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SilverBlock Systems
● Small company founded in 2009

– Leonardtown, MD  (0.3 miles from the waterfront)
https://www.visitstmarysmd.com/see-do/towns-communities/leonardto
wn-area/

– Rochester, NY
● What we build

– Distributed Mission Computing and Display Software
– RADAR Processing Algorithms and GPU Implementations
– Experimental Communications Systems
– Experimental Airborne Sensors and Systems

●  Looking to hire 1 or 2 experienced software engineers
– C++ required.  US Citizenship required.
– contact@silverblocksystems.net

https://www.visitstmarysmd.com/see-do/towns-communities/leonardtown-area/
https://www.visitstmarysmd.com/see-do/towns-communities/leonardtown-area/
mailto:contact@silverblocksystems.net?subject=GRCon17%20Software%20Engineer%20Position%20Inquiry
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Problem Statement

● Output a sample stream synchronized with the 
center of data symbols
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Symbol Synch Overview

● Two broad categories of algorithms

– Feedfoward (Open Loop)
● Block oriented
● Operate on samples for a number of symbols at a time
● Non-tracking, but can be computationally complex
● Burst mode communications, or initial acquisition of synchronization

– Feedback (Closed Loop)
● Stream oriented
● Operate on immediate incoming sample or symbol
● Tracking, and not computationally complex for any 1 input 
● Continual stream of symbols, or tracking after initial acquisition
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Symbol Synch Overview

● Algorithm and Implementation Requirements
– Resampling with interpolation

● Imposes signal bandwidth requirements

– Symbol clock timing estimation or timing error estimation
● Imposes signal conditioning requirements

– Offline modeling, simulation, and analysis by the designer !

● Correlation-based Feedforward Algorithm and Implementation
– GNURadio has ~1 implementation

● PLL-based Feedback Algorithm and Implementation
– GNURadio now has 4 implementations
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PLL Symbol Synchronizer

● Timing Error Detector: analogous to PLL phase detector
– Estimates the symbol clock timing error, a hidden quantity

● Resampler Control: analogous to PLL phase accumulator/NCO
● Ts   input sample clock period

● Tc   symbol clock period

● τ0   optimal symbol sampling offset
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Timing 
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Detector
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Loop 
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Control
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Clock Tracking PLL Model

● Timing Error Detector (TED) modeled by phase detector (PD) and Kpd gain
– Outputs symbol clock timing error estimate, e[n], once per symbol

● Proportional-Integral (PI) Loop Filter
– Proportional arm gain, α
– Integral arm gain, β
– Integral arm output: estimate of average period of symbol clock, Tavg

– Filter output: estimate of instantaneous period of symbol clock, T inst

● Resampler & Control maps to phase accumulator and phase signals

TED

PI Loop Filter
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Clock Tracking PLL Model

● Loop Phase Transfer Function (PI gains)

● Zeros, Poles, and Critical Damping (PI gains)
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Clock Tracking PLL Model
● Mapping Poles of a 2nd Order Analog Control System to z-plane

● Loop Phase Transfer Function (2nd Order Control System)



12

Clock Tracking PLL Model

● PI Gains from 2nd Order Digital Control Loop 
parameters:
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Timing Error Detector

● A TED emits an error value proportional to the 
time difference between
– Optimal current symbol sampling time (blue)
– Actual current symbol sampling time (red)

Actual Symbol
Clock Period
and Edges

Estimated Symbol
Clock Error 

Estimated Symbol
Clock Period
and Edges

Estimated Symbol
 Clock Error 
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Timing Error Detector

● A TED is just an expression for the error value, e[n]
– Formally derived - Pay attention to the assumptions!
– Can include factors such as

● Current symbol estimate
● Nearby samples or symbol estimates
● Current symbol decision  (Decision Directed TEDs)
● Nearby symbol decisions (Decision Directed TEDs)
● Estimate of signal slope at symbol sampling time
● Estimate of Es/N0

– Usually a simple expression in the end
● Examples

– Mueller and Müller
– Small signal ML approximation
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Timing Error Detector

● A TED is characterized by its S-curve:
– y-axis: expected value of timing error output, given the normalized symbol 

clock timing offset
– τ-axis: normalized symbol clock timing offset
– Slope at timing offset τ = 0 is TED gain, Kted (= Kpd)

● Units of Kted might not match the units required by the loop – scaling needed

● S-Curve shape and central slope at τ = 0 depend on
– TED’s error estimator expression
– Input signal amplitude
– Pulse shaping filter / pulse shape
– Input Es/N0

– Other factors
● Simulation required to find TED gain

– Octave, MatLab, R, Python, or whatever

Image (c) 2017 Arne Josten, et. al., ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich 8092, Switzerland
http://dx.doi.org/10.3390/app7070655
http://www.mdpi.com/2076-3417/7/7/655/htm
Used under terms and conditions of the Creative Commons Attribution (CC BY) license 4.0 
https://creativecommons.org/licenses/by/4.0/  https://creativecommons.org/licenses/by/4.0/legalcode 

http://dx.doi.org/10.3390/app7070655
http://www.mdpi.com/2076-3417/7/7/655/htm
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/legalcode


16

Interpolating Resampler
● Symbol synchronization process reduces sample rate
● Input samples (red) not at optimal symbol sampling (blue)
● Need to resample input between samples
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Interpolating Resampler

● Interpolation implemented with FIR filters
– Fractional Delay (FD)

● MMSE interpolator polyphase filterbank
● Matched filter/interpolator polyphase filterbank

– Polynomial Interpolation using Farrow structure
● Lagrange
● B-spline

● Practical interpolation filters impose bandwidth 
constraint
– Input signal bandwidth must be some fraction of Fs

– Bounds the error in the interpolated output samples
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Interpolating Resampler

● Ideal FD interpolation filter frequency responses
– Interpolator
– Differentiating interpolator
– µ is intersample interpolation fraction in [0.0, 1.0]

● Ideal FD interpolation filter impulse responses
– Interpolator
– Differentiating interpolator

– For a particular µ in [0.0, 1.0]
– These ideal responses from IDTFT are infinite length
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Interpolating Resampler

● GR Minimum Mean Squared Error interpolators
– Truncated, MMSE version of ideal filters
– Bank of 129, 8 tap FIR filters
– For µ in {0/128, 1/128, 2/128, …, 127/128, 128/128} 
– Each filter has a MMSE H(ω) only in [-Fs/4, Fs/4]

● One sided freq response and error2 of the filters
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Interpolating Resampler

● GR’s MMSE interpolator is a polyphase filter bank
● Equivalent PFB prototype filter vs truncated ideal 
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GNURadio Sync Blocks

Existing New
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Existing Blocks’ Deficiencies
● Incorrect tag propagation
● Conflates symbol clock phase and interpolator phase

– Self noise & Unable to stay locked on a clock pattern
● Incorrect decision slicer constellation
● Drops some input, when > 8 samples/symbol
● No reset on receipt of time_est tag
● No way to change TED, slicer, or resampler

– Whole new blocks needed - bringing new bugs
● Initializes to very overdamped loop filter
● PI filter gain computations ignored TED gain
● Restricted to 1 or 2 samples/symbol on output
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New Symbol Sync Blocks
● Fixed, replacement superset of existing blocks

– Except can’t change MF taps on the fly (yet)
● Selectable TED, slicer, and resampler
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New Symbol Sync Blocks
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New Symbol Sync Blocks

● External clocks
– Input sample

● Internal clocks
– Interp output
– Block output
– TED input
– Symbol

(TED Output)
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Adding a New TED

● Modify the following files
– gr-digital/include/.../timing_error_detector_type.h
– gr-digital/grc/digital_symbol_sync_xx.xml
– gr-digital/lib/timing_error_detector.*

● Your new derived TED class only needs
– A simple constructor
– Two methods to compute the error output term

● Complex input
● Float input

● Leave the symbol sync blocks’ code alone
– tag handling, slicer, resampler, & loop filter – all done!
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Adding a New Resampler

● Modify the following files
– gr-digital/include/.../interpolating_resampler_type.h
– gr-digital/grc/digital_symbol_sync_xx.xml
– gr-digital/lib/interpolating_resampler.*

● Your two (1 float, 1 complex) new derived 
resampler classes each need
– A constructor
– A simple ntaps() method
– An interpolate() method
– A differentiate() method (interpolating differentiator)

● Leave the symbol sync blocks’ code alone
– tag handling, slicer, TED, & loop filter – all done!
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Using a Different Slicer

● Instantiate a custom Constellation Object
– Slicer only needed for decision directed TEDs 

though
● M&M, Modified M&M, Zero Crossing

● Pass in the constellation object as the TED 
slicer

● Leave the symbol sync blocks’ code alone
– tag handling, resampler, TED, & loop filter – all 

done!
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Existing Block to New Block
● Polyphase Clock Sync
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Existing Block to New Block
● Polyphase Clock Sync comparison (MPSK tutorial)
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Existing Block to New Block
● Clock Recovery MM, Complex I/O

MATH!



32

Existing Block to New Block
● Clock Recovery MM, Float I/O

MATH!
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Existing Block to New Block
● MSK Timing Recovery

MATH!
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Usage Hints and Gotchas
● Easy stuff

– Output samples/symbol can be in [1, 2, 3, 4, 5, 6, …]
● Normally set to 1; or to 2, if upstream from an equalizer block

– Maximum deviation is in units of samples/symbol
● Smaller is better for acquiring lock at start of burst
● Too small misses data when symbol clock is far from nominal

– Tracking resets on a “time_est” or “clock_est” tag
● time_est tag value is a PMT double

– Sample offset estimate, in [-1.0, 1.0] samples, relative to tagged sample
● clock_est tag value is a PMT 2-tuple of doubles

– Sample offset estimate, in [-1.0, 1.0] samples, relative to tagged sample
– Symbol clock period estimate, in samples/symbol

● clock_est tag has priority over time_est tag
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Usage Hints and Gotchas

● Input signal conditioning and filtering
– MSK signals and MSK TEDs don’t use matched filters

● But a narrow IF filter can be beneficial

– Input signal should be at a consistent amplitude (e.g. +/- 1.0)
● AGC
● TEDs have specific assumptions about input amplitudes !!!

– Input signal amplitude should match constellation
● Only for decision directed TEDs: M&M, Modified M&M, Zero Crossing
● GNURadio’s Constellation Object silently scales your constellation !!!

– Input signal should normally be NRZ (no DC offset)
– Input signal should be peaked at symbol centers

● Except for MSK signals and MSK TEDs
● Normally accomplished with a matched filter

– Sync block’s “PFB, MF” resampler can do the matched filtering
● Except for rectangular pulse filter and a TED that needs a derivative !!!
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Usage Hints and Gotchs

● Loop parameters and tuning
– Use simulation to determine TED gain, Kted

● Cannot know damping regime without it !!!
● Ensure TED gain is scaled to the proper units for the loop !!!

– Start with a critically damped, or over damped, loop
● Damping factor, ζ, of 1.0, or greater than 1.0
● An under damped loop usually isn’t desirable for timing recovery

– Use a Loop BW, ωnT, in [0.0, π(?)], usually closer to 0.0

– Use simulation to determine optimal ζ & ωnT for best BER vs. Es/No
– If you just want to play around and can accept suboptimal results

● Start with Kted = 1.0, ζ = 1.0, ωnT = a number close to 0.0
● Use GUI sliders to control all 3 of those values
● Send all 4 outputs of the block to a single Time Sink/Scope
● Adjust ωnT slider first, observing the primary, T_inst, and T_avg traces
● Adjust ζ to 1.3 or 1.5 or 2.0 (or 0.707 or 0.5), and try adjusting ωnT again
● See gr-digital/examples/demod/symbol_sync_test_float.grc
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Experimental Tuning Example
● Intentionally terrible loop BW example
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TED S-Curve Simulation
● gr-digital/examples/demod/*_ted_gain.m

– M&M TED gain: Kted = 0.28271 sample-1

– Gardner TED gain: Kted = 0.11810 sample-1
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