
Samples to Digital Symbols:
Symbol Clock Recovery and

Improved Symbol Synchronization Blocks

Andy Walls
12 Sept 2017

2

Outline

● Advertisement
– About SilverBlock

● Theoretical
– Problem Statement
– Symbol Synchronization Overview
– PLL Symbol Synchronizer
– Clock Tracking PLL Model
– Timing Error Detector
– Interpolating Resampler

3

Outline (continued)

● Practical
– GNURadio Sync Blocks
– Existing Blocks’ Deficiencies
– New Symbol Sync Blocks Overview
– New Symbol Sync Blocks Architecture
– Adding a New Timing Error Detector
– Adding a New Resampler
– Using a Different Slicer
– Existing Blocks to New Blocks
– Usage Hints and Gotchas
– Experimental Tuning Example
– TED S-Curve Simulation

4

SilverBlock Systems
● Small company founded in 2009

– Leonardtown, MD (0.3 miles from the waterfront)
https://www.visitstmarysmd.com/see-do/towns-communities/leonardto
wn-area/

– Rochester, NY
● What we build

– Distributed Mission Computing and Display Software
– RADAR Processing Algorithms and GPU Implementations
– Experimental Communications Systems
– Experimental Airborne Sensors and Systems

● Looking to hire 1 or 2 experienced software engineers
– C++ required. US Citizenship required.
– contact@silverblocksystems.net

https://www.visitstmarysmd.com/see-do/towns-communities/leonardtown-area/
https://www.visitstmarysmd.com/see-do/towns-communities/leonardtown-area/
mailto:contact@silverblocksystems.net?subject=GRCon17%20Software%20Engineer%20Position%20Inquiry

5

Problem Statement

● Output a sample stream synchronized with the
center of data symbols

6

Symbol Synch Overview

● Two broad categories of algorithms

– Feedfoward (Open Loop)
● Block oriented
● Operate on samples for a number of symbols at a time
● Non-tracking, but can be computationally complex
● Burst mode communications, or initial acquisition of synchronization

– Feedback (Closed Loop)
● Stream oriented
● Operate on immediate incoming sample or symbol
● Tracking, and not computationally complex for any 1 input
● Continual stream of symbols, or tracking after initial acquisition

7

Symbol Synch Overview

● Algorithm and Implementation Requirements
– Resampling with interpolation

● Imposes signal bandwidth requirements

– Symbol clock timing estimation or timing error estimation
● Imposes signal conditioning requirements

– Offline modeling, simulation, and analysis by the designer !

● Correlation-based Feedforward Algorithm and Implementation
– GNURadio has ~1 implementation

● PLL-based Feedback Algorithm and Implementation
– GNURadio now has 4 implementations

8

PLL Symbol Synchronizer

● Timing Error Detector: analogous to PLL phase detector
– Estimates the symbol clock timing error, a hidden quantity

● Resampler Control: analogous to PLL phase accumulator/NCO
● Ts input sample clock period

● Tc symbol clock period

● τ0 optimal symbol sampling offset

Matched
Filter

Interpolating
Resampler

Timing
Error

Detector

PI
Loop
Filter

Resampler
Control

samples at
symbol
centers

9

Clock Tracking PLL Model

● Timing Error Detector (TED) modeled by phase detector (PD) and Kpd gain
– Outputs symbol clock timing error estimate, e[n], once per symbol

● Proportional-Integral (PI) Loop Filter
– Proportional arm gain, α
– Integral arm gain, β
– Integral arm output: estimate of average period of symbol clock, Tavg

– Filter output: estimate of instantaneous period of symbol clock, T inst

● Resampler & Control maps to phase accumulator and phase signals

TED

PI Loop Filter

10

Clock Tracking PLL Model

● Loop Phase Transfer Function (PI gains)

● Zeros, Poles, and Critical Damping (PI gains)

11

Clock Tracking PLL Model
● Mapping Poles of a 2nd Order Analog Control System to z-plane

● Loop Phase Transfer Function (2nd Order Control System)

12

Clock Tracking PLL Model

● PI Gains from 2nd Order Digital Control Loop
parameters:

13

Timing Error Detector

● A TED emits an error value proportional to the
time difference between
– Optimal current symbol sampling time (blue)
– Actual current symbol sampling time (red)

Actual Symbol
Clock Period
and Edges

Estimated Symbol
Clock Error

Estimated Symbol
Clock Period
and Edges

Estimated Symbol
 Clock Error

14

Timing Error Detector

● A TED is just an expression for the error value, e[n]
– Formally derived - Pay attention to the assumptions!
– Can include factors such as

● Current symbol estimate
● Nearby samples or symbol estimates
● Current symbol decision (Decision Directed TEDs)
● Nearby symbol decisions (Decision Directed TEDs)
● Estimate of signal slope at symbol sampling time
● Estimate of Es/N0

– Usually a simple expression in the end
● Examples

– Mueller and Müller
– Small signal ML approximation

15

Timing Error Detector

● A TED is characterized by its S-curve:
– y-axis: expected value of timing error output, given the normalized symbol

clock timing offset
– τ-axis: normalized symbol clock timing offset
– Slope at timing offset τ = 0 is TED gain, Kted (= Kpd)

● Units of Kted might not match the units required by the loop – scaling needed

● S-Curve shape and central slope at τ = 0 depend on
– TED’s error estimator expression
– Input signal amplitude
– Pulse shaping filter / pulse shape
– Input Es/N0

– Other factors
● Simulation required to find TED gain

– Octave, MatLab, R, Python, or whatever

Image (c) 2017 Arne Josten, et. al., ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich 8092, Switzerland
http://dx.doi.org/10.3390/app7070655
http://www.mdpi.com/2076-3417/7/7/655/htm
Used under terms and conditions of the Creative Commons Attribution (CC BY) license 4.0
https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode

http://dx.doi.org/10.3390/app7070655
http://www.mdpi.com/2076-3417/7/7/655/htm
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/legalcode

16

Interpolating Resampler
● Symbol synchronization process reduces sample rate
● Input samples (red) not at optimal symbol sampling (blue)
● Need to resample input between samples

T
s

T
s

T
s

Wrapped Interpolator Phase
0.333T

s
 = µT

s
Interpolator Phase Increment
(n + f)T

s
 = T

inst
 = T

avg
 + αe[n]

17

Interpolating Resampler

● Interpolation implemented with FIR filters
– Fractional Delay (FD)

● MMSE interpolator polyphase filterbank
● Matched filter/interpolator polyphase filterbank

– Polynomial Interpolation using Farrow structure
● Lagrange
● B-spline

● Practical interpolation filters impose bandwidth
constraint
– Input signal bandwidth must be some fraction of Fs

– Bounds the error in the interpolated output samples

18

Interpolating Resampler

● Ideal FD interpolation filter frequency responses
– Interpolator
– Differentiating interpolator
– µ is intersample interpolation fraction in [0.0, 1.0]

● Ideal FD interpolation filter impulse responses
– Interpolator
– Differentiating interpolator

– For a particular µ in [0.0, 1.0]
– These ideal responses from IDTFT are infinite length

19

Interpolating Resampler

● GR Minimum Mean Squared Error interpolators
– Truncated, MMSE version of ideal filters
– Bank of 129, 8 tap FIR filters
– For µ in {0/128, 1/128, 2/128, …, 127/128, 128/128}
– Each filter has a MMSE H(ω) only in [-Fs/4, Fs/4]

● One sided freq response and error2 of the filters

20

Interpolating Resampler

● GR’s MMSE interpolator is a polyphase filter bank
● Equivalent PFB prototype filter vs truncated ideal

21

GNURadio Sync Blocks

Existing New

22

Existing Blocks’ Deficiencies
● Incorrect tag propagation
● Conflates symbol clock phase and interpolator phase

– Self noise & Unable to stay locked on a clock pattern
● Incorrect decision slicer constellation
● Drops some input, when > 8 samples/symbol
● No reset on receipt of time_est tag
● No way to change TED, slicer, or resampler

– Whole new blocks needed - bringing new bugs
● Initializes to very overdamped loop filter
● PI filter gain computations ignored TED gain
● Restricted to 1 or 2 samples/symbol on output

23

New Symbol Sync Blocks
● Fixed, replacement superset of existing blocks

– Except can’t change MF taps on the fly (yet)
● Selectable TED, slicer, and resampler

24

New Symbol Sync Blocks

25

New Symbol Sync Blocks

● External clocks
– Input sample

● Internal clocks
– Interp output
– Block output
– TED input
– Symbol

(TED Output)

Matched
Filter

Interpolating
Resampler

Timing
Error

Detector

PI
Loop
Filter

Resampler
Control

Slicer
Constellation

Interpolator
Filter Bank

Interpolating
Differentiator
Filter Bank

26

Adding a New TED

● Modify the following files
– gr-digital/include/.../timing_error_detector_type.h
– gr-digital/grc/digital_symbol_sync_xx.xml
– gr-digital/lib/timing_error_detector.*

● Your new derived TED class only needs
– A simple constructor
– Two methods to compute the error output term

● Complex input
● Float input

● Leave the symbol sync blocks’ code alone
– tag handling, slicer, resampler, & loop filter – all done!

27

Adding a New Resampler

● Modify the following files
– gr-digital/include/.../interpolating_resampler_type.h
– gr-digital/grc/digital_symbol_sync_xx.xml
– gr-digital/lib/interpolating_resampler.*

● Your two (1 float, 1 complex) new derived
resampler classes each need
– A constructor
– A simple ntaps() method
– An interpolate() method
– A differentiate() method (interpolating differentiator)

● Leave the symbol sync blocks’ code alone
– tag handling, slicer, TED, & loop filter – all done!

28

Using a Different Slicer

● Instantiate a custom Constellation Object
– Slicer only needed for decision directed TEDs

though
● M&M, Modified M&M, Zero Crossing

● Pass in the constellation object as the TED
slicer

● Leave the symbol sync blocks’ code alone
– tag handling, resampler, TED, & loop filter – all

done!

29

Existing Block to New Block
● Polyphase Clock Sync

30

Existing Block to New Block
● Polyphase Clock Sync comparison (MPSK tutorial)

31

Existing Block to New Block
● Clock Recovery MM, Complex I/O

MATH!

32

Existing Block to New Block
● Clock Recovery MM, Float I/O

MATH!

33

Existing Block to New Block
● MSK Timing Recovery

MATH!

34

Usage Hints and Gotchas
● Easy stuff

– Output samples/symbol can be in [1, 2, 3, 4, 5, 6, …]
● Normally set to 1; or to 2, if upstream from an equalizer block

– Maximum deviation is in units of samples/symbol
● Smaller is better for acquiring lock at start of burst
● Too small misses data when symbol clock is far from nominal

– Tracking resets on a “time_est” or “clock_est” tag
● time_est tag value is a PMT double

– Sample offset estimate, in [-1.0, 1.0] samples, relative to tagged sample
● clock_est tag value is a PMT 2-tuple of doubles

– Sample offset estimate, in [-1.0, 1.0] samples, relative to tagged sample
– Symbol clock period estimate, in samples/symbol

● clock_est tag has priority over time_est tag

35

Usage Hints and Gotchas

● Input signal conditioning and filtering
– MSK signals and MSK TEDs don’t use matched filters

● But a narrow IF filter can be beneficial

– Input signal should be at a consistent amplitude (e.g. +/- 1.0)
● AGC
● TEDs have specific assumptions about input amplitudes !!!

– Input signal amplitude should match constellation
● Only for decision directed TEDs: M&M, Modified M&M, Zero Crossing
● GNURadio’s Constellation Object silently scales your constellation !!!

– Input signal should normally be NRZ (no DC offset)
– Input signal should be peaked at symbol centers

● Except for MSK signals and MSK TEDs
● Normally accomplished with a matched filter

– Sync block’s “PFB, MF” resampler can do the matched filtering
● Except for rectangular pulse filter and a TED that needs a derivative !!!

36

Usage Hints and Gotchs

● Loop parameters and tuning
– Use simulation to determine TED gain, Kted

● Cannot know damping regime without it !!!
● Ensure TED gain is scaled to the proper units for the loop !!!

– Start with a critically damped, or over damped, loop
● Damping factor, ζ, of 1.0, or greater than 1.0
● An under damped loop usually isn’t desirable for timing recovery

– Use a Loop BW, ωnT, in [0.0, π(?)], usually closer to 0.0

– Use simulation to determine optimal ζ & ωnT for best BER vs. Es/No
– If you just want to play around and can accept suboptimal results

● Start with Kted = 1.0, ζ = 1.0, ωnT = a number close to 0.0
● Use GUI sliders to control all 3 of those values
● Send all 4 outputs of the block to a single Time Sink/Scope
● Adjust ωnT slider first, observing the primary, T_inst, and T_avg traces
● Adjust ζ to 1.3 or 1.5 or 2.0 (or 0.707 or 0.5), and try adjusting ωnT again
● See gr-digital/examples/demod/symbol_sync_test_float.grc

37

Experimental Tuning Example
● Intentionally terrible loop BW example

38

TED S-Curve Simulation
● gr-digital/examples/demod/*_ted_gain.m

– M&M TED gain: Kted = 0.28271 sample-1

– Gardner TED gain: Kted = 0.11810 sample-1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

