GSI protocol specifications

Purpose of the document

This document describes the XRootD implementation of the GSI protocol [1][2]; the XRootD
protocol is described in [3].

The protocol version described in the document corresponds at the head of the GIT master
branch at the time of writing, which is supposed to go in v4.9 (internal version of the GSI
protocol 10400). This includes the verification of the server identity, as explained in the related
section. Notable changes with respect versions prior to v4.9 (internal version lesser or equal to
10300) are described in Appendix C.

Related documents

The cryptographic functions used by the GSI protocol implementation are provided by
XrdCrypto [4]. A set of utilities used in common with the PWD authentication modules is
provided by XrdSut [5].

Versions

0.0 26 August 2018 Created; Data structures; protocol interface

0.1 16 October 2018 Client handshake steps

0.2 17 October 2018 Server handshake steps

0.3 22 October 2018 More about delegation

0.4 25 October 2018 More about delegation; add sketch of delegation
Chain

0.5 21 December 2018 Document XrdSutBuffer / XrdSutBucket

serialization, introduction of DH parameters signing,
and IV enabling

XRootD GSI Protocol Specifications 1

Purpose of the document
Related documents
Versions

Authentication protocol interface
Data structures

Buffers and Buckets
XrdSutBuffer serialization

Bucket types

Class members of XrdSecProtocolgsi
Ciphers

Delegation options

Handshake
Description
Implementation dissection
Class gsiHSVars
Global and Main buffers
Steps
Client side
Common pre-step processing
Step processing
Step: kXGS _init
Received buffer
Additional input information
Actions performed
Preparation of the reply to kXGS _init
Step: kKXGS_cert
Received buffer
Actions performed
Preparation of the reply to kXGS_cert
Step: kKXGS_pxyreq
Received buffer
Actions performed
Preparation of the reply to kXGS_pxyreq
Common post-step processing
Errors / failures

XRootD GSI Protocol Specifications

L N

© 0 0 0 N oo O O»

N - VU i G\ N T QU G U N G T (S G U Gt G N
N OO oo OO o 0o AR BRAR OWWWPNDDNDNDNDNDNA O o o

N

Server side
Common pre-step processing
Step processing
Step: kKXGC_certreq
Received buffer
Actions performed
Preparation of the reply to kXGC_certreq
Step: kKXGC_cert
Received buffer
Actions performed
Preparation of the reply to kXGC_cert
Step: kKXGC_sigpxy
Received buffer
Actions performed
Preparation of the reply to kXGC_sigpxy
Common post-step processing
Errors / failures

(Delegated) Proxy certificates
Server identity verification
References

Appendix A - Relevant parts of header files
XrdSecEntity.hh
XrdSeclnterface.hh
XrdSutBucket.hh
XrdSutBuckList.hh
XrdSutBuffer.hh
XrdSutAux.hh (excerpt)
XrdSecProtocolgsi.hh

Appendix B - Details of bucket types

Appendix C - Versions prior to 10400 / v4.9
Server host name verification
Transmission of DH parameters
Client: step kXGS_cert processing
Received buffer
Actions performed
Preparation of the reply to kXGS_cert

XRootD GSI Protocol Specifications

18
18
18
18
18
19
19
19
19
20
21
21
21
22
22
22
22

23
24
25

26
26
27
31
32
33
34
35

45

47
47
47
47
47
47
48

Server: step kXGC_cert processing

48

Received buffer 48
Actions performed 48
XRootD GSI Protocol Specifications 4

Authentication protocol interface

Authentication protocols in XRootD are provided as plug-ins. Protocols are identified by a string

of max XrdSecPROTOIDSIZE-1 characters. XxrdSecPROTOIDSIZE is defined in
XrdSec/XrdSecEntity.hh and its value is 8. The ID for the GSI protocol is gsi .

The authentication protocol plug-in must provide a concrete implementation of the the class

XrdSecProtocol, defined in XrdSec/XrdSecInterface.hh , in addition to C functions to

load and initialize the protocol.

Once the protocol is loaded and initialized, clients will call the method

virtual XrdSecCredentials *getCredentials (XrdSecParameters *parm=0,
XrdOucErrInfo *einfo=0)=0;

to get a buffer of information to be sent to the server, and servers will call

virtual int Authenticate (XrdSecCredentials *cred,
XrdSecParameters **parms,
XrdOucErrInfo *einfo=0)

on the buffer of information received by the client. The application using the authentication
framework and mediating the exchange, has no knowledge of the content of the buffers
exchanged, which are produced and analyzed inside the plug-in code.

Data structures

XRootD authentication handshakes use a generic data structure to exchange information
between the two parties, client and server. The generic structure, called XxrdSecBuffer, is
defined in XxrdSec/XrdSecInterface.hh . It contains a generic buffer and its size .

The structure XrdSecCredentials, defined in the same file, is typedef from XrdSecBuffer

and assumes that the first XrdSecPROTOIDSIZE-1 characters of the buffer contain the
protocol name (or ID).

XRootD GSI Protocol Specifications

Buffers and Buckets

Internally, Xrdsec protocol implementations organize the buffer according to needs. The gsi
protocol interprets the buffer as a serialization of the class XxrdsutBuffer, defined in
Xrdsut/XrdSutBuffer.hh . The bufferis further organised in buckets (class
XrdSutBucket; see XxrdSut/XrdSutBucket .hh), which contain the information to be
processed.

The members of XxrdSutBuffer are, in the order:

XrdSutBuckList fBuckets /I list of buckets

XrdOucString fOoptions /I string with options
XrdOucString fProtocol /I string with the protocol name or ID
kXR int32 fStep I/l 32 bit integer with a counter indicating the step

of the handshake

The XrdSutBuckList class implements a light single-linked list to store and navigate through
buckets. The XrdSutBucket structure contains:

kXR int32 type /I 32 bit integer with the type of the bucket
kXR_int32 size [/l 32 bit integer with the size in bytes
char* buffer /l the content of the bucket

XrdSutBuf fer serialization

The content of XrdSutBuffer is serialized into a buffer of length

fProtocol length + 1 + 2 - S,, +

N 2 S, + Sum_of bucket sizes

buckets ' 32

(number in bytes). Here S, is sizeof (kXR_int32)=4, and N is the number of bucket
in the XrdsutBuckList list.
The buffer contains, in order:
1. fProtocol length + 1 bytes with the protocol ID; max XrdSecPROTOIDSIZE;
this is interpreted as a string;
2. 5., bytes with the step number, marshalled,
3. For each bucket:
a. S,, bytes with the bucket type, marshalled,
b. S,, bytes with the bucket size, marshalled;
c. the content of the bucket.

bytes with the termination type KXRS none, marshalled;

buckets

4. s

32

XRootD GSI Protocol Specifications

The composition of the buffer is shown graphically in Figure 1.

Figure 1. XrdSutBuffer serialized

Protocol ID, null terminated string

| Step number, 32-bit integer, marshalled |

Type of bucket 1, 32-bit integer, marshalled |

| Size of bucket 1, 32-bit integer, marshalled |

Content of bucket 1

Type of bucket 2, 32-bit integer, marshalled |

Size of bucket 2, 32-bit integer, marshalled |

|
|
Content of bucket 2

Termination type kXSR_none, 32-bit integer, marshalled

Bucket types

Bucket types are given by the enum kXRSBucketTypes in XrdSut/XrdSutAux.hh and
reported in Table 1 in Appendix B.

XRootD GSI Protocol Specifications

Class members of XrdSecProtocolgsi

The class XrdSecProtocolgsi (XxdSecgsi/XrdSecProtocolgsi.hh) has the following
members:

int options

XrdCryptoFactory *sessionCF Chosen crypto factory

XrdCryptoCipher *sessionKey Session Cipher, as result of the
handshake

XrdSutBucket *bucketKey Bucket with the key in export form

XrdCryptoMsgDigest *sessionMD Message Digest (unused during handshake)

XrdCryptoRSA *sessionKsig RSA key to sign

XrdCryptoRSA *sessionKver RSA key to verify

X509Chain *proxyChain Chain with the delegated proxy on
servers

bool srvMode TRUE if server mode

gsiHSVars *hs Temporary handshake information
Ciphers

The shared cipher is generated using the Diffie-Hellman key agreement method [6]. Default
ciphers, in order of preference, are:

aes-128-cbc bf-cbc des-ede3-cbc.
An initialization vector (IV) of 16 bytes (OpenSSL constant EVP_MAX IV LENGTH) is generated

for each encryption and prepended to the encrypted buffer. To length of the IV is communicated
by the client to the server with the name of the chosen cipher (see relevant section).

Delegation options

The proxy delegation options are controlled internally by the settings saved in the Options field
of the gsiHSVars instance attached to the protocol. The enum kgsiHandshakeOpts in
XrdSecgsi/XrdSecProtocolgsi.hh defines the meaning of the bits, reported in Table 2.

XRootD GSI Protocol Specifications 8

Table 2. Settings controlling proxy delegation

Name Value Set by Comment
kOptsDlgPxy 1 S Ask for a delegated proxy
kOptsFwdPxy 2 C Forward local proxy
kOptsSigReq 4 C Accept to sign delegated proxy
kOptsSrvReq 8 S Server request for delegated proxy
kOptsPxFile 16 S Save delegated proxies in file
kOptsPxCred 64 S Save delegated proxies as credentials

Handshake

Description

The authentication handshake is part of the login process. It is initiated by the server when

configured to require strong authentication.

For gsi the goal of the handshake is to mutually verify the credentials - the server verifies the
client proxy certificate, the client verifies the server certificate, and to create a shared secret to

encrypt the rest of the handshake and further communication.

Optionally, after a successful handshake, a delegate client proxy certificate can be produced to
enable further authentication handshakes initiated by the server on behalf of the client, for

example in the case of a Third Party Copy.

According to the protocol, a delegate client proxy certificate is a proxy certificate generated by
the server using as a base the client proxy certificate, and then signed by the client using the

private key of its proxy. The full chain for a delegated client proxy certificate is, therefore,

XRootD GSI Protocol Specifications

i Client i . i Delegated
CA sign : SIgN | Client Proxy | S9N !
certificate End-Entity cer‘tiﬁcatey Client Proxy
certificate certificate

To overcome problems with the early versions of openSSL, the XRootD gsi implementation
supported the option to recreate the full client proxy on the server side by sending over the
private key of the client proxy certificate; while still supported, this is to be considered
deprecated.

Implementation dissection

The authentication handshake is started by the server and continues until a consensus is
reached, failure or success. In the case of a successful handshake, the relevant information
about the authenticated client is saved in a instance of the XrdSecEntity class owned by the
XrdSecProtocol instance .

Class gsiHSVars

During the handshake, both parts keep the relevant state of the handshake in a instance of the
class gsiHSVars, defined in XxrdSecgsi /XrdSecProtocolgsi.hh . The class
gsiHSVars contains the following members:

int Iter Iteration number

time t TimeStamp Time of last call
XrdOucString CryptoMod Crypto module in use

int RemVers Version run by remote counterpart
XrdCryptoCipher *Rcip Reference cipher

XrdSutBucket *Cbck Bucket with the certificate in export form
XrdOucString ID Handshake ID (dummy for clients)
XrdSutPFEntry *Cref Cache reference
XrdSutPFEntry *Pent Pointer to relevant file entry
X509Chain *Chain Chain to be eventually verified
XrdCryptoxX509Crl *Crl Pointer to CRL, if required
X509Chain *PxyChain Proxy Chain on clients

bool RtagOK Rndm tag checked / not checked

bool Tty Terminal attached / not attached
Int LastStep Step required at previous iteration

int Options Handshake options;

int HashAlg Hash algorithm of peer hash name;

XRootD GSI Protocol Specifications

10

XrdSutBuffer *Parms Buffer with server parms (on first iteration)

Global and Main buffers

The message exchanged between client and server corresponds to the serialization of a global
buffer, internal name bpar . The buffer bpar contains control/auxiliary information and a buffer
with the main information of the handshake serialized (internal name bmai).

The control/auxiliary information consists in: protocol version numbers; list of cryptographic
modules; hash of the client certificate issuer; client options (delegation).

Steps

The handshake consists in a set of steps. In the implementation the steps are described by
dedicated enum variables, defined in XxrdSecgsi/XrdSecProtocolgsi.hh.

The client steps are enumerated by the enum kgsiClientSteps. They describe the
handshake steps from the client point of view, and are encoded in the messages send by the
client to the server. They are reported in Table 3.

Table 3. Client steps enum types as defined in XrdSecProtocolgsi .hh.The Rtag column
indicates if an Rtag, signed with the server private key, is present. The last column indicates
whether the main buffer bmai is encrypted with the session cipher.

Client step Code Description Rtag | Encrypted

kXGC_none 0

kXGC certreq | 1000 | Request server certificate Y N
kXGC_cert 1001 | Packet with client (proxy) certificate Y Y
kXGC_sigpxy | 1002 | Packet with signed client proxy certificate Y Y

The server steps are enumerated by the enum kgsiserverSteps. They describe the
handshake steps from the server point of view, and are encoded in the messages send by the
server to the client. They are reported in Table 4.

XRootD GSI Protocol Specifications 11

Table 4. Server steps enum types as defined in XrdSecProtocolgsi.hh. The Rtag column
indicates if an Rtag, signed with the client private key, is present. The last column indicates
whether the main buffer bmai is encrypted with the session cipher.

Server step Code Description Rtag | Encrypted

kXGS_none 0

kXGS _init 2000 | fake code used the first time N N

kXGS_cert 2001 packet with server certificate Y N

kXGS_pxyreq | 2002 packet with client proxy request to be signed Y Y
Client side

Common pre-step processing

The information exchanged is first deserialized and then interpreted. The following steps are
performed by the client on the buffer received by the server:

1. Update the TimeStamp and the internal counter Tter in gsiHSVars;

2. Deserialize the received buffer (internal name bpar);

3. Check the protocol ID string to be “gsi”;

4. Determine the step required by the server

a. Ifbpar->GetStep () is null, assume itis kXGS init
5. Make sure that XxrdSecEntity: :name if filled for the protocol instance; honour the env
XrdSecUSER settings if needed.

The remaining analysis of the received buckets depends on the server step.

Step processing

Step: kXGS _init

Received buffer

The received buffer contains the protocol initialization string:
"v:<version>,c:<crypto module>,ca:<hash of server CA>"

XRootD GSI Protocol Specifications 12

where:

<version> protocol version run by the server int
<crypto module> pipe ‘| separate list of crypto modules string
<hash of server CA> pipe ‘| separated hashes for the server CA string

Additional input information

The client also honours possible settings via the login URL. The following variables are
checked:

xrd.gsiusrpxy location of the user proxy UsrProxy
xrd.gsiusrcrt location of the user certificate UsrCert
xrd.gsiusrkey location of the user certificate key UsrKey

The last column indicates the name of the internal variable overwritten by the corresponding
URL setting.

Actions performed

The client performs the following actions:
1. Parse the protocol initialization string and saves the extracted information in the internal
handshake state structure;
2. Resolve, if any, the place-holders in user certificate, key and proxy file paths (UsrCert,
UsrKey and UsrProxy, respectively)
3. Loads the local proxy certificate from /tmp/x509up u<uid> or the path defined by the
env X509 USER PROXY
a. If no valid proxies are found, initialize the proxy using the end-user certificate
from SHOME/ .globus/usercert.pem or the path defined by the env
X509 USER CERT
i. Ifneeded - and the process is attached to a TTY - the password for the
end-user certificate private key will be prompted; the private key is taken
from $HOME/ .globus/userkey.pemoOr X509 USER KEY .
b. Saved in the local gsiHSVars state variable for optimized subsequent use
4. Loads the RSA private key of the proxy is loaded in sessionKsig and used for
signatures .

Preparation of the reply to kXGS _init

The client creates the main handshake information buffer bmai as a copy of the received global
buffer bpar .
The following information is added the global buffer bpar:
1. A bucket of type kXRS cryptomod with the name of the chosen cryptographic module;
ss1 is the only one available currently;
2. Abucket of type kXRS version with the client version, 32-bit int, marshalled,
3. Abucket of type kXRS issuer hash with the hash of the issuer of the user certificate

XRootD GSI Protocol Specifications 13

a. For compatibility arguments, more than one hash can be given; these must be
separated by a |
4. Abucket of type kXRS clnt opts with the client options as defined by the Options
field of the client gsiHSVars instance, a 32-bit integer, marshalled.

The client sets the next step, internally nextstep, for the server to be kXGC_certreaq.

Step: kKXGS_cert

Received buffer

The information is contained in both the global and main buffers as described in Tables 5a and
5b.

Table 5a. Content of the global buffer bpar for step kXGS cert

Bucket Type Bucket content Example, comments
kXRS cryptomod const char * ssl
kXRS cipher alg const char * aes-128-cbc:bf-cbc:des-ede3-cb
C
kXRS cipher Raw buffer DH parameters, signed
kXRS md alg const char * sha256:shal
kXRS x509 const char * Server certificate, PEM format
kXRS main const char * bmai (see Table 5b), plain text

Table 5b. Content of the global buffer bmai for step kXGS cert

Bucket Type Bucket content Example, comments
kXRS signed rtag Raw buffer Client challenge signed
kXRS rtag const char * Server challenge

Actions performed

The client performs the following actions:
1. Check the cached timestamp against the current timestamp; allow for 300 seconds
skew;
2. Get from the global buffer the bucket of type kXRS cipher alg with the cipher
algorithm list supported by the server; chosen the first one supported locally; update the

XRootD GSI Protocol Specifications 14

bucket with the name of the chosen algorithm; the length of the IV which will prefix
encrypted buffers is passed as ‘#<IV_length>’, for example: aes-128-cbc#16

3. Get from the global buffer the bucket of type kXRS x509 with the server certificate and
used it to finalize the server certificate chain; verify the chain validity.

a. Drop bucket kxRS %509 from the global buffer;

4. Verify the server identity: check the server hostname against the certificate Distinguished
Name (DN) and, possibly, the Alternative names;

5. Extract the public key from the server certificate and save it in sessionKver;

6. Get from the global buffer the bucket of type kXRS cipher with the server public
parameters for DH key agreement, initialize the session cipher and store it in
sessionKey;

a. Drop bucket kXRS cipher from the global buffer;

7. Get from the global buffer the bucket of type kXRS md alg with the message digest
algorithm list supported by the server; chosen the first one supported locally; update the
bucket with the name of the chosen algorithm

8. Get from the global buffer the bucket of type kXRS main and deserialize it .

Preparation of the reply to kXGS_cert

The following information is added the global buffer bpar:

1. A bucket of type kXRS puk with the client public key, extracted from the client certificate
and exported into a string in PEM format, i.e. base64 encoded data surrounded by
header lines.

2. Abucket of type kXRS cipher with the client public parameters for DH key agreement,
signed with the client private key;

3. A bucket of type kXRS x509 with the client proxy certificate;

The following information is added the global buffer bma1 :
1. A bucket of type kXRS user with the name of the user.

The client sets the next step, internally nextstep, for the server to be kXGC cert.
Step: kXGS_pxyreq

Received buffer

The information is contained in both the global and main buffers as described in Tables 6a and
6b.

Table 6a. Content of the global buffer bpar for step kXGS pxyreqg

Bucket Type Bucket content Example, comments
kXRS cryptomod const char * ssl
kXRS main Raw buffer bmai encrypted with sessionKey

XRootD GSI Protocol Specifications 15

Table 6b. Content of the global buffer bmai for step kXGS pxyreqg

Bucket Type Bucket content Example, comments
kXRS %509 req const char * Proxy request, PEM format
kXRS signed rtag Raw buffer Client challenge signed

Actions performed

The client performs the following actions:
1. Check the cached timestamp against the current timestamp; allow for 300 seconds
skew;
2. Get from the global buffer the bucket of type kXRS main, decrypt with sessionKey
and deserialize it
3. If delegation option kOptsSigReq is set
a. Get from the main buffer the bucket of type kXRS x509 req with the proxy
request; extract the request into a XxrdCryptoX509Req instance
b. Sign the request with the client proxy private key
c. Export the signed request into a bucket of type kXRS x509; add the bucket to
the main buffer .
4. Else, if delegation option kOptsFwdPxy is set
a. Export the private key of the client proxy as string; add it to the main buffer as
bucket of type kXRS x509 ;

Preparation of the reply to kXGS_pxyreq

The client sets the next step, internally nextstep, for the server to be kXGC sigpxy.
In case of errors in the processing of the proxy request, a bucket with the error message is
added the global buffer bpar.

Common post-step processing

The following actions are performed after the processing of the step peculiarities:

1. The step nextstep is set both in the global buffer and in the main buffer;

2. If arandom challenge was present in the received main buffer, in the form of a bucket of
type kXRS_rtag, sign the challenge with the private key sessionKsig; the bucket
type is updated to kXRS signed rtag;

3. A new random challenge is added to the main bucket as a bucket of type kXRS rtag;

4. The new random challenge and the current time stamp are saved to a local cache;

XRootD GSI Protocol Specifications 16

5. The main buffer is serialized; the result of the serialization is used to update - or add - a
bucket of type kXRS main into the global buffer.
6. The main bucket is encrypted with session cipher sessionKey
a. This does not apply to the first client step when sessionKey is not yet defined
7. The global buffer is serialized; a new instance of XxrdSecCredentials is created with
the result of the serialization, to be handled over to the server .

Errors / failures

The client signals an error condition returning from getCredentials () with a null buffer. An
error code is filled in the XrdOucErrInfo instanced passed as argument to
getCredentials (). The following error codes can be issued by the client. They are defined
in XrdSecgsi/XrdSecProtocolgsi.hh and schematically described in Table 5.

Table 5. Errors issued by clients

Error Code Situation

kGSErrParseBuffer 10000 | The received buffer could not be parsed

kGSErrDecodeBuffer 10001 | Not enough memory for the global buffer

kGSErrBadProtocol 10003 | Protocol ID does not match the expected one (gsi)

kGSErrCreateBucket 10004 | Bucket can not be created; type in message string

kGSErrSerialBuffer 10007 | Main buffer serialization fails

kGSErrBadRndmTag 10011 | Random tag check failed

kGSErrNoCipher 10013 | No cipher when expected
kGSErrBadOpt 10015 | Unrecognized step
kGSErrNoBuffer 10019 | No input parameters when expected
kGSErrNoPublic 10021 | Problem extracting public component of cipher
kGSErrAddBucket 10022 | Bucket can not be added; type in message string
kKGSErrinit 10024 | Error during protocol initialization
kGSErrError 10026 | Generic error

XRootD GSI Protocol Specifications 17

Server side

Common pre-step processing

The information exchanged is first deserialized and then interpreted. The following steps are

performed by the server on the buffer received by the client:
1. Update the TimeStamp in gsiHSVars;
2. Deserialize the received buffer (internal name bpar);
3. Check the protocol ID string to be “gsi”;
4. Determine the step required by the client

The remaining analysis of the received buckets depends on the client step.
Step processing

Step: kXGC_certreq

Received buffer

The information is contained in both the global and main buffers as described in Tables 7a and

7b.

Table 7a. Content of the global buffer bpar for step kXGC certreqg

Bucket Type Bucket content Example | default | comments
kXRS version kXR_int32 10400, marshalled
kXRS cryptomod const char * ssl
kXRS issuer hash const char * 5168735£.014339b4bc.0
kXRS clnt opts kXR_int32
kXRS main const char * bmai (see Table 7b), plain text

Table 7b. Content of the global buffer bmai for step kXGC certreqg

Bucket Type Bucket content Example, comments

kXRS rtag const char * Challenge for the server

XRootD GSI Protocol Specifications

18

Actions performed

The server performs the following actions:

1.

Extract from the global buffer the bucket of type kXRS cryptomod with the list of
cryptographic module names supported by the client; load the first supported crypto
module available;

Extract from the global buffer the bucket of type kXRS version with gsi protocol
version run by the client; unmarshal the content; save the client gsi protocol version in
the gsiHSvars instance;

Extract from the global buffer the bucket of type kXRS issuer hash with the hash of
the issuer of the client certificate; load the related CA certificate;

Load the RSA private key of the server certificate in sessionKsig , to be used for
signatures .

Extract from the global buffer the bucket of type kXRS main with the main bucket;
deserialize it;

Extract from the global buffer the bucket of type kXRS clnt opts with the client
options; unmarshal the content; save the options in the gsiHSvars instance;

Preparation of the reply to kXGC_certreq

The following information is added the global buffer bpar:

4.
5.

7.

A bucket of type kXRS cipher with the server public part of the cipher;

A bucket of type kXRS cipher alg with the ‘| separated list of supported cipher
algorithms, preferred first;

A bucket of type kXRS md alg with the ‘|" separated list of supported message digest
algorithms, preferred first;

A bucket of type kXRS x509 with the server certificate;

The server sets nextstep for the server to be kXGS cert. Return kgST more .

Step: kKXGC_cert

Received buffer

The information is contained in both the global and main buffers as described in Tables 8a and

8b.
Table 8a. Content of the global buffer bpar for step kXGC cert
Bucket Type Bucket content Example, comments
kXRS cryptomod const char * ssl
kXRS cipher alg const char * aes-128-cbc#16
kXRS md alg const char * sha256

XRootD GSI Protocol Specifications 19

kXRS cipher

Raw buffer

DH paramaters, signed

kXRS puk

const char *

Client public key, PEM format

kXRS main

Raw buffer

Encrypted with sessionKey

Table 8b. Content of the g

lobal buffer bmai for step kXGC cert

Bucket Type

Bucket content

Example, comments

kXRS signed rtag const char * Server challenge signed with

client private key

kXRS rtag const char * Challenge for the server

kXRS x509 const char * Client proxy certificate, PEM format

Actions performed

The server performs the following actions:

1.

Check the cached timestamp against the current timestamp; allow for 300 seconds
skew;

Get from the global buffer the bucket of type kXRS cipher alg with the cipher
algorithm chosen by the client; cross-check that it is supported locally

a. Drop bucket kXRS cipher alg from the global buffer;

Get from the global buffer the bucket of type kXRS puk with the client public key in PEM
format and import it into sessionKver;

Get from the global buffer the bucket of type kXRS cipher with the client public
parameters for DH key agreement; decrypt the bucket with sessionKver; initialize the
session cipher and store it in sessionKey;

a. Drop bucket kXRS cipher from the global buffer;

b. Disable any delegation options if the DH public parameters are not signed;
Extract from the global buffer the bucket of type kXRS main with the main bucket;
decrypt the bucket with sessionKey; deserialize the main buffer;

Get from the global buffer the bucket of type kXRS =509 with the client proxy certificate
and used it to finalize the client proxy certificate chain; verify the chain validity.

a. Drop bucket kXRS %509 from the global buffer;

Extract the public key from the client certificate and make sure that it matches the one
extracted from the dedicated bucket and previously saved in sessionKver ;

Get from the global buffer the bucket of type kXRS md alg with the message digest
algorithm chosen by the client; load it in sessionMD.

If a lookup of the gridmap file is required, check the gridmap file and fill
Entity.name with the result; in case of failure, use the DN - or the DN hash, if
required;

XRootD GSI Protocol Specifications 20

10. If the extraction of the VOMS attributes is required, call the chosen function and fill the
relevant fields in Ent ity with the result;
11. If authorization is required, run the relevant options.
12. If delegate proxies are requested
a. Save the client proxy certificate chain;
b. Prepare the proxy request (see dedicated section), save it into a bucket of type
kXRS_ x509 reqand add it to the main buffer bmain.

Preparation of the reply to kXGC_cert

If delegate proxies are requested

1. Set nextstep for the server to be kXGS pxyreq.

2. Return kgST more;
Otherwise, set nextstep for the server to be kXGS none; return kgST ok or
kgST error.

Step: kXGC_sigpxy

Received buffer

The information is contained in both the global and main buffers as described in Tables 9a and
9b.

Table 9a. Content of the global buffer bpar for step kXGC sigpxy

Bucket Type Bucket content Example, comments
kXRS cryptomod const char * ssl
kXRS main Raw buffer Encrypted with sessionKey

Table 8b. Content of the global buffer bmai for step kXGC cert

Bucket Type Bucket content Example, comments
kXRS x509 const char * Client delegated proxy certificate, PEM
format
kXRS signed rtag const char * Server challenge signed with

client private key

XRootD GSI Protocol Specifications 21

Actions performed

The server performs the following actions:

1. Extract from the global buffer the bucket of type kXRS main with the main bucket;
decrypt the bucket with sessionKey; deserialize the main buffer;

2. Get from the global buffer the bucket of type kXRS =509 ; this will contain either the
client proxy private key or the full delegate proxy certificate (signed request); use to
finalize the delegate client proxy certificate chain;

3. Honour the export options for the delegate proxies

a. Export the delegated proxy as string and save itto Entity.creds;

b. If a file is required, extract the bucket with the user name, type kXRS user;
prepare the file name, resolving the relevant place-holders, and save the
delegated proxy to file.

Preparation of the reply to kXGC _sigpxy

Set nextstep for the server to be kXGS none; return kgST ok or kgST error.

Common post-step processing

The following actions are performed after the processing of the step peculiarities:

8. The step nextstep is set both in the global buffer and in the main buffer;

9. If a random challenge was present in the received main buffer, in the form of a bucket of
type kXRS rtag, sign the challenge with the private key sessionKsig; the bucket
type is updated to kXRS signed rtag;

10. A new random challenge is added to the main bucket as a bucket of type kXRS rtag;

11. The new random challenge and the current time stamp are saved to a local cache;

12. The main buffer is serialized; the result of the serialization is used to update - or add - a
bucket of type kXRS main into the global buffer.

13. The main bucket is encrypted with session cipher sessionKey

a. This does not apply to the first client step when sessionKey is not yet defined

14. The global buffer is serialized; a new instance of XxrdSecCredentials is created with

the result of the serialization, to be handled over to the client .

Errors / failures

Servers signals an error condition returning kgST error from Authenticate (). An error
code is filled in the XrdOucErrInfo instanced passed as argument to Authenticate ().
The following error codes can be issued by the client. They are defined in
XrdSecgsi/XrdSecProtocolgsi .hh and schematically described in Table 10.

XRootD GSI Protocol Specifications 22

Table 10. Errors issued by servers. An error message is also printed.

Error Code Situation

kGSErrParseBuffer 10000 | The received buffer could not be parsed

kGSErrDecodeBuffer 10001 | Not enough memory for the global buffer

kGSErrBadProtocol 10003 | Protocol ID does not match the expected one (gsi)

kGSErrCreateBucket 10004 | Bucket can not be created; type in message string

kGSErrSerialBuffer 10007 | Main buffer serialization fails

kGSErrBadRndmTag 10011 | Random tag check failed

kGSErrBadOpt 10015 | Unrecognized step
kGSErrNoPublic 10021 | Problem extracting public component of cipher
kGSErrAddBucket 10022 | Bucket can not be added; type in message string
kGSErrinit 10024 | Error during protocol initialization
kGSErrError 10026 | Generic error; typically during sanity checks

(Delegated) Proxy certificates

Proxy certificates are X509 certificates of limited duration, signed by an end-entity certificate,
and containing dedicated extensions [2]. A delegated proxy is a X509 proxy certificate issued by
a X509 proxy certificate.

The creation of a proxy requires the following steps:
1. Load the end-entity certificate and private key
2. Create a X509 certificate request
3. Generate a private/public key pair; assign it to the X509 request
4. Generate a unique subject name for the proxy certificate:
a. Duplicate the end-entity certificate subject name
b. Generate a unique serial number

XRootD GSI Protocol Specifications 23

c. Add, to the duplicate certificate subject name, the unique serial number as new
entry named “CN”
d. Set the generated subject name in the X509 request
5. Create the extension certProxyInfo
a. Set the policy language on the extension to inheritALL [1]
i. Policy language independent [1] and limited proxy not implemented
Set the path length constraint, if required
Set the extension OID to “1.3.6.1.5.5.7.1.14”
Flag the extension as critical
Format the extension data for addition to X509 request
Create a stack of extensions; add the extension to the stack, add the stack to the
X509 request
g. Sign the X509 request with the public key of the X509 request
6. Build the proxy certificate
a. Create an empty X509 certificate
Set the version number to 3 (meaning: ‘extension are present’)
Set serial number, subject name and key from the X509 request
Set the issuer name to the the subject name of the end-entity certificate
Adjust the validity according to needs
Transfer all the extensions from the end-entity certificate
Add the certProxyInfo extension from the X509 request
Sign the proxy with the end-entity certificate key

~0oo00U

Sae@ -0 ao0CT

The process can be repeated starting from a X509 proxy certificate instead of a X509 end-entity
certificate; that is what is done to generated a delegate proxy.

Server identity verification

A crucial part to avoid man-in-the-middle attacks is the client verification of server identity. The
basic idea is that the client knows the name of the server it is contacting and expects to find this
name in the DN of the server certificate. Complications arise when hostname aliases are used,
and/or when the same server certificate is used by more servers, making use of the Subject
Alternative Name (SAN) support.

Support for SAN matching is introduced in v4.9, together with alternative ways to resolve the
hostname on the client, without necessarily relying on the DNS.

Despite the version, the client has the possibility to defined exceptions via the environment
variable XrdSecGSISRVNAMES, a comma-separated list of allowed/disallowed names,
supporting wild-cards.

XRootD GSI Protocol Specifications 24

References

[1] REC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile

[2] REC 3820, Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile

[3] XRootD Protocol Reference (Version 3.1.0, Version 4.x.y)

[4] XrdCrypto: interface to cryptographic functionality for XRooTD; in preparation.

[5] XrdSut: set of utilities used for authentication purposes; in preparation.

[6] REC 2631: Diffie-Hellman Key Agreement Method

XRootD GSI Protocol Specifications

25

https://www.ietf.org/rfc/rfc3280.txt
https://www.ietf.org/rfc/rfc3820.txt
http://xrootd.org/doc/dev45/XRdv310.htm
http://xrootd.org/doc/dev49/XRdv400.htm
https://www.ietf.org/rfc/rfc2631.txt

Appendix A - Relevant parts of header files

XrdSecEntity.hh

#define XrdSecPROTOIDSIZE 8

class XrdSecEntity
{
public:
char prot [XrdSecPROTOIDSIZE]; // Protocol used
char *name; // Entity's name
char *host; // Entity's host name dnr dependent
char *vorg; // Entity's virtual organization
char *role; // Entity's role
char *grps; // Entity's group names
char *endorsements; // Protocol specific endorsements
char *moninfo; // Additional information for monitoring
char *creds; // Raw client credentials or certificate
int credslen; // Length of the 'creds' field
int rsvd; // Reserved field
XrdNetAddrInfo *addrInfo; // Connection details from getProtocol
const char *tident; // Trace identifier always preset
void *sessvar; // Plugin settable storage pointer
// that is common to the session. Free
// it in your XrdSfsFileSystem::Disc ()
// implementation, as needed.
XrdSecEntity (const char *pName = "")
{Reset () ;
strncpy (prot, pName, XrdSecPROTOIDSIZE-1);
prot [XrdSecPROTOIDSIZE-1] = '\0';
}
~XrdSecEntity () {}
void Reset () {
memset (prot, 0, XrdSecPROTOIDSIZE);
name = 0; host = 0; vorg = 0;
role = 0; grps = 0; endorsements = 0;
moninfo = 0; creds = 0; credslen = 0;
rsvd = 0; addrInfo = 0; tident = 0; sessvar = 0;

b

XRootD GSI Protocol Specifications

26

XrdSeclnterface.hh

struct XrdSecBuffer
{

int size; //!< Size of the buffer or length of data in the buffer
char *buffer; //!< Pointer to the buffer
XrdSecBuffer (char *bp=0, int sz=0) : size(sz), buffer (bp), membuf (bp) {}
~XrdSecBuffer () {if (membuf) free (membuf);}

private:

char *membuf; // Stable copy of the buffer address
}i

typedef XrdSecBuffer XrdSecCredentials;
typedef XrdSecBuffer XrdSecParameters;

class XrdSecProtocol

{

public:

/e
//! Structure holding the entity's identification. It is filled in by a

//! successful call to Authenticate() (i.e. it returns 0).

[
XrdSecEntity Entity;

/e
//! Authenticate a client.

//!

//! @param cred Credentials supplied by the client.

//! @param parms Place where the address of additional authentication data is
a to be placed for another autrhentication handshake.

//! @param einfo The error information object where error messages should be

A placed. The messages are returned to the client. Should einfo

A be null, messages should be written to stderr.

e

//' Q@Qreturn > 0 -> parms present (more authentication needed)

//! = 0 -> Entity present (authentication suceeded)

//! < 0 -> einfo present (error has occured)

et T

virtual int Authenticate (XrdSecCredentials *cred,
XrdSecParameters **parms,
XrdOucErrInfo *einfo=0)=0;

/== e

//! Generate client credentials to be used in the authentication process.

/7!
XRootD GSI Protocol Specifications

//! Q@param
//!
//! @param
//!
//!
//!
//! @return
//!

parm Pointer to the information returned by the server either in
the initial login response or the authmore response.

einfo The error information object where error messages should be
placed. The messages are returned to the client. Should einfo
be null, messages should be written to stderr.

Success: Pointer to credentials to sent to the server. The caller
is responsible for deleting the object.

A Failure: Null pointer with einfo, if supplied, containing the

A reason for the failure.

/e

virtual XrdSecCredentials *getCredentials (XrdSecParameters *parm=0,
XrdOucErrInfo *einfo=0)=0;

[m e

//! Encrypt

//! @param
//! @param
//! Qparam
//!

//! Qreturn

virtual int

data in inbuff using the session key.
inbuff buffer holding data to be encrypted.
inlen length of the data.

outbuff place where a pointer to the encrypted data is placed.

< 0 Failed, the return value is -errno of the reason. Typically,

-EINVAL - one or more arguments are invalid.
-NOTSUP - encryption not supported by the protocol
-ENOENT - Context not innitialized

= 0 Success, outbuff contains a pointer to the encrypted data.
The caller is responsible for deleting the returned object.

Encrypt (const char *inbuff, // Data to be encrypted
int inlen, // Length of data in inbuff
XrdSecBuffer **outbuff // Returns encrypted data
)

(void) inbuff; (void) inlen; (void) outbuff;
return -ENOTSUP;

//! Decrypt

//! @param
//! @param
//! @param
//!

//! Q@return
//!

//!
/===

data in inbuff using the session key.

inbuff buffer holding data to be decrypted.
inlen length of the data.
outbuff place where a pointer to the decrypted data is placed.

< 0 Failed,the return value is -errno (see Encrypt).
= 0 Success, outbuff contains a pointer to the decrypted data.
The caller is responsible for deleting the returned object.

XRootD GSI Protocol Specifications

28

virtual int Decrypt (const char *inbuff, // Data to be decrypted
int inlen, // Length of data in inbuff
XrdSecBuffer **outbuff // Buffer for decrypted data
)

(void) inbuff; (void) inlen; (void) outbuff;
return -ENOTSUP;

//! Sign data in inbuff using the session key.

//! Q@param inbuff buffer holding data to be signed.
//! @param inlen length of the data.

//! @param outbuff place where a pointer to the signature is placed.

//! @return < 0 Failed,the return value is -errno (see Encrypt).

//! = 0 Success, outbuff contains a pointer to the signature.

a The caller is responsible for deleting the returned object.

[m e -
virtual int Sign(const char *inbuff, // Data to be signed

int inlen, // Length of data in inbuff
XrdSecBuffer **outbuff // Buffer for the signature
)

(void) inbuff; (void) inlen; (void) outbuff;
return -ENOTSUP;

//! Verify a signature using the session key.

//!

//! @param inbuff buffer holding data to be verified.
//! @param inlen length of the data.

//! @param sigbuff pointer to the signature data.

//! @param siglen length of the signature data.

//!

//! @return < 0 Failed,the return value is -errno (see Encrypt).

A = 0 Success, signature is correct.
//! > 0 Failed to verify, signature does not match inbuff data.
e
virtual int Verify(const char *inbuff, // Data to be decrypted

int inlen, // Length of data in inbuff

const char *sigbuff, // Buffer for signature
int siglen) // Length if signature

(void) inbuff; (void) inlen; (void) sigbuff; (void) siglen;

XRootD GSI Protocol Specifications 29

return -ENOTSUP;

/e
//! Get the current encryption key (i.e. session key)

//!

//! @param buff buffer to hold the key, and may be null.

//! @param size size of the buffer.

//!

//! @Qreturns < 0 Failed, returned value if -errno (see Encrypt)

a >= 0 The size of the encyption key. The supplied buffer of length
//! size hold the key. If the buffer address is supplied, the

a key is placed in the buffer.

//!

/m e -
virtual int getKey (char *buff = 0, int size = 0)

{
(void) buff; (void) size;
return -ENOTSUP;

/==
//! Set the current encryption key

/7!

//! Q@param buff buffer that holds the key.

//! Qparam size size of the key.

/7!

//! @returns: < 0 Failed, returned value if -errno (see Encrypt)

a = 0 The new key has been set.

/==
virtual int setKey (char *buff, int size)

{
(void) buff; (void) size;
return -ENOTSUP;

//! Delete the protocol object. DO NOT use C++ delete() on this object.

virtual void Delete ()=0; // Normally does "delete this"

/= e

//! Constructor

/=
XrdSecProtocol (const char *pName) : Entity(pName) {}

XRootD GSI Protocol Specifications 30

protected:

/e e
//! Destructor (prevents use of direct delete)

[
virtual ~XrdSecProtocol () {}

b

XrdSutBucket.hh

class XrdSutBucket

{

public:
kXR int32 type;
kXR int32 size;
char *pbuffer;

XrdSutBucket (char *bp=0, int sz=0, int ty=0);
XrdSutBucket (XrdOucString &s, int ty=0);

XrdSutBucket (XrdSutBucket &b);

virtual ~XrdSutBucket () {if (membuf) delete[] membuf;}

void Update (char *nb = 0, int ns = 0, int ty = 0); // Uses 'nb'
int Update (XrdOucString &s, int ty = 0);
int SetBuf (const char *nb = 0, int ns = 0); // Duplicates 'nb'

void Dump (int opt = 1);
void ToString (XrdOucString &s);

// Equality operator
int operator==(const XrdSutBucket &b);

// Inequality operator
int operator!=(const XrdSutBucket &b) { return ! (*this == b); }

private:

char *membuf;

b

XRootD GSI Protocol Specifications

XrdSutBuckList.hh

class XrdSutBuckListNode {

private:
XrdSutBucket *buck;
XrdSutBuckListNode *next;
public:

XrdSutBuckListNode (XrdSutBucket *b = 0, XrdSutBuckListNode *n = 0)
{ buck = b; next = n;}
virtual ~XrdSutBuckListNode () { }

XrdSutBucket *Buck () const { return buck; }

XrdSutBuckListNode *Next () const { return next; }

void SetNext (XrdSutBuckListNode *n) { next = n; }
b

class XrdSutBuckList {

private:
XrdSutBuckListNode *begin;
XrdSutBuckListNode *current;
XrdSutBuckListNode *end;
XrdSutBuckListNode *previous;

int size;

XrdSutBuckListNode *Find (XrdSutBucket *b);
public:

XrdSutBuckList (XrdSutBucket *b = 0);

virtual ~XrdSutBuckList () ;

// Access information

int Size () const { return size; }

XrdSutBucket *End () const { return end->Buck(); }

// Modifiers

void PutInFront (XrdSutBucket *b);
void PushBack (XrdSutBucket *b);
void Remove (XrdSutBucket *Db);

// Pseudo - iterator functionality

XrdSutBucket *Begin () ;

XrdSutBucket *Next () ;

b

XRootD GSI Protocol Specifications

XrdSutBuffer.hh

class XrdSutBuffer {

private:
XrdSutBuckList fBuckets;
XrdOucString fOptions;
XrdOucString fProtocol;
kXR_int32 fStep;
public:
XrdSutBuffer (const char *prot, const char *opts = 0)

{fOptions = opts; fProtocol = prot; fStep = 0;}
XrdSutBuffer (const char *buffer, kXR int32 length);
virtual ~XrdSutBuffer();

int AddBucket (char *bp=0, int sz=0, int ty=0)
{ XrdSutBucket *b = new XrdSutBucket (bp,sz,ty):
if (b) { fBuckets.PushBack(b); return 0;} return -1; }
int AddBucket (XrdOucString s, int ty=0)

{ XrdSutBucket *b = new XrdSutBucket (s, ty);
if (b) { fBuckets.PushBack(b); return 0;} return -1; }
int AddBucket (XrdSutBucket *b)
{ if (b) { fBuckets.PushBack(b); return 0;} return -1; }

int UpdateBucket (const char *bp, int sz, int ty);
int UpdateBucket (XrdOucString s, int ty);

// Remove from the list, to avoid destroy by ~XrdSutBuffer

void Remove (XrdSutBucket *b) { fBuckets.Remove (b); }

void Dump (const char *stepstr = 0);

void Message (const char *prepose = 0);

int Serialized(char **buffer, char opt = 'n');

void Deactivate (kXR int32 type); // Deactivate bucket (type=-1 for cleanup)

// To fill / access buckets containing 4-byte integers (status codes, versions ...)
kXR int32 MarshalBucket (kXR int32 type, kXR int32 code);
kXR int32 UnmarshalBucket (kXR int32 type, kXR int32 &code);

XrdSutBucket *GetBucket (kXR int32 type, const char *tag = 0);
XrdSutBuckList *GetBuckList () const { return (XrdSutBuckList *)&fBuckets; }

int GetNBuckets () const { return fBuckets.Size(); }
const char *GetOptions() const { return fOptions.c str(); }
const char *GetProtocol () const { return fProtocol.c str(); }
int GetStep () const { return (int) fStep; }

void SetStep (int s) { fStep = (kXR int32)s; }

void IncrementStep () { f£Step++; }

}i
XRootD GSI Protocol Specifications 33

XrdSutAux.hh (excerpt)

#define XrdSutMAXBUF 4096
#define XrdSutMAXPPT 512
#define XrdSutMAXBUCKS 10
#define XrdSutMAXINT64LEN 25
#define XrdSutPRINTLEN 100

enum kXRSBucketTypes {

kXRS none = 0, // end-of-vector

kXRS inactive = 1, // inactive (dropped at serialization)

kXRS cryptomod = 3000, // 3000 Name of crypto module to use

kXRS main, // 3001 Main buffer

kXRS srv_seal, // 3002 Server secrets sent back as they are
kXRS clnt seal, // 3003 Client secrets sent back as they are
kXRS_puk, // 3004 Public Key

kXRS cipher, // 3005 Cipher

kXRS rtag, // 3006 Random Tag

kXRS_ signed rtag, // 3007 Random Tag signed by the client

kXRS user, // 3008 User name

kXRS host, // 3009 Remote Host name

kXRS creds, // 3010 Credentials (password, ...)

kXRS message, // 3011 Message (null-terminated string)
kXRS srvID, // 3012 Server unique ID

kXRS sessionID, // 3013 Handshake session ID

kXRS version, // 3014 Package version

kXRS_status, // 3015 Status code

kXRS localstatus, // 3016 Status code(s) saved in sealed buffer
kXRS_othercreds, // 3017 Alternative creds (e.g. other crypto)
kXRS cache idx, // 3018 Cache entry index

kXRS clnt opts, // 3019 Client options, if any

kXRS_error code, // 3020 Error code

kXRS_ timestamp, // 3021 Time stamp

kXRS x509, // 3022 X509 certificate

kXRS issuer hash, // 3023 Issuer hash

kXRS x509 req, // 3024 X509 certificate request

kXRS_ cipher alg, // 3025 Cipher algorithm (list)

kXRS md_alg, // 3026 MD algorithm (list)

kXRS afsinfo, // 3027 AFS information

kXRS reserved /7 Reserved

b

XRootD GSI Protocol Specifications

XrdSecProtocolgsi.hh

/*************************‘k*********************~k*****k*************************/

/*

De fines */

/**/

typedef XrdOucString String;

typedef

#define
#define
#define
#define
#define
#define

#define

XrdCryptogsiX509Chain X509Chain;

XrdSecPROTOIDENT
XrdSecPROTOIDLEN
XrdSecgsiVERSION
XrdSecNOIPCHK
XrdSecDEBUG
XrdCryptoMax

kMAXBUFLEN

//

"gsit
sizeof (XrdSecPROTOIDENT)
10300

0x0001

0x1000

10

1024

// Message codes either returned by server or included in buffers

enum kgsiStatus {
kgST error =
kgST ok =
kgST more =
}i

// Client steps

enum kgsiClientSteps {

kXGC_none = 0,

kXGC certreq

kXGC cert,

kXGC sigpxy,

kXGC reserved
bi

// Server steps

enum kgsiServerSteps {

kXGS none = 0,

kXGS init

kXGS cert,

kXGS pxyreq,

kXGS reserved
bi

// Handshake options

enum kgsiHandshakeOpts {
kOptsDlgPxy =1,
kOptsFwdPxy = 2,

// error occured
// ok

// need more info

// 1000: request server certificate

// 1001: packet with (proxy) certificate

// 1002: packet with signed proxy certificate
//

// 2000: fake code used the first time

// 2001: packet with certificate

// 2002: packet with proxy req to be signed
//

// 0x0001: Ask for a delegated proxy
// 0x0002: Forward local proxy

XRootD GSI Protocol Specifications 35

kOptsSigReq =4, // 0x0004: Accept to sign delegated proxy

kOptsSrvReq = 8, // 0x0008: Server request for delegated proxy
kOptsPxFile = 1le, // 0x0010: Save delegated proxies in file
kOptsDelChn = 32, // 0x0020: Delete chain

kOptsPxCred = 64 // 0x0040: Save delegated proxies as credentials

i

// Error codes

enum kgsiErrors {

kGSErrParseBuffer = 10000, // 10000
kGSErrDecodeBuffer, // 10001
kGSErrLoadCrypto, // 10002
kGSErrBadProtocol, // 10003
kGSErrCreateBucket, // 10004
kGSErrDuplicateBucket, // 10005
kGSErrCreateBuffer, // 10006
kGSErrSerialBuffer, // 10007
kGSErrGenCipher, // 10008
kGSErrExportPukK, // 10009
kGSErrEncRndmTag, // 10010
kGSErrBadRndmTag, // 10011
kGSErrNoRndmTag, // 10012
kGSErrNoCipher, // 10013
kGSErrNoCreds, // 10014
kGSErrBadOpt, // 10015
kGSErrMarshal, // 10016
kGSErrUnmarshal, // 10017
kGSErrSaveCreds, // 10018
kGSErrNoBuffer, // 10019
kGSErrRefCipher, // 10020
kGSErrNoPublic, // 10021
kGSErrAddBucket, // 10022
kGSErrFinCipher, // 10023
kGSErrInit, // 10024
kGSErrBadCreds, // 10025
kGSErrError // 10026

}i

#define RELI (x) { 1f (x) delete x; }

#define REL2 (x,V) { if (x) delete x; 1if (y) delete y; }

#define REL3(x,y,z) { if (x) delete x; if (y) delete y; if (z) delete z; }

#define SafeDelete(x) { if (x) delete x ; x = 0; }
#define SafeDelArray(x) { if (x) delete [] x ; x = 0; }
#define SafeFree(x) { if (x) free(x) ; x = 0; }

// External functions for generic mapping

typedef char * (*XrdSecgsiGMAP t) (const char *, int);
typedef int (*XrdSecgsiAuthz t) (XrdSecEntity &);
typedef int (*XrdSecgsiAuthzInit t) (const char *);

XRootD GSI Protocol Specifications

typedef int (*XrdSecgsiAuthzKey t) (XrdSecEntity &, char *¥*);
// VOMS extraction

typedef XrdSecgsiAuthz t XrdSecgsiVOMS t;

typedef XrdSecgsiAuthzInit t XrdSecgsiVOMSInit t;

//

// This a small class to set the relevant options in one go
//

class XrdOucGMap;

class XrdOucTrace;

class gsiOptions {

public:

short debug; // [cs] debug flag

char mode; // [cs] 'c¢' or 's'

char *clist; // [s] list of crypto modules ["ssl"]

char “*certdir;// [cs] dir with CA info [/etc/grid-security/certificates]

char *crldir; // [cs] dir with CRL info [/etc/grid-security/certificates]

char *crlext; // [cs] extension of CRL files [.r0]

char *cert; // [s] server certificate [/etc/grid-security/root/rootcert.pem]
// [c] user certificate [$HOME/.globus/usercert.pem]

char *key; // [s] server private key [/etc/grid-security/root/rootkey.pem]
// [c] user private key [SHOME/.globus/userkey.pem]

char *cipher; // [s] list of ciphers [aes-128-cbc:bf-cbc:des-ede3-cbc]

char *md; // [s] list of MDs [sha256:md5]

int crl; // [cs] check level of CRL's [1]

int ca; // [cs] verification level of CA's [1]

int crlrefresh; // [cs] CRL refresh or expiration period in secs [1 day]

char ‘*proxy; //
char *valid; //

[c] user proxy [/tmp/x50%up u<uid>]

[
int deplen; // [c] depth of signature path for proxies [0]

[

[

[

c] proxy validity [12:00]

int bits; //
char *gridmap;//

c] bits in PKI for proxies [512]
s] gridmap file [/etc/grid-security/gridmap]
int gmapto; // [s] validity in secs of grid-map cache entries [600 s]

char “*gmapfun;// [s] file with the function to map DN to usernames [0]

char ‘*gmapfunparms;// [s] parameters for the function to map DN to usernames

char *authzfun;// [s] file with the function to fill entities [O0]

char “*authzfunparms;// [s] parameters for the function to fill entities [0]

int authzto; // [s] validity in secs of authz cache entries [-1 => unlimited]
int ogmap; // [s] gridmap file checking option
int dlgpxy; // [c] explicitely ask the creation of a delegated proxy; default 0
// [s] ask client for proxies; default: do not accept delegated
proxies
int sigpxy; // [c] accept delegated proxy requests
char “*srvnames;// [c] '|' separated list of allowed server names

char “*exppxy; // [s] template for the exported file with proxies

int authzpxy; // [s] 1f 1 make proxy available in exported form in the
'endorsement'
// field of the XrdSecEntity object for use in XrdAcc
int vomsat; // [s] 0 do not look for; 1 extract if any

char *vomsfun;// [s] file with the function to fill VOMS [0]
char “*vomsfunparms;// [s] parameters for the function to fill VOMS [0]

XRootD GSI Protocol Specifications

37

int moninfo; // [s] 0 do not look for; 1 use DN as default
int hashcomp; // [cs] 1 send hash names with both algorithms;
0 send only the default [1]

bool trustdns; // [cs] 'true' if DNS is trusted [true]

gsiOptions () { debug = -1; mode = 's'; clist = 0;
certdir = 0; crldir = 0; crlext = 0; cert = 0; key = 0;
cipher = 0; md = 0; ca =1 ; crl = 1; crlrefresh = 86400;
proxy = 0; valid = 0; deplen = 0; bits = 512;
gridmap = 0; gmapto = 600;
gmapfun = 0; gmapfunparms = 0; authzfun = 0;
authzfunparms = 0; authzto = -1;
ogmap = 1; dlgpxy = 0; sigpxy = 1; srvnames = 0;
exppxy = 0; authzpxy = 0;

vomsat = 1; vomsfun = 0; vomsfunparms = 0; moninfo = 0; hashcomp =
1; trustdns = true; }
virtual ~gsiOptions() { } // Cleanup inside XrdSecProtocolgsiInit

void Print (XrdOucTrace *t); // Print summary of gsi option status

b

class XrdSecProtocolgsi;
class gsiHSVars;

// From a proxy query
typedef struct {

X509Chain *chain;
XrdCryptoRSA *ksig;
XrdSutBucket *cbck;

} ProxyOut t;

// To query proxies

typedef struct {
const char *cert;
const char *key;
const char *certdir;
const char *out;
const char *valid;
int deplen;
int bits;

} ProxyIn t;

template<class T>

class GSIStack {

public:

void Add(T *t) {
char k[40]; snprintf(k, 40, "%p", t):
mtx.Lock () ;
if (!stack.Find(k)) stack.Add(k, t, 0, Hash count); // We need an additional
count

XRootD GSI Protocol Specifications

stack.Add(k, t, 0, Hash count);
mtx.UnLock () ;
}
void Del (T *t) {
char k[40]; snprintf(k, 40, "%p", t):
mtx.Lock () ;
if (stack.Find(k)) stack.Del(k, Hash count);
mtx.UnLock () ;
}
private:
XrdSysMutex mtx;
XrdOucHash<T> stack;
}i

/**/

/* XrdSecProtocolgsi Class */

/**/

class XrdSecProtocolgsi : public XrdSecProtocol

{

friend class gsiOptions;

friend class gsiHSVars;

public:

int Authenticate (XrdSecCredentials *cred,

XrdSecParameters **parms,
XrdOucErrInfo *einfo=0);

XrdSecCredentials *getCredentials (XrdSecParameters *parm=0,
XrdOucErrInfo *einfo=0) ;

XrdSecProtocolgsi (int opts, const char *hname, XrdNetAddrInfo &endPoint,
const char *parms = 0);

virtual ~XrdSecProtocolgsi() {} // Delete() does it all

// Initialization methods
static char *Init (gsiOptions o, XrdOucErrInfo *erp);

void Delete () ;

// Encrypt / Decrypt methods

int Encrypt (const char *inbuf, int inlen,
XrdSecBuffer **outbuf);
int Decrypt (const char *inbuf, int inlen,

XrdSecBuffer **outbuf);
// Sign / Verify methods

int Sign (const char *inbuf, int inlen,
XrdSecBuffer **outbuf);
int Verify(const char *inbuf, int inlen,

const char *sigbuf, int siglen);

XRootD GSI Protocol Specifications

// Export session key

int getKey (char *kbuf=0, int klen=0);
// Import a key

int setKey (char *kbuf, int klen);

// Enable tracing
static XrdOucTrace *EnableTracing();

private:
XrdNetAddrInfo epAddr;

// Static members initialized at startup

static XrdSysMutex gsiContext;
static String CAdir;
static String CRLdir;
static String DefCRLext;
static String SrvCert;
static String SrvKey;
static String UsrProxy;
static String UsrCert;
static String UsrKey;
static String PxyValid;
static int DepLength;
static int DefBits;
static int CACheck;
static int CRLCheck;
static int CRLDownload;
static int CRLRefresh;
static String DefCrypto;
static String DefCipher;
static String DefMD;
static String DefError;
static String GMAPFile;
static int GMAPOpt;
static bool GMAPuseDNname;
static int GMAPCacheTimeOut;

static XrdSecgsiGMAP t GMAPFun;
static XrdSecgsiAuthz t AuthzFun;
static XrdSecgsiAuthzKey t AuthzKey;

static int AuthzCertFmt;
static int AuthzCacheTimeOut;
static int PxyReqOpts;

static int AuthzPxyWhat;
static int AuthzPxyWhere;
static String SrvAllowedNames;
static int VOMSAttrOpt;
static XrdSecgsiVOMS t VOMSFun;

static int VOMSCertFmt;
static int MonInfoOpt;

static bool HashCompatibility;

XRootD GSI Protocol Specifications

40

static bool TrustDNS;

//

// Crypto related info

static int ncrypt; // Number of factories
static XrdCryptoFactory *cryptF[XrdCryptoMax]; // their hooks

static int
static String

cryptID[XrdCryptoMax];
cryptName [XrdCryptoMax] ;

// their IDs
// their names

static XrdCryptoCipher *refcip[XrdCryptoMax]; // ref for session ciphers

//

// Caches

static XrdSutCache
static XrdSutCache

static XrdSutCache cachePbPxy;
static XrdSutCache cacheGMAPFun;
static XrdSutCache cacheAuthzFun;
//

// Services

static XrdOucGMap *servGMap;

//

// CA and CRL stacks

static GSIStack<XrdCryptoX509Chain>
static GSIStack<XrdCryptoX509Crl>
//

// GMAP control vars
static time t lastGMAPCheck;
static XrdSysMutex mutexGMAP;
//

// Running options / settings

cacheCAh; // Info about trusted CA's

cacheCert; // Server certificates info cache

// Client proxies cache;

// Cache for entries mapped by GMAPFun

// Cache for entities filled by AuthzFun

// Grid mapping service

// Stack of CA in use
// Stack of CRL in use

stackCA;
stackCRL;

// time of last check on GMAP
// mutex to control GMAP reloads

static int Debug; // [CS] Debug level

static bool Server; // [CS] If server mode

static int TimeSkew; // [CS] Allowed skew in secs for time
stamps

//

// for error logging and tracing

static XrdSysLogger Logger;

static XrdSysError eDest;

static XrdOucTrace *GSITrace;

// Information local to this instance

int options;

XrdCryptoFactory *sessionCF; // Chosen crypto factory

XrdCryptoCipher *sessionKey; // Session Key (result of the handshake)

XrdSutBucket *bucketKey; // Bucket with the key in export form

XrdCryptoMsgDigest *sessionMD; // Message Digest instance

XrdCryptoRSA *sessionKsig; // RSA key to sign

XrdCryptoRSA *sessionKver; // RSA key to verify

X509Chain *proxyChain; // Chain with the delegated proxy on servers

bool srvMode; // TRUE if server mode

XRootD GSI Protocol Specifications

41

// Temporary Handshake local info

gsiHSVars *hs;

// Parsing received buffers: client

int ParseClientInput (XrdSutBuffer *br, XrdSutBuffer **bm,
String &emsqg) ;
int ClientDoInit (XrdSutBuffer *br, XrdSutBuffer **bm,
String &cmsg) ;
int ClientDoCert (XrdSutBuffer *br, XrdSutBuffer **bm,
String &cmsg) ;
int ClientDoPxyreq (XrdSutBuffer *br, XrdSutBuffer **bm,

String &cmsg) ;

// Parsing received buffers: server

int ParseServerInput (XrdSutBuffer *br, XrdSutBuffer **bm,
String &cmsg) ;
int ServerDoCertreq (XrdSutBuffer *br, XrdSutBuffer **bm,
String &cmsg) ;
int ServerDoCert (XrdSutBuffer *br, XrdSutBuffer **bm,
String &cmsqg) ;
int ServerDoSigpxy (XrdSutBuffer *br, XrdSutBuffer **bm,

String &cmsg) ;

// Auxilliary functions
int ParseCrypto (String cryptlist);
int ParseCAlist (String calist);

// Load CA certificates
static int GetCA (const char *cahash,
XrdCryptoFactory *cryptof, gsiHSVars *hs = 0);
static String GetCApath (const char *cahash);
static bool VerifyCA (int opt, X509Chain *cca, XrdCryptoFactory *cf);
static int VerifyCRL (XrdCryptoX509Crl *crl,
XrdCryptoX509 *xca, XrdOucString crldir,
XrdCryptoFactory *CF, int hashalg);
bool ServerCertNameOK (const char *subject, String &e);
static XrdSutCacheEntry *GetSrvCertEnt (XrdSutCERef &gcref,
XrdCryptoFactory *cf,
time t timestamp, String &cal);

// Load CRLs
static XrdCryptoX509Crl *LoadCRL (XrdCryptoX509 *xca, const char *sjhash,
XrdCryptoFactory *CF, int dwld, int &err);

// Updating proxies
static int QueryProxy (bool checkcache, XrdSutCache *cache, const char *tag,
XrdCryptoFactory *cf, time t timestamp,
ProxyIn t *pi, ProxyOut t *po);
static int InitProxy(ProxyIn t *pi, XrdCryptoFactory *cf,
X509Chain *ch = 0, XrdCryptoRSA **key = 0);

XRootD GSI Protocol Specifications

42

// Error functions
static void ErrF (XrdOucErrInfo *einfo, kXR int32 ecode,
const char *msgl, const char *msg2 = 0,
const char *msg3 = 0);
XrdSecCredentials *ErrC (XrdOucErrInfo *einfo, XrdSutBuffer *bl,
XrdSutBuffer *b2,XrdSutBuffer *b3,
kXR int32 ecode, const char *msgl = 0,
const char *msg2 = 0, const char *msg3 = 0);
int ErrS(String ID, XrdOucErrInfo *einfo, XrdSutBuffer *bl,
XrdSutBuffer *b2, XrdSutBuffer *b3,
kXR int32 ecode, const char *msgl = 0,
const char *msg2 = 0, const char *msg3 = 0);

// Check Time stamp
bool CheckTimeStamp (XrdSutBuffer *b, int skew, String &emsqg);

// Check random challenge
bool CheckRtag (XrdSutBuffer *bm, String &emsqg);

// RAuxilliary methods
int AddSerialized(char opt, kXR int32 step, String ID,
XrdSutBuffer *bls, XrdSutBuffer *buf,
kXR int32 type, XrdCryptoCipher *cip);
// Grid map cache handling
static XrdSecgsiGMAP t // Load alternative function for mapping
LoadGMAPFun (const char *plugin, const char *parms);
static XrdSecgsiAuthz t // Load alternative function to fill XrdSecEntity
LoadAuthzFun (const char *plugin, const char *parms, int &fmt);
static XrdSecgsiVOMS t // Load alternative function to extract VOMS
LoadVOMSFun (const char *plugin, const char *parms, int &fmt);
static void //Lookup info for DN
QueryGMAP (XrdCryptoX509Chain* chain, int now, String &name);

// Entity handling
void CopyEntity (XrdSecEntity *in, XrdSecEntity *out, int *lout = 0);
void FreeEntity (XrdSecEntity *in);

// VOMS parsing
int ExtractVOMS (X509Chain *c, XrdSecEntity &ent);
b

class gsiHSVars {

public:
int Iter; // iteration number
time t TimeStamp; // Time of last call
String CryptoMod; // crypto module in use
int RemVers; // Version run by remote counterpart
XrdCryptoCipher *Rcip; // reference cipher
XrdSutBucket *Cbck; // Bucket with the certificate in export form

XRootD GSI Protocol Specifications 43

i

String ID; // Handshake ID (dummy for clients)
XrdSutPFEntry *Cref; // Cache reference
XrdSutPFEntry *Pent; // Pointer to relevant file entry
X509Chain *Chain; // Chain to be eventually verified
XrdCryptoX509Crl *Crl; // Pointer to CRL, if required
X509Chain *PxyChain; // Proxy Chain on clients
bool RtagOK; // Rndm tag checked / not checked
bool Tty; // Terminal attached / not attached
int LastStep; // Step required at previous iteration
int Options; // Handshake options;
int HashAlg; // Hash algorithm of peer hash name;
XrdSutBuffer *Parms; // Buffer with server parms on first iteration
gsiHSVars () { Iter = 0; TimeStamp = -1; CryptoMod = "";

RemVers = -1; Rcip = 0;

Cbck = 0;

ID = ""; Cref = 0; Pent = 0; Chain = 0; Crl = 0; PxyChain = 0;

~gsiHSVars ()

RtagOK = 0; Tty = 0; LastStep = 0; Options = 0; HashAlg = O0;
Parms = 0;}

{ SafeDelete (Cref);
if (Options & kOptsDelChn) {
// Do not delete the CA certificate in the cached reference
if (Chain) Chain->Cleanup(1l);
SafeDelete (Chain) ;

if (Crl) {
// This decreases the counter and actually deletes the object
// only when no instance is using it
XrdSecProtocolgsi::stackCRL.Del (Crl);
Crl = 0;

}

// The proxy chain is owned by the proxy cache; invalid proxies are

// detected (and eventually removed) by QueryProxy
PxyChain = 0;
SafeDelete (Parms); }

void Dump (XrdSecProtocolgsi *p = 0);

XRootD GSI Protocol Specifications

44

Appendix B - Details of bucket types

Table 1. Bucket types as defined in XxrdSutAux.hh. Last column indicates those used by gsi.

Name Number | Description Used by gsi
kXRS none 0 end-of-vector
kXRS_inactive 1 inactive (dropped at serialization) y
kXRS_cryptomod 3000 Name of crypto module to use y
kXRS_main 3001 Main buffer y
kXRS_srv_seal 3002 Server secrets sent back as they are y
kXRS cInt_seal 3003 Client secrets sent back as they are y
kXRS_puk 3004 Public Key y
kXRS_cipher 3005 Cipher y
kXRS rtag 3006 Random Tag y
kXRS_signed_rtag 3007 Random Tag signed by the client y
kXRS_user 3008 User name
kXRS_host 3009 Remote Host name
kXRS_creds 3010 Credentials (password, ...)
kXRS_message 3011 Message (null-terminated string)
kXRS_srvID 3012 Server unique ID
kXRS_sessionID 3013 Handshake session ID
kXRS_version 3014 Package version y
kXRS_status 3015 Status code y
kXRS _localstatus 3016 Status code(s) saved in sealed buffer
kXRS_othercreds 3017 Alternative creds (e.g. other crypto)

XRootD GSI Protocol Specifications 45

kXRS_cache_idx 3018 Cache entry index
kXRS_cInt_opts 3019 Client options, if any
kXRS_error_code 3020 Error code
kXRS_timestamp 3021 Time stamp
kXRS_x509 3022 X509 certificate
kXRS issuer_hash 3023 Issuer hash
kXRS_x509 req 3024 X509 certificate request
kXRS_cipher_alg 3025 Cipher algorithm (list)
kXRS_md_alg 3026 MD algorithm (list)
kXRS_afsinfo 3027 AFS information
kXRS_reserved 3028 Reserved

XRootD GSI Protocol Specifications

46

Appendix C - Versions prior to 10400 / v4.9

Server host name verification

The way XrdSecProtocolgsi handles this changed in XRootD v4.9 . Before v4.9 the client relied
on the DNS to de-alias the hosthame and compares this with the common name found in the
server certificate DN. SANs were ignored.

Transmission of DH parameters

Before v4.9 (internal GSI version 10400) the DH parameters were transmitted unsigned in a
bucket of type kXRS puk . Processing of the related steps on client and server side are
described below.

Client: step kXGS_cert processing

Received buffer

The information is contained in both the global and main buffers.

Actions performed

The client performs the following actions:

9. Check the cached timestamp against the current timestamp; allow for 300 seconds
skew;

10. Get from the global buffer the bucket of type kXRS cipher alg with the cipher
algorithm list supported by the server; chosen the first one supported locally; update the
bucket with the name of the chosen algorithm;

11. Get from the global buffer the bucket of type kXRS puk with the server public key for
DH key agreement, initialize the session cipher and store it in sessionKey;

a. Drop bucket kXRS puk from the global buffer;

12. Get from the global buffer the bucket of type kXRS x50 9 with the server certificate and

used it to finalize the server certificate chain; verify the chain validity.
a. Drop bucket kxRS %509 from the global buffer;

13. Verify the server identity: check the server hostname against the certificate Distinguished
Name (DN) and, possibly, the Alternative names;

14. Extract the public key from the server certificate and save it in sessionKver ;

15. Get from the global buffer the bucket of type kXRS md alg with the message digest
algorithm list supported by the server; chosen the first one supported locally; update the
bucket with the name of the chosen algorithm

16. Get from the global buffer the bucket of type kXRS main and deserialize it .

XRootD GSI Protocol Specifications 47

Preparation of the reply to kXGS_cert

The following information is added the global buffer bpar:

8.
9.

10.

A bucket of type kXRS puk with the client public part of the cipher;
A bucket of type kXRS_x509 with the client proxy certificate;
A bucket of type kXRS user with the name of the user;

The client sets the next step, internally nextstep, for the server to be kXGC cert.

Server: step kXGC_cert processing

Received buffer

The information is contained in both the global and main buffers.

Actions performed

The server performs the following actions:

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.

23.

Check the cached timestamp against the current timestamp; allow for 300 seconds
skew;
Get from the global buffer the bucket of type kXRS cipher alg with the cipher
algorithm list supported by the server; chosen the first one supported locally; update the
bucket with the name of the chosen algorithm
Get from the global buffer the bucket of type kXRS puk with the server public part for
session cipher initialize the session cipher and store it in sessionKey;

a. Drop bucket kXRS puk from the global buffer;
Extract from the global buffer the bucket of type kXRS main with the main bucket;
decrypt the bucket with sessionKey; deserialize the main buffer;
Get from the global buffer the bucket of type kXRS x509 with the client proxy certificate
and used it to finalize the client proxy certificate chain; verify the chain validity.

a. Drop bucket kXRS %509 from the global buffer;
Verify the server identity: check the server hostname against the certificate Distinguished
Name (DN) and, possibly, the Alternative names;
Extract the public key from the server certificate and save it in sessionKver ;
If delegate proxies are requested save the client proxy certificate chain;
If a request for delegate proxy certificate is required, prepare it and save it into a bucket
of type kXRS %509 regq;
Get from the global buffer the bucket of type kXRS md alg with the message digest
algorithm chosen by the client; load it in sessionMD.
If a lookup of the gridmap file is required, check the gridmap file and fill
Entity.name with the result; in case of failure, use the DN - or the DN hash, if
required,;

XRootD GSI Protocol Specifications 48

24. If the extraction of the VOMS attributes is required, call the chosen function and fill the
relevant fields in Ent ity with the result;
25. If authorization is required, run the relevant options.

XRootD GSI Protocol Specifications 49

