Diffusion Net TensorFlow implementation
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.gitignore
DN_enc_1layer.png
DN_enc_2layer.png
DN_stack_1layer.png
DN_stack_2layer.png
Diffusion.py
LICENSE
README.md
anomaly.ipynb
autoencoder.py
bubble.png
diffusion_net_pretrain-layer1.py
diffusion_net_pretrain-layer2.py
diffusion_net_pretrain.ipynb

README.md

DiffusionNet - a geometric autoencoder

Tensorflow implementation of

Diffusion Nets, G. Mishne, U. Shaham, A. Cloninger and I. Cohen, Applied and Computational Harmonic Analysis, Aug. 2017.

decoder

Files:

  • diffusion_net_pretrain.ipynb - jupyter notebook demo of using DiffusionNet for 3D curve
  • diffusion_net_pretrain-layer1.py - python script for Diffusion Net with 1 hidden layer architecture, evaluting various values of the cost parameters
  • diffusion_net_pretrain-layer2.py - python script for Diffusion Net with 2 hidden layers architecture, evaluting various values of the cost parameters
  • anomaly.ipynb - jupyter notebook demo of using DiffusionNet for anomaly detection in images
  • Diffusion.py - python implementation of diffusion maps
  • autoencoder.py - tensorflow implementation of sparse autoencoders for pre-training

Output of diffusion_net_pretrain-layer2.py

Initial encoder loss 1.05e+00
eta=0
Final encoder loss 2.85e-02
Full autoencoder denoising loss 6.15e-02
eta=1
Final encoder loss 2.49e-02
Full autoencoder denoising loss 5.75e-02
eta=10
Final encoder loss 1.95e-02
Full autoencoder denoising loss 5.11e-02
eta=100
Final encoder loss 1.57e-02
Full autoencoder denoising loss 5.08e-02
eta=1000
Final encoder loss 3.89e-02
Full autoencoder denoising loss 6.52e-02
eta=100000.0
Final encoder loss 1.37e+00
Full autoencoder denoising loss 1.22e+00

encoder2 autoencoder2


Output of diffusion_net_pretrain-layer1.py

Initial encoder loss 1.07e+00
eta=0
Final encoder loss 4.34e-02
Full autoencoder denoising loss 8.01e-02
eta=1
Final encoder loss 4.20e-02
Full autoencoder denoising loss 7.78e-02
eta=10
Final encoder loss 3.53e-02
Full autoencoder denoising loss 7.07e-02
eta=100
Final encoder loss 3.96e-02
Full autoencoder denoising loss 7.22e-02
eta=1000
Final encoder loss 9.59e-02
Full autoencoder denoising loss 1.33e-01
eta=100000
Final encoder loss 1.40e+00
Full autoencoder denoising loss 1.21e+00

encoder1 autoencoder1