identifiers with the prefix
SHMEM_(for C and Fortran), _SHMEM_(for C) or with OpenSHMEM API names.

All OpenSHMEM extension APIs that are not part of this specification must be defined in the shmemx.h and
shmemx.fh include files for C and Fortran language bindings, respectively. These header files must exist, even if no
extensions are provided. Any extensions shall use the shmemx_ prefix for all routine, variable, and constant names.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6. LIBRARY CONSTANTS 7

6 Library Constants

The OpenSHMEM library provides a set of compile-time constants that may be used to specify options to API routines,
provide implementation-specific parameters, or return information about the implementation. All constants that start
with _SHMEM_* are deprecated, but provided for backwards compatibility.

Constant Description

C/C++:
SHMEM_THREAD_SINGLE

The OpenSHMEM thread support level which specifies that
the program must not be multithreaded. See Section 10.2
for more detail about its use.

C/C++:
SHMEM_THREAD_FUNNELED

The OpenSHMEM thread support level which specifies that
the program may be multithreaded but must ensure that
only the main thread invokes the OpenSHMEM interfaces.
See Section 10.2 for more detail about its use.

C/C++:
SHMEM_THREAD_SERIALIZED

The OpenSHMEM thread support level which specifies that
the program may be multithreaded but must ensure that the
OpenSHMEM interfaces are not invoked concurrently by
multiple threads. See Section 10.2 for more detail about its
use.

C/C++:
SHMEM_THREAD_MULTIPLE

The OpenSHMEM thread support level which specifies that
the program may be multithreaded and any thread may in-
voke the OpenSHMEM interfaces. See Section 10.2 for
more detail about its use.

C/C++:
SHMEM_TEAM_NUM_CONTEXTS

The bitwise flag which specifies that a team creation rou-
tine should use the num_contexts member of the provided
shmem_team_config_t configuration parameter as a re-
quest. See Sections 10.4.3 and 10.4.6 for more detail about
its use.

C/C++:
SHMEM_TEAM_INVALID

A value corresponding to an invalid team. This value can
be used to initialize or update team handles to indicate that
they do not reference a valid team. When managed in this
way, applications can use an equality comparison to test
whether a given team handle references a valid team. See
Section 10.4 for more detail about its use.

C/C++:
SHMEM_CTX_INVALID

A value corresponding to an invalid communication con-
text. This value can be used to initialize or update context
handles to indicate that they do not reference a valid con-
text. When managed in this way, applications can use an
equality comparison to test whether a given context handle
references a valid context. See Section 10.5 for more detail
about its use.

C/C++:
SHMEM_CTX_SERIALIZED

The context creation option which specifies that the given
context is shareable but will not be used by multiple threads
concurrently. See Section 10.5.1 for more detail about its
use.

C/C++:
SHMEM_CTX_PRIVATE

The context creation option which specifies that the given
context will be used only by the thread that created it. See
Section 10.5.1 for more detail about its use.

C/C++:
SHMEM_CTX_NOSTORE

The context creation option which specifies that quiet and
fence operations performed on the given context are not re-
quired to enforce completion and ordering of memory store
operations. See Section 10.5.1 for more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8 6. LIBRARY CONSTANTS

Constant Description

C/C++:
SHMEM_SYNC_VALUE

deprecation start

C/C++:
_SHMEM_SYNC_VALUE

Fortran:
SHMEM_SYNC_VALUE

deprecation end

The value used to initialize the elements of pSync arrays.
The value of this constant is implementation specific. See
Section 10.9 for more detail about its use.

C/C++:
SHMEM_SYNC_SIZE

deprecation start

Fortran:
SHMEM_SYNC_SIZE

deprecation end

Length of a work array that can be used with any SHMEM
collective communication operation. Work arrays sized
for specific operations may consume less memory. The
value of this constant is implementation specific. See Sec-
tion 10.9 for more detail about its use.

C/C++:
SHMEM_BCAST_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_BCAST_SYNC_SIZE

Fortran:
SHMEM_BCAST_SYNC_SIZE

deprecation end

Length of the pSync arrays needed for broadcast routines.
The value of this constant is implementation specific. See
Section 10.9.5 for more detail about its use.

C/C++:
SHMEM_REDUCE_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_REDUCE_SYNC_SIZE

Fortran:
SHMEM_REDUCE_SYNC_SIZE

deprecation end

Length of the work arrays needed for reduction routines.
The value of this constant is implementation specific. See
Section 10.9.7 for more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6. LIBRARY CONSTANTS 9

Constant Description

C/C++:
SHMEM_BARRIER_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_BARRIER_SYNC_SIZE

Fortran:
SHMEM_BARRIER_SYNC_SIZE

deprecation end

Length of the work array needed for barrier routines. The
value of this constant is implementation specific. See Sec-
tion 10.9.2 for more detail about its use.

C/C++:
SHMEM_COLLECT_SYNC_SIZE

deprecation start

C/C++:
_SHMEM_COLLECT_SYNC_SIZE

Fortran:
SHMEM_COLLECT_SYNC_SIZE

deprecation end

Length of the work array needed for collect routines. The
value of this constant is implementation specific. See Sec-
tion 10.9.6 for more detail about its use.

C/C++:
SHMEM_ALLTOALL_SYNC_SIZE

deprecation start

Fortran:
SHMEM_ALLTOALL_SYNC_SIZE

deprecation end

Length of the work array needed for shmem_alltoall rou-
tines. The value of this constant is implementation specific.
See Section 10.9.8 for more detail about its use.

C/C++:
SHMEM_ALLTOALLS_SYNC_SIZE

deprecation start

Fortran:
SHMEM_ALLTOALLS_SYNC_SIZE

deprecation end

Length of the work array needed for shmem_alltoalls rou-
tines. The value of this constant is implementation specific.
See Section 10.9.9 for more detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10 6. LIBRARY CONSTANTS

Constant Description

C/C++:
SHMEM_REDUCE_MIN_WRKDATA_SIZE

deprecation start

C/C++:
_SHMEM_REDUCE_MIN_WRKDATA_SIZE

Fortran:
SHMEM_REDUCE_MIN_WRKDATA_SIZE

deprecation end

Minimum length of work arrays used in various collective
routines.

C/C++:
SHMEM_MAJOR_VERSION

deprecation start

C/C++:
_SHMEM_MAJOR_VERSION

Fortran:
SHMEM_MAJOR_VERSION

deprecation end

Integer representing the major version of OpenSHMEM
Specification in use.

C/C++:
SHMEM_MINOR_VERSION

deprecation start

C/C++:
_SHMEM_MINOR_VERSION

Fortran:
SHMEM_MINOR_VERSION

deprecation end

Integer representing the minor version of OpenSHMEM
Specification in use.

C/C++:
SHMEM_MAX_NAME_LEN

deprecation start

C/C++:
_SHMEM_MAX_NAME_LEN

Fortran:
SHMEM_MAX_NAME_LEN

deprecation end

Integer representing the maximum length of
SHMEM_VENDOR_STRING.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6. LIBRARY CONSTANTS 11

Constant Description

C/C++:
SHMEM_VENDOR_STRING

deprecation start

C/C++:
_SHMEM_VENDOR_STRING

Fortran:
SHMEM_VENDOR_STRING

deprecation end

String representing vendor defined information of size at
most SHMEM_MAX_NAME_LEN. In C/C++, the string
is terminated by a null character. In Fortran, the string of
size less than SHMEM_MAX_NAME_LEN is padded with
blank characters up to size SHMEM_MAX_NAME_LEN.

C/C++:
SHMEM_CMP_EQ

deprecation start

C/C++:
_SHMEM_CMP_EQ

Fortran:
SHMEM_CMP_EQ

deprecation end

An integer constant expression corresponding to the “equal
to” comparison operation. See Section 10.10 for more de-
tail about its use.

C/C++:
SHMEM_CMP_NE

deprecation start

C/C++:
_SHMEM_CMP_NE

Fortran:
SHMEM_CMP_NE

deprecation end

An integer constant expression corresponding to the “not
equal to” comparison operation. See Section 10.10 for
more detail about its use.

C/C++:
SHMEM_CMP_LT

deprecation start

C/C++:
_SHMEM_CMP_LT

Fortran:
SHMEM_CMP_LT

deprecation end

An integer constant expression corresponding to the “less
than” comparison operation. See Section 10.10 for more
detail about its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

12 7. LIBRARY HANDLES

Constant Description

C/C++:
SHMEM_CMP_LE

deprecation start

C/C++:
_SHMEM_CMP_LE

Fortran:
SHMEM_CMP_LE

deprecation end

An integer constant expression corresponding to the “less
than or equal to” comparison operation. See Section 10.10
for more detail about its use.

C/C++:
SHMEM_CMP_GT

deprecation start

C/C++:
_SHMEM_CMP_GT

Fortran:
SHMEM_CMP_GT

deprecation end

An integer constant expression corresponding to the
“greater than” comparison operation. See Section 10.10 for
more detail about its use.

C/C++:
SHMEM_CMP_GE

deprecation start

C/C++:
_SHMEM_CMP_GE

Fortran:
SHMEM_CMP_GE

deprecation end

An integer constant expression corresponding to the
“greater than or equal to” comparison operation. See Sec-
tion 10.10 for more detail about its use.

7 Library Handles

The OpenSHMEM library provides a set of predefined named constant handles. All named constants can be used in
initialization expressions or assignments, but not necessarily in array declarations or as labels in C switch statements.
This implies named constants to be link-time but not necessarily compile-time constants.

Handle Description

C/C++:
SHMEM_TEAM_WORLD

Handle of type shmem_team_t that corresponds to the
default team of all PEs in the OpenSHMEM program.
All point-to-point communication operations and collective
synchronizations that do not specify a team are performed
on the default team. See Section 10.4 for more detail about
its use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. ENVIRONMENT VARIABLES 13

Handle Description

C/C++:
SHMEM_TEAM_SHARED

Handle of type shmem_team_t that corresponds to a team
of PEs that share a memory domain. When this handle is
used by some PE, it will refer to the team of all PEs that
would return a non-null pointer from shmem_ptr for sym-
metric objects on that PE, and vice versa. This means that
symmetric objects on each PE are directly load/store acces-
sible by all PEs in the team. See Section 10.4 for more
detail about its use.

C/C++:
SHMEM_CTX_DEFAULT

Handle of type shmem_ctx_t that corresponds to the default
communication context. All point-to-point communication
operations and synchronizations that do not specify a con-
text are performed on the default context. See Section 10.5
for more detail about its use.

8 Environment Variables

The OpenSHMEM specification provides a set of environment variables that allows users to configure the Open-
SHMEM implementation, and receive information about the implementation. The implementations of the specification
are free to define additional variables. Currently, the specification defines four environment variables. All environment
variables that start with SMA_* are deprecated, but currently supported for backwards compatibility. If both SHMEM_-
and SMA_-prefixed environment variables are set, then the value in the SHMEM_-prefixed environment variable es-
tablishes the controlling value. Refer to the SMA_* Environment Variables deprecation rationale for more details.

Variable Value Description
SHMEM_VERSION Any Print the library version at start-up
SHMEM_INFO Any Print helpful text about all these environment variables
SHMEM_SYMMETRIC_SIZE Non-negative in-

teger or floating
point value with
an optional char-
acter suffix

Specifies the size (in bytes) of the symmetric heap memory
per PE. The resulting size is implementation-defined and
must be least as large as the integer ceiling of the product
of the numeric prefix and the scaling factor. The allowed
character suffixes for the scaling factor are as follows:

• k or K multiplies by 210 (kibibytes)

• m or M multiplies by 220 (mebibytes)

• g or G multiplies by 230 (gibibytes)

• t or T multiplies by 240 (tebibytes)

For example, string “20m” is equivalent to the integer value
20971520, or 20 mebibytes. Similarly the string “3.1m” is
equivalent to the integer value 3250586. Only one multi-
plier is recognized and any characters following the mul-
tiplier are ignored, so “20kk” will not produce the same
result as “20m”. Usage of string “.5m” will yield the same
result as the string “0.5m”.
An invalid value for SHMEM_SYMMETRIC_SIZE is an
error, which the OpenSHMEM library shall report by ei-
ther returning a nonzero value from shmem_init_thread or
causing program termination.

SHMEM_DEBUG Any Enable debugging messages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

14 9. ERROR HANDLING

9 Error Handling

In many cases, OpenSHMEM routines will guarantee the correct completion of operations without any need for pro-
grams to check for error states, diagnose system problems, or retry operations. For example, there are no error codes
returned for remote memory operations. The implementation is expected to internally attempt any feasible checking
and recovery to best guarantee completion as specified. However, there are also cases where routines return error codes
to allow programs to detect problems that may be correctable at the application layer, e.g. requests for system resources
that cannot be fulfilled at runtime.

C/C++ routines that return an integer error code follow the convention that 0 indicates successful local completion
of the operation. This is considered a best effort of the implementation to indicate that all required local operations
have been performed correctly inside the routine and the internal OpenSHMEM state on the calling PE is consistent
with the description of the routine and its arguments upon completion. Implementations may use an integer return
value from a routine to define integer error codes specific to the implementation as long as those codes are not already
explicitly defined for that routine.

Because OpenSHMEM defines asynchronous communication operations, errors may arise at any time as commu-
nications proceed. In these cases, the implementation might generate error messages or abort the application when
errors occur. The OpenSHMEM specification cannot define these types of errors, and leaves it to the implementation
to determine how these types of errors should be handled.

Collective operations involving many PEs may return values indicating success while other PEs are still executing
the collective operation. By default, return values indicating success of a collective routine on one PE do not indicate
that all PEs involved in the collective operation will return from the routine successfully. If a collective routine provides
any such global error checking behavior, it will be explicitly stated in the description of that routine.

If some routine specified in this document does not explicity state resulting error behavior when a program violates
the routine assumptions and requirements, then the behavior is undefined. See Annex C for more details on undefined
behavior in OpenSHMEM.

OpenSHMEM implementations are encouraged but not required to attempt to continue execution in the face of
resource allocation errors, such as lack of network resources or memory resources. In these cases, if resource allocation
fails inside a routine with an integer return code, library implementations should return some nonzero value, which may
have implementation specific definition. If the routine has some other out parameter, such as pointer to a new memory
allocation, routines may specify that the out parameter has some sentinel value to indicate failure to complete the
operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 15

10 OpenSHMEM Library API

10.1 Library Setup, Exit, and Query Routines

The library setup and query interfaces that initialize and monitor the parallel environment of the PEs.

10.1.1 SHMEM_INIT

A collective operation that allocates and initializes the resources used by the OpenSHMEM library.

SYNOPSIS

C/C++:
void shmem_init(void);

deprecation start
FORTRAN:
CALL SHMEM_INIT()

deprecation end

DESCRIPTION

Arguments
None.

API description

shmem_init allocates and initializes resources used by the OpenSHMEM library. It is a collective op-
eration that all PEs must call before any other OpenSHMEM routine may be called. At the end of
the OpenSHMEM program which it initialized, the call to shmem_init must be matched with a call to
shmem_finalize. After the first call to shmem_init, a subsequent call to shmem_init or shmem_init_thread
in the same program results in undefined behavior.

Return Values
None.

Notes
As of OpenSHMEM 1.2, the use of start_pes has been deprecated and calls to it should be replaced with
calls to shmem_init. While support for start_pes is still required in OpenSHMEM libraries, users are en-
couraged to use shmem_init. An important difference between shmem_init and start_pes is that multiple
calls to shmem_init within a program results in undefined behavior, while in the case of start_pes, any
subsequent calls to start_pes after the first one results in a no-op.

EXAMPLES

The following shmem_init example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void) {
static int targ = 0;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

16 10. OPENSHMEM LIBRARY API

shmem_init();
int me = shmem_my_pe();
int receiver = 1 % shmem_n_pes();

if (me == 0) {
int src = 33;
shmem_put(&targ, &src, 1, receiver);

}

shmem_barrier_all(); /* Synchronizes sender and receiver */

if (me == receiver)
printf("PE %d targ=%d (expect 33)\n", me, targ);

shmem_finalize();
return 0;

}

10.1.2 SHMEM_MY_PE

Returns the number of the calling PE.

SYNOPSIS

C/C++:
int shmem_my_pe(void);

deprecation start
FORTRAN:
INTEGER SHMEM_MY_PE, ME

ME = SHMEM_MY_PE()

deprecation end

DESCRIPTION

Arguments
None.

API description

This routine returns the PE number of the calling PE. It accepts no arguments. The result is an integer
between 0 and npes - 1, where npes is the total number of PEs executing the current program.

Return Values
Integer - Between 0 and npes - 1

Notes
Each PE has a unique number or identifier. As of OpenSHMEM 1.2 the use of _my_pe has been dep-
recated. Although OpenSHMEM libraries are required to support the call, users are encouraged to use
shmem_my_pe instead. The behavior and signature of the routine shmem_my_pe remains unchanged from
the deprecated _my_pe version.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 17

10.1.3 SHMEM_N_PES

Returns the number of PEs running in a program.

SYNOPSIS

C/C++:
int shmem_n_pes(void);

deprecation start
FORTRAN:
INTEGER SHMEM_N_PES, N_PES

N_PES = SHMEM_N_PES()

deprecation end

DESCRIPTION

Arguments
None.

API description

The routine returns the number of PEs running in the program.

Return Values
Integer - Number of PEs running in the OpenSHMEM program.

Notes
As of OpenSHMEM 1.2 the use of _num_pes has been deprecated. Although OpenSHMEM libraries are
required to support the call, users are encouraged to use shmem_n_pes instead. The behavior and signature
of the routine shmem_n_pes remains unchanged from the deprecated _num_pes version.

EXAMPLES

The following shmem_my_pe and shmem_n_pes example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
printf("I am #%d of %d PEs executing this program\n", me, npes);
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

18 10. OPENSHMEM LIBRARY API

10.1.4 SHMEM_FINALIZE

A collective operation that releases all resources used by the OpenSHMEM library. This only terminates the Open-
SHMEM portion of a program, not the entire program.

SYNOPSIS

C/C++:
void shmem_finalize(void);

deprecation start
FORTRAN:
CALL SHMEM_FINALIZE()

deprecation end

DESCRIPTION

Arguments
None.

API description

shmem_finalize is a collective operation that ends the OpenSHMEM portion of a program previously ini-
tialized by shmem_init or shmem_init_thread and releases all resources used by the OpenSHMEM library.
This collective operation requires all PEs to participate in the call. There is an implicit global barrier in
shmem_finalize to ensure that pending communications are completed and that no resources are released
until all PEs have entered shmem_finalize. This routine destroys all shareable contexts. This routine de-
stroys all teams created by the OpenSHMEM program. As a result, all shareable contexts are destroyed.
The user is responsible for destroying all contexts with the SHMEM_CTX_PRIVATE option enabled prior
to calling this routine; otherwise, the behavior is undefined. shmem_finalize must be the last OpenSHMEM
library call encountered in the OpenSHMEM portion of a program. A call to shmem_finalize will release
all resources initialized by a corresponding call to shmem_init or shmem_init_thread. All processes that
represent the PEs will still exist after the call to shmem_finalize returns, but they will no longer have access
to resources that have been released.

Return Values
None.

Notes
shmem_finalize releases all resources used by the OpenSHMEM library including the symmetric memory
heap and pointers initiated by shmem_ptr. This collective operation requires all PEs to participate in the
call, not just a subset of the PEs. The non-OpenSHMEM portion of a program may continue after a call to
shmem_finalize by all PEs.

EXAMPLES

The following finalize example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 19

{
static long x = 10101;
long y = -1;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

if (me == 0)
y = shmem_g(&x, npes-1);

printf("%d: y = %ld\n", me, y);

shmem_finalize();
return 0;

}

10.1.5 SHMEM_GLOBAL_EXIT

A routine that allows any PE to force termination of an entire program.

SYNOPSIS

C11:
_Noreturn void shmem_global_exit(int status);

C/C++:
void shmem_global_exit(int status);

deprecation start
FORTRAN:
INTEGER STATUS

CALL SHMEM_GLOBAL_EXIT(status)

deprecation end

DESCRIPTION

Arguments
IN status The exit status from the main program.

API description

shmem_global_exit is a non-collective routine that allows any one PE to force termination of an Open-
SHMEM program for all PEs, passing an exit status to the execution environment. This routine terminates
the entire program, not just the OpenSHMEM portion. When any PE calls shmem_global_exit, it results in
the immediate notification to all PEs to terminate. shmem_global_exit flushes I/O and releases resources
in accordance with C/C++/Fortran language requirements for normal program termination. If more than
one PE calls shmem_global_exit, then the exit status returned to the environment shall be one of the values
passed to shmem_global_exit as the status argument. There is no return to the caller of shmem_global_exit;
control is returned from the OpenSHMEM program to the execution environment for all PEs.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

20 10. OPENSHMEM LIBRARY API

Notes
shmem_global_exit may be used in situations where one or more PEs have determined that the program
has completed and/or should terminate early. Accordingly, the integer status argument can be used to pass
any information about the nature of the exit; e.g., that the program encountered an error or found a so-
lution. Since shmem_global_exit is a non-collective routine, there is no implied synchronization, and all
PEs must terminate regardless of their current execution state. While I/O must be flushed for standard lan-
guage I/O calls from C/C++/Fortran, it is implementation dependent as to how I/O done by other means
(e.g., third party I/O libraries) is handled. Similarly, resources are released according to C/C++/Fortran
standard language requirements, but this may not include all resources allocated for the OpenSHMEM pro-
gram. However, a quality implementation will make a best effort to flush all I/O and clean up all resources.

EXAMPLES

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

int main(void)
{

shmem_init();
int me = shmem_my_pe();
if (me == 0) {

FILE *fp = fopen("input.txt", "r");
if (fp == NULL) { /* Input file required by program is not available */

shmem_global_exit(EXIT_FAILURE);
}
/* do something with the file */
fclose(fp);

}
shmem_finalize();
return 0;

}

10.1.6 SHMEM_PE_ACCESSIBLE

Determines whether a PE is accessible via OpenSHMEM’s data transfer routines.

SYNOPSIS

C/C++:
int shmem_pe_accessible(int pe);

deprecation start
FORTRAN:
LOGICAL LOG, SHMEM_PE_ACCESSIBLE

INTEGER pe

LOG = SHMEM_PE_ACCESSIBLE(pe)

deprecation end

DESCRIPTION

Arguments
IN pe Specific PE to be checked for accessibility from the local PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 21

API description

shmem_pe_accessible is a query routine that indicates whether a specified PE is accessible via Open-
SHMEM from the local PE. The shmem_pe_accessible routine returns a value indicating whether the
remote PE is a process running from the same executable file as the local PE, thereby indicating whether
full support for symmetric data objects, which may reside in either static memory or the symmetric heap,
is available.

Return Values
C/C++: The return value is 1 if the specified PE is a valid remote PE for OpenSHMEM routines; otherwise,
it is 0.
Fortran: The return value is .TRUE. if the specified PE is a valid remote PE for OpenSHMEM routines;
otherwise, it is .FALSE..

Notes
This routine may be particularly useful for hybrid programming with other communication libraries (such
as Message Passing Interface (MPI)) or parallel languages. For example, when an MPI job uses Multiple
Program Multiple Data (MPMD) mode, multiple executable MPI programs are executed as part of the
same MPI job. In such cases, OpenSHMEM support may only be available between processes running
from the same executable file. In addition, some environments may allow a hybrid job to span multiple
network partitions. In such scenarios, OpenSHMEM support may only be available between PEs within
the same partition.

10.1.7 SHMEM_ADDR_ACCESSIBLE

Determines whether an address is accessible via OpenSHMEM data transfer routines from the specified remote PE.

SYNOPSIS

C/C++:
int shmem_addr_accessible(const void *addr, int pe);

deprecation start
FORTRAN:
LOGICAL LOG, SHMEM_ADDR_ACCESSIBLE

INTEGER pe

LOG = SHMEM_ADDR_ACCESSIBLE(addr, pe)

deprecation end

DESCRIPTION

Arguments
IN addr Data object on the local PE.
IN pe Integer id of a remote PE.

API description

shmem_addr_accessible is a query routine that indicates whether a local address is accessible via Open-
SHMEM routines from the specified remote PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

22 10. OPENSHMEM LIBRARY API

This routine verifies that the data object is symmetric and accessible with respect to a remote PE via Open-
SHMEM data transfer routines. The specified address addr is a data object on the local PE.

Return Values
C/C++: The return value is 1 if addr is a symmetric data object and accessible via OpenSHMEM routines
from the specified remote PE; otherwise, it is 0.
Fortran: The return value is .TRUE. if addr is a symmetric data object and accessible via OpenSHMEM
routines from the specified remote PE; otherwise, it is .FALSE..

Notes
This routine may be particularly useful for hybrid programming with other communication libraries (such
as MPI) or parallel languages. For example, when an MPI job uses MPMD mode, multiple executable MPI
programs may use OpenSHMEM routines. In such cases, static memory, such as a Fortran common block
or C global variable, is symmetric between processes running from the same executable file, but is not
symmetric between processes running from different executable files. Data allocated from the symmetric
heap (shmem_malloc or shpalloc) is symmetric across the same or different executable files.

10.1.8 SHMEM_PTR

Returns a local pointer to a symmetric data object on the specified PE.

SYNOPSIS

C/C++:
void *shmem_ptr(const void *dest, int pe);

deprecation start
FORTRAN:
POINTER (PTR, POINTEE)

INTEGER pe

PTR = SHMEM_PTR(dest, pe)

deprecation end

DESCRIPTION

Arguments
IN dest The symmetric data object to be referenced.
IN pe An integer that indicates the PE number on which dest is to be accessed.

When using Fortran, it must be a default integer value.

API description

shmem_ptr returns an address that may be used to directly reference dest on the specified PE. This address
can be assigned to a pointer. After that, ordinary loads and stores to this remote address may be performed.
The shmem_ptr routine can provide an efficient means to accomplish communication, for example when a
sequence of reads and writes to a data object on a remote PE does not match the access pattern provided in
an OpenSHMEM data transfer routine like shmem_put or shmem_iget.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 23

Return Values
The address of the dest data object is returned when it is accessible using memory loads and stores. Other-
wise, a null pointer is returned.

Notes
When calling shmem_ptr, dest is the address of the referenced symmetric data object on the calling PE.

EXAMPLES

This Fortran program calls shmem_ptr and then PE 0 writes to the BIGD array on PE 1:
PROGRAM REMOTEWRITE
INCLUDE "shmem.fh"

INTEGER BIGD(100)
SAVE BIGD

INTEGER POINTEE(*)
POINTER (PTR,POINTEE)

CALL SHMEM_INIT()

IF (SHMEM_MY_PE() .EQ. 0) THEN
! initialize PE 1’s BIGD array
PTR = SHMEM_PTR(BIGD, 1) ! get address of PE 1’s BIGD

! array
DO I=1,100

POINTEE(I) = I
ENDDO

ENDIF

CALL SHMEM_BARRIER_ALL

IF (SHMEM_MY_PE() .EQ. 1) THEN
PRINT*,’BIGD on PE 1 is: ’
PRINT*,BIGD

ENDIF
END

This is the equivalent program written in C11:
#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int dest[4];
shmem_init();
int me = shmem_my_pe();
if (me == 0) { /* initialize PE 1’s dest array */

int* ptr = shmem_ptr(dest, 1);
if (ptr == NULL)

printf("can’t use pointer to directly access PE 1’s dest array\n");
else

for (int i = 0; i < 4; i++)

*ptr++ = i + 1;
}
shmem_barrier_all();
if (me == 1)

printf("PE 1 dest: %d, %d, %d, %d\n",
dest[0], dest[1], dest[2], dest[3]);

shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

24 10. OPENSHMEM LIBRARY API

10.1.9 SHMEM_INFO_GET_VERSION

Returns the major and minor version of the library implementation.

SYNOPSIS

C/C++:
void shmem_info_get_version(int *major, int *minor);

deprecation start
FORTRAN:
INTEGER MAJOR, MINOR

CALL SHMEM_INFO_GET_VERSION(MAJOR, MINOR)

deprecation end

DESCRIPTION

Arguments
OUT major The major version of the OpenSHMEM Specification in use.
OUT minor The minor version of the OpenSHMEM Specification in use.

API description

This routine returns the major and minor version of the OpenSHMEM Specification in use. For a given
library implementation, the major and minor version returned by these calls are consistent with the library
constants SHMEM_MAJOR_VERSION and SHMEM_MINOR_VERSION.

Return Values
None.

Notes
None.

10.1.10 SHMEM_INFO_GET_NAME

This routine returns the vendor defined name string that is consistent with the library constant SHMEM_VENDOR_STRING.

SYNOPSIS

C/C++:
void shmem_info_get_name(char *name);

deprecation start
FORTRAN:
CHARACTER *(*)NAME

CALL SHMEM_INFO_GET_NAME(NAME)

deprecation end

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 25

Arguments
OUT name The vendor defined string.

API description

This routine returns the vendor defined name string of size defined by the library constant
SHMEM_MAX_NAME_LEN. The program calling this function provides the name memory buffer of
at least size SHMEM_MAX_NAME_LEN. The implementation copies the vendor defined string of size
at most SHMEM_MAX_NAME_LEN to name. In C/C++, the string is terminated by a null charac-
ter. In Fortran, the string of size less than SHMEM_MAX_NAME_LEN is padded with blank charac-
ters up to size SHMEM_MAX_NAME_LEN. If the name memory buffer is provided with size less than
SHMEM_MAX_NAME_LEN, behavior is undefined. For a given library implementation, the vendor string
returned is consistent with the library constant SHMEM_VENDOR_STRING.

Return Values
None.

Notes
None.

10.1.11 START_PES

Called at the beginning of an OpenSHMEM program to initialize the execution environment. This routine is deprecated
and is provided for backwards compatibility. Implementations must include it, and the routine should function properly
and may notify the user about deprecation of its use.

SYNOPSIS

deprecation start

C/C++:
void start_pes(int npes);

deprecation end

deprecation start
FORTRAN:
CALL START_PES(npes)

deprecation end

DESCRIPTION

Arguments
npes Unused Should be set to 0.

API description

The start_pes routine initializes the OpenSHMEM execution environment. An OpenSHMEM program
must call start_pes, shmem_init, or shmem_init_thread before calling any other OpenSHMEM routine.
Unlike shmem_init and shmem_init_thread, start_pes does not require a call to shmem_finalize. Instead,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

26 10. OPENSHMEM LIBRARY API

the OpenSHMEM library is implicitly finalized when the program exits. Implicit finalization is collec-
tive and includes a global synchronization to ensure that all pending communication is completed before
resources are released.

Return Values
None.

Notes
If any other OpenSHMEM call occurs before start_pes, the behavior is undefined. Although it is recom-
mended to set npes to 0 for start_pes, this is not mandated. The value is ignored. Calling start_pes more
than once has no subsequent effect.
As of OpenSHMEM 1.2 the use of start_pes has been deprecated. Although OpenSHMEM libraries are
required to support the call, users are encouraged to use shmem_init or shmem_init_thread instead.

EXAMPLES

This is a simple program that calls start_pes:

PROGRAM PUT
INCLUDE "shmem.fh"

INTEGER TARG, SRC, RECEIVER, BAR
COMMON /T/ TARG
PARAMETER (RECEIVER=1)
CALL START_PES(0)

IF (SHMEM_MY_PE() .EQ. 0) THEN
SRC = 33
CALL SHMEM_INTEGER_PUT(TARG, SRC, 1, RECEIVER)

ENDIF

CALL SHMEM_BARRIER_ALL ! SYNCHRONIZES SENDER AND RECEIVER

IF (SHMEM_MY_PE() .EQ. RECEIVER) THEN
PRINT*,’PE ’, SHMEM_MY_PE(),’ TARG=’,TARG,’ (expect 33)’

ENDIF
END

10.2 Thread Support

This section specifies the interaction between the OpenSHMEM interfaces and user threads. It also describes the
routines that can be used for initializing and querying the thread environment. There are four levels of threading
defined by the OpenSHMEM specification.

SHMEM_THREAD_SINGLE
The OpenSHMEM program must not be multithreaded.

SHMEM_THREAD_FUNNELED
The OpenSHMEM program may be multithreaded. However, the program must ensure that only the main
thread invokes the OpenSHMEM interfaces. The main thread is the thread that invokes either shmem_init or
shmem_init_thread.

SHMEM_THREAD_SERIALIZED
The OpenSHMEM program may be multithreaded. However, the program must ensure that the OpenSHMEM
interfaces are not invoked concurrently by multiple threads.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 27

SHMEM_THREAD_MULTIPLE
The OpenSHMEM program may be multithreaded and any thread may invoke the OpenSHMEM interfaces.

The following semantics apply to the usage of these models:

1. In the SHMEM_THREAD_FUNNELED, SHMEM_THREAD_SERIALIZED, and SHMEM_THREAD_MULTIPLE
thread levels, the shmem_init and shmem_finalize calls must be invoked by the same thread.

2. Any OpenSHMEM operation initiated by a thread is considered an action of the PE as a whole. The symmetric
heap and symmetric variables scope are not impacted by multiple threads invoking the OpenSHMEM interfaces.
Each PE has a single symmetric data segment and symmetric heap that is shared by all threads within that PE.
For example, a thread invoking a memory allocation routine such as shmem_malloc allocates memory that is
accessible by all threads of the PE. The requirement that the same symmetric heap operations must be executed
by all PEs in the same order also applies in a threaded environment. Similarly, the completion of collective
operations is not impacted by multiple threads. For example, shmem_barrier_all is completed when all PEs
enter and exit the shmem_barrier_all call, even though only one thread in the PE is participating in the collective
call.

3. Blocking OpenSHMEM calls will only block the calling thread, allowing other threads, if available, to continue
executing. The calling thread will be blocked until the event on which it is waiting occurs. Once the blocking
call is completed, the thread is ready to continue execution. A blocked thread will not prevent progress of other
threads on the same PE and will not prevent them from executing other OpenSHMEM calls when the thread
level permits. In addition, a blocked thread will not prevent the progress of OpenSHMEM calls performed on
other PEs.

4. In the SHMEM_THREAD_MULTIPLE thread level, all OpenSHMEM calls are thread-safe. Any two concur-
rently running threads may make OpenSHMEM calls and the outcome will be as if the calls executed in some
order, even if their execution is interleaved.

5. In the SHMEM_THREAD_SERIALIZED and SHMEM_THREAD_MULTIPLE thread levels, if multiple threads
call collective routines, including the symmetric heap management routines, it is the programmer’s responsibility
to ensure the correct ordering of collective calls.

10.2.1 SHMEM_INIT_THREAD

Initializes the OpenSHMEM library, similar to shmem_init, and performs any initialization required for supporting the
provided thread level.

SYNOPSIS

C/C++:
int shmem_init_thread(int requested, int *provided);

DESCRIPTION

Arguments
IN requested The thread level support requested by the user.
OUT provided The thread level support provided by the OpenSHMEM implementa-

tion.

API description

shmem_init_thread initializes the OpenSHMEM library in the same way as shmem_init. In addition,
shmem_init_thread also performs the initialization required for supporting the provided thread level.
The argument requested is used to specify the desired level of thread support. The argument provided

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

28 10. OPENSHMEM LIBRARY API

returns the support level provided by the library. The allowed values for provided and requested are
SHMEM_THREAD_SINGLE, SHMEM_THREAD_FUNNELED, SHMEM_THREAD_SERIALIZED, and
SHMEM_THREAD_MULTIPLE.
An OpenSHMEM program is initialized either by shmem_init or shmem_init_thread. Once an Open-
SHMEM library initialization call has been performed, a subsequent initialization call in the same program
results in undefined behavior. If the call to shmem_init_thread is unsuccessful in allocating and initializing
resources for the OpenSHMEM library, then the behavior of any subsequent call to the OpenSHMEM
library is undefined.

Return Values
shmem_init_thread returns 0 upon success; otherwise, it returns a non-zero value.

Notes
The OpenSHMEM library can be initialized either by shmem_init or shmem_init_thread. If the Open-
SHMEM library is initialized by shmem_init, the library implementation can choose to support any one of
the defined thread levels.

10.2.2 SHMEM_QUERY_THREAD

Returns the level of thread support provided by the library.

SYNOPSIS

C/C++:
void shmem_query_thread(int *provided);

DESCRIPTION

Arguments
OUT provided The thread level support provided by the OpenSHMEM implementa-

tion.

API description

The shmem_query_thread call returns the level of thread support currently being provided. The value
returned will be same as was returned in provided by a call to shmem_init_thread, if the OpenSHMEM
library was initialized by shmem_init_thread. If the library was initialized by shmem_init, the implemen-
tation can choose to provide any one of the defined thread levels, and shmem_query_thread returns this
thread level.

Return Values
None.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 29

10.3 Memory Management Routines

OpenSHMEM provides a set of APIs for managing the symmetric heap. The APIs allow one to dynamically allocate,
deallocate, reallocate and align symmetric data objects in the symmetric heap.

10.3.1 SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN

Collective symmetric heap memory management routines.

SYNOPSIS

C/C++:
void *shmem_malloc(size_t size);

void shmem_free(void *ptr);

void *shmem_realloc(void *ptr, size_t size);

void *shmem_align(size_t alignment, size_t size);

DESCRIPTION

Arguments
IN size The size, in bytes, of a block to be allocated from the symmetric heap.

This argument is of type size_t
IN ptr Pointer to a block within the symmetric heap.
IN alignment Byte alignment of the block allocated from the symmetric heap.

API description

The shmem_malloc, shmem_free, shmem_realloc, and shmem_align routines are collective operations that
require participation by all PEs.
The shmem_malloc routine returns a pointer to a block of at least size bytes, which shall be suitably aligned
so that it may be assigned to a pointer to any type of object. This space is allocated from the symmetric
heap (in contrast to malloc, which allocates from the private heap). When size is zero, the shmem_malloc
routine performs no action and returns a null pointer.
The shmem_align routine allocates a block in the symmetric heap that has a byte alignment specified by
the alignment argument. The value of alignment shall be a multiple of sizeof(void *) that is also a power of
two. Otherwise, the behavior is undefined. When size is zero, the shmem_align routine performs no action
and returns a null pointer.
The shmem_free routine causes the block to which ptr points to be deallocated, that is, made available for
further allocation. If ptr is a null pointer, no action is performed.
The shmem_realloc routine changes the size of the block to which ptr points to the size (in bytes) specified
by size. The contents of the block are unchanged up to the lesser of the new and old sizes. If the new size is
larger, the newly allocated portion of the block is uninitialized. If ptr is a null pointer, the shmem_realloc
routine behaves like the shmem_malloc routine for the specified size. If size is 0 and ptr is not a null
pointer, the block to which it points is freed. If the space cannot be allocated, the block to which ptr points
is unchanged.
The shmem_malloc, shmem_align, shmem_free, and shmem_realloc routines are provided so that multiple
PEs in a program can allocate symmetric, remotely accessible memory blocks. These memory blocks can
then be used with OpenSHMEM communication routines. When no action is performed, these routines
return without performing a barrier. Otherwise, each of these routines includes at least one call to a proce-
dure that is semantically equivalent to shmem_barrier_all: shmem_malloc and shmem_align call a barrier
on exit; shmem_free calls a barrier on entry; and shmem_realloc may call barriers on both entry and exit,
depending on whether an existing allocation is modified and whether new memory is allocated, respec-
tively. This ensures that all PEs participate in the memory allocation, and that the memory on other PEs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

30 10. OPENSHMEM LIBRARY API

can be used as soon as the local PE returns. The implicit barriers performed by these routines quiet the de-
fault context. It is the user’s responsibility to ensure that no communication operations involving the given
memory block are pending on other contexts prior to calling the shmem_free and shmem_realloc routines.
The user is also responsible for calling these routines with identical argument(s) on all PEs; if differing ptr,
size, or alignment arguments are used, the behavior of the call and any subsequent OpenSHMEM calls is
undefined.

Return Values
The shmem_malloc routine returns a pointer to the allocated space; otherwise, it returns a null pointer.
The shmem_free routine returns no value.
The shmem_realloc routine returns a pointer to the allocated space (which may have moved); otherwise,
all PEs return a null pointer.
The shmem_align routine returns an aligned pointer whose value is a multiple of alignment; otherwise, it
returns a null pointer.

Notes
As of OpenSHMEM 1.2 the use of shmalloc, shmemalign, shfree, and shrealloc has been deprecated. Al-
though OpenSHMEM libraries are required to support the calls, users are encouraged to use shmem_malloc,
shmem_align, shmem_free, and shmem_realloc instead. The behavior and signature of the routines re-
mains unchanged from the deprecated versions.
The total size of the symmetric heap is determined at job startup. One can specify the size of the heap using
the SHMEM_SYMMETRIC_SIZE environment variable (where available).
The shmem_malloc, shmem_free, and shmem_realloc routines differ from the private heap allocation rou-
tines in that all PEs in a program must call them (a barrier is used to ensure this).
When the ptr argument in a call to shmem_realloc corresponds to a buffer allocated using shmem_align,
the buffer returned by shmem_realloc is not guaranteed to maintain the alignment requested in the original
call to shmem_align.

Note to implementors
The symmetric heap allocation routines always return a pointer to corresponding symmetric objects across
all PEs. The OpenSHMEM specification does not require that the virtual addresses are equal across all PEs.
Nevertheless, the implementation must avoid costly address translation operations in the communication
path, including O(N) memory translation tables, where N is the number of PEs. In order to avoid address
translations, the implementation may re-map the allocated block of memory based on agreed virtual ad-
dress. Additionally, some operating systems provide an option to disable virtual address randomization,
which enables predictable allocation of virtual memory addresses.

10.3.2 SHMEM_CALLOC

Allocate a zeroed block of symmetric memory.

SYNOPSIS

C/C++:
void *shmem_calloc(size_t count, size_t size);

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 31

Arguments
IN count The number of elements to allocate.
IN size The size in bytes of each element to allocate.

API description

The shmem_calloc routine is a collective operation that allocates a region of remotely-accessible memory
for an array of count objects of size bytes each and returns a pointer to the lowest byte address of the
allocated symmetric memory. The space is initialized to all bits zero.
If the allocation succeeds, the pointer returned shall be suitably aligned so that it may be assigned to a
pointer to any type of object. If the allocation does not succeed, or either count or size is 0, the return value
is a null pointer.
The values for count and size shall each be equal across all PEs calling shmem_calloc; otherwise, the
behavior is undefined.
When count or size is 0, the shmem_calloc routine returns without performing a barrier. Otherwise, this
routine calls a procedure that is semantically equivalent to shmem_barrier_all on exit.

Return Values
The shmem_calloc routine returns a pointer to the lowest byte address of the allocated space; otherwise, it
returns a null pointer.

Notes
None.

10.3.3 SHPALLOC

Allocates a block of memory from the symmetric heap.

SYNOPSIS

deprecation start
FORTRAN:
POINTER (addr, A(1))

INTEGER length, errcode, abort

CALL SHPALLOC(addr, length, errcode, abort)

deprecation end

DESCRIPTION

Arguments
OUT addr First word address of the allocated block.
IN length Number of words of memory requested. One word is 32 bits.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code; nonzero requests abort on error; 0 requests an error code.

API description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

32 10. OPENSHMEM LIBRARY API

SHPALLOC allocates a block of memory from the program’s symmetric heap that is greater than or equal
to the size requested. To maintain symmetric heap consistency, all PEs in an program must call SHPALLOC
with the same value of length; if any PEs are missing, the program will hang.
By using the Fortran POINTER mechanism in the following manner, array A can be used to refer to the
block allocated by SHPALLOC: POINTER (addr, A())

Return Values

Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

Notes
The total size of the symmetric heap is determined at job startup. One may adjust the size of the heap using
the SHMEM_SYMMETRIC_SIZE environment variable (if available).

Note to implementors
The symmetric heap allocation routines always return a pointer to corresponding symmetric objects across
all PEs. The OpenSHMEM specification does not require that the virtual addresses are equal across all PEs.
Nevertheless, the implementation must avoid costly address translation operations in the communication
path, including order N (where N is the number of PEs) memory translation tables. In order to avoid ad-
dress translations, the implementation may re-map the allocated block of memory based on agreed virtual
address. Additionally, some operating systems provide an option to disable virtual address randomization,
which enables predictable allocation of virtual memory addresses.

10.3.4 SHPCLMOVE

Extends a symmetric heap block or copies the contents of the block into a larger block.

SYNOPSIS

deprecation start
FORTRAN:
POINTER (addr, A(1))

INTEGER length, status, abort

CALL SHPCLMOVE(addr, length, status, abort)

deprecation end

DESCRIPTION

Arguments
INOUT addr On entry, first word address of the block to change; on exit, the new

address of the block if it was moved.
IN length Requested new total length in words. One word is 32 bits.
OUT status Status is 0 if the block was extended in place, 1 if it was moved, and a

negative integer for the type of error detected.
IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 33

API description

The SHPCLMOVE routine either extends a symmetric heap block if the block is followed by a large enough
free block or copies the contents of the existing block to a larger block and returns a status code indicating
that the block was moved. This routine also can reduce the size of a block if the new length is less than
the old length. All PEs in a program must call SHPCLMOVE with the same value of addr to maintain
symmetric heap consistency; if any PEs are missing, the program hangs.

Return Values

Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.
-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

10.3.5 SHPDEALLC

Returns a memory block to the symmetric heap.

SYNOPSIS

deprecation start
FORTRAN:
POINTER (addr, A(1))

INTEGER errcode, abort

CALL SHPDEALLC(addr, errcode, abort)

deprecation end

DESCRIPTION

Arguments
IN addr First word address of the block to deallocate.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

API description

SHPDEALLC returns a block of memory (allocated using SHPALLOC) to the list of available space in the
symmetric heap. To maintain symmetric heap consistency, all PEs in a program must call SHPDEALLC
with the same value of addr; if any PEs are missing, the program hangs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

34 10. OPENSHMEM LIBRARY API

Return Values

Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.
-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

10.4 Team Management Routines

The PEs in an OpenSHMEM program communicate using either Remote Memory Access (RMA) and Atomic Memory
Operation (AMO) routines, which specify the PE number of the target PE, or collective routines, which operate over a
set of PEs. In OpenSHMEM, teams allow programs to group a set of PEs for communication. Team-based collective
communications operate across all the PEs in a valid team. RMA and AMO communication can make use of team-
relative PE numbering through team-based contexts (see Section 10.5) or PE number translation.

Predefined and Program-Defined Teams

An OpenSHMEM team may be predefined (i.e., provided by the OpenSHMEM library) or defined by the OpenSHMEM
program. A program-defined team is created by “splitting” a parent team into one or more new teams—each with some
subset of PEs of the parent team—via one of the shmem_team_split_* routines.

All predefined teams are valid for the duration of the OpenSHMEM portion of an application. Any team suc-
cessfully created by a shmem_team_split_* routine is valid until it is destroyed. All valid teams have a least one
member.

Team Handles

A “team handle” is an opaque object with type shmem_team_t that is used to reference a team. Team handles are not
remotely accessible objects The predefined teams may be accessed via the team handles listed in Section 7.

OpenSHMEM communication routines that do not accept a team handle argument operate on the default team,
which may be accessed through the SHMEM_TEAM_WORLD handle. The default team encompasses the set of all PEs
in the OpenSHMEM program, and a PE number in the default team is the same as the value returned by shmem_my_pe.

A team handle may be initialized to or assigned the value SHMEM_TEAM_INVALID to indicate that handle does
not reference a valid team. When managed in this way, applications can use an equality comparison to test whether a
given team handle references a valid team.

Thread Safety

When it is allowed by the threading model provided by the OpenSHMEM library, a team may be used concurrently
in non-collective operations (e.g., shmem_team_my_pe) by multiple threads within the PE where it was created. For
collective operations, a team may not be used concurrently by multiple threads in the same PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 35

Collective Ordering

In OpenSHMEM, a team object encapsulates resources used to communicate between PEs in collective operations.
When calling multiple subsequent collective operations on a team, the collective operations—along with any relevant
team based resources—are matched across the PEs in the team based on ordering of collective routine calls. It is the
responsibility of the OpenSHMEM program to ensure the same ordering of collective routine calls across all PEs in a
team.

There is no need for explicit synchronization between subsequent calls to collective routines across the team, except
in the special case discussed below for team creation of overlapping child teams from a common parent team.

A full discussion of collective semantics follows in Section 10.9.

Team Creation

Team creation is a collective operation on the parent team object. New teams result from a shmem_team_split_*
routine, which takes a parent team and other arguments and produces new teams that are a subset of the parent team.
All PEs in a parent team must participate in a split operation to create new teams. If a PE from the parent team is not
a member of any resulting new teams, it will receive a value of SHMEM_TEAM_INVALID as the value for the new
team handle.

Teams that are created by a shmem_team_split_* routine may be provided a configuration argument that specifies
attributes of each new team. This configuration argument is of type shmem_team_config_t, which is detailed further
in Section 10.4.3.

As with any collective routine on a team, the program must ensure that there are no simultaneous split operations
occurring on the same parent team on a given PE, i.e. in separate threads.

As with any collective routine on a team, team creation is matched across PEs based on ordering. So, team creation
events must occur in the same order on all PEs in the parent team.

Upon completion of a team creation operation, the parent and any resulting child teams will be immediately usable
for any team-based operations, including creating new child teams, without any intervening synchronization.

10.4.1 SHMEM_TEAM_MY_PE

Returns the number of the calling PE within a specified team.

SYNOPSIS

C/C++:
int shmem_team_my_pe(shmem_team_t team);

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.

API description

When team specifies a valid team, the shmem_team_my_pe routine returns the number of the calling PE
within the specified team. The number is an integer between 0 and N−1 for a team of size N. Each member
of the team has a unique number.
When team specifies an invalid team, if team compares equal to SHMEM_TEAM_INVALID, then the value
-1 is returned; otherwise, the behavior is undefined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

36 10. OPENSHMEM LIBRARY API

Return Values
The number of the calling PE within the specified team, or the value -1 if the team handle compares equal
to SHMEM_TEAM_INVALID.

Notes
For the default team, this routine will return the same value as shmem_my_pe.

10.4.2 SHMEM_TEAM_N_PES

Returns the number of PEs in a specified team.

SYNOPSIS

C/C++:
int shmem_team_n_pes(shmem_team_t team);

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.

API description

When team specifies a valid team, the shmem_team_n_pes routine returns the number of PEs in the team.
This will always be a value between 1 and N, where N is the total number of PEs running in the Open-
SHMEM program.
When team specifies an invalid team, if team compares equal to SHMEM_TEAM_INVALID, then the value
-1 is returned; otherwise, the behavior is undefined.

Return Values
The number of PEs in the specified team, or the value -1 if the team handle compares equal to SHMEM_TEAM_INVALID.

Notes
For the default team, this routine will return the same value as shmem_n_pes.

10.4.3 SHMEM_TEAM_CONFIG_T

A structure type representing team configuration arguments

SYNOPSIS

C/C++:
typedef struct {

int num_contexts;

} shmem_team_config_t;

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 37

Arguments
None.

API description

A team configuration argument acts as an input shmem_team_split_* routines. It specifies the requested
capabilities of the team to be created.
The num_contexts member specifies the total number of simultaneously existing contexts that the program
requests to create from this team. These contexts may be created in any number of threads. Successful
creation of a team configured with num_contexts of N means that the implementation will make a best
effort to reserve enough resources to allow the team to have N contexts created from the team in existance at
any given time. It is not a guaruntee that N calls to shmem_team_create_ctx will succeed. See Section 10.5
for more on communication contexts and Section 10.5.2 for team-based context creation.
When using the configuration structure to create teams, a mask parameter controls which fields to use. Any
configuration parameter value that is not indicated in the mask will be ignored, and the default value will be
used instead. Therefore, a program does not have to set all fields in the config struct; only those for which
it does not want the default values.
A configuration mask value is created by combining individual field masks with through a bitwise OR
operation of the following library constants:

SHMEM_TEAM_NUM_CONTEXTS The team should be created using the value of the num_contexts
member of the configuration parameter config as a requirement.

A configuration mask value of 0 indicates that the team should be created with the default values for all
configuration parameters.
The default values for configuration parameters are:

num_contexts = 0 By default, no contexts can be created on a new team

Notes
None.

10.4.4 SHMEM_TEAM_GET_CONFIG

Return the configuration parameters of a given team

SYNOPSIS

C/C++:
int shmem_team_get_config(shmem_team_t team, shmem_team_config_t *config);

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.
OUT config A pointer to the configuration parameters for the given team.

API description

shmem_team_get_config returns through the config argument the configuration parameters of the given
team, which were assigned according to input configuration parameters when the team was created.
When team specifies an invalid team, if team compares equal to SHMEM_TEAM_INVALID, then no oper-
ation is performed; otherwise, the behavior is undefined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

38 10. OPENSHMEM LIBRARY API

Return Values
If team does not compare equal to SHMEM_TEAM_INVALID, then shmem_team_get_config returns 0;
otherwise, returns nonzero.

Notes
None.

10.4.5 SHMEM_TEAM_TRANSLATE_PE

Translate a given PE number from one team to the corresponding PE number in another team.

SYNOPSIS

C/C++:
int shmem_team_translate_pe(shmem_team_t src_team, int src_pe,

shmem_team_t dest_team);

DESCRIPTION

Arguments
IN src_team A valid SHMEM team handle.
IN src_pe A PE number in src_team.
IN dest_team A valid SHMEM team handle.

API description

The shmem_team_translate_pe routine will translate a given PE number to the corresponding PE num-
ber in another team. Specifically, given the src_pe in src_team, this routine returns that PE’s number in
dest_team. If src_pe is not a member of both the src_team and dest_team, a value of -1 is returned.
If either of the src_team or dest_team handle is invalid, the behavior is undefined.

Return Values
The specified PE’s number in the dest_team, or a value of -1 if any team handle arguments are invalid or
the src_pe is not in both the source and destination teams.

Notes
If SHMEM_TEAM_WORLD is provided as the dest_team parameter, this routine acts as a global PE num-
ber translator and will return the corresponding SHMEM_TEAM_WORLD number.

EXAMPLES

The following example demonstrates the use of the team PE number translation routine. The program makes a
new team of all of the even number PEs in the default team. Then, all PEs in the new team acquire their PE
number in the new team and translate it to the PE number in the default team.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 39

#include <stddef.h>
#include <shmem.h>

int main(void)
{

int my_pe;
int n_pes;
int t_pe;
int t_global;
shmem_team_t new_team;
shmem_team_config_t *config;

shmem_init();
config = NULL;
my_pe = shmem_my_pe();
n_pes = shmem_n_pes();

shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 2, (n_pes + 1) / 2,
config, 0, &new_team);

if (new_team != SHMEM_TEAM_INVALID) {
t_pe = shmem_team_my_pe(new_team);
t_global = shmem_team_translate_pe(new_team, t_pe, SHMEM_TEAM_WORLD);

if (t_global != my_pe) {
shmem_global_exit(1);

}
}

shmem_finalize();
return 0;

}

10.4.6 SHMEM_TEAM_SPLIT_STRIDED

Create a new OpenSHMEM team from a subset of the existing parent team PEs, where the subset is defined by the PE
triplet (start, stride, and size) supplied to the routine.

SYNOPSIS

C/C++:
int shmem_team_split_strided(shmem_team_t parent_team, int start, int stride,

int size, const shmem_team_config_t *config, long config_mask, shmem_team_t *new_team);

DESCRIPTION

Arguments
IN parent_team An OpenSHMEM team.

IN start The lowest PE number of the subset of PEs from the parent team that
will form the new team.

IN stride The stride between team PE numbers in the parent team that comprise
the subset of PEs that will form the new team.

IN size The number of PEs from the parent team in the subset of PEs that will
form the new team.

IN config A pointer to the configuration parameters for the new team.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

40 10. OPENSHMEM LIBRARY API

IN config_mask The bitwise mask representing the set of configuration parameters to
use from config.

OUT new_team A new OpenSHMEM team handle, representing a PE subset of all the
PEs in the parent team that is created from the PE triplet provided.

API description

The shmem_team_split_strided routine is a collective routine. It creates a new OpenSHMEM team from a
subset of the existing parent team, where the PE subset is defined by the triplet of arguments (start, stride,
size). A valid triplet is one such that:

start + stride · i ∈ ZN ∀ i ∈ Zsize

where N is the number of PEs in the parent team.
This routine must be called by all PEs contained in the PE triplet specification. It may be called
by additional PEs not included in the triplet specification, but for those PEs a new_team value of
SHMEM_TEAM_INVALID is returned. All PEs must provide the same values for the PE triplet. This
routine will return a new_team containing the PE subset specified by the triplet and ordered by the existing
global PE number.
The config argument specifies team configuration parameters, which are described in Section 10.4.3.
The config_mask argument is a bitwise mask representing the set of configuration parameters to use from
config. A config_mask value of 0 indicates that the team should be created with the default values for all
configuration parameters. See Section 10.4.3 for field mask names and default configuration parameters.
When parent_team specifies an invalid team, if parent_team compares equal to
SHMEM_TEAM_INVALID, then no new team will be created and new_team will be assigned the
value SHMEM_TEAM_INVALID; otherwise, the behavior is undefined.
If an invalid PE triplet is provided, then the new_team will not be created.
If new_team cannot be created, then it will be assigned the value SHMEM_TEAM_INVALID.

Return Values
Zero on successful creation of new_team, nonzero otherwise.

Notes
It is important to note the use of the less restrictive stride argument instead of logPE_stride. This method
of creating a team with an arbitrary set of PEs is inherently restricted by its parameters, but allows for many
additional use-cases over using a logPE_stride parameter, and may provide an easier transition for existing
OpenSHMEM programs to create and use OpenSHMEM teams.
See the description of team handles and predefined teams at the top of Section 10.4 for more information
about semantics and usage.

EXAMPLES

The following example demonstrates the use of strided split in a C11 program. The program creates a new team
of all even number PEs from the default team, then retrieves the PE number and team size on all PEs that are
members of the new team.

/*
* OpenSHMEM shmem_team_split_strided example to create a team of all even

* ranked PEs from SHMEM_TEAM_WORLD

*/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 41

#include <shmem.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

int rank, npes;
int t_pe, t_size;
shmem_team_t new_team;
shmem_team_config_t *config;

shmem_init();
config = NULL;
rank = shmem_my_pe();
npes = shmem_n_pes();

shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 2, npes / 2, config, 0,
&new_team);

if (new_team != SHMEM_TEAM_INVALID) {
t_size = shmem_team_n_pes(new_team);
t_pe = shmem_team_my_pe(new_team);

if ((rank % 2 != 0) || (rank / 2 != t_pe) || (npes / 2 != t_size)) {
shmem_global_exit(1);

}
}

shmem_finalize();
return 0;

}

10.4.7 SHMEM_TEAM_SPLIT_2D

Create two new teams by splitting an existing parent team into two subsets based on a 2D Cartesian space defined
by the xrange argument and a y dimension derived from xrange and the parent team size. These ranges describe the
Cartesian space in x- and y-dimensions.

SYNOPSIS

C/C++:
int shmem_team_split_2d(shmem_team_t parent_team, int xrange,

shmem_team_config_t *xaxis_config, long xaxis_mask, shmem_team_t *xaxis_team,

shmem_team_config_t *yaxis_config, long yaxis_mask, shmem_team_t *yaxis_team);

DESCRIPTION

Arguments
IN parent_team A valid OpenSHMEM team. Any predefined teams, such as

SHMEM_TEAM_WORLD, may be used, or any team created by the
user.

IN xrange A nonnegative integer representing the number of elements in the first
dimension.

INOUT xaxis_config A pointer to the configuration parameters for the new x-axis team.

IN xaxis_mask The bitwise mask representing the set of configuration parameters to
use from xaxis_config.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

42 10. OPENSHMEM LIBRARY API

OUT xaxis_team A new PE team handle representing a PE subset consisting of all the
PEs that have the same coordinate along the x-axis as the calling PE.

INOUT yaxis_config A pointer to the configuration parameters for the new y-axis team.

IN yaxis_mask The bitwise mask representing the set of configuration parameters to
use from yaxis_config.

OUT yaxis_team A new PE team handle representing a PE subset consisting of all the
PEs that have the same coordinate along the y-axis as the calling PE.

API description

The shmem_team_split_2d routine is a collective routine. It creates two new teams by splitting an existing
parent team into up to two subsets based on a 2D Cartesian space. The user provides the size of the x
dimension, which is then used to derive the size of the y dimension based on the size of the parent team.
The size of the y dimension will be equal to dN ÷ xrangee, where N is the size of the parent team. In
other words, xrange× yrange ≥ N, so that every PE in the parent team has a unique (x,y) location the 2D
Cartesian space.
The mapping of PE number to coordinates is (x,y) = (pe mod xrange,bpe÷xrangec), where pe is the PE
number in the parent team. So, if xrange = 3, then the first 3 PEs in the parent team will form the first
xteam, the second three PEs in the parent team form the second xteam, and so on.
Thus, after the split operation, each of the new xteams will contain all PEs that have the same coordinate
along the y-axis as the calling PE. Each of the new yteams will contain all PEs with the same coordinate
along the x-axis as the calling PE.
The PEs are numbered in the new teams based on the coordinate of the PE along the given axis. So, another
way to think of the result of the split operation is that the value returned by shmem_team_my_pe((xteam))
is the x-coordinate and the value returned by shmem_team_my_pe((yteam)) is the y-coordinate of the
calling PE.
Any valid OpenSHMEM team can be used as the parent team. This routine must be called by all PEs in the
parent team. The value of xrange must be nonnegative and all PEs in the parent team must pass the same
value for xrange. None of the parameters need to reside in symmetric memory.
The xaxis_config and yaxis_config arguments specify team configuration parameters for the x- and y-axis
teams, respectively. These parameters are described in Section 10.4.3. All PEs that will be in the same
resultant team must specify the same configuration parameters. The PEs in the parent team do not have to
all provide the same parameters for new teams.
The xaxis_mask andxaxis_mask arguments are a bitwise masks representing the set of configuration pa-
rameters to use from xaxis_config and yaxis_config, respectively. A mask value of 0 indicates that the team
should be created with the default values for all configuration parameters. See Section 10.4.3 for field mask
names and default configuration parameters.
If parent_team is an invalid team handle, the behavior is undefined.
If parent_team compares equal to SHMEM_TEAM_INVALID, no new teams will be created, and both
xaxis_team and yaxis_team will be assigned the value SHMEM_TEAM_INVALID.
If either team cannot be created, that team will be assigned the value SHMEM_TEAM_INVALID.

Return Values
Zero on successful creation of both xaxis_team and yaxis_team, nonzero otherwise.

Notes
Since the split may result in a 2D space with more points than there are members of the parent team, there
may be a final, incomplete row of the 2D mapping of the parent team. This means that the resultant yteams

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 43

may vary in size by up to 1 PE, and that there may be one resultant xteam of smaller size than all of the
other xteams.
The following grid shows the 12 teams that would result from splitting a parent team of size 10 with xrange
of 3. The numbers in the grid cells are the PE numbers in the parent team. The rows are the xteams. The
columns are the yteams.

yteam yteam yteam
x=0 x=1 x=2

xteam, y=0 0 1 2
xteam, y=1 3 4 5
xteam, y=2 6 7 8
xteam, y=3 9

It would be legal, for example, if PEs 0, 3, 6, 9 specified a different value for yaxis_config than all of the
other PEs, as long as the configuration parameters match for all PEs in each of the new teams.
See the description of team handles and predefined teams at the top of section 10.4 for more information
about team handle semantics and usage.

EXAMPLES

The following example demonstrates the use of 2D Cartesian split in a C11 program. This example shows how
multiple 2D splits can be used to generate a 3D Cartesian split. This method can be extrapolated to generate
splits of any number of dimensions.

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int xdim = 3;
int ydim = 4;

shmem_init();
int pe = shmem_my_pe();
int npes = shmem_n_pes();

if (npes < (xdim*ydim)) {
printf ("Not enough PEs to create 4x3xN layout\n");
exit(1);

}

int zdim = (npes / (xdim*ydim)) + (((npes % (xdim*ydim)) > 0) ? 1 : 0);
shmem_team_t xteam, yzteam, yteam, zteam;

shmem_team_split_2d(SHMEM_TEAM_WORLD, xdim, NULL, 0, &xteam, NULL, 0, &yzteam);
// No synchronization is needed between these split operations
// yzteam is immediately ready to be used in collectives
shmem_team_split_2d(yzteam, ydim, NULL, 0, &yteam, NULL, 0, &zteam);

// We don’t need the yzteam anymore
shmem_team_destroy(yzteam);

int my_x = shmem_team_my_pe(xteam);
int my_y = shmem_team_my_pe(yteam);
int my_z = shmem_team_my_pe(zteam);

for (int zdx = 0; zdx < zdim; zdx++)
for (int ydx = 0; ydx < ydim; ydx++)

for (int xdx = 0; xdx < xdim; xdx++) {
if ((my_x == xdx) && (my_y == ydx) && (my_z == zdx)) {
printf ("(%d, %d, %d) is me = %d\n", my_x, my_y, my_z, pe);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

44 10. OPENSHMEM LIBRARY API

shmem_team_sync(SHMEM_TEAM_WORLD);
}

shmem_finalize();
}

/*
/* Example split of SHMEM_TEAM_WORLD, size 16 into 3D
/* xdim = 3, ydim = 4 -> final dimensions are 3x4x2
/*
/* First split of SHMEM_TEAM_WORLD, xdim=3
/* results in 6 xteams and 3 yzteam
/**
/* x=0 | x=1 | x=2 |
/* -------------------
/* yz=0 | 0 | 1 | 2 | <-- xteam
/* yz=1 | 3 | 4 | 5 | <-- xteam
/* yz=2 | 6 | 7 | 8 | <-- xteam
/* yz=3 | 9 | 10 | 11 | <-- xteam
/* yz=4 | 12 | 13 | 14 | <-- xteam
/* yz=5 | 15 | | <-- xteam
/* ^ ^ ^
/* { yzteams are columns }
/**
/*
/* Second split of yzteam for x=0, ydim=4
/* results in 2 yteams and 4 zteams
/**
/* y=0 | y=1 | y=2 | y=3 |
/* -------------------------
/* z=0 | 0 | 3 | 6 | 9 | <-- yteam
/* z=1 | 12 | 15 | | <-- yteam
/* ^ ^ ^ ^
/* { zteams are columns }
/**
/*
/* Second split of yzteam for x=1, ydim=4
/* results in 2 yteams and 4 zteams
/**
/* y=0 | y=1 | y=2 | y=3 |
/* -------------------------
/* z=0 | 1 | 4 | 7 | 10 | <-- yteam
/* z=1 | 13 | | | <-- yteam
/* ^ ^ ^ ^
/* { zteams are columns }
/**
/*
/* Second split of yzteam for x=2, ydim=4
/* results in 2 yteams and 4 zteams
/**
/* y=0 | y=1 | y=2 | y=3 |
/* -------------------------
/* z=0 | 2 | 5 | 8 | 11 | <-- yteam
/* z=1 | 14 | | | <-- yteam
/* ^ ^ ^ ^
/* { zteams are columns }
/**
/*
/* Final number of teams for each dimension:
/* 6 xteams, these are teams where (z,y) is fixed and x varies
/* 6 yteams, these are teams where (x,z) is fixed and y varies
/* 12 zteams, these are teams where (x,y) is fixed and z varies
/*
/* Expected output:
/* (0, 0, 0) is me = 0
/* (1, 0, 0) is me = 1
/* (2, 0, 0) is me = 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 45

/* (0, 1, 0) is me = 3
/* (1, 1, 0) is me = 4
/* (2, 1, 0) is me = 5
/* (0, 2, 0) is me = 6
/* (1, 2, 0) is me = 7
/* (2, 2, 0) is me = 8
/* (0, 3, 0) is me = 9
/* (1, 3, 0) is me = 10
/* (2, 3, 0) is me = 11
/* (0, 0, 1) is me = 12
/* (1, 0, 1) is me = 13
/* (2, 0, 1) is me = 14
/* (0, 1, 1) is me = 15

*/

10.4.8 SHMEM_TEAM_DESTROY

Destroy an existing team.

SYNOPSIS

C/C++:
void shmem_team_destroy(shmem_team_t team);

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.

API description

The shmem_team_destroy routine is a collective operation that destroys the team referenced by the team
handle argument team. Upon return, the referenced team is invalid.
This routine destroys all shareable contexts created from the referenced team. The user is responsible for
destroying all contexts created from this team with the SHMEM_CTX_PRIVATE option enabled prior to
calling this routine; otherwise, the behavior is undefined.
It is an error to free the default team or any other predefined team.
When team specifies an invalid team, if team compares equal to SHMEM_TEAM_INVALID, then no oper-
ation is performed; otherwise, the behavior is undefined.

Return Values
None.

Notes
None.

10.5 Communication Management Routines

All OpenSHMEM RMA, AMO, and memory ordering routines must be performed on a valid communication context.
The communication context defines an independent ordering and completion environment, allowing users to manage
the overlap of communication with computation and also to manage communication operations performed by separate

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

46 10. OPENSHMEM LIBRARY API

threads within a multithreaded PE. For example, in single-threaded environments, contexts may be used to pipeline
communication and computation. In multithreaded environments, contexts may additionally provide thread isolation,
eliminating overheads resulting from thread interference.

A specific communication context is referenced through a context handle, which is passed as an argument in the
C shmem_ctx_* and type-generic API routines. API routines that do not accept a context handle argument operate on
the default context. The default context can be used explicitly through the SHMEM_CTX_DEFAULT handle. Context
handles are of type shmem_ctx_t and may be used for language-level assignment and equality comparison.

The default context is valid for the duration of the OpenSHMEM portion of an application. Contexts created by a
successful call to shmem_ctx_create remain valid until they are destroyed. A handle value that does not correspond
to a valid context is considered to be invalid, and its use in RMA and AMO routines results in undefined behavior. A
context handle may be initialized to or assigned the value SHMEM_CTX_INVALID to indicate that handle does not
reference a valid communication context. When managed in this way, applications can use an equality comparison to
test whether a given context handle references a valid context.

Every communication context is associated with a team. This association is established at context creation. Com-
munication contexts created by shmem_ctx_create are associated with the default team, while contexts created by
shmem_team_create_ctx are associated with and created from a team specified at context creation. The default con-
text is associated with the default team. A context’s associated team specifies the set of PEs over which PE-specific
routines that operate on a communication context, explicitly or implicitly, are performed. All point-to-point routines
that operate on this context will do so with respect to the team-relative PE numbering of the associated team.

10.5.1 SHMEM_CTX_CREATE

Create a communication context locally.

SYNOPSIS

C/C++:
int shmem_ctx_create(long options, shmem_ctx_t *ctx);

DESCRIPTION

Arguments
IN options The set of options requested for the given context. Multiple options

may be requested by combining them with a bitwise OR operation; oth-
erwise, 0 can be given if no options are requested.

OUT ctx A handle to the newly created context.

API description

The shmem_ctx_create routine creates a new communication context and returns its handle through the
ctx argument. If the context was created successfully, a value of zero is returned and the context handle
pointed to by ctx specifies a valid context; otherwise, a nonzero value is returned and the context handle
pointed to by ctx is not modified. An unsuccessful context creation call is not treated as an error and the
OpenSHMEM library remains in a correct state. The creation call can be reattempted with different options
or after additional resources become available.
A newly created communication context has a fixed association with the default team. All OpenSHMEM
routines that operate on this context will do so with respect to the associated PE team. That is, all point-to-
point routines operating on this context will use team-relative PE numbering.
By default, contexts are shareable and, when it is allowed by the threading model provided by the Open-
SHMEM library, they can be used concurrently by multiple threads within the PE where they were created.
The following options can be supplied during context creation to restrict this usage model and enable per-
formance optimizations. When using a given context, the application must comply with the requirements of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 47

all options set on that context; otherwise, the behavior is undefined. No options are enabled on the default
context.

SHMEM_CTX_SERIALIZED The given context is shareable; however, it will not
be used by multiple threads concurrently. When the
SHMEM_CTX_SERIALIZED option is set, the user must ensure
that operations involving the given context are serialized by the
application.

SHMEM_CTX_PRIVATE The given context will be used only by the thread that created it.

SHMEM_CTX_NOSTORE Quiet and fence operations performed on the given context are
not required to enforce completion and ordering of memory store
operations. When ordering of store operations is needed, the ap-
plication must perform a synchronization operation on a context
without the SHMEM_CTX_NOSTORE option enabled.

Return Values
Zero on success and nonzero otherwise.

Notes
None.

10.5.2 SHMEM_TEAM_CREATE_CTX

Create a communication context from a team.

SYNOPSIS

C/C++:
int shmem_team_create_ctx(shmem_team_t team, long options, shmem_ctx_t *ctx);

DESCRIPTION

Arguments
IN team A handle to the specified PE team.
IN options The set of options requested for the given context. Multiple options

may be requested by combining them with a bitwise OR operation; oth-
erwise, 0 can be given if no options are requested.

OUT ctx A handle to the newly created context.

API description

The shmem_team_create_ctx routine creates a new communication context and returns its handle through
the ctx argument. This context is created from the team specified by the team argument.
In addition to the team, the shmem_team_create_ctx routine accepts the same arguments and provides all
the same return conditions as the shmem_ctx_create routine.
The shmem_team_create_ctx routine may be called any number of times to create multiple simultaneously
existing contexts for the team. Programs should request the total number of simultaneous contexts to be

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

48 10. OPENSHMEM LIBRARY API

created from the team during team creation. See Section 10.4.3 for more information on how to request
contexts during team creation.
A call to shmem_team_create_ctx on a team may fail, regardless of the configuration request for contexts,
if the implementation is unable to create a context at the time when shmem_team_create_ctx is called.
All explicitly created resources associated with a team must be destroyed before the shmem_team_destroy
routine is called. If a context returned from shmem_team_create_ctx is not explicitly destroyed before the
team is destroyed, behavior is undefined.
All OpenSHMEM routines that operate on this context will do so with respect to the associated PE team.
That is, all point-to-point routines operating on this context will use team-relative PE numbering.

Return Values
Zero on success and nonzero otherwise.

Notes
None.

EXAMPLES
See example in Section 10.5.4

10.5.3 SHMEM_CTX_DESTROY

Destroy a communication context.

SYNOPSIS

C/C++:
void shmem_ctx_destroy(shmem_ctx_t ctx);

DESCRIPTION

Arguments
IN ctx Handle to the context that will be destroyed.

API description

shmem_ctx_destroy destroys a context that was created by a call to shmem_ctx_create or
shmem_team_create_ctx. It is the user’s responsibility to ensure that the context is not used after it
has been destroyed, for example when the destroyed context is used by multiple threads. This func-
tion performs an implicit quiet operation on the given context before it is freed. If ctx has the value
SHMEM_CTX_INVALID, no operation is performed.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 49

Notes
It is invalid to pass SHMEM_CTX_DEFAULT to this routine.
Destroying a context makes it impossible for the user to complete communication operations that are pend-
ing on that context. This includes nonblocking communication operations, whose local buffers are only
returned to the user after the operations have been completed. An implicit quiet is performed when freeing
a context to avoid this ambiguity.
A context with the SHMEM_CTX_PRIVATE option enabled must be destroyed by the thread that created
it.

EXAMPLES

The following example demonstrates the use of contexts in a multithreaded C11 program that uses OpenMP for
threading. This example shows the shared counter load balancing method and illustrates the use of contexts for
thread isolation.
#include <stdio.h>
#include <shmem.h>

long pwrk[SHMEM_REDUCE_MIN_WRKDATA_SIZE];
long psync[SHMEM_REDUCE_SYNC_SIZE];

long task_cntr = 0; /* Next task counter */
long tasks_done = 0; /* Tasks done by this PE */
long total_done = 0; /* Total tasks done by all PEs */

int main(void) {
int tl, i;
long ntasks = 1024; /* Total tasks per PE */

for (i = 0; i < SHMEM_REDUCE_SYNC_SIZE; i++)
psync[i] = SHMEM_SYNC_VALUE;

shmem_init_thread(SHMEM_THREAD_MULTIPLE, &tl);
if (tl != SHMEM_THREAD_MULTIPLE) shmem_global_exit(1);

int me = shmem_my_pe();
int npes = shmem_n_pes();

#pragma omp parallel reduction (+:tasks_done)
{

shmem_ctx_t ctx;
int task_pe = me, pes_done = 0;
int ret = shmem_ctx_create(SHMEM_CTX_PRIVATE, &ctx);

if (ret != 0) {
printf("%d: Error creating context (%d)\n", me, ret);
shmem_global_exit(2);

}

/* Process tasks on all PEs, starting with the local PE. After

* all tasks on a PE are completed, help the next PE. */
while (pes_done < npes) {

long task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);
while (task < ntasks) {

/* Perform task (task_pe, task) */
tasks_done++;
task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);

}
pes_done++;
task_pe = (task_pe + 1) % npes;

}

shmem_ctx_destroy(ctx);
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

50 10. OPENSHMEM LIBRARY API

shmem_long_sum_to_all(&total_done, &tasks_done, 1, 0, 0, npes, pwrk, psync);

int result = (total_done != ntasks * npes);
shmem_finalize();
return result;

}

The following example demonstrates the use of contexts in a single-threaded C11 program that performs a
summation reduction where the data contained in the in_buf arrays on all PEs is reduced into the out_buf arrays
on all PEs. The buffers are divided into segments and processing of the segments is pipelined. Contexts are used
to overlap an all-to-all exchange of data for segment p with the local reduction of segment p-1.

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

#define LEN 8192 /* Full buffer length */
#define PLEN 512 /* Length of each pipeline stage */

int in_buf[LEN], out_buf[LEN];

int main(void) {
int i, j, *pbuf[2];
shmem_ctx_t ctx[2];

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

pbuf[0] = shmem_malloc(PLEN * npes * sizeof(int));
pbuf[1] = shmem_malloc(PLEN * npes * sizeof(int));

int ret_0 = shmem_ctx_create(0, &ctx[0]);
int ret_1 = shmem_ctx_create(0, &ctx[1]);
if (ret_0 || ret_1) shmem_global_exit(1);

for (i = 0; i < LEN; i++) {
in_buf[i] = me; out_buf[i] = 0;

}

int p_idx = 0, p = 0; /* Index of ctx and pbuf (p_idx) for current pipeline stage (p) */
for (i = 1; i <= npes; i++)

shmem_put_nbi(ctx[p_idx], &pbuf[p_idx][PLEN*me], &in_buf[PLEN*p],
PLEN, (me+i) % npes);

/* Issue communication for pipeline stage p, then accumulate results for stage p-1 */
for (p = 1; p < LEN/PLEN; p++) {

p_idx ^= 1;
for (i = 1; i <= npes; i++)

shmem_put_nbi(ctx[p_idx], &pbuf[p_idx][PLEN*me], &in_buf[PLEN*p],
PLEN, (me+i) % npes);

shmem_ctx_quiet(ctx[p_idx^1]);
shmem_sync_all();
for (i = 0; i < npes; i++)

for (j = 0; j < PLEN; j++)
out_buf[PLEN*(p-1)+j] += pbuf[p_idx^1][PLEN*i+j];

}

shmem_ctx_quiet(ctx[p_idx]);
shmem_sync_all();
for (i = 0; i < npes; i++)

for (j = 0; j < PLEN; j++)
out_buf[PLEN*(p-1)+j] += pbuf[p_idx][PLEN*i+j];

shmem_finalize();
return 0;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 51

}

The following example demonstrates the use of SHMEM_CTX_INVALID in a C11 program that uses thread-local
storage to provide each thread an implicit context handle via a “library” put routine without explicit management
of the context handle from “user” code.

#include <stddef.h>
#include <shmem.h>
#include <omp.h>

_Thread_local shmem_ctx_t thread_ctx = SHMEM_CTX_INVALID;

void lib_thread_register(void) {
if (thread_ctx == SHMEM_CTX_INVALID)

if (shmem_ctx_create(SHMEM_CTX_PRIVATE, &thread_ctx) &&
shmem_ctx_create(0, &thread_ctx))

thread_ctx = SHMEM_CTX_DEFAULT;
}

void lib_thread_unregister(void) {
if (thread_ctx != SHMEM_CTX_DEFAULT) {

shmem_ctx_destroy(thread_ctx);
thread_ctx = SHMEM_CTX_INVALID;

}
}

void lib_thread_putmem(void *dst, const void *src, size_t nbytes, int pe) {
shmem_ctx_putmem(thread_ctx, dst, src, nbytes, pe);

}

int main() {
int provided;
if (shmem_init_thread(SHMEM_THREAD_MULTIPLE, &provided))

return 1;
if (provided != SHMEM_THREAD_MULTIPLE)

shmem_global_exit(2);

const int my_pe = shmem_my_pe();
const int n_pes = shmem_n_pes();
const int count = 1 << 15;

int *src_bufs[n_pes];
int *dst_bufs[n_pes];
for (int i = 0; i < n_pes; i++) {

src_bufs[i] = shmem_calloc(count, sizeof(*src_bufs[i]));
if (src_bufs[i] == NULL)

shmem_global_exit(3);
dst_bufs[i] = shmem_calloc(count, sizeof(*dst_bufs[i]));
if (dst_bufs[i] == NULL)

shmem_global_exit(4);
}

#pragma omp parallel
{

int my_thrd = omp_get_thread_num();
#pragma omp for

for (int i = 0; i < n_pes; i++)
for (int j = 0; j < count; j++)

src_bufs[i][j] = (my_pe << 10) + my_thrd;

lib_thread_register();

#pragma omp for
for (int i = 0; i < n_pes; i++)

lib_thread_putmem(dst_bufs[my_pe], src_bufs[i],
count * sizeof(*src_bufs[i]), i);

lib_thread_unregister();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

52 10. OPENSHMEM LIBRARY API

}

shmem_finalize();
return 0;

}

10.5.4 SHMEM_CTX_GET_TEAM

Retrieve the team associated with the communication context.

SYNOPSIS

C/C++:
int shmem_ctx_get_team(shmem_ctx_t ctx, shmem_team_t *team);

DESCRIPTION

Arguments
IN ctx A handle to a communication context.
OUT team A pointer to a handle to the associated PE team.

API description

The shmem_ctx_get_team routine returns a handle to the team associated with the specified communication
context ctx. The team handle is returned through the pointer argument team.
If ctx is the default context or one created by a call to shmem_ctx_create, the returned team is the default
team.
When ctx is an invalid context, if ctx compares equal to SHMEM_CTX_INVALID, then team is assigned
the value SHMEM_TEAM_INVALID and a nonzero value is returned; otherwise, the behavior is undefined.
If team is a null pointer, the behavior is undefined.

Return Values
Zero on success; otherwise, nonzero.

Notes
None.

EXAMPLES

The following example demonstrates the use of contexts for multiple teams in a C11 program. This example
shows contexts being used to communicate within a team using team PE numbers, and across teams using
translated PE numbers.

#include <shmem.h>
#include <stdio.h>

int isum, ival;

int my_ctx_translate_pe(shmem_ctx_t src_ctx, int src_pe, shmem_ctx_t dest_ctx)
{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 53

if (src_ctx == SHMEM_CTX_INVALID) {
return -1;

}
if (dest_ctx == SHMEM_CTX_INVALID) {

return -1;
}

shmem_team_t src_team, dest_team;
shmem_ctx_get_team(src_ctx, &src_team);
shmem_ctx_get_team(dest_ctx, &dest_team);
return shmem_team_translate(src_team, src_pe, dest_pe);

}

shmem_ctx_t my_team_create_ctx(shmem_team_t team) {
if (team == SHMEM_TEAM_INVALID) {

return SHMEM_CTX_INVALID;
}

shmem_ctx_t ctx;
if (shmem_team_create_ctx(team, 0, &ctx) != 0) {

fprintf (stderr, "Failed to create context for PE team\n");
return SHMEM_CTX_INVALID;

}
return ctx;

}

void my_send_to_neighbor(shmem_ctx_t ctx, int *val)
{

if (ctx == SHMEM_CTX_INVALID) {
fprintf (stderr, "Send to neighbor fail due to invalid context\n");
return;

}

shmem_team_t team;
shmem_ctx_get_team(ctx, &team);
int pe = shmem_team_my_pe(team);
int npes = shmem_team_n_pes(team);
int rpe = (pe + 1) % npes;

// put my pe number in the buffer on my right hand neighbor
shmem_ctx_int_put(ctx, val, &pe, 1, rpe);

}

int main()
{

shmem_init();

int npes = shmem_n_pes();
isum = 0;

shmem_team_t team_2s, team_3s;
shmem_ctx_t ctx_2s, ctx_3s;
shmem_team_config_t conf;
conf.num_contexts = 1;
long cmask = SHMEM_TEAM_NUM_CONTEXTS;

// Create team with PEs numbered 0, 2, 4, ...
shmem_team_spit_strided(SHMEM_TEAM_WORLD, 0, 2, npes / 2, &conf, cmask, &team_2s);
// Sync between splits from same parent team into teams with overlapping membership
shmem_team_sync(SHMEM_TEAM_WORLD);
// Create team with PEs numbered 0, 3, 6, ...
shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 3, npes / 3, &conf, cmask, &team_3s);

ctx_2s = my_team_create_ctx(team_2s);
ctx_3s = my_team_create_ctx(team_3s);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

54 10. OPENSHMEM LIBRARY API

// Send some values using the two team contexts contexts
my_send_to_neighbor(ctx_2s, &ival2);
my_send_to_neighbor(ctx_3s, &ival3);

// Quiet all contexts and synchronize all PEs to complete the data transfers
shmem_ctx_quiet(ctx_2s);
shmem_ctx_quiet(ctx_3s);
shmem_team_sync(SHMEM_TEAM_WORLD);

// We will add up some results on pe 4 of team_3s using ctx_2s
if ((team_3s != SHMEM_TEAM_INVALID) && (team_2s != SHMEM_TEAM_INVALID)) {

int _pe4_of_3s_in_2s = my_ctx_translate_pe(ctx_3s, 4, ctx_2s);

if (_pe4_of_3s_in_2s < 0) {
fprintf (stderr, "Fail to translate pe 4 from 3s context to 2s context\n");

}
else {
// Add up the results on pe 4 of the 3s team, using the 2s team context
shmem_ctx_int_atomic_add(ctx_2s, &isum, ival2 + ival3, _pe4_of_3s_in_2s);

}
}

// Quiet the context and synchronize PEs to complete the operation
shmem_ctx_quiet(ctx_2s);
shmem_team_sync(SHMEM_TEAM_WORLD);

if (shmem_team_my_pe(team_3s) == 4) {
printf ("The total value on PE 4 of the 3s team is %d\n", isum);

}

// Destroy contexts before teams
shmem_ctx_destroy(ctx_2s);
shmem_team_destroy(team_2s);

shmem_ctx_destroy(ctx_3s);
shmem_team_destroy(team_3s);

shmem_finalize();
}

10.6 Remote Memory Access Routines

The RMA routines described in this section can be used to perform reads from and writes to symmetric data objects.
These operations are one-sided, meaning that the PE invoking an operation provides all communication parameters
and the targeted PE is passive. A characteristic of one-sided communication is that it decouples communication from
synchronization. One-sided communication mechanisms transfer data; however, they do not synchronize the sender of
the data with the receiver of the data.

OpenSHMEM RMA routines are performed on symmetric data objects. The initiator PE of a call is designated as
the origin PE and the PE targeted by an operation is designated as the destination PE. The source and dest designators
refer to the data objects that an operation reads from and writes to. In the case of the remote update routine, Put, the
origin PE provides the source data object and the destination PE provides the dest data object. In the case of the remote
read routine, Get, the origin PE provides the dest data object and the destination PE provides the source data object.

The destination PE is specified as an integer representing the PE number. This PE number is relative to the team
associated with the communication context being using for the operation. If no context argument is passed to the
routine, then the routine operates on the default context, which implies that the PE number is relative to the default
team. If the PE number passed to the routine is invalid, being negative or greater than or equal to the size of the
OpenSHMEM team, then the behavior is undefined.

Where appropriate compiler support is available, OpenSHMEM provides type-generic one-sided communication
interfaces via C11 generic selection (C11 §6.5.1.15) for block, scalar, and block-strided put and get communication.

5Formally, the C11 specification is ISO/IEC 9899:2011(E).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 55

Such type-generic routines are supported for the “standard RMA types” listed in Table 4.
The standard RMA types include the exact-width integer types defined in stdint.h by C996 §7.18.1.1 and C11 §7.20.1.1.

When the C translation environment does not provide exact-width integer types with stdint.h, an OpenSHMEM imple-
mementation is not required to provide support for these types.

TYPE TYPENAME
float float
double double
long double longdouble
char char
signed char schar
short short
int int
long long
long long longlong
unsigned char uchar
unsigned short ushort
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int8_t int8
int16_t int16
int32_t int32
int64_t int64
uint8_t uint8
uint16_t uint16
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 4: Standard RMA Types and Names

10.6.1 SHMEM_PUT

The put routines provide a method for copying data from a contiguous local data object to a data object on a specified
PE.

SYNOPSIS

C11:
void shmem_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_put(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_put(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.

6Formally, the C99 specification is ISO/IEC 9899:1999(E).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

56 10. OPENSHMEM LIBRARY API

void shmem_put<SIZE>(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_put<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_putmem(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_putmem(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

deprecation start
FORTRAN:
CALL SHMEM_CHARACTER_PUT(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_PUT(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_PUT(dest, source, nelems, pe)

CALL SHMEM_INTEGER_PUT(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_PUT(dest, source, nelems, pe)

CALL SHMEM_PUT4(dest, source, nelems, pe)

CALL SHMEM_PUT8(dest, source, nelems, pe)

CALL SHMEM_PUT32(dest, source, nelems, pe)

CALL SHMEM_PUT64(dest, source, nelems, pe)

CALL SHMEM_PUT128(dest, source, nelems, pe)

CALL SHMEM_PUTMEM(dest, source, nelems, pe)

CALL SHMEM_REAL_PUT(dest, source, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Data object to be updated on the remote PE. This data object must be
remotely accessible.

IN source Data object containing the data to be copied.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The routines return after the data has been copied out of the source array on the local PE. The delivery of
data words into the data object on the destination PE may occur in any order. Furthermore, two successive
put routines may deliver data out of order unless a call to shmem_fence is introduced between the two calls.
If the context handle ctx does not correspond to a valid context, the behavior is undefined.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 57

shmem_putmem Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_put4, shmem_put32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_put8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_put64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_put128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_PUT Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_PUT Elements of type complex of default size.
SHMEM_DOUBLE_PUT Elements of type double precision.
SHMEM_INTEGER_PUT Elements of type integer.
SHMEM_LOGICAL_PUT Elements of type logical.
SHMEM_REAL_PUT Elements of type real.

Return Values
None.

Notes
When using Fortran, data types must be of default size. For example, a real variable must be declared as
REAL, REAL*4, or REAL(KIND=KIND(1.0)). As of OpenSHMEM 1.2, the Fortran API routine SHMEM_PUT
has been deprecated, and either SHMEM_PUT8 or SHMEM_PUT64 should be used in its place.

EXAMPLES

The following shmem_put example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
static long dest[10];
shmem_init();
int me = shmem_my_pe();
if (me == 0) /* put 10 words into dest on PE 1 */

shmem_put(dest, source, 10, 1);
shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", me, dest[0]);
shmem_finalize();
return 0;

}

10.6.2 SHMEM_P

Copies one data item to a remote PE.

SYNOPSIS

C11:
void shmem_p(TYPE *dest, TYPE value, int pe);

void shmem_p(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

58 10. OPENSHMEM LIBRARY API

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_p(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_p(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest The remotely accessible array element or scalar data object which will
receive the data on the remote PE.

IN value The value to be transferred to dest on the remote PE.
IN pe The number of the remote PE.

API description

These routines provide a very low latency put capability for single elements of most basic types.
As with shmem_put, these routines start the remote transfer and may return before the data is delivered to
the remote PE. Use shmem_quiet to force completion of all remote Put transfers.
If the context handle ctx does not correspond to a valid context, the behavior is undefined.

Return Values
None.

Notes
None.

EXAMPLES

The following example uses shmem_p in a C11 program.

#include <stdio.h>
#include <math.h>
#include <shmem.h>

int main(void)
{

const double e = 2.71828182;
const double epsilon = 0.00000001;
static double f = 3.1415927;
shmem_init();
int me = shmem_my_pe();
if (me == 0)

shmem_p(&f, e, 1);
shmem_barrier_all();
if (me == 1)

printf("%s\n", (fabs(f - e) < epsilon) ? "OK" : "FAIL");
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 59

10.6.3 SHMEM_IPUT

Copies strided data to a specified PE.

SYNOPSIS

C11:
void shmem_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);

void shmem_iput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_iput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t

dst, ptrdiff_t sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
void shmem_iput<SIZE>(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_ctx_iput<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

deprecation start
FORTRAN:
INTEGER dst, sst, nelems, pe

CALL SHMEM_COMPLEX_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_DOUBLE_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_INTEGER_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT4(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT8(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT32(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT64(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT128(dest, source, dst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_REAL_IPUT(dest, source, dst, sst, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Array to be updated on the remote PE. This data object must be re-
motely accessible.

IN source Array containing the data to be copied.
IN dst The stride between consecutive elements of the dest array. The stride

is scaled by the element size of the dest array. A value of 1 indicates
contiguous data. dst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

60 10. OPENSHMEM LIBRARY API

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

IN nelems Number of elements in the dest and source arrays. nelems must be of
type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The iput routines provide a method for copying strided data elements (specified by sst) of an array from a
source array on the local PE to locations specified by stride dst on a dest array on specified remote PE. Both
strides, dst and sst, must be greater than or equal to 1. The routines return when the data has been copied
out of the source array on the local PE but not necessarily before the data has been delivered to the remote
data object. If the context handle ctx does not correspond to a valid context, the behavior is undefined.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_iput4, shmem_iput32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_iput8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_iput64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iput128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_COMPLEX_IPUT Elements of type complex of default size.
SHMEM_DOUBLE_IPUT Elements of type double precision.
SHMEM_INTEGER_IPUT Elements of type integer.
SHMEM_LOGICAL_IPUT Elements of type logical.
SHMEM_REAL_IPUT Elements of type real.

Return Values
None.

Notes
When using Fortran, data types must be of default size. For example, a real variable must be declared as
REAL, REAL*4 or REAL(KIND=KIND(1.0)). See Section 3 for a definition of the term remotely accessi-
ble.

EXAMPLES

Consider the following shmem_iput example for C11 programs.

#include <stdio.h>
#include <shmem.h>

int main(void)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 61

{
short source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
static short dest[10];
shmem_init();
int me = shmem_my_pe();
if (me == 0) /* put 5 elements into dest on PE 1 */

shmem_iput(dest, source, 1, 2, 5, 1);
shmem_barrier_all(); /* sync sender and receiver */
if (me == 1) {

printf("dest on PE %d is %hd %hd %hd %hd %hd\n", me,
dest[0], dest[1], dest[2], dest[3], dest[4]);

}
shmem_finalize();
return 0;

}

10.6.4 SHMEM_GET

Copies data from a specified PE.

SYNOPSIS

C11:
void shmem_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_get(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_get(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
void shmem_get<SIZE>(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_get<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_getmem(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_getmem(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

deprecation start
FORTRAN:
INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_GET(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_GET(dest, source, nelems, pe)

CALL SHMEM_GET4(dest, source, nelems, pe)

CALL SHMEM_GET8(dest, source, nelems, pe)

CALL SHMEM_GET32(dest, source, nelems, pe)

CALL SHMEM_GET64(dest, source, nelems, pe)

CALL SHMEM_GET128(dest, source, nelems, pe)

CALL SHMEM_GETMEM(dest, source, nelems, pe)

CALL SHMEM_INTEGER_GET(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_GET(dest, source, nelems, pe)

CALL SHMEM_REAL_GET(dest, source, nelems, pe)

deprecation end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

62 10. OPENSHMEM LIBRARY API

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Local data object to be updated.
IN source Data object on the PE identified by pe that contains the data to be

copied. This data object must be remotely accessible.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The get routines provide a method for copying a contiguous symmetric data object from a different PE to
a contiguous data object on the local PE. The routines return after the data has been delivered to the dest
array on the local PE. If the context handle ctx does not correspond to a valid context, the behavior is
undefined.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_getmem Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_get4, shmem_get32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_get8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_get64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_get128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_GET Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_GET Elements of type complex of default size.
SHMEM_DOUBLE_GET Fortran: Elements of type double precision.
SHMEM_INTEGER_GET Elements of type integer.
SHMEM_LOGICAL_GET Elements of type logical.
SHMEM_REAL_GET Elements of type real.

Return Values
None.

Notes
See Section 3 for a definition of the term remotely accessible. When using Fortran, data types must be of
default size. For example, a real variable must be declared as REAL, REAL*4, or REAL(KIND=KIND(1.0)).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 63

EXAMPLES

Consider this example for Fortran.

PROGRAM REDUCTION
INCLUDE "shmem.fh"

REAL VALUES, SUM
COMMON /C/ VALUES
REAL WORK
CALL SHMEM_INIT() ! ALLOW ANY NUMBER OF PES
VALUES = SHMEM_MY_PE() ! INITIALIZE IT TO SOMETHING
CALL SHMEM_BARRIER_ALL
SUM = 0.0
DO I = 0, SHMEM_N_PES()-1

CALL SHMEM_REAL_GET(WORK, VALUES, (SHMEM_N_PES()()-1), I)
SUM = SUM + WORK

ENDDO
PRINT*,’PE ’,SHMEM_MY_PE(),’ COMPUTED SUM=’,SUM
CALL SHMEM_BARRIER_ALL
END

10.6.5 SHMEM_G

Copies one data item from a remote PE

SYNOPSIS

C11:
TYPE shmem_g(const TYPE *source, int pe);

TYPE shmem_g(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
TYPE shmem_<TYPENAME>_g(const TYPE *source, int pe);

TYPE shmem_ctx_<TYPENAME>_g(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

IN source The remotely accessible array element or scalar data object.
IN pe The number of the remote PE on which source resides.

API description

These routines provide a very low latency get capability for single elements of most basic types. If the
context handle ctx does not correspond to a valid context, the behavior is undefined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

64 10. OPENSHMEM LIBRARY API

Return Values
Returns a single element of type specified in the synopsis.

Notes
None.

EXAMPLES

The following shmem_g example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

long y = -1;
static long x = 10101;
shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
if (me == 0)

y = shmem_g(&x, npes-1);
printf("%d: y = %ld\n", me, y);
shmem_finalize();
return 0;

}

10.6.6 SHMEM_IGET

Copies strided data from a specified PE.

SYNOPSIS

C11:
void shmem_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);

void shmem_iget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_iget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t

dst, ptrdiff_t sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
void shmem_iget<SIZE>(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_ctx_iget<SIZE>(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

deprecation start
FORTRAN:
INTEGER dst, sst, nelems, pe

CALL SHMEM_COMPLEX_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_DOUBLE_IGET(dest, source, dst, sst, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 65

CALL SHMEM_IGET4(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET8(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET32(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET64(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET128(dest, source, dst, sst, nelems, pe)

CALL SHMEM_INTEGER_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_REAL_IGET(dest, source, dst, sst, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Array to be updated on the local PE.
IN source Array containing the data to be copied on the remote PE.
IN dst The stride between consecutive elements of the dest array. The stride

is scaled by the element size of the dest array. A value of 1 indicates
contiguous data. dst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. When using Fortran, it
must be a default integer value.

IN nelems Number of elements in the dest and source arrays. nelems must be of
type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The iget routines provide a method for copying strided data elements from a symmetric array from a
specified remote PE to strided locations on a local array. The routines return when the data has been copied
into the local dest array. If the context handle ctx does not correspond to a valid context, the behavior is
undefined.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_iget4, shmem_iget32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_iget8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_iget64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iget128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_COMPLEX_IGET Elements of type complex of default size.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

66 10. OPENSHMEM LIBRARY API

SHMEM_DOUBLE_IGET Fortran: Elements of type double precision.
SHMEM_INTEGER_IGET Elements of type integer.
SHMEM_LOGICAL_IGET Elements of type logical.
SHMEM_REAL_IGET Elements of type real.

Return Values
None.

Notes
When using Fortran, data types must be of default size. For example, a real variable must be declared as
REAL, REAL*4, or REAL(KIND=KIND(1.0)).

EXAMPLES

The following example uses shmem_logical_iget in a Fortran program.

PROGRAM STRIDELOGICAL
INCLUDE "shmem.fh"

LOGICAL SOURCE(10), DEST(5)
SAVE SOURCE ! SAVE MAKES IT REMOTELY ACCESSIBLE
DATA SOURCE /.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F./
DATA DEST / 5*.F. /
CALL SHMEM_INIT()
IF (SHMEM_MY_PE() .EQ. 0) THEN

CALL SHMEM_LOGICAL_IGET(DEST, SOURCE, 1, 2, 5, 1)
PRINT*,’DEST AFTER SHMEM_LOGICAL_IGET:’,DEST

ENDIF
CALL SHMEM_BARRIER_ALL

10.7 Non-blocking Remote Memory Access Routines

10.7.1 SHMEM_PUT_NBI

The nonblocking put routines provide a method for copying data from a contiguous local data object to a data object
on a specified PE.

SYNOPSIS

C11:
void shmem_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_put_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_put_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
void shmem_put<SIZE>_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_put<SIZE>_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

where SIZE is one of 8, 16, 32, 64, 128.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 67

void shmem_putmem_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_putmem_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

deprecation start
FORTRAN:
CALL SHMEM_CHARACTER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_INTEGER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT4_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT8_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT32_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT64_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT128_NBI(dest, source, nelems, pe)

CALL SHMEM_PUTMEM_NBI(dest, source, nelems, pe)

CALL SHMEM_REAL_PUT_NBI(dest, source, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Data object to be updated on the remote PE. This data object must be
remotely accessible.

IN source Data object containing the data to be copied.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The routines return after posting the operation. The operation is considered complete after a subsequent
call to shmem_quiet. At the completion of shmem_quiet, the data has been copied into the dest array on
the destination PE. The delivery of data words into the data object on the destination PE may occur in any
order. Furthermore, two successive put routines may deliver data out of order unless a call to shmem_fence
is introduced between the two calls. If the context handle ctx does not correspond to a valid context, the
behavior is undefined.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_putmem_nbi Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

68 10. OPENSHMEM LIBRARY API

shmem_put4_nbi,
shmem_put32_nbi

Any noncharacter type that has a storage size equal to 32 bits.

shmem_put8_nbi C: Any noncharacter type that has a storage size equal to 8 bits.
Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_put64_nbi Any noncharacter type that has a storage size equal to 64 bits.
shmem_put128_nbi Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_PUT_NBI Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_PUT_NBI Elements of type complex of default size.
SHMEM_DOUBLE_PUT_NBI Elements of type double precision.
SHMEM_INTEGER_PUT_NBI Elements of type integer.
SHMEM_LOGICAL_PUT_NBI Elements of type logical.
SHMEM_REAL_PUT_NBI Elements of type real.

Return Values
None.

Notes
None.

10.7.2 SHMEM_GET_NBI

The nonblocking get routines provide a method for copying data from a contiguous remote data object on the specified
PE to the local data object.

SYNOPSIS

C11:
void shmem_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_get_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
void shmem_<TYPENAME>_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

void shmem_ctx_<TYPENAME>_get_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
void shmem_get<SIZE>_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_get<SIZE>_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t

nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_getmem_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_ctx_getmem_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

deprecation start
FORTRAN:
INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_GET_NBI(dest, source, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 69

CALL SHMEM_DOUBLE_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_GET4_NBI(dest, source, nelems, pe)

CALL SHMEM_GET8_NBI(dest, source, nelems, pe)

CALL SHMEM_GET32_NBI(dest, source, nelems, pe)

CALL SHMEM_GET64_NBI(dest, source, nelems, pe)

CALL SHMEM_GET128_NBI(dest, source, nelems, pe)

CALL SHMEM_GETMEM_NBI(dest, source, nelems, pe)

CALL SHMEM_INTEGER_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_REAL_GET_NBI(dest, source, nelems, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Local data object to be updated.
IN source Data object on the PE identified by pe that contains the data to be

copied. This data object must be remotely accessible.
IN nelems Number of elements in the dest and source arrays. nelems must be of

type size_t for C. When using Fortran, it must be a constant, variable,
or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. When us-
ing Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The get routines provide a method for copying a contiguous symmetric data object from a different PE to
a contiguous data object on the local PE. The routines return after posting the operation. The operation is
considered complete after a subsequent call to shmem_quiet. At the completion of shmem_quiet, the data
has been delivered to the dest array on the local PE. If the context handle ctx does not correspond to a valid
context, the behavior is undefined.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_getmem_nbi Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_get4_nbi,
shmem_get32_nbi

Any noncharacter type that has a storage size equal to 32 bits.

shmem_get8_nbi C: Any noncharacter type that has a storage size equal to 8 bits.
Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_get64_nbi Any noncharacter type that has a storage size equal to 64 bits.
shmem_get128_nbi Any noncharacter type that has a storage size equal to 128 bits.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

70 10. OPENSHMEM LIBRARY API

SHMEM_CHARACTER_GET_NBI Elements of type character. nelems is the number of characters
to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_GET_NBI Elements of type complex of default size.
SHMEM_DOUBLE_GET_NBI Fortran: Elements of type double precision.
SHMEM_INTEGER_GET_NBI Elements of type integer.
SHMEM_LOGICAL_GET_NBI Elements of type logical.
SHMEM_REAL_GET_NBI Elements of type real.

Return Values
None.

Notes
See Section 3 for a definition of the term remotely accessible. When using Fortran, data types must be of
default size. For example, a real variable must be declared as REAL, REAL*4, or REAL(KIND=KIND(1.0)).

10.8 Atomic Memory Operations

An AMO is a one-sided communication mechanism that combines memory read, update, or write operations with
atomicity guarantees described in Section 3.1. Similar to the RMA routines, described in Section 10.6, the AMOs are
performed only on symmetric objects. OpenSHMEM defines two types of AMO routines:

• The fetching routines return the original value of, and optionally update, the remote data object in a single atomic
operation. The routines return after the data has been fetched from the target PE and delivered to the calling PE.
The data type of the returned value is the same as the type of the remote data object.

The fetching routines include: shmem_atomic_{fetch, compare_swap, swap} and shmem_atomic_fetch_{inc,
add, and, or, xor}.

• The non-fetching routines update the remote data object in a single atomic operation. A call to a non-fetching
atomic routine issues the atomic operation and may return before the operation executes on the target PE. The
shmem_quiet, shmem_barrier, or shmem_barrier_all routines can be used to force completion for these non-
fetching atomic routines.

The non-fetching routines include: shmem_atomic_{set, inc, add, and, or, xor}.

Where appropriate compiler support is available, OpenSHMEM provides type-generic AMO interfaces via C11
generic selection. The type-generic support for the AMO routines is as follows:

• shmem_atomic_{compare_swap, fetch_inc, inc, fetch_add, add} support the “standard AMO types” listed in
Table 5,

• shmem_atomic_{fetch, set, swap} support the “extended AMO types” listed in Table 6, and

• shmem_atomic_{fetch_and, and, fetch_or, or, fetch_xor, xor} support the “bitwise AMO types” listed in Table 7.

The standard, extended, and bitwise AMO types include some of the exact-width integer types defined in stdint.h
by C99 §7.18.1.1 and C11 §7.20.1.1. When the C translation environment does not provide exact-width integer types
with stdint.h, an OpenSHMEM implemementation is not required to provide support for these types.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 71

TYPE TYPENAME
int int
long long
long long longlong
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 5: Standard AMO Types and Names

TYPE TYPENAME
float float
double double
int int
long long
long long longlong
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 6: Extended AMO Types and Names

10.8.1 SHMEM_ATOMIC_FETCH

Atomically fetches the value of a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch(const TYPE *source, int pe);

TYPE shmem_atomic_fetch(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the extended AMO types specified by Table 6.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch(const TYPE *source, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

72 10. OPENSHMEM LIBRARY API

TYPE TYPENAME
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64

Table 7: Bitwise AMO Types and Names

TYPE shmem_fetch(const TYPE *source, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_fetch(const TYPE *source, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 6.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FETCH, ires_i4

ires_i4 = SHMEM_INT4_FETCH(source, pe)

INTEGER*8 SHMEM_INT8_FETCH, ires_i8

ires_i8 = SHMEM_INT8_FETCH(source, pe)

REAL*4 SHMEM_REAL4_FETCH, res_r4

res_r4 = SHMEM_REAL4_FETCH(source, pe)

REAL*8 SHMEM_REAL8_FETCH, res_r8

res_r8 = SHMEM_REAL8_FETCH(source, pe)

deprecation end

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

IN source The remotely accessible data object to be fetched from the remote PE.
IN pe An integer that indicates the PE number from which source is to be

fetched.

API description

shmem_atomic_fetch performs an atomic fetch operation. It returns the contents of the source as an atomic
operation. If the context handle ctx does not correspond to a valid context, the behavior is undefined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 73

Return Values
The contents at the source address on the remote PE. The data type of the return value is the same as the
type of the remote data object.

Notes
None.

10.8.2 SHMEM_ATOMIC_SET

Atomically sets the value of a remote data object.

SYNOPSIS

C11:
void shmem_atomic_set(TYPE *dest, TYPE value, int pe);

void shmem_atomic_set(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 6.

C/C++:
void shmem_<TYPENAME>_atomic_set(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_set(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:
void shmem_set(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
void shmem_<TYPENAME>_set(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 6.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_SET, value_i4

CALL SHMEM_INT4_SET(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_SET, value_i8

CALL SHMEM_INT8_SET(dest, value_i8, pe)

REAL*4 SHMEM_REAL4_SET, value_r4

CALL SHMEM_REAL4_SET(dest, value_r4, pe)

REAL*8 SHMEM_REAL8_SET, value_r8

CALL SHMEM_REAL8_SET(dest, value_r8, pe)

deprecation end

DESCRIPTION

Arguments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

74 10. OPENSHMEM LIBRARY API

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest The remotely accessible data object to be set on the remote PE.
IN value The value to be atomically written to the remote PE.
IN pe An integer that indicates the PE number on which dest is to be updated.

API description

shmem_atomic_set performs an atomic set operation. It writes the value into dest on pe as an atomic
operation. If the context handle ctx does not correspond to a valid context, the behavior is undefined.

Return Values
None.

Notes
None.

10.8.3 SHMEM_ATOMIC_COMPARE_SWAP

Performs an atomic conditional swap on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_compare_swap(TYPE *dest, TYPE cond, TYPE value, int pe);

TYPE shmem_atomic_compare_swap(shmem_ctx_t ctx, TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 5.

C/C++:
TYPE shmem_<TYPENAME>_atomic_compare_swap(TYPE *dest, TYPE cond, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_compare_swap(shmem_ctx_t ctx, TYPE *dest, TYPE cond, TYPE

value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:
TYPE shmem_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_CSWAP, cond_i4, value_i4, ires_i4

ires_i4 = SHMEM_INT4_CSWAP(dest, cond_i4, value_i4, pe)

INTEGER*8 SHMEM_INT8_CSWAP, cond_i8, value_i8, ires_i8

ires_i8 = SHMEM_INT8_CSWAP(dest, cond_i8, value_i8, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 75

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest The remotely accessible integer data object to be updated on the remote
PE.

IN cond cond is compared to the remote dest value. If cond and the remote dest
are equal, then value is swapped into the remote dest; otherwise, the
remote dest is unchanged. In either case, the old value of the remote
dest is returned as the routine return value. cond must be of the same
data type as dest.

IN value The value to be atomically written to the remote PE. value must be the
same data type as dest.

IN pe An integer that indicates the PE number upon which dest is to be up-
dated. When using Fortran, it must be a default integer value.

API description

The conditional swap routines conditionally update a dest data object on the specified PE and return the
prior contents of the data object in one atomic operation. If the context handle ctx does not correspond to a
valid context, the behavior is undefined.

When using Fortran, dest, cond, and value must be of the following type:

Routine Data type of dest, cond, and value

SHMEM_INT4_CSWAP 4-byte integer.
SHMEM_INT8_CSWAP 8-byte integer.

Return Values
The contents that had been in the dest data object on the remote PE prior to the conditional swap. Data type
is the same as the dest data type.

Notes
None.

EXAMPLES

The following call ensures that the first PE to execute the conditional swap will successfully write its PE number
to race_winner on PE 0.

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int race_winner = -1;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

76 10. OPENSHMEM LIBRARY API

shmem_init();
int me = shmem_my_pe();
int oldval = shmem_atomic_compare_swap(&race_winner, -1, me, 0);
if (oldval == -1) printf("PE %d was first\n", me);
shmem_finalize();
return 0;

}

10.8.4 SHMEM_ATOMIC_SWAP

Performs an atomic swap to a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_swap(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_swap(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 6.

C/C++:
TYPE shmem_<TYPENAME>_atomic_swap(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_swap(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:
TYPE shmem_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 6.

deprecation end

deprecation start
FORTRAN:
INTEGER SHMEM_SWAP, value, pe

ires = SHMEM_SWAP(dest, value, pe)

INTEGER*4 SHMEM_INT4_SWAP, value_i4, ires_i4

ires_i4 = SHMEM_INT4_SWAP(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_SWAP, value_i8, ires_i8

ires_i8 = SHMEM_INT8_SWAP(dest, value_i8, pe)

REAL*4 SHMEM_REAL4_SWAP, value_r4, res_r4

res_r4 = SHMEM_REAL4_SWAP(dest, value_r4, pe)

REAL*8 SHMEM_REAL8_SWAP, value_r8, res_r8

res_r8 = SHMEM_REAL8_SWAP(dest, value_r8, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 77

OUT dest The remotely accessible integer data object to be updated on the remote
PE. When using C/C++, the type of dest should match that implied in
the SYNOPSIS section.

IN value The value to be atomically written to the remote PE. value is the same
type as dest.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

shmem_atomic_swap performs an atomic swap operation. It writes value into dest on PE and returns the
previous contents of dest as an atomic operation. If the context handle ctx does not correspond to a valid
context, the behavior is undefined.

When using Fortran, dest and value must be of the following type:

Routine Data type of dest and value

SHMEM_SWAP Integer of default kind
SHMEM_INT4_SWAP 4-byte integer
SHMEM_INT8_SWAP 8-byte integer
SHMEM_REAL4_SWAP 4-byte real
SHMEM_REAL8_SWAP 8-byte real

Return Values
The content that had been at the dest address on the remote PE prior to the swap is returned.

Notes
None.

EXAMPLES

The example below swaps values between odd numbered PEs and their right (modulo) neighbor and outputs the
result of swap.
#include <stdio.h>
#include <shmem.h>

int main(void)
{

static long dest;
shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
dest = me;
shmem_barrier_all();
long new_val = me;
if (me & 1) {

long swapped_val = shmem_atomic_swap(&dest, new_val, (me + 1) % npes);
printf("%d: dest = %ld, swapped = %ld\n", me, dest, swapped_val);

}
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

78 10. OPENSHMEM LIBRARY API

10.8.5 SHMEM_ATOMIC_FETCH_INC

Performs an atomic fetch-and-increment operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_inc(TYPE *dest, int pe);

TYPE shmem_atomic_fetch_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 5.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_inc(TYPE *dest, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:
TYPE shmem_finc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_finc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FINC, ires_i4

ires_i4 = SHMEM_INT4_FINC(dest, pe)

INTEGER*8 SHMEM_INT8_FINC, ires_i8

ires_i8 = SHMEM_INT8_FINC(dest, pe)

deprecation end

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

These routines perform a fetch-and-increment operation. The dest on PE pe is increased by one and the
routine returns the previous contents of dest as an atomic operation. If the context handle ctx does not
correspond to a valid context, the behavior is undefined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 79

When using Fortran, dest must be of the following type:

Routine Data type of dest

SHMEM_INT4_FINC 4-byte integer
SHMEM_INT8_FINC 8-byte integer

Return Values
The contents that had been at the dest address on the remote PE prior to the increment. The data type of
the return value is the same as the dest.

Notes
None.

EXAMPLES

The following shmem_atomic_fetch_inc example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int old = -1;
static int dst = 22;
shmem_init();
int me = shmem_my_pe();
if (me == 0)

old = shmem_atomic_fetch_inc(&dst, 1);
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
shmem_finalize();
return 0;

}

10.8.6 SHMEM_ATOMIC_INC

Performs an atomic increment operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_inc(TYPE *dest, int pe);

void shmem_atomic_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 5.

C/C++:
void shmem_<TYPENAME>_atomic_inc(TYPE *dest, int pe);

void shmem_ctx_<TYPENAME>_atomic_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

80 10. OPENSHMEM LIBRARY API

void shmem_inc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
void shmem_<TYPENAME>_inc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

CALL SHMEM_INT4_INC(dest, pe)

CALL SHMEM_INT8_INC(dest, pe)

deprecation end

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

These routines perform an atomic increment operation on the dest data object on PE. If the context handle
ctx does not correspond to a valid context, the behavior is undefined.

When using Fortran, dest must be of the following type:

Routine Data type of dest

SHMEM_INT4_INC 4-byte integer
SHMEM_INT8_INC 8-byte integer

Return Values
None.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 81

EXAMPLES

The following shmem_atomic_inc example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int dst = 74;
shmem_init();
int me = shmem_my_pe();
if (me == 0)

shmem_atomic_inc(&dst, 1);
shmem_barrier_all();
printf("%d: dst = %d\n", me, dst);
shmem_finalize();
return 0;

}

10.8.7 SHMEM_ATOMIC_FETCH_ADD

Performs an atomic fetch-and-add operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_add(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 5.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_add(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:
TYPE shmem_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
TYPE shmem_<TYPENAME>_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FADD, ires_i4, value_i4

ires_i4 = SHMEM_INT4_FADD(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_FADD, ires_i8, value_i8

ires_i8 = SHMEM_INT8_FADD(dest, value_i8, pe)

deprecation end

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

82 10. OPENSHMEM LIBRARY API

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN value The value to be atomically added to dest. The type of value should
match that implied in the SYNOPSIS section.

IN pe An integer that indicates the PE number on which dest is to be updated.
When using Fortran, it must be a default integer value.

API description

shmem_atomic_fetch_add routines perform an atomic fetch-and-add operation. An atomic fetch-and-add
operation fetches the old dest and adds value to dest without the possibility of another atomic operation on
the dest between the time of the fetch and the update. These routines add value to dest on pe and return the
previous contents of dest as an atomic operation. If the context handle ctx does not correspond to a valid
context, the behavior is undefined.

When using Fortran, dest and value must be of the following type:

Routine Data type of dest and value

SHMEM_INT4_FADD 4-byte integer
SHMEM_INT8_FADD 8-byte integer

Return Values
The contents that had been at the dest address on the remote PE prior to the atomic addition operation. The
data type of the return value is the same as the dest.

Notes
None.

EXAMPLES

The following shmem_atomic_fetch_add example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int old = -1;
static int dst = 22;
shmem_init();
int me = shmem_my_pe();
if (me == 1)

old = shmem_atomic_fetch_add(&dst, 44, 0);
shmem_barrier_all();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 83

printf("%d: old = %d, dst = %d\n", me, old, dst);
shmem_finalize();
return 0;

}

10.8.8 SHMEM_ATOMIC_ADD

Performs an atomic add operation on a remote symmetric data object.

SYNOPSIS

C11:
void shmem_atomic_add(TYPE *dest, TYPE value, int pe);

void shmem_atomic_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 5.

C/C++:
void shmem_<TYPENAME>_atomic_add(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 5.

deprecation start

C11:
void shmem_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
void shmem_<TYPENAME>_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 5.

deprecation end

deprecation start
FORTRAN:
INTEGER pe

INTEGER*4 value_i4

CALL SHMEM_INT4_ADD(dest, value_i4, pe)

INTEGER*8 value_i8

CALL SHMEM_INT8_ADD(dest, value_i8, pe)

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest The remotely accessible integer data object to be updated on the remote
PE. When using C/C++, the type of dest should match that implied in
the SYNOPSIS section.

IN value The value to be atomically added to dest. When using C/C++, the type
of value should match that implied in the SYNOPSIS section. When
using Fortran, it must be of type integer with an element size of dest.

IN pe An integer that indicates the PE number upon which dest is to be up-
dated. When using Fortran, it must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

84 10. OPENSHMEM LIBRARY API

API description

The shmem_atomic_add routine performs an atomic add operation. It adds value to dest on PE pe and
atomically updates the dest without returning the value. If the context handle ctx does not correspond to a
valid context, the behavior is undefined.

When using Fortran, dest and value must be of the following type:

Routine Data type of dest and value

SHMEM_INT4_ADD 4-byte integer
SHMEM_INT8_ADD 8-byte integer

Return Values
None.

Notes
None.

EXAMPLES

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int dst = 22;
shmem_init();
int me = shmem_my_pe();
if (me == 1)

shmem_atomic_add(&dst, 44, 0);
shmem_barrier_all();
printf("%d: dst = %d\n", me, dst);
shmem_finalize();
return 0;

}

10.8.9 SHMEM_ATOMIC_FETCH_AND

Atomically perform a fetching bitwise AND operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_and(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 7.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_and(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 7.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 85

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise AND operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_fetch_and atomically performs a fetching bitwise AND on the remotely accessible data
object pointed to by dest at PE pe with the operand value. If the context handle ctx does not correspond to
a valid context, the behavior is undefined.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

Notes
None.

10.8.10 SHMEM_ATOMIC_AND

Atomically perform a non-fetching bitwise AND operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_and(TYPE *dest, TYPE value, int pe);

void shmem_atomic_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 7.

C/C++:
void shmem_<TYPENAME>_atomic_and(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 7.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise AND operation.
IN pe An integer value for the PE on which dest is to be updated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

86 10. OPENSHMEM LIBRARY API

API description

shmem_atomic_and atomically performs a non-fetching bitwise AND on the remotely accessible data
object pointed to by dest at PE pe with the operand value. If the context handle ctx does not correspond to
a valid context, the behavior is undefined.

Return Values
None.

Notes
None.

10.8.11 SHMEM_ATOMIC_FETCH_OR

Atomically perform a fetching bitwise OR operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_or(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 7.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_or(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 7.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise OR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_fetch_or atomically performs a fetching bitwise OR on the remotely accessible data object
pointed to by dest at PE pe with the operand value. If the context handle ctx does not correspond to a valid
context, the behavior is undefined.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 87

Notes
None.

10.8.12 SHMEM_ATOMIC_OR

Atomically perform a non-fetching bitwise OR operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_or(TYPE *dest, TYPE value, int pe);

void shmem_atomic_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 7.

C/C++:
void shmem_<TYPENAME>_atomic_or(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 7.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise OR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_or atomically performs a non-fetching bitwise OR on the remotely accessible data object
pointed to by dest at PE pe with the operand value. If the context handle ctx does not correspond to a valid
context, the behavior is undefined.

Return Values
None.

Notes
None.

10.8.13 SHMEM_ATOMIC_FETCH_XOR

Atomically perform a fetching bitwise exclusive OR (XOR) operation on a remote data object.

SYNOPSIS

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

88 10. OPENSHMEM LIBRARY API

TYPE shmem_atomic_fetch_xor(TYPE *dest, TYPE value, int pe);

TYPE shmem_atomic_fetch_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 7.

C/C++:
TYPE shmem_<TYPENAME>_atomic_fetch_xor(TYPE *dest, TYPE value, int pe);

TYPE shmem_ctx_<TYPENAME>_atomic_fetch_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 7.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise XOR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_fetch_xor atomically performs a fetching bitwise XOR on the remotely accessible data
object pointed to by dest at PE pe with the operand value. If the context handle ctx does not correspond to
a valid context, the behavior is undefined.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

Notes
None.

10.8.14 SHMEM_ATOMIC_XOR

Atomically perform a non-fetching bitwise exclusive OR (XOR) operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_xor(TYPE *dest, TYPE value, int pe);

void shmem_atomic_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 7.

C/C++:
void shmem_<TYPENAME>_atomic_xor(TYPE *dest, TYPE value, int pe);

void shmem_ctx_<TYPENAME>_atomic_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 7.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 89

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest A pointer to the remotely accessible data object to be updated.
IN value The operand to the bitwise XOR operation.
IN pe An integer value for the PE on which dest is to be updated.

API description

shmem_atomic_xor atomically performs a non-fetching bitwise XOR on the remotely accessible data ob-
ject pointed to by dest at PE pe with the operand value. If the context handle ctx does not correspond to a
valid context, the behavior is undefined.

Return Values
None.

Notes
None.

10.9 Collective Routines

Collective routines are defined as coordinated communication or synchronization operations on performed by a group
of PEs called an active set.

OpenSHMEM provides three types of collective routines:

1. Collective routines that operate on teams use a team handle parameter to determine which PEs will participate
in the routine, and use resources encapsulated by the team object to perform operations. See Section 10.4 for
details on team management.

deprecation start

2. Collective routines that operate on active sets use a set of parameters to determine which PEs will participate and
what resources are used to perform operations.

deprecation end

3. Collective routines that accept neither team nor active set parameters, which implicitly operate on the default
team and, as required, the default context.

Team-based collectives

The team-based collective routines are performed with respect to a valid OpenSHMEM team, which is specified by a
team handle argument. Team-based collective operations require all PEs in the team to call the routine in order for the
operation to complete. If an invalid team handle or SHMEM_TEAM_INVALID is passed to a team-based collective
routine, the behavior is undefined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

90 10. OPENSHMEM LIBRARY API

Team objects encapsulate the per PE system resources required to complete team-based collective routines. All
OpenSHMEM teams-based collective calls are blocking routines which may use those system resources. On comple-
tion of a team-based collective call, the PE may immediately call another collective on that same team without any
other intervening synchronization across the team.

While OpenSHMEM routines provide thread support according to the thread-support level provided at initialization
(see Section 10.2), team-based collective routines may not be called simultaneously by multiple threads on a given
team.

Collective operations are matched across a given team based on ordering. So for a given team, collectives must
occur in the same order across all PEs in a team.

The team-based collective routines defined in the OpenSHMEM Specification are:

• shmem_team_sync

• shmem_{TYPE_}broadcast{mem}

• shmem_{TYPE_}collect{mem}

• shmem_{TYPE_}fcollect{mem}

• Reduction routines for the following operations: AND, OR, XOR, MAX, MIN, SUM, PROD

• shmem_{TYPE_}alltoall{mem}

• shmem_{TYPE_}alltoalls{mem}

In addition, all team creation functions are collective operations. In addition to the ordering and thread safety
requirements described here, there are additional synchronization requirements on team creation operations. See Sec-
tion 10.4 for more details.

deprecation start

Active-set-based collectives

The active-set-based collective routines require all PEs in the active set to simultaneously call the routine. A PE
that is not in the active set calling the collective routine results in undefined behavior. All collective routines have
an active set as an input parameter except shmem_barrier_all and shmem_sync_all. Both shmem_barrier_all and
shmem_sync_all must be called by all PEs of the OpenSHMEM program.

The active set is defined by the arguments PE_start, logPE_stride, and PE_size. PE_start specifies the starting
PE number and is the lowest numbered PE in the active set. The stride between successive PEs in the active set is
2logPE_stride and logPE_stride must be greater than or equal to zero. PE_size specifies the number of PEs in the active
set and must be greater than zero. The active set must satisfy the requirement that its last member corresponds to a
valid PE number, that is 0≤ PE_start +(PE_size−1)∗2logPE_stride < npes.

All PEs participating in the active-set-based collective routine must provide the same values for these arguments.
If any of these requirements are not met, the behavior is undefined.

Another argument important to active-set-based collective routines is pSync, which is a symmetric work array.
All PEs participating in an active-set-based collective must pass the same pSync array. On completion of such a
collective call, the pSync is restored to its original contents. The user is permitted to reuse a pSync array if all previous
collective routines using the pSync array have been completed by all participating PEs. One can use a synchronization
collective routine such as shmem_barrier to ensure completion of previous active-set-based collective routines. The
shmem_barrier and shmem_sync routines allow the same pSync array to be used on consecutive calls as long as the
PEs in the active set do not change.

All collective routines defined in the Specification are blocking. The collective routines return on completion. The
active-set-based collective routines defined in the OpenSHMEM Specification are:

• shmem_barrier_all

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 91

• shmem_barrier

• shmem_sync_all

• shmem_sync

• shmem_broadcast{32, 64}

• shmem_collect{32, 64}

• shmem_fcollect{32, 64}

• Reduction routines for the following operations: AND, MAX, MIN, SUM, PROD, OR, XOR

• shmem_alltoall{32, 64}

• shmem_alltoalls{32, 64}

deprecation end

Team-implicit collectives

The shmem_sync_all routine synchronizes all PEs in the computation through the default team. This routine is equiv-
alent to a call to shmem_team_sync on the default team.

The shmem_barrier_all routine synchronizes all PEs in the default team and ensures completion of all local and
remote memory updates issued via the default context. This routine is equivalent to a call to shmem_ctx_quiet on the
default context followed by a call to shmem_team_sync on the default team.

10.9.1 SHMEM_BARRIER_ALL

Registers the arrival of a PE at a barrier and blocks the PE until all other PEs arrive at the barrier and all local updates
and remote memory updates on the default context are completed.

SYNOPSIS

C/C++:
void shmem_barrier_all(void);

deprecation start
FORTRAN:
CALL SHMEM_BARRIER_ALL

deprecation end

DESCRIPTION

Arguments

None.

API description

The shmem_barrier_all routine registers the arrival of a PE at a barrier. Barriers are is a mechanism for
synchronizing all PEs in the default team at once. This routine blocks the calling PE until all PEs have

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

92 10. OPENSHMEM LIBRARY API

called shmem_barrier_all. In a multithreaded OpenSHMEM program, only the calling thread is blocked,
however, it may not be called concurrently by multiple threads in the same PE.
Prior to synchronizing with other PEs, shmem_barrier_all ensures completion of all previously issued
memory stores and remote memory updates issued on the default context via OpenSHMEM AMOs and
RMA routine calls such as shmem_int_add, shmem_put32, shmem_put_nbi, and shmem_get_nbi.

Return Values
None.

Notes
The shmem_barrier_all routine is equivalent to calling shmem_ctx_quiet on the default context followed
by calling shmem_team_sync on the default team.
The shmem_barrier_all routine can be used to portably ensure that memory access operations observe
remote updates in the order enforced by initiator PEs.
Calls to shmem_ctx_quiet can be performed prior to calling the barrier routine to ensure completion of
operations issued on additional contexts.

EXAMPLES

The following shmem_barrier_all example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int x = 1010;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

/* put to next PE in a circular fashion */
shmem_p(&x, 4, (me + 1) % npes);

/* synchronize all PEs */
shmem_barrier_all();
printf("%d: x = %d\n", me, x);
shmem_finalize();
return 0;

}

10.9.2 SHMEM_BARRIER

deprecation start
Performs all operations described in the shmem_barrier_all interface but with respect to a subset of PEs defined

by the active set.

SYNOPSIS

C/C++:
void shmem_barrier(int PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation start
FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 93

INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BARRIER_SYNC_SIZE)

CALL SHMEM_BARRIER(PE_start, logPE_stride, PE_size, pSync)

deprecation end

DESCRIPTION

Arguments

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_BARRIER_SYNC_SIZE. In
C/C++, pSync must be an array of elements of type long. In Fortran,
pSync must be an array of elements of default integer type. Every ele-
ment of this array must be initialized to SHMEM_SYNC_VALUE before
any of the PEs in the active set enter shmem_barrier the first time.

API description

shmem_barrier is a collective synchronization routine over an active set. Control returns from
shmem_barrier after all PEs in the active set (specified by PE_start, logPE_stride, and PE_size) have
called shmem_barrier.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the active
set call the routine. If a PE not in the active set calls an OpenSHMEM collective routine, the behavior is
undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be the same value on all PEs in the
active set. The same work array must be passed in pSync to all PEs in the active set.
shmem_barrier ensures that all previously issued stores and remote memory updates, including AMOs
and RMA operations, done by any of the PEs in the active set on the default context are complete before
returning.
The same pSync array may be reused on consecutive calls to shmem_barrier if the same active set is used.
shmem_barrier has been deprecated in favor of the equivalent call to shmem_quiet followed by a call to
shmem_sync on a team or active set with the desired set of PEs.

Return Values
None.

Notes
If the pSync array is initialized at the run time, all PEs must be synchronized before the first call to
shmem_barrier (e.g., by shmem_barrier_all) to ensure the array has been initialized by all PEs before
it is used.
If the active set does not change, shmem_barrier can be called repeatedly with the same pSync array. No
additional synchronization beyond that implied by shmem_barrier itself is necessary in this case.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

94 10. OPENSHMEM LIBRARY API

The shmem_barrier routine can be used to portably ensure that memory access operations observe remote
updates in the order enforced by initiator PEs.
Calls to shmem_ctx_quiet can be performed prior to calling the barrier routine to ensure completion of
operations issued on additional contexts.
No team-based barrier is provided by OpenSHMEM, as a team may have any number of communication
contexts associated with the team. Applications seeking such an idiom should call shmem_ctx_quiet on
the desired context, followed by a call to shmem_team_sync on the desired team.

EXAMPLES

The following barrier example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int x = 10101;
static long pSync[SHMEM_BARRIER_SYNC_SIZE];
for (int i = 0; i < SHMEM_BARRIER_SYNC_SIZE; i++)

pSync[i] = SHMEM_SYNC_VALUE;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

if (me % 2 == 0) {
/* put to next even PE in a circular fashion */
shmem_p(&x, 4, (me + 2) % npes);
/* synchronize all even pes */
shmem_barrier(0, 1, (npes / 2 + npes % 2), pSync);

}
printf("%d: x = %d\n", me, x);
shmem_finalize();
return 0;

}

deprecation end

10.9.3 SHMEM_SYNC

Registers the arrival of a PE at a synchronization point and suspends PE execution until all other PEs in a given
OpenSHMEM team or active set arrive at the same synchronization point.

SYNOPSIS

C11:
int shmem_sync(shmem_team_t team);

C/C++:
int shmem_team_sync(shmem_team_t team);

deprecation start
void shmem_sync(int PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation end

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 95

Arguments

IN team The team over which to perform the operation.

deprecation start
IN PE_start The lowest PE number of the active set of PEs. PE_start must be of

type integer.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set. logPE_stride must be of type integer.
IN PE_size The number of PEs in the active set. PE_size must be of type integer.
IN pSync A symmetric work array. In C/C++, pSync must be of type long

and size SHMEM_BARRIER_SYNC_SIZE. Every element of this array
must be initialized to SHMEM_SYNC_VALUE before any of the PEs in
the active set enter shmem_sync the first time.

deprecation end

API description

shmem_sync is a collective synchronization routine over an existing OpenSHMEM team or an active set
The routine registers the arrival of a PE at a synchronization point in the program. This is a fast mechanism
for synchronizing all PEs that participate in this collective call. The routine blocks the calling PE until all
PE in the specified team or active set have called shmem_sync. In a multithreaded OpenSHMEM program,
only the calling thread is blocked.
Team-based sync routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the sync operation. If an invalid team handle or SHMEM_TEAM_INVALID is
passed to this routine, the behavior is undefined.
Active-set-based sync routines operate over all PEs in the active set defined by the PE_start, logPE_stride,
PE_size triplet.
As with all OpenSHMEM active set-based collective routines, each of these routines assumes that only
PEs in the active set call the routine. If a PE not in the active set calls an OpenSHMEM active set-based
collective routine, the behavior is undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same work array must be passed in pSync to all PEs in the active set.
In contrast with the shmem_barrier routine, shmem_sync only ensures completion and visibility of previ-
ously issued memory stores and does not ensure completion of remote memory updates issued via Open-
SHMEM routines.
The same pSync array may be reused on consecutive calls to shmem_sync if the same active set is used.

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes

There are no specifically defined error codes for sync operations. See section 9 for expected error checking
and return code behavior specific to implementations. For portable error checking and debugging behavior,
programs should do their own checks for invalid team handles or SHMEM_TEAM_INVALID
If the pSync array is initialized at run time, another method of synchronization (e.g., shmem_sync_all)
must be used before the initial use of that pSync array by shmem_sync.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

96 10. OPENSHMEM LIBRARY API

If the active set does not change, shmem_sync can be called repeatedly with the same pSync array. No
additional synchronization beyond that implied by shmem_sync itself is necessary in this case.
The shmem_sync routine can be used to portably ensure that memory access operations observe remote
updates in the order enforced by the initiator PEs, provided that the initiator PE ensures completion of
remote updates with a call to shmem_quiet prior to the call to the shmem_sync routine.

EXAMPLES

The following shmem_sync_all and shmem_sync example is for C11 programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int x = 10101;

shmem_team_t twos_team, threes_team;
shmem_team_config_t *config;

shmem_init();
config = NULL;
int me = shmem_my_pe();
int npes = shmem_n_pes();

int odd_npes = npes % 2;

shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 2, npes / 2, config, 0,
&twos_team);

/* The "threes" team below overlaps with the "twos" team, so

* synchronize on the parent team */
shmem_sync(SHMEM_TEAM_WORLD);

shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 3, npes / 3 + odd_npes,
config, 0, &threes_team);

int my_pe_twos = shmem_team_my_pe(twos_team);
int my_pe_threes = shmem_team_my_pe(threes_team);

if (twos_team != SHMEM_TEAM_INVALID) {
/* put the value 2 to the next team member in a circular fashion */
shmem_p(&x, 2, (me + 2) % npes);
shmem_quiet();
shmem_sync(twos_team);

}

if (threes_team != SHMEM_TEAM_INVALID) {
/* put the value 3 to the next team member in a circular fashion */
shmem_p(&x, 3, (me + 3) % npes);
shmem_quiet();
shmem_sync(threes_team);

}

if (me % 3 == 0 && x != 3) {
shmem_global_exit(3);

}
else if (me % 2 == 0 && x != 2) {

shmem_global_exit(2);
}
else if (x != 10101) {

shmem_global_exit(1);
}

shmem_finalize();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 97

return 0;
}

10.9.4 SHMEM_SYNC_ALL

deprecation start
Performs all operations described in the shmem_sync interface but implicitly operates on SHMEM_TEAM_WORLD.

SYNOPSIS

C/C++:
void shmem_sync_all(void);

DESCRIPTION

Arguments

None.

API description

This routine blocks the PE until all PEs in the OpenSHMEM program have called shmem_sync_all. In a
multithreaded OpenSHMEM program, only the calling thread is blocked.
In contrast with the shmem_barrier_all routine, shmem_sync_all only ensures completion and visibility
of previously issued memory stores and does not ensure completion of remote memory updates issued via
OpenSHMEM routines.
The shmem_sync_all routine is deprecated in favor of the equivalent call to
shmem_sync(SHMEM_TEAM_WORLD).

Return Values
None.

Notes
None.

deprecation end

10.9.5 SHMEM_BROADCAST

Broadcasts a block of data from one PE to one or more destination PEs.

SYNOPSIS

C11:
int shmem_broadcast(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems, int

PE_root);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

98 10. OPENSHMEM LIBRARY API

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
int shmem_<TYPENAME>_broadcast(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nelems, int PE_root);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
int shmem_broadcastmem(shmem_team_t team, void *dest, const void *source, size_t nelems, int

PE_root);

deprecation start
void shmem_broadcast32(void *dest, const void *source, size_t nelems, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_broadcast64(void *dest, const void *source, size_t nelems, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation end

deprecation start
FORTRAN:
INTEGER nelems, PE_root, PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BCAST_SYNC_SIZE)

CALL SHMEM_BROADCAST4(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST8(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST32(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size,pSync)

CALL SHMEM_BROADCAST64(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size,pSync)

deprecation end

DESCRIPTION

Arguments

IN team The team over which to perform the operation.

OUT dest A symmetric data object. See the table below in this description for
allowable types.

IN source A symmetric data object that can be of any data type that is permissible
for the dest argument.

IN nelems The number of elements in source. nelems must be of type size_t in C.
When using Fortran, it must be a default integer value.

IN PE_root Zero-based ordinal of the PE, with respect to the team or active set,
from which the data is copied. PE_root must be of type int. When
using Fortran, it must be a default integer value.

deprecation start

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. log_PE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 99

IN pSync A symmetric work array of size SHMEM_BCAST_SYNC_SIZE. In
C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enters
shmem_broadcast.

deprecation end

API description

OpenSHMEM broadcast routines are collective routines over an active set or existing OpenSHMEM team.
They copy data object source on the processor specified by PE_root and store the values at dest on the
other PEs particpating in the collective operation. specified by the triplet PE_start, logPE_stride, PE_size.
The data is not copied to the dest area on the root PE.
The same dest and source data objects and the same value of PE_root must be passed by all PEs particpating
in the collective operation.
Team-based broadcast routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the operation. If an invalid team handle or SHMEM_TEAM_INVALID is passed
to this routine, the behavior is undefined.
As with all team-based OpenSHMEM routines, PE numbering is relative to the team. The specified root
PE must be a valid PE number for the team, between 0 and N-1, where N is the size of the team.
Active-set-based broadcast routines operate over all PEs in the active set defined by the PE_start,
logPE_stride, PE_size triplet.
As with all active-set-based OpenSHMEM collective routines, each of these routines assumes that only
PEs in the active set call the routine. If a PE not in the active set calls an active-set-based OpenSHMEM
collective routine, the behavior is undefined.
The values of arguments PE_root, PE_start, logPE_stride, and PE_size must be the same value on all PEs
in the active set. The value of PE_root must be between 0 and PE_size. The same pSync work array must
be passed by all PEs in the active set.
Before any PE calls a broadcast routine, the following conditions must be ensured:

• The dest array on all PEs participating in the broadcast in the active set is ready to accept the broadcast
data.

• If using active-set-based routines, the pSync array on all PEs in the active set is not still in use from a
prior call to a collective OpenSHMEM routine.

Otherwise, the behavior is undefined.
Upon return from a broadcast routine, the following are true for the local PE:

• If the current PE is not the root PE, the dest data object is updated.
• The source data object may be safely reused.
• If using active-set-based routines, the values in the pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_broadcastmem C: Any data type. nelems is scaled in bytes.
shmem_broadcast8,
shmem_broadcast64

Any noncharacter type that has an element size of 64 bits. No
Fortran derived types nor or C/C++ structures are allowed.

shmem_broadcast4,
shmem_broadcast32

Any noncharacter type that has an element size of 32 bits. No
Fortran derived types nor or C/C++ structures are allowed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

100 10. OPENSHMEM LIBRARY API

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes
There are no specifically defined error codes for these routines. See section 9 for expected error checking
and return code behavior specific to implementations. For portable error checking and debugging behavior,
programs should do their own checks for invalid team handles or SHMEM_TEAM_INVALID
All OpenSHMEM broadcast routines restore pSync to its original contents. Multiple calls to OpenSHMEM
routines that use the same pSync array do not require that pSync be reinitialized after the first call.
The user must ensure that the pSync array is not being updated by any PE in the active set while any of the
PEs participates in processing of an OpenSHMEM broadcast routine. Be careful to avoid these situations:
If the pSync array is initialized at run time, before its first use, some type of synchronization is needed
to ensure that all PEs in the active set have initialized pSync before any of them enter an OpenSHMEM
routine called with the pSync synchronization array. A pSync array may be reused on a subsequent Open-
SHMEM broadcast routine only if none of the PEs in the active set are still processing a prior OpenSHMEM
broadcast routine call that used the same pSync array. In general, this can be ensured only by doing some
type of synchronization.
Team handle error checking and integer return codes are currently undefined. Implementations may define
these behaviors as needed, but programs should ensure portability by doing their own checks for invalid
team handles and for SHMEM_TEAM_INVALID.

EXAMPLES

In the following C11 example, the call to shmem_broadcast copies source on PE 0 to dest on PEs 1 . . .npes−1.

C/C++ example:
#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

int main(void)
{

static long source[4], dest[4];

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

if (me == 0)
for (int i = 0; i < 4; i++)

source[i] = i;

shmem_broadcast(SHMEM_TEAM_WORLD, dest, source, 4, 0);

printf("%d: %ld, %ld, %ld, %ld\n", me, dest[0], dest[1], dest[2], dest[3]);
shmem_finalize();
return 0;

}

10.9.6 SHMEM_COLLECT, SHMEM_FCOLLECT

Concatenates blocks of data from multiple PEs to an array in every PE participating in the collective routine.

SYNOPSIS

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 101

int shmem_collect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);

int shmem_fcollect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
int shmem_<TYPENAME>_collect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nelems);

int shmem_<TYPENAME>_fcollect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nelems);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
int shmem_collectmem(shmem_team_t team, void *dest, const void *source, size_t nelems);

int shmem_fcollectmem(shmem_team_t team, void *dest, const void *source, size_t nelems);

deprecation start
void shmem_collect32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_collect64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

deprecation end

deprecation start
FORTRAN:
INTEGER nelems

INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_COLLECT_SYNC_SIZE)

CALL SHMEM_COLLECT4(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT8(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT4(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT8(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

deprecation end

DESCRIPTION

Arguments

IN team A valid OpenSHMEM team handle.

OUT dest A symmetric array large enough to accept the concatenation of the
source arrays on all participating PEs. See table below in this descrip-
tion for allowable data types.

IN source A symmetric data object that can be of any type permissible for the dest
argument.

IN nelems The number of elements in the source array. nelems must be of type
size_t for C. When using Fortran, it must be a default integer value.

deprecation start

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

102 10. OPENSHMEM LIBRARY API

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_COLLECT_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
shmem_collect or shmem_fcollect.

deprecation end

API description

OpenSHMEM collect and fcollect routines perform a collective operation to concatenate nelems data items
from the source array into the dest array, over an OpenSHMEM team or active set in processor number
order. The resultant dest array contains the contribution from PEs as follows:

• For an active set, the data from PE PE_start is first, then the contribution from PE PE_start +
PE_stride second, and so on.

• For a team, the data from PE number 0 in the team is first, then the contribution from PE 1 in the team,
and so on.

The collected result is written to the dest array for all PEs that participate in the operation. The same dest
and source arrays must be passed by all PEs that participate in the operation.
The fcollect routines require that nelems be the same value in all participating PEs, while the collect routines
allow nelems to vary from PE to PE.
Team-based collect routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the operation.
Active-set-based collective routines operate over all PEs in the active set defined by the PE_start,
logPE_stride, PE_size triplet. As with all active-set-based collective routines, each of these routines as-
sumes that only PEs in the active set call the routine. If a PE not in the active set and calls this collective
routine, the behavior is undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be the same value on all PEs in the
active set. The same dest and source arrays and the same pSync work array must be passed by all PEs in
the active set.
Upon return from a collective routine, the following are true for the local PE:

• The dest array is updated and the source array may be safely reused.
• For active-set-based collective routines, the values in the pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_collectmem,
shmem_fcollectmem

C: Any data type. nelems is scaled in bytes.

shmem_collect8,
shmem_collect64,
shmem_fcollect8,
shmem_fcollect64

Any noncharacter type that has an element size of 64 bits. No
Fortran derived types nor C/C++ structures are allowed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 103

shmem_collect4,
shmem_collect32,
shmem_fcollect4,
shmem_fcollect32

Any noncharacter type that has an element size of 32 bits. No
Fortran derived types nor C/C++ structures are allowed.

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes
There are no specifically defined error codes for these routines. See section 9 for expected error checking
and return code behavior specific to implementations. For portable error checking and debugging behavior,
programs should do their own checks for invalid team handles or SHMEM_TEAM_INVALID.
All OpenSHMEM collective routines reset the values in pSync before they return, so a particular pSync
buffer need only be initialized the first time it is used.
The user must ensure that the pSync array is not being updated on any PE in the active set while any of the
PEs participate in processing of an OpenSHMEM collective routine. Be careful to avoid these situations:
If the pSync array is initialized at run time, some type of synchronization is needed to ensure that all PEs
in the working set have initialized pSync before any of them enter an OpenSHMEM routine called with the
pSync synchronization array. A pSync array can be reused on a subsequent OpenSHMEM collective routine
only if none of the PEs in the active set are still processing a prior OpenSHMEM collective routine call that
used the same pSync array. In general, this may be ensured only by doing some type of synchronization.
The collective routines operate on active PE sets that have a non-power-of-two PE_size with some perfor-
mance degradation. They operate with no performance degradation when nelems is a non-power-of-two
value.

EXAMPLES

The following shmem_collect example is for C/C++ programs:

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

int main(void)
{

static long lock = 0;

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
int my_nelem = me + 1; /* linearly increasing number of elements with PE */
int total_nelem = (npes * (npes + 1)) / 2;

int* source = (int*) shmem_malloc(npes*sizeof(int)); /* symmetric alloc */
int* dest = (int*) shmem_malloc(total_nelem*sizeof(int));

for (int i = 0; i < my_nelem; i++)
source[i] = (me * (me + 1)) / 2 + i;

for (int i = 0; i < total_nelem; i++)
dest[i] = -9999;

/* Wait for all PEs to initialize source/dest: */
shmem_team_sync(SHMEM_TEAM_WORLD);

shmem_int_collect(SHMEM_TEAM_WORLD, dest, source, my_nelem);

shmem_set_lock(&lock); /* Lock prevents interleaving printfs */
printf("%d: %d", me, dest[0]);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

104 10. OPENSHMEM LIBRARY API

for (int i = 1; i < total_nelem; i++)
printf(", %d", dest[i]);

printf("\n");
shmem_clear_lock(&lock);
shmem_finalize();
return 0;

}

The following SHMEM_COLLECT example is for Fortran programs:

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_COLLECT_SYNC_SIZE)
DATA PSYNC /SHMEM_COLLECT_SYNC_SIZE*SHMEM_SYNC_VALUE/

CALL SHMEM_COLLECT4(DEST, SOURCE, 64, PE_START, LOGPE_STRIDE,
& PE_SIZE, PSYNC)

10.9.7 SHMEM_REDUCTIONS

The following functions perform reduction operations across all PEs in a set of PEs.

SYNOPSIS

TYPE TYPENAME Operations Supporting TYPE
unsigned char uchar AND, OR, XOR
short short AND, OR, XOR MAX, MIN SUM, PROD
unsigned short ushort AND, OR, XOR MAX, MIN SUM, PROD
int int AND, OR, XOR MAX, MIN SUM, PROD
unsigned int uint AND, OR, XOR MAX, MIN SUM, PROD
long long AND, OR, XOR MAX, MIN SUM, PROD
unsigned long ulong AND, OR, XOR MAX, MIN SUM, PROD
long long longlong AND, OR, XOR MAX, MIN SUM, PROD
unsigned long long ulonglong AND, OR, XOR MAX, MIN SUM, PROD
float float MAX, MIN SUM, PROD
double double MAX, MIN SUM, PROD
long double longdouble MAX, MIN SUM, PROD
double _Complex complexd SUM, PROD
float _Complex complexf SUM, PROD

Table 8: Reduction Types, Names and Supporting Operations

10.9.7.1 AND Performs a bitwise AND reduction across a set of PEs.

C11:
int shmem_and_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer types supported for the AND operation as specified by Table 8.

C/C++:
int shmem_<TYPENAME>_and_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nreduce);

deprecation start
void shmem_<TYPENAME>_and_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 105

deprecation end

where TYPE is one of the integer types supported for the AND operation and has a corresponding TYPENAME
as specified by Table 8.

deprecation start
FORTRAN:
CALL SHMEM_INT4_AND_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_AND_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

10.9.7.2 OR Performs a bitwise OR reduction across a set of PEs.

C11:
int shmem_or_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer types supported for the OR operation as specified by Table 8.

C/C++:
int shmem_<TYPENAME>_or_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nreduce);

deprecation start
void shmem_<TYPENAME>_or_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer types supported for the OR operation and has a corresponding TYPENAME as
specified by Table 8.

deprecation start
FORTRAN:
CALL SHMEM_INT4_OR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_OR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

10.9.7.3 XOR Performs a bitwise exclusive OR (XOR) reduction across a set of PEs.

C11:
int shmem_xor_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer types supported for the XOR operation as specified by Table 8.

C/C++:
int shmem_<TYPENAME>_xor_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nreduce);

deprecation start
void shmem_<TYPENAME>_xor_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer types supported for the XOR operation and has a corresponding TYPENAME
as specified by Table 8.

deprecation start
FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

106 10. OPENSHMEM LIBRARY API

CALL SHMEM_INT4_XOR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_XOR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

10.9.7.4 MAX Performs a maximum-value reduction across a set of PEs.

C11:
int shmem_max_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer or real types supported for the MAX operation as specified by Table 8.

C/C++:
int shmem_<TYPENAME>_max_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nreduce);

deprecation start
void shmem_<TYPENAME>_max_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer or real types supported for the MAX operation and has a corresponding
TYPENAME as specified by Table 8.

deprecation start
FORTRAN:
CALL SHMEM_INT4_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

10.9.7.5 MIN Performs a minimum-value reduction across a set of PEs.

C11:
int shmem_min_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer or real types supported for the MIN operation as specified by Table 8.

C/C++:
int shmem_<TYPENAME>_min_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nreduce);

deprecation start
void shmem_<TYPENAME>_min_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer or real types supported for the MIN operation and has a corresponding TYPE-
NAME as specified by Table 8.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 107

deprecation start
FORTRAN:
CALL SHMEM_INT4_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

10.9.7.6 SUM Performs a sum reduction across a set of PEs.

C11:
int shmem_sum_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer, real, or complex types supported for the SUM operation as specified by Table
8.

C/C++:
int shmem_<TYPENAME>_sum_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nreduce);

deprecation start
void shmem_<TYPENAME>_sum_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer, real, or complex types supported for the SUM operation and has a correspond-
ing TYPENAME as specified by Table 8.

deprecation start
FORTRAN:
CALL SHMEM_COMP4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

10.9.7.7 PROD Performs a product reduction across a set of PEs.

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

108 10. OPENSHMEM LIBRARY API

int shmem_prod_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer, real, or complex types supported for the PROD operation as specified by Table
8.

C/C++:
int shmem_<TYPENAME>_prod_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nreduce);

deprecation start
void shmem_<TYPENAME>_prod_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, short *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer, real, or complex types supported for the PROD operation and has a corre-
sponding TYPENAME as specified by Table 8.

deprecation start
FORTRAN:
CALL SHMEM_COMP4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

deprecation end

DESCRIPTION

Arguments

IN team The team over which to perform the operation.

OUT dest A symmetric array, of length nreduce elements, to receive the result of
the reduction routines. The data type of dest varies with the version of
the reduction routine being called. When calling from C/C++, refer to
the SYNOPSIS section for data type information.

IN source A symmetric array, of length nreduce elements, that contains one ele-
ment for each separate reduction routine. The source argument must
have the same data type as dest.

IN nreduce The number of elements in the dest and source arrays. In teams based
API calls, nreduce must be of type size_t. In deprecated active-set based
API calls, nreduce must be of type int. When using Fortran, it must be
a default integer value.

deprecation start

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 109

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pWrk A symmetric work array of size at least max(nreduce/2 + 1,
SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

IN pSync A symmetric work array of size SHMEM_REDUCE_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
the reduction routine.

deprecation end

API description

OpenSHMEM reduction routines are collective routines over an active set or existing OpenSHMEM team
that compute one or more reductions across symmetric arrays on multiple PEs. A reduction performs an
associative binary routine across a set of values.
The nreduce argument determines the number of separate reductions to perform. The source array on all
PEs participating in the reduction in the active set provides one element for each reduction. The results of
the reductions are placed in the dest array on all PEs participating in the reduction. in the active set.
The source and dest arrays may be the same array, but they may not be overlapping arrays. The same dest
and source arrays must be passed to all PEs participating in the reduction. in the active set.
Team-based reduction routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the reduction. If an invalid team handle or SHMEM_TEAM_INVALID is passed
to this routine, the behavior is undefined.
Active-set-based sync routines operate over all PEs in the active set defined by the PE_start, logPE_stride,
PE_size triplet.
As with all OpenSHMEM active set-based collective routines, each of these routines assumes that only
PEs in the active set call the routine. If a PE not in the active set calls an OpenSHMEM active set-based
collective routine, the behavior is undefined.
The values of arguments nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same pWrk and pSync work arrays must be passed to all PEs in the active set.
Before any PE calls a reduction routine, the following conditions must be ensured:

• The dest array on all PEs participating in the reduction in the active set is ready to accept the results of
the reduction.

• If using active-set-based routines, the pWrk and pSync arrays on all PEs in the active set are not still in
use from a prior call to a collective OpenSHMEM routine.

Otherwise, the behavior is undefined.
Upon return from a reduction routine, the following are true for the local PE:

• The dest array is updated and the source array may be safely reused.
• If using active-set-based routines, the values in the pSync array are restored to the original values.

The complex-typed interfaces are only provided for sum and product reductions. When the C translation
environment does not support complex types 7, an OpenSHMEM implementation is not required to provide
support for these complex-typed interfaces.

7That is, under C language standards prior to C99 or under C11 when __STDC_NO_COMPLEX__ is defined to 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

110 10. OPENSHMEM LIBRARY API

When calling from Fortran, the dest date types are as follows:

Routine Data type

shmem_int8_and_to_all Integer, with an element size of 8 bytes.
shmem_int4_and_to_all Integer, with an element size of 4 bytes.
shmem_comp8_max_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_max_to_all Integer, with an element size of 4 bytes.
shmem_int8_max_to_all Integer, with an element size of 8 bytes.
shmem_real4_max_to_all Real, with an element size of 4 bytes.
shmem_real16_max_to_all Real, with an element size of 16 bytes.
shmem_int4_min_to_all Integer, with an element size of 4 bytes.
shmem_int8_min_to_all Integer, with an element size of 8 bytes.
shmem_real4_min_to_all Real, with an element size of 4 bytes.
shmem_real8_min_to_all Real, with an element size of 8 bytes.
shmem_real16_min_to_all Real,with an element size of 16 bytes.
shmem_comp4_sum_to_all Complex, with an element size equal to two 4-byte real values.
shmem_comp8_sum_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_sum_to_all Integer, with an element size of 4 bytes.
shmem_int8_sum_to_all Integer, with an element size of 8 bytes..
shmem_real4_sum_to_all Real, with an element size of 4 bytes.
shmem_real8_sum_to_all Real, with an element size of 8 bytes.
shmem_real16_sum_to_all Real, with an element size of 16 bytes.
shmem_comp4_prod_to_all Complex, with an element size equal to two 4-byte real values.
shmem_comp8_prod_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_prod_to_all Integer, with an element size of 4 bytes.
shmem_int8_prod_to_all Integer, with an element size of 8 bytes.
shmem_real4_prod_to_all Real, with an element size of 4 bytes.
shmem_real8_prod_to_all Real, with an element size of 8 bytes.
shmem_real16_prod_to_all Real, with an element size of 16 bytes.
shmem_int8_or_to_all Integer, with an element size of 8 bytes.
shmem_int4_or_to_all Integer, with an element size of 4 bytes.
shmem_int8_xor_to_all Integer, with an element size of 8 bytes.
shmem_int4_xor_to_all Integer, with an element size of 4 bytes.

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes
There are no specifically defined error codes for this routine. See section 9 for expected error checking
and return code behavior specific to implementations. For portable error checking and debugging behavior,
programs should do their own checks for invalid team handles or SHMEM_TEAM_INVALID
All OpenSHMEM reduction routines reset the values in pSync before they return, so a particular pSync
buffer need only be initialized the first time it is used. The user must ensure that the pSync array is not be-
ing updated on any PE in the active set while any of the PEs participate in processing of an OpenSHMEM
reduction routine. Be careful to avoid the following situations: If the pSync array is initialized at run time,
some type of synchronization is needed to ensure that all PEs in the working set have initialized pSync
before any of them enter an OpenSHMEM routine called with the pSync synchronization array. A pSync
or pWrk array can be reused in a subsequent reduction routine call only if none of the PEs in the active set
are still processing a prior reduction routine call that used the same pSync or pWrk arrays. In general, this

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 111

can be assured only by doing some type of synchronization.

EXAMPLES

This C/C++ reduction example gets integers from an external source (random genererator in this example), tests
to see if the PE got a valid value, and outputs the sum of values for which all PEs got a valid value.

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

/* As if we receive some value from external source */
long recv_a_value(unsigned seed, int npes) {
srand(seed);
return rand() % npes;

}

/* Validate the value we recieved */
unsigned char is_valid(long value, int npes) {
if (value == (npes-1))

return 0;
return 1;

}

int main(void)
{

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();
size_t num = 32;

long *values = shmem_malloc(num * sizeof(long));
long *sums = shmem_malloc(num * sizeof(long));

unsigned char *valid_me = shmem_malloc(num * sizeof(unsigned char));
unsigned char *valid_all = shmem_malloc(num * sizeof(unsigned char));

values[0] = recv_a_value((unsigned)me, npes);
valid_me[0] = is_valid(values[0], npes);

for (int i=1; i < num; i++) {
values[i] = recv_a_value((unsigned)values[i-1], npes);
valid_me[i] = is_valid(values[i], npes);

}

/* Wait for all PEs to initialize reductions arrays */
shmem_sync(SHMEM_TEAM_WORLD);

#if __STDC_VERSION__ >= 201112
/* C11 generic interface */
shmem_and_reduce(SHMEM_TEAM_WORLD, valid_all, valid_me, num);
shmem_sum_reduce(SHMEM_TEAM_WORLD, sums, values, num);

#else
/* C/C++ interface without generic support */
shmem_uchar_and_reduce(SHMEM_TEAM_WORLD, valid_all, valid_me, num);
shmem_long_sum_reduce(SHMEM_TEAM_WORLD, sums, values, num);

#endif

for (int i=0; i < num; i++) {
if (valid_all[i]) {

printf ("[%d] = %ld\n", i, sums[i]);
}
else {

printf ("[%d] = invalid on one or more pe\n", i);
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

112 10. OPENSHMEM LIBRARY API

}

shmem_finalize();
return 0;

}

10.9.8 SHMEM_ALLTOALL

shmem_alltoall is a collective routine where each PE exchanges a fixed amount of data with all other PEs in the active
set participating in the collective.

SYNOPSIS

C11:
int shmem_alltoall(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
int shmem_<TYPENAME>_alltoall(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nelems);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
int shmem_alltoallmem(shmem_team_t team, void *dest, const void *source, size_t nelems);

deprecation start
void shmem_alltoall32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_alltoall64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

deprecation end

deprecation start
FORTRAN:
INTEGER pSync(SHMEM_ALLTOALL_SYNC_SIZE)

INTEGER PE_start, logPE_stride, PE_size, nelems

CALL SHMEM_ALLTOALL32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_ALLTOALL64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

deprecation end

DESCRIPTION

Arguments

IN team A valid OpenSHMEM team handle to a team.

OUT dest A symmetric data object large enough to receive the combined total of
nelems elements from each PE in the active set.

IN source A symmetric data object that contains nelems elements of data for each
PE in the active set, ordered according to destination PE.

IN nelems The number of elements to exchange for each PE. nelems must be of
type size_t for C/C++. When using Fortran, it must be a default integer
value.

deprecation start

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 113

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_ALLTOALL_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
the routine.

deprecation end

API description

The shmem_alltoall routines are collective routines. Each PE participating in the operation exchanges
nelems data elements with all other PEs participating in the operation. The size of a data element is:

• 32 bits for shmem_alltoall32
• 64 bits for shmem_alltoall64
• 8 bits for shmem_alltoallmem
• sizeof (TYPE) for alltoall routines taking typed source and dest

The data being sent and received are stored in a contiguous symmetric data object. The total size of each
PEs source object and dest object is nelems times the size of an element (32 bits or 64 bits) times PE_size
times N, where N equals the number of PEs participating in the operation. The source object contains
oldtextPE_size N blocks of data (where the size of each block is defined by nelems) and each block of data
is sent to a different PE.
The same dest and source arrays, and same value for nelems must be passed by all PEs that participate in
the collective.
Given a PE i that is the kthPE in the active set participating in the operation and a PE j that is the lthPE in
the active set participating in the operation, PE i sends the lthblock of its source object to the kthblock of the
dest object of PE j.
Team-based collect routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the collective.
Active-set-based collective routines operate over all PEs in the active set defined by the PE_start,
logPE_stride, PE_size triplet. As with all OpenSHMEM active-set-based collective routines, this routine
assumes that only PEs in the active set call the routine. If a PE not in the active set calls an OpenSHMEM
active-set-based collective routine, the behavior is undefined.
The values of arguments nelems, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same dest and source data objects, and the same pSync work array must be passed to all PEs
in the active set.
Before any PE calls a shmem_alltoall routine, the following conditions must be ensured:

• The dest data object on all PEs in the active set is ready to accept the shmem_alltoall data.
• For active-set-based routines, the pSync array on all PEs in the active set is not still in use from a prior

call to a shmem_alltoall routine.

Otherwise, the behavior is undefined.
Upon return from a shmem_alltoall routine, the following is true for the local PE:

• Its dest symmetric data object is completely updated and the data has been copied out of the source
data object.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

114 10. OPENSHMEM LIBRARY API

• For active-set-based routines, the values in the pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_alltoall64 64 bits aligned.
shmem_alltoall32 32 bits aligned.

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes
There are no specifically defined error codes for these routines. See section 9 for expected error checking
and return code behavior specific to implementations. For portable error checking and debugging behavior,
programs should do their own checks for invalid team handles or SHMEM_TEAM_INVALID.
This routine restores pSync to its original contents. Multiple calls to OpenSHMEM routines that use the
same pSync array do not require that pSync be reinitialized after the first call. The user must ensure that the
pSync array is not being updated by any PE in the active set while any of the PEs participates in processing
of an OpenSHMEM shmem_alltoall routine. Be careful to avoid these situations: If the pSync array is
initialized at run time, some type of synchronization is needed to ensure that all PEs in the active set have
initialized pSync before any of them enter an OpenSHMEM routine called with the pSync synchronization
array. A pSync array may be reused on a subsequent OpenSHMEM shmem_alltoall routine only if none of
the PEs in the active set are still processing a prior OpenSHMEM shmem_alltoall routine call that used the
same pSync array. In general, this can be ensured only by doing some type of synchronization.

EXAMPLES

This C/C++ example shows a shmem_int64_alltoall on two 64-bit integers among all PEs.

#include <stdio.h>
#include <inttypes.h>
#include <shmem.h>

int main(void)
{

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

const int count = 2;
int64_t* dest = (int64_t*) shmem_malloc(count * npes * sizeof(int64_t));
int64_t* source = (int64_t*) shmem_malloc(count * npes * sizeof(int64_t));

/* assign source values */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
source[(pe * count) + i] = me + pe;
dest[(pe * count) + i] = 9999;

}
}
/* wait for all PEs to initialize source/dest */
shmem_team_sync(SHMEM_TEAM_WORLD);

/* alltoall on all PES */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 115

shmem_int64_alltoall(SHMEM_TEAM_WORLD, dest, source, count);

/* verify results */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
if (dest[(pe * count) + i] != pe + me) {

printf("[%d] ERROR: dest[%d]=%" PRId64 ", should be %d\n",
me, (pe * count) + i, dest[(pe * count) + i], pe + me);

}
}

}

shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

10.9.9 SHMEM_ALLTOALLS

shmem_alltoalls is a collective routine where each PE exchanges a fixed amount of strided data with all other PEs in
the active set participating in the collective.

SYNOPSIS

C11:
int shmem_alltoalls(shmem_team_t team, TYPE *dest, const TYPE *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems);

where TYPE is one of the standard RMA types specified by Table 4.

C/C++:
int shmem_<TYPENAME>_alltoalls(shmem_team_t team, TYPE *dest, const TYPE *source, ptrdiff_t

dst, ptrdiff_t sst, size_t nelems);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 4.
int shmem_alltoallsmem(shmem_team_t team, void *dest, const void *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems);

deprecation start
void shmem_alltoalls32(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_alltoalls64(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation end

deprecation start
FORTRAN:
INTEGER pSync(SHMEM_ALLTOALLS_SYNC_SIZE)

INTEGER dst, sst, PE_start, logPE_stride, PE_size

INTEGER nelems

CALL SHMEM_ALLTOALLS32(dest, source, dst, sst, nelems, PE_start, logPE_stride, PE_size,

pSync)

CALL SHMEM_ALLTOALLS64(dest, source, dst, sst, nelems, PE_start, logPE_stride, PE_size,

pSync)

deprecation end

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

116 10. OPENSHMEM LIBRARY API

Arguments

IN team A valid OpenSHMEM team handle.

OUT dest A symmetric data object large enough to receive the combined total of
nelems elements from each PE in the active set.

IN source A symmetric data object that contains nelems elements of data for each
PE in the active set, ordered according to destination PE.

IN dst The stride between consecutive elements of the dest data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data. dst must be of type ptrdiff_t. When using Fortran, it must be a
default integer value.

IN sst The stride between consecutive elements of the source data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data. sst must be of type ptrdiff_t. When using Fortran, it must be a
default integer value.

deprecation start
IN nelems The number of elements to exchange for each PE. nelems must be of

type size_t for C/C++. When using Fortran, it must be a default integer
value.

IN PE_start The lowest PE number of the active set of PEs. PE_start must be of
type integer. When using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set. logPE_stride must be of type integer. When using Fortran,
it must be a default integer value.

IN PE_size The number of PEs in the active set. PE_size must be of type integer.
When using Fortran, it must be a default integer value.

IN pSync A symmetric work array of size SHMEM_ALLTOALLS_SYNC_SIZE.
In C/C++, pSync must be an array of elements of type long. In
Fortran, pSync must be an array of elements of default integer
type. Every element of this array must be initialized with the value
SHMEM_SYNC_VALUE before any of the PEs in the active set enter
the routine.

deprecation end

API description

The shmem_alltoalls routines are collective routines. These routines are equivalent in functionality to the
corresponding shmem_alltoall routines except that they add explicit stride values for accessing the source
and destination data arrays, whereas the array access in shmem_alltoall is always with a stride of 1.
Each PE in the active set participating in the operation exchanges nelems strided data elements of size 32
bits (for shmem_alltoalls32) or 64 bits (for shmem_alltoalls64) with all other PEs in the set participating
in the operation. Both strides, dst and sst, must be greater than or equal to 1.
The same dest and source arrays and same values for values of arguments dst, sst, nelems must be passed
by all PEs that participate in the collective.
Given a PE i that is the kthPE in the active set participating in the operation and a PE j that is the lthPE
in the active set participating in the operation PE i sends the sst*lthblock of the source data object to the
dst*kthblock of the dest data object on PE j.
See the description of shmem_alltoall in section 10.9.8 for:

• Data element sizes for the different sized and typed shmem_alltoalls variants.
• Rules for PE participation in the collective routine.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 117

• The pre- and post-conditions for symmetric objects.

• Typing constraints for dest and source data objects.

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes
See notes for shmem_alltoall in section 10.9.8.

EXAMPLES

This C/C++ example shows a shmem_int64_alltoalls on two 64-bit integers among all PEs.

#include <stdio.h>
#include <inttypes.h>
#include <shmem.h>

int main(void)
{

shmem_init();
int me = shmem_my_pe();
int npes = shmem_n_pes();

const int count = 2;
const ptrdiff_t dst = 2;
const ptrdiff_t sst = 3;
int64_t* dest = (int64_t*) shmem_malloc(count * dst * npes * sizeof(int64_t));
int64_t* source = (int64_t*) shmem_malloc(count * sst * npes * sizeof(int64_t));

/* assign source values */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
source[sst * ((pe * count) + i)] = me + pe;
dest[dst * ((pe * count) + i)] = 9999;

}
}
/* wait for all PEs to initialize source/dest */
shmem_team_sync(SHMEM_TEAM_WORLD);

/* alltoalls on all PES */
shmem_int64_alltoalls(SHMEM_TEAM_WORLD, dest, source, dst, sst, count);

/* verify results */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
int j = dst * ((pe * count) + i);
if (dest[j] != pe + me) {

printf("[%d] ERROR: dest[%d]=%" PRId64 ", should be %d\n",
me, j, dest[j], pe + me);

}
}

}

shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

118 10. OPENSHMEM LIBRARY API

10.10 Point-To-Point Synchronization Routines

The following section discusses OpenSHMEM APIs that provide a mechanism for synchronization between two PEs
based on the value of a symmetric data object. The point-to-point synchronization routines can be used to portably
ensure that memory access operations observe remote updates in the order enforced by the initiator PE using the
shmem_fence and shmem_quiet routines.

Where appropriate compiler support is available, OpenSHMEM provides type-generic point-to-point synchroniza-
tion interfaces via C11 generic selection. Such type-generic routines are supported for the “point-to-point synchroniza-
tion types” identified in Table 9.

The point-to-point synchronization types include some of the exact-width integer types defined in stdint.h by
C99 §7.18.1.1 and C11 §7.20.1.1. When the C translation environment does not provide exact-width integer types with
stdint.h, an OpenSHMEM implemementation is not required to provide support for these types. The shmem_test_any
and shmem_wait_until_any routines require the SIZE_MAX macro defined in stdint.h by C99 §7.18.3 and C11 §7.20.3.

TYPE TYPENAME
short short
int int
long long
long long longlong
unsigned short ushort
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 9: Point-to-Point Synchronization Types and Names

The point-to-point synchronization interface provides named constants whose values are integer constant expres-
sions that specify the comparison operators used by OpenSHMEM synchronization routines. The constant names and
associated operations are presented in Table 10. For Fortran, the constant names of Table 10 shall be identifiers for
integer parameters of default kind corresponding to the associated comparison operation.

Constant Name Comparison
SHMEM_CMP_EQ Equal
SHMEM_CMP_NE Not equal
SHMEM_CMP_GT Greater than
SHMEM_CMP_GE Greater than or equal to
SHMEM_CMP_LT Less than
SHMEM_CMP_LE Less than or equal to

Table 10: Point-to-Point Comparison Constants

10.10.1 SHMEM_WAIT_UNTIL

Wait for a variable on the local PE to change.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 119

SYNOPSIS

C11:
void shmem_wait_until(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
void shmem_<TYPENAME>_wait_until(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

deprecation start
void shmem_wait_until(long *ivar, int cmp, long cmp_value);

void shmem_wait(long *ivar, long cmp_value);

void shmem_<TYPENAME>_wait(TYPE *ivar, TYPE cmp_value);

where TYPE is one of {short, int, long, long long} and has a corresponding TYPENAME specified by Table 9.

deprecation end

deprecation start
FORTRAN:
CALL SHMEM_INT4_WAIT(ivar, cmp_value)

CALL SHMEM_INT4_WAIT_UNTIL(ivar, cmp, cmp_value)

CALL SHMEM_INT8_WAIT(ivar, cmp_value)

CALL SHMEM_INT8_WAIT_UNTIL(ivar, cmp, cmp_value)

CALL SHMEM_WAIT(ivar, cmp_value)

CALL SHMEM_WAIT_UNTIL(ivar, cmp, cmp_value)

deprecation end

DESCRIPTION

Arguments

IN ivar A remotely accessible integer variable. When using C/C++, the type of
ivar should match that implied in the SYNOPSIS section.

IN cmp The compare operator that compares ivar with cmp_value. When using
Fortran, it must be of default kind. When using C/C++, it must be of
type int.

IN cmp_value cmp_value must be of type integer. When using C/C++, the type of
cmp_value should match that implied in the SYNOPSIS section. When
using Fortran, cmp_value must be an integer of the same size and kind
as ivar.

API description

The shmem_wait and shmem_wait_until operations block until the value contained in the symmetric data
object, ivar, at the calling PE satisfies the wait condition. In an OpenSHMEM program with single-threaded
PEs, the ivar object at the calling PE may be updated by an RMA, AMO, or store operation performed by
another PE. In an OpenSHMEM program with multithreaded PEs, the ivar object at the calling PE may
be updated by an RMA, AMO, or store operation performed by a thread located within the calling PE or
within another PE.
These routines can be used to implement point-to-point synchronization between PEs or between threads
within the same PE. A call to shmem_wait blocks until the value of ivar at the calling PE is not equal to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

120 10. OPENSHMEM LIBRARY API

cmp_value. A call to shmem_wait_until blocks until the value of ivar at the calling PE satisfies the wait
condition specified by the comparison operator, cmp, and comparison value, cmp_value.

When using Fortran, ivar must be a specific sized integer type according to the routine being called, as
follows:

Routine Data type

shmem_wait, shmem_wait_until default INTEGER
shmem_int4_wait,
shmem_int4_wait_until

INTEGER*4

shmem_int8_wait,
shmem_int8_wait_until

INTEGER*8

Return Values
None.

Notes
As of OpenSHMEM 1.4, the shmem_wait routine is deprecated; however, shmem_wait is equivalent to
shmem_wait_until where cmp is SHMEM_CMP_NE.

Note to implementors
Implementations must ensure that shmem_wait and shmem_wait_until do not return before the update of
the memory indicated by ivar is fully complete. Partial updates to the memory must not cause shmem_wait
or shmem_wait_until to return.

EXAMPLES

The following call returns when variable ivar is not equal to 100:

INCLUDE "shmem.fh"

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT(IVAR, INTEGER*8(100))

The following call to SHMEM_INT8_WAIT_UNTIL is equivalent to the call to SHMEM_INT8_WAIT in exam-
ple 1:

INCLUDE "shmem.fh"

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT_UNTIL(IVAR, SHMEM_CMP_NE, INTEGER*8(100))

The following C/C++ routine waits until the value in ivar is set to be less than zero by a transfer from a remote
PE:

#include <stdio.h>
#include <shmem.h>

int ivar;

void wait_on_ivar(void) {
shmem_int_wait_until(&ivar, SHMEM_CMP_LT, 0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 121

The following Fortran example is in the context of a subroutine:

INCLUDE "shmem.fh"

SUBROUTINE EXAMPLE()
INTEGER FLAG_VAR
COMMON/FLAG/FLAG_VAR
. . .
FLAG_VAR = FLAG_VALUE ! initialize the event variable
. . .
IF (FLAG_VAR .EQ. FLAG_VALUE) THEN

CALL SHMEM_WAIT(FLAG_VAR, FLAG_VALUE)
ENDIF
FLAG_VAR = FLAG_VALUE ! reset the event variable for next time
. . .
END

10.10.2 SHMEM_WAIT_UNTIL_ALL

Wait on an array of variables on the local PE until all variables meet the specified wait condition.

SYNOPSIS

C11:
void shmem_wait_until_all(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
void shmem_<TYPENAME>_wait_until_all(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

DESCRIPTION

Arguments

IN ivars A pointer to an array of remotely accessible data objects.
IN nelems The number of elements in the ivars array.
IN status An optional mask array of length nelems that indicates which elements

in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 10 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars.

API description

The shmem_wait_until_all routine waits until all entries in the wait set specified by ivars and status have
satisfied the wait condition at the calling PE. If nelems is 0, the wait set is empty and this routine returns
immediately. This routine is semantically similar to shmem_wait_until in Section 10.10.1, but adds support
for point-to-point synchronization involving an array of symmetric data objects.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

122 10. OPENSHMEM LIBRARY API

0 will be included in the wait set, and elements set to 1 will be ignored. If all elements in status are set to
1 or nelems is 0, the wait set is empty and this routine returns immediately. If status is a null pointer, it is
ignored and all elements in ivars are included in the wait set. The ivars and status arrays must not overlap
in memory.

Return Values
None.

Notes
None.

Note to implementors
Implementations must ensure that shmem_wait_until_all does not return before the update of the memory
indicated by ivars is fully complete. Partial updates to the memory must not cause shmem_wait_until_all
to return.

EXAMPLES
The following C11 example demonstrates the use of shmem_wait_until_all to implement a simple linear

barrier synchronization.

#include <shmem.h>

int main(void)
{

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *flags = shmem_calloc(npes, sizeof(int));
int *status = NULL;

for (int i = 0; i < npes; i++)
shmem_p(&flags[mype], 1, i);

shmem_wait_until_all(flags, npes, status, SHMEM_CMP_EQ, 1);

shmem_free(flags);
shmem_finalize();
return 0;

}

10.10.3 SHMEM_WAIT_UNTIL_ANY

Wait on an array of variables on the local PE until any one variable meets the specified wait condition.

SYNOPSIS

C11:
size_t shmem_wait_until_any(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
size_t shmem_<TYPENAME>_wait_until_any(TYPE *ivars, size_t nelems, const int *status,

int cmp, TYPE cmp_value);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 123

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

DESCRIPTION

Arguments

IN ivars A pointer to an array of remotely accessible data objects.
IN nelems The number of elements in the ivars array.
IN status An optional mask array of length nelems that indicates which elements

in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 10 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars.

API description

The shmem_wait_until_any routine waits until any one entry in the wait set specified by ivars and sta-
tus satisfies the wait condition at the calling PE. The order in which these elements are waited upon
is unspecified. If an entry i in ivars within the wait set satisfies the wait condition, a series of calls to
shmem_wait_until_any must eventually return i.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to 1 will be ignored. If all elements in status are set to
1 or nelems is 0, the wait set is empty and this routine returns SIZE_MAX. If status is a null pointer, it is
ignored and all elements in ivars are included in the wait set. The ivars and status arrays must not overlap
in memory.

Return Values
shmem_wait_until_any returns the index of an element in the ivars array that satisfies the wait condition.
If the wait set is empty, this routine returns SIZE_MAX.

Notes
None.

Note to implementors
Implementations must ensure that shmem_wait_until_any does not return before the update of the memory
indicated by the completed index of ivars is fully executed. Partial updates to the memory must not cause
shmem_wait_until_any to return.

EXAMPLES
The following C11 example demonstrates the use of shmem_wait_until_any to process a simple all-to-all

transfer of N data elements via a sum reduction.

#include <shmem.h>
#include <stdlib.h>

#define N 100

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

124 10. OPENSHMEM LIBRARY API

int main(void)
{

int total_sum = 0;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *my_data = malloc(N * sizeof(int));
int *all_data = shmem_malloc(N * npes * sizeof(int));

int *flags = shmem_calloc(npes, sizeof(int));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < N; i++)
my_data[i] = mype*N + i;

for (int i = 0; i < npes; i++)
shmem_put_nbi(&all_data[mype*N], my_data, N, i);

shmem_fence();

for (int i = 0; i < npes; i++)
shmem_p(&flags[mype], 1, i);

for (int i = 0; i < npes; i++) {
size_t completed_idx = shmem_wait_until_any(flags, npes, status, SHMEM_CMP_NE, 0);
for (int j = 0; j < N; j++) {

total_sum += all_data[completed_idx * N + j];
}
status[completed_idx] = 1;

}

/* check the result */
int M = N * npes - 1;
if (total_sum != M * (M + 1) / 2) {

shmem_global_exit(1);
}

shmem_finalize();
return 0;

}

10.10.4 SHMEM_WAIT_UNTIL_SOME

Wait on an array of variables on the local PE until at least one variable meets the specified wait condition.

SYNOPSIS

C11:
size_t shmem_wait_until_some(TYPE *ivars, size_t nelems, size_t *indices, const int *status,

int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
size_t shmem_<TYPENAME>_wait_until_some(TYPE *ivars, size_t nelems, size_t *indices,

const int *status, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 125

Arguments

IN ivars A pointer to an array of remotely accessible data objects.
IN nelems The number of elements in the ivars array.
OUT indices An array of indices of length at least nelems into ivars that satisfied the

wait condition.
IN status An optional mask array of length nelems that indicates which elements

in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 10 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars.

API description

The shmem_wait_until_some routine waits until at least one entry in the wait set specified by ivars and
status satisfies the wait condition at the calling PE. This routine tests all elements of ivars in the wait set at
least once, and the order in which the elements are waited upon is unspecified.
Upon return, the indices array contains the indices of at least one element in the wait set that satisfied the
wait condition during the call to shmem_wait_until_some. The return value of shmem_wait_until_some
is equal to the total number of these satisfied elements. For a given return value N, the first N elements
of the indices array contain those unique indices that satisfied the wait condition. These first N elements
of indices may be unordered with respect to the corresponding indices of ivars. The array pointed to by
indices must be at least nelems long. If an entry i in ivars within the wait set satisfies the wait condition, a
series of calls to shmem_wait_until_some must eventually include i in the indices array.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to 1 will be ignored. If all elements in status are set to
1 or nelems is 0, the wait set is empty and this routine returns 0. If status is a null pointer, it is ignored and
all elements in ivars are included in the wait set. The ivars, indices, and status arrays must not overlap in
memory.

Return Values
shmem_wait_until_some returns the number of indices returned in the indices array. If the wait set is
empty, this routine returns 0.

Notes
None.

Note to implementors
Implementations must ensure that shmem_wait_until_some does not return before the update of the mem-
ory indicated by the completed indices of ivars is fully executed. Partial updates to the memory must not
cause shmem_wait_until_some to return.

EXAMPLES
The following C11 example demonstrates the use of shmem_wait_until_some to process a simple all-to-all

transfer of N data elements via a sum reduction. This pattern is similar to the shmem_wait_until_any example
above, but may reduce the number of iterations in the while loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

126 10. OPENSHMEM LIBRARY API

#include <shmem.h>
#include <stdlib.h>

#define N 100

int main(void)
{

int total_sum = 0;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *my_data = malloc(N * sizeof(int));
int *all_data = shmem_malloc(N * npes * sizeof(int));

int *flags = shmem_calloc(npes, sizeof(int));
size_t *indices = malloc(npes * sizeof(size_t));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < N; i++)
my_data[i] = mype*N + i;

for (int i = 0; i < npes; i++)
shmem_put_nbi(&all_data[mype*N], my_data, N, i);

shmem_fence();

for (int i = 0; i < npes; i++)
shmem_p(&flags[mype], 1, i);

size_t ncompleted;
while ((ncompleted = shmem_wait_until_some(flags, npes, indices,

status, SHMEM_CMP_NE, 0))) {
for (size_t i = 0; i < ncompleted; i++) {

for (size_t j = 0; j < N; j++) {
total_sum += all_data[indices[i]*N + j];

}
status[indices[i]] = 1;

}
}

/* check the result */
int M = N * npes - 1;
if (total_sum != M * (M + 1) / 2) {

shmem_global_exit(1);
}

shmem_finalize();
return 0;

}

10.10.5 SHMEM_TEST

Indicate whether a variable on the local PE meets the specified condition.

SYNOPSIS

C11:
int shmem_test(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
int shmem_<TYPENAME>_test(TYPE *ivar, int cmp, TYPE cmp_value);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 127

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

DESCRIPTION

Arguments

IN ivar A pointer to a remotely accessible data object.
IN cmp The comparison operator that compares ivar with cmp_value.
IN cmp_value The value against which the object pointed to by ivar will be compared.

API description

shmem_test tests the numeric comparison of the symmetric object pointed to by ivar with the value
cmp_value according to the comparison operator cmp.

Return Values
shmem_test returns 1 if the comparison of the symmetric object pointed to by ivar with the value cmp_value
according to the comparison operator cmp evaluates to true; otherwise, it returns 0.

Notes
None.

EXAMPLES
The following example demonstrates the use of shmem_test to wait on an array of symmetric objects and return

the index of an element that satisfies the specified condition.
#include <stdio.h>
#include <shmem.h>

int user_wait_any(long *ivar, int count, int cmp, long value)
{

int idx = 0;
while (!shmem_test(&ivar[idx], cmp, value))

idx = (idx + 1) % count;
return idx;

}

int main(void)
{

shmem_init();
const int mype = shmem_my_pe();
const int npes = shmem_n_pes();

long *wait_vars = shmem_calloc(npes, sizeof(long));
if (mype == 0)
{

int who = user_wait_any(wait_vars, npes, SHMEM_CMP_NE, 0);
printf("PE %d observed first update from PE %d\n", mype, who);

}
else

shmem_p(&wait_vars[mype], mype, 0);

shmem_free(wait_vars);
shmem_finalize();
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

128 10. OPENSHMEM LIBRARY API

10.10.6 SHMEM_TEST_ALL

Indicate whether all variables within an array of variables on the local PE meet a specified test condition.

SYNOPSIS

C11:
int shmem_test_all(TYPE *ivars, size_t nelems, const int *status, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
int shmem_<TYPENAME>_test_all(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

DESCRIPTION

Arguments

IN ivars A pointer to an array of remotely accessible data objects.
IN nelems The number of elements in the ivars array.
IN status An optional mask array of length nelems that indicates which elements

in ivars are excluded from the test set.
IN cmp A comparison operator from Table 10 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars.

API description

The shmem_test_all routine indicates whether all entries in the test set specified by ivars and status have
satisfied the test condition at the calling PE. This routine does not block and returns zero if not all entries
in ivars satisfied the test condition. This routine compares each of the nelems elements in the ivars array
with the value cmp_value according to the comparison operator cmp at the calling PE. If nelems is 0, the
test set is empty and this routine returns 1.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to
0 will be included in the test set, and elements set to 1 will be ignored. If all elements in status are set to
1 or nelems is 0, the test set is empty and this routine returns 0. If status is a null pointer, it is ignored and
all elements in ivars are included in the test set. The ivars, indices, and status arrays must not overlap in
memory.

Return Values
shmem_test_all returns 1 if all variables in ivars satisfy the test condition or if nelems is 0, otherwise this
routine returns 0.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 129

10.10.7 SHMEM_TEST_ANY

Indicate whether any one variable within an array of variables on the local PE meets a specified test condition.

SYNOPSIS

C11:
size_t shmem_test_any(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
size_t shmem_<TYPENAME>_test_any(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

DESCRIPTION

Arguments

IN ivars A pointer to an array of remotely accessible data objects.
IN nelems The number of elements in the ivars array.
IN status An optional mask array of length nelems that indicates which elements

in ivars are excluded from the test set.
IN cmp A comparison operator from Table 10 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars.

API description

The shmem_test_any routine indicates whether any entry in the test set specified by ivars and status has
satisfied the test condition at the calling PE. This routine does not block and returns SIZE_MAX if no
entries in ivars satisfied the test condition. This routine compares each of the nelems elements in the ivars
array with the value cmp_value according to the comparison operator cmp at the calling PE. The order
in which these elements are tested is unspecified. If an entry i in ivars within the test set satisfies the test
condition, a series of calls to shmem_test_any must eventually return i.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to
0 will be included in the test set, and elements set to 1 will be ignored. If all elements in status are set to
1 or nelems is 0, the test set is empty and this routine returns SIZE_MAX. If status is a null pointer, it is
ignored and all elements in ivars are included in the test set. The ivars and status arrays must not overlap
in memory.

Return Values
shmem_test_any returns the index of an element in the ivars array that satisfies the test condition. If the
test set is empty or no conditions in the test set are satisfied, this routine returns SIZE_MAX.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

130 10. OPENSHMEM LIBRARY API

EXAMPLES
The following C11 example demonstrates the use of shmem_test_any to implement a simple linear barrier

synchronization while potentially overlapping communication with computation.

#include <shmem.h>
#include <stdlib.h>

int main(void)
{

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *flags = shmem_calloc(npes, sizeof(int));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < npes; i++)
shmem_p(&flags[mype], 1, i);

int ncompleted = 0;
size_t completed_idx;

while (ncompleted < npes) {
completed_idx = shmem_test_any(flags, npes, status, SHMEM_CMP_EQ, 1);
if (completed_idx != SIZE_MAX) {

ncompleted++;
status[completed_idx] = 1;

} else {
/* Overlap some computation here */

}
}

free(status);
shmem_free(flags);
shmem_finalize();
return 0;

}

10.10.8 SHMEM_TEST_SOME

Indicate whether at least one variable within an array of variables on the local PE meets a specified test condition.

SYNOPSIS

C11:
size_t shmem_test_some(TYPE *ivars, size_t nelems, size_t *indices, const int *status,

int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types specified by Table 9.

C/C++:
size_t shmem_<TYPENAME>_test_some(TYPE *ivars, size_t nelems, size_t *indices,

const int *status, int cmp, TYPE cmp_value);

where TYPE is one of the point-to-point synchronization types and has a corresponding TYPENAME specified
by Table 9.

DESCRIPTION

Arguments

IN ivars A pointer to an array of remotely accessible data objects.
IN nelems The number of elements in the ivars array.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 131

OUT indices An array of indices of length at least nelems into ivars that satisfied the
test condition.

IN status An optional mask array of length nelems that indicates which elements
in ivars are excluded from the test set.

IN cmp A comparison operator from Table 10 that compares elements of ivars
with cmp_value.

IN cmp_value The value to be compared with the objects pointed to by ivars.

API description

The shmem_test_some routine indicates whether at least one entry in the test set specified by ivars and
status satisfies the test condition at the calling PE. This routine does not block and returns zero if no entries
in ivars satisfied the test condition. This routine compares each element of the ivars array in the test set
with the value cmp_value according to the comparison operator cmp at the calling PE. This routine tests all
elements of ivars in the test set at least once, and the order in which the elements are tested is unspecified.
If an entry i in ivars within the test set satisfies the test condition, a series of calls to shmem_test_some
must eventually return i.
Upon return, the indices array contains the indices of the elements in the test set that satisfied the test
condition during the call to shmem_test_some. The return value of shmem_test_some is equal to the total
number of these satisfied elements. If the return value is N, then the first N elements of the indices array
contain those unique indices that satisfied the test condition. These first N elements of indices may be
unordered with respect to the corresponding indices of ivars. The array pointed to by indices must be at
least nelems long. If an entry i in ivars within the test set satisfies the test condition, a series of calls to
shmem_test_some must eventually include i in the indices array.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to
0 will be included in the test set, and elements set to 1 will be ignored. If all elements in status are set to
1 or nelems is 0, the test set is empty and this routine returns 0. If status is a null pointer, it is ignored and
all elements in ivars are included in the test set. The ivars, indices, and status arrays must not overlap in
memory.

Return Values
shmem_test_some returns the number of indices returned in the indices array. If the test set is empty, this
routine returns 0.

Notes
None.

EXAMPLES
The following C11 example demonstrates the use of shmem_test_some to process a simple all-to-all transfer

of N data elements via a sum reduction, while potentially overlapping communication with computation. This
pattern is similar to the shmem_test_any example above, but each while loop iteration may process more than
one data item.
#include <shmem.h>
#include <stdlib.h>

#define N 100

int main(void)
{

int total_sum = 0;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

132 10. OPENSHMEM LIBRARY API

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *my_data = malloc(N * sizeof(int));
int *all_data = shmem_malloc(N * npes * sizeof(int));

int *flags = shmem_calloc(npes, sizeof(int));
size_t *indices = calloc(npes, sizeof(size_t));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < N; i++)
my_data[i] = mype*N + i;

for (int i = 0; i < npes; i++)
shmem_put_nbi(&all_data[mype*N], my_data, N, i);

shmem_fence();

for (int i = 0; i < npes; i++)
shmem_p(&flags[mype], 1, i);

int ncompleted = 0;

while (ncompleted < npes) {
int ntested = shmem_test_some(flags, npes, indices, status, SHMEM_CMP_NE, 0);
if (ntested > 0) {

for (int i = 0; i < ntested; i++) {
for (int j = 0; j < N; j++) {

total_sum += all_data[indices[i]*N + j];
}
status[indices[i]] = 1;

}
ncompleted += ntested;

} else {
/* Overlap some computation here */

}
}

/* check the result */
int M = N * npes - 1;
if (total_sum != M * (M + 1) / 2) {

shmem_global_exit(1);
}

shmem_finalize();
return 0;

}

10.11 Memory Ordering Routines

The following section discusses OpenSHMEM APIs that provide mechanisms to ensure ordering and/or delivery of
Put, AMO, memory store, and non-blocking Put and Get routines to symmetric data objects.

10.11.1 SHMEM_FENCE

Assures ordering of delivery of Put, AMO, memory store, and nonblocking Put routines to symmetric data objects.

SYNOPSIS

C/C++:
void shmem_fence(void);

void shmem_ctx_fence(shmem_ctx_t ctx);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 133

deprecation start
FORTRAN:
CALL SHMEM_FENCE

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

API description

This routine assures ordering of delivery of Put, AMO, memory store, and nonblocking Put routines to
symmetric data objects. All Put, AMO, memory store, and nonblocking Put routines to symmetric data
objects issued to a particular remote PE on the given context prior to the call to shmem_fence are guar-
anteed to be delivered before any subsequent Put, AMO, memory store, and nonblocking Put routines to
symmetric data objects to the same PE. shmem_fence guarantees order of delivery, not completion. It does
not guarantee order of delivery of nonblocking Get routines. If ctx has the value SHMEM_CTX_INVALID,
no operation is performed.

Return Values
None.

Notes
shmem_fence only provides per-PE ordering guarantees and does not guarantee completion of delivery.
shmem_fence also does not have an effect on the ordering between memory accesses issued by the target
PE. shmem_wait_until, shmem_test, shmem_barrier, shmem_barrier_all routines can be called by the
target PE to guarantee ordering of its memory accesses. There is a subtle difference between shmem_fence
and shmem_quiet, in that, shmem_quiet guarantees completion of Put, AMO, memory store, and non-
blocking Put routines to symmetric data objects which makes the updates visible to all other PEs.
The shmem_quiet routine should be called if completion of Put, AMO, memory store, and nonblocking
Put routines to symmetric data objects is desired when multiple remote PEs are involved.
In an OpenSHMEM program with multithreaded PEs, it is the user’s responsibility to ensure ordering be-
tween operations issued by the threads in a PE that target symmetric memory (e.g. Put, AMO, memory
stores, and nonblocking routines) and calls by threads in that PE to shmem_fence. The shmem_fence rou-
tine can enforce memory store ordering only for the calling thread. Thus, to ensure ordering for memory
stores performed by a thread that is not the thread calling shmem_fence, the update must be made visible to
the calling thread according to the rules of the memory model associated with the threading environment.

EXAMPLES

The following example uses shmem_fence in a C11 program:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int src = 99;
long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

134 10. OPENSHMEM LIBRARY API

static long dest[10];
static int targ;
shmem_init();
int me = shmem_my_pe();
if (me == 0) {

shmem_put(dest, source, 10, 1); /* put1 */
shmem_put(dest, source, 10, 2); /* put2 */
shmem_fence();
shmem_put(&targ, &src, 1, 1); /* put3 */
shmem_put(&targ, &src, 1, 2); /* put4 */

}
shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", me, dest[0]);
shmem_finalize();
return 0;

}

Put1 will be ordered to be delivered before put3 and put2 will be ordered to be delivered before put4.

10.11.2 SHMEM_QUIET

Waits for completion of all outstanding Put, AMO, memory store, and nonblocking Put and Get routines to symmetric
data objects issued by a PE.

SYNOPSIS

C/C++:
void shmem_quiet(void);

void shmem_ctx_quiet(shmem_ctx_t ctx);

deprecation start
FORTRAN:
CALL SHMEM_QUIET

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

API description

The shmem_quiet routine ensures completion of Put, AMO, memory store, and nonblocking Put and Get
routines on symmetric data objects issued by the calling PE on the given context. All Put, AMO, memory
store, and nonblocking Put and Get routines to symmetric data objects are guaranteed to be completed and
visible to all PEs when shmem_quiet returns. If ctx has the value SHMEM_CTX_INVALID, no operation
is performed.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 135

Notes
shmem_quiet is most useful as a way of ensuring completion of several Put, AMO, memory store, and non-
blocking Put and Get routines to symmetric data objects initiated by the calling PE. For example, one might
use shmem_quiet to await delivery of a block of data before issuing another Put or nonblocking Put routine,
which sets a completion flag on another PE. shmem_quiet is not usually needed if shmem_barrier_all or
shmem_barrier are called. The barrier routines wait for the completion of outstanding writes (Put, AMO,
memory stores, and nonblocking Put and Get routines) to symmetric data objects on all PEs.

In an OpenSHMEM program with multithreaded PEs, it is the user’s responsibility to ensure ordering
between operations issued by the threads in a PE that target symmetric memory (e.g. Put, AMO, memory
stores, and nonblocking routines) and calls by threads in that PE to shmem_quiet. The shmem_quiet routine
can enforce memory store ordering only for the calling thread. Thus, to ensure ordering for memory stores
performed by a thread that is not the thread calling shmem_quiet, the update must be made visible to the
calling thread according to the rules of the memory model associated with the threading environment.

A call to shmem_quiet by a thread completes the operations posted prior to calling shmem_quiet. If the user
intends to also complete operations issued by a thread that is not the thread calling shmem_quiet, the user
must ensure that the operations are performed prior to the call to shmem_quiet. This may require the use of
a synchronization operation provided by the threading package. For example, when using POSIX Threads,
the user may call the pthread_barrier_wait routine to ensure that all threads have issued operations before
a thread calls shmem_quiet.

shmem_quiet does not have an effect on the ordering between memory accesses issued by the target PE.
shmem_wait_until, shmem_test, shmem_barrier, shmem_barrier_all routines can be called by the target
PE to guarantee ordering of its memory accesses.

EXAMPLES

The following example uses shmem_quiet in a C11 program:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static long dest[3];
static long source[3] = { 1, 2, 3 };
static int targ;
static int src = 90;
long x[3] = { 0 };
int y = 0;
shmem_init();
int me = shmem_my_pe();
if (me == 0) {

shmem_put(dest, source, 3, 1); /* put1 */
shmem_put(&targ, &src, 1, 2); /* put2 */
shmem_quiet();
shmem_get(x, dest, 3, 1); /* gets updated value from dest on PE 1 to local array x */
shmem_get(&y, &targ, 1, 2); /* gets updated value from targ on PE 2 to local variable

y */
printf("x: { %ld, %ld, %ld }\n", x[0], x[1], x[2]); /* x: { 1, 2, 3 } */
printf("y: %d\n", y); /* y: 90 */
shmem_put(&targ, &src, 1, 1); /* put3 */
shmem_put(&targ, &src, 1, 2); /* put4 */

}
shmem_finalize();
return 0;

}

Put1 and put2 will be completed and visible before put3 and put4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

136 10. OPENSHMEM LIBRARY API

10.11.3 Synchronization and Communication Ordering in OpenSHMEM

When using the OpenSHMEM API, synchronization, ordering, and completion of communication become critical. The
updates via Put routines, AMOs, stores, and nonblocking Put and Get routines on symmetric data cannot be guaranteed
until some form of synchronization or ordering is introduced in the user’s program. The table below gives the different
synchronization and ordering choices, and the situations where they may be useful.

OpenSHMEM API Working of OpenSHMEM API
Point-to-point synchro-
nization
shmem_wait_until

PE 0 PE 1

shmem_int_wait_until(...)
is completed

shmem_int_p (addr, value, PE 1)

shmem_int_wait_until
(addr, _SHMEM_CMP_EQ, value)

shmem_wait_until is a blocking
operation therefore it waits until

value in addr is updated

The addr is updated to value

Waits for a symmetric variable to be updated by a remote PE. Should be used when
computation on the local PE cannot proceed without the value that the remote PE
is to update.

Ordering puts issued by
a local PE
shmem_fence

PE 0 PE 1

shmem_int_p (addr1, value1, PE 1)

shmem_fence()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 1)

shmem_int_p (addr4, value4, PE 1)

shmem_int_p (addr5, value5, PE 2)

PE 2

value2 is delivered to
PE2, before value5

value1 and value3
are delivered to PE1,

before value4

value4 will be
delivered after value1

and value3
value5 will be

delivered after value2

All Put, AMO, store, and nonblocking Put routines on symmetric data issued to
same PE are guaranteed to be delivered before Puts (to the same PE) issued after
the fence call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 137

OpenSHMEM API Working of OpenSHMEM API
Ordering puts issued by
all PE
shmem_quiet

PE 0 PE 1

shmem_int_p (addr1, value1, PE 1)

shmem_quiet()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 1)

shmem_int_p (addr4, value4, PE 1)

shmem_int_p (addr5, value5, PE 2)

PE KPE 2

 PE K is any PE in the
system.

value1, value2, and value3
are delivered to target PEs
and visible for PE K after
the shmem_quiet() call.

All Put, AMO, store, and nonblocking Put and Get routines on symmetric data
issued by a local PE to all remote PEs are guaranteed to be completed and visible
once quiet returns. This routine should be used when all remote writes issued by a
local PE need to be visible to all other PEs before the local PE proceeds.

Collective synchroniza-
tion over an active set
shmem_barrier

Active Set

PE 0 PE 1

shmem_int_p (...)

shmem_barrier(...)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed
before any PE returns from the call.

shmem_barrier(...)shmem_barrier(...)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_long_put(…)

All local and remote memory operations issued by all PEs within the active set are
guaranteed to be completed before any PE in the active set returns from the call.
Additionally, no PE shall return from the barrier until all PEs in the active set have
entered the same barrier call. This routine should be used when synchronization as
well as completion of all stores and remote memory updates via OpenSHMEM is
required over a sub set of the executing PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

138 10. OPENSHMEM LIBRARY API

OpenSHMEM API Working of OpenSHMEM API
Collective synchroniza-
tion over all PEs
shmem_barrier_all

All PEs

PE 0 PE 1

shmem_int_p (...)

shmem_barrier_all(…)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed before any PE returns from the call.

shmem_barrier_all(…)shmem_barrier_all(…)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_barrier_all(…)

shmem_long_p (...)

All local and remote memory operations issued by all PEs are guaranteed to be
completed before any PE returns from the call. Additionally no PE shall return
from the barrier until all PEs have entered the same shmem_barrier_all call. This
routine should be used when synchronization as well as completion of all stores
and remote memory updates via OpenSHMEM is required over all PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10. OPENSHMEM LIBRARY API 139

10.12 Distributed Locking Routines

The following section discusses OpenSHMEM locks as a mechanism to provide mutual exclusion. Three routines are
available for distributed locking, set, test and clear.

10.12.1 SHMEM_LOCK

Releases, locks, and tests a mutual exclusion memory lock.

SYNOPSIS

C/C++:
void shmem_clear_lock(long *lock);

void shmem_set_lock(long *lock);

int shmem_test_lock(long *lock);

deprecation start
FORTRAN:
INTEGER lock, SHMEM_TEST_LOCK

CALL SHMEM_CLEAR_LOCK(lock)

CALL SHMEM_SET_LOCK(lock)

I = SHMEM_TEST_LOCK(lock)

deprecation end

DESCRIPTION

Arguments
IN lock A symmetric data object that is a scalar variable or an array of length 1.

This data object must be set to 0 on all PEs prior to the first use. lock
must be of type long. When using Fortran, it must be of default kind.

API description

The shmem_set_lock routine sets a mutual exclusion lock after waiting for the lock to be freed by any
other PE currently holding the lock. Waiting PEs are assured of getting the lock in a first-come, first-served
manner. The shmem_test_lock routine sets a mutual exclusion lock only if it is currently cleared. By
using this routine, a PE can avoid blocking on a set lock. If the lock is currently set, the routine returns
without waiting. The shmem_clear_lock routine releases a lock previously set by shmem_set_lock or
shmem_test_lock after performing a quiet operation on the default context to ensure that all symmetric
memory accesses that occurred during the critical region are complete. These routines are appropriate for
protecting a critical region from simultaneous update by multiple PEs.
The OpenSHMEM lock API provides a non-reentrant mutex. Thus, a call to shmem_set_lock or
shmem_test_lock when the calling PE already holds the given lock will result in undefined behavior. In a
multithreaded OpenSHMEM program, the user must ensure that such calls do not occur.

Return Values
The shmem_test_lock routine returns 0 if the lock was originally cleared and this call was able to set the
lock. A value of 1 is returned if the lock had been set and the call returned without waiting to set the lock.

Notes
The term symmetric data object is defined in Section 3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

140 10. OPENSHMEM LIBRARY API

The lock variable must be initialized to zero before any PE performs an OpenSHMEM lock operation on
the given variable. Accessing an in-use lock variable using any method other than the OpenSHMEM lock
API, e.g. using local load/store, RMA, or AMO operations, results in undefined behavior.
Calls to shmem_ctx_quiet can be performed prior to calling the shmem_clear_lock routine to ensure com-
pletion of operations issued on additional contexts.

EXAMPLES

The following example uses shmem_lock in a C11 program.
#include <stdio.h>
#include <shmem.h>

int main(void)
{

static long lock = 0;
static int count = 0;
shmem_init();
int me = shmem_my_pe();
shmem_set_lock(&lock);
int val = shmem_g(&count, 0); /* get count value on PE 0 */
printf("%d: count is %d\n", me, val);
val++; /* incrementing and updating count on PE 0 */
shmem_p(&count, val, 0);
shmem_clear_lock(&lock); /* ensures count update has completed before clearing the lock */
shmem_finalize();
return 0;

}

10.13 Cache Management

All of these routines are deprecated and are provided for backwards compatibility. Implementations must include all
items in this section, and the routines should function properly and may notify the user about deprecation of their use.

10.13.1 SHMEM_CACHE

Controls data cache utilities.

SYNOPSIS

deprecation start

C/C++:
void shmem_clear_cache_inv(void);

void shmem_set_cache_inv(void);

void shmem_clear_cache_line_inv(void *dest);

void shmem_set_cache_line_inv(void *dest);

void shmem_udcflush(void);

void shmem_udcflush_line(void *dest);

deprecation end

deprecation start
FORTRAN:
CALL SHMEM_CLEAR_CACHE_INV

CALL SHMEM_SET_CACHE_INV

CALL SHMEM_SET_CACHE_LINE_INV(dest)

CALL SHMEM_UDCFLUSH

CALL SHMEM_UDCFLUSH_LINE(dest)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

11. OPENSHMEM PROFILING INTERFACE 141

deprecation end

DESCRIPTION

Arguments

IN dest A data object that is local to the PE. dest can be of any noncharacter
type. When using Fortran, it can be of any kind.

API description

shmem_set_cache_inv enables automatic cache coherency mode.
shmem_set_cache_line_inv enables automatic cache coherency mode for the cache line associated with
the address of dest only.
shmem_clear_cache_inv disables automatic cache coherency mode previously enabled by
shmem_set_cache _inv or shmem_set_cache_line_inv.
shmem_udcflush makes the entire user data cache coherent.
shmem_udcflush_line makes coherent the cache line that corresponds with the address specified by dest.

Return Values
None.

Notes
These routines have been retained for improved backward compatibility with legacy architectures. They
are not required to be supported by implementing them as no-ops and where used, they may have no effect
on cache line states.

EXAMPLES

None.

11 OpenSHMEM Profiling Interface

The objective of the OpenSHMEM profiling interface is to ensure an easy and flexible usage model for profiling (and
other similar) tool developers to interface their codes into OpenSHMEM implementations on different platforms. Since
OpenSHMEM is a machine-independent standard with different implementations, it is unreasonable to expect that the
authors and developers of profiling tools for OpenSHMEM will have access to the source code that implements Open-
SHMEM on any particular machine. It is, therefore, necessary to provide a mechanism by which the implementors of
such tools can collect whatever performance information they wish without access to the underlying implementation.

The OpenSHMEM profiling interface places the following requirements on implementations.

1. An OpenSHMEM implementation must provide a mechanism through which all of the OpenSHMEM defined
functions may be accessible with a name shift. This requires an alternate entry point name, with the prefix
pshmem_ for each OpenSHMEM function. For OpenSHMEM inlined functions (e.g. macros), it is also required
that the pshmem_ version is supplied although it is not possible to replace the shmem_ version with a user-defined
version at link time.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

142 11. OPENSHMEM PROFILING INTERFACE

2. It must be ensured that the OpenSHMEM functions that are not replaced as above, may still be linked into an
executable image without causing name clashes.

3. Documentation of the implementation of different language bindings of the OpenSHMEM interface must in-
dicate if they are layered on top of each other. Using this documentation, developers can determine whether
they need to implement the profile interface for each binding or not. For example, it must be noted that the
OpenSHMEM C11 type-generic interfaces for different RMA and AMO operations cannot have any equivalent
pshmem_ interfaces because the C11 type-generic interfaces are implemented as macros.

4. In the case where the implementation of different API feature sets is implemented through a layered approach
using “wrapper” functions, the wrapper functions must be kept separate from the rest of the library. This require-
ment allows the developers to extract these functions from the original OpenSHMEM library and add them into
the profiling library without bringing along any other code.

5. A no-op routine, shmem_pcontrol, must be provided in the OpenSHMEM library.

6. It must be ensured that any OpenSHMEM types or constants that are needed by the pshmem_ interfaces are
defined in pshmem.h.

Provided that an OpenSHMEM implementation meets these requirements, it is possible for the implementor of
the profiling system to intercept the OpenSHMEM calls that are made by the user program. The information required
can be collected before and after calling the underlying OpenSHMEM implementation through the name shifted entry
points.

11.1 Control of Profiling

Any user code must be able to control the profiler dynamically during runtime. Generally, this capability is used for
the purposes of

• Enabling and disabling of profiling based on the current state of the execution and calculation,

• Flushing of the trace buffers at non-critical execution regions,

• Adding user events to a trace file.

These functionalities can be achieved through the usage of shmem_pcontrol.

11.1.1 SHMEM_PCONTROL

Allows the user to control profiling.

SYNOPSIS

C/C++:
void shmem_pcontrol(const int level, ...);

DESCRIPTION

Arguments

IN level The profiling level.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

11. OPENSHMEM PROFILING INTERFACE 143

API description

shmem_pcontrol sets the profiling level and any other library defined effects through additional arguments.
OpenSHMEM libraries make no use of this routine and simply return immediately to the user code.

Return Values
None.

Notes
Since OpenSHMEM has no control of the implementation of the profiling code, it is impossible to precisely
specify the semantics that will be provided by calls to shmem_pcontrol. This vagueness extends to the
number of arguments to the function and their datatypes. However, to provide some level of portability of
user codes to different profiling libraries, the following level values are recommended.

• level <= 0 Profiling is disabled.
• level == 1 Profiling is enabled at the default level of detail.
• level == 2 Profiling is enabled and profile buffers are flushed if available.
• level >= 2 Profiling is enabled with profile library defined effects and additional arguments.

The default state after shmem_init is recommended to have profiling enabled at the default level of detail
(level == 1). This allows users to link with a profiling library and to obtain profile output without
having to modify the user-level source code.

11.2 Example Implementations

11.2.1 Profiler

The following example illustrates how a profiler can measure the total and average time spent by the shmem_long_put
function in the profiling library that intercepts the OpenSHMEM function calls from the user application.

#include <stdio.h>
#include <sys/time.h>
#include <pshmem.h>

static double total_put_time = 0.0;
static double avg_put_time = 0.0;
static long put_count = 0;

static inline double get_wtime(void) {
double wtime = 0.0;
struct timeval tv;
gettimeofday(&tv, NULL);
wtime = tv.tv_sec;
wtime += (double)tv.tv_usec / 1.0e6;
return wtime;

}

void shmem_long_put(long *dest, const long *source, size_t nelems, int pe)
{

double t_start = get_wtime(); /* Start timer */
pshmem_long_put(dest, source, nelems, pe); /* Name shifted call to put */
total_put_time += get_wtime() - t_start; /* Calculate total time elapsed */
put_count += 1; /* Increment put counts */
avg_put_time = total_put_time / (double) put_count; /* Calculate average put latency */

return;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

144 11. OPENSHMEM PROFILING INTERFACE

11.2.2 OpenSHMEM Library

To implement the name-shift versions of the OpenSHMEM functions, there are various options available. The follow-
ing two examples present two such options that can be implemented in C on a Unix system. These two options are
dependent on whether the linker and compiler support weak symbols.

If the compiler and linker support weak external symbols, then only a single library is required. The following two
examples show how the name-shifted requirement can be achieved on such platforms.
Example 1
#pragma weak shmem_example = pshmem_example

void pshmem_example(/* appropriate arguments */)
{

/* function body */
}

The effect of the #pragma directive is to define the external symbol shmem_example as a weak definition that
aliases the pshmem_example function. This means that the linker will allow another definition of the symbol (e.g. the
profiling library may contain an alternate definition). The weak definition is used in the case where no other definition
for the same function exists.
Example 2
void pshmem_example(/* appropriate arguments */)
{

/* function body */
}

void shmem_example(/* appropriate arguments */) __attribute__ ((weak, alias("pshmem_example")));

In this example, the keyword __attribute__ is used to declare the shmem_example function as an alias for the
original function, pshmem_example.

In the absence of weak symbols, one possible solution would be to use the C macro preprocessor as shown in the
following example.

#ifdef BUILD_PSHMEM_INTERFACES
define SHFN(fn) p##fn
#else
define SHFN(fn) fn
#endif

Each of the user-defined functions in the profiling library would then be declared in the following manner.

void SHFN(shmem_example)(/* appropriate arguments */)
{

/* function body */
}

The same source file can then be compiled to produce both versions of the library, depending on the state of the
BUILD_PSHMEM_INTERFACES macro symbol.

11.3 Limitations

11.3.1 Multiple Counting

Since some functions in OpenSHMEM library may be implemented using more basic OpenSHMEM functions, it is
possible for these basic profiling functions to be called from within an OpenSHMEM function that was originally called
from a profiling routine. For example, OpenSHMEM collective operations can be implemented using basic point-to-
point operations. Thus, profiling such a collective operation may lead to counting a profiling function for a point-to-
point operation more than once after being called from the collective function. It is the developer’s responsibility to
ensure the profiling application does not count a function more than once if that effect is not intended. For a single-
threaded profiler, this can be achieved through a static variable counting the number of times a function has been

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

11. OPENSHMEM PROFILING INTERFACE 145

profiled. In a multi-threaded environment, additional synchronizations are needed to manage updates to this counter
and thus, it becomes more complex to accurately profile the OpenSHMEM functions.

11.3.2 Separate Build and Link

To build the profiling tool with both the default OpenSHMEM functions as well as the OpenSHMEM functions to be
intercepted, developers must build the multiple instances of the OpenSHMEM functions separately and link them to
provide all the definitions. This is necessary so that the developers of the profiling library need only to define those
OpenSHMEM functions that they wish to intercept; references to any other functions will be fulfilled by the default
OpenSHMEM library. The link step can be summarized as follows.

% cc ... -lmyprof -lpsma -lsma

Here, libmyprof.a contains the profiler functions that intercept the OpenSHMEM functions to be profiled,
libpsma.a contains the name-shifted OpenSHMEM function definitions, and libsma.a contains the default Open-
SHMEM function definitions.

11.3.3 C11 Type-Generic Interfaces

OpenSHMEM provides type-generic interfaces through C11 generic selection. These interfaces are defined as macros
and are mapped to C interface bindings. As a result, the C11 type-generic interfaces cannot be intercepted and name-
shifted pshmem_ routines are not provided for these bindings. Furthermore, because no two associations in a C11
_Generic selection expression can contain compatible types, the type name of the C operation that is invoked may not
be identical to the type name of the original call’s arguments (e.g. int32_t may map to int).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex A

Writing OpenSHMEM Programs

Incorporating OpenSHMEM into Programs

The following section describes how to write a “Hello World" OpenSHMEM program. To write a “Hello World"
OpenSHMEM program, the user must:

• Include the header file shmem.h for C or shmem.fh for Fortran.

• Add the initialization call shmem_init.

• Use OpenSHMEM calls to query the local PE number (shmem_my_pe) and the total number of PEs (shmem_n_pes).

• Add the finalization call shmem_finalize.

In OpenSHMEM, the order in which lines appear in the output is not deterministic because PEs execute asyn-
chronously in parallel.

Listing A.1: “Hello World” example program in C
1 #include <stdio.h>
2 #include <shmem.h> /* The OpenSHMEM header file */
3
4 int main (void)
5 {
6 shmem_init();
7 int me = shmem_my_pe();
8 int npes = shmem_n_pes();
9 printf("Hello from %d of %d\n", me, npes);

10 shmem_finalize();
11 return 0;
12 }

Listing A.2: Possible ordering of expected output with 4 PEs from the program in Listing A.1
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

146

DRAFT

ANNEX A. WRITING OPENSHMEM PROGRAMS 147

deprecation start
OpenSHMEM also provides a Fortran API. Listing A.3 shows a similar program written in Fortran.

Listing A.3: “Hello World” example program in Fortran
1 program hello
2
3 include "shmem.fh"
4 integer :: shmem_my_pe, shmem_n_pes
5
6 integer :: npes, me
7
8 call shmem_init ()
9 npes = shmem_n_pes ()

10 me = shmem_my_pe ()
11
12 write (*, 1000) me, npes
13
14 1000 format (’Hello from’, 1X, I4, 1X, ’of’, 1X, I4)
15
16 end program hello

Listing A.4: Possible ordering of expected output with 4 PEs from the program in Listing A.3
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

deprecation end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

148 ANNEX A. WRITING OPENSHMEM PROGRAMS

The example in Listing A.5 shows a more complex OpenSHMEM program that illustrates the use of symmetric
data objects. Note the declaration of the static short dest array and its use as the remote destination in shmem_put.

The static keyword makes the dest array symmetric on all PEs. Each PE is able to transfer data to a remote dest
array by simply specifying to an OpenSHMEM routine such as shmem_put the local address of the symmetric data
object that will receive the data. This local address resolution aids programmability because the address of the dest
need not be exchanged with the active side (PE 0) prior to the Remote Memory Access (RMA) routine.

Conversely, the declaration of the short source array is asymmetric (local only). The source object does not need
to be symmetric because Put handles the references to the source array only on the active (local) side.

Listing A.5: Example program with symmetric data objects
1 #include <stdio.h>
2 #include <shmem.h>
3
4 #define SIZE 16
5
6 int main(void)
7 {
8 short source[SIZE];
9 static short dest[SIZE];

10 static long lock = 0;
11 shmem_init();
12 int me = shmem_my_pe();
13 int npes = shmem_n_pes();
14 if (me == 0) {
15 /* initialize array */
16 for (int i = 0; i < SIZE; i++)
17 source[i] = i;
18 /* local, not symmetric */
19 /* static makes it symmetric */
20 /* put "size" words into dest on each PE */
21 for (int i = 1; i < npes; i++)
22 shmem_put(dest, source, SIZE, i);
23 }
24 shmem_barrier_all(); /* sync sender and receiver */
25 if (me != 0) {
26 shmem_set_lock(&lock);
27 printf("dest on PE %d is \t", me);
28 for (int i = 0; i < SIZE; i++)
29 printf("%hd \t", dest[i]);
30 printf("\n");
31 shmem_clear_lock(&lock);
32 }
33 shmem_finalize();
34 return 0;
35 }

Listing A.6: Possible ordering of expected output with 4 PEs from the program in Listing A.5
1 dest on PE 1 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 dest on PE 2 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 dest on PE 3 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex B

Compiling and Running Programs

The OpenSHMEM Specification does not specify how OpenSHMEM programs are compiled, linked, and run. This
section shows some examples of how wrapper programs are utilized in the OpenSHMEM Reference Implementation
to compile and launch programs.

1 Compilation

Programs written in C

The OpenSHMEM Reference Implementation provides a wrapper program, named oshcc, to aid in the compilation of
C programs. The wrapper may be called as follows:
oshcc <compiler options> -o myprogram myprogram.c

Where the 〈compiler options〉 are options understood by the underlying C compiler called by oshcc.

Programs written in C++

The OpenSHMEM Reference Implementation provides a wrapper program, named oshc++, to aid in the compilation
of C++ programs. The wrapper may be called as follows:
oshc++ <compiler options> -o myprogram myprogram.cpp

Where the 〈compiler options〉 are options understood by the underlying C++ compiler called by oshc++.

Programs written in Fortran

deprecation start
The OpenSHMEM Reference Implementation provides a wrapper program, named oshfort, to aid in the compilation
of Fortran programs. The wrapper may be called as follows:
oshfort <compiler options> -o myprogram myprogram.f

Where the 〈compiler options〉 are options understood by the underlying Fortran compiler called by oshfort.
deprecation end

2 Running Programs

The OpenSHMEM Reference Implementation provides a wrapper program, named oshrun, to launch OpenSHMEM
programs. The wrapper may be called as follows:

149

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

150 ANNEX B. COMPILING AND RUNNING PROGRAMS

oshrun <runner options> -np <#> <program> <program arguments>

The arguments for oshrun are:
〈runner options〉 Options passed to the underlying launcher.
-np 〈#〉 The number of PEs to be used in the execution.
〈program〉 The program executable to be launched.
〈program arguments〉 Flags and other parameters to pass to the program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex C

Undefined Behavior in OpenSHMEM

The OpenSHMEM Specification formalizes the expected behavior of its library routines. In cases where routines are
improperly used or the input is not in accordance with the Specification, the behavior is undefined.

Inappropriate Usage Undefined Behavior
Uninitialized library If the OpenSHMEM library is not initialized, calls to non-initializing

OpenSHMEM routines have undefined behavior. For example, an
implementation may try to continue or may abort immediately upon an
OpenSHMEM call into the uninitialized library.

Multiple calls to initialization
routines

In an OpenSHMEM program where the initialization routines
shmem_init or shmem_init_thread have already been called, any
subsequent calls to these initialization routines result in undefined
behavior.

Accessing non-existent PEs If a communications routine accesses a non-existent PE, then the
OpenSHMEM library may handle this situation in an
implementation-defined way. For example, the library may report an
error message saying that the PE accessed is outside the range of
accessible PEs, or may exit without a warning.

Use of non-symmetric variables Some routines require remotely accessible variables to perform their
function. For example, a Put to a non-symmetric variable may be
trapped where possible and the library may abort the program.
Another implementation may choose to continue execution with or
without a warning.

Non-symmetric allocation of
symmetric memory

The symmetric memory management routines are collectives. For
example, all PEs in the program must call shmem_malloc with the
same size argument. Program behavior after a mismatched
shmem_malloc call is undefined.

Use of null pointers with non-zero
len specified

In any OpenSHMEM routine that takes a pointer and len describing
the number of elements in that pointer, a null pointer may not be given
unless the corresponding len is also specified as zero. Otherwise, the
resulting behavior is undefined. The following cases summarize this
behavior:

• len is 0, pointer is null: supported.

• len is not 0, pointer is null: undefined behavior.

• len is 0, pointer is non-null: supported.

• len is not 0, pointer is non-null: supported.

151

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex D

History of OpenSHMEM

SHMEM has a long history as a parallel-programming model and has been extensively used on a number of products
since 1993, including the Cray T3D, Cray X1E, Cray XT3 and XT4, Silicon Graphics International (SGI) Origin, SGI
Altix, Quadrics-based clusters, and InfiniBand-based clusters.

• SHMEM Timeline

– Cray SHMEM

* SHMEM first introduced by Cray Research, Inc. in 1993 for Cray T3D

* Cray was acquired by SGI in 1996

* Cray was acquired by Tera in 2000 (MTA)

* Platforms: Cray T3D, T3E, C90, J90, SV1, SV2, X1, X2, XE, XMT, XT

– SGI SHMEM

* SGI acquired Cray Research, Inc. and SHMEM was integrated into SGI’s Message Passing Toolkit
(MPT)

* SGI currently owns the rights to SHMEM and OpenSHMEM

* Platforms: Origin, Altix 4700, Altix XE, ICE, UV

* SGI was acquired by Rackable Systems in 2009

* SGI and OSSS signed a SHMEM trademark licensing agreement in 2010

* HPE acquired SGI in 2016

A listing of OpenSHMEM implementations can be found on http://www.openshmem.org/.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

152

http://www.openshmem.org/

DRAFT
Annex E

OpenSHMEM Specification and Deprecated
API

1 Overview

For the OpenSHMEM Specification, deprecation is the process of identifying API that is supported but no longer
recommended for use by users. The deprecated API must be supported until clearly indicated as otherwise by the
Specification. This chapter records the API or functionality that have been deprecated, the version of the OpenSHMEM
Specification that effected the deprecation, and the most recent version of the OpenSHMEM Specification in which the
feature was supported before removal.

Deprecated API Deprecated Since Last Version Supported Replaced By
Header Directory: mpp 1.1 Current (none)
C/C++: start_pes 1.2 Current shmem_init
Fortran: START_PES 1.2 Current SHMEM_INIT
Implicit finalization 1.2 Current shmem_finalize
C/C++: _my_pe 1.2 Current shmem_my_pe
C/C++: _num_pes 1.2 Current shmem_n_pes
Fortran: MY_PE 1.2 Current SHMEM_MY_PE
Fortran: NUM_PES 1.2 Current SHMEM_N_PES
C/C++: shmalloc 1.2 Current shmem_malloc
C/C++: shfree 1.2 Current shmem_free
C/C++: shrealloc 1.2 Current shmem_realloc
C/C++: shmemalign 1.2 Current shmem_align
Fortran: SHMEM_PUT 1.2 Current SHMEM_PUT8 or SHMEM_PUT64
C/C++: shmem_clear_cache_inv
Fortran: SHMEM_CLEAR_CACHE_INV 1.3 Current (none)

C/C++: shmem_clear_cache_line_inv 1.3 Current (none)
C/C++: shmem_set_cache_inv
Fortran: SHMEM_SET_CACHE_INV 1.3 Current (none)

C/C++: shmem_set_cache_line_inv
Fortran: SHMEM_SET_CACHE_LINE_INV 1.3 Current (none)

C/C++: shmem_udcflush
Fortran: SHMEM_UDCFLUSH 1.3 Current (none)

C/C++: shmem_udcflush_line
Fortran: SHMEM_UDCFLUSH_LINE 1.3 Current (none)

_SHMEM_SYNC_VALUE 1.3 Current SHMEM_SYNC_VALUE
_SHMEM_BARRIER_SYNC_SIZE 1.3 Current SHMEM_BARRIER_SYNC_SIZE
_SHMEM_BCAST_SYNC_SIZE 1.3 Current SHMEM_BCAST_SYNC_SIZE
_SHMEM_COLLECT_SYNC_SIZE 1.3 Current SHMEM_COLLECT_SYNC_SIZE
_SHMEM_REDUCE_SYNC_SIZE 1.3 Current SHMEM_REDUCE_SYNC_SIZE
_SHMEM_REDUCE_MIN_WRKDATA_SIZE 1.3 Current SHMEM_REDUCE_MIN_WRKDATA_SIZE
_SHMEM_MAJOR_VERSION 1.3 Current SHMEM_MAJOR_VERSION
_SHMEM_MINOR_VERSION 1.3 Current SHMEM_MINOR_VERSION
_SHMEM_MAX_NAME_LEN 1.3 Current SHMEM_MAX_NAME_LEN
_SHMEM_VENDOR_STRING 1.3 Current SHMEM_VENDOR_STRING
_SHMEM_CMP_EQ 1.3 Current SHMEM_CMP_EQ
_SHMEM_CMP_NE 1.3 Current SHMEM_CMP_NE
_SHMEM_CMP_LT 1.3 Current SHMEM_CMP_LT
_SHMEM_CMP_LE 1.3 Current SHMEM_CMP_LE

153

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

154 ANNEX E. OPENSHMEM SPECIFICATION AND DEPRECATED API

Deprecated API Deprecated Since Last Version Supported Replaced By
_SHMEM_CMP_GT 1.3 Current SHMEM_CMP_GT
_SHMEM_CMP_GE 1.3 Current SHMEM_CMP_GE
SMA_VERSION 1.4 Current SHMEM_VERSION
SMA_INFO 1.4 Current SHMEM_INFO
SMA_SYMMETRIC_SIZE 1.4 Current SHMEM_SYMMETRIC_SIZE
SMA_DEBUG 1.4 Current SHMEM_DEBUG
C/C++: shmem_wait
C/C++: shmem_<TYPENAME>_wait 1.4 Current See Notes for shmem_wait_until

C/C++: shmem_wait_until 1.4 Current C11: shmem_wait_until, C/C++: shmem_long_wait_until
C11: shmem_fetch
C/C++: shmem_<TYPENAME>_fetch 1.4 Current shmem_atomic_fetch

C11: shmem_set
C/C++: shmem_<TYPENAME>_set 1.4 Current shmem_atomic_set

C11: shmem_cswap
C/C++: shmem_<TYPENAME>_cswap 1.4 Current shmem_atomic_compare_swap

C11: shmem_swap
C/C++: shmem_<TYPENAME>_swap 1.4 Current shmem_atomic_swap

C11: shmem_finc
C/C++: shmem_<TYPENAME>_finc 1.4 Current shmem_atomic_fetch_inc

C11: shmem_inc
C/C++: shmem_<TYPENAME>_inc 1.4 Current shmem_atomic_inc

C11: shmem_fadd
C/C++: shmem_<TYPENAME>_fadd 1.4 Current shmem_atomic_fetch_add

C11: shmem_add
C/C++: shmem_<TYPENAME>_add 1.4 Current shmem_atomic_add

Entire Fortran API 1.4 Current (none)
All active-set-based collective routines 1.5 Current Teams-based collective routines
C/C++: shmem_barrier 1.5 Current shmem_quiet; shmem_team_sync
C/C++: shmem_barrier_all 1.5 Current shmem_quiet; shmem_team_sync(SHMEM_TEAM_WORLD)
C/C++: shmem_sync_all 1.5 Current shmem_team_sync(SHMEM_TEAM_WORLD)

2 Deprecation Rationale

2.1 Header Directory: mpp

In addition to the default system header paths, OpenSHMEM implementations must provide all OpenSHMEM-specified
header files from the mpp header directory such that these headers can be referenced in C/C++ as

#include <mpp/shmem.h>
#include <mpp/shmemx.h>

and in Fortran as

include ’mpp/shmem.fh’
include ’mpp/shmemx.fh’

for backwards compatibility with SGI SHMEM.

2.2 C/C++: start_pes

The C/C++ routine start_pes includes an unnecessary initialization argument that is remnant of historical SHMEM
implementations and no longer reflects the requirements of modern OpenSHMEM implementations. Furthermore, the
naming of start_pes does not include the standardized shmem_ naming prefix. This routine has been deprecated and
OpenSHMEM users are encouraged to use shmem_init instead.

2.3 Implicit Finalization

Implicit finalization was deprecated and replaced with explicit finalization using the shmem_finalize routine. Explicit
finalization improves portability and also improves interoperability with profiling and debugging tools.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX E. OPENSHMEM SPECIFICATION AND DEPRECATED API 155

2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign

The C/C++ routines _my_pe, _num_pes, shmalloc, shfree, shrealloc, and shmemalign were deprecated in order to
normalize the OpenSHMEM API to use shmem_ as the standard prefix for all routines.

2.5 Fortran: START_PES, MY_PE, NUM_PES

The Fortran routines START_PES, MY_PE, and NUM_PES were deprecated in order to minimize the API differences
from the deprecation of C/C++ routines start_pes, _my_pe, and _num_pes.

2.6 Fortran: SHMEM_PUT

The Fortran routine SHMEM_PUT is defined only for the Fortran API and is semantically identical to Fortran routines
SHMEM_PUT8 and SHMEM_PUT64. Since SHMEM_PUT8 and SHMEM_PUT64 have defined equivalents in the
C/C++ interface, SHMEM_PUT is ambiguous and has been deprecated.

2.7 SHMEM_CACHE

The SHMEM_CACHE API

C/C++: Fortran:
shmem_clear_cache_inv SHMEM_CLEAR_CACHE_INV
shmem_set_cache_inv SHMEM_SET_CACHE_INV
shmem_set_cache_line_inv SHMEM_SET_CACHE_LINE_INV
shmem_udcflush SHMEM_UDCFLUSH
shmem_udcflush_line SHMEM_UDCFLUSH_LINE
shmem_clear_cache_line_inv

was originally implemented for systems with cache-management instructions. This API has largely gone unused on
cache-coherent system architectures. SHMEM_CACHE has been deprecated.

2.8 _SHMEM_* Library Constants

The library constants

_SHMEM_SYNC_VALUE _SHMEM_MAX_NAME_LEN
_SHMEM_BARRIER_SYNC_SIZE _SHMEM_VENDOR_STRING
_SHMEM_BCAST_SYNC_SIZE _SHMEM_CMP_EQ
_SHMEM_COLLECT_SYNC_SIZE _SHMEM_CMP_NE
_SHMEM_REDUCE_SYNC_SIZE _SHMEM_CMP_LT
_SHMEM_REDUCE_MIN_WRKDATA_SIZE _SHMEM_CMP_LE
_SHMEM_MAJOR_VERSION _SHMEM_CMP_GT
_SHMEM_MINOR_VERSION _SHMEM_CMP_GE

do not adhere to the C standard’s reserved identifiers and the C++ standard’s reserved names. These constants were
deprecated and replaced with corresponding constants of prefix SHMEM_ that adhere to C/C++ and Fortran naming
conventions.

2.9 SMA_* Environment Variables

The environment variables SMA_VERSION, SMA_INFO, SMA_SYMMETRIC_SIZE, and SMA_DEBUG were depre-
cated in order to normalize the OpenSHMEM API to use SHMEM_ as the standard prefix for all environment variables.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

156 ANNEX E. OPENSHMEM SPECIFICATION AND DEPRECATED API

2.10 C/C++: shmem_wait

The C/C++ interface for shmem_wait and shmem_<TYPENAME>_wait was identified as unintuitive with respect
to the comparison operation it performed. As shmem_wait can be trivially replaced by shmem_wait_until where cmp
is SHMEM_CMP_NE, the shmem_wait interface was deprecated in favor of shmem_wait_until, which makes the
comparison operation explicit and better communicates the developer’s intent.

2.11 C/C++: shmem_wait_until

The long-typed C/C++ routine shmem_wait_until was deprecated in favor of the C11 type-generic interface of the
same name or the explicitly typed C/C++ routine shmem_long_wait_until.

2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc,
shmem_inc, shmem_fadd, shmem_add

The C11 and C/C++ interfaces for

C11: C/C++:
shmem_fetch shmem_<TYPENAME>_fetch
shmem_set shmem_<TYPENAME>_set
shmem_cswap shmem_<TYPENAME>_cswap
shmem_swap shmem_<TYPENAME>_swap
shmem_finc shmem_<TYPENAME>_finc
shmem_inc shmem_<TYPENAME>_inc
shmem_fadd shmem_<TYPENAME>_fadd
shmem_add shmem_<TYPENAME>_add

were deprecated and replaced with similarly named interfaces within the shmem_atomic_* namespace in order to more
clearly identify these calls as performing atomic operations. In addition, the abbreviated names “cswap”, “finc”, and
“fadd” were expanded for clarity to “compare_swap”, “fetch_inc”, and “fetch_add”.

2.13 Fortran API

The entire OpenSHMEM Fortran API was deprecated because of a general lack of use and a lack of conformance with
legacy Fortran standards. In lieu of an extensive update of the Fortran API, Fortran users are encouraged to leverage the
OpenSHMEM Specification’s C API through the Fortran–C interoperability initially standardized by Fortran 20031.

2.14 Active-set-based collective routines

With the addition of OpenSHMEM teams, the previous methods for performing collective operations has been super-
seded by a more readable, flexible method for organizing and communicating between groups of PEs. All collective
routines which previously indicated subgroups of PEs with a list of parameters to describe the subgroup composition
should be phased out in favor of using collective operations with a team parameter.

When moving from active set routines to teams based routines, the fixed-size versions of the routines, e.g. shmem_broadcast32,
were not carried forward. Instead, all teams based collective routines use standard C types with the option to use generic
C11 functions for more portable and maintainable implementations.

2.15 C/C++: shmem_barrier

Each OpenSHMEM team might be associated with some number of communication contexts. The shmem_barrier
functions imply that the default context is quiesced after synchronizing some set of PEs. Since teams may have some

1Formally, Fortran 2003 is known as ISO/IEC 1539-1:2004(E).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX E. OPENSHMEM SPECIFICATION AND DEPRECATED API 157

number of contexts associated with the team, it becomes less clear which context would be the “default” context for
that particular team. Rather than continue to support shmem_barrier for active-sets or teams, programs should use a
call to shmem_quiet followed by a call to shmem_sync in order to explicitly indicate which context to quiesce.

2.16 C/C++: shmem_barrier_all, shmem_sync_all

With the addition of OpenSHMEM teams combined, the notion of all PEs has been encapsulated as SHMEM_TEAM_WORLD.
The previous method of specifying active sets to shmem_barrier and shmem_sync was verbose. So, shorthand versions
of these functions were helpful both in readability and ability to improve performance by not requiring tests of active
set parameters to determine that the routine involved all PEs. With teams, becomes readable in a program to simply
call a barrier or sync on SHMEM_TEAM_WORLD. Implementations need only test one constant to determine that the
operation involves all PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex F

Changes to this Document

1 Version 1.5

Major changes in OpenSHMEM 1.5 include . . .
The following list describes the specific changes in OpenSHMEM 1.5:

• Added support for multipliers in SHMEM_SYMMETRIC_SIZE environment variables.
See Section 8.

• Added a new multiple-element point-to-point synchronization API with the functions: shmem_wait_until_all,
shmem_wait_until_any, shmem_wait_until_some, shmem_test_all, shmem_test_any, and shmem_test_some.
See Sections 10.10.2, 10.10.3, 10.10.4, 10.10.6, 10.10.7, and 10.10.8.

• Added OpenSHMEM profiling interface.
See Section 11.

• Specified the validity of communication contexts, added the constant SHMEM_CTX_INVALID, and clarified the
behavior of shmem_ctx_* routines on invalid contexts.
See Section 10.5.

• Clarified PE active set requirements.
See Section 10.9.

• Clarified that when the size argument is zero, symmetric heap allocation routines perform no action and return a
null pointer; that symmetric heap management routines that perform no action do not perform a barrier; and that
the alignment argument to shmem_align must be power of two multiple of sizeof(void*).
See Section 10.3.1.

• Clarified that the OpenSHMEM lock API provides a non-reentrant mutex and that shmem_clear_lock performs
a quiet operation on the default context.
See Section 10.12.1

• Clarified the atomicity guarantees of the OpenSHMEM memory model.
See Section 3.1.

2 Version 1.4

Major changes in OpenSHMEM 1.4 include multithreading support, contexts for communication management, shmem_sync,
shmem_calloc, expanded type support, a new namespace for atomic operations, atomic bitwise operations, shmem_test
for nonblocking point-to-point synchronization, and C11 type-generic interfaces for point-to-point synchronization.

The following list describes the specific changes in OpenSHMEM 1.4:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

158

DRAFT

ANNEX F. CHANGES TO THIS DOCUMENT 159

• New communication management API, including shmem_ctx_create; shmem_ctx_destroy; and additional RMA,
AMO, and memory ordering routines that accept shmem_ctx_t arguments.
See Section 10.5.

• New API shmem_sync_all and shmem_sync to provide PE synchronization without completing pending com-
munication operations.
See Sections 10.9.4 and 10.9.3.

• Clarified that the OpenSHMEM extensions header files are required, even when empty.
See Section 5.

• Clarified that the SHMEM_GET64 and SHMEM_GET64_NBI routines are included in the Fortran language
bindings.
See Sections 10.6.4 and 10.7.2.

• Clarified that shmem_init must be matched with a call to shmem_finalize.
See Sections 10.1.1 and 10.1.4.

• Added the SHMEM_SYNC_SIZE constant.
See Section 6.

• Added type-generic interfaces for shmem_wait_until.
See Section 10.10.1.

• Removed the volatile qualifiers from the ivar arguments to shmem_wait routines and the lock arguments in the
lock API. Rationale: Volatile qualifiers were added to several API routines in OpenSHMEM 1.3; however, they
were later found to be unnecessary.
See Sections 10.10.1 and 10.12.1.

• Deprecated the SMA_* environment variables and added equivalent SHMEM_* environment variables.
See Section 8.

• Added the C11 _Noreturn function specifier to shmem_global_exit.
See Section 10.1.5.

• Clarified ordering semantics of memory ordering, point-to-point synchronization, and collective synchronization
routines.

• Clarified deprecation overview and added deprecation rationale in Annex F.
See Section E.

• Deprecated header directory mpp.
See Section E.

• Deprecated the shmem_wait functions and the long-typed C/C++ shmem_wait_until function.
See Section 10.10.

• Added the shmem_test functions.
See Section 10.10.

• Added the shmem_calloc function.
See Section 10.3.2.

• Introduced the thread safe semantics that define the interaction between OpenSHMEM routines and user threads.
See Section 10.2.

• Added the new routine shmem_init_thread to initialize the OpenSHMEM library with one of the defined thread
levels.
See Section 10.2.1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

160 ANNEX F. CHANGES TO THIS DOCUMENT

• Added the new routine shmem_query_thread to query the thread level provided by the OpenSHMEM imple-
mentation.
See Section 10.2.2.

• Clarified the semantics of shmem_quiet for a multithreaded OpenSHMEM PE.
See Section 10.11.2

• Revised the description of shmem_barrier_all for a multithreaded OpenSHMEM PE.
See Section 10.9.1

• Revised the description of shmem_wait for a multithreaded OpenSHMEM PE.
See Section 10.10.1

• Clarified description for SHMEM_VENDOR_STRING.
See Section 6.

• Clarified description for SHMEM_MAX_NAME_LEN.
See Section 6.

• Clarified API description for shmem_info_get_name.
See Section 10.1.10.

• Expanded the type support for RMA, AMO, and point-to-point synchronization operations.
See Tables 4, 5, 6, and 9

• Renamed AMO operations to use shmem_atomic_* prefix and deprecated old AMO routines.
See Section 10.8.

• Added fetching and non-fetching bitwise AND, OR, and XOR atomic operations.
See Section 10.8.

• Deprecated the entire Fortran API.

• Replaced the complex macro in complex-typed reductions with the C99 (and later) type specifier _Complex to
remove an implicit dependence on complex.h.
See Section 10.9.7.

• Clarified that complex-typed reductions in C are optionally supported.
See Section 10.9.7.

3 Version 1.3

Major changes in OpenSHMEM 1.3 include the addition of nonblocking RMA operations, atomic Put and Get opera-
tions, all-to-all collectives, and C11 type-generic interfaces for RMA and AMO operations.

The following list describes the specific changes in OpenSHMEM 1.3:

• Clarified implementation of PEs as threads.

• Added const to every read-only pointer argument.

• Clarified definition of Fence.
See Section 2.

• Clarified implementation of symmetric memory allocation.
See Section 3.

• Restricted atomic operation guarantees to other atomic operations with the same datatype.
See Section 3.1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX F. CHANGES TO THIS DOCUMENT 161

• Deprecation of all constants that start with _SHMEM_*.
See Section 6.

• Added a type-generic interface to OpenSHMEM RMA and AMO operations based on C11 Generics.
See Sections 10.6, 10.7 and 10.8.

• New nonblocking variants of remote memory access, SHMEM_PUT_NBI and SHMEM_GET_NBI.
See Sections 10.7.1 and 10.7.2.

• New atomic elemental read and write operations, SHMEM_FETCH and SHMEM_SET.
See Sections 10.8.1 and 10.8.2

• New alltoall data exchange operations, SHMEM_ALLTOALL and SHMEM_ALLTOALLS.
See Sections 10.9.8 and 10.9.9.

• Added volatile to remotely accessible pointer argument in SHMEM_WAIT and SHMEM_LOCK.
See Sections 10.10.1 and 10.12.1.

• Deprecation of SHMEM_CACHE.
See Section 10.13.1.

4 Version 1.2

Major changes in OpenSHMEM 1.2 include a new initialization routine (shmem_init), improvements to the execu-
tion model with an explicit library-finalization routine (shmem_finalize), an early-exit routine (shmem_global_exit),
namespace standardization, and clarifications to several API descriptions.

The following list describes the specific changes in OpenSHMEM 1.2:

• Added specification of pSync initialization for all routines that use it.

• Replaced all placeholder variable names target with dest to avoid confusion with Fortran’s target keyword.

• New Execution Model for exiting/finishing OpenSHMEM programs.
See Section 4.

• New library constants to support API that query version and name information.
See Section 6.

• New API shmem_init to provide mechanism to start an OpenSHMEM program and replace deprecated start_pes.
See Section 10.1.1.

• Deprecation of _my_pe and _num_pes routines.
See Sections 10.1.2 and 10.1.3.

• New API shmem_finalize to provide collective mechanism to cleanly exit an OpenSHMEM program and release
resources.
See Section 10.1.4.

• New API shmem_global_exit to provide mechanism to exit an OpenSHMEM program.
See Section 10.1.5.

• Clarification related to the address of the referenced object in shmem_ptr.
See Section 10.1.8.

• New API to query the version and name information.
See Section 10.1.9 and 10.1.10.

• OpenSHMEM library API normalization. All C symmetric memory management API begins with shmem_.
See Section 10.3.1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

162 ANNEX F. CHANGES TO THIS DOCUMENT

• Notes and clarifications added to shmem_malloc.
See Section 10.3.1.

• Deprecation of Fortran API routine SHMEM_PUT.
See Section 10.6.1.

• Clarification related to shmem_wait.
See Section 10.10.1.

• Undefined behavior for null pointers without zero counts added.
See Annex C

• Addition of new Annex for clearly specifying deprecated API and its support across versions of the Open-
SHMEM Specification.
See Annex E.

5 Version 1.1

Major changes from OpenSHMEM 1.0 to OpenSHMEM 1.1 include the introduction of the shmemx.h header file for
non-standard API extensions, clarifications to completion semantics and API descriptions in agreement with the SGI
SHMEM specification, and general readabilty and usability improvements to the document structure.

The following list describes the specific changes in OpenSHMEM 1.1:

• Clarifications of the completion semantics of memory synchronization interfaces.
See Section 10.11.

• Clarification of the completion semantics of memory load and store operations in context of shmem_barrier_all
and shmem_barrier routines.
See Section 10.9.1 and 10.9.2.

• Clarification of the completion and ordering semantics of shmem_quiet and shmem_fence.
See Section 10.11.2 and 10.11.1.

• Clarifications of the completion semantics of RMA and AMO routines.
See Sections 10.6 and 10.8

• Clarifications of the memory model and the memory alignment requirements for symmetric data objects.
See Section 3.

• Clarification of the execution model and the definition of a PE.
See Section 4

• Clarifications of the semantics of shmem_pe_accessible and shmem_addr_accessible.
See Section 10.1.6 and 10.1.7.

• Added an annex on interoperability with MPI.
See Annex D.

• Added examples to the different interfaces.

• Clarification of the naming conventions for constant in C and Fortran.
See Section 6 and 10.10.1.

• Added API calls: shmem_char_p, shmem_char_g.
See Sections 10.6.2 and 10.6.5.

• Removed API calls: shmem_char_put, shmem_char_get.
See Sections 10.6.1 and 10.6.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX F. CHANGES TO THIS DOCUMENT 163

• The usage of ptrdiff_t, size_t, and int in the interface signature was made consistent with the description.
See Sections 10.9, 10.6.3, and 10.6.6.

• Revised shmem_barrier example.
See Section 10.9.2.

• Clarification of the initial value of pSync work arrays for shmem_barrier.
See Section 10.9.2.

• Clarification of the expected behavior when multiple start_pes calls are encountered.
See Section 10.1.11.

• Corrected the definition of atomic increment operation.
See Section 10.8.6.

• Clarification of the size of the symmetric heap and when it is set.
See Section 10.3.1.

• Clarification of the integer and real sizes for Fortran API.
See Sections 10.8.8, 10.8.3, 10.8.4, 10.8.5, 10.8.6, and 10.8.7.

• Clarification of the expected behavior on program exit.
See Section 4, Execution Model.

• More detailed description for the progress of OpenSHMEM operations provided.
See Section 4.1.

• Clarification of naming convention for non-standard interfaces and their inclusion in shmemx.h.
See Section 5.

• Various fixes to OpenSHMEM code examples across the Specification to include appropriate header files.

• Removing requirement that implementations should detect size mismatch and return error information for shmal-
loc and ensuring consistent language.
See Sections 10.3.1 and Annex C.

• Fortran programming fixes for examples.
See Sections 10.9.7 and 10.10.1.

• Clarifications of the reuse pSync and pWork across collectives.
See Sections 10.9, 10.9.5, 10.9.6 and 10.9.7.

• Name changes for UV and ICE for SGI systems.
See Annex D.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Index

_SHMEM_BARRIER_SYNC_SIZE, 9, 153
_SHMEM_BCAST_SYNC_SIZE, 8, 153
_SHMEM_CMP_EQ, 11, 153
_SHMEM_CMP_GE, 12, 154
_SHMEM_CMP_GT, 12, 154
_SHMEM_CMP_LE, 12, 153
_SHMEM_CMP_LT, 11, 153
_SHMEM_CMP_NE, 11, 153
_SHMEM_COLLECT_SYNC_SIZE, 9, 153
_SHMEM_MAJOR_VERSION, 10, 153
_SHMEM_MAX_NAME_LEN, 10, 153
_SHMEM_MINOR_VERSION, 10, 153
_SHMEM_REDUCE_MIN_WRKDATA_SIZE, 10, 153
_SHMEM_REDUCE_SYNC_SIZE, 8, 153
_SHMEM_SYNC_VALUE, 8, 153
_SHMEM_VENDOR_STRING, 11, 153
_my_pe, 153
_num_pes, 153

Bitwise AMO Types and Names, 72

Constants, 7

Deprecated API, 153

Environment Variables, 13
Extended AMO Types and Names, 71

Handles, 12

Library Constants, 7
Library Handles, 12

MY_PE, 153

NUM_PES, 153

Point-to-Point Comparison Constants, 118
Point-to-Point Synchronization Types and Names, 118

Reduction Types, Names and Supporting Operations, 104

shfree, 153
shmalloc, 153
shmem_<TYPENAME>_add, 83, 154
shmem_<TYPENAME>_alltoall, 112
shmem_<TYPENAME>_alltoalls, 115

shmem_<TYPENAME>_and_reduce, 104
shmem_<TYPENAME>_and_to_all, 104
shmem_<TYPENAME>_atomic_add, 83
shmem_<TYPENAME>_atomic_and, 85
shmem_<TYPENAME>_atomic_compare_swap, 74
shmem_<TYPENAME>_atomic_fetch, 71
shmem_<TYPENAME>_atomic_fetch_add, 81
shmem_<TYPENAME>_atomic_fetch_and, 84
shmem_<TYPENAME>_atomic_fetch_inc, 78
shmem_<TYPENAME>_atomic_fetch_or, 86
shmem_<TYPENAME>_atomic_fetch_xor, 88
shmem_<TYPENAME>_atomic_inc, 79
shmem_<TYPENAME>_atomic_or, 87
shmem_<TYPENAME>_atomic_set, 73
shmem_<TYPENAME>_atomic_swap, 76
shmem_<TYPENAME>_atomic_xor, 88
shmem_<TYPENAME>_broadcast, 98
shmem_<TYPENAME>_collect, 101
shmem_<TYPENAME>_cswap, 74, 154
shmem_<TYPENAME>_fadd, 81, 154
shmem_<TYPENAME>_fcollect, 101
shmem_<TYPENAME>_fetch, 72, 154
shmem_<TYPENAME>_finc, 78, 154
shmem_<TYPENAME>_g, 63
shmem_<TYPENAME>_get, 61
shmem_<TYPENAME>_get_nbi, 68
shmem_<TYPENAME>_iget, 64
shmem_<TYPENAME>_inc, 80, 154
shmem_<TYPENAME>_iput, 59
shmem_<TYPENAME>_max_reduce, 106
shmem_<TYPENAME>_max_to_all, 106
shmem_<TYPENAME>_min_reduce, 106
shmem_<TYPENAME>_min_to_all, 106
shmem_<TYPENAME>_or_reduce, 105
shmem_<TYPENAME>_or_to_all, 105
shmem_<TYPENAME>_p, 58
shmem_<TYPENAME>_prod_reduce, 108
shmem_<TYPENAME>_prod_to_all, 108
shmem_<TYPENAME>_put, 55
shmem_<TYPENAME>_put_nbi, 66
shmem_<TYPENAME>_set, 73, 154
shmem_<TYPENAME>_sum_reduce, 107
shmem_<TYPENAME>_sum_to_all, 107
shmem_<TYPENAME>_swap, 76, 154
shmem_<TYPENAME>_test, 126

164

DRAFT

INDEX 165

shmem_<TYPENAME>_test_all, 128
shmem_<TYPENAME>_test_any, 129
shmem_<TYPENAME>_test_some, 130
shmem_<TYPENAME>_wait, 119, 154
shmem_<TYPENAME>_wait_until, 119
shmem_<TYPENAME>_wait_until_all, 121
shmem_<TYPENAME>_wait_until_any, 122
shmem_<TYPENAME>_wait_until_some, 124
shmem_<TYPENAME>_xor_reduce, 105
shmem_<TYPENAME>_xor_to_all, 105
shmem_add, 83, 154
SHMEM_ADDR_ACCESSIBLE, 21
shmem_addr_accessible, 21
shmem_align, 29
shmem_alltoall, 112
SHMEM_ALLTOALL32, 112
shmem_alltoall32, 112
SHMEM_ALLTOALL64, 112
shmem_alltoall64, 112
SHMEM_ALLTOALL_SYNC_SIZE, 9
shmem_alltoallmem, 112
shmem_alltoalls, 115
SHMEM_ALLTOALLS32, 115
shmem_alltoalls32, 115
SHMEM_ALLTOALLS64, 115
shmem_alltoalls64, 115
SHMEM_ALLTOALLS_SYNC_SIZE, 9
shmem_alltoallsmem, 115
shmem_and_reduce, 104
shmem_atomic_add, 83
shmem_atomic_and, 85
shmem_atomic_compare_swap, 74
shmem_atomic_fetch, 71
shmem_atomic_fetch_add, 81
shmem_atomic_fetch_and, 84
shmem_atomic_fetch_inc, 78
shmem_atomic_fetch_or, 86
shmem_atomic_fetch_xor, 88
shmem_atomic_inc, 79
shmem_atomic_or, 87
shmem_atomic_set, 73
shmem_atomic_swap, 76
shmem_atomic_xor, 88
SHMEM_BARRIER, 93
shmem_barrier, 92, 154
SHMEM_BARRIER_ALL, 91
shmem_barrier_all, 91, 154
SHMEM_BARRIER_SYNC_SIZE, 9
SHMEM_BCAST_SYNC_SIZE, 8
shmem_broadcast, 97
SHMEM_BROADCAST32, 98
shmem_broadcast32, 98
SHMEM_BROADCAST4, 98
SHMEM_BROADCAST64, 98

shmem_broadcast64, 98
SHMEM_BROADCAST8, 98
shmem_broadcastmem, 98
shmem_calloc, 30
SHMEM_CHARACTER_GET, 61
SHMEM_CHARACTER_GET_NBI, 68
SHMEM_CHARACTER_PUT, 56
SHMEM_CHARACTER_PUT_NBI, 67
SHMEM_CLEAR_CACHE_INV, 140, 153
shmem_clear_cache_inv, 140, 153
shmem_clear_cache_line_inv, 140, 153
SHMEM_CLEAR_LOCK, 139
shmem_clear_lock, 139
SHMEM_CMP_EQ, 11, 118
SHMEM_CMP_GE, 12, 118
SHMEM_CMP_GT, 12, 118
SHMEM_CMP_LE, 12, 118
SHMEM_CMP_LT, 11, 118
SHMEM_CMP_NE, 11, 118
shmem_collect, 101
SHMEM_COLLECT32, 101
shmem_collect32, 101
SHMEM_COLLECT4, 101
SHMEM_COLLECT64, 101
shmem_collect64, 101
SHMEM_COLLECT8, 101
SHMEM_COLLECT_SYNC_SIZE, 9
shmem_collectmem, 101
SHMEM_COMP4_PROD_TO_ALL, 108
SHMEM_COMP4_SUM_TO_ALL, 107
SHMEM_COMP8_PROD_TO_ALL, 108
SHMEM_COMP8_SUM_TO_ALL, 107
SHMEM_COMPLEX_GET, 61
SHMEM_COMPLEX_GET_NBI, 68
SHMEM_COMPLEX_IGET, 64
SHMEM_COMPLEX_IPUT, 59
SHMEM_COMPLEX_PUT, 56
SHMEM_COMPLEX_PUT_NBI, 67
shmem_cswap, 74, 154
shmem_ctx_<TYPENAME>_atomic_add, 83
shmem_ctx_<TYPENAME>_atomic_and, 85
shmem_ctx_<TYPENAME>_atomic_compare_swap, 74
shmem_ctx_<TYPENAME>_atomic_fetch, 71
shmem_ctx_<TYPENAME>_atomic_fetch_add, 81
shmem_ctx_<TYPENAME>_atomic_fetch_and, 84
shmem_ctx_<TYPENAME>_atomic_fetch_inc, 78
shmem_ctx_<TYPENAME>_atomic_fetch_or, 86
shmem_ctx_<TYPENAME>_atomic_fetch_xor, 88
shmem_ctx_<TYPENAME>_atomic_inc, 79
shmem_ctx_<TYPENAME>_atomic_or, 87
shmem_ctx_<TYPENAME>_atomic_set, 73
shmem_ctx_<TYPENAME>_atomic_swap, 76
shmem_ctx_<TYPENAME>_atomic_xor, 88
shmem_ctx_<TYPENAME>_g, 63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

166 INDEX

shmem_ctx_<TYPENAME>_get, 61
shmem_ctx_<TYPENAME>_get_nbi, 68
shmem_ctx_<TYPENAME>_iget, 64
shmem_ctx_<TYPENAME>_iput, 59
shmem_ctx_<TYPENAME>_p, 58
shmem_ctx_<TYPENAME>_put, 55
shmem_ctx_<TYPENAME>_put_nbi, 66
shmem_ctx_create, 46
SHMEM_CTX_DEFAULT, 13, 46
shmem_ctx_destroy, 48
shmem_ctx_fence, 132
shmem_ctx_get<SIZE>, 61
shmem_ctx_get<SIZE>_nbi, 68
shmem_ctx_get_team, 52
shmem_ctx_getmem, 61
shmem_ctx_getmem_nbi, 68
shmem_ctx_iget<SIZE>, 64
SHMEM_CTX_INVALID, 7, 52
shmem_ctx_iput<SIZE>, 59
SHMEM_CTX_NOSTORE, 7, 47
SHMEM_CTX_PRIVATE, 7, 47
shmem_ctx_put<SIZE>, 56
shmem_ctx_put<SIZE>_nbi, 66
shmem_ctx_putmem, 56
shmem_ctx_putmem_nbi, 67
shmem_ctx_quiet, 134
SHMEM_CTX_SERIALIZED, 7, 47
SHMEM_DEBUG, 13
SHMEM_DOUBLE_GET, 61
SHMEM_DOUBLE_GET_NBI, 69
SHMEM_DOUBLE_IGET, 64
SHMEM_DOUBLE_IPUT, 59
SHMEM_DOUBLE_PUT, 56
SHMEM_DOUBLE_PUT_NBI, 67
shmem_fadd, 81, 154
shmem_fcollect, 101
SHMEM_FCOLLECT32, 101
shmem_fcollect32, 101
SHMEM_FCOLLECT4, 101
SHMEM_FCOLLECT64, 101
shmem_fcollect64, 101
SHMEM_FCOLLECT8, 101
shmem_fcollectmem, 101
SHMEM_FENCE, 133
shmem_fence, 132
shmem_fetch, 72, 154
SHMEM_FINALIZE, 18
shmem_finalize, 18
shmem_finc, 78, 154
shmem_free, 29
shmem_g, 63
shmem_get, 61
SHMEM_GET128, 61
SHMEM_GET128_NBI, 69

SHMEM_GET32, 61
SHMEM_GET32_NBI, 69
SHMEM_GET4, 61
SHMEM_GET4_NBI, 69
SHMEM_GET64, 61
SHMEM_GET64_NBI, 69
SHMEM_GET8, 61
SHMEM_GET8_NBI, 69
shmem_get<SIZE>, 61
shmem_get<SIZE>_nbi, 68
shmem_get_nbi, 68
SHMEM_GETMEM, 61
shmem_getmem, 61
SHMEM_GETMEM_NBI, 69
shmem_getmem_nbi, 68
SHMEM_GLOBAL_EXIT, 19
shmem_global_exit, 19
shmem_iget, 64
SHMEM_IGET128, 65
SHMEM_IGET32, 65
SHMEM_IGET4, 65
SHMEM_IGET64, 65
SHMEM_IGET8, 65
shmem_iget<SIZE>, 64
shmem_inc, 80, 154
SHMEM_INFO, 13
SHMEM_INFO_GET_NAME, 24
shmem_info_get_name, 24
SHMEM_INFO_GET_VERSION, 24
shmem_info_get_version, 24
SHMEM_INIT, 15
shmem_init, 15
shmem_init_thread, 27
SHMEM_INT4_ADD, 83
SHMEM_INT4_AND_TO_ALL, 105
SHMEM_INT4_CSWAP, 74
SHMEM_INT4_FADD, 81
SHMEM_INT4_FETCH, 72
SHMEM_INT4_FINC, 78
SHMEM_INT4_INC, 80
SHMEM_INT4_MAX_TO_ALL, 106
SHMEM_INT4_MIN_TO_ALL, 107
SHMEM_INT4_OR_TO_ALL, 105
SHMEM_INT4_PROD_TO_ALL, 108
SHMEM_INT4_SET, 73
SHMEM_INT4_SUM_TO_ALL, 107
SHMEM_INT4_SWAP, 76
SHMEM_INT4_WAIT, 119
SHMEM_INT4_WAIT_UNTIL, 119
SHMEM_INT4_XOR_TO_ALL, 106
SHMEM_INT8_ADD, 83
SHMEM_INT8_AND_TO_ALL, 105
SHMEM_INT8_CSWAP, 74
SHMEM_INT8_FADD, 81

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

INDEX 167

SHMEM_INT8_FETCH, 72
SHMEM_INT8_FINC, 78
SHMEM_INT8_INC, 80
SHMEM_INT8_MAX_TO_ALL, 106
SHMEM_INT8_MIN_TO_ALL, 107
SHMEM_INT8_OR_TO_ALL, 105
SHMEM_INT8_PROD_TO_ALL, 108
SHMEM_INT8_SET, 73
SHMEM_INT8_SUM_TO_ALL, 107
SHMEM_INT8_SWAP, 76
SHMEM_INT8_WAIT, 119
SHMEM_INT8_WAIT_UNTIL, 119
SHMEM_INT8_XOR_TO_ALL, 106
SHMEM_INTEGER_GET, 61
SHMEM_INTEGER_GET_NBI, 69
SHMEM_INTEGER_IGET, 65
SHMEM_INTEGER_IPUT, 59
SHMEM_INTEGER_PUT, 56
SHMEM_INTEGER_PUT_NBI, 67
shmem_iput, 59
SHMEM_IPUT128, 59
SHMEM_IPUT32, 59
SHMEM_IPUT4, 59
SHMEM_IPUT64, 59
SHMEM_IPUT8, 59
shmem_iput<SIZE>, 59
SHMEM_LOGICAL_GET, 61
SHMEM_LOGICAL_GET_NBI, 69
SHMEM_LOGICAL_IGET, 65
SHMEM_LOGICAL_IPUT, 59
SHMEM_LOGICAL_PUT, 56
SHMEM_LOGICAL_PUT_NBI, 67
SHMEM_MAJOR_VERSION, 10
shmem_malloc, 29
SHMEM_MAX_NAME_LEN, 10
shmem_max_reduce, 106
shmem_min_reduce, 106
SHMEM_MINOR_VERSION, 10
SHMEM_MY_PE, 16
shmem_my_pe, 16
SHMEM_N_PES, 17
shmem_n_pes, 17
shmem_or_reduce, 105
shmem_p, 57
shmem_pcontrol, 142
shmem_pe_accessible, 20
shmem_prod_reduce, 108
SHMEM_PTR, 22
shmem_ptr, 22
SHMEM_PUT, 153
shmem_put, 55
SHMEM_PUT128, 56
SHMEM_PUT128_NBI, 67
SHMEM_PUT32, 56

SHMEM_PUT32_NBI, 67
SHMEM_PUT4, 56
SHMEM_PUT4_NBI, 67
SHMEM_PUT64, 56
SHMEM_PUT64_NBI, 67
SHMEM_PUT8, 56
SHMEM_PUT8_NBI, 67
shmem_put<SIZE>, 56
shmem_put<SIZE>_nbi, 66
shmem_put_nbi, 66
SHMEM_PUTMEM, 56
shmem_putmem, 56
SHMEM_PUTMEM_NBI, 67
shmem_putmem_nbi, 67
shmem_query_thread, 28
SHMEM_QUIET, 134
shmem_quiet, 134
SHMEM_REAL16_MAX_TO_ALL, 106
SHMEM_REAL16_MIN_TO_ALL, 107
SHMEM_REAL16_PROD_TO_ALL, 108
SHMEM_REAL16_SUM_TO_ALL, 107
SHMEM_REAL4_FETCH, 72
SHMEM_REAL4_MAX_TO_ALL, 106
SHMEM_REAL4_MIN_TO_ALL, 107
SHMEM_REAL4_PROD_TO_ALL, 108
SHMEM_REAL4_SET, 73
SHMEM_REAL4_SUM_TO_ALL, 107
SHMEM_REAL4_SWAP, 76
SHMEM_REAL8_FETCH, 72
SHMEM_REAL8_MAX_TO_ALL, 106
SHMEM_REAL8_MIN_TO_ALL, 107
SHMEM_REAL8_PROD_TO_ALL, 108
SHMEM_REAL8_SET, 73
SHMEM_REAL8_SUM_TO_ALL, 107
SHMEM_REAL8_SWAP, 76
SHMEM_REAL_GET, 61
SHMEM_REAL_GET_NBI, 69
SHMEM_REAL_IGET, 65
SHMEM_REAL_IPUT, 59
SHMEM_REAL_PUT, 56
SHMEM_REAL_PUT_NBI, 67
shmem_realloc, 29
SHMEM_REDUCE_MIN_WRKDATA_SIZE, 10
SHMEM_REDUCE_SYNC_SIZE, 8
shmem_set, 73, 154
SHMEM_SET_CACHE_INV, 140, 153
shmem_set_cache_inv, 140, 153
SHMEM_SET_CACHE_LINE_INV, 140, 153
shmem_set_cache_line_inv, 140, 153
SHMEM_SET_LOCK, 139
shmem_set_lock, 139
shmem_sum_reduce, 107
SHMEM_SWAP, 76
shmem_swap, 76, 154

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

168 INDEX

SHMEM_SYMMETRIC_SIZE, 13
shmem_sync, 94
shmem_sync_all, 97, 154
SHMEM_SYNC_SIZE, 8
SHMEM_SYNC_VALUE, 8
shmem_team_create_ctx, 47
shmem_team_destroy, 45
shmem_team_get_config, 37
SHMEM_TEAM_INVALID, 7, 35–38, 40, 42, 45, 52,

89, 95, 99, 100, 103, 109, 110, 114
shmem_team_my_pe, 35
shmem_team_n_pes, 36
SHMEM_TEAM_NUM_CONTEXTS, 7, 37
SHMEM_TEAM_SHARED, 13
shmem_team_split_2d, 41
shmem_team_split_strided, 39
shmem_team_sync, 94
shmem_team_translate_pe, 38
SHMEM_TEAM_WORLD, 12, 34, 38, 41, 97, 154, 157
shmem_test, 126
shmem_test_all, 128
shmem_test_any, 129
SHMEM_TEST_LOCK, 139
shmem_test_lock, 139
shmem_test_some, 130
SHMEM_THREAD_FUNNELED, 7, 26
SHMEM_THREAD_MULTIPLE, 7, 27
SHMEM_THREAD_SERIALIZED, 7, 26
SHMEM_THREAD_SINGLE, 7, 26
SHMEM_UDCFLUSH, 140, 153
shmem_udcflush, 140, 153
SHMEM_UDCFLUSH_LINE, 140, 153
shmem_udcflush_line, 140, 153
SHMEM_VENDOR_STRING, 11
SHMEM_VERSION, 13
SHMEM_WAIT, 119
shmem_wait, 119, 154
SHMEM_WAIT_UNTIL, 119
shmem_wait_until, 119, 154
shmem_wait_until_all, 121
shmem_wait_until_any, 122
shmem_wait_until_some, 124
shmem_xor_reduce, 105
shmemalign, 153
SHPALLOC, 31
SHPCLMOVE, 32
SHPDEALLC, 33
shrealloc, 153
SMA_DEBUG, 154
SMA_INFO, 154
SMA_SYMMETRIC_SIZE, 154
SMA_VERSION, 154
Standard AMO Types and Names, 71
Standard RMA Types and Names, 55

START_PES, 25, 153
start_pes, 25, 153

Tables
Bitwise AMO Types and Names, 72
Constants, 7
Deprecated API, 153
Environment Variables, 13
Extended AMO Types and Names, 71
Handles, 12
Library Constants, 7
Library Handles, 12
Point-to-Point Comparison Constants, 118
Point-to-Point Synchronization Types and Names, 118
Reduction Types, Names and Supporting Operations,

104
Standard AMO Types and Names, 71
Standard RMA Types and Names, 55

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	The OpenSHMEM Effort
	Programming Model Overview
	Memory Model
	Atomicity Guarantees

	Execution Model
	Progress of OpenSHMEM Operations

	Language Bindings and Conformance
	Library Constants
	Library Handles
	Environment Variables
	Error Handling
	OpenSHMEM Library API
	Library Setup, Exit, and Query Routines
	SHMEM_INIT
	SHMEM_MY_PE
	SHMEM_N_PES
	SHMEM_FINALIZE
	SHMEM_GLOBAL_EXIT
	SHMEM_PE_ACCESSIBLE
	SHMEM_ADDR_ACCESSIBLE
	SHMEM_PTR
	SHMEM_INFO_GET_VERSION
	SHMEM_INFO_GET_NAME
	START_PES

	Thread Support
	SHMEM_INIT_THREAD
	SHMEM_QUERY_THREAD

	Memory Management Routines
	SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN
	SHMEM_CALLOC
	SHPALLOC
	SHPCLMOVE
	SHPDEALLC

	Team Management Routines
	SHMEM_TEAM_MY_PE
	SHMEM_TEAM_N_PES
	SHMEM_TEAM_CONFIG_T
	SHMEM_TEAM_GET_CONFIG
	SHMEM_TEAM_TRANSLATE_PE
	SHMEM_TEAM_SPLIT_STRIDED
	SHMEM_TEAM_SPLIT_2D
	SHMEM_TEAM_DESTROY

	Communication Management Routines
	SHMEM_CTX_CREATE
	SHMEM_TEAM_CREATE_CTX
	SHMEM_CTX_DESTROY
	SHMEM_CTX_GET_TEAM

	Remote Memory Access Routines
	SHMEM_PUT
	SHMEM_P
	SHMEM_IPUT
	SHMEM_GET
	SHMEM_G
	SHMEM_IGET

	Non-blocking Remote Memory Access Routines
	SHMEM_PUT_NBI
	SHMEM_GET_NBI

	Atomic Memory Operations
	SHMEM_ATOMIC_FETCH
	SHMEM_ATOMIC_SET
	SHMEM_ATOMIC_COMPARE_SWAP
	SHMEM_ATOMIC_SWAP
	SHMEM_ATOMIC_FETCH_INC
	SHMEM_ATOMIC_INC
	SHMEM_ATOMIC_FETCH_ADD
	SHMEM_ATOMIC_ADD
	SHMEM_ATOMIC_FETCH_AND
	SHMEM_ATOMIC_AND
	SHMEM_ATOMIC_FETCH_OR
	SHMEM_ATOMIC_OR
	SHMEM_ATOMIC_FETCH_XOR
	SHMEM_ATOMIC_XOR

	Collective Routines
	SHMEM_BARRIER_ALL
	SHMEM_BARRIER
	SHMEM_SYNC
	SHMEM_SYNC_ALL
	SHMEM_BROADCAST
	SHMEM_COLLECT, SHMEM_FCOLLECT
	SHMEM_REDUCTIONS
	AND
	OR
	XOR
	MAX
	MIN
	SUM
	PROD

	SHMEM_ALLTOALL
	SHMEM_ALLTOALLS

	Point-To-Point Synchronization Routines
	SHMEM_WAIT_UNTIL
	SHMEM_WAIT_UNTIL_ALL
	SHMEM_WAIT_UNTIL_ANY
	SHMEM_WAIT_UNTIL_SOME
	SHMEM_TEST
	SHMEM_TEST_ALL
	SHMEM_TEST_ANY
	SHMEM_TEST_SOME

	Memory Ordering Routines
	SHMEM_FENCE
	SHMEM_QUIET
	Synchronization and Communication Ordering in OpenSHMEM

	Distributed Locking Routines
	SHMEM_LOCK

	Cache Management
	SHMEM_CACHE

	OpenSHMEM Profiling Interface
	Control of Profiling
	SHMEM_PCONTROL

	Example Implementations
	Profiler
	Library

	Limitations
	Multiple Counting
	Separate Build and Link
	[11] Type-Generic Interfaces

	Writing OpenSHMEM Programs
	Compiling and Running Programs
	Compilation
	Running Programs

	Undefined Behavior in OpenSHMEM
	History of OpenSHMEM
	OpenSHMEM Specification and Deprecated API
	Overview
	Deprecation Rationale
	Header Directory: mpp
	C/C++: start_pes
	Implicit Finalization
	C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign
	Fortran: START_PES, MY_PE, NUM_PES
	Fortran: SHMEM_PUT
	SHMEM_CACHE
	SHMEM* Library Constants
	SMA_* Environment Variables
	C/C++: shmem_wait
	C/C++: shmem_wait_until
	C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc, shmem_fadd, shmem_add
	Fortran API
	Active-set-based collective routines
	C/C++: shmem_barrier
	C/C++: shmem_barrier_all, shmem_sync_all

	Changes to this Document
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1

	Index

