Skip to content
Permalink
Browse files

fix(encoder): add necessary code from tf

  • Loading branch information...
Larryjianfeng committed Jul 11, 2019
1 parent b480774 commit d0099b7957bb16b96d45af37bfaa75d95863729e
No changes.
@@ -0,0 +1,82 @@
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains common code shared by all inception models.
Usage of arg scope:
with slim.arg_scope(inception_arg_scope()):
logits, end_points = inception.inception_v3(images, num_classes,
is_training=is_training)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

slim = tf.contrib.slim


def inception_arg_scope(weight_decay=0.00004,
use_batch_norm=True,
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001,
activation_fn=tf.nn.relu,
batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS,
batch_norm_scale=False):
"""Defines the default arg scope for inception models.
Args:
weight_decay: The weight decay to use for regularizing the model.
use_batch_norm: "If `True`, batch_norm is applied after each convolution.
batch_norm_decay: Decay for batch norm moving average.
batch_norm_epsilon: Small float added to variance to avoid dividing by zero
in batch norm.
activation_fn: Activation function for conv2d.
batch_norm_updates_collections: Collection for the update ops for
batch norm.
batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
activations in the batch normalization layer.
Returns:
An `arg_scope` to use for the inception models.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
# collection containing update_ops.
'updates_collections': batch_norm_updates_collections,
# use fused batch norm if possible.
'fused': None,
'scale': batch_norm_scale,
}
if use_batch_norm:
normalizer_fn = slim.batch_norm
normalizer_params = batch_norm_params
else:
normalizer_fn = None
normalizer_params = {}
# Set weight_decay for weights in Conv and FC layers.
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay)):
with slim.arg_scope(
[slim.conv2d],
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
normalizer_params=normalizer_params) as sc:
return sc

0 comments on commit d0099b7

Please sign in to comment.
You can’t perform that action at this time.