
Godot Engine Documentation

Release latest

Juan Linietsky, Ariel Manzur and the Godot community

Dec 08, 2023

ABOUT

i

ii

Godot Engine Documentation, Release latest

Note: Godot's documentation is available in various languages and versions. Expand the "Read the Docs"
panel at the bottom of the sidebar to see the list.

Welcome to the o�cial documentation of Godot Engine, the free and open source community-driven 2D and
3D game engine! If you are new to this documentation, we recommend that you read the introduction page
to get an overview of what this documentation has to o�er.

The table of contents in the sidebar should let you easily access the documentation for your topic of interest.
You can also use the search function in the top-left corner.

ABOUT 1

https://godotengine.org

Godot Engine Documentation, Release latest

2 ABOUT

CHAPTER

ONE

GET INVOLVED

Godot Engine is an open source project developed by a community of volunteers. The documentation team
can always use your feedback and help to improve the tutorials and class reference. If you don't understand
something, or cannot �nd what you are looking for in the docs, help us make the documentation better by
letting us know!

Submit an issue or pull request on the GitHub repository, help us translate the documentation into your
language, or talk to us on the #documentation channel on the Godot Contributors Chat!

3

https://github.com/godotengine/godot-docs/issues
https://hosted.weblate.org/engage/godot-engine/
https://chat.godotengine.org/
https://hosted.weblate.org/engage/godot-engine/?utm_source=widget

Godot Engine Documentation, Release latest

4 Chapter 1. Get involved

CHAPTER

TWO

OFFLINE DOCUMENTATION

To browse the documentation o�ine, you can use the mirror of the documentation hosted on DevDocs. To
enable o�ine browsing on DevDocs, you need to:

� Click the three dots in the top-left corner, choose Preferences.

� Enable the desired version of the Godot documentation by checking the box next to it in the sidebar.

� Click the three dots in the top-left corner, choose O�ine data.

� Click the Install link next to the Godot documentation.

You can also download an HTML copy for o�ine reading (updated every Monday). Extract the ZIP archive
then open the top-level index.html in a web browser.

For mobile devices or e-readers, you can also download an ePub copy for o�ine reading (updated every
Monday). Extract the ZIP archive then open the GodotEngine.epub �le in an e-book reader application.

2.1 Introduction

func _ready():
print("Hello world!")

Welcome to the o�cial documentation of Godot Engine, the free and open source community-driven 2D and
3D game engine! Behind this mouthful, you will �nd a powerful yet user-friendly tool that you can use to
develop any kind of game, for any platform and with no usage restriction whatsoever.

This page gives a broad overview of the engine and of this documentation, so that you know where to start
if you are a beginner or where to look if you need information on a speci�c feature.

2.1.1 Before you start

The Tutorials and resources page lists video tutorials contributed by the community. If you prefer video to
text, consider checking them out. Otherwise, Getting Started is a great starting point.

In case you have trouble with one of the tutorials or your project, you can �nd help on the various Community
channels, especially the Godot Discord community and Q&A.

5

https://devdocs.io/godot/
https://nightly.link/godotengine/godot-docs/workflows/build_offline_docs/master/godot-docs-html-master.zip
https://nightly.link/godotengine/godot-docs/workflows/build_offline_docs/master/godot-docs-epub-master.zip
https://discord.gg/4JBkykG
https://ask.godotengine.org/

Godot Engine Documentation, Release latest

2.1.2 About Godot Engine

A game engine is a complex tool and di�cult to present in a few words. Here's a quick synopsis, which you
are free to reuse if you need a quick write-up about Godot Engine:

Godot Engine is a feature-packed, cross-platform game engine to create 2D and 3D games from
a uni�ed interface. It provides a comprehensive set of common tools, so that users can focus on
making games without having to reinvent the wheel. Games can be exported with one click to a
number of platforms, including the major desktop platforms (Linux, macOS, Windows), mobile
platforms (Android, iOS), as well as Web-based platforms and consoles.

Godot is completely free and open source under the permissive MIT license. No strings attached,
no royalties, nothing. Users' games are theirs, down to the last line of engine code. Godot's
development is fully independent and community-driven, empowering users to help shape their
engine to match their expectations. It is supported by the Godot Foundation not-for-pro�t.

2.1.3 Organization of the documentation

This documentation is organized into several sections:

� About contains this introduction as well as information about the engine, its history, its licensing,
authors, etc. It also contains the Frequently asked questions.

� Getting Started contains all necessary information on using the engine to make games. It starts with
the Step by step tutorial which should be the entry point for all new users. This is the best place to
start if you're new!

� The Manual can be read or referenced as needed, in any order. It contains feature-speci�c tutorials
and documentation.

� Contributing gives information related to contributing to Godot, whether to the core engine, documen-
tation, demos or other parts. It describes how to report bugs, how contributor work�ows are organized,
etc. It also contains sections intended for advanced users and contributors, with information on com-
piling the engine, contributing to the editor, or developing C++ modules.

� Community is dedicated to the life of Godot's community. It points to various community channels
like the Godot Contributors Chat and Discord and contains a list of recommended third-party tutorials
and materials outside of this documentation.

� Finally, the Class reference documents the full Godot API, also available directly within the engine's
script editor. You can �nd information on all classes, functions, signals and so on here.

In addition to this documentation, you may also want to take a look at the various Godot demo projects.

2.1.4 About this documentation

Members of the Godot Engine community continuously write, correct, edit, and improve this documentation.
We are always looking for more help. You can also contribute by opening Github issues or translating the
documentation into your language. If you are interested in helping, see Ways to contribute and Writing
documentation, or get in touch with the Documentation team on Godot Contributors Chat.

All documentation content is licensed under the permissive Creative Commons Attribution 3.0 (CC BY
3.0) license, with attribution to "Juan Linietsky, Ariel Manzur, and the Godot Engine community" unless
otherwise noted.

Have fun reading and making games with Godot Engine!

6 Chapter 2. O�ine documentation

https://godot.foundation/
https://chat.godotengine.org/
https://discord.gg/4JBkykG
https://github.com/godotengine/godot-demo-projects
https://godotengine.org/teams/#documentation
https://chat.godotengine.org/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Godot Engine Documentation, Release latest

2.2 List of features

This page aims to list all features currently supported by Godot.

Note: This page lists features supported by the current stable version of Godot. Some of these features
may not be available in the LTS release series (3.x).

2.2.1 Platforms

Can run both the editor and exported projects:

� Windows 7 and later (64-bit and 32-bit).

� macOS 10.12 and later (64-bit, x86 and ARM).

� Linux (64-bit, x86 and ARM).

� Binaries are statically linked and can run on any distribution if compiled on an old enough base
distribution.

� O�cial binaries are compiled on Ubuntu 14.04.

� 32-bit binaries can be compiled from source.

� Android 6.0 and later (editor support is experimental).

� Web browsers. Experimental in 4.0, using Godot 3.x is recommended instead when targeting HTML5.

Runs exported projects:

� iOS 11.0 and later.

� Consoles.

Godot aims to be as platform-independent as possible and can be ported to new platforms with relative ease.

Note: Projects written in C# using Godot 4 currently cannot be exported to the web platform. To use C#
on that platform, consider Godot 3 instead. Android and iOS platform support is available as of Godot 4.2,
but is experimental and some limitations apply.

2.2.2 Editor

Features:

� Scene tree editor.

� Built-in script editor.

� Support for external script editors such as Visual Studio Code or Vim.

� GDScript debugger.

� No support for debugging in threads yet.

� Visual pro�ler with CPU and GPU time indications for each step of the rendering pipeline.

� Performance monitoring tools, including custom performance monitors.

� Live script reloading.

� Live scene editing.

2.2. List of features 7

https://docs.godotengine.org/en/3.5/about/list_of_features.html

Godot Engine Documentation, Release latest

� Changes will re�ect in the editor and will be kept after closing the running project.

� Remote inspector.

� Changes won't re�ect in the editor and won't be kept after closing the running project.

� Live camera replication.

� Move the in-editor camera and see the result in the running project.

� Built-in o�ine class reference documentation.

� Use the editor in dozens of languages contributed by the community.

Plugins:

� Editor plugins can be downloaded from the asset library to extend editor functionality.

� Create your own plugins using GDScript to add new features or speed up your work�ow.

� Download projects from the asset library in the Project Manager and import them directly.

2.2.3 Rendering

3 rendering methods (running over 2 rendering drivers) are available:

� Forward+, running over Vulkan 1.0 (with optional Vulkan 1.1 and 1.2 features). The most advanced
graphics backend, suited for desktop platforms only. Used by default on desktop platforms.

� Forward Mobile, running over Vulkan 1.0 (with optional Vulkan 1.1 and 1.2 features). Less features,
but renders simple scenes faster. Suited for mobile and desktop platforms. Used by default on mobile
platforms.

� Compatibility, running over OpenGL 3.3 / OpenGL ES 3.0 / WebGL 2.0. The least advanced graphics
backend, suited for low-end desktop and mobile platforms. Used by default on the web platform.

2.2.4 2D graphics

� Sprite, polygon and line rendering.

� High-level tools to draw lines and polygons such as Polygon2D and Line2D, with support for
texturing.

� AnimatedSprite2D as a helper for creating animated sprites.

� Parallax layers.

� Pseudo-3D support including preview in the editor.

� 2D lighting with normal maps and specular maps.

� Point (omni/spot) and directional 2D lights.

� Hard or soft shadows (adjustable on a per-light basis).

� Custom shaders can access a real-time SDF (Signed Distance Field) representation of the 2D scene
based on LightOccluder2D nodes, which can be used for improved 2D lighting e�ects including
2D global illumination.

� Font rendering using bitmaps, rasterization using FreeType or multi-channel signed distance �elds
(MSDF).

� Bitmap fonts can be exported using tools like BMFont, or imported from images (for �xed-width
fonts only).

8 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

� Dynamic fonts support monochrome fonts as well as colored fonts (e.g. for emoji). Supported
formats are TTF, OTF, WOFF1 and WOFF2.

� Dynamic fonts support optional font outlines with adjustable width and color.

� Dynamic fonts support variable fonts and OpenType features including ligatures.

� Dynamic fonts support simulated bold and italic when the font �le lacks those styles.

� Dynamic fonts support oversampling to keep fonts sharp at higher resolutions.

� Dynamic fonts support subpixel positioning to make fonts crisper at low sizes.

� Dynamic fonts support LCD subpixel optimizations to make fonts even crisper at low sizes.

� Signed distance �eld fonts can be scaled at any resolution without requiring re-rasterization.
Multi-channel usage makes SDF fonts scale down to lower sizes better compared to monochrome
SDF fonts.

� GPU-based particles with support for custom particle shaders.

� CPU-based particles.

� Optional 2D HDR rendering for better glow capabilities.

2.2.5 2D tools

� TileMaps for 2D tile-based level design.

� 2D camera with built-in smoothing and drag margins.

� Path2D node to represent a path in 2D space.

� Can be drawn in the editor or generated procedurally.

� PathFollow2D node to make nodes follow a Path2D.

� 2D geometry helper class.

2.2.6 2D physics

Physics bodies:

� Static bodies.

� Animatable bodies (for objects moving only by script or animation, such as doors and platforms).

� Rigid bodies.

� Character bodies.

� Joints.

� Areas to detect bodies entering or leaving it.

Collision detection:

� Built-in shapes: line, box, circle, capsule, world boundary (in�nite plane).

� Collision polygons (can be drawn manually or generated from a sprite in the editor).

2.2. List of features 9

Godot Engine Documentation, Release latest

2.2.7 3D graphics

� HDR rendering with sRGB.

� Perspective, orthographic and frustum-o�set cameras.

� When using the Forward+ backend, a depth prepass is used to improve performance in complex scenes
by reducing the cost of overdraw.

� Variable rate shading on supported GPUs in Forward+ and Forward Mobile.

Physically-based rendering (built-in material features):

� Follows the Disney PBR model.

� Supports Burley, Lambert, Lambert Wrap (half-Lambert) and Toon di�use shading modes.

� Supports Schlick-GGX, Toon and Disabled specular shading modes.

� Uses a roughness-metallic work�ow with support for ORM textures.

� Uses horizon specular occlusion (Filament model) to improve material appearance.

� Normal mapping.

� Parallax/relief mapping with automatic level of detail based on distance.

� Detail mapping for the albedo and normal maps.

� Sub-surface scattering and transmittance.

� Screen-space refraction with support for material roughness (resulting in blurry refraction).

� Proximity fade (soft particles) and distance fade.

� Distance fade can use alpha blending or dithering to avoid going through the transparent pipeline.

� Dithering can be determined on a per-pixel or per-object basis.

Real-time lighting:

� Directional lights (sun/moon). Up to 4 per scene.

� Omnidirectional lights.

� Spot lights with adjustable cone angle and attenuation.

� Specular, indirect light, and volumetric fog energy can be adjusted on a per-light basis.

� Adjustable light "size" for fake area lights (will also make shadows blurrier).

� Optional distance fade system to fade distant lights and their shadows, improving performance.

� When using the Forward+ backend (default on desktop), lights are rendered with clustered forward
optimizations to decrease their individual cost. Clustered rendering also lifts any limits on the number
of lights that can be used on a mesh.

� When using the Forward Mobile backend, up to 8 omni lights and 8 spot lights can be displayed per
mesh resource. Baked lighting can be used to overcome this limit if needed.

Shadow mapping:

� DirectionalLight: Orthogonal (fastest), PSSM 2-split and 4-split. Supports blending between splits.

� OmniLight: Dual paraboloid (fast) or cubemap (slower but more accurate). Supports colored projector
textures in the form of panoramas.

� SpotLight: Single texture. Supports colored projector textures.

10 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

� Shadow normal o�set bias and shadow pancaking to decrease the amount of visible shadow acne and
peter-panning.

� PCSS (Percentage Closer Soft Shadows)-like shadow blur based on the light size and distance from the
surface the shadow is cast on.

� Adjustable shadow blur on a per-light basis.

Global illumination with indirect lighting:

� Baked lightmaps (fast, but can't be updated at run-time).

� Supports baking indirect light only or baking both direct and indirect lighting. The bake mode
can be adjusted on a per-light basis to allow for hybrid light baking setups.

� Supports lighting dynamic objects using automatic and manually placed probes.

� Optionally supports directional lighting and rough re�ections based on spherical harmonics.

� Lightmaps are baked on the GPU using compute shaders (much faster compared to CPU lightmap-
ping). Baking can only be performed from the editor, not in exported projects.

� Supports GPU-based denoising with JNLM, or CPU/GPU-based denoising with OIDN.

� Voxel-based GI probes. Supports dynamic lights and dynamic occluders, while also supporting re�ec-
tions. Requires a fast baking step which can be performed in the editor or at run-time (including from
an exported project).

� Signed-distance �eld GI designed for large open worlds. Supports dynamic lights, but not dynamic
occluders. Supports re�ections. No baking required.

� Screen-space indirect lighting (SSIL) at half or full resolution. Fully real-time and supports any kind
of emissive light source (including decals).

� VoxelGI and SDFGI use a deferred pass to allow for rendering GI at half resolution to improve perfor-
mance (while still having functional MSAA support).

Re�ections:

� Voxel-based re�ections (when using GI probes) and SDF-based re�ections (when using signed distance
�eld GI). Voxel-based re�ections are visible on transparent surfaces, while rough SDF-based re�ections
are visible on transparent surfaces.

� Fast baked re�ections or slow real-time re�ections using Re�ectionProbe. Parallax box correction can
optionally be enabled.

� Screen-space re�ections with support for material roughness.

� Re�ection techniques can be mixed together for greater accuracy or scalability.

� When using the Forward+ backend (default on desktop), re�ection probes are rendered with clustered
forward optimizations to decrease their individual cost. Clustered rendering also lifts any limits on the
number of re�ection probes that can be used on a mesh.

� When using the Forward Mobile backend, up to 8 re�ection probes can be displayed per mesh resource.

Decals:

� Supports albedo, emissive, ORM (Occlusion Roughness Metallic), and normal mapping.

� Texture channels are smoothly overlaid on top of the underlying material, with support for
normal/ORM-only decals.

� Support for normal fade to fade the decal depending on its incidence angle.

2.2. List of features 11

Godot Engine Documentation, Release latest

� Does not rely on run-time mesh generation. This means decals can be used on complex skinned meshes
with no performance penalty, even if the decal moves every frame.

� Support for nearest, bilinear, trilinear or anisotropic texture �ltering (con�gured globally).

� Optional distance fade system to fade distant lights and their shadows, improving performance.

� When using the Forward+ backend (default on desktop), decals are rendered with clustered forward
optimizations to decrease their individual cost. Clustered rendering also lifts any limits on the number
of decals that can be used on a mesh.

� When using the Forward Mobile backend, up to 8 decals can be displayed per mesh resource.

Sky:

� Panorama sky (using an HDRI).

� Procedural sky and Physically-based sky that respond to the DirectionalLights in the scene.

� Support for custom sky shaders, which can be animated.

� The radiance map used for ambient and specular light can be updated in real-time depending on the
quality settings chosen.

Fog:

� Exponential depth fog.

� Exponential height fog.

� Support for automatic fog color depending on the sky color (aerial perspective).

� Support for sun scattering in the fog.

� Support for controlling how much fog rendering should a�ect the sky, with separate controls for tradi-
tional and volumetric fog.

� Support for making speci�c materials ignore fog.

Volumetric fog:

� Global volumetric fog that reacts to lights and shadows.

� Volumetric fog can take indirect light into account when using VoxelGI or SDFGI.

� Fog volume nodes that can be placed to add fog to speci�c areas (or remove fog from speci�c areas).
Supported shapes include box, ellipse, cone, cylinder, and 3D texture-based density maps.

� Each fog volume can have its own custom shader.

� Can be used together with traditional fog.

Particles:

� GPU-based particles with support for subemitters (2D + 3D), trails (2D + 3D), attractors (3D only)
and collision (2D + 3D).

� 3D particle attractor shapes supported: box, sphere and 3D vector �elds.

� 3D particle collision shapes supported: box, sphere, baked signed distance �eld and real-time
heightmap (suited for open world weather e�ects).

� 2D particle collision is handled using a signed distance �eld generated in real-time based on
LightOccluder2D nodes in the scene.

� Trails can use the built-in ribbon trail and tube trail meshes, or custom meshes with skeletons.

� Support for custom particle shaders with manual emission.

12 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

� CPU-based particles.

Post-processing:

� Tonemapping (Linear, Reinhard, Filmic, ACES).

� Automatic exposure adjustments based on viewport brightness (and manual exposure override).

� Near and far depth of �eld with adjustable bokeh simulation (box, hexagon, circle).

� Screen-space ambient occlusion (SSAO) at half or full resolution.

� Glow/bloom with optional bicubic upscaling and several blend modes available: Screen, Soft Light,
Add, Replace, Mix.

� Glow can have a colored dirt map texture, acting as a lens dirt e�ect.

� Glow can be used as a screen-space blur e�ect.

� Color correction using a one-dimensional ramp or a 3D LUT texture.

� Roughness limiter to reduce the impact of specular aliasing.

� Brightness, contrast and saturation adjustments.

Texture �ltering:

� Nearest, bilinear, trilinear or anisotropic �ltering.

� Filtering options are de�ned on a per-use basis, not a per-texture basis.

Texture compression:

� Basis Universal (slow, but results in smaller �les).

� BPTC for high-quality compression (not supported on macOS).

� ETC2 (not supported on macOS).

� S3TC (not supported on mobile/Web platforms).

Anti-aliasing:

� Temporal antialiasing (TAA).

� AMD FidelityFX Super Resolution 2.2 antialiasing (FSR2), which can be used at native resolution as
a form of high-quality temporal antialiasing.

� Multi-sample antialiasing (MSAA), for both 2D antialiasing and 3D antialiasing.

� Fast approximate antialiasing (FXAA).

� Super-sample antialiasing (SSAA) using bilinear 3D scaling and a 3D resolution scale above 1.0.

� Alpha antialiasing, MSAA alpha to coverage and alpha hashing on a per-material basis.

Resolution scaling:

� Support for rendering 3D at a lower resolution while keeping 2D rendering at the original scale. This
can be used to improve performance on low-end systems or improve visuals on high-end systems.

� Resolution scaling uses bilinear �ltering, AMD FidelityFX Super Resolution 1.0 (FSR1) or AMD
FidelityFX Super Resolution 2.2 (FSR2).

� Texture mipmap LOD bias is adjusted automatically to improve quality at lower resolution scales. It
can also be modi�ed with a manual o�set.

Most e�ects listed above can be adjusted for better performance or to further improve quality. This can be
helpful when using Godot for o�ine rendering.

2.2. List of features 13

Godot Engine Documentation, Release latest

2.2.8 3D tools

� Built-in meshes: cube, cylinder/cone, (hemi)sphere, prism, plane, quad, torus, ribbon, tube.

� GridMaps for 3D tile-based level design.

� Constructive solid geometry (intended for prototyping).

� Tools for procedural geometry generation.

� Path3D node to represent a path in 3D space.

� Can be drawn in the editor or generated procedurally.

� PathFollow3D node to make nodes follow a Path3D.

� 3D geometry helper class.

� Support for exporting the current scene as a glTF 2.0 �le, both from the editor and at run-time from
an exported project.

2.2.9 3D physics

Physics bodies:

� Static bodies.

� Animatable bodies (for objects moving only by script or animation, such as doors and platforms).

� Rigid bodies.

� Character bodies.

� Vehicle bodies (intended for arcade physics, not simulation).

� Joints.

� Soft bodies.

� Ragdolls.

� Areas to detect bodies entering or leaving it.

Collision detection:

� Built-in shapes: cuboid, sphere, capsule, cylinder, world boundary (in�nite plane).

� Generate triangle collision shapes for any mesh from the editor.

� Generate one or several convex collision shapes for any mesh from the editor.

2.2.10 Shaders

� 2D: Custom vertex, fragment, and light shaders.

� 3D: Custom vertex, fragment, light, and sky shaders.

� Text-based shaders using a shader language inspired by GLSL.

� Visual shader editor.

� Support for visual shader plugins.

14 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2.2.11 Scripting

General:

� Object-oriented design pattern with scripts extending nodes.

� Signals and groups for communicating between scripts.

� Support for cross-language scripting.

� Many 2D, 3D and 4D linear algebra data types such as vectors and transforms.

GDScript:

� High-level interpreted language with optional static typing.

� Syntax inspired by Python. However, GDScript is not based on Python.

� Syntax highlighting is provided on GitHub.

� Use threads to perform asynchronous actions or make use of multiple processor cores.

C#:

� Packaged in a separate binary to keep �le sizes and dependencies down.

� Supports .NET 6 and higher.

� Full support for the C# 10.0 syntax and features.

� Supports Windows, Linux, and macOS. As of 4.2 experimental support for Android and iOS is also
available (requires a .NET 7.0 project for Android and 8.0 for iOS).

� On the Android platform only some architectures are supported: arm64 and x64.

� On the iOS platform only some architectures are supported: arm64.

� The web platform is currently unsupported. To use C# on that platform, consider Godot 3
instead.

� Using an external editor is recommended to bene�t from IDE functionality.

GDExtension (C, C++, Rust, D, ...):

� When you need it, link to native libraries for higher performance and third-party integrations.

� For scripting game logic, GDScript or C# are recommended if their performance is suitable.

� O�cial GDExtension bindings for C and C++.

� Use any build system and language features you wish.

� Actively developed GDExtension bindings for D, Haxe, Swift, and Rust bindings provided by the
community. (Some of these bindings may be experimental and not production-ready).

2.2.12 Audio

Features:

� Mono, stereo, 5.1 and 7.1 output.

� Non-positional and positional playback in 2D and 3D.

� Optional Doppler e�ect in 2D and 3D.

� Support for re-routable audio buses and e�ects with dozens of e�ects included.

� Support for polyphony (playing several sounds from a single AudioStreamPlayer node).

2.2. List of features 15

https://github.com/godotengine/godot-headers
https://github.com/godotengine/godot-cpp
https://github.com/godot-dlang/godot-dlang
https://hxgodot.github.io/
https://github.com/migueldeicaza/SwiftGodot
https://github.com/godot-rust/gdextension

Godot Engine Documentation, Release latest

� Support for random volume and pitch.

� Support for real-time pitch scaling.

� Support for sequential/random sample selection, including repetition prevention when using random
sample selection.

� Listener2D and Listener3D nodes to listen from a position di�erent than the camera.

� Support for procedural audio generation.

� Audio input to record microphones.

� MIDI input.

� No support for MIDI output yet.

APIs used:

� Windows: WASAPI.

� macOS: CoreAudio.

� Linux: PulseAudio or ALSA.

2.2.13 Import

� Support for custom import plugins.

Formats:

� Images: See Importing images.

� Audio:

� WAV with optional IMA-ADPCM compression.

� Ogg Vorbis.

� MP3.

� 3D scenes: See Importing 3D scenes.

� glTF 2.0 (recommended).

� .blend (by calling Blender's glTF export functionality transparently).

� FBX (by calling FBX2glTF transparently).

� Collada (.dae).

� Wavefront OBJ (static scenes only, can be loaded directly as a mesh or imported as a 3D scene).

� Support for loading glTF 2.0 scenes at run-time, including from an exported project.

� 3D meshes use Mikktspace to generate tangents on import, which ensures consistency with other 3D
applications such as Blender.

16 Chapter 2. O�ine documentation

https://github.com/godotengine/FBX2glTF
http://www.mikktspace.com/

Godot Engine Documentation, Release latest

2.2.14 Input

� Input mapping system using hardcoded input events or remappable input actions.

� Axis values can be mapped to two di�erent actions with a con�gurable deadzone.

� Use the same code to support both keyboards and gamepads.

� Keyboard input.

� Keys can be mapped in "physical" mode to be independent of the keyboard layout.

� Mouse input.

� The mouse cursor can be visible, hidden, captured or con�ned within the window.

� When captured, raw input will be used on Windows and Linux to sidestep the OS' mouse accel-
eration settings.

� Gamepad input (up to 8 simultaneous controllers).

� Pen/tablet input with pressure support.

2.2.15 Navigation

� A* algorithm in 2D and 3D.

� Navigation meshes with dynamic obstacle avoidance in 2D and 3D.

� Generate navigation meshes from the editor or at run-time (including from an exported project).

2.2.16 Networking

� Low-level TCP networking using StreamPeer and TCPServer.

� Low-level UDP networking using PacketPeer and UDPServer.

� Low-level HTTP requests using HTTPClient.

� High-level HTTP requests using HTTPRequest.

� Supports HTTPS out of the box using bundled certi�cates.

� High-level multiplayer API using UDP and ENet.

� Automatic replication using remote procedure calls (RPCs).

� Supports unreliable, reliable and ordered transfers.

� WebSocket client and server, available on all platforms.

� WebRTC client and server, available on all platforms.

� Support for UPnP to sidestep the requirement to forward ports when hosting a server behind a NAT.

2.2.17 Internationalization

� Full support for Unicode including emoji.

� Store localization strings using CSV or gettext.

� Support for generating gettext POT and PO �les from the editor.

� Use localized strings in your project automatically in GUI elements or by using the tr() function.

� Support for pluralization and translation contexts when using gettext translations.

� Support for bidirectional typesetting, text shaping and OpenType localized forms.

2.2. List of features 17

Godot Engine Documentation, Release latest

� Automatic UI mirroring for right-to-left locales.

� Support for pseudolocalization to test your project for i18n-friendliness.

2.2.18 Windowing and OS integration

� Spawn multiple independent windows within a single process.

� Move, resize, minimize, and maximize windows spawned by the project.

� Change the window title and icon.

� Request attention (will cause the title bar to blink on most platforms).

� Fullscreen mode.

� Uses borderless fullscreen by default on Windows for fast alt-tabbing, but can optionally use
exclusive fullscreen to reduce input lag.

� Borderless windows (fullscreen or non-fullscreen).

� Ability to keep a window always on top.

� Global menu integration on macOS.

� Execute commands in a blocking or non-blocking manner (including running multiple instances of the
same project).

� Open �le paths and URLs using default or custom protocol handlers (if registered on the system).

� Parse custom command line arguments.

� Any Godot binary (editor or exported project) can be used as a headless server by starting it with the
--headless command line argument. This allows running the engine without a GPU or display server.

2.2.19 Mobile

� In-app purchases on Android and iOS.

� Support for advertisements using third-party modules.

2.2.20 XR support (AR and VR)

� Out of the box support for OpenXR.

� Including support for popular desktop headsets like the Valve Index, WMR headsets, and Quest
over Link.

� Support for Android based headsets using OpenXR through a plugin.

� Including support for popular stand alone headsets like the Meta Quest 1/2/3 and Pro, Pico 4,
Magic Leap 2, and Lynx R1.

� Other devices supported through an XR plugin structure.

� Various advanced toolkits are available that implement common features required by XR applications.

18 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2.2.21 GUI system

Godot's GUI is built using the same Control nodes used to make games in Godot. The editor UI can easily
be extended in many ways using add-ons.

Nodes:

� Buttons.

� Checkboxes, check buttons, radio buttons.

� Text entry using LineEdit (single line) and TextEdit (multiple lines). TextEdit also supports code
editing features such as displaying line numbers and syntax highlighting.

� Dropdown menus using PopupMenu and OptionButton.

� Scrollbars.

� Labels.

� RichTextLabel for text formatted using BBCode, with support for animated custom e�ects.

� Trees (can also be used to represent tables).

� Color picker with RGB and HSV modes.

� Controls can be rotated and scaled.

Sizing:

� Anchors to keep GUI elements in a speci�c corner, edge or centered.

� Containers to place GUI elements automatically following certain rules.

� Stack layouts.

� Grid layouts.

� Flow layouts (similar to autowrapping text).

� Margin, centered and aspect ratio layouts.

� Draggable splitter layouts.

� Scale to multiple resolutions using the canvas_items or viewport stretch modes.

� Support any aspect ratio using anchors and the expand stretch aspect.

Theming:

� Built-in theme editor.

� Generate a theme based on the current editor theme settings.

� Procedural vector-based theming using StyleBoxFlat.

� Supports rounded/beveled corners, drop shadows, per-border widths and antialiasing.

� Texture-based theming using StyleBoxTexture.

Godot's small distribution size can make it a suitable alternative to frameworks like Electron or Qt.

2.2. List of features 19

Godot Engine Documentation, Release latest

2.2.22 Animation

� Direct kinematics and inverse kinematics.

� Support for animating any property with customizable interpolation.

� Support for calling methods in animation tracks.

� Support for playing sounds in animation tracks.

� Support for Bézier curves in animation.

2.2.23 File formats

� Scenes and resources can be saved in text-based or binary formats.

� Text-based formats are human-readable and more friendly to version control.

� Binary formats are faster to save/load for large scenes/resources.

� Read and write text or binary �les using FileAccess.

� Can optionally be compressed or encrypted.

� Read and write JSON �les.

� Read and write INI-style con�guration �les using Con�gFile.

� Can (de)serialize any Godot datatype, including Vector2/3, Color, ...

� Read XML �les using XMLParser.

� Load and save images, audio/video, fonts and ZIP archives in an exported project without having to
go through Godot's import system.

� Pack game data into a PCK �le (custom format optimized for fast seeking), into a ZIP archive, or
directly into the executable for single-�le distribution.

� Export additional PCK �les that can be read by the engine to support mods and DLCs.

2.2.24 Miscellaneous

� Video playback with built-in support for Ogg Theora.

� Movie Maker mode to record videos from a running project with synchronized audio and perfect frame
pacing.

� Low-level access to servers which allows bypassing the scene tree's overhead when needed.

� Command line interface for automation.

� Export and deploy projects using continuous integration platforms.

� Shell completion scripts are available for Bash, zsh and �sh.

� Print colored text to standard output on all platforms using print_rich.

� Support for C++ modules statically linked into the engine binary.

� Engine and editor written in C++17.

� Can be compiled using GCC, Clang and MSVC. MinGW is also supported.

� Friendly towards packagers. In most cases, system libraries can be used instead of the ones pro-
vided by Godot. The build system doesn't download anything. Builds can be fully reproducible.

� Licensed under the permissive MIT license.

20 Chapter 2. O�ine documentation

https://github.com/godotengine/godot/tree/master/misc/dist/shell

Godot Engine Documentation, Release latest

� Open development process with contributions welcome.

See also:

The Godot proposals repository lists features that have been requested by the community and may be
implemented in future Godot releases.

2.3 Frequently asked questions

2.3.1 What can I do with Godot? How much does it cost? What are the license terms?

Godot is Free and open source Software available under the OSI-approved MIT license. This means it is free
as in "free speech" as well as in "free beer."

In short:

� You are free to download and use Godot for any purpose: personal, non-pro�t, commercial, or other-
wise.

� You are free to modify, distribute, redistribute, and remix Godot to your heart's content, for any
reason, both non-commercially and commercially.

All the contents of this accompanying documentation are published under the permissive Creative Commons
Attribution 3.0 (CC BY 3.0) license, with attribution to "Juan Linietsky, Ariel Manzur and the Godot
Engine community."

Logos and icons are generally under the same Creative Commons license. Note that some third-party libraries
included with Godot's source code may have di�erent licenses.

For full details, look at the COPYRIGHT.txt as well as the LICENSE.txt and LOGO_LICENSE.txt �les
in the Godot repository.

Also, see the license page on the Godot website.

2.3.2 Which platforms are supported by Godot?

For the editor:

� Windows

� macOS

� Linux, *BSD

� Android (experimental)

� Web (experimental)

For exporting your games:

� Windows

� macOS

� Linux, *BSD

� Android

� iOS

� Web

2.3. Frequently asked questions 21

https://github.com/godotengine/godot-proposals
https://en.wikipedia.org/wiki/Free_and_opensource_software
https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by/3.0/
https://github.com/godotengine/godot/blob/master/COPYRIGHT.txt
https://github.com/godotengine/godot/blob/master/LICENSE.txt
https://github.com/godotengine/godot/blob/master/LOGO_LICENSE.txt
https://godotengine.org/license
https://editor.godotengine.org/

Godot Engine Documentation, Release latest

Both 32- and 64-bit binaries are supported where it makes sense, with 64 being the default. O�cial macOS
builds support Apple Silicon natively as well as x86_64.

Some users also report building and using Godot successfully on ARM-based systems with Linux, like the
Raspberry Pi.

The Godot team can't provide an open source console export due to the licensing terms imposed by console
manufacturers. Regardless of the engine you use, though, releasing games on consoles is always a lot of work.
You can read more about Console support in Godot.

For more on this, see the sections on exporting and compiling Godot yourself.

Note: Godot 3 also had support for Universal Windows Platform (UWP). This platform port was removed
in Godot 4 due to lack of maintenance, and it being deprecated by Microsoft. It is still available in the
current stable release of Godot 3 for interested users.

2.3.3 Which programming languages are supported in Godot?

The o�cially supported languages for Godot are GDScript, C#, and C++. See the subcategories for each
language in the scripting section.

If you are just starting out with either Godot or game development in general, GDScript is the recom-
mended language to learn and use since it is native to Godot. While scripting languages tend to be less
performant than lower-level languages in the long run, for prototyping, developing Minimum Viable Products
(MVPs), and focusing on Time-To-Market (TTM), GDScript will provide a fast, friendly, and capable way
of developing your games.

Note that C# support is still relatively new, and as such, you may encounter some issues along the way.
C# support is also currently missing on the web platform. Our friendly and hard-working development
community is always ready to tackle new problems as they arise, but since this is an open source project,
we recommend that you �rst do some due diligence yourself. Searching through discussions on open issues
is a great way to start your troubleshooting.

As for new languages, support is possible via third parties with GDExtensions. (See the question about
plugins below). Work is currently underway, for example, on uno�cial bindings for Godot to Python and
Nim.

2.3.4 What is GDScript and why should I use it?

GDScript is Godot's integrated scripting language. It was built from the ground up to maximize Godot's
potential in the least amount of code, a�ording both novice and expert developers alike to capitalize on
Godot's strengths as fast as possible. If you've ever written anything in a language like Python before, then
you'll feel right at home. For examples and a complete overview of the power GDScript o�ers you, check
out the GDScript scripting guide.

There are several reasons to use GDScript, especially when you are prototyping, in alpha/beta stages of
your project, or are not creating the next AAA title. The most salient reason is the overall reduction of
complexity.

The original intent of creating a tightly integrated, custom scripting language for Godot was two-fold: �rst,
it reduces the amount of time necessary to get up and running with Godot, giving developers a rapid way
of exposing themselves to the engine with a focus on productivity; second, it reduces the overall burden of
maintenance, attenuates the dimensionality of issues, and allows the developers of the engine to focus on
squashing bugs and improving features related to the engine core, rather than spending a lot of time trying
to get a small set of incremental features working across a large set of languages.

22 Chapter 2. O�ine documentation

https://github.com/godotengine/godot/issues?q=is%3Aopen+is%3Aissue+label%3Atopic%3Adotnet
https://github.com/touilleMan/godot-python
https://github.com/pragmagic/godot-nim

Godot Engine Documentation, Release latest

Since Godot is an open source project, it was imperative from the start to prioritize a more integrated and
seamless experience over attracting additional users by supporting more familiar programming languages,
especially when supporting those more familiar languages would result in a worse experience. We understand
if you would rather use another language in Godot (see the list of supported options above). That being
said, if you haven't given GDScript a try, try it for three days. Just like Godot, once you see how powerful
it is and rapid your development becomes, we think GDScript will grow on you.

More information about getting comfortable with GDScript or dynamically typed languages can be found
in the GDScript: An introduction to dynamic languages tutorial.

2.3.5 What were the motivations behind creating GDScript?

In the early days, the engine used the Lua scripting language. Lua can be fast thanks to LuaJIT, but
creating bindings to an object-oriented system (by using fallbacks) was complex and slow and took an
enormous amount of code. After some experiments with Python, that also proved di�cult to embed.

The main reasons for creating a custom scripting language for Godot were:

1. Poor threading support in most script VMs, and Godot uses threads (Lua, Python, Squirrel, JavaScript,
ActionScript, etc.).

2. Poor class-extending support in most script VMs, and adapting to the way Godot works is highly
ine�cient (Lua, Python, JavaScript).

3. Many existing languages have horrible interfaces for binding to C++, resulting in a large amount of
code, bugs, bottlenecks, and general ine�ciency (Lua, Python, Squirrel, JavaScript, etc.). We wanted
to focus on a great engine, not a great number of integrations.

4. No native vector types (Vector3, Transform3D, etc.), resulting in highly reduced performance when
using custom types (Lua, Python, Squirrel, JavaScript, ActionScript, etc.).

5. Garbage collector results in stalls or unnecessarily large memory usage (Lua, Python, JavaScript,
ActionScript, etc.).

6. Di�culty integrating with the code editor for providing code completion, live editing, etc. (all of them).

GDScript was designed to curtail the issues above, and more.

2.3.6 What 3D model formats does Godot support?

You can �nd detailed information on supported formats, how to export them from your 3D modeling software,
and how to import them for Godot in the Importing 3D scenes documentation.

2.3.7 Will [insert closed SDK such as FMOD, GameWorks, etc.] be supported in Godot?

The aim of Godot is to create a free and open source MIT-licensed engine that is modular and extend-
able. There are no plans for the core engine development community to support any third-party, closed-
source/proprietary SDKs, as integrating with these would go against Godot's ethos.

That said, because Godot is open source and modular, nothing prevents you or anyone else interested in
adding those libraries as a module and shipping your game with them, as either open- or closed-source.

To see how support for your SDK of choice could still be provided, look at the Plugins question below.

If you know of a third-party SDK that is not supported by Godot but that o�ers free and open source
integration, consider starting the integration work yourself. Godot is not owned by one person; it belongs
to the community, and it grows along with ambitious community contributors like you.

2.3. Frequently asked questions 23

https://www.lua.org
https://www.python.org

Godot Engine Documentation, Release latest

2.3.8 How can I extend Godot?

For extending Godot, like creating Godot Editor plugins or adding support for additional languages, take a
look at EditorPlugins and tool scripts.

Also, see the o�cial blog post on GDExtension, a way to develop native extensions for Godot:

� Introducing GDNative's successor, GDExtension

You can also take a look at the GDScript implementation, the Godot modules, as well as the Jolt physics
engine integration for Godot. This would be a good starting point to see how another third-party library
integrates with Godot.

2.3.9 How do I install the Godot editor on my system (for desktop integration)?

Since you don't need to actually install Godot on your system to run it, this means desktop integration is
not performed automatically. There are two ways to overcome this. You can install Godot from Steam (all
platforms), Scoop (Windows), Homebrew (macOS) or Flathub (Linux). This will automatically perform the
required steps for desktop integration.

Alternatively, you can manually perform the steps that an installer would do for you:

Windows

� Move the Godot executable to a stable location (i.e. outside of your Downloads folder), so you don't
accidentally move it and break the shortcut in the future.

� Right-click the Godot executable and choose Create Shortcut.

� Move the created shortcut to %APPDATA%\Microsoft\Windows\Start Menu\Programs. This is the
user-wide location for shortcuts that will appear in the Start menu. You can also pin Godot in the
task bar by right-clicking the executable and choosing Pin to Task Bar.

macOS

Drag the extracted Godot application to /Applications/Godot.app, then drag it to the Dock if desired.
Spotlight will be able to �nd Godot as long as it's in /Applications or ~/Applications.

Linux

� Move the Godot binary to a stable location (i.e. outside of your Downloads folder), so you don't
accidentally move it and break the shortcut in the future.

� Rename and move the Godot binary to a location present in your PATH environment variable. This
is typically /usr/local/bin/godot or /usr/bin/godot. Doing this requires administrator privileges, but
this also allows you to run the Godot editor from a terminal by entering godot.

� If you cannot move the Godot editor binary to a protected location, you can keep the binary
somewhere in your home directory, and modify the Path= line in the .desktop �le linked below
to contain the full absolute path to the Godot binary.

� Save this .desktop �le to $HOME/.local/share/applications/. If you have administrator privileges, you
can also save the .desktop �le to /usr/local/share/applications to make the shortcut available for all
users.

24 Chapter 2. O�ine documentation

https://godotengine.org/article/introducing-gd-extensions
https://github.com/godot-jolt/godot-jolt
https://github.com/godot-jolt/godot-jolt
https://store.steampowered.com/app/404790/Godot_Engine/
https://scoop.sh/
https://brew.sh/
https://flathub.org/apps/details/org.godotengine.Godot
https://raw.githubusercontent.com/godotengine/godot/master/misc/dist/linux/org.godotengine.Godot.desktop

Godot Engine Documentation, Release latest

2.3.10 Is the Godot editor a portable application?

In its default con�guration, Godot is semi-portable. Its executable can run from any location (including
non-writable locations) and never requires administrator privileges.

However, con�guration �les will be written to the user-wide con�guration or data directory. This is usually
a good approach, but this means con�guration �les will not carry across machines if you copy the folder
containing the Godot executable. See File paths in Godot projects for more information.

If true portable operation is desired (e.g. for use on an USB stick), follow the steps in Self-contained mode.

2.3.11 Why does Godot use Vulkan or OpenGL instead of Direct3D?

Godot aims for cross-platform compatibility and open standards �rst and foremost. OpenGL and Vulkan are
the technologies that are both open and available on (nearly) all platforms. Thanks to this design decision,
a project developed with Godot on Windows will run out of the box on Linux, macOS, and more.

Since Godot only has a few people working on its renderer, we would prefer having fewer rendering backends
to maintain. On top of that, using a single API on all platforms allows for greater consistency with fewer
platform-speci�c issues.

In the long term, we may develop a Direct3D 12 renderer for Godot (mainly for Xbox), but Vulkan and
OpenGL will remain the default rendering backends on all platforms, including Windows.

2.3.12 Why does Godot aim to keep its core feature set small?

Godot intentionally does not include features that can be implemented by add-ons unless they are used very
often. One example of something not used often is advanced arti�cial intelligence functionality.

There are several reasons for this:

� Code maintenance and surface for bugs. Every time we accept new code in the Godot repository,
existing contributors often take the responsibility of maintaining it. Some contributors don't always
stick around after getting their code merged, which can make it di�cult for us to maintain the code in
question. This can lead to poorly maintained features with bugs that are never �xed. On top of that,
the "API surface" that needs to be tested and checked for regressions keeps increasing over time.

� Ease of contribution. By keeping the codebase small and tidy, it can remain fast and easy to compile
from source. This makes it easier for new contributors to get started with Godot, without requiring
them to purchase high-end hardware.

� Keeping the binary size small for the editor. Not everyone has a fast Internet connection. Ensuring
that everyone can download the Godot editor, extract it and run it in less than 5 minutes makes Godot
more accessible to developers in all countries.

� Keeping the binary size small for export templates. This directly impacts the size of projects exported
with Godot. On mobile and web platforms, keeping �le sizes low is important to ensure fast installation
and loading on underpowered devices. Again, there are many countries where high-speed Internet is
not readily available. To add to this, strict data usage caps are often in e�ect in those countries.

For all the reasons above, we have to be selective of what we can accept as core functionality in Godot. This
is why we are aiming to move some core functionality to o�cially supported add-ons in future versions of
Godot. In terms of binary size, this also has the advantage of making you pay only for what you actually use
in your project. (In the meantime, you can compile custom export templates with unused features disabled
to optimize the distribution size of your project.)

2.3. Frequently asked questions 25

Godot Engine Documentation, Release latest

2.3.13 How should assets be created to handle multiple resolutions and aspect ratios?

This question pops up often and it's probably thanks to the misunderstanding created by Apple when they
originally doubled the resolution of their devices. It made people think that having the same assets in
di�erent resolutions was a good idea, so many continued towards that path. That originally worked to a
point and only for Apple devices, but then several Android and Apple devices with di�erent resolutions and
aspect ratios were created, with a very wide range of sizes and DPIs.

The most common and proper way to achieve this is to, instead, use a single base resolution for the game
and only handle di�erent screen aspect ratios. This is mostly needed for 2D, as in 3D, it's just a matter of
camera vertical or horizontal FOV.

1. Choose a single base resolution for your game. Even if there are devices that go up to 1440p and
devices that go down to 400p, regular hardware scaling in your device will take care of this at little or
no performance cost. The most common choices are either near 1080p (1920x1080) or 720p (1280x720).
Keep in mind the higher the resolution, the larger your assets, the more memory they will take and
the longer the time it will take for loading.

2. Use the stretch options in Godot; canvas items stretching while keeping aspect ratios works best. Check
the Multiple resolutions tutorial on how to achieve this.

3. Determine a minimum resolution and then decide if you want your game to stretch vertically or
horizontally for di�erent aspect ratios, or if there is one aspect ratio and you want black bars to appear
instead. This is also explained in Multiple resolutions.

4. For user interfaces, use the anchoring to determine where controls should stay and move. If UIs are
more complex, consider learning about Containers.

And that's it! Your game should work in multiple resolutions.

2.3.14 When is the next release of Godot out?

When it's ready! See When is the next release out? for more information.

2.3.15 Which Godot version should I use for a new project?

We recommend using Godot 4.x for new projects, but depending on the feature set you need, it may be
better to use 3.x instead. See Which version should I use for a new project? for more information.

2.3.16 Should I upgrade my project to use new Godot versions?

Some new versions are safer to upgrade to than others. In general, whether you should upgrade depends
on your project's circumstances. See Should I upgrade my project to use new engine versions? for more
information.

2.3.17 I would like to contribute! How can I get started?

Awesome! As an open source project, Godot thrives o� of the innovation and the ambition of developers like
you.

The best way to start contributing to Godot is by using it and reporting any issues that you might experience.
A good bug report with clear reproduction steps helps your fellow contributors �x bugs quickly and e�ciently.
You can also report issues you �nd in the online documentation.

If you feel ready to submit your �rst PR, pick any issue that resonates with you from one of the links above
and try your hand at �xing it. You will need to learn how to compile the engine from sources, or how to build
the documentation. You also need to get familiar with Git, a version control system that Godot developers
use.

26 Chapter 2. O�ine documentation

https://github.com/godotengine/godot/issues
https://github.com/godotengine/godot-docs/issues

Godot Engine Documentation, Release latest

We explain how to work with the engine source, how to edit the documentation, and what other ways to
contribute are there in our documentation for contributors.

2.3.18 I have a great idea for Godot. How can I share it?

We are always looking for suggestions about how to improve the engine. User feedback is the main driving
force behind our decision-making process, and limitations that you might face while working on your project
are a great data point for us when considering engine enhancements.

If you experience a usability problem or are missing a feature in the current version of Godot, start by
discussing it with our community. There may be other, perhaps better, ways to achieve the desired result
that community members could suggest. And you can learn if other users experience the same issue, and
�gure out a good solution together.

If you come up with a well-de�ned idea for the engine, feel free to open a proposal issue. Try to be speci�c
and concrete while describing your problem and your proposed solution � only actionable proposals can be
considered. It is not required, but if you want to implement it yourself, that's always appreciated!

If you only have a general idea without speci�c details, you can open a proposal discussion. These can be
anything you want, and allow for a free-form discussion in search of a solution. Once you �nd one, a proposal
issue can be opened.

Please, read the readme document before creating a proposal to learn more about the process.

2.3.19 Is it possible to use Godot to create non-game applications?

Yes! Godot features an extensive built-in UI system, and its small distribution size can make it a suitable
alternative to frameworks like Electron or Qt.

When creating a non-game application, make sure to enable low-processor mode in the Project Settings to
decrease CPU and GPU usage.

Check out Material Maker and Pixelorama for examples of open source applications made with Godot.

2.3.20 Is it possible to use Godot as a library?

Godot is meant to be used with its editor. We recommend you give it a try, as it will most likely save you
time in the long term. There are no plans to make Godot usable as a library, as it would make the rest of
the engine more convoluted and di�cult to use for casual users.

If you want to use a rendering library, look into using an established rendering engine instead. Keep in mind
rendering engines usually have smaller communities compared to Godot. This will make it more di�cult to
�nd answers to your questions.

2.3.21 What user interface toolkit does Godot use?

Godot does not use a standard GUI (Graphical User Interface) toolkit like GTK, Qt or wxWidgets. Instead,
Godot uses its own user interface toolkit, rendered using OpenGL ES or Vulkan. This toolkit is exposed in
the form of Control nodes, which are used to render the editor (which is written in C++). These Control
nodes can also be used in projects from any scripting language supported by Godot.

This custom toolkit makes it possible to bene�t from hardware acceleration and have a consistent appearance
across all platforms. On top of that, it doesn't have to deal with the LGPL licensing caveats that come with
GTK or Qt. Lastly, this means Godot is "eating its own dog food" since the editor itself is one of the most
complex users of Godot's UI system.

This custom UI toolkit can't be used as a library, but you can still use Godot to create non-game applications
by using the editor.

2.3. Frequently asked questions 27

https://godotengine.org/community/
https://github.com/godotengine/godot-proposals/issues
https://github.com/godotengine/godot-proposals/discussions
https://github.com/godotengine/godot-proposals/blob/master/README.md
https://github.com/RodZill4/material-maker
https://github.com/Orama-Interactive/Pixelorama

Godot Engine Documentation, Release latest

2.3.22 Why does Godot use the SCons build system?

Godot uses the SCons build system. There are no plans to switch to a di�erent build system in the near
future. There are many reasons why we have chosen SCons over other alternatives. For example:

� Godot can be compiled for a dozen di�erent platforms: all PC platforms, all mobile platforms, many
consoles, and WebAssembly.

� Developers often need to compile for several of the platforms at the same time, or even di�erent targets
of the same platform. They can't a�ord recon�guring and rebuilding the project each time. SCons can
do this with no sweat, without breaking the builds.

� SCons will never break a build no matter how many changes, con�gurations, additions, removals etc.

� Godot's build process is not simple. Several �les are generated by code (binders), others are parsed
(shaders), and others need to o�er customization (modules). This requires complex logic which is easier
to write in an actual programming language (like Python) rather than using a mostly macro-based
language only meant for building.

� Godot build process makes heavy use of cross-compiling tools. Each platform has a speci�c detection
process, and all these must be handled as speci�c cases with special code written for each.

Please try to keep an open mind and get at least a little familiar with SCons if you are planning to build
Godot yourself.

2.3.23 Why does Godot not use STL (Standard Template Library)?

Like many other libraries (Qt as an example), Godot does not make use of STL (with a few exceptions such
as threading primitives). We believe STL is a great general-purpose library, but we had special requirements
for Godot.

� STL templates create very large symbols, which results in huge debug binaries. We use few templates
with very short names instead.

� Most of our containers cater to special needs, like Vector, which uses copy on write and we use to pass
data around, or the RID system, which requires O(1) access time for performance. Likewise, our hash
map implementations are designed to integrate seamlessly with internal engine types.

� Our containers have memory tracking built-in, which helps better track memory usage.

� For large arrays, we use pooled memory, which can be mapped to either a preallocated bu�er or virtual
memory.

� We use our custom String type, as the one provided by STL is too basic and lacks proper internation-
alization support.

2.3.24 Why does Godot not use exceptions?

We believe games should not crash, no matter what. If an unexpected situation happens, Godot will print
an error (which can be traced even to script), but then it will try to recover as gracefully as possible and
keep going.

Additionally, exceptions signi�cantly increase the binary size for the executable and result in increased
compile times.

28 Chapter 2. O�ine documentation

https://www.scons.org/

Godot Engine Documentation, Release latest

2.3.25 Does Godot use an ECS (Entity Component System)?

Godot does not use an ECS and relies on inheritance instead. While there is no universally better approach,
we found that using an inheritance-based approach resulted in better usability while still being fast enough
for most use cases.

That said, nothing prevents you from making use of composition in your project by creating child Nodes
with individual scripts. These nodes can then be added and removed at run-time to dynamically add and
remove behaviors.

More information about Godot's design choices can be found in this article.

2.3.26 Why does Godot not force users to implement DOD (Data-Oriented Design)?

While Godot internally attempts to use cache coherency as much as possible, we believe users don't need to
be forced to use DOD practices.

DOD is mostly a cache coherency optimization that can only provide signi�cant performance improvements
when dealing with dozens of thousands of objects which are processed every frame with little modi�cation.
That is, if you are moving a few hundred sprites or enemies per frame, DOD won't result in a meaningful
improvement in performance. In such a case, you should consider a di�erent approach to optimization.

The vast majority of games do not need this and Godot provides handy helpers to do the job for most cases
when you do.

If a game needs to process such a large amount of objects, our recommendation is to use C++ and GDEx-
tensions for performance-heavy tasks and GDScript (or C#) for the rest of the game.

2.3.27 How can I support Godot development or contribute?

See Ways to contribute.

2.3.28 Who is working on Godot? How can I contact you?

See the corresponding page on the Godot website.

2.4 Complying with licenses

2.4.1 What are licenses?

Godot is created and distributed under the MIT License. It doesn't have a sole owner either, as every
contributor that submits code to the project does it under this same license and keeps ownership of the
contribution.

The license is the legal requirement for you (or your company) to use and distribute the software (and
derivative projects, including games made with it). Your game or project can have a di�erent license, but it
still needs to comply with the original one.

Note: This section covers compliance with licenses from a user perspective. If you are interested in licence
compliance as a contributor, you can �nd guidelines here.

Warning: In your project's credits screen, remember to also list third-party notices for assets you're
using, such as textures, models, sounds, music and fonts.

2.4. Complying with licenses 29

https://godotengine.org/article/why-isnt-godot-ecs-based-game-engine
https://godotengine.org/contact
https://opensource.org/licenses/MIT

Godot Engine Documentation, Release latest

Free assets in particular often come with licenses that require attribution. Double-check their license
before using those assets in a project.

2.4.2 Requirements

In the case of the MIT license, the only requirement is to include the license text somewhere in your game
or derivative project.

This text reads as follows:

This game uses Godot Engine, available under the following license:

Copyright (c) 2014-present Godot Engine contributors. Copyright (c) 2007-2014 Juan Linietsky,
Ariel Manzur.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation �les (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note: Your games do not need to be under the same license. You are free to release your Godot projects
under any license and to create commercial games with the engine.

2.4.3 Inclusion

The license does not specify how it has to be included, so anything is valid as long as it can be displayed
under some condition. These are the most common approaches (only need to implement one of them, not
all).

Tip: Godot provides several methods to get license information in the Engine singleton. This allows you to
source the license information directly from the engine binary, which prevents the information from becoming
outdated if you update engine versions.

For the engine itself:

� Engine.get_license_text

For third-party components used by the engine:

� Engine.get_license_info

� Engine.get_copyright_info

For miscellaneous engine contributor information. You don't have to include these ones in your project, but
they're listed here for reference:

30 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

� Engine.get_author_info

� Engine.get_donor_info

Credits screen

Include the above license text somewhere in the credits screen. It can be at the bottom after showing the
rest of the credits. Most large studios use this approach with open source licenses.

Licenses screen

Some games have a special menu (often in the settings) to display licenses. This menu is typically accessed
with a button called Third-party Licenses or Open Source Licenses.

Output log

Printing the licensing text using the print() function may be enough on platforms where a global output log
is readable. This is the case on desktop platforms, Android and HTML5 (but not iOS).

Accompanying �le

If the game is distributed on desktop platforms, a �le containing the license can be added to the software
that is installed to the user PC.

Printed manual

If the game includes printed manuals, license text can be included there.

Link to the license

The Godot Engine developers consider that a link to godotengine.org/license in your game documentation
or credits would be an acceptable way to satisfy the license terms.

2.4.4 Third-party licenses

Godot itself contains software written by third parties. Most of it does not require license inclusion, but
some do. Make sure to do it if these are compiled in your Godot export template. If you're using the o�cial
export templates, all libraries are enabled. This means you need to provide attribution for all the libraries
listed below.

Here's a list of libraries requiring attribution:

FreeType

Godot uses FreeType to render fonts. Its license requires attribution, so the following text must be included
together with the Godot license:

Portions of this software are copyright © <year> The FreeType Project (www.freetype.org).
All rights reserved.

Note: <year> should correspond to the value from the FreeType version used in your build. This informa-
tion can be found in the editor by opening the Help > About dialog and going to the Third-party Licenses
tab.

2.4. Complying with licenses 31

https://github.com/godotengine/godot/blob/master/COPYRIGHT.txt
https://www.freetype.org/

Godot Engine Documentation, Release latest

ENet

Godot includes the ENet library to handle high-level multiplayer. ENet has similar licensing terms as Godot:

Copyright (c) 2002-2020 Lee Salzman

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation �les (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

mbed TLS

If the project is exported with Godot 3.1 or later, it includes mbed TLS. The Apache license needs to be
complied to by including the following text:

Copyright The Mbed TLS Contributors

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this �le except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the speci�c language governing permissions
and limitations under the License.

Note: If you exported your project using a custom build with speci�c modules disabled, you don't need to
list the disabled modules' licenses in your exported project.

2.5 Godot release policy

Godot's release policy is in constant evolution. The description below provides a general idea of what to
expect, but what will actually happen depends on the choices of core contributors and the needs of the
community at a given time.

32 Chapter 2. O�ine documentation

http://enet.bespin.org/
https://tls.mbed.org
http://www.apache.org/licenses/LICENSE-2.0

Godot Engine Documentation, Release latest

2.5.1 Godot versioning

Godot loosely follows Semantic Versioning with a major.minor.patch versioning system, albeit with an in-
terpretation of each term adapted to the complexity of a game engine:

� The major version is incremented when major compatibility breakages happen which imply signi�cant
porting work to move projects from one major version to another.

For example, porting Godot projects from Godot 3.x to Godot 4.x requires running the project through
a conversion tool, and then performing a number of further adjustments manually for what the tool
could not do automatically.

� The minor version is incremented for feature releases that do not break compatibility in a major way.
Minor compatibility breakage in very speci�c areas may happen in minor versions, but the vast majority
of projects should not be a�ected or require signi�cant porting work.

This is because Godot, as a game engine, covers many areas like rendering, physics, and scripting.
Fixing bugs or implementing new features in one area might sometimes require changing a feature's
behavior or modifying a class's interface, even if the rest of the engine API remains backwards com-
patible.

Tip: Upgrading to a new minor version is recommended for all users, but some testing is necessary to
ensure that your project still behaves as expected.

� The patch version is incremented for maintenance releases which focus on �xing bugs and security issues,
implementing new requirements for platform support, and backporting safe usability enhancements.
Patch releases are backwards compatible.

Patch versions may include minor new features which do not impact the existing API, and thus have
no risk of impacting existing projects.

Tip: Updating to new patch versions is therefore considered safe and strongly recommended to all users of
a given stable branch.

We call major.minor combinations stable branches. Each stable branch starts with a major.minor release
(without the 0 for patch) and is further developed for maintenance releases in a Git branch of the same name
(for example patch updates for the 4.0 stable branch are developed in the 4.0 Git branch).

2.5.2 Release support timeline

Stable branches are supported at least until the next stable branch is released and has received its �rst patch
update. In practice, we support stable branches on a best e�ort basis for as long as they have active users
who need maintenance updates.

Whenever a new major version is released, we make the previous stable branch a long-term supported release,
and do our best to provide �xes for issues encountered by users of that branch who cannot port complex
projects to the new major version. This was the case for the 2.1 branch, and is the case for the 3.6 branch.

In a given minor release series, only the latest patch release receives support. If you experience an issue
using an older patch release, please upgrade to the latest patch release of that series and test again before
reporting an issue on GitHub.

2.5. Godot release policy 33

https://semver.org/

Godot Engine Documentation, Release latest

Version Release date Support level

Godot 4.3
(master)

April 2024
(estimate)

Development. Receives new features, usability and performance improve-
ments, as well as bug �xes, while under development.

Godot 4.2 November
2023

Receives �xes for bugs and security issues, as well as patches that enable
platform support.

Godot 4.1 July 2023 Receives �xes for bugs and security issues, as well as patches that enable
platform support.

Godot 4.0 March 2023 No longer supported (last update: 4.0.4).

Godot 3.6
(3.x, LTS)

Q1 2024 (es-
timate)

Beta. Receives new features, usability and performance improvements,
as well as bug �xes, while under development.

Godot 3.5 August 2022 Receives �xes for bugs and security issues, as well as patches that enable
platform support.

Godot 3.4 November
2021

No longer supported (last update: 3.4.5).

Godot 3.3 April 2021 No longer supported (last update: 3.3.4).

Godot 3.2 January
2020

No longer supported (last update: 3.2.3).

Godot 3.1 March 2019 No longer supported (last update: 3.1.2).

Godot 3.0 January
2018

No longer supported (last update: 3.0.6).

Godot 2.1 July 2016 No longer supported (last update: 2.1.6).

Godot 2.0 February
2016

No longer supported (last update: 2.0.4.1).

Godot 1.1 May 2015 No longer supported.

Godot 1.0 December
2014

No longer supported.

Legend: Full support � Partial support � No support (end of life) � Development version

Pre-release Godot versions aren't intended to be used in production and are provided for testing purposes
only.

See also:

See Upgrading from Godot 3 to Godot 4 for instructions on migrating a project from Godot 3.x to 4.x.

2.5.3 Which version should I use for a new project?

We recommend using Godot 4.x for new projects, as the Godot 4.x series will be supported long after 3.x
stops receiving updates in the future. One caveat is that a lot of third-party documentation hasn't been
updated for Godot 4.x yet. If you have to follow a tutorial designed for Godot 3.x, we recommend keeping
Upgrading from Godot 3 to Godot 4 open in a separate tab to check which methods have been renamed (if
you get a script error while trying to use a speci�c node or method that was renamed in Godot 4.x).

If your project requires a feature that is missing in 4.x (such as GLES2/WebGL 1.0), you should use Godot
3.x for a new project instead.

34 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2.5.4 Should I upgrade my project to use new engine versions?

Note: Upgrading software while working on a project is inherently risky, so consider whether it's a good idea
for your project before attempting an upgrade. Also, make backups of your project or use version control to
prevent losing data in case the upgrade goes wrong.

That said, we do our best to keep minor and especially patch releases compatible with existing projects.

The general recommendation is to upgrade your project to follow new patch releases, such as upgrading
from 4.0.2 to 4.0.3. This ensures you get bug �xes, security updates and platform support updates (which
is especially important for mobile platforms). You also get continued support, as only the last patch release
receives support on o�cial community platforms.

For minor releases, you should determine whether it's a good idea to upgrade on a case-by-case basis. We've
made a lot of e�ort in making the upgrade process as seamless as possible, but some breaking changes may
be present in minor releases, along with a greater risk of regressions. Some �xes included in minor releases
may also change a class' expected behavior as required to �x some bugs. This is especially the case in classes
marked as experimental in the documentation.

Major releases bring a lot of new functionality, but they also remove previously existing functionality and
may raise hardware requirements. They also require much more work to upgrade to compared to minor
releases. As a result, we recommend sticking with the major release you've started your project with if you
are happy with how your project currently works. For example, if your project was started with 3.5, we
recommend upgrading to 3.5.2 and possibly 3.6 in the future, but not to 4.0+, unless your project really
needs the new features that come with 4.0+.

2.5.5 When is the next release out?

While Godot contributors aren't working under any deadlines, we strive to publish minor releases relatively
frequently.

In particular, after the very length release cycle for 4.0, we are pivoting to a faster paced development
work�ow, with the 4.1 release expected within late Q2 / early Q3 2023.

Frequent minor releases will enable us to ship new features faster (possibly as experimental), get user feedback
quickly, and iterate to improve those features and their usability. Likewise, the general user experience will
be improved more steadily with a faster path to the end users.

Maintenance (patch) releases are released as needed with potentially very short development cycles, to
provide users of the current stable branch with the latest bug �xes for their production needs.

The 3.6 release is still planned and should be the last stable branch of Godot 3.x. It will be a Long-Term
Support (LTS) release, which we plan to support for as long as users still need it (due to missing features in
Godot 4.x, or having published games which they need to keep updating for platform requirements).

2.5.6 What are the criteria for compatibility across engine versions?

Note: This section is intended to be used by contributors to determine which changes are safe for a given
release. The list is not exhaustive; it only outlines the most common situations encountered during Godot's
development.

The following changes are acceptable in patch releases:

� Fixing a bug in a way that has no major negative impact on most projects, such as a visual or physics
bug. Godot's physics engine is not deterministic, so physics bug �xes are not considered to break

2.5. Godot release policy 35

Godot Engine Documentation, Release latest

compatibility. If �xing a bug has a negative impact that could impact a lot of projects, it should be
made optional (e.g. using a project setting or separate method).

� Adding a new optional parameter to a method.

� Small-scale editor usability tweaks.

Note that we tend to be more conservative with the �xes we allow in each subsequent patch release. For
instance, 4.0.1 may receive more impactful �xes than 4.0.4 would.

The following changes are acceptable in minor releases, but not patch releases:

� Signi�cant new features.

� Renaming a method parameter. In C#, method parameters can be passed by name (but not in
GDScript). As a result, this can break some projects that use C#.

� Deprecating a method, member variable, or class. This is done by adding a deprecated �ag to its class
reference, which will show up in the editor. When a method is marked as deprecated, it's slated to be
removed in the next major release.

� Changes that a�ect the default project theme's visuals.

� Bug �xes which signi�cantly change the behavior or the output, with the aim to meet user expectations
better. In comparison, in patch releases, we may favor keeping a buggy behavior so we don't break
existing projects which likely already rely on the bug or use a workaround.

� Performance optimizations that result in visual changes.

The following changes are considered compatibility-breaking and can only be performed in a new major
release:

� Renaming or removing a method, member variable, or class.

� Modifying a node's inheritance tree by making it inherit from a di�erent class.

� Changing the default value of a project setting value in a way that a�ects existing projects. To only
a�ect new projects, the project manager should write a modi�ed project.godot instead.

Since Godot 5.0 hasn't been branched o� yet, we currently discourage making compatibility-breaking changes
of this kind.

Note: When modifying a method's signature in any fashion (including adding an optional parameter), a
GDExtension compatibility method must be created. This ensures that existing GDExtensions continue to
work across patch and minor releases, so that users don't have to recompile them. See pull request #76446
for more information.

2.6 Documentation changelog

The documentation is continually being improved. New releases include new pages, �xes and updates to
existing pages, and many updates to the class reference. Below is a list of new pages added since version 3.0.

Note: This document only contains new pages so not all changes are re�ected, many pages have been
substantially updated but are not re�ected in this document.

36 Chapter 2. O�ine documentation

https://github.com/godotengine/godot/pull/76446

Godot Engine Documentation, Release latest

2.6.1 New pages since version 4.1

C#

� C# diagnostics

Development

� 2D coordinate systems and 2D transforms

Migrating

� Upgrading from Godot 4.1 to Godot 4.2

I/O

� Runtime �le loading and saving

Platform-speci�c

� Godot Android library

2.6.2 New pages since version 4.0

Development

� Internal rendering architecture

� Using sanitizers

Migrating

� Upgrading from Godot 4.0 to Godot 4.1

Physics

� Troubleshooting physics issues

2.6.3 New pages since version 3.6

2D

� 2D antialiasing

3D

� 3D antialiasing

� Faking global illumination

� Introduction to global illumination

� Mesh level of detail (LOD)

� Occlusion culling

� Signed distance �eld global illumination (SDFGI)

� Using decals

� Visibility ranges (HLOD)

2.6. Documentation changelog 37

Godot Engine Documentation, Release latest

� Volumetric fog and fog volumes

� Variable rate shading

� Physical light and camera units

Animation

� Creating movies

Assets pipeline

� Retargeting 3D Skeletons

Development

� Custom platform ports

Migrating

� Upgrading from Godot 3 to Godot 4

Physics

� Large world coordinates

Scripting

� Custom performance monitors

� C# collections

� C# global classes

� C# Variant

Shaders

� Using compute shaders

Work�ow

� Pull request review process

XR

� Introducing XR tools

� The XR action map

� Deploying to Android

38 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2.6.4 New pages since version 3.5

None.

2.6.5 New pages since version 3.4

3D

� 3D text

Animation

� Playing videos

Editor

� Managing editor features

2.6.6 New pages since version 3.3

C++

� C++ usage guidelines

GDScript

� GDScript documentation comments

2.6.7 New pages since version 3.2

3D

� 3D rendering limitations

About

� Troubleshooting

� List of features

� Godot release policy

Best practices

� Version control systems

Community

� Best practices for engine contributors

� Bisecting regressions

� Editor and documentation localization

2.6. Documentation changelog 39

Godot Engine Documentation, Release latest

Development

� Introduction to editor development

� Editor style guide

� Common engine methods and macros

� Validation layers

� GDScript grammar

� Con�guring an IDE: Code::Blocks

Editor

� Default editor shortcuts

� Using the Web editor

Export

� Exporting for dedicated servers

Input

� Controllers, gamepads, and joysticks

Math

� Random number generation

Platform-speci�c

� Plugins for iOS

� Creating iOS plugins

� HTML5 shell class reference

Physics

� Collision shapes (2D)

� Collision shapes (3D)

Shaders

� Shaders style guide

Scripting

� Debugger panel

� Creating script templates

� Evaluating expressions

� What is GDExtension?

� GDScript warning system (split from Static typing in GDScript)

40 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

User Interface (UI)

� Control node gallery

2.6.8 New pages since version 3.1

Project work�ow

� Gradle builds for Android

2D

� 2D sprite animation

Audio

� Recording with microphone

� Sync the gameplay with audio and music

Math

� Beziers, curves and paths

� Interpolation

Inputs

� Input examples

Internationalization

� Localization using gettext

Shading

� Your First Shader Series:

� Introduction to shaders

� Your �rst 2D shader

� Your �rst 3D shader

� Your second 3D shader

� Using VisualShaders

Networking

� WebRTC

2.6. Documentation changelog 41

Godot Engine Documentation, Release latest

Plugins

� Godot Android plugins

� Inspector plugins

� Visual Shader plugins

Multi-threading

� Using multiple threads

Creating content

Procedural geometry series:

� Procedural geometry

� Using the ArrayMesh

� Using the SurfaceTool

� Using the MeshDataTool

� Using ImmediateMesh

Optimization

� Optimization using MultiMeshes

� Optimization using Servers

Legal

� Complying with licenses

2.6.9 New pages since version 3.0

Step by step

� Using signals

� Exporting

Scripting

� Static typing in GDScript

Project work�ow

Best Practices:

� Introduction

� Applying object-oriented principles in Godot

� Scene organization

� When to use scenes versus scripts

� Autoloads versus regular nodes

� When and how to avoid using nodes for everything

� Godot interfaces

42 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

� Godot noti�cations

� Data preferences

� Logic preferences

2D

� 2D lights and shadows

� 2D meshes

3D

� Prototyping levels with CSG

� Animating thousands of �sh with MultiMeshInstance3D

� Controlling thousands of �sh with Particles

Physics

� Ragdoll system

� Using SoftBody

Animation

� 2D skeletons

� Using AnimationTree

GUI

� Using Containers

Viewports

� Using a Viewport as a texture

� Custom post-processing

Shading

� Converting GLSL to Godot shaders

� Advanced post-processing

Shading Reference:

� Introduction to shaders

� Shading language

� Spatial shaders

� CanvasItem shaders

� Particle shaders

2.6. Documentation changelog 43

Godot Engine Documentation, Release latest

Plugins

� Making main screen plugins

� 3D gizmo plugins

Platform-speci�c

� Custom HTML page for Web export

Multi-threading

� Thread-safe APIs

Creating content

� Making trees

Miscellaneous

� Fixing jitter, stutter and input lag

� Running code in the editor

� Change scenes manually

Compiling

� Optimizing a build for size

� Compiling with PCK encryption key

Engine development

� Binding to external libraries

2.7 Introduction

This series will introduce you to Godot and give you an overview of its features.

In the following pages, you will get answers to questions such as "Is Godot for me?" or "What can I do
with Godot?". We will then introduce the engine's most essential concepts, run you through the editor's
interface, and give you tips to make the most of your time learning it.

2.7.1 Introduction to Godot

This article is here to help you �gure out whether Godot might be a good �t for you. We will introduce
some broad features of the engine to give you a feel for what you can achieve with it and answer questions
such as "what do I need to know to get started?".

This is by no means an exhaustive overview. We will introduce many more features in this getting started
series.

44 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

What is Godot?

Godot is a general-purpose 2D and 3D game engine designed to support all sorts of projects. You can use it
to create games or applications you can then release on desktop or mobile, as well as on the web.

You can also create console games with it, although you either need strong programming skills or a developer
to port the game for you.

Note: The Godot team can't provide an open source console export due to the licensing terms imposed by
console manufacturers. Regardless of the engine you use, though, releasing games on consoles is always a lot
of work. You can read more on that here: Console support in Godot.

What can the engine do?

Godot was initially developed in-house by an Argentinian game studio. Its development started in 2001, and
the engine was rewritten and improved tremendously since its open source release in 2014.

Some examples of games created with Godot include Ex-Zodiac and Helms of Fury.

2.7. Introduction 45

Godot Engine Documentation, Release latest

As for applications, the open source pixel art drawing program Pixelorama is powered by Godot, and so is
the voxel RPG creator RPG in a box.

You can �nd many more examples in the o�cial showcase videos.

46 Chapter 2. O�ine documentation

https://www.youtube.com/playlist?list=PLeG_dAglpVo6EpaO9A1nkwJZOwrfiLdQ8

Godot Engine Documentation, Release latest

How does it work and look?

Godot comes with a fully-�edged game editor with integrated tools to answer the most common needs. It
includes a code editor, an animation editor, a tilemap editor, a shader editor, a debugger, a pro�ler, and
more.

The team strives to o�er a feature-rich game editor with a consistent user experience. While there is always
room for improvement, the user interface keeps getting re�ned.

Of course, if you prefer, you can work with external programs. We o�cially support importing 3D scenes
designed in Blender and maintain plugins to code in VSCode and Emacs for GDScript and C#. We also
support Visual Studio for C# on Windows.

2.7. Introduction 47

https://www.blender.org/
https://github.com/godotengine/godot-vscode-plugin
https://github.com/godotengine/emacs-gdscript-mode

Godot Engine Documentation, Release latest

Programming languages

Let's talk about the available programming languages.

You can code your games using GDScript, a Godot-speci�c and tightly integrated language with a lightweight
syntax, or C#, which is popular in the games industry. These are the two main scripting languages we
support.

With the GDExtension technology, you can also write gameplay or high-performance algorithms in C or
C++ without recompiling the engine. You can use this technology to integrate third-party libraries and
other Software Development Kits (SDK) in the engine.

Of course, you can also directly add modules and features to the engine, as it's completely free and open
source.

What do I need to know to use Godot?

Godot is a feature-packed game engine. With its thousands of features, there is a lot to learn. To make the
most of it, you need good programming foundations. While we try to make the engine accessible, you will
bene�t a lot from knowing how to think like a programmer �rst.

Godot relies on the object-oriented programming paradigm. Being comfortable with concepts such as classes
and objects will help you code e�ciently in it.

If you are entirely new to programming, we recommend following the CS50 open courseware from Harvard
University. It's a great free course that will teach you everything you need to know to be o� to a good start.
It will save you countless hours and hurdles learning any game engine afterward.

Note: In CS50, you will learn multiple programming languages. Don't be afraid of that: programming
languages have many similarities. The skills you learn with one language transfer well to others.

We will provide you with more Godot-speci�c learning resources in Learning new features.

In the next part, you will get an overview of the engine's essential concepts.

48 Chapter 2. O�ine documentation

https://cs50.harvard.edu/x

Godot Engine Documentation, Release latest

2.7.2 Overview of Godot's key concepts

Every game engine revolves around abstractions you use to build your applications. In Godot, a game is a
tree of nodes that you group together into scenes. You can then wire these nodes so they can communicate
using signals.

These are the four concepts you will learn here. We're going to look at them brie�y to give you a sense of
how the engine works. In the getting started series, you will get to use them in practice.

Scenes

In Godot, you break down your game in reusable scenes. A scene can be a character, a weapon, a menu in
the user interface, a single house, an entire level, or anything you can think of. Godot's scenes are �exible;
they �ll the role of both prefabs and scenes in some other game engines.

You can also nest scenes. For example, you can put your character in a level, and drag and drop a scene as
a child of it.

2.7. Introduction 49

Godot Engine Documentation, Release latest

Nodes

A scene is composed of one or more nodes. Nodes are your game's smallest building blocks that you arrange
into trees. Here's an example of a character's nodes.

It is made of a CharacterBody2D node named "Player", a Camera2D, a Sprite2D, and a CollisionShape2D.

Note: The node names end with "2D" because this is a 2D scene. Their 3D counterparts have names that
end with "3D". Be aware that "Spatial" Nodes are now called "Node3D" starting with Godot 4.

Notice how nodes and scenes look the same in the editor. When you save a tree of nodes as a scene, it then
shows as a single node, with its internal structure hidden in the editor.

Godot provides an extensive library of base node types you can combine and extend to build more powerful
ones. 2D, 3D, or user interface, you will do most things with these nodes.

50 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The scene tree

All your game's scenes come together in the scene tree, literally a tree of scenes. And as scenes are trees of
nodes, the scene tree also is a tree of nodes. But it's easier to think of your game in terms of scenes as they
can represent characters, weapons, doors, or your user interface.

2.7. Introduction 51

Godot Engine Documentation, Release latest

Signals

Nodes emit signals when some event occurs. This feature allows you to make nodes communicate without
hard-wiring them in code. It gives you a lot of �exibility in how you structure your scenes.

Note: Signals are Godot's version of the observer pattern. You can read more about it here: https:
//gameprogrammingpatterns.com/observer.html

For example, buttons emit a signal when pressed. You can connect to this signal to run code in reaction to
this event, like starting the game or opening a menu.

Other built-in signals can tell you when two objects collided, when a character or monster entered a given
area, and much more. You can also de�ne new signals tailored to your game.

Summary

Nodes, scenes, the scene tree, and signals are four core concepts in Godot that you will manipulate all the
time.

Nodes are your game's smallest building blocks. You combine them to create scenes that you then combine
and nest into the scene tree. You can then use signals to make nodes react to events in other nodes or
di�erent scene tree branches.

After this short breakdown, you probably have many questions. Bear with us as you will get many answers
throughout the getting started series.

52 Chapter 2. O�ine documentation

https://gameprogrammingpatterns.com/observer.html
https://gameprogrammingpatterns.com/observer.html

Godot Engine Documentation, Release latest

2.7.3 First look at Godot's editor

This page will give you a brief overview of Godot's interface. We're going to look at the di�erent main
screens and docks to help you situate yourself.

See also:

For a comprehensive breakdown of the editor's interface and how to use it, see the Editor manual.

The Project Manager

When you launch Godot, the �rst window you see is the Project Manager. In the default tab Local Projects,
you can manage existing projects, import or create new ones, and more.

At the top of the window, there is another tab named "Asset Library Projects". You can search for demo
projects in the open source asset library, which includes many projects developed by the community.

See also:

To learn the Project Manager's ins and outs, read Using the Project Manager.

2.7. Introduction 53

Godot Engine Documentation, Release latest

You can also change the editor's language using the drop-down menu to the right of the engine's version in
the window's top-right corner. By default, it is in English (EN).

First look at Godot's editor

When you open a new or an existing project, the editor's interface appears. Let's look at its main areas.

54 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

By default, it features menus, main screens, and playtest buttons along the window's top edge.

In the center is the viewport with its toolbar at the top, where you'll �nd tools to move, scale, or lock the
scene's nodes.

2.7. Introduction 55

Godot Engine Documentation, Release latest

On either side of the viewport sit the docks. And at the bottom of the window lies the bottom panel.

The toolbar changes based on the context and selected node. Here is the 2D toolbar.

Below is the 3D one.

Let's look at the docks. The FileSystem dock lists your project �les, including scripts, images, audio samples,
and more.

56 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The Scene dock lists the active scene's nodes.

The Inspector allows you to edit the properties of a selected node.

2.7. Introduction 57

Godot Engine Documentation, Release latest

The bottom panel, situated below the viewport, is the host for the debug console, the animation editor, the
audio mixer, and more. They can take precious space, that's why they're folded by default.

When you click on one, it expands vertically. Below, you can see the animation editor opened.

The four main screens

There are four main screen buttons centered at the top of the editor: 2D, 3D, Script, and AssetLib.

You'll use the 2D screen for all types of games. In addition to 2D games, the 2D screen is where you'll build
your interfaces.

58 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

In the 3D screen, you can work with meshes, lights, and design levels for 3D games.

Notice the perspective button under the toolbar. Clicking on it opens a list of options related to the 3D
view.

2.7. Introduction 59

Godot Engine Documentation, Release latest

Note: Read Introduction to 3D for more detail about the 3D main screen.

The Script screen is a complete code editor with a debugger, rich auto-completion, and built-in code reference.

Finally, the AssetLib is a library of free and open source add-ons, scripts, and assets to use in your projects.

60 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

See also:

You can learn more about the asset library in About the Asset Library.

Integrated class reference

Godot comes with a built-in class reference.

You can search for information about a class, method, property, constant, or signal by any one of the following
methods:

� Pressing F1 (or Alt + Space on macOS, or fn + F1 for laptops with a fn key) anywhere in the editor.

� Clicking the "Search Help" button in the top-right of the Script main screen.

� Clicking on the Help menu and Search Help.

� Clicking while pressing the Ctrl key on a class name, function name, or built-in variable in the script
editor.

When you do any of these, a window pops up. Type to search for any item. You can also use it to browse
available objects and methods.

2.7. Introduction 61

Godot Engine Documentation, Release latest

Double-click on an item to open the corresponding page in the script main screen.

62 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2.7.4 Learning new features

Godot is a feature-rich game engine. There is a lot to learn about it. This page explains how you can use the
online manual, built-in code reference, and join online communities to learn new features and techniques.

Making the most of this manual

What you are reading now is the user manual. It documents each of the engine's concepts and available
features. When learning a new topic, you can start by browsing the corresponding section of this website.
The left menu allows you to explore broad topics while the search bar will help you �nd more speci�c pages.
If a page exists for a given theme, it will often link to more related content.

The manual has a companion class reference that explains each Godot class's available functions and prop-
erties when programming. While the manual covers general features, concepts, and how to use the editor,
the reference is all about using Godot's scripting API (Application Programming Interface). You can access

2.7. Introduction 63

Godot Engine Documentation, Release latest

it both online and o�ine. We recommend browsing the reference o�ine, from within the Godot editor. To
do so, go to Help -> Search Help or press F1.

To browse it online, head to the manual's Class Reference section.

A class reference's page tells you:

1. Where the class exists in the inheritance hierarchy. You can click the top links to jump to parent
classes and see the properties and methods a type inherits.

2. A summary of the class's role and use cases.

3. An explanation of the class's properties, methods, signals, enums, and constants.

4. Links to manual pages further detailing the class.

Note: If the manual or class reference is missing or has insu�cient information, please open an Issue in the
o�cial godot-docs GitHub repository to report it.

You can Ctrl-click any underlined text like the name of a class, property, method, signal, or constant to
jump to it.

64 Chapter 2. O�ine documentation

https://github.com/godotengine/godot-docs/issues

Godot Engine Documentation, Release latest

Learning to think like a programmer

Teaching programming foundations and how to think like a game developer is beyond the scope of Godot's
documentation. If you're new to programming, we recommend two excellent free resources to get you started:

1. Harvard university o�ers a free courseware to learn to program, CS50. It will teach you programming
fundamentals, how code works, and how to think like a programmer. These skills are essential to become
a game developer and learn any game engine e�ciently. You can see this course as an investment that
will save you time and trouble when you learn to create games.

2. If you prefer books, check out the free ebook Automate The Boring Stu� With Python by Al Sweigart.

Learning with the community

Godot has a growing community of users. If you're stuck on a problem or need help to better understand
how to achieve something, you can ask other users for help on one of the many active communities.

The best place to ask questions and �nd already answered ones is the o�cial Questions & Answers site. These
responses show up in search engine results and get saved, allowing other users to bene�t from discussions
on the platform. Once you have asked a question there, you can share its link on other social platforms.
Before asking a question, be sure to look for existing answers that might solve your problem on this website
or using your preferred search engine.

Asking questions well and providing details will help others answer you faster and better. When asking
questions, we recommend including the following information:

1. Describe your goal. You want to explain what you are trying to achieve design-wise. If you are
having trouble �guring out how to make a solution work, there may be a di�erent, easier solution that
accomplishes the same goal.

2. If there is an error involved, share the exact error message. You can copy the exact error message in
the editor's Debugger bottom panel by clicking the Copy Error icon. Knowing what it says can help
community members better identify how you triggered the error.

3. If there is code involved, share a code sample. Other users won't be able to help you �x a problem
without seeing your code. Share the code as text directly. To do so, you can copy and paste a short
code snippet in a chat box, or use a website like Pastebin to share long �les.

4. Share a screenshot of your Scene dock along with your written code. Most of the code you write a�ects
nodes in your scenes. As a result, you should think of those scenes as part of your source code.

2.7. Introduction 65

https://cs50.harvard.edu/x/
https://automatetheboringstuff.com/
https://godotengine.org/community
https://ask.godotengine.org/
https://pastebin.com/

Godot Engine Documentation, Release latest

Also, please don't take a picture with your phone, the low quality and screen re�ections can make it
hard to understand the image. Your operating system should have a built-in tool to take screenshots
with the PrtSc (Print Screen) key.

Alternatively, you can use a program like ShareX on Windows or FlameShot on Linux.

5. Sharing a video of your running game can also be really useful to troubleshoot your game. You can
use programs like OBS Studio and Screen to GIF to capture your screen.

You can then use a service like streamable or a cloud provider to upload and share your videos for free.

6. If you're not using the stable version of Godot, please mention the version you're using. The answer
can be di�erent as available features and the interface evolve rapidly.

Following these guidelines will maximize your chances of getting the answer you're looking for. They will
save time both for you and the persons helping you.

Community tutorials

This manual aims to provide a comprehensive reference of Godot's features. Aside from the 2D and 3D
getting started series, it does not contain tutorials to implement speci�c game genres. If you're looking for a
tutorial about creating a role-playing game, a platformer, or other, please see Tutorials and resources, which
lists content made by the Godot community.

2.7.5 Godot's design philosophy

Now that you've gotten your feet wet, let's talk about Godot's design.

Every game engine is di�erent and �ts di�erent needs. Not only do they o�er a range of features, but the
design of each engine is unique. This leads to di�erent work�ows and di�erent ways to form your games'
structures. This all stems from their respective design philosophies.

This page is here to help you understand how Godot works, starting with some of its core pillars. It is not
a list of available features, nor is it an engine comparison. To know if any engine can be a good �t for your
project, you need to try it out for yourself and understand its design and limitations.

66 Chapter 2. O�ine documentation

https://getsharex.com/
https://flameshot.org/
https://obsproject.com/
https://www.screentogif.com/
https://streamable.com/

Godot Engine Documentation, Release latest

Please watch Godot explained in 5 minutes if you're looking for an overview of the engine's features.

Object-oriented design and composition

Godot embraces object-oriented design at its core with its �exible scene system and Node hierarchy. It tries
to stay away from strict programming patterns to o�er an intuitive way to structure your game.

For one, Godot lets you compose or aggregate scenes. It's like nested prefabs: you can create a BlinkingLight
scene and a BrokenLantern scene that uses the BlinkingLight. Then, create a city �lled with BrokenLanterns.
Change the BlinkingLight's color, save, and all the BrokenLanterns in the city will update instantly.

On top of that, you can inherit from any scene.

A Godot scene could be a Weapon, a Character, an Item, a Door, a Level, part of a level. . . anything you'd
like. It works like a class in pure code, except you're free to design it by using the editor, using only the
code, or mixing and matching the two.

It's di�erent from prefabs you �nd in several 3D engines, as you can then inherit from and extend those
scenes. You may create a Magician that extends your Character. Modify the Character in the editor and
the Magician will update as well. It helps you build your projects so that their structure matches the game's
design.

Also note that Godot o�ers many di�erent types of objects called nodes, each with a speci�c purpose. Nodes
are part of a tree and always inherit from their parents up to the Node class. Although the engine does
feature some nodes like collision shapes that a parent physics body will use, most nodes work independently
from one another.

In other words, Godot's nodes do not work like components in some other game engines.

2.7. Introduction 67

https://www.youtube.com/watch?v=KjX5llYZ5eQ

Godot Engine Documentation, Release latest

Sprite2D is a Node2D, a CanvasItem and a Node. It has all the properties and features of its three parent
classes, like transforms or the ability to draw custom shapes and render with a custom shader.

All-inclusive package

Godot tries to provide its own tools to answer most common needs. It has a dedicated scripting workspace,
an animation editor, a tilemap editor, a shader editor, a debugger, a pro�ler, the ability to hot-reload locally
and on remote devices, etc.

The goal is to o�er a full package to create games and a continuous user experience. You can still work with
external programs as long as there is an import plugin available in Godot for it. Or you can create one, like
the Tiled Map Importer.

That is also partly why Godot o�ers its own programming language GDScript along with C#. GDScript is
designed for the needs of game developers and game designers, and is tightly integrated in the engine and
the editor.

GDScript lets you write code using an indentation-based syntax, yet it detects types and o�ers a static
language's quality of auto-completion. It is also optimized for gameplay code with built-in types like Vectors
and Colors.

68 Chapter 2. O�ine documentation

https://github.com/vnen/godot-tiled-importer

Godot Engine Documentation, Release latest

Note that with GDExtension, you can write high-performance code using compiled languages like C, C++,
Rust, D, Haxe, or Swift without recompiling the engine.

Note that the 3D workspace doesn't feature as many tools as the 2D workspace. You'll need external
programs or add-ons to edit terrains, animate complex characters, and so on. Godot provides a complete
API to extend the editor's functionality using game code. See The Godot editor is a Godot game below.

A State Machine editor plugin in Godot 2 by kubecz3k. It lets you manage states and transitions visually.

Open source

Godot o�ers a fully open source codebase under the MIT license. This means all the technologies that ship
with it have to be Free (as in freedom) as well. For the most part, they're developed from the ground up by
contributors.

Anyone can plug in proprietary tools for the needs of their projects � they just won't ship with the engine.
This may include Google AdMob, or FMOD. Any of these can come as third-party plugins instead.

On the other hand, an open codebase means you can learn from and extend the engine to your heart's
content. You can also debug games easily, as Godot will print errors with a stack trace, even if they come
from the engine itself.

Note: This does not a�ect the work you do with Godot in any way: there's no strings attached to the
engine or anything you make with it.

2.7. Introduction 69

Godot Engine Documentation, Release latest

Community-driven

Godot is made by its community, for the community, and for all game creators out there. It's the needs
of the users and open discussions that drive the core updates. New features from the core developers often
focus on what will bene�t the most users �rst.

That said, although a handful of core developers work on it full-time, the project has over 600 contributors
at the time of writing. Benevolent programmers work on features they may need themselves, so you'll see
improvements in all corners of the engine at the same time in every major release.

The Godot editor is a Godot game

The Godot editor runs on the game engine. It uses the engine's own UI system, it can hot-reload code and
scenes when you test your projects, or run game code in the editor. This means you can use the same code
and scenes for your games, or build plugins and extend the editor.

This leads to a reliable and �exible UI system, as it powers the editor itself. With the @tool annotation,
you can run any game code in the editor.

RPG in a Box is a voxel RPG editor made with Godot 2. It uses Godot's UI tools for its node-based
programming system and for the rest of the interface.

Put the @tool annotation at the top of any GDScript �le and it will run in the editor. This lets you import
and export plugins, create plugins like custom level editors, or create scripts with the same nodes and API
you use in your projects.

Note: The editor is fully written in C++ and is statically compiled into the binary. This means you can't
import it as a typical project that would have a project.godot �le.

70 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Separate 2D and 3D engines

Godot o�ers dedicated 2D and 3D rendering engines. As a result, the base unit for 2D scenes is pixels. Even
though the engines are separate, you can render 2D in 3D, 3D in 2D, and overlay 2D sprites and interfaces
over your 3D world.

2.8 Step by step

This series builds upon the Introduction to Godot and will get you started with the editor and the engine.
You will learn more about nodes and scenes, code your �rst classes with GDScript, use signals to make nodes
communicate with one another, and more.

The following lessons are here to prepare you for Your �rst 2D game, a step-by-step tutorial where you will
code a game from scratch. By the end of it, you will have the necessary foundations to explore more features
in other sections. We also included links to pages that cover a given topic in-depth where appropriate.

2.8.1 Nodes and Scenes

In Overview of Godot's key concepts, we saw that a Godot game is a tree of scenes and that each scene is a
tree of nodes. In this lesson, we explain a bit more about them. You will also create your �rst scene.

Nodes

Nodes are the fundamental building blocks of your game. They are like the ingredients in a recipe. There
are dozens of kinds that can display an image, play a sound, represent a camera, and much more.

All nodes have the following characteristics:

2.8. Step by step 71

Godot Engine Documentation, Release latest

� A name.

� Editable properties.

� They receive callbacks to update every frame.

� You can extend them with new properties and functions.

� You can add them to another node as a child.

The last characteristic is important. Together, nodes form a tree, which is a powerful feature to organize
projects. Since di�erent nodes have di�erent functions, combining them produces more complex behavior.
As we saw before, you can build a playable character the camera follows using a CharacterBody2D node, a
Sprite2D node, a Camera2D node, and a CollisionShape2D node.

Scenes

When you organize nodes in a tree, like our character, we call this construct a scene. Once saved, scenes
work like new node types in the editor, where you can add them as a child of an existing node. In that case,
the instance of the scene appears as a single node with its internals hidden.

Scenes allow you to structure your game's code however you want. You can compose nodes to create custom
and complex node types, like a game character that runs and jumps, a life bar, a chest with which you can
interact, and more.

72 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The Godot editor essentially is a scene editor. It has plenty of tools for editing 2D and 3D scenes, as well as
user interfaces. A Godot project can contain as many of these scenes as you need. The engine only requires
one as your application's main scene. This is the scene Godot will �rst load when you or a player runs the
game.

On top of acting like nodes, scenes have the following characteristics:

1. They always have one root node, like the "Character" in our example.

2. You can save them to your local drive and load them later.

3. You can create as many instances of a scene as you'd like. You could have �ve or ten characters in
your game, created from your Character scene.

Creating your �rst scene

Let's create our �rst scene with a single node. To do so, you will need to create a new project �rst. After
opening the project, you should see an empty editor.

2.8. Step by step 73

Godot Engine Documentation, Release latest

In an empty scene, the Scene dock on the left shows several options to add a root node quickly. "2D Scene"
adds a Node2D node, "3D Scene" adds a Node3D node, and "User Interface" adds a Control node. These
presets are here for convenience; they are not mandatory. "Other Node" lets you select any node to be the
root node. In an empty scene, "Other Node" is equivalent to pressing the "Add Child Node" button at the
top-left of the Scene dock, which usually adds a new node as a child of the currently selected node.

We're going to add a single Label node to our scene. Its function is to draw text on the screen.

Press the "Add Child Node" button or "Other Node" to create a root node.

The Create Node dialog opens, showing the long list of available nodes.

74 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Select the Label node. You can type its name to �lter down the list.

2.8. Step by step 75

Godot Engine Documentation, Release latest

Click on the Label node to select it and click the Create button at the bottom of the window.

A lot happens when you add a scene's �rst node. The scene changes to the 2D workspace because Label is

76 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

a 2D node type. The Label appears, selected, in the top-left corner of the viewport. The node appears in
the Scene dock on the left, and the node's properties appear in the Inspector dock on the right.

Changing a node's properties

The next step is to change the Label's "Text" property. Let's change it to "Hello World".

Head to the Inspector dock on the right of the viewport. Click inside the �eld below the Text property and
type "Hello World".

You will see the text draw in the viewport as you type.

See also:

You can edit any property listed in the Inspector as we did with the Text. For a complete reference of the
Inspector dock, see The Inspector.

You can move your Label node in the viewport by selecting the move tool in the toolbar.

With the Label selected, click and drag anywhere in the viewport to move it to the center of the view
delimited by the rectangle.

2.8. Step by step 77

Godot Engine Documentation, Release latest

Running the scene

Everything's ready to run the scene! Press the Play Scene button in the top-right of the screen or press F6
(Cmd + R on macOS).

A popup invites you to save the scene, which is required to run it. Click the Save button in the �le browser
to save it as label.tscn.

78 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Note: The Save Scene As dialog, like other �le dialogs in the editor, only allows you to save �les inside
the project. The res:// path at the top of the window represents the project's root directory and stands for
"resource path". For more information about �le paths in Godot, see File system.

The application should open in a new window and display the text "Hello World".

2.8. Step by step 79

Godot Engine Documentation, Release latest

Close the window or press F8 (Cmd + . on macOS) to quit the running scene.

Setting the main scene

To run our test scene, we used the Play Scene button. Another button next to it allows you to set and run
the project's main scene. You can press F5 (Cmd + B on macOS) to do so.

A popup window appears and invites you to select the main scene.

Click the Select button, and in the �le dialog that appears, double click on label.tscn.

80 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The demo should run again. Moving forward, every time you run the project, Godot will use this scene as
a starting point.

Note: The editor saves the main scene's path in a project.godot �le in your project's directory. While you
can edit this text �le directly to change project settings, you can also use the "Project -> Project Settings"
window to do so. For more information, see Project Settings.

In the next part, we will discuss another key concept in games and in Godot: creating instances of a scene.

2.8.2 Creating instances

In the previous part, we saw that a scene is a collection of nodes organized in a tree structure, with a single
node as its root. You can split your project into any number of scenes. This feature helps you break down
and organize your game's di�erent components.

You can create as many scenes as you'd like and save them as �les with the .tscn extension, which stands
for "text scene". The label.tscn �le from the previous lesson was an example. We call those �les "Packed
Scenes" as they pack information about your scene's content.

Here's an example of a ball. It's composed of a RigidBody2D node as its root named Ball, which allows the
ball to fall and bounce on walls, a Sprite2D node, and a CollisionShape2D.

2.8. Step by step 81

Godot Engine Documentation, Release latest

Once you saved a scene, it works as a blueprint: you can reproduce it in other scenes as many times as you'd
like. Replicating an object from a template like this is called instancing.

As we mentioned in the previous part, instanced scenes behave like a node: the editor hides their content
by default. When you instance the Ball, you only see the Ball node. Notice also how each duplicate has a
unique name.

Every instance of the Ball scene starts with the same structure and properties as ball.tscn. However, you
can modify each independently, such as changing how they bounce, how heavy they are, or any property
exposed by the source scene.

In practice

Let's use instancing in practice to see how it works in Godot. We invite you to download the ball's sample
project we prepared for you: instancing_starter.zip.

Extract the archive on your computer. To import it, you need the Project Manager. The Project Manager
is accessed by opening Godot, or if you already have Godot opened, click on Project -> Quit to Project List
(Ctrl + Shift + Q, Ctrl + Option + Cmd + Q on macOS)

In the Project Manager, click the Import button to import the project.

82 Chapter 2. O�ine documentation

https://github.com/godotengine/godot-docs-project-starters/releases/download/latest-4.x/instancing_starter.zip

Godot Engine Documentation, Release latest

In the pop-up that appears, click the browse button and navigate to the folder you extracted.

Double-click the project.godot �le to open it.

2.8. Step by step 83

Godot Engine Documentation, Release latest

Finally, click the Import & Edit button.

The project contains two packed scenes: main.tscn, containing walls against which the ball collides, and
ball.tscn. The Main scene should open automatically. If you're seeing an empty 3D scene instead of the
main scene, click the 2D button at the top of the screen.

84 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Let's add a ball as a child of the Main node. In the Scene dock, select the Main node. Then, click the link
icon at the top of the scene dock. This button allows you to add an instance of a scene as a child of the
currently selected node.

Double-click the ball scene to instance it.

The ball appears in the top-left corner of the viewport.

2.8. Step by step 85

Godot Engine Documentation, Release latest

Click on it and drag it towards the center of the view.

Play the game by pressing F5 (Cmd + B on macOS). You should see it fall.

Now, we want to create more instances of the Ball node. With the ball still selected, press Ctrl + D (Cmd
+ D on macOS) to call the duplicate command. Click and drag to move the new ball to a di�erent location.

86 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

You can repeat this process until you have several in the scene.

Play the game again. You should now see every ball fall independently from one another. This is what
instances do. Each is an independent reproduction of a template scene.

2.8. Step by step 87

Godot Engine Documentation, Release latest

Editing scenes and instances

There is more to instances. With this feature, you can:

1. Change the properties of one ball without a�ecting the others using the Inspector.

2. Change the default properties of every Ball by opening the ball.tscn scene and making a change to the
Ball node there. Upon saving, all instances of the Ball in the project will see their values update.

Note: Changing a property on an instance always overrides values from the corresponding packed scene.

Let's try this. Open ball.tscn and select the Ball node. In the Inspector on the right, click on the Physics-
Material property to expand it.

Set its Bounce property to 0.5 by clicking on the number �eld, typing 0.5, and pressing Enter.

Play the game by pressing F5 and notice how all balls now bounce a lot more. As the Ball scene is a template
for all instances, modifying it and saving causes all instances to update accordingly.

88 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Let's now adjust an individual instance. Head back to the Main scene by clicking on the corresponding tab
above the viewport.

Select one of the instanced Ball nodes and, in the Inspector, set its Gravity Scale value to 10.

A grey "revert" button appears next to the adjusted property.

This icon indicates you are overriding a value from the source packed scene. Even if you modify the property
in the original scene, the value override will be preserved in the instance. Clicking the revert icon will restore
the property to the value in the saved scene.

Rerun the game and notice how this ball now falls much faster than the others.

Note: If you change a value on the PhysicsMaterial of one instance, it will a�ect all the others. This
is because PhysicsMaterial is a resource, and resources are shared between instances. To make a resource
unique for one instance, right-click on it in the Inspector and click Make Unique in the contextual menu.

Resources are another essential building block of Godot games we will cover in a later lesson.

Scene instances as a design language

Instances and scenes in Godot o�er an excellent design language, setting the engine apart from others out
there. We designed Godot around this concept from the ground up.

We recommend dismissing architectural code patterns when making games with Godot, such as Model-View-
Controller (MVC) or Entity-Relationship diagrams. Instead, you can start by imagining the elements players
will see in your game and structure your code around them.

For example, you could break down a shooter game like so:

2.8. Step by step 89

Godot Engine Documentation, Release latest

You can come up with a diagram like this for almost any type of game. Each rectangle represents an entity
that's visible in the game from the player's perspective. The arrows tell you which scene owns which.

Once you have a diagram, we recommend creating a scene for each element listed in it to develop your game.
You'll use instancing, either by code or directly in the editor, to build your tree of scenes.

Programmers tend to spend a lot of time designing abstract architectures and trying to �t components into
it. Designing based on scenes makes development faster and more straightforward, allowing you to focus on
the game logic itself. Because most game components map directly to a scene, using a design based on scene
instantiation means you need little other architectural code.

Here's the example of a scene diagram for an open-world game with tons of assets and nested elements:

Imagine we started by creating the room. We could make a couple of di�erent room scenes, with unique
arrangements of furniture in them. Later, we could make a house scene that uses multiple room instances
for the interior. We would create a citadel out of many instanced houses and a large terrain on which we
would place the citadel. Each of these would be a scene instancing one or more sub-scenes.

Later, we could create scenes representing guards and add them to the citadel. They would be indirectly
added to the overall game world.

With Godot, it's easy to iterate on your game like this, as all you need to do is create and instantiate more
scenes. We designed the editor to be accessible to programmers, designers, and artists alike. A typical team
development process can involve 2D or 3D artists, level designers, game designers, and animators, all working
with the Godot editor.

90 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Summary

Instancing, the process of producing an object from a blueprint, has many handy uses. With scenes, it gives
you:

� The ability to divide your game into reusable components.

� A tool to structure and encapsulate complex systems.

� A language to think about your game project's structure in a natural way.

2.8.3 Scripting languages

This lesson will give you an overview of the available scripting languages in Godot. You will learn the pros
and cons of each option. In the next part, you will write your �rst script using GDScript.

Scripts attach to a node and extend its behavior. This means that scripts inherit all functions and properties
of the node they attach to.

For example, take a game where a Camera2D node follows a ship. The Camera2D node follows its parent by
default. Imagine you want the camera to shake when the player takes damage. As this feature is not built
into Godot, you would attach a script to the Camera2D node and code the shake.

Available scripting languages

Godot o�ers four gameplay programming languages: GDScript, C#, and, via its GDExtension technology,
C and C++. There are more community-supported languages, but these are the o�cial ones.

You can use multiple languages in a single project. For instance, in a team, you could code gameplay logic
in GDScript as it's fast to write, and use C# or C++ to implement complex algorithms and maximize their
performance. Or you can write everything in GDScript or C#. It's your call.

We provide this �exibility to answer the needs of di�erent game projects and developers.

Which language should I use?

If you're a beginner, we recommend to start with GDScript. We made this language speci�cally for Godot
and the needs of game developers. It has a lightweight and straightforward syntax and provides the tightest
integration with Godot.

2.8. Step by step 91

Godot Engine Documentation, Release latest

For C#, you will need an external code editor like VSCode or Visual Studio. While C# support is now
mature, you will �nd fewer learning resources for it compared to GDScript. That's why we recommend C#
mainly to users who already have experience with the language.

Let's look at each language's features, as well as its pros and cons.

GDScript

GDScript is an object-oriented and imperative programming language built for Godot. It's made by and for
game developers to save you time coding games. Its features include:

� A simple syntax that leads to short �les.

� Blazing fast compilation and loading times.

� Tight editor integration, with code completion for nodes, signals, and more information from the scene
it's attached to.

� Built-in vector and transform types, making it e�cient for heavy use of linear algebra, a must for
games.

� Supports multiple threads as e�ciently as statically typed languages.

� No garbage collection, as this feature eventually gets in the way when creating games. The engine
counts references and manages the memory for you in most cases by default, but you can also control
memory if you need to.

� Gradual typing. Variables have dynamic types by default, but you also can use type hints for strong
type checks.

GDScript looks like Python as you structure your code blocks using indentations, but it doesn't work the
same way in practice. It's inspired by multiple languages, including Squirrel, Lua, and Python.

Note: Why don't we use Python or Lua directly?

92 Chapter 2. O�ine documentation

https://code.visualstudio.com/
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Gradual_typing

Godot Engine Documentation, Release latest

Years ago, Godot used Python, then Lua. Both languages' integration took a lot of work and had severe
limitations. For example, threading support was a big challenge with Python.

Developing a dedicated language doesn't take us more work and we can tailor it to game developers' needs.
We're now working on performance optimizations and features that would've been di�cult to o�er with
third-party languages.

.NET / C#

As Microsoft's C# is a favorite amongst game developers, we o�cially support it. C# is a mature and
�exible language with tons of libraries written for it. We were able to add support for it thanks to a
generous donation from Microsoft.

C# o�ers a good tradeo� between performance and ease of use, although you should be aware of its garbage
collector.

Note: You must use the .NET edition of the Godot editor to script in C#. You can download it on the
Godot website's download page.

Since Godot uses .NET 6, in theory, you can use any third-party .NET library or framework in Godot,
as well as any Common Language Infrastructure-compliant programming language, such as F#, Boo, or
ClojureCLR. However, C# is the only o�cially supported .NET option.

Note: GDScript code itself doesn't execute as fast as compiled C# or C++. However, most script code
calls functions written with fast algorithms in C++ code inside the engine. In many cases, writing gameplay
logic in GDScript, C#, or C++ won't have a signi�cant impact on performance.

Attention: Projects written in C# using Godot 4 currently cannot be exported to the web platform. To
use C# on that platform, consider Godot 3 instead. Android and iOS platform support is available as of
Godot 4.2, but is experimental and some limitations apply.

2.8. Step by step 93

https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://godotengine.org/download/

Godot Engine Documentation, Release latest

C++ via GDExtension

GDExtension allows you to write game code in C++ without needing to recompile Godot.

You can use any version of the language or mix compiler brands and versions for the generated shared
libraries, thanks to our use of an internal C API Bridge.

GDExtension is the best choice for performance. You don't need to use it throughout an entire game, as
you can write other parts in GDScript or C#.

When working with GDExtension, the available types, functions, and properties closely resemble Godot's
actual C++ API.

Summary

Scripts are �les containing code that you attach to a node to extend its functionality.

Godot supports four o�cial scripting languages, o�ering you �exibility between performance and ease of use.

You can mix languages, for instance, to implement demanding algorithms with C or C++ and write most
of the game logic with GDScript or C#.

2.8.4 Creating your �rst script

In this lesson, you will code your �rst script to make the Godot icon turn in circles using GDScript. As we
mentioned in the introduction, we assume you have programming foundations. The equivalent C# code has
been included in another tab for convenience.

See also:

To learn more about GDScript, its keywords, and its syntax, head to the GDScript reference.

See also:

To learn more about C#, head to the C# basics page.

94 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Project setup

Please create a new project to start with a clean slate. Your project should contain one picture: the Godot
icon, which we often use for prototyping in the community.

We need to create a Sprite2D node to display it in the game. In the Scene dock, click the Other Node button.

Type "Sprite2D" in the search bar to �lter nodes and double-click on Sprite2D to create the node.

Your Scene tab should now only have a Sprite2D node.

2.8. Step by step 95

Godot Engine Documentation, Release latest

A Sprite2D node needs a texture to display. In the Inspector on the right, you can see that the Texture
property says "[empty]". To display the Godot icon, click and drag the �le icon.svg from the FileSystem
dock onto the Texture slot.

Note: You can create Sprite2D nodes automatically by dragging and dropping images on the viewport.

Then, click and drag the icon in the viewport to center it in the game view.

96 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Creating a new script

To create and attach a new script to our node, right-click on Sprite2D in the scene dock and select "Attach
Script".

The Attach Node Script window appears. It allows you to select the script's language and �le path, among
other options.

Change the Template �eld from "Node: Default" to "Object: Empty" to start with a clean �le. Leave the
other options set to their default values and click the Create button to create the script.

2.8. Step by step 97

Godot Engine Documentation, Release latest

The Script workspace should appear with your new sprite_2d.gd �le open and the following line of code:

GDScript

extends Sprite2D

C#

using Godot;

public partial class MySprite2D : Sprite2D
{
}

Every GDScript �le is implicitly a class. The extends keyword de�nes the class this script inherits or
extends. In this case, it's Sprite2D, meaning our script will get access to all the properties and functions of
the Sprite2D node, including classes it extends, like Node2D, CanvasItem, and Node.

Note: In GDScript, if you omit the line with the extends keyword, your class will implicitly extend
RefCounted, which Godot uses to manage your application's memory.

Inherited properties include the ones you can see in the Inspector dock, like our node's texture.

Note: By default, the Inspector displays a node's properties in "Title Case", with capitalized words separated
by a space. In GDScript code, these properties are in "snake_case", which is lowercase with words separated
by an underscore.

You can hover over any property's name in the Inspector to see a description and its identi�er in code.

Hello, world!

Our script currently doesn't do anything. Let's make it print the text "Hello, world!" to the Output bottom
panel to get started.

Add the following code to your script:

GDScript

func _init():
print("Hello, world!")

C#

public MySprite2D()
{

GD.Print("Hello, world!");
}

Let's break it down. The func keyword de�nes a new function named _init. This is a special name for
our class's constructor. The engine calls _init() on every object or node upon creating it in memory, if you
de�ne this function.

Note: GDScript is an indent-based language. The tab at the start of the line that says print() is necessary
for the code to work. If you omit it or don't indent a line correctly, the editor will highlight it in red and

98 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

display the following error message: "Indented block expected".

Save the scene as sprite_2d.tscn if you haven't already, then press F6 (Cmd + R on macOS) to run it. Look
at the Output bottom panel that expands. It should display "Hello, world!".

Delete the _init() function, so you're only left with the line extends Sprite2D.

Turning around

It's time to make our node move and rotate. To do so, we're going to add two member variables to our script:
the movement speed in pixels per second and the angular speed in radians per second. Add the following
after the extends Sprite2D line.

GDScript

var speed = 400
var angular_speed = PI

C#

private int _speed = 400;
private �oat _angularSpeed = Mathf.Pi;

Member variables sit near the top of the script, after any "extends" lines, but before functions. Every node
instance with this script attached to it will have its own copy of the speed and angular_speed properties.

Note: Angles in Godot work in radians by default, but you have built-in functions and properties available
if you prefer to calculate angles in degrees instead.

To move our icon, we need to update its position and rotation every frame in the game loop. We can use the
_process() virtual function of the Node class. If you de�ne it in any class that extends the Node class, like
Sprite2D, Godot will call the function every frame and pass it an argument named delta, the time elapsed
since the last frame.

Note: Games work by rendering many images per second, each called a frame, and they do so in a loop.
We measure the rate at which a game produces images in Frames Per Second (FPS). Most games aim for 60
FPS, although you might �nd �gures like 30 FPS on slower mobile devices or 90 to 240 for virtual reality
games.

2.8. Step by step 99

Godot Engine Documentation, Release latest

The engine and game developers do their best to update the game world and render images at a constant
time interval, but there are always small variations in frame render times. That's why the engine provides
us with this delta time value, making our motion independent of our framerate.

At the bottom of the script, de�ne the function:

GDScript

func _process(delta):
rotation += angular_speed * delta

C#

public override void _Process(double delta)
{

Rotation += _angularSpeed * (�oat)delta;
}

The func keyword de�nes a new function. After it, we have to write the function's name and arguments
it takes in parentheses. A colon ends the de�nition, and the indented blocks that follow are the function's
content or instructions.

Note: Notice how _process(), like _init(), starts with a leading underscore. By convention, Godot's virtual
functions, that is to say, built-in functions you can override to communicate with the engine, start with an
underscore.

The line inside the function, rotation += angular_speed * delta, increments our sprite's rotation every
frame. Here, rotation is a property inherited from the class Node2D, which Sprite2D extends. It controls
the rotation of our node and works with radians.

Tip: In the code editor, you can ctrl-click on any built-in property or function like position, rotation, or
_process to open the corresponding documentation in a new tab.

Run the scene to see the Godot icon turn in-place.

Note: In C#, notice how the delta argument taken by _Process() is a double. We therefore need to convert
it to �oat when we apply it to the rotation.

Moving forward

Let's now make the node move. Add the following two lines inside of the _process() function, ensuring the
new lines are indented the same way as the rotation += angular_speed * delta line before them.

GDScript

var velocity = Vector2.UP.rotated(rotation) * speed

position += velocity * delta

C#

100 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

var velocity = Vector2.Up.Rotated(Rotation) * _speed;

Position += velocity * (�oat)delta;

As we already saw, the var keyword de�nes a new variable. If you put it at the top of the script, it de�nes a
property of the class. Inside a function, it de�nes a local variable: it only exists within the function's scope.

We de�ne a local variable named velocity, a 2D vector representing both a direction and a speed. To make
the node move forward, we start from the Vector2 class's constant Vector2.UP, a vector pointing up, and
rotate it by calling the Vector2 method rotated(). This expression, Vector2.UP.rotated(rotation), is a vector
pointing forward relative to our icon. Multiplied by our speed property, it gives us a velocity we can use to
move the node forward.

We add velocity * delta to the node's position to move it. The position itself is of type Vector2, a built-in
type in Godot representing a 2D vector.

Run the scene to see the Godot head run in circles.

Note: Moving a node like that does not take into account colliding with walls or the �oor. In Your �rst 2D
game, you will learn another approach to moving objects while detecting collisions.

Our node currently moves by itself. In the next part, Listening to player input, we'll use player input to
control it.

Complete script

Here is the complete sprite_2d.gd �le for reference.

GDScript

extends Sprite2D

var speed = 400
var angular_speed = PI

func _process(delta):
rotation += angular_speed * delta

var velocity = Vector2.UP.rotated(rotation) * speed

position += velocity * delta

C#

using Godot;

public partial class MySprite2D : Sprite2D
{

private int _speed = 400;
private �oat _angularSpeed = Mathf.Pi;

public override void _Process(double delta)
{

(continues on next page)

2.8. Step by step 101

Godot Engine Documentation, Release latest

(continued from previous page)

Rotation += _angularSpeed * (�oat)delta;
var velocity = Vector2.Up.Rotated(Rotation) * _speed;

Position += velocity * (�oat)delta;
}

}

2.8.5 Listening to player input

Building upon the previous lesson, Creating your �rst script, let's look at another important feature of any
game: giving control to the player. To add this, we need to modify our sprite_2d.gd code.

You have two main tools to process the player's input in Godot:

1. The built-in input callbacks, mainly _unhandled_input(). Like _process(), it's a built-in virtual
function that Godot calls every time the player presses a key. It's the tool you want to use to react
to events that don't happen every frame, like pressing Space to jump. To learn more about input
callbacks, see Using InputEvent.

2. The Input singleton. A singleton is a globally accessible object. Godot provides access to several in
scripts. It's the right tool to check for input every frame.

We're going to use the Input singleton here as we need to know if the player wants to turn or move every
frame.

For turning, we should use a new variable: direction. In our _process() function, replace the rotation +=
angular_speed * delta line with the code below.

GDScript

var direction = 0
if Input.is_action_pressed("ui_left"):

direction = -1
if Input.is_action_pressed("ui_right"):

direction = 1

rotation += angular_speed * direction * delta

C#

var direction = 0;
if (Input.IsActionPressed("ui_left"))
{

direction = -1;
}
if (Input.IsActionPressed("ui_right"))
{

direction = 1;
}

Rotation += _angularSpeed * direction * (�oat)delta;

Our direction local variable is a multiplier representing the direction in which the player wants to turn. A
value of 0 means the player isn't pressing the left or the right arrow key. A value of 1 means the player
wants to turn right, and -1 means they want to turn left.

102 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

To produce these values, we introduce conditions and the use of Input. A condition starts with the if keyword
in GDScript and ends with a colon. The condition is the expression between the keyword and the end of the
line.

To check if a key was pressed this frame, we call Input.is_action_pressed(). The method takes a text string
representing an input action and returns true if the action is pressed, false otherwise.

The two actions we use above, "ui_left" and "ui_right", are prede�ned in every Godot project. They
respectively trigger when the player presses the left and right arrows on the keyboard or left and right on a
gamepad's D-pad.

Note: You can see and edit input actions in your project by going to Project -> Project Settings and
clicking on the Input Map tab.

Finally, we use the direction as a multiplier when we update the node's rotation: rotation += angular_speed
* direction * delta.

If you run the scene with this code, the icon should rotate when you press Left and Right.

Moving when pressing "up"

To only move when pressing a key, we need to modify the code that calculates the velocity. Replace the line
starting with var velocity with the code below.

GDScript

var velocity = Vector2.ZERO
if Input.is_action_pressed("ui_up"):

velocity = Vector2.UP.rotated(rotation) * speed

C#

var velocity = Vector2.Zero;
if (Input.IsActionPressed("ui_up"))
{

velocity = Vector2.Up.Rotated(Rotation) * _speed;
}

We initialize the velocity with a value of Vector2.ZERO, another constant of the built-in Vector type repre-
senting a 2D vector of length 0.

If the player presses the "ui_up" action, we then update the velocity's value, causing the sprite to move
forward.

Complete script

Here is the complete sprite_2d.gd �le for reference.

GDScript

extends Sprite2D

var speed = 400
var angular_speed = PI

(continues on next page)

2.8. Step by step 103

Godot Engine Documentation, Release latest

(continued from previous page)

func _process(delta):
var direction = 0
if Input.is_action_pressed("ui_left"):

direction = -1
if Input.is_action_pressed("ui_right"):

direction = 1

rotation += angular_speed * direction * delta

var velocity = Vector2.ZERO
if Input.is_action_pressed("ui_up"):

velocity = Vector2.UP.rotated(rotation) * speed

position += velocity * delta

C#

using Godot;

public partial class MySprite2D : Sprite2D
{

private �oat _speed = 400;
private �oat _angularSpeed = Mathf.Pi;

public override void _Process(double delta)
{

var direction = 0;
if (Input.IsActionPressed("ui_left"))
{

direction = -1;
}
if (Input.IsActionPressed("ui_right"))
{

direction = 1;
}

Rotation += _angularSpeed * direction * (�oat)delta;

var velocity = Vector2.Zero;
if (Input.IsActionPressed("ui_up"))
{

velocity = Vector2.Up.Rotated(Rotation) * _speed;
}

Position += velocity * (�oat)delta;
}

}

If you run the scene, you should now be able to rotate with the left and right arrow keys and move forward
by pressing Up.

104 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Summary

In summary, every script in Godot represents a class and extends one of the engine's built-in classes. The
node types your classes inherit from give you access to properties, such as rotation and position in our sprite's
case. You also inherit many functions, which we didn't get to use in this example.

In GDScript, the variables you put at the top of the �le are your class's properties, also called member
variables. Besides variables, you can de�ne functions, which, for the most part, will be your classes' methods.

Godot provides several virtual functions you can de�ne to connect your class with the engine. These include
_process(), to apply changes to the node every frame, and _unhandled_input(), to receive input events like
key and button presses from the users. There are quite a few more.

The Input singleton allows you to react to the players' input anywhere in your code. In particular, you'll
get to use it in the _process() loop.

In the next lesson, Using signals, we'll build upon the relationship between scripts and nodes by having our
nodes trigger code in scripts.

2.8.6 Using signals

In this lesson, we will look at signals. They are messages that nodes emit when something speci�c happens
to them, like a button being pressed. Other nodes can connect to that signal and call a function when the
event occurs.

Signals are a delegation mechanism built into Godot that allows one game object to react to a change in
another without them referencing one another. Using signals limits coupling and keeps your code �exible.

For example, you might have a life bar on the screen that represents the player's health. When the player
takes damage or uses a healing potion, you want the bar to re�ect the change. To do so, in Godot, you
would use signals.

Note: As mentioned in the introduction, signals are Godot's version of the observer pattern. You can learn
more about it here: https://gameprogrammingpatterns.com/observer.html

We will now use a signal to make our Godot icon from the previous lesson (Listening to player input) move
and stop by pressing a button.

Scene setup

To add a button to our game, we will create a new main scene which will include both a Button and the
sprite_2d.tscn scene we created in the Creating your �rst script lesson.

Create a new scene by going to the menu Scene -> New Scene.

In the Scene dock, click the 2D Scene button. This will add a Node2D as our root.

2.8. Step by step 105

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://gameprogrammingpatterns.com/observer.html

Godot Engine Documentation, Release latest

In the FileSystem dock, click and drag the sprite_2d.tscn �le you saved previously onto the Node2D to
instantiate it.

We want to add another node as a sibling of the Sprite2D. To do so, right-click on Node2D and select Add
Child Node.

Search for the Button node and add it.

106 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The node is small by default. Click and drag on the bottom-right handle of the Button in the viewport to
resize it.

If you don't see the handles, ensure the select tool is active in the toolbar.

Click and drag on the button itself to move it closer to the sprite.

You can also write a label on the Button by editing its Text property in the Inspector. Enter Toggle motion.

2.8. Step by step 107

Godot Engine Documentation, Release latest

Your scene tree and viewport should look like this.

Save your newly created scene as node_2d.tscn, if you haven't already. You can then run it with F6 (Cmd
+ R on macOS). At the moment, the button will be visible, but nothing will happen if you press it.

108 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Connecting a signal in the editor

Here, we want to connect the Button's "pressed" signal to our Sprite2D, and we want to call a new function
that will toggle its motion on and o�. We need to have a script attached to the Sprite2D node, which we do
from the previous lesson.

You can connect signals in the Node dock. Select the Button node and, on the right side of the editor, click
on the tab named "Node" next to the Inspector.

The dock displays a list of signals available on the selected node.

Double-click the "pressed" signal to open the node connection window.

2.8. Step by step 109

Godot Engine Documentation, Release latest

There, you can connect the signal to the Sprite2D node. The node needs a receiver method, a function that
Godot will call when the Button emits the signal. The editor generates one for you. By convention, we name
these callback methods "_on_node_name_signal_name". Here, it'll be "_on_button_pressed".

Note: When connecting signals via the editor's Node dock, you can use two modes. The simple one only
allows you to connect to nodes that have a script attached to them and creates a new callback function on
them.

110 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The advanced view lets you connect to any node and any built-in function, add arguments to the callback,
and set options. You can toggle the mode in the window's bottom-right by clicking the Advanced button.

Click the Connect button to complete the signal connection and jump to the Script workspace. You should
see the new method with a connection icon in the left margin.

If you click the icon, a window pops up and displays information about the connection. This feature is only
available when connecting nodes in the editor.

2.8. Step by step 111

Godot Engine Documentation, Release latest

Let's replace the line with the pass keyword with code that'll toggle the node's motion.

Our Sprite2D moves thanks to code in the _process() function. Godot provides a method to toggle processing
on and o�: Node.set_process(). Another method of the Node class, is_processing(), returns true if idle
processing is active. We can use the not keyword to invert the value.

GDScript

func _on_button_pressed():
set_process(not is_processing())

C#

private void OnButtonPressed()
{

SetProcess(!IsProcessing());
}

This function will toggle processing and, in turn, the icon's motion on and o� upon pressing the button.

Before trying the game, we need to simplify our _process() function to move the node automatically and
not wait for user input. Replace it with the following code, which we saw two lessons ago:

GDScript

func _process(delta):
rotation += angular_speed * delta
var velocity = Vector2.UP.rotated(rotation) * speed
position += velocity * delta

C#

public override void _Process(double delta)
{

(continues on next page)

112 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

Rotation += _angularSpeed * (�oat)delta;
var velocity = Vector2.Up.Rotated(Rotation) * _speed;
Position += velocity * (�oat)delta;

}

Your complete sprite_2d.gd code should look like the following.

GDScript

extends Sprite2D

var speed = 400
var angular_speed = PI

func _process(delta):
rotation += angular_speed * delta
var velocity = Vector2.UP.rotated(rotation) * speed
position += velocity * delta

func _on_button_pressed():
set_process(not is_processing())

C#

using Godot;

public partial class MySprite2D : Sprite2D
{

private �oat _speed = 400;
private �oat _angularSpeed = Mathf.Pi;

public override void _Process(double delta)
{

Rotation += _angularSpeed * (�oat)delta;
var velocity = Vector2.Up.Rotated(Rotation) * _speed;
Position += velocity * (�oat)delta;

}

private void OnButtonPressed()
{

SetProcess(!IsProcessing());
}

}

Run the scene now and click the button to see the sprite start and stop.

2.8. Step by step 113

Godot Engine Documentation, Release latest

Connecting a signal via code

You can connect signals via code instead of using the editor. This is necessary when you create nodes or
instantiate scenes inside of a script.

Let's use a di�erent node here. Godot has a Timer node that's useful to implement skill cooldown times,
weapon reloading, and more.

Head back to the 2D workspace. You can either click the "2D" text at the top of the window or press Ctrl
+ F1 (Ctrl + Cmd + 1 on macOS).

In the Scene dock, right-click on the Sprite2D node and add a new child node. Search for Timer and add
the corresponding node. Your scene should now look like this.

With the Timer node selected, go to the Inspector and enable the Autostart property.

Click the script icon next to Sprite2D to jump back to the scripting workspace.

114 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

We need to do two operations to connect the nodes via code:

1. Get a reference to the Timer from the Sprite2D.

2. Call the connect() method on the Timer's "timeout" signal.

Note: To connect to a signal via code, you need to call the connect() method of the signal you want to
listen to. In this case, we want to listen to the Timer's "timeout" signal.

We want to connect the signal when the scene is instantiated, and we can do that using the Node._ready()
built-in function, which is called automatically by the engine when a node is fully instantiated.

To get a reference to a node relative to the current one, we use the method Node.get_node(). We can store
the reference in a variable.

GDScript

func _ready():
var timer = get_node("Timer")

C#

public override void _Ready()
{

var timer = GetNode<Timer>("Timer");
}

The function get_node() looks at the Sprite2D's children and gets nodes by their name. For example,
if you renamed the Timer node to "BlinkingTimer" in the editor, you would have to change the call to
get_node("BlinkingTimer").

We can now connect the Timer to the Sprite2D in the _ready() function.

GDScript

func _ready():
var timer = get_node("Timer")
timer.timeout.connect(_on_timer_timeout)

C#

public override void _Ready()
{

var timer = GetNode<Timer>("Timer");

(continues on next page)

2.8. Step by step 115

Godot Engine Documentation, Release latest

(continued from previous page)

timer.Timeout += OnTimerTimeout;
}

The line reads like so: we connect the Timer's "timeout" signal to the node to which the script is attached.
When the Timer emits timeout, we want to call the function _on_timer_timeout(), that we need to de�ne.
Let's add it at the bottom of our script and use it to toggle our sprite's visibility.

Note: By convention, we name these callback methods in GDScript as "_on_node_name_signal_name"
and in C# as "OnNodeNameSignalName". Here, it'll be "_on_timer_timeout" for GDScript and OnTimer-
Timeout() for C#.

GDScript

func _on_timer_timeout():
visible = not visible

C#

private void OnTimerTimeout()
{

Visible = !Visible;
}

The visible property is a boolean that controls the visibility of our node. The line visible = not visible
toggles the value. If visible is true, it becomes false, and vice-versa.

If you run the scene now, you will see that the sprite blinks on and o�, at one second intervals.

Complete script

That's it for our little moving and blinking Godot icon demo! Here is the complete sprite_2d.gd �le for
reference.

GDScript

extends Sprite2D

var speed = 400
var angular_speed = PI

func _ready():
var timer = get_node("Timer")
timer.timeout.connect(_on_timer_timeout)

func _process(delta):
rotation += angular_speed * delta
var velocity = Vector2.UP.rotated(rotation) * speed
position += velocity * delta

func _on_button_pressed():

(continues on next page)

116 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

set_process(not is_processing())

func _on_timer_timeout():
visible = not visible

C#

using Godot;

public partial class MySprite2D : Sprite2D
{

private �oat _speed = 400;
private �oat _angularSpeed = Mathf.Pi;

public override void _Ready()
{

var timer = GetNode<Timer>("Timer");
timer.Timeout += OnTimerTimeout;

}

public override void _Process(double delta)
{

Rotation += _angularSpeed * (�oat)delta;
var velocity = Vector2.Up.Rotated(Rotation) * _speed;
Position += velocity * (�oat)delta;

}

private void OnButtonPressed()
{

SetProcess(!IsProcessing());
}

private void OnTimerTimeout()
{

Visible = !Visible;
}

}

Custom signals

Note: This section is a reference on how to de�ne and use your own signals, and does not build upon the
project created in previous lessons.

You can de�ne custom signals in a script. Say, for example, that you want to show a game over screen when
the player's health reaches zero. To do so, you could de�ne a signal named "died" or "health_depleted"
when their health reaches 0.

GDScript

2.8. Step by step 117

Godot Engine Documentation, Release latest

extends Node2D

signal health_depleted

var health = 10

C#

using Godot;

public partial class MyNode2D : Node2D
{

[Signal]
public delegate void HealthDepletedEventHandler();

private int _health = 10;
}

Note: As signals represent events that just occurred, we generally use an action verb in the past tense in
their names.

Your signals work the same way as built-in ones: they appear in the Node tab and you can connect to them
like any other.

To emit a signal in your scripts, call emit() on the signal.

GDScript

func take_damage(amount):
health -= amount
if health <= 0:

health_depleted.emit()

C#

public void TakeDamage(int amount)
{

(continues on next page)

118 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

_health -= amount;

if (_health <= 0)
{

EmitSignal(SignalName.HealthDepleted);
}

}

A signal can optionally declare one or more arguments. Specify the argument names between parentheses:

GDScript

extends Node

signal health_changed(old_value, new_value)

var health = 10

C#

using Godot;

public partial class MyNode : Node
{

[Signal]
public delegate void HealthChangedEventHandler(int oldValue, int newValue);

private int _health = 10;
}

Note: The signal arguments show up in the editor's node dock, and Godot can use them to generate callback
functions for you. However, you can still emit any number of arguments when you emit signals. So it's up
to you to emit the correct values.

To emit values along with the signal, add them as extra arguments to the emit() function:

GDScript

func take_damage(amount):
var old_health = health
health -= amount
health_changed.emit(old_health, health)

C#

public void TakeDamage(int amount)
{

int oldHealth = _health;
_health -= amount;
EmitSignal(SignalName.HealthChanged, oldHealth, _health);

}

2.8. Step by step 119

Godot Engine Documentation, Release latest

Summary

Any node in Godot emits signals when something speci�c happens to them, like a button being pressed.
Other nodes can connect to individual signals and react to selected events.

Signals have many uses. With them, you can react to a node entering or exiting the game world, to a
collision, to a character entering or leaving an area, to an element of the interface changing size, and much
more.

For example, an Area2D representing a coin emits a body_entered signal whenever the player's physics body
enters its collision shape, allowing you to know when the player collected it.

In the next section, Your �rst 2D game, you'll create a complete 2D game and put everything you learned
so far into practice.

2.9 Your �rst 2D game

In this step-by-step tutorial series, you will create your �rst complete 2D game with Godot. By the end of
the series, you will have a simple yet complete game of your own, like the image below.

You will learn how the Godot editor works, how to structure a project, and build a 2D game.

Note: This project is an introduction to the Godot engine. It assumes that you have some programming
experience already. If you're new to programming entirely, you should start here: Scripting languages.

The game is called "Dodge the Creeps!". Your character must move and avoid the enemies for as long as
possible.

You will learn to:

� Create a complete 2D game with the Godot editor.

� Structure a simple game project.

� Move the player character and change its sprite.

� Spawn random enemies.

� Count the score.

And more.

You'll �nd another series where you'll create a similar game but in 3D. We recommend you to start with
this one, though.

Why start with 2D?

If you are new to game development or unfamiliar with Godot, we recommend starting with 2D games.
This will allow you to become comfortable with both before tackling 3D games, which tend to be more
complicated.

You can �nd a completed version of this project at this location:

� https://github.com/godotengine/godot-demo-projects/tree/master/2d/dodge_the_creeps

120 Chapter 2. O�ine documentation

https://github.com/godotengine/godot-demo-projects/tree/master/2d/dodge_the_creeps

Godot Engine Documentation, Release latest

2.9.1 Prerequisites

This step-by-step tutorial is intended for beginners who followed the complete Getting Started.

If you're an experienced programmer, you can �nd the complete demo's source code here: Dodge the Creeps
source code.

We prepared some game assets you'll need to download so we can jump straight to the code.

You can download them by clicking the link below.

dodge_the_creeps_2d_assets.zip.

2.9.2 Contents

Setting up the project

In this short �rst part, we'll set up and organize the project.

Launch Godot and create a new project.

When creating the new project, you only need to choose a valid Project Path. You can leave the other
default settings alone.

GDScript

Download dodge_the_creeps_2d_assets.zip. The archive contains the images and sounds you'll be using
to make the game. Extract the archive and move the art/ and fonts/ directories to your project's directory.

C#

Download dodge_the_creeps_2d_assets.zip. The archive contains the images and sounds you'll be using
to make the game. Extract the archive and move the art/ and fonts/ directories to your project's directory.

Ensure that you have the required dependencies to use C# in Godot. You need the latest stable .NET SDK,
and an editor such as VS Code. See Prerequisites.

C++

2.9. Your �rst 2D game 121

https://github.com/godotengine/godot-demo-projects/tree/master/2d/dodge_the_creeps
https://github.com/godotengine/godot-demo-projects/tree/master/2d/dodge_the_creeps
https://github.com/godotengine/godot-docs-project-starters/releases/download/latest-4.x/dodge_the_creeps_2d_assets.zip
https://github.com/godotengine/godot-docs-project-starters/releases/download/latest-4.x/dodge_the_creeps_2d_assets.zip
https://github.com/godotengine/godot-docs-project-starters/releases/download/latest-4.x/dodge_the_creeps_2d_assets.zip

Godot Engine Documentation, Release latest

The C++ part of this tutorial wasn't rewritten for the new GDExtension system yet.

Your project folder should look like this.

This game is designed for portrait mode, so we need to adjust the size of the game window. Click on Project
-> Project Settings to open the project settings window, in the left column open the Display -> Window
tab. There, set "Viewport Width" to 480 and "Viewport Height" to 720.

Also, under the Stretch options, set Mode to canvas_items and Aspect to keep. This ensures that the game
scales consistently on di�erent sized screens.

122 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Organizing the project

In this project, we will make 3 independent scenes: Player, Mob, and HUD, which we will combine into the
game's Main scene.

In a larger project, it might be useful to create folders to hold the various scenes and their scripts, but for
this relatively small game, you can save your scenes and scripts in the project's root folder, identi�ed by
res://. You can see your project folders in the FileSystem dock in the lower left corner:

2.9. Your �rst 2D game 123

Godot Engine Documentation, Release latest

With the project in place, we're ready to design the player scene in the next lesson.

Creating the player scene

With the project settings in place, we can start working on the player-controlled character.

The �rst scene will de�ne the Player object. One of the bene�ts of creating a separate Player scene is that
we can test it separately, even before we've created other parts of the game.

Node structure

To begin, we need to choose a root node for the player object. As a general rule, a scene's root node should
re�ect the object's desired functionality - what the object is. Click the "Other Node" button and add an
Area2D node to the scene.

124 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Godot will display a warning icon next to the node in the scene tree. You can ignore it for now. We will
address it later.

With Area2D we can detect objects that overlap or run into the player. Change the node's name to Player
by double-clicking on it. Now that we've set the scene's root node, we can add additional nodes to give it
more functionality.

Before we add any children to the Player node, we want to make sure we don't accidentally move or resize
them by clicking on them. Select the node and click the icon to the right of the lock. Its tooltip says "Make
selected node's children not selectable."

Save the scene. Click Scene -> Save, or press Ctrl + S on Windows/Linux or Cmd + S on macOS.

Note: For this project, we will be following the Godot naming conventions.

� GDScript: Classes (nodes) use PascalCase, variables and functions use snake_case, and constants use
ALL_CAPS (See GDScript style guide).

� C#: Classes, export variables and methods use PascalCase, private �elds use _camelCase, local vari-
ables and parameters use camelCase (See C# style guide). Be careful to type the method names
precisely when connecting signals.

2.9. Your �rst 2D game 125

Godot Engine Documentation, Release latest

Sprite animation

Click on the Player node and add (Ctrl + A on Windows/Linux or Cmd + A on macOS) a child node
AnimatedSprite2D. The AnimatedSprite2D will handle the appearance and animations for our player. Notice
that there is a warning symbol next to the node. An AnimatedSprite2D requires a SpriteFrames resource,
which is a list of the animations it can display. To create one, �nd the Sprite Frames property under
the Animation tab in the Inspector and click "[empty]" -> "New SpriteFrames". Click again to open the
"SpriteFrames" panel:

On the left is a list of animations. Click the "default" one and rename it to "walk". Then click the "Add
Animation" button to create a second animation named "up". Find the player images in the "FileSys-
tem" tab - they're in the art folder you unzipped earlier. Drag the two images for each animation, named
playerGrey_up[1/2] and playerGrey_walk[1/2], into the "Animation Frames" side of the panel for the cor-
responding animation:

The player images are a bit too large for the game window, so we need to scale them down. Click on the
AnimatedSprite2D node and set the Scale property to (0.5, 0.5). You can �nd it in the Inspector under the
Node2D heading.

126 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Finally, add a CollisionShape2D as a child of Player. This will determine the player's "hitbox", or the bounds
of its collision area. For this character, a CapsuleShape2D node gives the best �t, so next to "Shape" in the
Inspector, click "[empty]" -> "New CapsuleShape2D". Using the two size handles, resize the shape to cover
the sprite:

When you're �nished, your Player scene should look like this:

2.9. Your �rst 2D game 127

Godot Engine Documentation, Release latest

Make sure to save the scene again after these changes.

In the next part, we'll add a script to the player node to move and animate it. Then, we'll set up collision
detection to know when the player got hit by something.

Coding the player

In this lesson, we'll add player movement, animation, and set it up to detect collisions.

To do so, we need to add some functionality that we can't get from a built-in node, so we'll add a script.
Click the Player node and click the "Attach Script" button:

In the script settings window, you can leave the default settings alone. Just click "Create":

Note: If you're creating a C# script or other languages, select the language from the language drop down
menu before hitting create.

128 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Note: If this is your �rst time encountering GDScript, please read Scripting languages before continuing.

Start by declaring the member variables this object will need:

GDScript

extends Area2D

@export var speed = 400 # How fast the player will move (pixels/sec).
var screen_size # Size of the game window.

C#

using Godot;

public partial class Player : Area2D
{

[Export]
public int Speed { get; set; } = 400; // How fast the player will move (pixels/sec).

public Vector2 ScreenSize; // Size of the game window.
}

Using the export keyword on the �rst variable speed allows us to set its value in the Inspector. This can be
handy for values that you want to be able to adjust just like a node's built-in properties. Click on the Player
node and you'll see the property now appears in the "Script Variables" section of the Inspector. Remember,

2.9. Your �rst 2D game 129

Godot Engine Documentation, Release latest

if you change the value here, it will override the value written in the script.

Warning: If you're using C#, you need to (re)build the project assemblies whenever you want to see
new export variables or signals. This build can be manually triggered by clicking the Build button at the
top right of the editor.

Your player.gd script should already contain a _ready() and a _process() function. If you didn't select the
default template shown above, create these functions while following the lesson.

The _ready() function is called when a node enters the scene tree, which is a good time to �nd the size of
the game window:

GDScript

func _ready():
screen_size = get_viewport_rect().size

C#

public override void _Ready()
{

ScreenSize = GetViewportRect().Size;
}

Now we can use the _process() function to de�ne what the player will do. _process() is called every frame,
so we'll use it to update elements of our game, which we expect will change often. For the player, we need
to do the following:

� Check for input.

� Move in the given direction.

� Play the appropriate animation.

130 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

First, we need to check for input - is the player pressing a key? For this game, we have 4 direction inputs to
check. Input actions are de�ned in the Project Settings under "Input Map". Here, you can de�ne custom
events and assign di�erent keys, mouse events, or other inputs to them. For this game, we will map the
arrow keys to the four directions.

Click on Project -> Project Settings to open the project settings window and click on the Input Map tab at
the top. Type "move_right" in the top bar and click the "Add" button to add the move_right action.

We need to assign a key to this action. Click the "+" icon on the right, to open the event manager window.

The "Listening for Input..." �eld should automatically be selected. Press the "right" key on your keyboard,
and the menu should look like this now.

2.9. Your �rst 2D game 131

Godot Engine Documentation, Release latest

Select the "ok" button. The "right" key is now associated with the move_right action.

Repeat these steps to add three more mappings:

1. move_left mapped to the left arrow key.

2. move_up mapped to the up arrow key.

3. And move_down mapped to the down arrow key.

Your input map tab should look like this:

132 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Click the "Close" button to close the project settings.

Note: We only mapped one key to each input action, but you can map multiple keys, joystick buttons, or
mouse buttons to the same input action.

You can detect whether a key is pressed using Input.is_action_pressed(), which returns true if it's pressed
or false if it isn't.

GDScript

func _process(delta):
var velocity = Vector2.ZERO # The player's movement vector.
if Input.is_action_pressed("move_right"):

velocity.x += 1
if Input.is_action_pressed("move_left"):

velocity.x -= 1
if Input.is_action_pressed("move_down"):

velocity.y += 1
if Input.is_action_pressed("move_up"):

velocity.y -= 1

if velocity.length() > 0:
velocity = velocity.normalized() * speed
$AnimatedSprite2D.play()

else:
$AnimatedSprite2D.stop()

C#

2.9. Your �rst 2D game 133

Godot Engine Documentation, Release latest

public override void _Process(double delta)
{

var velocity = Vector2.Zero; // The player's movement vector.

if (Input.IsActionPressed("move_right"))
{

velocity.X += 1;
}

if (Input.IsActionPressed("move_left"))
{

velocity.X -= 1;
}

if (Input.IsActionPressed("move_down"))
{

velocity.Y += 1;
}

if (Input.IsActionPressed("move_up"))
{

velocity.Y -= 1;
}

var animatedSprite2D = GetNode<AnimatedSprite2D>("AnimatedSprite2D");

if (velocity.Length() > 0)
{

velocity = velocity.Normalized() * Speed;
animatedSprite2D.Play();

}
else
{

animatedSprite2D.Stop();
}

}

We start by setting the velocity to (0, 0) - by default, the player should not be moving. Then we check each
input and add/subtract from the velocity to obtain a total direction. For example, if you hold right and down
at the same time, the resulting velocity vector will be (1, 1). In this case, since we're adding a horizontal
and a vertical movement, the player would move faster diagonally than if it just moved horizontally.

We can prevent that if we normalize the velocity, which means we set its length to 1, then multiply by the
desired speed. This means no more fast diagonal movement.

Tip: If you've never used vector math before, or need a refresher, you can see an explanation of vector
usage in Godot at Vector math. It's good to know but won't be necessary for the rest of this tutorial.

We also check whether the player is moving so we can call play() or stop() on the AnimatedSprite2D.

Tip: $ is shorthand for get_node(). So in the code above, $AnimatedSprite2D.play() is the same as
get_node("AnimatedSprite2D").play().

134 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

In GDScript, $ returns the node at the relative path from the current node, or returns null if the node is not
found. Since AnimatedSprite2D is a child of the current node, we can use $AnimatedSprite2D.

Now that we have a movement direction, we can update the player's position. We can also use clamp() to
prevent it from leaving the screen. Clamping a value means restricting it to a given range. Add the following
to the bottom of the _process function (make sure it's not indented under the else):

GDScript

position += velocity * delta
position = position.clamp(Vector2.ZERO, screen_size)

C#

Position += velocity * (�oat)delta;
Position = new Vector2(

x: Mathf.Clamp(Position.X, 0, ScreenSize.X),
y: Mathf.Clamp(Position.Y, 0, ScreenSize.Y)

);

Tip: The delta parameter in the _process() function refers to the frame length - the amount of time that
the previous frame took to complete. Using this value ensures that your movement will remain consistent
even if the frame rate changes.

Click "Play Scene" (F6, Cmd + R on macOS) and con�rm you can move the player around the screen in all
directions.

Warning: If you get an error in the "Debugger" panel that says

Attempt to call function 'play' in base 'null instance' on a null instance

this likely means you spelled the name of the AnimatedSprite2D node wrong. Node names are case-
sensitive and $NodeName must match the name you see in the scene tree.

Choosing animations

Now that the player can move, we need to change which animation the AnimatedSprite2D is playing based
on its direction. We have the "walk" animation, which shows the player walking to the right. This animation
should be �ipped horizontally using the �ip_h property for left movement. We also have the "up" animation,
which should be �ipped vertically with �ip_v for downward movement. Let's place this code at the end of
the _process() function:

GDScript

if velocity.x != 0:
$AnimatedSprite2D.animation = "walk"
$AnimatedSprite2D.�ip_v = false
See the note below about boolean assignment.
$AnimatedSprite2D.�ip_h = velocity.x < 0

elif velocity.y != 0:
$AnimatedSprite2D.animation = "up"
$AnimatedSprite2D.�ip_v = velocity.y > 0

2.9. Your �rst 2D game 135

Godot Engine Documentation, Release latest

C#

if (velocity.X != 0)
{

animatedSprite2D.Animation = "walk";
animatedSprite2D.FlipV = false;
// See the note below about boolean assignment.
animatedSprite2D.FlipH = velocity.X < 0;

}
else if (velocity.Y != 0)
{

animatedSprite2D.Animation = "up";
animatedSprite2D.FlipV = velocity.Y > 0;

}

Note: The boolean assignments in the code above are a common shorthand for programmers. Since we're
doing a comparison test (boolean) and also assigning a boolean value, we can do both at the same time.
Consider this code versus the one-line boolean assignment above:

GDScript

if velocity.x < 0:
$AnimatedSprite2D.�ip_h = true

else:
$AnimatedSprite2D.�ip_h = false

C#

if (velocity.X < 0)
{

animatedSprite2D.FlipH = true;
}
else
{

animatedSprite2D.FlipH = false;
}

Play the scene again and check that the animations are correct in each of the directions.

Tip: A common mistake here is to type the names of the animations wrong. The animation names in the
SpriteFrames panel must match what you type in the code. If you named the animation "Walk", you must
also use a capital "W" in the code.

When you're sure the movement is working correctly, add this line to _ready(), so the player will be hidden
when the game starts:

GDScript

hide()

C#

136 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Hide();

Preparing for collisions

We want Player to detect when it's hit by an enemy, but we haven't made any enemies yet! That's OK,
because we're going to use Godot's signal functionality to make it work.

Add the following at the top of the script. If you're using GDScript, add it after extends Area2D. If you're
using C#, add it after public partial class Player : Area2D:

GDScript

signal hit

C#

// Don't forget to rebuild the project so the editor knows about the new signal.

[Signal]
public delegate void HitEventHandler();

This de�nes a custom signal called "hit" that we will have our player emit (send out) when it collides with
an enemy. We will use Area2D to detect the collision. Select the Player node and click the "Node" tab next
to the Inspector tab to see the list of signals the player can emit:

Notice our custom "hit" signal is there as well! Since our enemies are going to be RigidBody2D nodes, we
want the body_entered(body: Node2D) signal. This signal will be emitted when a body contacts the player.
Click "Connect.." and the "Connect a Signal" window appears.

Godot will create a function with that exact name directly in script for you. You don't need to change the
default settings right now.

2.9. Your �rst 2D game 137

Godot Engine Documentation, Release latest

Warning: If you're using an external text editor (for example, Visual Studio Code), a bug currently
prevents Godot from doing so. You'll be sent to your external editor, but the new function won't be
there.

In this case, you'll need to write the function yourself into the Player's script �le.

Note the green icon indicating that a signal is connected to this function; this does not mean the function
exists, only that the signal will attempt to connect to a function with that name, so double-check that the
spelling of the function matches exactly!

Next, add this code to the function:

GDScript

func _on_body_entered(body):
hide() # Player disappears after being hit.
hit.emit()
Must be deferred as we can't change physics properties on a physics callback.
$CollisionShape2D.set_deferred("disabled", true)

C#

private void OnBodyEntered(Node2D body)
{

Hide(); // Player disappears after being hit.
EmitSignal(SignalName.Hit);
// Must be deferred as we can't change physics properties on a physics callback.
GetNode<CollisionShape2D>("CollisionShape2D").SetDeferred(CollisionShape2D.PropertyName.

↪→Disabled, true);
}

Each time an enemy hits the player, the signal is going to be emitted. We need to disable the player's
collision so that we don't trigger the hit signal more than once.

Note: Disabling the area's collision shape can cause an error if it happens in the middle of the engine's
collision processing. Using set_deferred() tells Godot to wait to disable the shape until it's safe to do so.

The last piece is to add a function we can call to reset the player when starting a new game.

GDScript

func start(pos):
position = pos
show()
$CollisionShape2D.disabled = false

C#

138 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

public void Start(Vector2 position)
{

Position = position;
Show();
GetNode<CollisionShape2D>("CollisionShape2D").Disabled = false;

}

With the player working, we'll work on the enemy in the next lesson.

Creating the enemy

Now it's time to make the enemies our player will have to dodge. Their behavior will not be very complex:
mobs will spawn randomly at the edges of the screen, choose a random direction, and move in a straight
line.

We'll create a Mob scene, which we can then instance to create any number of independent mobs in the
game.

Node setup

Click Scene -> New Scene from the top menu and add the following nodes:

� RigidBody2D (named Mob)

� AnimatedSprite2D

� CollisionShape2D

� VisibleOnScreenNoti�er2D

Don't forget to set the children so they can't be selected, like you did with the Player scene.

Select the Mob node and set it's Gravity Scale property in the RigidBody2D section of the inspector to 0.
This will prevent the mob from falling downwards.

In addition, under the CollisionObject2D section just beneath the RigidBody2D section, expand the Collision
group and uncheck the 1 inside the Mask property. This will ensure the mobs do not collide with each other.

2.9. Your �rst 2D game 139

Godot Engine Documentation, Release latest

Set up the AnimatedSprite2D like you did for the player. This time, we have 3 animations: �y, swim, and
walk. There are two images for each animation in the art folder.

The Animation Speed property has to be set for each individual animation. Adjust it to 3 for all 3 animations.

You can use the "Play Animation" buttons on the right of the Animation Speed input �eld to preview your
animations.

We'll select one of these animations randomly so that the mobs will have some variety.

Like the player images, these mob images need to be scaled down. Set the AnimatedSprite2D's Scale property
to (0.75, 0.75).

As in the Player scene, add a CapsuleShape2D for the collision. To align the shape with the image, you'll
need to set the Rotation property to 90 (under "Transform" in the Inspector).

Save the scene.

Enemy script

Add a script to the Mob like this:

GDScript

extends RigidBody2D

C#

using Godot;

public partial class Mob : RigidBody2D
{

// Don't forget to rebuild the project.
}

Now let's look at the rest of the script. In _ready() we play the animation and randomly choose one of the
three animation types:

GDScript

func _ready():
var mob_types = $AnimatedSprite2D.sprite_frames.get_animation_names()
$AnimatedSprite2D.play(mob_types[randi() % mob_types.size()])

140 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

C#

public override void _Ready()
{

var animatedSprite2D = GetNode<AnimatedSprite2D>("AnimatedSprite2D");
string[] mobTypes = animatedSprite2D.SpriteFrames.GetAnimationNames();
animatedSprite2D.Play(mobTypes[GD.Randi() % mobTypes.Length]);

}

First, we get the list of animation names from the AnimatedSprite2D's sprite_frames property. This returns
an Array containing all three animation names: ["walk", "swim", "�y"].

We then need to pick a random number between 0 and 2 to select one of these names from the list (array
indices start at 0). randi() % n selects a random integer between 0 and n-1.

The last piece is to make the mobs delete themselves when they leave the screen. Connect the screen_exited()
signal of the VisibleOnScreenNoti�er2D node to the Mob and add this code:

GDScript

func _on_visible_on_screen_noti�er_2d_screen_exited():
queue_free()

C#

private void OnVisibleOnScreenNoti�er2DScreenExited()
{

QueueFree();
}

This completes the Mob scene.

With the player and enemies ready, in the next part, we'll bring them together in a new scene. We'll make
enemies spawn randomly around the game board and move forward, turning our project into a playable
game.

The main game scene

Now it's time to bring everything we did together into a playable game scene.

Create a new scene and add a Node named Main. (The reason we are using Node instead of Node2D is
because this node will be a container for handling game logic. It does not require 2D functionality itself.)

Click the Instance button (represented by a chain link icon) and select your saved player.tscn.

2.9. Your �rst 2D game 141

Godot Engine Documentation, Release latest

Now, add the following nodes as children of Main, and name them as shown (values are in seconds):

� Timer (named MobTimer) - to control how often mobs spawn

� Timer (named ScoreTimer) - to increment the score every second

� Timer (named StartTimer) - to give a delay before starting

� Marker2D (named StartPosition) - to indicate the player's start position

Set the Wait Time property of each of the Timer nodes as follows:

� MobTimer: 0.5

� ScoreTimer: 1

� StartTimer: 2

In addition, set the One Shot property of StartTimer to "On" and set Position of the StartPosition node to
(240, 450).

Spawning mobs

The Main node will be spawning new mobs, and we want them to appear at a random location on the edge
of the screen. Add a Path2D node named MobPath as a child of Main. When you select Path2D, you will
see some new buttons at the top of the editor:

Select the middle one ("Add Point") and draw the path by clicking to add the points at the corners shown.
To have the points snap to the grid, make sure "Use Grid Snap" and "Use Smart Snap" are both selected.
These options can be found to the left of the "Lock" button, appearing as a magnet next to some dots and
intersecting lines, respectively.

142 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Important: Draw the path in clockwise order, or your mobs will spawn pointing outwards instead of inwards!

After placing point 4 in the image, click the "Close Curve" button and your curve will be complete.

Now that the path is de�ned, add a PathFollow2D node as a child of MobPath and name it MobSpawn-
Location. This node will automatically rotate and follow the path as it moves, so we can use it to select a
random position and direction along the path.

Your scene should look like this:

Main script

Add a script to Main. At the top of the script, we use @export var mob_scene: PackedScene to allow us to
choose the Mob scene we want to instance.

GDScript

extends Node

@export var mob_scene: PackedScene
var score

C#

using Godot;

public partial class Main : Node
{

// Don't forget to rebuild the project so the editor knows about the new export variable.

[Export]
public PackedScene MobScene { get; set; }

(continues on next page)

2.9. Your �rst 2D game 143

Godot Engine Documentation, Release latest

(continued from previous page)

private int _score;
}

Click the Main node and you will see the Mob Scene property in the Inspector under "Script Variables".

You can assign this property's value in two ways:

� Drag mob.tscn from the "FileSystem" dock and drop it in the Mob Scene property.

� Click the down arrow next to "[empty]" and choose "Load". Select mob.tscn.

Next, select the instance of the Player scene under Main node in the Scene dock, and access the Node dock
on the sidebar. Make sure to have the Signals tab selected in the Node dock.

You should see a list of the signals for the Player node. Find and double-click the hit signal in the list (or
right-click it and select "Connect..."). This will open the signal connection dialog. We want to make a new
function named game_over, which will handle what needs to happen when a game ends. Type "game_over"
in the "Receiver Method" box at the bottom of the signal connection dialog and click "Connect". You are
aiming to have the hit signal emitted from Player and handled in the Main script. Add the following code
to the new function, as well as a new_game function that will set everything up for a new game:

GDScript

func game_over():
$ScoreTimer.stop()
$MobTimer.stop()

func new_game():
score = 0
$Player.start($StartPosition.position)
$StartTimer.start()

C#

public void GameOver()
{

GetNode<Timer>("MobTimer").Stop();
GetNode<Timer>("ScoreTimer").Stop();

}

public void NewGame()
{

_score = 0;

var player = GetNode<Player>("Player");
var startPosition = GetNode<Marker2D>("StartPosition");
player.Start(startPosition.Position);

GetNode<Timer>("StartTimer").Start();
}

Now connect the timeout() signal of each of the Timer nodes (StartTimer, ScoreTimer, and MobTimer) to
the main script. StartTimer will start the other two timers. ScoreTimer will increment the score by 1.

GDScript

144 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

func _on_score_timer_timeout():
score += 1

func _on_start_timer_timeout():
$MobTimer.start()
$ScoreTimer.start()

C#

private void OnScoreTimerTimeout()
{

_score++;
}

private void OnStartTimerTimeout()
{

GetNode<Timer>("MobTimer").Start();
GetNode<Timer>("ScoreTimer").Start();

}

In _on_mob_timer_timeout(), we will create a mob instance, pick a random starting location along the
Path2D, and set the mob in motion. The PathFollow2D node will automatically rotate as it follows the
path, so we will use that to select the mob's direction as well as its position. When we spawn a mob, we'll
pick a random value between 150.0 and 250.0 for how fast each mob will move (it would be boring if they
were all moving at the same speed).

Note that a new instance must be added to the scene using add_child().

GDScript

func _on_mob_timer_timeout():
Create a new instance of the Mob scene.
var mob = mob_scene.instantiate()

Choose a random location on Path2D.
var mob_spawn_location = get_node("MobPath/MobSpawnLocation")
mob_spawn_location.progress_ratio = randf()

Set the mob's direction perpendicular to the path direction.
var direction = mob_spawn_location.rotation + PI / 2

Set the mob's position to a random location.
mob.position = mob_spawn_location.position

Add some randomness to the direction.
direction += randf_range(-PI / 4, PI / 4)
mob.rotation = direction

Choose the velocity for the mob.
var velocity = Vector2(randf_range(150.0, 250.0), 0.0)
mob.linear_velocity = velocity.rotated(direction)

Spawn the mob by adding it to the Main scene.
add_child(mob)

2.9. Your �rst 2D game 145

Godot Engine Documentation, Release latest

C#

private void OnMobTimerTimeout()
{

// Note: Normally it is best to use explicit types rather than the `var`
// keyword. However, var is acceptable to use here because the types are
// obviously Mob and PathFollow2D, since they appear later on the line.

// Create a new instance of the Mob scene.
Mob mob = MobScene.Instantiate<Mob>();

// Choose a random location on Path2D.
var mobSpawnLocation = GetNode<PathFollow2D>("MobPath/MobSpawnLocation");
mobSpawnLocation.ProgressRatio = GD.Randf();

// Set the mob's direction perpendicular to the path direction.
�oat direction = mobSpawnLocation.Rotation + Mathf.Pi / 2;

// Set the mob's position to a random location.
mob.Position = mobSpawnLocation.Position;

// Add some randomness to the direction.
direction += (�oat)GD.RandRange(-Mathf.Pi / 4, Mathf.Pi / 4);
mob.Rotation = direction;

// Choose the velocity.
var velocity = new Vector2((�oat)GD.RandRange(150.0, 250.0), 0);
mob.LinearVelocity = velocity.Rotated(direction);

// Spawn the mob by adding it to the Main scene.
AddChild(mob);

}

Important: Why PI? In functions requiring angles, Godot uses radians, not degrees. Pi represents a half
turn in radians, about 3.1415 (there is also TAU which is equal to 2 * PI). If you're more comfortable working
with degrees, you'll need to use the deg_to_rad() and rad_to_deg() functions to convert between the two.

Testing the scene

Let's test the scene to make sure everything is working. Add this new_game call to _ready():

GDScript

func _ready():
new_game()

C#

public override void _Ready()
{

NewGame();
}

146 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Let's also assign Main as our "Main Scene" - the one that runs automatically when the game launches. Press
the "Play" button and select main.tscn when prompted.

Tip: If you had already set another scene as the "Main Scene", you can right click main.tscn in the
FileSystem dock and select "Set As Main Scene".

You should be able to move the player around, see mobs spawning, and see the player disappear when hit
by a mob.

When you're sure everything is working, remove the call to new_game() from _ready().

What's our game lacking? Some user interface. In the next lesson, we'll add a title screen and display the
player's score.

Heads up display

The �nal piece our game needs is a User Interface (UI) to display things like score, a "game over" message,
and a restart button.

Create a new scene, click the "Other Node" button and add a CanvasLayer node named HUD. "HUD"
stands for "heads-up display", an informational display that appears as an overlay on top of the game view.

The CanvasLayer node lets us draw our UI elements on a layer above the rest of the game, so that the
information it displays isn't covered up by any game elements like the player or mobs.

The HUD needs to display the following information:

� Score, changed by ScoreTimer.

� A message, such as "Game Over" or "Get Ready!"

� A "Start" button to begin the game.

The basic node for UI elements is Control. To create our UI, we'll use two types of Control nodes: Label
and Button.

Create the following as children of the HUD node:

� Label named ScoreLabel.

� Label named Message.

� Button named StartButton.

� Timer named MessageTimer.

Click on the ScoreLabel and type a number into the Text �eld in the Inspector. The default font for Control
nodes is small and doesn't scale well. There is a font �le included in the game assets called "Xolonium-
Regular.ttf". To use this font, do the following:

Under "Theme Overrides > Fonts", choose "Load" and select the "Xolonium-Regular.ttf" �le.

2.9. Your �rst 2D game 147

Godot Engine Documentation, Release latest

The font size is still too small, increase it to 64 under "Theme Overrides > Font Sizes". Once you've done
this with the ScoreLabel, repeat the changes for the Message and StartButton nodes.

Note: Anchors: Control nodes have a position and size, but they also have anchors. Anchors de�ne the
origin - the reference point for the edges of the node.

Arrange the nodes as shown below. You can drag the nodes to place them manually, or for more precise
placement, use "Anchor Presets".

148 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2.9. Your �rst 2D game 149

Godot Engine Documentation, Release latest

ScoreLabel

1. Add the text 0.

2. Set the "Horizontal Alignment" and "Vertical Alignment" to Center.

3. Choose the "Anchor Preset" Center Top.

Message

1. Add the text Dodge the Creeps!.

2. Set the "Horizontal Alignment" and "Vertical Alignment" to Center.

3. Set the "Autowrap Mode" to Word, otherwise the label will stay on one line.

4. Under "Control - Layout/Transform" set "Size X" to 480 to use the entire width of the screen.

5. Choose the "Anchor Preset" Center.

StartButton

1. Add the text Start.

2. Under "Control - Layout/Transform", set "Size X" to 200 and "Size Y" to 100 to add a little bit more
padding between the border and text.

3. Choose the "Anchor Preset" Center Bottom.

4. Under "Control - Layout/Transform", set "Position Y" to 580.

On the MessageTimer, set the Wait Time to 2 and set the One Shot property to "On".

Now add this script to HUD:

GDScript

extends CanvasLayer

Noti�es `Main` node that the button has been pressed
signal start_game

C#

using Godot;

public partial class HUD : CanvasLayer
{

// Don't forget to rebuild the project so the editor knows about the new signal.

[Signal]
public delegate void StartGameEventHandler();

}

We now want to display a message temporarily, such as "Get Ready", so we add the following code

GDScript

func show_message(text):
$Message.text = text

(continues on next page)

150 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

$Message.show()
$MessageTimer.start()

C#

public void ShowMessage(string text)
{

var message = GetNode<Label>("Message");
message.Text = text;
message.Show();

GetNode<Timer>("MessageTimer").Start();
}

We also need to process what happens when the player loses. The code below will show "Game Over" for 2
seconds, then return to the title screen and, after a brief pause, show the "Start" button.

GDScript

func show_game_over():
show_message("Game Over")
Wait until the MessageTimer has counted down.
await $MessageTimer.timeout

$Message.text = "Dodge the Creeps!"
$Message.show()
Make a one-shot timer and wait for it to �nish.
await get_tree().create_timer(1.0).timeout
$StartButton.show()

C#

async public void ShowGameOver()
{

ShowMessage("Game Over");

var messageTimer = GetNode<Timer>("MessageTimer");
await ToSignal(messageTimer, Timer.SignalName.Timeout);

var message = GetNode<Label>("Message");
message.Text = "Dodge the Creeps!";
message.Show();

await ToSignal(GetTree().CreateTimer(1.0), SceneTreeTimer.SignalName.Timeout);
GetNode<Button>("StartButton").Show();

}

This function is called when the player loses. It will show "Game Over" for 2 seconds, then return to the
title screen and, after a brief pause, show the "Start" button.

Note: When you need to pause for a brief time, an alternative to using a Timer node is to use the SceneTree's
create_timer() function. This can be very useful to add delays such as in the above code, where we want to

2.9. Your �rst 2D game 151

Godot Engine Documentation, Release latest

wait some time before showing the "Start" button.

Add the code below to HUD to update the score

GDScript

func update_score(score):
$ScoreLabel.text = str(score)

C#

public void UpdateScore(int score)
{

GetNode<Label>("ScoreLabel").Text = score.ToString();
}

Connect the timeout() signal of MessageTimer and the pressed() signal of StartButton, and add the following
code to the new functions:

GDScript

func _on_start_button_pressed():
$StartButton.hide()
start_game.emit()

func _on_message_timer_timeout():
$Message.hide()

C#

private void OnStartButtonPressed()
{

GetNode<Button>("StartButton").Hide();
EmitSignal(SignalName.StartGame);

}

private void OnMessageTimerTimeout()
{

GetNode<Label>("Message").Hide();
}

152 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Connecting HUD to Main

Now that we're done creating the HUD scene, go back to Main. Instance the HUD scene in Main like you
did the Player scene. The scene tree should look like this, so make sure you didn't miss anything:

Now we need to connect the HUD functionality to our Main script. This requires a few additions to the
Main scene:

In the Node tab, connect the HUD's start_game signal to the new_game() function of the Main node by
clicking the "Pick" button in the "Connect a Signal" window and selecting the new_game() method or type
"new_game" below "Receiver Method" in the window. Verify that the green connection icon now appears
next to func new_game() in the script.

In new_game(), update the score display and show the "Get Ready" message:

GDScript

$HUD.update_score(score)
$HUD.show_message("Get Ready")

C#

var hud = GetNode<HUD>("HUD");
hud.UpdateScore(_score);
hud.ShowMessage("Get Ready!");

In game_over() we need to call the corresponding HUD function:

GDScript

$HUD.show_game_over()

C#

2.9. Your �rst 2D game 153

Godot Engine Documentation, Release latest

GetNode<HUD>("HUD").ShowGameOver();

Finally, add this to _on_score_timer_timeout() to keep the display in sync with the changing score:

GDScript

$HUD.update_score(score)

C#

GetNode<HUD>("HUD").UpdateScore(_score);

Warning: Remember to remove the call to new_game() from _ready() if you haven't already, otherwise
your game will start automatically.

Now you're ready to play! Click the "Play the Project" button. You will be asked to select a main scene, so
choose main.tscn.

Removing old creeps

If you play until "Game Over" and then start a new game right away, the creeps from the previous game
may still be on the screen. It would be better if they all disappeared at the start of a new game. We just
need a way to tell all the mobs to remove themselves. We can do this with the "group" feature.

In the Mob scene, select the root node and click the "Node" tab next to the Inspector (the same place where
you �nd the node's signals). Next to "Signals", click "Groups" and you can type a new group name and
click "Add".

Now all mobs will be in the "mobs" group. We can then add the following line to the new_game() function
in Main:

GDScript

get_tree().call_group("mobs", "queue_free")

C#

// Note that for calling Godot-provided methods with strings,
// we have to use the original Godot snake_case name.
GetTree().CallGroup("mobs", Node.MethodName.QueueFree);

The call_group() function calls the named function on every node in a group - in this case we are telling
every mob to delete itself.

154 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The game's mostly done at this point. In the next and last part, we'll polish it a bit by adding a background,
looping music, and some keyboard shortcuts.

Finishing up

We have now completed all the functionality for our game. Below are some remaining steps to add a bit
more "juice" to improve the game experience.

Feel free to expand the gameplay with your own ideas.

Background

The default gray background is not very appealing, so let's change its color. One way to do this is to use
a ColorRect node. Make it the �rst node under Main so that it will be drawn behind the other nodes.
ColorRect only has one property: Color. Choose a color you like and select "Layout" -> "Anchors Preset"
-> "Full Rect" either in the toolbar at the top of the viewport or in the inspector so that it covers the screen.

You could also add a background image, if you have one, by using a TextureRect node instead.

Sound e�ects

Sound and music can be the single most e�ective way to add appeal to the game experience. In your game's
art folder, you have two sound �les: "House In a Forest Loop.ogg" for background music, and "gameover.wav"
for when the player loses.

Add two AudioStreamPlayer nodes as children of Main. Name one of them Music and the other DeathSound.
On each one, click on the Stream property, select "Load", and choose the corresponding audio �le.

All audio is automatically imported with the Loop setting disabled. If you want the music to loop seamlessly,
click on the Stream �le arrow, select Make Unique, then click on the Stream �le and check the Loop box.

To play the music, add $Music.play() in the new_game() function and $Music.stop() in the game_over()
function.

Finally, add $DeathSound.play() in the game_over() function.

GDScript

func game_over():
...
$Music.stop()
$DeathSound.play()

func new_game():
...
$Music.play()

C#

public void GameOver()
{

...
GetNode<AudioStreamPlayer>("Music").Stop();
GetNode<AudioStreamPlayer>("DeathSound").Play();

}

public void NewGame()

(continues on next page)

2.9. Your �rst 2D game 155

Godot Engine Documentation, Release latest

(continued from previous page)

{
...
GetNode<AudioStreamPlayer>("Music").Play();

}

Keyboard shortcut

Since the game is played with keyboard controls, it would be convenient if we could also start the game by
pressing a key on the keyboard. We can do this with the "Shortcut" property of the Button node.

In a previous lesson, we created four input actions to move the character. We will create a similar input
action to map to the start button.

Select "Project" -> "Project Settings" and then click on the "Input Map" tab. In the same way you created
the movement input actions, create a new input action called start_game and add a key mapping for the
Enter key.

Now would be a good time to add controller support if you have one available. Attach or pair your controller
and then under each input action that you wish to add controller support for, click on the "+" button and
press the corresponding button, d-pad, or stick direction that you want to map to the respective input action.

In the HUD scene, select the StartButton and �nd its Shortcut property in the Inspector. Create a new
Shortcut resource by clicking within the box, open the Events array and add a new array element to it by
clicking on Array[InputEvent] (size 0).

Create a new InputEventAction and name it start_game.

156 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Now when the start button appears, you can either click it or press Enter to start the game.

And with that, you completed your �rst 2D game in Godot.

You got to make a player-controlled character, enemies that spawn randomly around the game board, count
the score, implement a game over and replay, user interface, sounds, and more. Congratulations!

There's still much to learn, but you can take a moment to appreciate what you achieved.

And when you're ready, you can move on to Your �rst 3D game to learn to create a complete 3D game from
scratch, in Godot.

2.10 Your �rst 3D game

In this step-by-step tutorial series, you will create your �rst complete 3D game with Godot. By the end of
the series, you will have a simple yet �nished project of your own like the animated gif below.

The game we'll code here is similar to Your �rst 2D game, with a twist: you can now jump and your goal
is to squash the creeps. This way, you will both recognize patterns you learned in the previous tutorial and
build upon them with new code and features.

You will learn to:

� Work with 3D coordinates with a jumping mechanic.

� Use kinematic bodies to move 3D characters and detect when and how they collide.

� Use physics layers and a group to detect interactions with speci�c entities.

� Code basic procedural gameplay by instancing monsters at regular time intervals.

� Design a movement animation and change its speed at run-time.

2.10. Your �rst 3D game 157

Godot Engine Documentation, Release latest

� Draw a user interface on a 3D game.

And more.

This tutorial is for beginners who followed the complete getting started series. We'll start slow with detailed
instructions and shorten them as we do similar steps. If you're an experienced programmer, you can browse
the complete demo's source code here: Squash the Creep source code.

Note: You can follow this series without having done the 2D one. However, if you're new to game
development, we recommend you to start with 2D. 3D game code is always more complex and the 2D series
will give you foundations to follow along more comfortably.

We prepared some game assets so we can jump straight to the code. You can download them here: Squash
the Creeps assets.

We will �rst work on a basic prototype for the player's movement. We will then add the monsters that we'll
spawn randomly around the screen. After that, we'll implement the jump and squashing mechanic before
re�ning the game with some nice animation. We'll wrap up with the score and the retry screen.

2.10.1 Contents

Setting up the game area

In this �rst part, we're going to set up the game area. Let's get started by importing the start assets and
setting up the game scene.

We've prepared a Godot project with the 3D models and sounds we'll use for this tutorial, linked in the
index page. If you haven't done so yet, you can download the archive here: Squash the Creeps assets.

Once you downloaded it, extract the .zip archive on your computer. Open the Godot Project Manager and
click the Import button.

In the import popup, enter the full path to the freshly created directory squash_the_creeps_start/. You
can click the Browse button on the right to open a �le browser and navigate to the project.godot �le the
folder contains.

158 Chapter 2. O�ine documentation

https://github.com/godotengine/godot-3d-dodge-the-creeps
https://github.com/godotengine/godot-3d-dodge-the-creeps/releases/tag/1.1.0
https://github.com/godotengine/godot-3d-dodge-the-creeps/releases/tag/1.1.0
https://github.com/godotengine/godot-3d-dodge-the-creeps/releases/tag/1.1.0

Godot Engine Documentation, Release latest

Click Import & Edit to open the project in the editor.

The start project contains an icon and two folders: art/ and fonts/. There, you will �nd the art assets and
music we'll use in the game.

2.10. Your �rst 3D game 159

Godot Engine Documentation, Release latest

There are two 3D models, player.glb and mob.glb, some materials that belong to these models, and a music
track.

Setting up the playable area

We're going to create our main scene with a plain Node as its root. In the Scene dock, click the Add Child
Node button represented by a "+" icon in the top-left and double-click on Node. Name the node Main. An
alternate method to rename the node is to right-click on Node and choose Rename (or F2). Alternatively,
to add a node to the scene, you can press Ctrl + a (or Cmd + a on macOS).

Save the scene as main.tscn by pressing Ctrl + s (Cmd + s on macOS).

160 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

We'll start by adding a �oor that'll prevent the characters from falling. To create static colliders like the
�oor, walls, or ceilings, you can use StaticBody3D nodes. They require CollisionShape3D child nodes to
de�ne the collision area. With the Main node selected, add a StaticBody3D node, then a CollisionShape3D.
Rename the StaticBody3D to Ground.

Your scene tree should look like this

A warning sign next to the CollisionShape3D appears because we haven't de�ned its shape. If you click the
icon, a popup appears to give you more information.

2.10. Your �rst 3D game 161

Godot Engine Documentation, Release latest

To create a shape, select the CollisionShape3D node, head to the Inspector and click the <empty> �eld next
to the Shape property. Create a new BoxShape3D.

The box shape is perfect for �at ground and walls. Its thickness makes it reliable to block even fast-moving
objects.

A box's wireframe appears in the viewport with three orange dots. You can click and drag these to edit the
shape's extents interactively. We can also precisely set the size in the inspector. Click on the BoxShape3D
to expand the resource. Set its Size to 60 on the X axis, 2 for the Y axis, and 60 for the Z axis.

162 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Collision shapes are invisible. We need to add a visual �oor that goes along with it. Select the Ground node
and add a MeshInstance3D as its child.

In the Inspector, click on the �eld next to Mesh and create a BoxMesh resource to create a visible box.

2.10. Your �rst 3D game 163

Godot Engine Documentation, Release latest

Once again, it's too small by default. Click the box icon to expand the resource and set its Size to 60, 2,
and 60.

You should see a wide grey slab that covers the grid and blue and red axes in the viewport.

164 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

We're going to move the ground down so we can see the �oor grid. Select the Ground node, hold the Ctrl
key down to turn on grid snapping, and click and drag down on the Y axis. It's the green arrow in the move
gizmo.

Note: If you can't see the 3D object manipulator like on the image above, ensure the Select Mode is active
in the toolbar above the view.

Move the ground down 1 meter, in order to have a visible editor grid. A label in the bottom-left corner of
the viewport tells you how much you're translating the node.

Note: Moving the Ground node down moves both children along with it. Ensure you move the Ground
node, not the MeshInstance3D or the CollisionShape3D.

Ultimately, Ground's transform.position.y should be -1

2.10. Your �rst 3D game 165

Godot Engine Documentation, Release latest

Let's add a directional light so our scene isn't all grey. Select the Main node and add a child node Direc-
tionalLight3D.

We need to move and rotate the DirectionalLight3D node. Move it up by clicking and dragging on the
manipulator's green arrow and click and drag on the red arc to rotate it around the X axis, until the ground

166 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

is lit.

In the Inspector, turn on Shadow -> Enabled by clicking the checkbox.

At this point, your project should look like this.

That's our starting point. In the next part, we will work on the player scene and base movement.

2.10. Your �rst 3D game 167

Godot Engine Documentation, Release latest

Player scene and input actions

In the next two lessons, we will design the player scene, register custom input actions, and code player
movement. By the end, you'll have a playable character that moves in eight directions.

Create a new scene by going to the Scene menu in the top-left and clicking New Scene.

Create a CharacterBody3D node as the root

Name the CharacterBody3D to Player. Character bodies are complementary to the area and rigid bodies
used in the 2D game tutorial. Like rigid bodies, they can move and collide with the environment, but instead
of being controlled by the physics engine, you dictate their movement. You will see how we use the node's
unique features when we code the jump and squash mechanics.

See also:

To learn more about the di�erent physics node types, see the Physics introduction.

For now, we're going to create a basic rig for our character's 3D model. This will allow us to rotate the
model later via code while it plays an animation.

Add a Node3D node as a child of Player and name it Pivot

168 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Then, in the FileSystem dock, expand the art/ folder by double-clicking it and drag and drop player.glb
onto Pivot.

This should instantiate the model as a child of Pivot. You can rename it to Character.

Note: The .glb �les contain 3D scene data based on the open source GLTF 2.0 speci�cation. They're a
modern and powerful alternative to a proprietary format like FBX, which Godot also supports. To produce
these �les, we designed the model in Blender 3D and exported it to GLTF.

As with all kinds of physics nodes, we need a collision shape for our character to collide with the environment.
Select the Player node again and add a child node CollisionShape3D. In the Inspector, on the Shape property,
add a new SphereShape3D.

2.10. Your �rst 3D game 169

https://www.blender.org/

Godot Engine Documentation, Release latest

The sphere's wireframe appears below the character.

It will be the shape the physics engine uses to collide with the environment, so we want it to better �t the
3D model. Shrink it a bit by dragging the orange dot in the viewport. My sphere has a radius of about 0.8
meters.

Then, move the shape up so its bottom roughly aligns with the grid's plane.

170 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

You can toggle the model's visibility by clicking the eye icon next to the Character or the Pivot nodes.

Save the scene as player.tscn

With the nodes ready, we can almost get coding. But �rst, we need to de�ne some input actions.

Creating input actions

To move the character, we will listen to the player's input, like pressing the arrow keys. In Godot, while we
could write all the key bindings in code, there's a powerful system that allows you to assign a label to a set
of keys and buttons. This simpli�es our scripts and makes them more readable.

This system is the Input Map. To access its editor, head to the Project menu and select Project Settings.

2.10. Your �rst 3D game 171

Godot Engine Documentation, Release latest

At the top, there are multiple tabs. Click on Input Map. This window allows you to add new actions at the
top; they are your labels. In the bottom part, you can bind keys to these actions.

172 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Godot projects come with some prede�ned actions designed for user interface design, which we could use
here. But we're de�ning our own to support gamepads.

We're going to name our actions move_left, move_right, move_forward, move_back, and jump.

To add an action, write its name in the bar at the top and press Enter.

Create the following �ve actions:

To bind a key or button to an action, click the "+" button to its right. Do this for move_left. Press the left

2.10. Your �rst 3D game 173

Godot Engine Documentation, Release latest

arrow key and click OK.

Bind also the A key, onto the action move_left.

Let's now add support for a gamepad's left joystick. Click the "+" button again but this time, select Manual
Selection -> Joypad Axes.

174 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Select the negative X axis of the left joystick.

Leave the other values as default and press OK

Note: If you want controllers to have di�erent input actions, you should use the Devices option in Additional
Options. Device 0 corresponds to the �rst plugged gamepad, Device 1 corresponds to the second plugged

2.10. Your �rst 3D game 175

Godot Engine Documentation, Release latest

gamepad, and so on.

Do the same for the other input actions. For example, bind the right arrow, D, and the left joystick's positive
axis to move_right. After binding all keys, your interface should look like this.

The �nal action to set up is the jump action. Bind the Space key and the gamepad's A button.

Your jump input action should look like this.

176 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

That's all the actions we need for this game. You can use this menu to label any groups of keys and buttons
in your projects.

In the next part, we'll code and test the player's movement.

Moving the player with code

It's time to code! We're going to use the input actions we created in the last part to move the character.

Right-click the Player node and select Attach Script to add a new script to it. In the popup, set the Template
to Empty before pressing the Create button.

Let's start with the class's properties. We're going to de�ne a movement speed, a fall acceleration representing
gravity, and a velocity we'll use to move the character.

GDScript

extends CharacterBody3D

How fast the player moves in meters per second.
@export var speed = 14
The downward acceleration when in the air, in meters per second squared.
@export var fall_acceleration = 75

var target_velocity = Vector3.ZERO

C#

using Godot;

public partial class Player : CharacterBody3D
{

(continues on next page)

2.10. Your �rst 3D game 177

Godot Engine Documentation, Release latest

(continued from previous page)

// Don't forget to rebuild the project so the editor knows about the new export variable.

// How fast the player moves in meters per second.
[Export]
public int Speed { get; set; } = 14;
// The downward acceleration when in the air, in meters per second squared.
[Export]
public int FallAcceleration { get; set; } = 75;

private Vector3 _targetVelocity = Vector3.Zero;
}

These are common properties for a moving body. The target_velocity is a 3D vector combining a speed with
a direction. Here, we de�ne it as a property because we want to update and reuse its value across frames.

Note: The values are quite di�erent from 2D code because distances are in meters. While in 2D, a thousand
units (pixels) may only correspond to half of your screen's width, in 3D, it's a kilometer.

Let's code the movement. We start by calculating the input direction vector using the global Input object,
in _physics_process().

GDScript

func _physics_process(delta):
We create a local variable to store the input direction.
var direction = Vector3.ZERO

We check for each move input and update the direction accordingly.
if Input.is_action_pressed("move_right"):

direction.x += 1
if Input.is_action_pressed("move_left"):

direction.x -= 1
if Input.is_action_pressed("move_back"):

Notice how we are working with the vector's x and z axes.
In 3D, the XZ plane is the ground plane.
direction.z += 1

if Input.is_action_pressed("move_forward"):
direction.z -= 1

C#

public override void _PhysicsProcess(double delta)
{

// We create a local variable to store the input direction.
var direction = Vector3.Zero;

// We check for each move input and update the direction accordingly.
if (Input.IsActionPressed("move_right"))
{

direction.X += 1.0f;
}
if (Input.IsActionPressed("move_left"))

(continues on next page)

178 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

{
direction.X -= 1.0f;

}
if (Input.IsActionPressed("move_back"))
{

// Notice how we are working with the vector's X and Z axes.
// In 3D, the XZ plane is the ground plane.
direction.Z += 1.0f;

}
if (Input.IsActionPressed("move_forward"))
{

direction.Z -= 1.0f;
}

}

Here, we're going to make all calculations using the _physics_process() virtual function. Like _process(), it
allows you to update the node every frame, but it's designed speci�cally for physics-related code like moving
a kinematic or rigid body.

See also:

To learn more about the di�erence between _process() and _physics_process(), see Idle and Physics Pro-
cessing.

We start by initializing a direction variable to Vector3.ZERO. Then, we check if the player is pressing one
or more of the move_* inputs and update the vector's x and z components accordingly. These correspond
to the ground plane's axes.

These four conditions give us eight possibilities and eight possible directions.

In case the player presses, say, both W and D simultaneously, the vector will have a length of about 1.4. But
if they press a single key, it will have a length of 1. We want the vector's length to be consistent, and not
move faster diagonally. To do so, we can call its normalized() method.

GDScript

#func _physics_process(delta):
#...

if direction != Vector3.ZERO:
direction = direction.normalized()
$Pivot.look_at(position + direction, Vector3.UP)

C#

public override void _PhysicsProcess(double delta)
{

// ...

if (direction != Vector3.Zero)
{

direction = direction.Normalized();
GetNode<Node3D>("Pivot").LookAt(Position + direction, Vector3.Up);

}
}

2.10. Your �rst 3D game 179

Godot Engine Documentation, Release latest

Here, we only normalize the vector if the direction has a length greater than zero, which means the player
is pressing a direction key.

In this case, we also get the Pivot node and call its look_at() method. This method takes a position in space
to look at in global coordinates and the up direction. In this case, we can use the Vector3.UP constant.

Note: A node's local coordinates, like position, are relative to their parent. Global coordinates, like
global_position are relative to the world's main axes you can see in the viewport instead.

In 3D, the property that contains a node's position is position. By adding the direction to it, we get a
position to look at that's one meter away from the Player.

Then, we update the velocity. We have to calculate the ground velocity and the fall speed separately. Be
sure to go back one tab so the lines are inside the _physics_process() function but outside the condition we
just wrote above.

GDScript

func _physics_process(delta):
#...
if direction != Vector3.ZERO:

#...

Ground Velocity
target_velocity.x = direction.x * speed
target_velocity.z = direction.z * speed

Vertical Velocity
if not is_on_�oor(): # If in the air, fall towards the �oor. Literally gravity

target_velocity.y = target_velocity.y - (fall_acceleration * delta)

Moving the Character
velocity = target_velocity
move_and_slide()

C#

public override void _PhysicsProcess(double delta)
{

// ...
if (direction != Vector3.Zero)
{

// ...
}

// Ground velocity
_targetVelocity.X = direction.X * Speed;
_targetVelocity.Z = direction.Z * Speed;

// Vertical velocity
if (!IsOnFloor()) // If in the air, fall towards the �oor. Literally gravity
{

_targetVelocity.Y -= FallAcceleration * (�oat)delta;
}

(continues on next page)

180 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

// Moving the character
Velocity = _targetVelocity;
MoveAndSlide();

}

The CharacterBody3D.is_on_�oor() function returns true if the body collided with the �oor in this frame.
That's why we apply gravity to the Player only while it is in the air.

For the vertical velocity, we subtract the fall acceleration multiplied by the delta time every frame. This line
of code will cause our character to fall in every frame, as long as it is not on or colliding with the �oor.

The physics engine can only detect interactions with walls, the �oor, or other bodies during a given frame if
movement and collisions happen. We will use this property later to code the jump.

On the last line, we call CharacterBody3D.move_and_slide() which is a powerful method of the Character-
Body3D class that allows you to move a character smoothly. If it hits a wall midway through a motion, the
engine will try to smooth it out for you. It uses the velocity value native to the CharacterBody3D

And that's all the code you need to move the character on the �oor.

Here is the complete Player.gd code for reference.

GDScript

extends CharacterBody3D

How fast the player moves in meters per second.
@export var speed = 14
The downward acceleration when in the air, in meters per second squared.
@export var fall_acceleration = 75

var target_velocity = Vector3.ZERO

func _physics_process(delta):
var direction = Vector3.ZERO

if Input.is_action_pressed("move_right"):
direction.x += 1

if Input.is_action_pressed("move_left"):
direction.x -= 1

if Input.is_action_pressed("move_back"):
direction.z += 1

if Input.is_action_pressed("move_forward"):
direction.z -= 1

if direction != Vector3.ZERO:
direction = direction.normalized()
$Pivot.look_at(position + direction, Vector3.UP)

Ground Velocity
target_velocity.x = direction.x * speed
target_velocity.z = direction.z * speed

(continues on next page)

2.10. Your �rst 3D game 181

Godot Engine Documentation, Release latest

(continued from previous page)

Vertical Velocity
if not is_on_�oor(): # If in the air, fall towards the �oor. Literally gravity

target_velocity.y = target_velocity.y - (fall_acceleration * delta)

Moving the Character
velocity = target_velocity
move_and_slide()

C#

using Godot;

public partial class Player : CharacterBody3D
{

// How fast the player moves in meters per second.
[Export]
public int Speed { get; set; } = 14;
// The downward acceleration when in the air, in meters per second squared.
[Export]
public int FallAcceleration { get; set; } = 75;

private Vector3 _targetVelocity = Vector3.Zero;

public override void _PhysicsProcess(double delta)
{

var direction = Vector3.Zero;

if (Input.IsActionPressed("move_right"))
{

direction.X += 1.0f;
}
if (Input.IsActionPressed("move_left"))
{

direction.X -= 1.0f;
}
if (Input.IsActionPressed("move_back"))
{

direction.Z += 1.0f;
}
if (Input.IsActionPressed("move_forward"))
{

direction.Z -= 1.0f;
}

if (direction != Vector3.Zero)
{

direction = direction.Normalized();
GetNode<Node3D>("Pivot").LookAt(Position + direction, Vector3.Up);

}

// Ground velocity
_targetVelocity.X = direction.X * Speed;

(continues on next page)

182 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

_targetVelocity.Z = direction.Z * Speed;

// Vertical velocity
if (!IsOnFloor()) // If in the air, fall towards the �oor. Literally gravity
{

_targetVelocity.Y -= FallAcceleration * (�oat)delta;
}

// Moving the character
Velocity = _targetVelocity;
MoveAndSlide();

}
}

Testing our player's movement

We're going to put our player in the Main scene to test it. To do so, we need to instantiate the player and
then add a camera. Unlike in 2D, in 3D, you won't see anything if your viewport doesn't have a camera
pointing at something.

Save your Player scene and open the Main scene. You can click on the Main tab at the top of the editor to
do so.

If you closed the scene before, head to the FileSystem dock and double-click main.tscn to re-open it.

To instantiate the Player, right-click on the Main node and select Instantiate Child Scene.

In the popup, double-click player.tscn. The character should appear in the center of the viewport.

2.10. Your �rst 3D game 183

Godot Engine Documentation, Release latest

Adding a camera

Let's add the camera next. Like we did with our Player's Pivot, we're going to create a basic rig. Right-click
on the Main node again and select Add Child Node. Create a new Marker3D, and name it CameraPivot.
Select CameraPivot and add a child node Camera3D to it. Your scene tree should look like this.

Notice the Preview checkbox that appears in the top-left when you have the Camera selected. You can click
it to preview the in-game camera projection.

We're going to use the Pivot to rotate the camera as if it was on a crane. Let's �rst split the 3D view to be
able to freely navigate the scene and see what the camera sees.

In the toolbar right above the viewport, click on View, then 2 Viewports. You can also press Ctrl + 2 (Cmd
+ 2 on macOS).

184 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

On the bottom view, select your Camera3D and turn on camera Preview by clicking the checkbox.

In the top view, move the camera about 19 units on the Z axis (the blue one).

2.10. Your �rst 3D game 185

Godot Engine Documentation, Release latest

Here's where the magic happens. Select the CameraPivot and rotate it -45 degrees around the X axis (using
the red circle). You'll see the camera move as if it was attached to a crane.

You can run the scene by pressing F6 and press the arrow keys to move the character.

186 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

We can see some empty space around the character due to the perspective projection. In this game, we're
going to use an orthographic projection instead to better frame the gameplay area and make it easier for
the player to read distances.

Select the Camera again and in the Inspector, set the Projection to Orthogonal and the Size to 19. The
character should now look �atter and the ground should �ll the background.

Note: When using an orthogonal camera in Godot 4, directional shadow quality is dependent on the
camera's Far value. The higher the Far value, the further away the camera will be able to see. However,
higher Far values also decrease shadow quality as the shadow rendering has to cover a greater distance.

If directional shadows look too blurry after switching to an orthogonal camera, decrease the camera's Far
property to a lower value such as 100. Don't decrease this Far property too much, or objects in the distance
will start disappearing.

2.10. Your �rst 3D game 187

Godot Engine Documentation, Release latest

Test your scene and you should be able to move in all 8 directions and not glitch through the �oor!

Ultimately, we have both player movement and the view in place. Next, we will work on the monsters.

Designing the mob scene

In this part, you're going to code the monsters, which we'll call mobs. In the next lesson, we'll spawn them
randomly around the playable area.

Let's design the monsters themselves in a new scene. The node structure is going to be similar to the
player.tscn scene.

Create a scene with, once again, a CharacterBody3D node as its root. Name it Mob. Add a child node
Node3D, name it Pivot. And drag and drop the �le mob.glb from the FileSystem dock onto the Pivot to
add the monster's 3D model to the scene.

You can rename the newly created mob node into Character.

We need a collision shape for our body to work. Right-click on the Mob node, the scene's root, and click
Add Child Node.

188 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Add a CollisionShape3D.

In the Inspector, assign a BoxShape3D to the Shape property.

2.10. Your �rst 3D game 189

Godot Engine Documentation, Release latest

We should change its size to �t the 3D model better. You can do so interactively by clicking and dragging
on the orange dots.

The box should touch the �oor and be a little thinner than the model. Physics engines work in such a way
that if the player's sphere touches even the box's corner, a collision will occur. If the box is a little too big
compared to the 3D model, you may die at a distance from the monster, and the game will feel unfair to the
players.

190 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Notice that my box is taller than the monster. It is okay in this game because we're looking at the scene
from above and using a �xed perspective. Collision shapes don't have to match the model exactly. It's the
way the game feels when you test it that should dictate their form and size.

Removing monsters o�-screen

We're going to spawn monsters at regular time intervals in the game level. If we're not careful, their count
could increase to in�nity, and we don't want that. Each mob instance has both a memory and a processing
cost, and we don't want to pay for it when the mob is outside the screen.

Once a monster leaves the screen, we don't need it anymore, so we should delete it. Godot has a node that
detects when objects leave the screen, VisibleOnScreenNoti�er3D, and we're going to use it to destroy our
mobs.

Note: When you keep instancing an object, there's a technique you can use to avoid the cost of creating and
destroying instances all the time called pooling. It consists of pre-creating an array of objects and reusing
them over and over.

When working with GDScript, you don't need to worry about this. The main reason to use pools is to avoid
freezes with garbage-collected languages like C# or Lua. GDScript uses a di�erent technique to manage
memory, reference counting, which doesn't have that caveat. You can learn more about that here: Memory
management.

Select the Mob node and add a child node VisibleOnScreenNoti�er3D. Another box, pink this time, appears.
When this box completely leaves the screen, the node will emit a signal.

2.10. Your �rst 3D game 191

Godot Engine Documentation, Release latest

Resize it using the orange dots until it covers the entire 3D model.

192 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Coding the mob's movement

Let's implement the monster's motion. We're going to do this in two steps. First, we'll write a script on the
Mob that de�nes a function to initialize the monster. We'll then code the randomized spawn mechanism in
the main.tscn scene and call the function from there.

Attach a script to the Mob.

Here's the movement code to start with. We de�ne two properties, min_speed and max_speed, to de�ne a
random speed range, which we will later use to de�ne CharacterBody3D.velocity.

GDScript

extends CharacterBody3D

Minimum speed of the mob in meters per second.
@export var min_speed = 10
Maximum speed of the mob in meters per second.
@export var max_speed = 18

func _physics_process(_delta):
move_and_slide()

C#

using Godot;

public partial class Mob : CharacterBody3D
{

// Don't forget to rebuild the project so the editor knows about the new export variable.

// Minimum speed of the mob in meters per second
[Export]
public int MinSpeed { get; set; } = 10;
// Maximum speed of the mob in meters per second
[Export]
public int MaxSpeed { get; set; } = 18;

(continues on next page)

2.10. Your �rst 3D game 193

Godot Engine Documentation, Release latest

(continued from previous page)

public override void _PhysicsProcess(double delta)
{

MoveAndSlide();
}

}

Similarly to the player, we move the mob every frame by calling the function CharacterBody3D.
move_and_slide(). This time, we don't update the velocity every frame; we want the monster to move
at a constant speed and leave the screen, even if it were to hit an obstacle.

We need to de�ne another function to calculate the CharacterBody3D.velocity. This function will turn the
monster towards the player and randomize both its angle of motion and its velocity.

The function will take a start_position,the mob's spawn position, and the player_position as its arguments.

We position the mob at start_position and turn it towards the player using the look_at_from_position()
method, and randomize the angle by rotating a random amount around the Y axis. Below, randf_range()
outputs a random value between -PI / 4 radians and PI / 4 radians.

GDScript

This function will be called from the Main scene.
func initialize(start_position, player_position):

We position the mob by placing it at start_position
and rotate it towards player_position, so it looks at the player.
look_at_from_position(start_position, player_position, Vector3.UP)
Rotate this mob randomly within range of -45 and +45 degrees,
so that it doesn't move directly towards the player.
rotate_y(randf_range(-PI / 4, PI / 4))

C#

// This function will be called from the Main scene.
public void Initialize(Vector3 startPosition, Vector3 playerPosition)
{

// We position the mob by placing it at startPosition
// and rotate it towards playerPosition, so it looks at the player.
LookAtFromPosition(startPosition, playerPosition, Vector3.Up);
// Rotate this mob randomly within range of -45 and +45 degrees,
// so that it doesn't move directly towards the player.
RotateY((�oat)GD.RandRange(-Mathf.Pi / 4.0, Mathf.Pi / 4.0));

}

We got a random position, now we need a random_speed. randi_range() will be useful as it gives random
int values, and we will use min_speed and max_speed. random_speed is just an integer, and we just use
it to multiply our CharacterBody3D.velocity. After random_speed is applied, we rotate CharacterBody3D.
velocity Vector3 towards the player.

GDScript

func initialize(start_position, player_position):
...

We calculate a random speed (integer)

(continues on next page)

194 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

var random_speed = randi_range(min_speed, max_speed)
We calculate a forward velocity that represents the speed.
velocity = Vector3.FORWARD * random_speed
We then rotate the velocity vector based on the mob's Y rotation
in order to move in the direction the mob is looking.
velocity = velocity.rotated(Vector3.UP, rotation.y)

C#

public void Initialize(Vector3 startPosition, Vector3 playerPosition)
{

// ...

// We calculate a random speed (integer).
int randomSpeed = GD.RandRange(MinSpeed, MaxSpeed);
// We calculate a forward velocity that represents the speed.
Velocity = Vector3.Forward * randomSpeed;
// We then rotate the velocity vector based on the mob's Y rotation
// in order to move in the direction the mob is looking.
Velocity = Velocity.Rotated(Vector3.Up, Rotation.Y);

}

Leaving the screen

We still have to destroy the mobs when they leave the screen. To do so, we'll connect our VisibleOnScreen-
Noti�er3D node's screen_exited signal to the Mob.

Head back to the 3D viewport by clicking on the 3D label at the top of the editor. You can also press Ctrl
+ F2 (Alt + 2 on macOS).

Select the VisibleOnScreenNoti�er3D node and on the right side of the interface, navigate to the Node dock.
Double-click the screen_exited() signal.

2.10. Your �rst 3D game 195

Godot Engine Documentation, Release latest

Connect the signal to the Mob

This will take you back to the script editor and add a new function for you,

196 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

_on_visible_on_screen_noti�er_3d_screen_exited(). From it, call the queue_free() method. This
function destroy the instance it's called on.

GDScript

func _on_visible_on_screen_noti�er_3d_screen_exited():
queue_free()

C#

// We also speci�ed this function name in PascalCase in the editor's connection window
private void OnVisibilityNoti�erScreenExited()
{

QueueFree();
}

Our monster is ready to enter the game! In the next part, you will spawn monsters in the game level.

Here is the complete Mob.gd script for reference.

GDScript

extends CharacterBody3D

Minimum speed of the mob in meters per second.
@export var min_speed = 10
Maximum speed of the mob in meters per second.
@export var max_speed = 18

func _physics_process(_delta):
move_and_slide()

This function will be called from the Main scene.
func initialize(start_position, player_position):

We position the mob by placing it at start_position
and rotate it towards player_position, so it looks at the player.
look_at_from_position(start_position, player_position, Vector3.UP)
Rotate this mob randomly within range of -90 and +90 degrees,
so that it doesn't move directly towards the player.
rotate_y(randf_range(-PI / 4, PI / 4))

We calculate a random speed (integer)
var random_speed = randi_range(min_speed, max_speed)
We calculate a forward velocity that represents the speed.
velocity = Vector3.FORWARD * random_speed
We then rotate the velocity vector based on the mob's Y rotation
in order to move in the direction the mob is looking.
velocity = velocity.rotated(Vector3.UP, rotation.y)

func _on_visible_on_screen_noti�er_3d_screen_exited():
queue_free()

C#

2.10. Your �rst 3D game 197

Godot Engine Documentation, Release latest

using Godot;

public partial class Mob : CharacterBody3D
{

// Minimum speed of the mob in meters per second.
[Export]
public int MinSpeed { get; set; } = 10;
// Maximum speed of the mob in meters per second.
[Export]
public int MaxSpeed { get; set; } = 18;

public override void _PhysicsProcess(double delta)
{

MoveAndSlide();
}

// This function will be called from the Main scene.
public void Initialize(Vector3 startPosition, Vector3 playerPosition)
{

// We position the mob by placing it at startPosition
// and rotate it towards playerPosition, so it looks at the player.
LookAtFromPosition(startPosition, playerPosition, Vector3.Up);
// Rotate this mob randomly within range of -90 and +90 degrees,
// so that it doesn't move directly towards the player.
RotateY((�oat)GD.RandRange(-Mathf.Pi / 4.0, Mathf.Pi / 4.0));

// We calculate a random speed (integer).
int randomSpeed = GD.RandRange(MinSpeed, MaxSpeed);
// We calculate a forward velocity that represents the speed.
Velocity = Vector3.Forward * randomSpeed;
// We then rotate the velocity vector based on the mob's Y rotation
// in order to move in the direction the mob is looking.
Velocity = Velocity.Rotated(Vector3.Up, Rotation.Y);

}

// We also speci�ed this function name in PascalCase in the editor's connection window
private void OnVisibilityNoti�erScreenExited()
{

QueueFree();
}

}

198 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Spawning monsters

In this part, we're going to spawn monsters along a path randomly. By the end, you will have monsters
roaming the game board.

Double-click on main.tscn in the FileSystem dock to open the Main scene.

Before drawing the path, we're going to change the game resolution. Our game has a default window size of
1152x648. We're going to set it to 720x540, a nice little box.

Go to Project -> Project Settings.

2.10. Your �rst 3D game 199

Godot Engine Documentation, Release latest

In the left menu, navigate down to Display -> Window. On the right, set the Width to 720 and the Height
to 540.

200 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Creating the spawn path

Like you did in the 2D game tutorial, you're going to design a path and use a PathFollow3D node to sample
random locations on it.

In 3D though, it's a bit more complicated to draw the path. We want it to be around the game view so
monsters appear right outside the screen. But if we draw a path, we won't see it from the camera preview.

To �nd the view's limits, we can use some placeholder meshes. Your viewport should still be split into two
parts, with the camera preview at the bottom. If that isn't the case, press Ctrl + 2 (Cmd + 2 on macOS) to
split the view into two. Select the Camera3D node and click the Preview checkbox in the bottom viewport.

2.10. Your �rst 3D game 201

Godot Engine Documentation, Release latest

Adding placeholder cylinders

Let's add the placeholder meshes. Add a new Node3D as a child of the Main node and name it Cylinders.
We'll use it to group the cylinders. Select Cylinders and add a child node MeshInstance3D

In the Inspector, assign a CylinderMesh to the Mesh property.

202 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Set the top viewport to the top orthogonal view using the menu in the viewport's top-left corner. Alterna-
tively, you can press the keypad's 7 key.

The grid may be distracting. You can toggle it by going to the View menu in the toolbar and clicking View
Grid.

2.10. Your �rst 3D game 203

Godot Engine Documentation, Release latest

You now want to move the cylinder along the ground plane, looking at the camera preview in the bottom
viewport. I recommend using grid snap to do so. You can toggle it by clicking the magnet icon in the toolbar
or pressing Y.

Move the cylinder so it's right outside the camera's view in the top-left corner.

204 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

We're going to create copies of the mesh and place them around the game area. Press Ctrl + D (Cmd + D
on macOS) to duplicate the node. You can also right-click the node in the Scene dock and select Duplicate.
Move the copy down along the blue Z axis until it's right outside the camera's preview.

Select both cylinders by pressing the Shift key and clicking on the unselected one and duplicate them.

Move them to the right by dragging the red X axis.

2.10. Your �rst 3D game 205

Godot Engine Documentation, Release latest

They're a bit hard to see in white, aren't they? Let's make them stand out by giving them a new material.

In 3D, materials de�ne a surface's visual properties like its color, how it re�ects light, and more. We can use
them to change the color of a mesh.

We can update all four cylinders at once. Select all the mesh instances in the Scene dock. To do so, you can
click on the �rst one and Shift click on the last one.

In the Inspector, expand the Material section and assign a StandardMaterial3D to slot 0.

206 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Click the sphere icon to open the material resource. You get a preview of the material and a long list of

2.10. Your �rst 3D game 207

Godot Engine Documentation, Release latest

sections �lled with properties. You can use these to create all sorts of surfaces, from metal to rock or water.

Expand the Albedo section.

Set the color to something that contrasts with the background, like a bright orange.

208 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

We can now use the cylinders as guides. Fold them in the Scene dock by clicking the grey arrow next to
them. Moving forward, you can also toggle their visibility by clicking the eye icon next to Cylinders.

Add a child node Path3D to Main node. In the toolbar, four icons appear. Click the Add Point tool, the
icon with the green "+" sign.

2.10. Your �rst 3D game 209

Godot Engine Documentation, Release latest

Note: You can hover any icon to see a tooltip describing the tool.

Click in the center of each cylinder to create a point. Then, click the Close Curve icon in the toolbar to close
the path. If any point is a bit o�, you can click and drag on it to reposition it.

Your path should look like this.

To sample random positions on it, we need a PathFollow3D node. Add a PathFollow3D as a child of the
Path3D. Rename the two nodes to SpawnPath and SpawnLocation, respectively. It's more descriptive of
what we'll use them for.

With that, we're ready to code the spawn mechanism.

210 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Spawning monsters randomly

Right-click on the Main node and attach a new script to it.

We �rst export a variable to the Inspector so that we can assign mob.tscn or any other monster to it.

GDScript

extends Node

@export var mob_scene: PackedScene

C#

using Godot;

public partial class Main : Node
{

// Don't forget to rebuild the project so the editor knows about the new export variable.

[Export]
public PackedScene MobScene { get; set; }

}

We want to spawn mobs at regular time intervals. To do this, we need to go back to the scene and add a
timer. Before that, though, we need to assign the mob.tscn �le to the mob_scene property above (otherwise
it's null!)

Head back to the 3D screen and select the Main node. Drag mob.tscn from the FileSystem dock to the Mob
Scene slot in the Inspector.

Add a new Timer node as a child of Main. Name it MobTimer.

In the Inspector, set its Wait Time to 0.5 seconds and turn on Autostart so it automatically starts when we
run the game.

2.10. Your �rst 3D game 211

Godot Engine Documentation, Release latest

Timers emit a timeout signal every time they reach the end of their Wait Time. By default, they restart
automatically, emitting the signal in a cycle. We can connect to this signal from the Main node to spawn
monsters every 0.5 seconds.

With the MobTimer still selected, head to the Node dock on the right, and double-click the timeout signal.

Connect it to the Main node.

212 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

This will take you back to the script, with a new empty _on_mob_timer_timeout() function.

Let's code the mob spawning logic. We're going to:

1. Instantiate the mob scene.

2. Sample a random position on the spawn path.

3. Get the player's position.

4. Call the mob's initialize() method, passing it the random position and the player's position.

5. Add the mob as a child of the Main node.

GDScript

func _on_mob_timer_timeout():
Create a new instance of the Mob scene.
var mob = mob_scene.instantiate()

Choose a random location on the SpawnPath.
We store the reference to the SpawnLocation node.
var mob_spawn_location = get_node("SpawnPath/SpawnLocation")
And give it a random o�set.
mob_spawn_location.progress_ratio = randf()

var player_position = $Player.position
mob.initialize(mob_spawn_location.position, player_position)

Spawn the mob by adding it to the Main scene.
add_child(mob)

C#

2.10. Your �rst 3D game 213

Godot Engine Documentation, Release latest

// We also speci�ed this function name in PascalCase in the editor's connection window
private void OnMobTimerTimeout()
{

// Create a new instance of the Mob scene.
Mob mob = MobScene.Instantiate<Mob>();

// Choose a random location on the SpawnPath.
// We store the reference to the SpawnLocation node.
var mobSpawnLocation = GetNode<PathFollow3D>("SpawnPath/SpawnLocation");
// And give it a random o�set.
mobSpawnLocation.ProgressRatio = GD.Randf();

Vector3 playerPosition = GetNode<Player>("Player").Position;
mob.Initialize(mobSpawnLocation.Position, playerPosition);

// Spawn the mob by adding it to the Main scene.
AddChild(mob);

}

Above, randf() produces a random value between 0 and 1, which is what the PathFollow node's progress_ratio
expects: 0 is the start of the path, 1 is the end of the path. The path we have set is around the camera's
viewport, so any random value between 0 and 1 is a random position alongside the edges of the viewport!

Here is the complete main.gd script so far, for reference.

GDScript

extends Node

@export var mob_scene: PackedScene

func _on_mob_timer_timeout():
Create a new instance of the Mob scene.
var mob = mob_scene.instantiate()

Choose a random location on the SpawnPath.
We store the reference to the SpawnLocation node.
var mob_spawn_location = get_node("SpawnPath/SpawnLocation")
And give it a random o�set.
mob_spawn_location.progress_ratio = randf()

var player_position = $Player.position
mob.initialize(mob_spawn_location.position, player_position)

Spawn the mob by adding it to the Main scene.
add_child(mob)

C#

using Godot;

public partial class Main : Node
{

(continues on next page)

214 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

[Export]
public PackedScene MobScene { get; set; }

private void OnMobTimerTimeout()
{

// Create a new instance of the Mob scene.
Mob mob = MobScene.Instantiate<Mob>();

// Choose a random location on the SpawnPath.
// We store the reference to the SpawnLocation node.
var mobSpawnLocation = GetNode<PathFollow3D>("SpawnPath/SpawnLocation");
// And give it a random o�set.
mobSpawnLocation.ProgressRatio = GD.Randf();

Vector3 playerPosition = GetNode<Player>("Player").Position;
mob.Initialize(mobSpawnLocation.Position, playerPosition);

// Spawn the mob by adding it to the Main scene.
AddChild(mob);

}
}

You can test the scene by pressing F6. You should see the monsters spawn and move in a straight line.

2.10. Your �rst 3D game 215

Godot Engine Documentation, Release latest

For now, they bump and slide against one another when their paths cross. We'll address this in the next
part.

Jumping and squashing monsters

In this part, we'll add the ability to jump and squash the monsters. In the next lesson, we'll make the player
die when a monster hits them on the ground.

First, we have to change a few settings related to physics interactions. Enter the world of physics layers.

Controlling physics interactions

Physics bodies have access to two complementary properties: layers and masks. Layers de�ne on which
physics layer(s) an object is.

Masks control the layers that a body will listen to and detect. This a�ects collision detection. When you
want two bodies to interact, you need at least one to have a mask corresponding to the other.

If that's confusing, don't worry, we'll see three examples in a second.

The important point is that you can use layers and masks to �lter physics interactions, control performance,
and remove the need for extra conditions in your code.

By default, all physics bodies and areas are set to both layer and mask 1. This means they all collide with
each other.

216 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Physics layers are represented by numbers, but we can give them names to keep track of what's what.

Setting layer names

Let's give our physics layers a name. Go to Project -> Project Settings.

In the left menu, navigate down to Layer Names -> 3D Physics. You can see a list of layers with a �eld next
to each of them on the right. You can set their names there. Name the �rst three layers player, enemies,
and world, respectively.

2.10. Your �rst 3D game 217

Godot Engine Documentation, Release latest

Now, we can assign them to our physics nodes.

Assigning layers and masks

In the Main scene, select the Ground node. In the Inspector, expand the Collision section. There, you can
see the node's layers and masks as a grid of buttons.

218 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The ground is part of the world, so we want it to be part of the third layer. Click the lit button to toggle
o� the �rst Layer and toggle on the third one. Then, toggle o� the Mask by clicking on it.

As mentioned before, the Mask property allows a node to listen to interaction with other physics objects,
but we don't need it to have collisions. Ground doesn't need to listen to anything; it's just there to prevent
creatures from falling.

Note that you can click the "..." button on the right side of the properties to see a list of named checkboxes.

2.10. Your �rst 3D game 219

Godot Engine Documentation, Release latest

Next up are the Player and the Mob. Open player.tscn by double-clicking the �le in the FileSystem dock.

Select the Player node and set its Collision -> Mask to both "enemies" and "world". You can leave the
default Layer property as it is, because the �rst layer is the "player" layer.

Then, open the Mob scene by double-clicking on mob.tscn and select the Mob node.

Set its Collision -> Layer to "enemies" and unset its Collision -> Mask, leaving the mask empty.

220 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

These settings mean the monsters will move through one another. If you want the monsters to collide with
and slide against each other, turn on the "enemies" mask.

Note: The mobs don't need to mask the "world" layer because they only move on the XZ plane. We don't
apply any gravity to them by design.

Jumping

The jumping mechanic itself requires only two lines of code. Open the Player script. We need a value to
control the jump's strength and update _physics_process() to code the jump.

After the line that de�nes fall_acceleration, at the top of the script, add the jump_impulse.

GDScript

#...
Vertical impulse applied to the character upon jumping in meters per second.
@export var jump_impulse = 20

C#

// Don't forget to rebuild the project so the editor knows about the new export variable.

// ...
// Vertical impulse applied to the character upon jumping in meters per second.
[Export]
public int JumpImpulse { get; set; } = 20;

Inside _physics_process(), add the following code before the move_and_slide() codeblock.

GDScript

func _physics_process(delta):
#...

Jumping.
if is_on_�oor() and Input.is_action_just_pressed("jump"):

target_velocity.y = jump_impulse

#...

C#

2.10. Your �rst 3D game 221

Godot Engine Documentation, Release latest

public override void _PhysicsProcess(double delta)
{

// ...

// Jumping.
if (IsOnFloor() && Input.IsActionJustPressed("jump"))
{

_targetVelocity.Y = JumpImpulse;
}

// ...
}

That's all you need to jump!

The is_on_�oor() method is a tool from the CharacterBody3D class. It returns true if the body collided
with the �oor in this frame. That's why we apply gravity to the Player: so we collide with the �oor instead
of �oating over it like the monsters.

If the character is on the �oor and the player presses "jump", we instantly give them a lot of vertical speed. In
games, you really want controls to be responsive and giving instant speed boosts like these, while unrealistic,
feels great.

Notice that the Y axis is positive upwards. That's unlike 2D, where the Y axis is positive downwards.

Squashing monsters

Let's add the squash mechanic next. We're going to make the character bounce over monsters and kill them
at the same time.

We need to detect collisions with a monster and to di�erentiate them from collisions with the �oor. To do
so, we can use Godot's group tagging feature.

Open the scene mob.tscn again and select the Mob node. Go to the Node dock on the right to see a list of
signals. The Node dock has two tabs: Signals, which you've already used, and Groups, which allows you to
assign tags to nodes.

Click on it to reveal a �eld where you can write a tag name. Enter "mob" in the �eld and click the Add
button.

An icon appears in the Scene dock to indicate the node is part of at least one group.

222 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

We can now use the group from the code to distinguish collisions with monsters from collisions with the
�oor.

Coding the squash mechanic

Head back to the Player script to code the squash and bounce.

At the top of the script, we need another property, bounce_impulse. When squashing an enemy, we don't
necessarily want the character to go as high up as when jumping.

GDScript

Vertical impulse applied to the character upon bouncing over a mob in
meters per second.
@export var bounce_impulse = 16

C#

// Don't forget to rebuild the project so the editor knows about the new export variable.

// Vertical impulse applied to the character upon bouncing over a mob in meters per second.
[Export]
public int BounceImpulse { get; set; } = 16;

Then, after the Jumping codeblock we added above in _physics_process(), add the following loop. With
move_and_slide(), Godot makes the body move sometimes multiple times in a row to smooth out the
character's motion. So we have to loop over all collisions that may have happened.

In every iteration of the loop, we check if we landed on a mob. If so, we kill it and bounce.

With this code, if no collisions occurred on a given frame, the loop won't run.

GDScript

func _physics_process(delta):
#...

Iterate through all collisions that occurred this frame
for index in range(get_slide_collision_count()):

We get one of the collisions with the player
var collision = get_slide_collision(index)

If the collision is with ground
if collision.get_collider() == null:

continue

If the collider is with a mob
if collision.get_collider().is_in_group("mob"):

(continues on next page)

2.10. Your �rst 3D game 223

Godot Engine Documentation, Release latest

(continued from previous page)

var mob = collision.get_collider()
we check that we are hitting it from above.
if Vector3.UP.dot(collision.get_normal()) > 0.1:

If so, we squash it and bounce.
mob.squash()
target_velocity.y = bounce_impulse
Prevent further duplicate calls.
break

C#

public override void _PhysicsProcess(double delta)
{

// ...

// Iterate through all collisions that occurred this frame.
for (int index = 0; index < GetSlideCollisionCount(); index++)
{

// We get one of the collisions with the player.
KinematicCollision3D collision = GetSlideCollision(index);

// If the collision is with a mob.
// With C# we leverage typing and pattern-matching
// instead of checking for the group we created.
if (collision.GetCollider() is Mob mob)
{

// We check that we are hitting it from above.
if (Vector3.Up.Dot(collision.GetNormal()) > 0.1f)
{

// If so, we squash it and bounce.
mob.Squash();
_targetVelocity.Y = BounceImpulse;
// Prevent further duplicate calls.
break;

}
}

}
}

That's a lot of new functions. Here's some more information about them.

The functions get_slide_collision_count() and get_slide_collision() both come from the CharacterBody3D
class and are related to move_and_slide().

get_slide_collision() returns a KinematicCollision3D object that holds information about where and how
the collision occurred. For example, we use its get_collider property to check if we collided with a "mob"
by calling is_in_group() on it: collision.get_collider().is_in_group("mob").

Note: The method is_in_group() is available on every Node.

To check that we are landing on the monster, we use the vector dot product: Vector3.UP.dot(collision.
get_normal()) > 0.1. The collision normal is a 3D vector that is perpendicular to the plane where the
collision occurred. The dot product allows us to compare it to the up direction.

224 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

With dot products, when the result is greater than 0, the two vectors are at an angle of fewer than 90
degrees. A value higher than 0.1 tells us that we are roughly above the monster.

After handling the squash and bounce logic, we terminate the loop early via the break statement to prevent
further duplicate calls to mob.squash(), which may otherwise result in unintended bugs such as counting the
score multiple times for one kill.

We are calling one unde�ned function, mob.squash(), so we have to add it to the Mob class.

Open the script Mob.gd by double-clicking on it in the FileSystem dock. At the top of the script, we want
to de�ne a new signal named squashed. And at the bottom, you can add the squash function, where we emit
the signal and destroy the mob.

GDScript

Emitted when the player jumped on the mob.
signal squashed

...

func squash():
squashed.emit()
queue_free()

C#

// Don't forget to rebuild the project so the editor knows about the new signal.

// Emitted when the player jumped on the mob.
[Signal]
public delegate void SquashedEventHandler();

// ...

public void Squash()
{

EmitSignal(SignalName.Squashed);
QueueFree();

}

Note: When using C#, Godot will create the appropriate events automatically for all Signals ending with
EventHandler, see C# Signals.

We will use the signal to add points to the score in the next lesson.

With that, you should be able to kill monsters by jumping on them. You can press F5 to try the game and
set main.tscn as your project's main scene.

However, the player won't die yet. We'll work on that in the next part.

2.10. Your �rst 3D game 225

Godot Engine Documentation, Release latest

Killing the player

We can kill enemies by jumping on them, but the player still can't die. Let's �x this.

We want to detect being hit by an enemy di�erently from squashing them. We want the player to die when
they're moving on the �oor, but not if they're in the air. We could use vector math to distinguish the two
kinds of collisions. Instead, though, we will use an Area3D node, which works well for hitboxes.

Hitbox with the Area node

Head back to the player.tscn scene and add a new child node Area3D. Name it MobDetector Add a Colli-
sionShape3D node as a child of it.

In the Inspector, assign a cylinder shape to it.

Here is a trick you can use to make the collisions only happen when the player is on the ground or close to
it. You can reduce the cylinder's height and move it up to the top of the character. This way, when the
player jumps, the shape will be too high up for the enemies to collide with it.

226 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

You also want the cylinder to be wider than the sphere. This way, the player gets hit before colliding and
being pushed on top of the monster's collision box.

The wider the cylinder, the more easily the player will get killed.

Next, select the MobDetector node again, and in the Inspector, turn o� its Monitorable property. This
makes it so other physics nodes cannot detect the area. The complementary Monitoring property allows it
to detect collisions. Then, remove the Collision -> Layer and set the mask to the "enemies" layer.

2.10. Your �rst 3D game 227

Godot Engine Documentation, Release latest

When areas detect a collision, they emit signals. We're going to connect one to the Player node. Select
MobDetector and go to Inspector's Node tab, double-click the body_entered signal and connect it to the
Player

228 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The MobDetector will emit body_entered when a CharacterBody3D or a RigidBody3D node enters it. As
it only masks the "enemies" physics layers, it will only detect the Mob nodes.

Code-wise, we're going to do two things: emit a signal we'll later use to end the game and destroy the player.
We can wrap these operations in a die() function that helps us put a descriptive label on the code.

GDScript

Emitted when the player was hit by a mob.
Put this at the top of the script.
signal hit

And this function at the bottom.
func die():

hit.emit()
queue_free()

func _on_mob_detector_body_entered(body):
die()

C#

// Don't forget to rebuild the project so the editor knows about the new signal.

// Emitted when the player was hit by a mob.
[Signal]
public delegate void HitEventHandler();

// ...
(continues on next page)

2.10. Your �rst 3D game 229

Godot Engine Documentation, Release latest

(continued from previous page)

private void Die()
{

EmitSignal(SignalName.Hit);
QueueFree();

}

// We also speci�ed this function name in PascalCase in the editor's connection window
private void OnMobDetectorBodyEntered(Node3D body)
{

Die();
}

Try the game again by pressing F5. If everything is set up correctly, the character should die when an enemy
runs into the collider. Note that without a Player, the following line

GDScript

var player_position = $Player.position

C#

Vector3 playerPosition = GetNode<Player>("Player").Position;

gives error because there is no $Player!

Also note that the enemy colliding with the player and dying depends on the size and position of the Player
and the Mob's collision shapes. You may need to move them and resize them to achieve a tight game feel.

Ending the game

We can use the Player's hit signal to end the game. All we need to do is connect it to the Main node and
stop the MobTimer in reaction.

Open main.tscn, select the Player node, and in the Node dock, connect its hit signal to the Main node.

Get the timer, and stop it, in the _on_player_hit() function.

GDScript

func _on_player_hit():
$MobTimer.stop()

C#

230 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

// We also speci�ed this function name in PascalCase in the editor's connection window
private void OnPlayerHit()
{

GetNode<Timer>("MobTimer").Stop();
}

If you try the game now, the monsters will stop spawning when you die, and the remaining ones will leave
the screen.

You can pat yourself in the back: you prototyped a complete 3D game, even if it's still a bit rough.

From there, we'll add a score, the option to retry the game, and you'll see how you can make the game feel
much more alive with minimalistic animations.

Code checkpoint

Here are the complete scripts for the Main, Mob, and Player nodes, for reference. You can use them to
compare and check your code.

Starting with main.gd.

GDScript

extends Node

@export var mob_scene: PackedScene

func _on_mob_timer_timeout():
Create a new instance of the Mob scene.
var mob = mob_scene.instantiate()

Choose a random location on the SpawnPath.
We store the reference to the SpawnLocation node.
var mob_spawn_location = get_node("SpawnPath/SpawnLocation")
And give it a random o�set.
mob_spawn_location.progress_ratio = randf()

var player_position = $Player.position
mob.initialize(mob_spawn_location.position, player_position)

Spawn the mob by adding it to the Main scene.
add_child(mob)

func _on_player_hit():
$MobTimer.stop()

C#

using Godot;

public partial class Main : Node
{

[Export]
public PackedScene MobScene { get; set; }

(continues on next page)

2.10. Your �rst 3D game 231

Godot Engine Documentation, Release latest

(continued from previous page)

private void OnMobTimerTimeout()
{

// Create a new instance of the Mob scene.
Mob mob = MobScene.Instantiate<Mob>();

// Choose a random location on the SpawnPath.
// We store the reference to the SpawnLocation node.
var mobSpawnLocation = GetNode<PathFollow3D>("SpawnPath/SpawnLocation");
// And give it a random o�set.
mobSpawnLocation.ProgressRatio = GD.Randf();

Vector3 playerPosition = GetNode<Player>("Player").Position;
mob.Initialize(mobSpawnLocation.Position, playerPosition);

// Spawn the mob by adding it to the Main scene.
AddChild(mob);

}

private void OnPlayerHit()
{

GetNode<Timer>("MobTimer").Stop();
}

}

Next is Mob.gd.

GDScript

extends CharacterBody3D

Minimum speed of the mob in meters per second.
@export var min_speed = 10
Maximum speed of the mob in meters per second.
@export var max_speed = 18

Emitted when the player jumped on the mob
signal squashed

func _physics_process(_delta):
move_and_slide()

This function will be called from the Main scene.
func initialize(start_position, player_position):

We position the mob by placing it at start_position
and rotate it towards player_position, so it looks at the player.
look_at_from_position(start_position, player_position, Vector3.UP)
Rotate this mob randomly within range of -90 and +90 degrees,
so that it doesn't move directly towards the player.
rotate_y(randf_range(-PI / 4, PI / 4))

We calculate a random speed (integer)

(continues on next page)

232 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

var random_speed = randi_range(min_speed, max_speed)
We calculate a forward velocity that represents the speed.
velocity = Vector3.FORWARD * random_speed
We then rotate the velocity vector based on the mob's Y rotation
in order to move in the direction the mob is looking.
velocity = velocity.rotated(Vector3.UP, rotation.y)

func _on_visible_on_screen_noti�er_3d_screen_exited():
queue_free()

func squash():
squashed.emit()
queue_free() # Destroy this node

C#

using Godot;

public partial class Mob : CharacterBody3D
{

// Emitted when the played jumped on the mob.
[Signal]
public delegate void SquashedEventHandler();

// Minimum speed of the mob in meters per second
[Export]
public int MinSpeed { get; set; } = 10;
// Maximum speed of the mob in meters per second
[Export]
public int MaxSpeed { get; set; } = 18;

public override void _PhysicsProcess(double delta)
{

MoveAndSlide();
}

// This function will be called from the Main scene.
public void Initialize(Vector3 startPosition, Vector3 playerPosition)
{

// We position the mob by placing it at startPosition
// and rotate it towards playerPosition, so it looks at the player.
LookAtFromPosition(startPosition, playerPosition, Vector3.Up);
// Rotate this mob randomly within range of -90 and +90 degrees,
// so that it doesn't move directly towards the player.
RotateY((�oat)GD.RandRange(-Mathf.Pi / 4.0, Mathf.Pi / 4.0));

// We calculate a random speed (integer)
int randomSpeed = GD.RandRange(MinSpeed, MaxSpeed);
// We calculate a forward velocity that represents the speed.
Velocity = Vector3.Forward * randomSpeed;
// We then rotate the velocity vector based on the mob's Y rotation
// in order to move in the direction the mob is looking.

(continues on next page)

2.10. Your �rst 3D game 233

Godot Engine Documentation, Release latest

(continued from previous page)

Velocity = Velocity.Rotated(Vector3.Up, Rotation.Y);
}

public void Squash()
{

EmitSignal(SignalName.Squashed);
QueueFree(); // Destroy this node

}

private void OnVisibilityNoti�erScreenExited()
{

QueueFree();
}

}

Finally, the longest script, Player.gd:

GDScript

extends CharacterBody3D

signal hit

How fast the player moves in meters per second
@export var speed = 14
The downward acceleration while in the air, in meters per second squared.
@export var fall_acceleration = 75
Vertical impulse applied to the character upon jumping in meters per second.
@export var jump_impulse = 20
Vertical impulse applied to the character upon bouncing over a mob
in meters per second.
@export var bounce_impulse = 16

var target_velocity = Vector3.ZERO

func _physics_process(delta):
We create a local variable to store the input direction
var direction = Vector3.ZERO

We check for each move input and update the direction accordingly
if Input.is_action_pressed("move_right"):

direction.x = direction.x + 1
if Input.is_action_pressed("move_left"):

direction.x = direction.x - 1
if Input.is_action_pressed("move_back"):

Notice how we are working with the vector's x and z axes.
In 3D, the XZ plane is the ground plane.
direction.z = direction.z + 1

if Input.is_action_pressed("move_forward"):
direction.z = direction.z - 1

(continues on next page)

234 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

Prevent diagonal moving fast af
if direction != Vector3.ZERO:

direction = direction.normalized()
$Pivot.look_at(position + direction, Vector3.UP)

Ground Velocity
target_velocity.x = direction.x * speed
target_velocity.z = direction.z * speed

Vertical Velocity
if not is_on_�oor(): # If in the air, fall towards the �oor. Literally gravity

target_velocity.y = target_velocity.y - (fall_acceleration * delta)

Jumping.
if is_on_�oor() and Input.is_action_just_pressed("jump"):

target_velocity.y = jump_impulse

Iterate through all collisions that occurred this frame
in C this would be for(int i = 0; i < collisions.Count; i++)
for index in range(get_slide_collision_count()):

We get one of the collisions with the player
var collision = get_slide_collision(index)

If the collision is with ground
if collision.get_collider() == null:

continue

If the collider is with a mob
if collision.get_collider().is_in_group("mob"):

var mob = collision.get_collider()
we check that we are hitting it from above.
if Vector3.UP.dot(collision.get_normal()) > 0.1:

If so, we squash it and bounce.
mob.squash()
target_velocity.y = bounce_impulse
Prevent further duplicate calls.
break

Moving the Character
velocity = target_velocity
move_and_slide()

And this function at the bottom.
func die():

hit.emit()
queue_free()

func _on_mob_detector_body_entered(body):
die()

C#

2.10. Your �rst 3D game 235

Godot Engine Documentation, Release latest

using Godot;

public partial class Player : CharacterBody3D
{

// Emitted when the player was hit by a mob.
[Signal]
public delegate void HitEventHandler();

// How fast the player moves in meters per second.
[Export]
public int Speed { get; set; } = 14;
// The downward acceleration when in the air, in meters per second squared.
[Export]
public int FallAcceleration { get; set; } = 75;
// Vertical impulse applied to the character upon jumping in meters per second.
[Export]
public int JumpImpulse { get; set; } = 20;
// Vertical impulse applied to the character upon bouncing over a mob in meters per second.
[Export]
public int BounceImpulse { get; set; } = 16;

private Vector3 _targetVelocity = Vector3.Zero;

public override void _PhysicsProcess(double delta)
{

// We create a local variable to store the input direction.
var direction = Vector3.Zero;

// We check for each move input and update the direction accordingly.
if (Input.IsActionPressed("move_right"))
{

direction.X += 1.0f;
}
if (Input.IsActionPressed("move_left"))
{

direction.X -= 1.0f;
}
if (Input.IsActionPressed("move_back"))
{

// Notice how we are working with the vector's X and Z axes.
// In 3D, the XZ plane is the ground plane.
direction.Z += 1.0f;

}
if (Input.IsActionPressed("move_forward"))
{

direction.Z -= 1.0f;
}

// Prevent diagonal moving fast af
if (direction != Vector3.Zero)
{

direction = direction.Normalized();

(continues on next page)

236 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

GetNode<Node3D>("Pivot").LookAt(Position + direction, Vector3.Up);
}

// Ground Velocity
_targetVelocity.X = direction.X * Speed;
_targetVelocity.Z = direction.Z * Speed;

// Vertical Velocity
if (!IsOnFloor()) // If in the air, fall towards the �oor. Literally gravity
{

_targetVelocity.Y -= FallAcceleration * (�oat)delta;
}

// Jumping.
if (IsOnFloor() && Input.IsActionJustPressed("jump"))
{

_targetVelocity.Y = JumpImpulse;
}

// Iterate through all collisions that occurred this frame.
for (int index = 0; index < GetSlideCollisionCount(); index++)
{

// We get one of the collisions with the player.
KinematicCollision3D collision = GetSlideCollision(index);

// If the collision is with a mob.
if (collision.GetCollider() is Mob mob)
{

// We check that we are hitting it from above.
if (Vector3.Up.Dot(collision.GetNormal()) > 0.1f)
{

// If so, we squash it and bounce.
mob.Squash();
_targetVelocity.Y = BounceImpulse;
// Prevent further duplicate calls.
break;

}
}

}

// Moving the Character
Velocity = _targetVelocity;
MoveAndSlide();

}

private void Die()
{

EmitSignal(SignalName.Hit);
QueueFree();

}

private void OnMobDetectorBodyEntered(Node3D body)
(continues on next page)

2.10. Your �rst 3D game 237

Godot Engine Documentation, Release latest

(continued from previous page)

{
Die();

}
}

See you in the next lesson to add the score and the retry option.

Score and replay

In this part, we'll add the score, music playback, and the ability to restart the game.

We have to keep track of the current score in a variable and display it on screen using a minimal interface.
We will use a text label to do that.

In the main scene, add a new child node Control to Main and name it UserInterface. You will automatically
be taken to the 2D screen, where you can edit your User Interface (UI).

Add a Label node and name it ScoreLabel

In the Inspector, set the Label's Text to a placeholder like "Score: 0".

238 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Also, the text is white by default, like our game's background. We need to change its color to see it at
runtime.

Scroll down to Theme Overrides, and expand Colors and enable Font Color in order to tint the text to black
(which contrasts well with the white 3D scene)

Finally, click and drag on the text in the viewport to move it away from the top-left corner.

2.10. Your �rst 3D game 239

Godot Engine Documentation, Release latest

The UserInterface node allows us to group our UI in a branch of the scene tree and use a theme resource
that will propagate to all its children. We'll use it to set our game's font.

Creating a UI theme

Once again, select the UserInterface node. In the Inspector, create a new theme resource in Theme ->
Theme.

Click on it to open the theme editor In the bottom panel. It gives you a preview of how all the built-in UI
widgets will look with your theme resource.

240 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

By default, a theme only has one property, the Default Font.

See also:

You can add more properties to the theme resource to design complex user interfaces, but that is beyond
the scope of this series. To learn more about creating and editing themes, see Introduction to GUI skinning.

This one expects a font �le like the ones you have on your computer. Two common font �le formats are
TrueType Font (TTF) and OpenType Font (OTF).

In the FileSystem dock, expand the fonts directory and click and drag the Montserrat-Medium.ttf �le we
included in the project onto the Default Font. The text will reappear in the theme preview.

The text is a bit small. Set the Default Font Size to 22 pixels to increase the text's size.

Keeping track of the score

Let's work on the score next. Attach a new script to the ScoreLabel and de�ne the score variable.

GDScript

extends Label

var score = 0

C#

2.10. Your �rst 3D game 241

Godot Engine Documentation, Release latest

using Godot;

public partial class ScoreLabel : Label
{

private int _score = 0;
}

The score should increase by 1 every time we squash a monster. We can use their squashed signal to know
when that happens. However, because we instantiate monsters from the code, we cannot connect the mob
signal to the ScoreLabel via the editor.

Instead, we have to make the connection from the code every time we spawn a monster.

Open the script main.gd. If it's still open, you can click on its name in the script editor's left column.

Alternatively, you can double-click the main.gd �le in the FileSystem dock.

At the bottom of the _on_mob_timer_timeout() function, add the following line:

GDScript

func _on_mob_timer_timeout():
#...
We connect the mob to the score label to update the score upon squashing one.
mob.squashed.connect($UserInterface/ScoreLabel._on_mob_squashed.bind())

C#

private void OnMobTimerTimeout()
{

// ...
// We connect the mob to the score label to update the score upon squashing one.
mob.Squashed += GetNode<ScoreLabel>("UserInterface/ScoreLabel").OnMobSquashed;

}

This line means that when the mob emits the squashed signal, the ScoreLabel node will receive it and call
the function _on_mob_squashed().

Head back to the ScoreLabel.gd script to de�ne the _on_mob_squashed() callback function.

There, we increment the score and update the displayed text.

GDScript

242 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

func _on_mob_squashed():
score += 1
text = "Score: %s" % score

C#

public void OnMobSquashed()
{

_score += 1;
Text = $"Score: {_score}";

}

The second line uses the value of the score variable to replace the placeholder %s. When using this feature,
Godot automatically converts values to string text, which is convenient when outputting text in labels or
when using the print() function.

See also:

You can learn more about string formatting here: GDScript format strings. In C#, consider using string
interpolation with "$".

You can now play the game and squash a few enemies to see the score increase.

2.10. Your �rst 3D game 243

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated

Godot Engine Documentation, Release latest

Note: In a complex game, you may want to completely separate your user interface from the game world.
In that case, you would not keep track of the score on the label. Instead, you may want to store it in a
separate, dedicated object. But when prototyping or when your project is simple, it is �ne to keep your code
simple. Programming is always a balancing act.

Retrying the game

We'll now add the ability to play again after dying. When the player dies, we'll display a message on the
screen and wait for input.

Head back to the main.tscn scene, select the UserInterface node, add a child node ColorRect, and name it
Retry. This node �lls a rectangle with a uniform color and will serve as an overlay to darken the screen.

To make it span over the whole viewport, you can use the Anchor Preset menu in the toolbar.

Open it and apply the Full Rect command.

Nothing happens. Well, almost nothing; only the four green pins move to the corners of the selection box.

This is because UI nodes (all the ones with a green icon) work with anchors and margins relative to their
parent's bounding box. Here, the UserInterface node has a small size and the Retry one is limited by it.

Select the UserInterface and apply Anchor Preset -> Full Rect to it as well. The Retry node should now
span the whole viewport.

Let's change its color so it darkens the game area. Select Retry and in the Inspector, set its Color to
something both dark and transparent. To do so, in the color picker, drag the A slider to the left. It controls
the color's Alpha channel, that is to say, its opacity/transparency.

244 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Next, add a Label as a child of Retry and give it the Text "Press Enter to retry." To move it and anchor it
in the center of the screen, apply Anchor Preset -> Center to it.

2.10. Your �rst 3D game 245

Godot Engine Documentation, Release latest

Coding the retry option

We can now head to the code to show and hide the Retry node when the player dies and plays again.

Open the script main.gd. First, we want to hide the overlay at the start of the game. Add this line to the
_ready() function.

GDScript

func _ready():
$UserInterface/Retry.hide()

C#

public override void _Ready()
{

GetNode<Control>("UserInterface/Retry").Hide();
}

Then, when the player gets hit, we show the overlay.

GDScript

func _on_player_hit():
#...
$UserInterface/Retry.show()

C#

private void OnPlayerHit()
{

//...
GetNode<Control>("UserInterface/Retry").Show();

}

Finally, when the Retry node is visible, we need to listen to the player's input and restart the game if they
press enter. To do this, we use the built-in _unhandled_input() callback, which is triggered on any input.

If the player pressed the prede�ned ui_accept input action and Retry is visible, we reload the current scene.

GDScript

func _unhandled_input(event):
if event.is_action_pressed("ui_accept") and $UserInterface/Retry.visible:

This restarts the current scene.
get_tree().reload_current_scene()

C#

public override void _UnhandledInput(InputEvent @event)
{

if (@event.IsActionPressed("ui_accept") && GetNode<Control>("UserInterface/Retry").Visible)
{

// This restarts the current scene.
GetTree().ReloadCurrentScene();

}
}

246 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

The function get_tree() gives us access to the global SceneTree object, which allows us to reload and restart
the current scene.

Adding music

To add music that plays continuously in the background, we're going to use another feature in Godot:
autoloads.

To play audio, all you need to do is add an AudioStreamPlayer node to your scene and attach an audio �le
to it. When you start the scene, it can play automatically. However, when you reload the scene, like we do
to play again, the audio nodes are also reset, and the music starts back from the beginning.

You can use the autoload feature to have Godot load a node or a scene automatically at the start of the
game, outside the current scene. You can also use it to create globally accessible objects.

Create a new scene by going to the Scene menu and clicking New Scene or by using the + icon next to your
currently opened scene.

Click the Other Node button to create an AudioStreamPlayer and rename it to MusicPlayer.

We included a music soundtrack in the art/ directory, House In a Forest Loop.ogg. Click and drag it onto
the Stream property in the Inspector. Also, turn on Autoplay so the music plays automatically at the start
of the game.

2.10. Your �rst 3D game 247

Godot Engine Documentation, Release latest

Save the scene as MusicPlayer.tscn.

We have to register it as an autoload. Head to the Project -> Project Settings. . . menu and click on the
Autoload tab.

In the Path �eld, you want to enter the path to your scene. Click the folder icon to open the �le browser
and double-click on MusicPlayer.tscn. Then, click the Add button on the right to register the node.

248 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

MusicPlayer.tscn now loads into any scene you open or play. So if you run the game now, the music will
play automatically in any scene.

Before we wrap up this lesson, here's a quick look at how it works under the hood. When you run the game,
your Scene dock changes to give you two tabs: Remote and Local.

The Remote tab allows you to visualize the node tree of your running game. There, you will see the Main
node and everything the scene contains and the instantiated mobs at the bottom.

At the top are the autoloaded MusicPlayer and a root node, which is your game's viewport.

2.10. Your �rst 3D game 249

Godot Engine Documentation, Release latest

And that does it for this lesson. In the next part, we'll add an animation to make the game both look and
feel much nicer.

Here is the complete main.gd script for reference.

GDScript

extends Node

@export var mob_scene: PackedScene

func _ready():
$UserInterface/Retry.hide()

func _on_mob_timer_timeout():
Create a new instance of the Mob scene.
var mob = mob_scene.instantiate()

Choose a random location on the SpawnPath.
We store the reference to the SpawnLocation node.
var mob_spawn_location = get_node("SpawnPath/SpawnLocation")
And give it a random o�set.
mob_spawn_location.progress_ratio = randf()

var player_position = $Player.position
mob.initialize(mob_spawn_location.position, player_position)

Spawn the mob by adding it to the Main scene.
add_child(mob)

We connect the mob to the score label to update the score upon squashing one.
mob.squashed.connect($UserInterface/ScoreLabel._on_mob_squashed.bind())

func _on_player_hit():
$MobTimer.stop()
$UserInterface/Retry.show()

func _unhandled_input(event):
if event.is_action_pressed("ui_accept") and $UserInterface/Retry.visible:

This restarts the current scene.
get_tree().reload_current_scene()

C#

using Godot;

public partial class Main : Node
{

[Export]
public PackedScene MobScene { get; set; }

public override void _Ready()
{

GetNode<Control>("UserInterface/Retry").Hide();
(continues on next page)

250 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

}

public override void _UnhandledInput(InputEvent @event)
{

if (@event.IsActionPressed("ui_accept") && GetNode<Control>("UserInterface/Retry").Visible)
{

// This restarts the current scene.
GetTree().ReloadCurrentScene();

}
}

private void OnMobTimerTimeout()
{

// Create a new instance of the Mob scene.
Mob mob = MobScene.Instantiate<Mob>();

// Choose a random location on the SpawnPath.
// We store the reference to the SpawnLocation node.
var mobSpawnLocation = GetNode<PathFollow3D>("SpawnPath/SpawnLocation");
// And give it a random o�set.
mobSpawnLocation.ProgressRatio = GD.Randf();

Vector3 playerPosition = GetNode<Player>("Player").position;
mob.Initialize(mobSpawnLocation.Position, playerPosition);

// Spawn the mob by adding it to the Main scene.
AddChild(mob);

// We connect the mob to the score label to update the score upon squashing one.
mob.Squashed += GetNode<ScoreLabel>("UserInterface/ScoreLabel").OnMobSquashed;

}

private void OnPlayerHit()
{

GetNode<Timer>("MobTimer").Stop();
GetNode<Control>("UserInterface/Retry").Show();

}
}

Character animation

In this �nal lesson, we'll use Godot's built-in animation tools to make our characters �oat and �ap. You'll
learn to design animations in the editor and use code to make your game feel alive.

We'll start with an introduction to using the animation editor.

2.10. Your �rst 3D game 251

Godot Engine Documentation, Release latest

Using the animation editor

The engine comes with tools to author animations in the editor. You can then use the code to play and
control them at runtime.

Open the player scene, select the Player node, and add an AnimationPlayer node.

The Animation dock appears in the bottom panel.

It features a toolbar and the animation drop-down menu at the top, a track editor in the middle that's
currently empty, and �lter, snap, and zoom options at the bottom.

Let's create an animation. Click on Animation -> New.

Name the animation "�oat".

Once you've created the animation, the timeline appears with numbers representing time in seconds.

We want the animation to start playback automatically at the start of the game. Also, it should loop.

252 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

To do so, you can click the button with an "A+" icon in the animation toolbar and the looping arrows,
respectively.

You can also pin the animation editor by clicking the pin icon in the top-right. This prevents it from folding
when you click on the viewport and deselect the nodes.

Set the animation duration to 1.2 seconds in the top-right of the dock.

You should see the gray ribbon widen a bit. It shows you the start and end of your animation and the
vertical blue line is your time cursor.

You can click and drag the slider in the bottom-right to zoom in and out of the timeline.

2.10. Your �rst 3D game 253

Godot Engine Documentation, Release latest

The �oat animation

With the animation player node, you can animate most properties on as many nodes as you need. Notice
the key icon next to properties in the Inspector. You can click any of them to create a keyframe, a time
and value pair for the corresponding property. The keyframe gets inserted where your time cursor is in the
timeline.

Let's insert our �rst keys. Here, we will animate both the position and the rotation of the Character node.

Select the Character and in the Inspector expand the Transform section. Click the key icon next to Position,
and Rotation.

For this tutorial, just create RESET Track(s) which is the default choice

Two tracks appear in the editor with a diamond icon representing each keyframe.

You can click and drag on the diamonds to move them in time. Move the position key to 0.3 seconds and
the rotation key to 0.1 seconds.

Move the time cursor to 0.5 seconds by clicking and dragging on the gray timeline.

254 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

In the Inspector, set the Position's Y axis to 0.65 meters and the Rotation' X axis to 8.

Create a keyframe for both properties

Now, move the position keyframe to 0.7 seconds by dragging it on the timeline.

Note: A lecture on the principles of animation is beyond the scope of this tutorial. Just note that you
don't want to time and space everything evenly. Instead, animators play with timing and spacing, two core
animation principles. You want to o�set and contrast in your character's motion to make them feel alive.

Move the time cursor to the end of the animation, at 1.2 seconds. Set the Y position to about 0.35 and the
X rotation to -9 degrees. Once again, create a key for both properties.

2.10. Your �rst 3D game 255

Godot Engine Documentation, Release latest

You can preview the result by clicking the play button or pressing Shift + D. Click the stop button or press
S to stop playback.

You can see that the engine interpolates between your keyframes to produce a continuous animation. At the
moment, though, the motion feels very robotic. This is because the default interpolation is linear, causing
constant transitions, unlike how living things move in the real world.

We can control the transition between keyframes using easing curves.

Click and drag around the �rst two keys in the timeline to box select them.

You can edit the properties of both keys simultaneously in the Inspector, where you can see an Easing
property.

Click and drag on the curve, pulling it towards the left. This will make it ease-out, that is to say, transition
fast initially and slow down as the time cursor reaches the next keyframe.

Play the animation again to see the di�erence. The �rst half should already feel a bit bouncier.

Apply an ease-out to the second keyframe in the rotation track.

256 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Do the opposite for the second position keyframe, dragging it to the right.

Your animation should look something like this.

Note: Animations update the properties of the animated nodes every frame, overriding initial values. If
we directly animated the Player node, it would prevent us from moving it in code. This is where the Pivot
node comes in handy: even though we animated the Character, we can still move and rotate the Pivot and
layer changes on top of the animation in a script.

If you play the game, the player's creature will now �oat!

If the creature is a little too close to the �oor, you can move the Pivot up to o�set it.

2.10. Your �rst 3D game 257

Godot Engine Documentation, Release latest

Controlling the animation in code

We can use code to control the animation playback based on the player's input. Let's change the animation
speed when the character is moving.

Open the Player's script by clicking the script icon next to it.

In _physics_process(), after the line where we check the direction vector, add the following code.

GDScript

func _physics_process(delta):
#...
if direction != Vector3.ZERO:

#...
$AnimationPlayer.speed_scale = 4

else:
$AnimationPlayer.speed_scale = 1

C#

public override void _PhysicsProcess(double delta)
{

// ...
if (direction != Vector3.Zero)
{

// ...
GetNode<AnimationPlayer>("AnimationPlayer").SpeedScale = 4;

}
else
{

GetNode<AnimationPlayer>("AnimationPlayer").SpeedScale = 1;
}

}

This code makes it so when the player moves, we multiply the playback speed by 4. When they stop, we
reset it to normal.

We mentioned that the Pivot could layer transforms on top of the animation. We can make the character
arc when jumping using the following line of code. Add it at the end of _physics_process().

GDScript

258 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

func _physics_process(delta):
#...
$Pivot.rotation.x = PI / 6 * velocity.y / jump_impulse

C#

public override void _PhysicsProcess(double delta)
{

// ...
var pivot = GetNode<Node3D>("Pivot");
pivot.Rotation = new Vector3(Mathf.Pi / 6.0f * Velocity.Y / JumpImpulse, pivot.Rotation.Y, pivot.

↪→Rotation.Z);
}

Animating the mobs

Here's another nice trick with animations in Godot: as long as you use a similar node structure, you can
copy them to di�erent scenes.

For example, both the Mob and the Player scenes have a Pivot and a Character node, so we can reuse
animations between them.

Open the Player scene, select the AnimationPlayer node and open the "�oat" animation. Next, click on
Animation > Copy. Then open mob.tscn, create an AnimationPlayer child node and select it. Click Anima-
tion > Paste and make sure that the button with an "A+" icon (Autoplay on Load) and the looping arrows
(Animation looping) are also turned on in the animation editor in the bottom panel. That's it; all monsters
will now play the �oat animation.

We can change the playback speed based on the creature's random_speed. Open the Mob's script and at
the end of the initialize() function, add the following line.

GDScript

func initialize(start_position, player_position):
#...
$AnimationPlayer.speed_scale = random_speed / min_speed

C#

public void Initialize(Vector3 startPosition, Vector3 playerPosition)
{

// ...
GetNode<AnimationPlayer>("AnimationPlayer").SpeedScale = randomSpeed / MinSpeed;

}

And with that, you �nished coding your �rst complete 3D game.

Congratulations!

In the next part, we'll quickly recap what you learned and give you some links to keep learning more. But
for now, here are the complete Player.gd and Mob.gd so you can check your code against them.

Here's the Player script.

GDScript

2.10. Your �rst 3D game 259

Godot Engine Documentation, Release latest

extends CharacterBody3D

signal hit

How fast the player moves in meters per second.
@export var speed = 14
The downward acceleration while in the air, in meters per second squared.
@export var fall_acceleration = 75
Vertical impulse applied to the character upon jumping in meters per second.
@export var jump_impulse = 20
Vertical impulse applied to the character upon bouncing over a mob
in meters per second.
@export var bounce_impulse = 16

var target_velocity = Vector3.ZERO

func _physics_process(delta):
We create a local variable to store the input direction
var direction = Vector3.ZERO

We check for each move input and update the direction accordingly
if Input.is_action_pressed("move_right"):

direction.x = direction.x + 1
if Input.is_action_pressed("move_left"):

direction.x = direction.x - 1
if Input.is_action_pressed("move_back"):

Notice how we are working with the vector's x and z axes.
In 3D, the XZ plane is the ground plane.
direction.z = direction.z + 1

if Input.is_action_pressed("move_forward"):
direction.z = direction.z - 1

Prevent diagonal movement being very fast
if direction != Vector3.ZERO:

direction = direction.normalized()
$Pivot.look_at(position + direction,Vector3.UP)
$AnimationPlayer.speed_scale = 4

else:
$AnimationPlayer.speed_scale = 1

Ground Velocity
target_velocity.x = direction.x * speed
target_velocity.z = direction.z * speed

Vertical Velocity
if not is_on_�oor(): # If in the air, fall towards the �oor

target_velocity.y = target_velocity.y - (fall_acceleration * delta)

Jumping.
if is_on_�oor() and Input.is_action_just_pressed("jump"):

target_velocity.y = jump_impulse

(continues on next page)

260 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

Iterate through all collisions that occurred this frame
in C this would be for(int i = 0; i < collisions.Count; i++)
for index in range(get_slide_collision_count()):

We get one of the collisions with the player
var collision = get_slide_collision(index)

If the collision is with ground
if collision.get_collider() == null:

continue

If the collider is with a mob
if collision.get_collider().is_in_group("mob"):

var mob = collision.get_collider()
we check that we are hitting it from above.
if Vector3.UP.dot(collision.get_normal()) > 0.1:

If so, we squash it and bounce.
mob.squash()
target_velocity.y = bounce_impulse
Prevent further duplicate calls.
break

Moving the Character
velocity = target_velocity
move_and_slide()

$Pivot.rotation.x = PI / 6 * velocity.y / jump_impulse

And this function at the bottom.
func die():

hit.emit()
queue_free()

func _on_mob_detector_body_entered(body):
die()

C#

using Godot;

public partial class Player : CharacterBody3D
{

// Emitted when the player was hit by a mob.
[Signal]
public delegate void HitEventHandler();

// How fast the player moves in meters per second.
[Export]
public int Speed { get; set; } = 14;
// The downward acceleration when in the air, in meters per second squared.
[Export]
public int FallAcceleration { get; set; } = 75;

(continues on next page)

2.10. Your �rst 3D game 261

Godot Engine Documentation, Release latest

(continued from previous page)

// Vertical impulse applied to the character upon jumping in meters per second.
[Export]
public int JumpImpulse { get; set; } = 20;
// Vertical impulse applied to the character upon bouncing over a mob in meters per second.
[Export]
public int BounceImpulse { get; set; } = 16;

private Vector3 _targetVelocity = Vector3.Zero;

public override void _PhysicsProcess(double delta)
{

// We create a local variable to store the input direction.
var direction = Vector3.Zero;

// We check for each move input and update the direction accordingly.
if (Input.IsActionPressed("move_right"))
{

direction.X += 1.0f;
}
if (Input.IsActionPressed("move_left"))
{

direction.X -= 1.0f;
}
if (Input.IsActionPressed("move_back"))
{

// Notice how we are working with the vector's X and Z axes.
// In 3D, the XZ plane is the ground plane.
direction.Z += 1.0f;

}
if (Input.IsActionPressed("move_forward"))
{

direction.Z -= 1.0f;
}

// Prevent diagonal movement being very fast.
if (direction != Vector3.Zero)
{

direction = direction.Normalized();
GetNode<Node3D>("Pivot").LookAt(Position + direction, Vector3.Up);
GetNode<AnimationPlayer>("AnimationPlayer").PlaybackSpeed = 4;

}
else
{

GetNode<AnimationPlayer>("AnimationPlayer").PlaybackSpeed = 1;
}

// Ground velocity
_targetVelocity.X = direction.X * Speed;
_targetVelocity.Z = direction.Z * Speed;

// Vertical velocity
if (!IsOnFloor())

(continues on next page)

262 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

{
_targetVelocity.Y -= FallAcceleration * (�oat)delta;

}

// Jumping.
if (IsOnFloor() && Input.IsActionJustPressed("jump"))
{

_targetVelocity.Y += JumpImpulse;
}

// Iterate through all collisions that occurred this frame.
for (int index = 0; index < GetSlideCollisionCount(); index++)
{

// We get one of the collisions with the player.
KinematicCollision3D collision = GetSlideCollision(index);

// If the collision is with a mob.
if (collision.GetCollider() is Mob mob)
{

// We check that we are hitting it from above.
if (Vector3.Up.Dot(collision.GetNormal()) > 0.1f)
{

// If so, we squash it and bounce.
mob.Squash();
_targetVelocity.Y = BounceImpulse;
// Prevent further duplicate calls.
break;

}
}

}

// Moving the character
Velocity = _targetVelocity;
MoveAndSlide();

var pivot = GetNode<Node3D>("Pivot");
pivot.Rotation = new Vector3(Mathf.Pi / 6.0f * Velocity.Y / JumpImpulse, pivot.Rotation.Y, pivot.

↪→Rotation.Z);
}

private void Die()
{

EmitSignal(SignalName.Hit);
QueueFree();

}

private void OnMobDetectorBodyEntered(Node body)
{

Die();
}

}

And the Mob's script.

2.10. Your �rst 3D game 263

Godot Engine Documentation, Release latest

GDScript

extends CharacterBody3D

Minimum speed of the mob in meters per second.
@export var min_speed = 10
Maximum speed of the mob in meters per second.
@export var max_speed = 18

Emitted when the player jumped on the mob
signal squashed

func _physics_process(_delta):
move_and_slide()

This function will be called from the Main scene.
func initialize(start_position, player_position):

We position the mob by placing it at start_position
and rotate it towards player_position, so it looks at the player.
look_at_from_position(start_position, player_position, Vector3.UP)
Rotate this mob randomly within range of -90 and +90 degrees,
so that it doesn't move directly towards the player.
rotate_y(randf_range(-PI / 4, PI / 4))

We calculate a random speed (integer)
var random_speed = randi_range(min_speed, max_speed)
We calculate a forward velocity that represents the speed.
velocity = Vector3.FORWARD * random_speed
We then rotate the velocity vector based on the mob's Y rotation
in order to move in the direction the mob is looking.
velocity = velocity.rotated(Vector3.UP, rotation.y)

$AnimationPlayer.speed_scale = random_speed / min_speed

func _on_visible_on_screen_noti�er_3d_screen_exited():
queue_free()

func squash():
squashed.emit()
queue_free() # Destroy this node

C#

using Godot;

public partial class Mob : CharacterBody3D
{

// Emitted when the played jumped on the mob.
[Signal]
public delegate void SquashedEventHandler();

// Minimum speed of the mob in meters per second
[Export]
public int MinSpeed { get; set; } = 10;

(continues on next page)

264 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

// Maximum speed of the mob in meters per second
[Export]
public int MaxSpeed { get; set; } = 18;

public override void _PhysicsProcess(double delta)
{

MoveAndSlide();
}

// This function will be called from the Main scene.
public void Initialize(Vector3 startPosition, Vector3 playerPosition)
{

// We position the mob by placing it at startPosition
// and rotate it towards playerPosition, so it looks at the player.
LookAtFromPosition(startPosition, playerPosition, Vector3.Up);
// Rotate this mob randomly within range of -90 and +90 degrees,
// so that it doesn't move directly towards the player.
RotateY((�oat)GD.RandRange(-Mathf.Pi / 4.0, Mathf.Pi / 4.0));

// We calculate a random speed (integer).
int randomSpeed = GD.RandRange(MinSpeed, MaxSpeed);
// We calculate a forward velocity that represents the speed.
Velocity = Vector3.Forward * randomSpeed;
// We then rotate the velocity vector based on the mob's Y rotation
// in order to move in the direction the mob is looking.
Velocity = Velocity.Rotated(Vector3.Up, Rotation.Y);

GetNode<AnimationPlayer>("AnimationPlayer").SpeedScale = randomSpeed / MinSpeed;
}

public void Squash()
{

EmitSignal(SignalName.Squashed);
QueueFree(); // Destroy this node

}

private void OnVisibilityNoti�erScreenExited()
{

QueueFree();
}

}

Going further

You can pat yourself on the back for having completed your �rst 3D game with Godot.

In this series, we went over a wide range of techniques and editor features. Hopefully, you've witnessed how
intuitive Godot's scene system can be and learned a few tricks you can apply in your projects.

But we just scratched the surface: Godot has a lot more in store for you to save time creating games. And
you can learn all that by browsing the documentation.

Where should you begin? Below, you'll �nd a few pages to start exploring and build upon what you've
learned so far.

2.10. Your �rst 3D game 265

Godot Engine Documentation, Release latest

But before that, here's a link to download a completed version of the project: https://github.com/
godotengine/godot-3d-dodge-the-creeps.

Exploring the manual

The manual is your ally whenever you have a doubt or you're curious about a feature. It does not contain
tutorials about speci�c game genres or mechanics. Instead, it explains how Godot works in general. In it,
you will �nd information about 2D, 3D, physics, rendering and performance, and much more.

Here are the sections we recommend you to explore next:

1. Read the Scripting section to learn essential programming features you'll use in every project.

2. The 3D and Physics sections will teach you more about 3D game creation in the engine.

3. Inputs is another important one for any game project.

You can start with these or, if you prefer, look at the sidebar menu on the left and pick your options.

We hope you enjoyed this tutorial series, and we're looking forward to seeing what you achieve using Godot.

2.11 Best practices

2.11.1 Introduction

This series is a collection of best practices to help you work e�ciently with Godot.

Godot allows for a great amount of �exibility in how you structure a project's codebase and break it down
into scenes. Each approach has its pros and cons, and they can be hard to weigh until you've worked with
the engine for long enough.

There are always many ways to structure your code and solve speci�c programming problems. It would be
impossible to cover them all here.

That is why each article starts from a real-world problem. We will break down each problem in fundamental
questions, suggest solutions, analyze the pros and cons of each option, and highlight the best course of action
for the problem at hand.

You should start by reading Applying object-oriented principles in Godot. It explains how Godot's nodes
and scenes relate to classes and objects in other Object-Oriented programming languages. It will help you
make sense of the rest of the series.

Note: The best practices in Godot rely on Object-Oriented design principles. We use tools like the single
responsibility principle and encapsulation.

2.11.2 Applying object-oriented principles in Godot

The engine o�ers two main ways to create reusable objects: scripts and scenes. Neither of these technically
de�ne classes under the hood.

Still, many best practices using Godot involve applying object-oriented programming principles to the scripts
and scenes that compose your game. That is why it's useful to understand how we can think of them as
classes.

This guide brie�y explains how scripts and scenes work in the engine's core to help you understand how they
work under the hood.

266 Chapter 2. O�ine documentation

https://github.com/godotengine/godot-3d-dodge-the-creeps
https://github.com/godotengine/godot-3d-dodge-the-creeps
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

Godot Engine Documentation, Release latest

How scripts work in the engine

The engine provides built-in classes like Node. You can extend those to create derived types using a script.

These scripts are not technically classes. Instead, they are resources that tell the engine a sequence of
initializations to perform on one of the engine's built-in classes.

Godot's internal classes have methods that register a class's data with a ClassDB. This database provides
runtime access to class information. ClassDB contains information about classes like:

� Properties.

� Methods.

� Constants.

� Signals.

This ClassDB is what objects check against when performing an operation like accessing a property or calling
a method. It checks the database's records and the object's base types' records to see if the object supports
the operation.

Attaching a Script to your object extends the methods, properties, and signals available from the ClassDB.

Note: Even scripts that don't use the extends keyword implicitly inherit from the engine's base RefCounted
class. As a result, you can instantiate scripts without the extends keyword from code. Since they extend
RefCounted though, you cannot attach them to a Node.

Scenes

The behavior of scenes has many similarities to classes, so it can make sense to think of a scene as a class.
Scenes are reusable, instantiable, and inheritable groups of nodes. Creating a scene is similar to having a
script that creates nodes and adds them as children using add_child().

We often pair a scene with a scripted root node that makes use of the scene's nodes. As such, the script
extends the scene by adding behavior through imperative code.

The content of a scene helps to de�ne:

� What nodes are available to the script.

� How they are organized.

� How they are initialized.

� What signal connections they have with each other.

Why is any of this important to scene organization? Because instances of scenes are objects. As a result, many
object-oriented principles that apply to written code also apply to scenes: single responsibility, encapsulation,
and others.

The scene is always an extension of the script attached to its root node, so you can interpret it as part of a
class.

Most of the techniques explained in this best practices series build on this point.

2.11. Best practices 267

Godot Engine Documentation, Release latest

2.11.3 Scene organization

This article covers topics related to the e�ective organization of scene content. Which nodes should one use?
Where should one place them? How should they interact?

How to build relationships e�ectively

When Godot users begin crafting their own scenes, they often run into the following problem:

They create their �rst scene and �ll it with content only to eventually end up saving branches of their scene
into separate scenes as the nagging feeling that they should split things up starts to accumulate. However,
they then notice that the hard references they were able to rely on before are no longer possible. Re-using the
scene in multiple places creates issues because the node paths do not �nd their targets and signal connections
established in the editor break.

To �x these problems, one must instantiate the sub-scenes without them requiring details about their envi-
ronment. One needs to be able to trust that the sub-scene will create itself without being picky about how
one uses it.

One of the biggest things to consider in OOP is maintaining focused, singular-purpose classes with loose
coupling to other parts of the codebase. This keeps the size of objects small (for maintainability) and
improves their reusability.

These OOP best practices have several implications for best practices in scene structure and script usage.

If at all possible, one should design scenes to have no dependencies. That is, one should create scenes that
keep everything they need within themselves.

If a scene must interact with an external context, experienced developers recommend the use of Dependency
Injection. This technique involves having a high-level API provide the dependencies of the low-level API.
Why do this? Because classes which rely on their external environment can inadvertently trigger bugs and
unexpected behavior.

To do this, one must expose data and then rely on a parent context to initialize it:

1. Connect to a signal. Extremely safe, but should be used only to "respond" to behavior, not start
it. By convention, signal names are usually past-tense verbs like "entered", "skill_activated", or
"item_collected".

GDScript

Parent
$Child.signal_name.connect(method_on_the_object)

Child
signal_name.emit() # Triggers parent-de�ned behavior.

C#

// Parent
GetNode("Child").Connect("SignalName", ObjectWithMethod, "MethodOnTheObject");

// Child
EmitSignal("SignalName"); // Triggers parent-de�ned behavior.

2. Call a method. Used to start behavior.

GDScript

268 Chapter 2. O�ine documentation

https://en.wikipedia.org/wiki/Loose_coupling
https://en.wikipedia.org/wiki/Loose_coupling
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection

Godot Engine Documentation, Release latest

Parent
$Child.method_name = "do"

Child, assuming it has String property 'method_name' and method 'do'.
call(method_name) # Call parent-de�ned method (which child must own).

C#

// Parent
GetNode("Child").Set("MethodName", "Do");

// Child
Call(MethodName); // Call parent-de�ned method (which child must own).

3. Initialize a Callable property. Safer than a method as ownership of the method is unnecessary. Used
to start behavior.

GDScript

Parent
$Child.func_property = object_with_method.method_on_the_object

Child
func_property.call() # Call parent-de�ned method (can come from anywhere).

C#

// Parent
GetNode("Child").Set("FuncProperty", Callable.From(ObjectWithMethod.MethodOnTheObject));

// Child
FuncProperty.Call(); // Call parent-de�ned method (can come from anywhere).

4. Initialize a Node or other Object reference.

GDScript

Parent
$Child.target = self

Child
print(target) # Use parent-de�ned node.

C#

// Parent
GetNode("Child").Set("Target", this);

// Child
GD.Print(Target); // Use parent-de�ned node.

5. Initialize a NodePath.

GDScript

2.11. Best practices 269

Godot Engine Documentation, Release latest

Parent
$Child.target_path = ".."

Child
get_node(target_path) # Use parent-de�ned NodePath.

C#

// Parent
GetNode("Child").Set("TargetPath", NodePath(".."));

// Child
GetNode(TargetPath); // Use parent-de�ned NodePath.

These options hide the points of access from the child node. This in turn keeps the child loosely coupled to
its environment. One can reuse it in another context without any extra changes to its API.

Note: Although the examples above illustrate parent-child relationships, the same principles apply towards
all object relations. Nodes which are siblings should only be aware of their hierarchies while an ancestor
mediates their communications and references.

GDScript

Parent
$Left.target = $Right.get_node("Receiver")

Left
var target: Node
func execute():

Do something with 'target'.

Right
func _init():

var receiver = Receiver.new()
add_child(receiver)

C#

// Parent
GetNode<Left>("Left").Target = GetNode("Right/Receiver");

public partial class Left : Node
{

public Node Target = null;

public void Execute()
{

// Do something with 'Target'.
}

}

public partial class Right : Node
{

(continues on next page)

270 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

public Node Receiver = null;

public Right()
{

Receiver = ResourceLoader.Load<Script>("Receiver.cs").New();
AddChild(Receiver);

}
}

The same principles also apply to non-Node objects that maintain dependencies on other objects. Whichever
object actually owns the objects should manage the relationships between them.

Warning: One should favor keeping data in-house (internal to a scene) though as placing a dependency
on an external context, even a loosely coupled one, still means that the node will expect something in its
environment to be true. The project's design philosophies should prevent this from happening. If not,
the code's inherent liabilities will force developers to use documentation to keep track of object relations
on a microscopic scale; this is otherwise known as development hell. Writing code that relies on external
documentation for one to use it safely is error-prone by default.

To avoid creating and maintaining such documentation, one converts the dependent node ("child" above)
into a tool script that implements _get_con�guration_warnings(). Returning a non-empty Packed-
StringArray from it will make the Scene dock generate a warning icon with the string(s) as a tooltip by
the node. This is the same icon that appears for nodes such as the Area2D node when it has no child
CollisionShape2D nodes de�ned. The editor then self-documents the scene through the script code. No
content duplication via documentation is necessary.

A GUI like this can better inform project users of critical information about a Node. Does it have external
dependencies? Have those dependencies been satis�ed? Other programmers, and especially designers and
writers, will need clear instructions in the messages telling them what to do to con�gure it.

So, why does all this complex switcharoo work? Well, because scenes operate best when they operate alone.
If unable to work alone, then working with others anonymously (with minimal hard dependencies, i.e. loose
coupling) is the next best thing. Inevitably, changes may need to be made to a class and if these changes
cause it to interact with other scenes in unforeseen ways, then things will start to break down. The whole
point of all this indirection is to avoid ending up in a situation where changing one class results in adversely
e�ecting other classes dependent on it.

Scripts and scenes, as extensions of engine classes, should abide by all OOP principles. Examples include...

� SOLID

� DRY

� KISS

� YAGNI

2.11. Best practices 271

https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

Godot Engine Documentation, Release latest

Choosing a node tree structure

So, a developer starts work on a game only to stop at the vast possibilities before them. They might know
what they want to do, what systems they want to have, but where to put them all? Well, how one goes
about making their game is always up to them. One can construct node trees in countless ways. But, for
those who are unsure, this helpful guide can give them a sample of a decent structure to start with.

A game should always have a sort of "entry point"; somewhere the developer can de�nitively track where
things begin so that they can follow the logic as it continues elsewhere. This place also serves as a bird's
eye view of all of the other data and logic in the program. For traditional applications, this would be the
"main" function. In this case, it would be a Main node.

� Node "Main" (main.gd)

The main.gd script would then serve as the primary controller of one's game.

Then one has their actual in-game "World" (a 2D or 3D one). This can be a child of Main. In addition, one
will need a primary GUI for their game that manages the various menus and widgets the project needs.

� Node "Main" (main.gd)

� Node2D/Node3D "World" (game_world.gd)

� Control "GUI" (gui.gd)

When changing levels, one can then swap out the children of the "World" node. Changing scenes manually
gives users full control over how their game world transitions.

The next step is to consider what gameplay systems one's project requires. If one has a system that...

1. tracks all of its data internally

2. should be globally accessible

3. should exist in isolation

... then one should create an autoload 'singleton' node.

Note: For smaller games, a simpler alternative with less control would be to have a "Game" singleton
that simply calls the SceneTree.change_scene_to_�le() method to swap out the main scene's content. This
structure more or less keeps the "World" as the main game node.

Any GUI would need to also be a singleton; be a transitory part of the "World"; or be manually added as a
direct child of the root. Otherwise, the GUI nodes would also delete themselves during scene transitions.

If one has systems that modify other systems' data, one should de�ne those as their own scripts or scenes
rather than autoloads. For more information on the reasons, please see the Autoloads versus regular nodes
documentation.

Each subsystem within one's game should have its own section within the SceneTree. One should use parent-
child relationships only in cases where nodes are e�ectively elements of their parents. Does removing the
parent reasonably mean that one should also remove the children? If not, then it should have its own place
in the hierarchy as a sibling or some other relation.

Note: In some cases, one needs these separated nodes to also position themselves relative to each other. One
can use the RemoteTransform / RemoteTransform2D nodes for this purpose. They will allow a target node
to conditionally inherit selected transform elements from the Remote* node. To assign the target NodePath,
use one of the following:

1. A reliable third party, likely a parent node, to mediate the assignment.

272 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2. A group, to easily pull a reference to the desired node (assuming there will only ever be one of the
targets).

When should one do this? Well, this is subjective. The dilemma arises when one must micro-manage when
a node must move around the SceneTree to preserve itself. For example...

� Add a "player" node to a "room".

� Need to change rooms, so one must delete the current room.

� Before the room can be deleted, one must preserve and/or move the player.

Is memory a concern?

� If not, one can just create the two rooms, move the player and delete the old one. No problem.

If so, one will need to...

� Move the player somewhere else in the tree.

� Delete the room.

� Instantiate and add the new room.

� Re-add the player.

The issue is that the player here is a "special case"; one where the developers must know that they need
to handle the player this way for the project. As such, the only way to reliably share this information as
a team is to document it. Keeping implementation details in documentation however is dangerous. It's a
maintenance burden, strains code readability, and bloats the intellectual content of a project unnecessarily.

In a more complex game with larger assets, it can be a better idea to simply keep the player somewhere else
in the SceneTree entirely. This results in:

1. More consistency.

2. No "special cases" that must be documented and maintained somewhere.

3. No opportunity for errors to occur because these details are not accounted for.

In contrast, if one ever needs to have a child node that does not inherit the transform of their parent, one
has the following options:

1. The declarative solution: place a Node in between them. As nodes with no transform, Nodes will not
pass along such information to their children.

2. The imperative solution: Use the top_level property for the CanvasItem or Node3D node. This will
make the node ignore its inherited transform.

Note: If building a networked game, keep in mind which nodes and gameplay systems are relevant to all
players versus those just pertinent to the authoritative server. For example, users do not all need to have a
copy of every players' "PlayerController" logic. Instead, they need only their own. As such, keeping these
in a separate branch from the "world" can help simplify the management of game connections and the like.

The key to scene organization is to consider the SceneTree in relational terms rather than spatial terms. Are
the nodes dependent on their parent's existence? If not, then they can thrive all by themselves somewhere
else. If they are dependent, then it stands to reason that they should be children of that parent (and likely
part of that parent's scene if they aren't already).

Does this mean nodes themselves are components? Not at all. Godot's node trees form an aggregation
relationship, not one of composition. But while one still has the �exibility to move nodes around, it is still
best when such moves are unnecessary by default.

2.11. Best practices 273

Godot Engine Documentation, Release latest

2.11.4 When to use scenes versus scripts

We've already covered how scenes and scripts are di�erent. Scripts de�ne an engine class extension with
imperative code, scenes with declarative code.

Each system's capabilities are di�erent as a result. Scenes can de�ne how an extended class initializes, but
not what its behavior actually is. Scenes are often used in conjunction with a script, the scene declaring a
composition of nodes, and the script adding behaviour with imperative code.

Anonymous types

It is possible to completely de�ne a scenes' contents using a script alone. This is, in essence, what the Godot
Editor does, only in the C++ constructor of its objects.

But, choosing which one to use can be a dilemma. Creating script instances is identical to creating in-engine
classes whereas handling scenes requires a change in API:

GDScript

const MyNode = preload("my_node.gd")
const MyScene = preload("my_scene.tscn")
var node = Node.new()
var my_node = MyNode.new() # Same method call.
var my_scene = MyScene.instantiate() # Di�erent method call.
var my_inherited_scene = MyScene.instantiate(PackedScene.GEN_EDIT_STATE_MAIN) # Create
↪→scene inheriting from MyScene.

C#

using Godot;

public partial class Game : Node
{

public static CSharpScript MyNode { get; } =
GD.Load<CSharpScript>("res://Path/To/MyNode.cs");

public static PackedScene MyScene { get; } =
GD.Load<PackedScene>("res://Path/To/MyScene.tscn");

private Node _node;
private Node _myNode;
private Node _myScene;
private Node _myInheritedScene;

public Game()
{

_node = new Node();
_myNode = MyNode.New().As<Node>();
// Di�erent than calling new() or MyNode.New(). Instantiated from a PackedScene.
_myScene = MyScene.Instantiate();
// Create scene inheriting from MyScene.
_myInheritedScene = MyScene.Instantiate(PackedScene.GenEditState.Main);

}
}

Also, scripts will operate a little slower than scenes due to the speed di�erences between engine and script
code. The larger and more complex the node, the more reason there is to build it as a scene.

274 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Named types

Scripts can be registered as a new type within the editor itself. This displays it as a new type in the node
or resource creation dialog with an optional icon. This way, the user's ability to use the script is much more
streamlined. Rather than having to...

1. Know the base type of the script they would like to use.

2. Create an instance of that base type.

3. Add the script to the node.

With a registered script, the scripted type instead becomes a creation option like the other nodes and
resources in the system. The creation dialog even has a search bar to look up the type by name.

There are two systems for registering types:

� Custom Types

� Editor-only. Typenames are not accessible at runtime.

� Does not support inherited custom types.

� An initializer tool. Creates the node with the script. Nothing more.

� Editor has no type-awareness of the script or its relationship to other engine types or scripts.

� Allows users to de�ne an icon.

� Works for all scripting languages because it deals with Script resources in abstract.

� Set up using EditorPlugin.add_custom_type.

� Script Classes

� Editor and runtime accessible.

� Displays inheritance relationships in full.

� Creates the node with the script, but can also change types or extend the type from the editor.

� Editor is aware of inheritance relationships between scripts, script classes, and engine C++ classes.

� Allows users to de�ne an icon.

� Engine developers must add support for languages manually (both name exposure and runtime
accessibility).

� Godot 3.1+ only.

� The Editor scans project folders and registers any exposed names for all scripting languages. Each
scripting language must implement its own support for exposing this information.

Both methodologies add names to the creation dialog, but script classes, in particular, also allow for users
to access the typename without loading the script resource. Creating instances and accessing constants or
static methods is viable from anywhere.

With features like these, one may wish their type to be a script without a scene due to the ease of use it
grants users. Those developing plugins or creating in-house tools for designers to use will �nd an easier time
of things this way.

On the downside, it also means having to use largely imperative programming.

2.11. Best practices 275

Godot Engine Documentation, Release latest

Performance of Script vs PackedScene

One last aspect to consider when choosing scenes and scripts is execution speed.

As the size of objects increases, the scripts' necessary size to create and initialize them grows much larger.
Creating node hierarchies demonstrates this. Each Node's logic could be several hundred lines of code in
length.

The code example below creates a new Node, changes its name, assigns a script to it, sets its future parent
as its owner so it gets saved to disk along with it, and �nally adds it as a child of the Main node:

GDScript

main.gd
extends Node

func _init():
var child = Node.new()
child.name = "Child"
child.script = preload("child.gd")
add_child(child)
child.owner = self

C#

using Godot;

public partial class Main : Node
{

public Node Child { get; set; }

public Main()
{

Child = new Node();
Child.Name = "Child";
var childID = Child.GetInstanceId();
Child.SetScript(GD.Load<Script>("res://Path/To/Child.cs"));
// SetScript() causes the C# wrapper object to be disposed, so obtain a new
// wrapper for the Child node using its instance ID before proceeding.
Child = (Node)GodotObject.InstanceFromId(childID);
AddChild(Child);
Child.Owner = this;

}
}

Script code like this is much slower than engine-side C++ code. Each instruction makes a call to the scripting
API which leads to many "lookups" on the back-end to �nd the logic to execute.

Scenes help to avoid this performance issue. PackedScene, the base type that scenes inherit from, de�nes
resources that use serialized data to create objects. The engine can process scenes in batches on the back-end
and provide much better performance than scripts.

276 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Conclusion

In the end, the best approach is to consider the following:

� If one wishes to create a basic tool that is going to be re-used in several di�erent projects and which
people of all skill levels will likely use (including those who don't label themselves as "programmers"),
then chances are that it should probably be a script, likely one with a custom name/icon.

� If one wishes to create a concept that is particular to their game, then it should always be a scene.
Scenes are easier to track/edit and provide more security than scripts.

� If one would like to give a name to a scene, then they can still sort of do this by declaring a script class
and giving it a scene as a constant. The script becomes, in e�ect, a namespace:

GDScript

game.gd
class_name Game # extends RefCounted, so it won't show up in the node creation dialog.
extends RefCounted

const MyScene = preload("my_scene.tscn")

main.gd
extends Node
func _ready():

add_child(Game.MyScene.instantiate())

C#

// Game.cs
public partial class Game : RefCounted
{

public static PackedScene MyScene { get; } =
GD.Load<PackedScene>("res://Path/To/MyScene.tscn");

}

// Main.cs
public partial class Main : Node
{

public override void _Ready()
{

AddChild(Game.MyScene.Instantiate());
}

}

2.11.5 Autoloads versus regular nodes

Godot o�ers a feature to automatically load nodes at the root of your project, allowing you to access them
globally, that can ful�ll the role of a Singleton: Singletons (Autoload). These autoloaded nodes are not freed
when you change the scene from code with SceneTree.change_scene_to_�le.

In this guide, you will learn when to use the Autoload feature, and techniques you can use to avoid it.

2.11. Best practices 277

Godot Engine Documentation, Release latest

The cutting audio issue

Other engines can encourage the use of creating manager classes, singletons that organize a lot of functionality
into a globally accessible object. Godot o�ers many ways to avoid global state thanks to the node tree and
signals.

For example, let's say we are building a platformer and want to collect coins that play a sound e�ect. There's
a node for that: the AudioStreamPlayer. But if we call the AudioStreamPlayer while it is already playing a
sound, the new sound interrupts the �rst.

A solution is to code a global, autoloaded sound manager class. It generates a pool of AudioStreamPlayer
nodes that cycle through as each new request for sound e�ects comes in. Say we call that class Sound, you
can use it from anywhere in your project by calling Sound.play("coin_pickup.ogg"). This solves the problem
in the short term but causes more problems:

1. Global state: one object is now responsible for all objects' data. If the Sound class has errors or doesn't
have an AudioStreamPlayer available, all the nodes calling it can break.

2. Global access: now that any object can call Sound.play(sound_path) from anywhere, there's no longer
an easy way to �nd the source of a bug.

3. Global resource allocation: with a pool of AudioStreamPlayer nodes stored from the start, you can
either have too few and face bugs, or too many and use more memory than you need.

Note: About global access, the problem is that any code anywhere could pass wrong data to the Sound
autoload in our example. As a result, the domain to explore to �x the bug spans the entire project.

When you keep code inside a scene, only one or two scripts may be involved in audio.

Contrast this with each scene keeping as many AudioStreamPlayer nodes as it needs within itself and all
these problems go away:

1. Each scene manages its own state information. If there is a problem with the data, it will only cause
issues in that one scene.

2. Each scene accesses only its own nodes. Now, if there is a bug, it's easy to �nd which node is at fault.

3. Each scene allocates exactly the amount of resources it needs.

Managing shared functionality or data

Another reason to use an Autoload can be that you want to reuse the same method or data across many
scenes.

In the case of functions, you can create a new type of Node that provides that feature for an individual scene
using the class_name keyword in GDScript.

When it comes to data, you can either:

1. Create a new type of Resource to share the data.

2. Store the data in an object to which each node has access, for example using the owner property to
access the scene's root node.

278 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

When you should use an Autoload

GDScript supports the creation of static functions using static func. When combined with class_name, this
makes it possible to create libraries of helper functions without having to create an instance to call them.
The limitation of static functions is that they can't reference member variables, non-static functions or self.

Since Godot 4.1, GDScript also supports static variables using static var. This means you can now share a
variables across instances of a class without having to create a separate autoload.

Still, autoloaded nodes can simplify your code for systems with a wide scope. If the autoload is managing
its own information and not invading the data of other objects, then it's a great way to create systems that
handle broad-scoped tasks. For example, a quest or a dialogue system.

Note: An autoload is not necessarily a singleton. Nothing prevents you from instantiating copies of an
autoloaded node. An autoload is only a tool that makes a node load automatically as a child of the root of
your scene tree, regardless of your game's node structure or which scene you run, e.g. by pressing the F6
key.

As a result, you can get the autoloaded node, for example an autoload called Sound, by calling get_node("/
root/Sound").

2.11.6 When and how to avoid using nodes for everything

Nodes are cheap to produce, but even they have their limits. A project may have tens of thousands of nodes
all doing things. The more complex their behavior though, the larger the strain each one adds to a project's
performance.

Godot provides more lightweight objects for creating APIs which nodes use. Be sure to keep these in mind
as options when designing how you wish to build your project's features.

1. Object: The ultimate lightweight object, the original Object must use manual memory management.
With that said, it isn't too di�cult to create one's own custom data structures, even node structures,
that are also lighter than the Node class.

� Example: See the Tree node. It supports a high level of customization for a table of content with
an arbitrary number of rows and columns. The data that it uses to generate its visualization
though is actually a tree of TreeItem Objects.

� Advantages: Simplifying one's API to smaller scoped objects helps improve its accessibility and
improve iteration time. Rather than working with the entire Node library, one creates an abbre-
viated set of Objects from which a node can generate and manage the appropriate sub-nodes.

Note: One should be careful when handling them. One can store an Object into a variable, but these
references can become invalid without warning. For example, if the object's creator decides to delete
it out of nowhere, this would trigger an error state when one next accesses it.

2. RefCounted: Only a little more complex than Object. They track references to themselves, only
deleting loaded memory when no further references to themselves exist. These are useful in the majority
of cases where one needs data in a custom class.

� Example: See the FileAccess object. It functions just like a regular Object except that one need
not delete it themselves.

� Advantages: same as the Object.

3. Resource: Only slightly more complex than RefCounted. They have the innate ability to serial-
ize/deserialize (i.e. save and load) their object properties to/from Godot resource �les.

2.11. Best practices 279

Godot Engine Documentation, Release latest

� Example: Scripts, PackedScene (for scene �les), and other types like each of the AudioE�ect
classes. Each of these can be save and loaded, therefore they extend from Resource.

� Advantages: Much has already been said on Resource's advantages over traditional data storage
methods. In the context of using Resources over Nodes though, their main advantage is in
Inspector-compatibility. While nearly as lightweight as Object/RefCounted, they can still display
and export properties in the Inspector. This allows them to ful�ll a purpose much like sub-
Nodes on the usability front, but also improve performance if one plans to have many such
Resources/Nodes in their scenes.

2.11.7 Godot interfaces

Often one needs scripts that rely on other objects for features. There are 2 parts to this process:

1. Acquiring a reference to the object that presumably has the features.

2. Accessing the data or logic from the object.

The rest of this tutorial outlines the various ways of doing all this.

Acquiring object references

For all Objects, the most basic way of referencing them is to get a reference to an existing object from
another acquired instance.

GDScript

var obj = node.object # Property access.
var obj = node.get_object() # Method access.

C#

GodotObject obj = node.Object; // Property access.
GodotObject obj = node.GetObject(); // Method access.

The same principle applies for RefCounted objects. While users often access Node and Resource this way,
alternative measures are available.

Instead of property or method access, one can get Resources by load access.

GDScript

If you need an "export const var" (which doesn't exist), use a conditional
setter for a tool script that checks if it's executing in the editor.
The `@tool` annotation must be placed at the top of the script.
@tool

Load resource during scene load.
var preres = preload(path)
Load resource when program reaches statement.
var res = load(path)

Note that users load scenes and scripts, by convention, with PascalCase
names (like typenames), often into constants.
const MyScene = preload("my_scene.tscn") # Static load
const MyScript = preload("my_script.gd")

This type's value varies, i.e. it is a variable, so it uses snake_case.

(continues on next page)

280 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

@export var script_type: Script

Must con�gure from the editor, defaults to null.
@export var const_script: Script:

set(value):
if Engine.is_editor_hint():

const_script = value

Warn users if the value hasn't been set.
func _get_con�guration_warnings():

if not const_script:
return ["Must initialize property 'const_script'."]

return []

C#

// Tool script added for the sake of the "const [Export]" example.
[Tool]
public MyType
{

// Property initializations load during Script instancing, i.e. .new().
// No "preload" loads during scene load exists in C#.

// Initialize with a value. Editable at runtime.
public Script MyScript = GD.Load<Script>("res://Path/To/MyScript.cs");

// Initialize with same value. Value cannot be changed.
public readonly Script MyConstScript = GD.Load<Script>("res://Path/To/MyScript.cs");

// Like 'readonly' due to inaccessible setter.
// But, value can be set during constructor, i.e. MyType().
public Script MyNoSetScript { get; } = GD.Load<Script>("res://Path/To/MyScript.cs");

// If need a "const [Export]" (which doesn't exist), use a
// conditional setter for a tool script that checks if it's executing
// in the editor.
private PackedScene _enemyScn;

[Export]
public PackedScene EnemyScn
{

get { return _enemyScn; }
set
{

if (Engine.IsEditorHint())
{

_enemyScn = value;
}

}
};

(continues on next page)

2.11. Best practices 281

Godot Engine Documentation, Release latest

(continued from previous page)

// Warn users if the value hasn't been set.
public string[] _GetCon�gurationWarnings()
{

if (EnemyScn == null)
{

return new string[] { "Must initialize property 'EnemyScn'." };
}
return Array.Empty<string>();

}
}

Note the following:

1. There are many ways in which a language can load such resources.

2. When designing how objects will access data, don't forget that one can pass resources around as
references as well.

3. Keep in mind that loading a resource fetches the cached resource instance maintained by the engine.
To get a new object, one must duplicate an existing reference or instantiate one from scratch with
new().

Nodes likewise have an alternative access point: the SceneTree.

GDScript

extends Node

Slow.
func dynamic_lookup_with_dynamic_nodepath():

print(get_node("Child"))

Faster. GDScript only.
func dynamic_lookup_with_cached_nodepath():

print($Child)

Fastest. Doesn't break if node moves later.
Note that `@onready` annotation is GDScript-only.
Other languages must do...
var child
func _ready():
child = get_node("Child")
@onready var child = $Child
func lookup_and_cache_for_future_access():

print(child)

Fastest. Doesn't break if node is moved in the Scene tree dock.
Node must be selected in the inspector as it's an exported property.
@export var child: Node
func lookup_and_cache_for_future_access():

print(child)

Delegate reference assignment to an external source.
Con: need to perform a validation check.

(continues on next page)

282 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

Pro: node makes no requirements of its external structure.
'prop' can come from anywhere.
var prop
func call_me_after_prop_is_initialized_by_parent():

Validate prop in one of three ways.

Fail with no noti�cation.
if not prop:

return

Fail with an error message.
if not prop:

printerr("'prop' wasn't initialized")
return

Fail and terminate.
NOTE: Scripts run from a release export template don't run `assert`s.
assert(prop, "'prop' wasn't initialized")

Use an autoload.
Dangerous for typical nodes, but useful for true singleton nodes
that manage their own data and don't interfere with other objects.
func reference_a_global_autoloaded_variable():

print(globals)
print(globals.prop)
print(globals.my_getter())

C#

using Godot;
using System;
using System.Diagnostics;

public class MyNode : Node
{

// Slow
public void DynamicLookupWithDynamicNodePath()
{

GD.Print(GetNode("Child"));
}

// Fastest. Lookup node and cache for future access.
// Doesn't break if node moves later.
private Node _child;
public void _Ready()
{

_child = GetNode("Child");
}
public void LookupAndCacheForFutureAccess()
{

GD.Print(_child);
}

(continues on next page)

2.11. Best practices 283

Godot Engine Documentation, Release latest

(continued from previous page)

// Delegate reference assignment to an external source.
// Con: need to perform a validation check.
// Pro: node makes no requirements of its external structure.
// 'prop' can come from anywhere.
public object Prop { get; set; }
public void CallMeAfterPropIsInitializedByParent()
{

// Validate prop in one of three ways.

// Fail with no noti�cation.
if (prop == null)
{

return;
}

// Fail with an error message.
if (prop == null)
{

GD.PrintErr("'Prop' wasn't initialized");
return;

}

// Fail with an exception.
if (prop == null)
{

throw new InvalidOperationException("'Prop' wasn't initialized.");
}

// Fail and terminate.
// Note: Scripts run from a release export template don't run `Debug.Assert`s.
Debug.Assert(Prop, "'Prop' wasn't initialized");

}

// Use an autoload.
// Dangerous for typical nodes, but useful for true singleton nodes
// that manage their own data and don't interfere with other objects.
public void ReferenceAGlobalAutoloadedVariable()
{

MyNode globals = GetNode<MyNode>("/root/Globals");
GD.Print(globals);
GD.Print(globals.Prop);
GD.Print(globals.MyGetter());

}
};

284 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Accessing data or logic from an object

Godot's scripting API is duck-typed. This means that if a script executes an operation, Godot doesn't
validate that it supports the operation by type. It instead checks that the object implements the individual
method.

For example, the CanvasItem class has a visible property. All properties exposed to the scripting API are in
fact a setter and getter pair bound to a name. If one tried to access CanvasItem.visible, then Godot would
do the following checks, in order:

� If the object has a script attached, it will attempt to set the property through the script. This leaves
open the opportunity for scripts to override a property de�ned on a base object by overriding the setter
method for the property.

� If the script does not have the property, it performs a HashMap lookup in the ClassDB for the "visible"
property against the CanvasItem class and all of its inherited types. If found, it will call the bound
setter or getter. For more information about HashMaps, see the data preferences docs.

� If not found, it does an explicit check to see if the user wants to access the "script" or "meta" properties.

� If not, it checks for a _set/_get implementation (depending on type of access) in the CanvasItem and
its inherited types. These methods can execute logic that gives the impression that the Object has a
property. This is also the case with the _get_property_list method.

� Note that this happens even for non-legal symbol names, such as names starting with a digit or
containing a slash.

As a result, this duck-typed system can locate a property either in the script, the object's class, or any class
that object inherits, but only for things which extend Object.

Godot provides a variety of options for performing runtime checks on these accesses:

� A duck-typed property access. These will be property checks (as described above). If the operation
isn't supported by the object, execution will halt.

GDScript

All Objects have duck-typed get, set, and call wrapper methods.
get_parent().set("visible", false)

Using a symbol accessor, rather than a string in the method call,
will implicitly call the `set` method which, in turn, calls the
setter method bound to the property through the property lookup
sequence.
get_parent().visible = false

Note that if one de�nes a _set and _get that describe a property's
existence, but the property isn't recognized in any _get_property_list
method, then the set() and get() methods will work, but the symbol
access will claim it can't �nd the property.

C#

// All Objects have duck-typed Get, Set, and Call wrapper methods.
GetParent().Set("visible", false);

// C# is a static language, so it has no dynamic symbol access, e.g.
// `GetParent().Visible = false` won't work.

2.11. Best practices 285

Godot Engine Documentation, Release latest

� A method check. In the case of CanvasItem.visible, one can access the methods, set_visible and
is_visible like any other method.

GDScript

var child = get_child(0)

Dynamic lookup.
child.call("set_visible", false)

Symbol-based dynamic lookup.
GDScript aliases this into a 'call' method behind the scenes.
child.set_visible(false)

Dynamic lookup, checks for method existence �rst.
if child.has_method("set_visible"):

child.set_visible(false)

Cast check, followed by dynamic lookup.
Useful when you make multiple "safe" calls knowing that the class
implements them all. No need for repeated checks.
Tricky if one executes a cast check for a user-de�ned type as it
forces more dependencies.
if child is CanvasItem:

child.set_visible(false)
child.show_on_top = true

If one does not wish to fail these checks without notifying users,
one can use an assert instead. These will trigger runtime errors
immediately if not true.
assert(child.has_method("set_visible"))
assert(child.is_in_group("o�er"))
assert(child is CanvasItem)

Can also use object labels to imply an interface, i.e. assume it
implements certain methods.
There are two types, both of which only exist for Nodes: Names and
Groups.

Assuming...
A "Quest" object exists and 1) that it can "complete" or "fail" and
that it will have text available before and after each state...

1. Use a name.
var quest = $Quest
print(quest.text)
quest.complete() # or quest.fail()
print(quest.text) # implied new text content

2. Use a group.
for a_child in get_children():

if a_child.is_in_group("quest"):
print(quest.text)
quest.complete() # or quest.fail()

(continues on next page)

286 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

print(quest.text) # implied new text content

Note that these interfaces are project-speci�c conventions the team
de�nes (which means documentation! But maybe worth it?).
Any script that conforms to the documented "interface" of the name or
group can �ll in for it.

C#

Node child = GetChild(0);

// Dynamic lookup.
child.Call("SetVisible", false);

// Dynamic lookup, checks for method existence �rst.
if (child.HasMethod("SetVisible"))
{

child.Call("SetVisible", false);
}

// Use a group as if it were an "interface", i.e. assume it implements
// certain methods.
// Requires good documentation for the project to keep it reliable
// (unless you make editor tools to enforce it at editor time).
// Note, this is generally not as good as using an actual interface in
// C#, but you can't set C# interfaces from the editor since they are
// language-level features.
if (child.IsInGroup("O�er"))
{

child.Call("Accept");
child.Call("Reject");

}

// Cast check, followed by static lookup.
CanvasItem ci = GetParent() as CanvasItem;
if (ci != null)
{

ci.SetVisible(false);

// useful when you need to make multiple safe calls to the class
ci.ShowOnTop = true;

}

// If one does not wish to fail these checks without notifying users,
// one can use an assert instead. These will trigger runtime errors
// immediately if not true.
Debug.Assert(child.HasMethod("set_visible"));
Debug.Assert(child.IsInGroup("o�er"));
Debug.Assert(CanvasItem.InstanceHas(child));

// Can also use object labels to imply an interface, i.e. assume it
// implements certain methods.

(continues on next page)

2.11. Best practices 287

Godot Engine Documentation, Release latest

(continued from previous page)

// There are two types, both of which only exist for Nodes: Names and
// Groups.

// Assuming...
// A "Quest" object exists and 1) that it can "Complete" or "Fail" and
// that it will have Text available before and after each state...

// 1. Use a name.
Node quest = GetNode("Quest");
GD.Print(quest.Get("Text"));
quest.Call("Complete"); // or "Fail".
GD.Print(quest.Get("Text")); // Implied new text content.

// 2. Use a group.
foreach (Node AChild in GetChildren())
{

if (AChild.IsInGroup("quest"))
{
GD.Print(quest.Get("Text"));
quest.Call("Complete"); // or "Fail".
GD.Print(quest.Get("Text")); // Implied new text content.

}
}

// Note that these interfaces are project-speci�c conventions the team
// de�nes (which means documentation! But maybe worth it?).
// Any script that conforms to the documented "interface" of the
// name or group can �ll in for it. Also note that in C#, these methods
// will be slower than static accesses with traditional interfaces.

� Outsource the access to a Callable. These may be useful in cases where one needs the max level of
freedom from dependencies. In this case, one relies on an external context to setup the method.

GDScript

child.gd
extends Node
var fn = null

func my_method():
if fn:

fn.call()

parent.gd
extends Node

@onready var child = $Child

func _ready():
child.fn = print_me
child.my_method()

(continues on next page)

288 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

func print_me():
print(name)

C#

// Child.cs
using Godot;

public partial class Child : Node
{

public Callable? Callable { get; set; }

public void MyMethod()
{

Callable?.Call();
}

}

// Parent.cs
using Godot;

public partial class Parent : Node
{

private Child _child;

public void _Ready()
{

_child = GetNode<Child>("Child");
_child.Callable = Callable.From(PrintMe);
_child.MyMethod();

}

public void PrintMe()
{

GD.Print(Name);
}

}

These strategies contribute to Godot's �exible design. Between them, users have a breadth of tools to meet
their speci�c needs.

2.11.8 Godot noti�cations

Every Object in Godot implements a _noti�cation method. Its purpose is to allow the Object to respond
to a variety of engine-level callbacks that may relate to it. For example, if the engine tells a CanvasItem to
"draw", it will call _noti�cation(NOTIFICATION_DRAW).

Some of these noti�cations, like draw, are useful to override in scripts. So much so that Godot exposes many
of them with dedicated functions:

� _ready(): NOTIFICATION_READY

� _enter_tree(): NOTIFICATION_ENTER_TREE

� _exit_tree(): NOTIFICATION_EXIT_TREE

2.11. Best practices 289

Godot Engine Documentation, Release latest

� _process(delta): NOTIFICATION_PROCESS

� _physics_process(delta): NOTIFICATION_PHYSICS_PROCESS

� _draw(): NOTIFICATION_DRAW

What users might not realize is that noti�cations exist for types other than Node alone, for example:

� Object::NOTIFICATION_POSTINITIALIZE: a callback that triggers during object initialization.
Not accessible to scripts.

� Object::NOTIFICATION_PREDELETE: a callback that triggers before the engine deletes an Object,
i.e. a "destructor".

And many of the callbacks that do exist in Nodes don't have any dedicated methods, but are still quite
useful.

� Node::NOTIFICATION_PARENTED: a callback that triggers anytime one adds a child node to an-
other node.

� Node::NOTIFICATION_UNPARENTED: a callback that triggers anytime one removes a child node
from another node.

One can access all these custom noti�cations from the universal _noti�cation() method.

Note: Methods in the documentation labeled as "virtual" are also intended to be overridden by scripts.

A classic example is the _init method in Object. While it has no NOTIFICATION_* equivalent, the engine
still calls the method. Most languages (except C#) rely on it as a constructor.

So, in which situation should one use each of these noti�cations or virtual functions?

_process vs. _physics_process vs. *_input

Use _process() when one needs a framerate-dependent delta time between frames. If code that updates
object data needs to update as often as possible, this is the right place. Recurring logic checks and data
caching often execute here, but it comes down to the frequency at which one needs the evaluations to update.
If they don't need to execute every frame, then implementing a Timer-timeout loop is another option.

GDScript

Allows for recurring operations that don't trigger script logic
every frame (or even every �xed frame).
func _ready():

var timer = Timer.new()
timer.autostart = true
timer.wait_time = 0.5
add_child(timer)
timer.timeout.connect(func():

print("This block runs every 0.5 seconds")
)

C#

using Godot;

public partial class MyNode : Node
{

(continues on next page)

290 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

// Allows for recurring operations that don't trigger script logic
// every frame (or even every �xed frame).
public override void _Ready()
{

var timer = new Timer();
timer.Autostart = true;
timer.WaitTime = 0.5;
AddChild(timer);
timer.Timeout += () => GD.Print("This block runs every 0.5 seconds");

}
}

Use _physics_process() when one needs a framerate-independent delta time between frames. If code needs
consistent updates over time, regardless of how fast or slow time advances, this is the right place. Recurring
kinematic and object transform operations should execute here.

While it is possible, to achieve the best performance, one should avoid making input checks during these
callbacks. _process() and _physics_process() will trigger at every opportunity (they do not "rest" by
default). In contrast, *_input() callbacks will trigger only on frames in which the engine has actually
detected the input.

One can check for input actions within the input callbacks just the same. If one wants to use delta time,
one can fetch it from the related delta time methods as needed.

GDScript

Called every frame, even when the engine detects no input.
func _process(delta):

if Input.is_action_just_pressed("ui_select"):
print(delta)

Called during every input event.
func _unhandled_input(event):

match event.get_class():
"InputEventKey":

if Input.is_action_just_pressed("ui_accept"):
print(get_process_delta_time())

C#

using Godot;

public partial class MyNode : Node
{

// Called every frame, even when the engine detects no input.
public void _Process(double delta)
{

if (Input.IsActionJustPressed("ui_select"))
GD.Print(delta);

}

// Called during every input event. Equally true for _input().
public void _UnhandledInput(InputEvent @event)

(continues on next page)

2.11. Best practices 291

Godot Engine Documentation, Release latest

(continued from previous page)

{
switch (@event)
{

case InputEventKey:
if (Input.IsActionJustPressed("ui_accept"))

GD.Print(GetProcessDeltaTime());
break;

}
}

}

_init vs. initialization vs. export

If the script initializes its own node subtree, without a scene, that code should execute in _init(). Other
property or SceneTree-independent initializations should also run here.

Note: The C# equivalent to GDScript's _init() method is the constructor.

_init() triggers before _enter_tree() or _ready(), but after a script creates and initializes its properties.
When instantiating a scene, property values will set up according to the following sequence:

1. Initial value assignment: the property is assigned its initialization value, or its default value if one is
not speci�ed. If a setter exists, it is not used.

2. ``_init()`` assignment: the property's value is replaced by any assignments made in _init(), triggering
the setter.

3. Exported value assignment: an exported property's value is again replaced by any value set in the
Inspector, triggering the setter.

GDScript

test is initialized to "one", without triggering the setter.
@export var test: String = "one":

set(value):
test = value + "!"

func _init():
Triggers the setter, changing test's value from "one" to "two!".
test = "two"

If someone sets test to "three" from the Inspector, it would trigger
the setter, changing test's value from "two!" to "three!".

C#

using Godot;

public partial class MyNode : Node
{

private string _test = "one";

(continues on next page)

292 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

[Export]
public string Test
{

get { return _test; }
set { _test = $"{value}!"; }

}

public MyNode()
{

// Triggers the setter, changing _test's value from "one" to "two!".
Test = "two";

}

// If someone sets Test to "three" in the Inspector, it would trigger
// the setter, changing _test's value from "two!" to "three!".

}

As a result, instantiating a script versus a scene may a�ect both the initialization and the number of times
the engine calls the setter.

_ready vs. _enter_tree vs. NOTIFICATION_PARENTED

When instantiating a scene connected to the �rst executed scene, Godot will instantiate nodes down the tree
(making _init() calls) and build the tree going downwards from the root. This causes _enter_tree() calls to
cascade down the tree. Once the tree is complete, leaf nodes call _ready. A node will call this method once
all child nodes have �nished calling theirs. This then causes a reverse cascade going up back to the tree's
root.

When instantiating a script or a standalone scene, nodes are not added to the SceneTree upon creation, so
no _enter_tree() callbacks trigger. Instead, only the _init() call occurs. When the scene is added to the
SceneTree, the _enter_tree() and _ready() calls occur.

If one needs to trigger behavior that occurs as nodes parent to another, regardless of whether it occurs as
part of the main/active scene or not, one can use the PARENTED noti�cation. For example, here is a
snippet that connects a node's method to a custom signal on the parent node without failing. Useful on
data-centric nodes that one might create at runtime.

GDScript

extends Node

var parent_cache

func connection_check():
return parent_cache.has_user_signal("interacted_with")

func _noti�cation(what):
match what:

NOTIFICATION_PARENTED:
parent_cache = get_parent()
if connection_check():

parent_cache.interacted_with.connect(_on_parent_interacted_with)
NOTIFICATION_UNPARENTED:

if connection_check():

(continues on next page)

2.11. Best practices 293

Godot Engine Documentation, Release latest

(continued from previous page)

parent_cache.interacted_with.disconnect(_on_parent_interacted_with)

func _on_parent_interacted_with():
print("I'm reacting to my parent's interaction!")

C#

using Godot;

public partial class MyNode : Node
{

private Node _parentCache;

public void ConnectionCheck()
{

return _parentCache.HasUserSignal("InteractedWith");
}

public void _Noti�cation(int what)
{

switch (what)
{

case Noti�cationParented:
_parentCache = GetParent();
if (ConnectionCheck())
{

_parentCache.Connect("InteractedWith", Callable.From(OnParentInteractedWith));
}
break;

case Noti�cationUnparented:
if (ConnectionCheck())
{

_parentCache.Disconnect("InteractedWith", Callable.From(OnParentInteractedWith));
}
break;

}
}

private void OnParentInteractedWith()
{

GD.Print("I'm reacting to my parent's interaction!");
}

}

294 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

2.11.9 Data preferences

Ever wondered whether one should approach problem X with data structure Y or Z? This article covers a
variety of topics related to these dilemmas.

Note: This article makes references to "[something]-time" operations. This terminology comes from algo-
rithm analysis' Big O Notation.

Long-story short, it describes the worst-case scenario of runtime length. In laymen's terms:

"As the size of a problem domain increases, the runtime length of the algorithm..."

� Constant-time, O(1): "...does not increase."

� Logarithmic-time, O(log n): "...increases at a slow rate."

� Linear-time, O(n): "...increases at the same rate."

� Etc.

Imagine if one had to process 3 million data points within a single frame. It would be impossible to craft the
feature with a linear-time algorithm since the sheer size of the data would increase the runtime far beyond
the time allotted. In comparison, using a constant-time algorithm could handle the operation without issue.

By and large, developers want to avoid engaging in linear-time operations as much as possible. But, if one
keeps the scale of a linear-time operation small, and if one does not need to perform the operation often,
then it may be acceptable. Balancing these requirements and choosing the right algorithm / data structure
for the job is part of what makes programmers' skills valuable.

Array vs. Dictionary vs. Object

Godot stores all variables in the scripting API in the Variant class. Variants can store Variant-compatible
data structures such as Array and Dictionary as well as Objects.

Godot implements Array as a Vector<Variant>. The engine stores the Array contents in a contiguous section
of memory, i.e. they are in a row adjacent to each other.

Note: For those unfamiliar with C++, a Vector is the name of the array object in traditional C++ libraries.
It is a "templated" type, meaning that its records can only contain a particular type (denoted by angled
brackets). So, for example, a PackedStringArray would be something like a Vector<String>.

Contiguous memory stores imply the following operation performance:

� Iterate: Fastest. Great for loops.

� Op: All it does is increment a counter to get to the next record.

� Insert, Erase, Move: Position-dependent. Generally slow.

� Op: Adding/removing/moving content involves moving the adjacent records over (to make room
/ �ll space).

� Fast add/remove from the end.

� Slow add/remove from an arbitrary position.

� Slowest add/remove from the front.

� If doing many inserts/removals from the front, then...

1. invert the array.

2.11. Best practices 295

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

Godot Engine Documentation, Release latest

2. do a loop which executes the Array changes at the end.

3. re-invert the array.

This makes only 2 copies of the array (still constant time, but slow) versus copying roughly 1/2
of the array, on average, N times (linear time).

� Get, Set: Fastest by position. E.g. can request 0th, 2nd, 10th record, etc. but cannot specify which
record you want.

� Op: 1 addition operation from array start position up to desired index.

� Find: Slowest. Identi�es the index/position of a value.

� Op: Must iterate through array and compare values until one �nds a match.

* Performance is also dependent on whether one needs an exhaustive search.

� If kept ordered, custom search operations can bring it to logarithmic time (relatively fast). Laymen
users won't be comfortable with this though. Done by re-sorting the Array after every edit and
writing an ordered-aware search algorithm.

Godot implements Dictionary as an OrderedHashMap<Variant, Variant>. The engine stores a small array
(initialized to 2^3 or 8 records) of key-value pairs. When one attempts to access a value, they provide it a
key. It then hashes the key, i.e. converts it into a number. The "hash" is used to calculate the index into the
array. As an array, the OHM then has a quick lookup within the "table" of keys mapped to values. When
the HashMap becomes too full, it increases to the next power of 2 (so, 16 records, then 32, etc.) and rebuilds
the structure.

Hashes are to reduce the chance of a key collision. If one occurs, the table must recalculate another index
for the value that takes the previous position into account. In all, this results in constant-time access to all
records at the expense of memory and some minor operational e�ciency.

1. Hashing every key an arbitrary number of times.

� Hash operations are constant-time, so even if an algorithm must do more than one, as long as the
number of hash calculations doesn't become too dependent on the density of the table, things will
stay fast. Which leads to...

2. Maintaining an ever-growing size for the table.

� HashMaps maintain gaps of unused memory interspersed in the table on purpose to reduce hash
collisions and maintain the speed of accesses. This is why it constantly increases in size quadrat-
ically by powers of 2.

As one might be able to tell, Dictionaries specialize in tasks that Arrays do not. An overview of their
operational details is as follows:

� Iterate: Fast.

� Op: Iterate over the map's internal vector of hashes. Return each key. Afterwards, users then
use the key to jump to and return the desired value.

� Insert, Erase, Move: Fastest.

� Op: Hash the given key. Do 1 addition operation to look up the appropriate value (array start
+ o�set). Move is two of these (one insert, one erase). The map must do some maintenance to
preserve its capabilities:

* update ordered List of records.

* determine if table density mandates a need to expand table capacity.

� The Dictionary remembers in what order users inserted its keys. This enables it to execute reliable
iterations.

296 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

� Get, Set: Fastest. Same as a lookup by key.

� Op: Same as insert/erase/move.

� Find: Slowest. Identi�es the key of a value.

� Op: Must iterate through records and compare the value until a match is found.

� Note that Godot does not provide this feature out-of-the-box (because they aren't meant for this
task).

Godot implements Objects as stupid, but dynamic containers of data content. Objects query data sources
when posed questions. For example, to answer the question, "do you have a property called, 'position'?", it
might ask its script or the ClassDB. One can �nd more information about what objects are and how they
work in the Applying object-oriented principles in Godot article.

The important detail here is the complexity of the Object's task. Every time it performs one of these multi-
source queries, it runs through several iteration loops and HashMap lookups. What's more, the queries are
linear-time operations dependent on the Object's inheritance hierarchy size. If the class the Object queries
(its current class) doesn't �nd anything, the request defers to the next base class, all the way up until the
original Object class. While these are each fast operations in isolation, the fact that it must make so many
checks is what makes them slower than both of the alternatives for looking up data.

Note: When developers mention how slow the scripting API is, it is this chain of queries they refer to.
Compared to compiled C++ code where the application knows exactly where to go to �nd anything, it is
inevitable that scripting API operations will take much longer. They must locate the source of any relevant
data before they can attempt to access it.

The reason GDScript is slow is because every operation it performs passes through this system.

C# can process some content at higher speeds via more optimized bytecode. But, if the C# script calls
into an engine class' content or if the script tries to access something external to it, it will go through this
pipeline.

NativeScript C++ goes even further and keeps everything internal by default. Calls into external structures
will go through the scripting API. In NativeScript C++, registering methods to expose them to the scripting
API is a manual task. It is at this point that external, non-C++ classes will use the API to locate them.

So, assuming one extends from Reference to create a data structure, like an Array or Dictionary, why choose
an Object over the other two options?

1. Control: With objects comes the ability to create more sophisticated structures. One can layer abstrac-
tions over the data to ensure the external API doesn't change in response to internal data structure
changes. What's more, Objects can have signals, allowing for reactive behavior.

2. Clarity: Objects are a reliable data source when it comes to the data that scripts and engine classes
de�ne for them. Properties may not hold the values one expects, but one doesn't need to worry about
whether the property exists in the �rst place.

3. Convenience: If one already has a similar data structure in mind, then extending from an existing class
makes the task of building the data structure much easier. In comparison, Arrays and Dictionaries
don't ful�ll all use cases one might have.

Objects also give users the opportunity to create even more specialized data structures. With it, one can
design their own List, Binary Search Tree, Heap, Splay Tree, Graph, Disjoint Set, and any host of other
options.

"Why not use Node for tree structures?" one might ask. Well, the Node class contains things that won't be
relevant to one's custom data structure. As such, it can be helpful to construct one's own node type when
building tree structures.

2.11. Best practices 297

Godot Engine Documentation, Release latest

GDScript

extends Object
class_name TreeNode

var _parent: TreeNode = null
var _children: = [] setget

func _noti�cation(p_what):
match p_what:

NOTIFICATION_PREDELETE:
Destructor.
for a_child in _children:

a_child.free()

C#

using Godot;
using System.Collections.Generic;

// Can decide whether to expose getters/setters for properties later
public partial class TreeNode : GodotObject
{

private TreeNode _parent = null;

private List<TreeNode> _children = new();

public override void _Noti�cation(int what)
{

switch (what)
{

case Noti�cationPredelete:
foreach (TreeNode child in _children)
{

node.Free();
}
break;

}
}

}

From here, one can then create their own structures with speci�c features, limited only by their imagination.

Enumerations: int vs. string

Most languages o�er an enumeration type option. GDScript is no di�erent, but unlike most other languages,
it allows one to use either integers or strings for the enum values (the latter only when using the export
keyword in GDScript). The question then arises, "which should one use?"

The short answer is, "whichever you are more comfortable with." This is a feature speci�c to GDScript and
not Godot scripting in general; The languages prioritizes usability over performance.

On a technical level, integer comparisons (constant-time) will happen faster than string comparisons (linear-
time). If one wants to keep up other languages' conventions though, then one should use integers.

The primary issue with using integers comes up when one wants to print an enum value. As integers,

298 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

attempting to print MY_ENUM will print 5 or what-have-you, rather than something like "MyEnum". To
print an integer enum, one would have to write a Dictionary that maps the corresponding string value for
each enum.

If the primary purpose of using an enum is for printing values and one wishes to group them together as
related concepts, then it makes sense to use them as strings. That way, a separate data structure to execute
on the printing is unnecessary.

AnimatedTexture vs. AnimatedSprite2D vs. AnimationPlayer vs. AnimationTree

Under what circumstances should one use each of Godot's animation classes? The answer may not be
immediately clear to new Godot users.

AnimatedTexture is a texture that the engine draws as an animated loop rather than a static image. Users
can manipulate...

1. the rate at which it moves across each section of the texture (FPS).

2. the number of regions contained within the texture (frames).

Godot's RenderingServer then draws the regions in sequence at the prescribed rate. The good news is that
this involves no extra logic on the part of the engine. The bad news is that users have very little control.

Also note that AnimatedTexture is a Resource unlike the other Node objects discussed here. One might
create a Sprite2D node that uses AnimatedTexture as its texture. Or (something the others can't do) one
could add AnimatedTextures as tiles in a TileSet and integrate it with a TileMap for many auto-animating
backgrounds that all render in a single batched draw call.

The AnimatedSprite2D node, in combination with the SpriteFrames resource, allows one to create a variety
of animation sequences through spritesheets, �ip between animations, and control their speed, regional o�set,
and orientation. This makes them well-suited to controlling 2D frame-based animations.

If one needs trigger other e�ects in relation to animation changes (for example, create particle e�ects, call
functions, or manipulate other peripheral elements besides the frame-based animation), then will need to
use an AnimationPlayer node in conjunction with the AnimatedSprite2D.

AnimationPlayers are also the tool one will need to use if they wish to design more complex 2D animation
systems, such as...

1. Cut-out animations: editing sprites' transforms at runtime.

2. 2D Mesh animations: de�ning a region for the sprite's texture and rigging a skeleton to it. Then one
animates the bones which stretch and bend the texture in proportion to the bones' relationships to
each other.

3. A mix of the above.

While one needs an AnimationPlayer to design each of the individual animation sequences for a game, it can
also be useful to combine animations for blending, i.e. enabling smooth transitions between these animations.
There may also be a hierarchical structure between animations that one plans out for their object. These
are the cases where the AnimationTree shines. One can �nd an in-depth guide on using the AnimationTree
here.

2.11. Best practices 299

Godot Engine Documentation, Release latest

2.11.10 Logic preferences

Ever wondered whether one should approach problem X with strategy Y or Z? This article covers a variety
of topics related to these dilemmas.

Adding nodes and changing properties: which �rst?

When initializing nodes from a script at runtime, you may need to change properties such as the node's
name or position. A common dilemma is, when should you change those values?

It is the best practice to change values on a node before adding it to the scene tree. Some property's setters
have code to update other corresponding values, and that code can be slow! For most cases, this code has
no impact on your game's performance, but in heavy use cases such as procedural generation, it can bring
your game to a crawl.

For these reasons, it is always a best practice to set the initial values of a node before adding it to the scene
tree.

Loading vs. preloading

In GDScript, there exists the global preload method. It loads resources as early as possible to front-load the
"loading" operations and avoid loading resources while in the middle of performance-sensitive code.

Its counterpart, the load method, loads a resource only when it reaches the load statement. That is, it will
load a resource in-place which can cause slowdowns when it occurs in the middle of sensitive processes. The
load() function is also an alias for ResourceLoader.load(path) which is accessible to all scripting languages.

So, when exactly does preloading occur versus loading, and when should one use either? Let's see an example:

GDScript

my_buildings.gd
extends Node

Note how constant scripts/scenes have a di�erent naming scheme than
their property variants.

This value is a constant, so it spawns when the Script object loads.
The script is preloading the value. The advantage here is that the editor
can o�er autocompletion since it must be a static path.
const BuildingScn = preload("res://building.tscn")

1. The script preloads the value, so it will load as a dependency
of the 'my_buildings.gd' script �le. But, because this is a
property rather than a constant, the object won't copy the preloaded
PackedScene resource into the property until the script instantiates
with .new().
#
2. The preloaded value is inaccessible from the Script object alone. As
such, preloading the value here actually does not bene�t anyone.
#
3. Because the user exports the value, if this script stored on
a node in a scene �le, the scene instantiation code will overwrite the
preloaded initial value anyway (wasting it). It's usually better to
provide null, empty, or otherwise invalid default values for exports.
#
4. It is when one instantiates this script on its own with .new() that

(continues on next page)

300 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

one will load "o�ce.tscn" rather than the exported value.
export(PackedScene) var a_building = preload("o�ce.tscn")

Uh oh! This results in an error!
One must assign constant values to constants. Because `load` performs a
runtime lookup by its very nature, one cannot use it to initialize a
constant.
const O�ceScn = load("res://o�ce.tscn")

Successfully loads and only when one instantiates the script! Yay!
var o�ce_scn = load("res://o�ce.tscn")

C#

using Godot;

// C# and other languages have no concept of "preloading".
public partial class MyBuildings : Node
{

//This is a read-only �eld, it can only be assigned when it's declared or during a constructor.
public readonly PackedScene Building = ResourceLoader.Load<PackedScene>("res://building.tscn");

public PackedScene ABuilding;

public override void _Ready()
{

// Can assign the value during initialization.
ABuilding = GD.Load<PackedScene>("res://O�ce.tscn");

}
}

Preloading allows the script to handle all the loading the moment one loads the script. Preloading is useful,
but there are also times when one doesn't wish for it. To distinguish these situations, there are a few things
one can consider:

1. If one cannot determine when the script might load, then preloading a resource, especially a scene or
script, could result in further loads one does not expect. This could lead to unintentional, variable-
length load times on top of the original script's load operations.

2. If something else could replace the value (like a scene's exported initialization), then preloading the
value has no meaning. This point isn't a signi�cant factor if one intends to always create the script on
its own.

3. If one wishes only to 'import' another class resource (script or scene), then using a preloaded constant
is often the best course of action. However, in exceptional cases, one may wish not to do this:

1. If the 'imported' class is liable to change, then it should be a property instead, initialized either
using an export or a load() (and perhaps not even initialized until later).

2. If the script requires a great many dependencies, and one does not wish to consume so much
memory, then one may wish to, load and unload various dependencies at runtime as circumstances
change. If one preloads resources into constants, then the only way to unload these resources would
be to unload the entire script. If they are instead loaded properties, then one can set them to null
and remove all references to the resource entirely (which, as a RefCounted-extending type, will
cause the resources to delete themselves from memory).

2.11. Best practices 301

Godot Engine Documentation, Release latest

Large levels: static vs. dynamic

If one is creating a large level, which circumstances are most appropriate? Should they create the level as
one static space? Or should they load the level in pieces and shift the world's content as needed?

Well, the simple answer is, "when the performance requires it." The dilemma associated with the two options
is one of the age-old programming choices: does one optimize memory over speed, or vice versa?

The naive answer is to use a static level that loads everything at once. But, depending on the project, this
could consume a large amount of memory. Wasting users' RAM leads to programs running slow or outright
crashing from everything else the computer tries to do at the same time.

No matter what, one should break larger scenes into smaller ones (to aid in reusability of assets). Developers
can then design a node that manages the creation/loading and deletion/unloading of resources and nodes in
real-time. Games with large and varied environments or procedurally generated elements often implement
these strategies to avoid wasting memory.

On the �ip side, coding a dynamic system is more complex, i.e. uses more programmed logic, which results
in opportunities for errors and bugs. If one isn't careful, they can develop a system that bloats the technical
debt of the application.

As such, the best options would be...

1. To use a static level for smaller games.

2. If one has the time/resources on a medium/large game, create a library or plugin that can code the
management of nodes and resources. If re�ned over time, so as to improve usability and stability, then
it could evolve into a reliable tool across projects.

3. Code the dynamic logic for a medium/large game because one has the coding skills, but not the time
or resources to re�ne the code (game's gotta get done). Could potentially refactor later to outsource
the code into a plugin.

For an example of the various ways one can swap scenes around at runtime, please see the "Change scenes
manually" documentation.

2.11.11 Project organization

Introduction

Since Godot has no restrictions on project structure or �lesystem usage, organizing �les when learning the
engine can seem challenging. This tutorial suggests a work�ow which should be a good starting point. We
will also cover using version control with Godot.

Organization

Godot is scene-based in nature, and uses the �lesystem as-is, without metadata or an asset database.

Unlike other engines, many resources are contained within the scene itself, so the amount of �les in the
�lesystem is considerably lower.

Considering that, the most common approach is to group assets as close to scenes as possible; when a project
grows, it makes it more maintainable.

As an example, one can usually place into a single folder their basic assets, such as sprite images, 3D model
meshes, materials, and music, etc. They can then use a separate folder to store built levels that use them.

/project.godot
/docs/.gdignore # See "Ignoring speci�c folders" below
/docs/learning.html

(continues on next page)

302 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

(continued from previous page)

/models/town/house/house.dae
/models/town/house/window.png
/models/town/house/door.png
/characters/player/cubio.dae
/characters/player/cubio.png
/characters/enemies/goblin/goblin.dae
/characters/enemies/goblin/goblin.png
/characters/npcs/suzanne/suzanne.dae
/characters/npcs/suzanne/suzanne.png
/levels/riverdale/riverdale.scn

Style guide

For consistency across projects, we recommend following these guidelines:

� Use snake_case for folder and �le names (with the exception of C# scripts). This sidesteps case
sensitivity issues that can crop up after exporting a project on Windows. C# scripts are an exception
to this rule, as the convention is to name them after the class name which should be in PascalCase.

� Use PascalCase for node names, as this matches built-in node casing.

� In general, keep third-party resources in a top-level addons/ folder, even if they aren't editor plugins.
This makes it easier to track which �les are third-party. There are some exceptions to this rule; for
instance, if you use third-party game assets for a character, it makes more sense to include them within
the same folder as the character scenes and scripts.

Importing

Godot versions prior to 3.0 did the import process from �les outside the project. While this can be useful
in large projects, it resulted in an organization hassle for most developers.

Because of this, assets are now transparently imported from within the project folder.

Ignoring speci�c folders

To prevent Godot from importing �les contained in a speci�c folder, create an empty �le called .gdignore in
the folder (the leading . is required). This can be useful to speed up the initial project importing.

Note: To create a �le whose name starts with a dot on Windows, place a dot at both the beginning and
end of the �lename (".gdignore."). Windows will automatically remove the trailing dot when you con�rm
the name.

Alternatively, you can use a text editor such as Notepad++ or use the following command in a command
prompt: type nul > .gdignore

Once the folder is ignored, resources in that folder can't be loaded anymore using the load() and preload()
methods. Ignoring a folder will also automatically hide it from the FileSystem dock, which can be useful to
reduce clutter.

Note that the .gdignore �le's contents are ignored, which is why the �le should be empty. It does not support
patterns like .gitignore �les do.

2.11. Best practices 303

Godot Engine Documentation, Release latest

Case sensitivity

Windows and recent macOS versions use case-insensitive �lesystems by default, whereas Linux distributions
use a case-sensitive �lesystem by default. This can cause issues after exporting a project, since Godot's PCK
virtual �lesystem is case-sensitive. To avoid this, it's recommended to stick to snake_case naming for all
�les in the project (and lowercase characters in general).

Note: You can break this rule when style guides say otherwise (such as the C# style guide). Still, be
consistent to avoid mistakes.

On Windows 10, to further avoid mistakes related to case sensitivity, you can also make the project folder
case-sensitive. After enabling the Windows Subsystem for Linux feature, run the following command in a
PowerShell window:

To enable case-sensitivity:
fsutil �le setcasesensitiveinfo <path to project folder> enable

To disable case-sensitivity:
fsutil �le setcasesensitiveinfo <path to project folder> disable

If you haven't enabled the Windows Subsystem for Linux, you can enter the following line in a PowerShell
window running as Administrator then reboot when asked:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

2.11.12 Version control systems

Introduction

Godot aims to be VCS-friendly and generate mostly readable and mergeable �les.

Version control plugins

Godot also supports the use of version control systems in the editor itself. However, version control in the
editor requires a plugin for the speci�c VCS you're using.

As of July 2023, there is only a Git plugin available, but the community may create additional VCS plugins.

O�cial Git plugin

Warning: As of July 2023, the Git plugin hasn't been updated to work with Godot 4.1 and later yet.

Using Git from inside the editor is supported with an o�cial plugin. You can �nd the latest releases on
GitHub.

Documentation on how to use the Git plugin can be found on its wiki.

304 Chapter 2. O�ine documentation

https://github.com/godotengine/godot-git-plugin/releases
https://github.com/godotengine/godot-git-plugin/wiki

Godot Engine Documentation, Release latest

Files to exclude from VCS

Note: This lists �les and folders that should be ignored from version control in Godot 4.1 and later.

The list of �les of folders that should be ignored from version control in Godot 3.x and Godot 4.0 is entirely
di�erent. This is important, as Godot 3.x and 4.0 may store sensitive credentials in export_presets.cfg
(unlike Godot 4.1 and later).

If you are using Godot 3, check the 3.5 version of this documentation page instead.

There are some �les and folders Godot automatically creates when opening a project in the editor for the
�rst time. To avoid bloating your version control repository with generated data, you should add them to
your VCS ignore:

� .godot/: This folder stores various project cache data.

� *.translation: These �les are binary imported translations generated from CSV �les.

You can make the Godot project manager generate version control metadata for you automatically when
creating a project. When choosing the Git option, this creates .gitignore and .gitattributes �les in the project
root:

Fig. 1: Creating version control metadata in the project manager's New Project dialog

In existing projects, select the Project menu at the top of the editor, then choose Version Control > Generate
Version Control Metadata. This creates the same �les as if the operation was performed in the project
manager.

Working with Git on Windows

Most Git for Windows clients are con�gured with the core.autocrlf set to true. This can lead to �les
unnecessarily being marked as modi�ed by Git due to their line endings being converted from LF to CRLF
automatically.

It is better to set this option as:

git con�g --global core.autocrlf input

Creating version control metadata using the project manager or editor will automatically enforce LF line
endings using the .gitattributes �le. In this case, you don't need to change your Git con�guration.

2.11. Best practices 305

Godot Engine Documentation, Release latest

2.12 Troubleshooting

This page lists common issues encountered when using Godot and possible solutions.

See also:

See Using the Web editor for caveats speci�c to the Web version of the Godot editor.

2.12.1 The editor runs slowly and uses all my CPU and GPU resources, making my computer
noisy

This is a known issue, especially on macOS since most Macs have Retina displays. Due to Retina displays'
higher pixel density, everything has to be rendered at a higher resolution. This increases the load on the
GPU and decreases perceived performance.

There are several ways to improve performance and battery life:

� In 3D, click the Perspective button in the top left corner and enable Half Resolution. The 3D viewport
will now be rendered at half resolution, which can be up to 4 times faster.

� Open the Editor Settings and increase the value of Low Processor Mode Sleep (µsec) to 33000 (30
FPS). This value determines the amount of microseconds between frames to render. Higher values will
make the editor feel less reactive but will help decrease CPU and GPU usage signi�cantly.

� If you have a node that causes the editor to redraw continuously (such as particles), hide it and show
it using a script in the _ready() method. This way, it will be hidden in the editor but will still be
visible in the running project.

2.12.2 The editor stutters and �ickers on my variable refresh rate monitor (G-
Sync/FreeSync)

This is a known issue. Variable refresh rate monitors need to adjust their gamma curves continuously to
emit a consistent amount of light over time. This can cause �icker to appear in dark areas of the image when
the refresh rate varies a lot, which occurs as the Godot editor only redraws when necessary.

There are several workarounds for this:

� Enable Interface > Editor > Update Continuously in the Editor Settings. Keep in mind this will
increase power usage and heat/noise emissions since the editor will now be rendering constantly, even
if nothing has changed on screen. To alleviate this, you can increase Low Processor Mode Sleep (µsec)
to 33000 (30 FPS) in the Editor Settings. This value determines the amount of microseconds between
frames to render. Higher values will make the editor feel less reactive but will help decrease CPU and
GPU usage signi�cantly.

� Alternatively, disable variable refresh rate on your monitor or in the graphics driver.

� VRR �icker can be reduced on some displays using the VRR Control or Fine Tune Dark Areas options
in your monitor's OSD. These options may increase input lag or result in crushed blacks.

� If using an OLED display, use the Black (OLED) editor theme preset in the Editor Settings. This
hides VRR �icker thanks to OLED's perfect black levels.

306 Chapter 2. O�ine documentation

https://github.com/godotengine/godot/issues/38219

Godot Engine Documentation, Release latest

2.12.3 The editor or project takes a very long time to start

When using one of the Vulkan-based renderers (Forward+ or Forward Mobile), the �rst startup is expected
to be relatively long. This is because shaders need to be compiled before they can be cached. Shaders also
need to be cached again after updating Godot, after updating graphics drivers or after switching graphics
cards.

If the issue persists after the �rst startup, this is a known bug on Windows when you have speci�c USB
peripherals connected. In particular, Corsair's iCUE software seems to cause this bug. Try updating your
USB peripherals' drivers to their latest version. If the bug persists, you need to disconnect the speci�c
peripheral before opening the editor. You can then connect the peripheral again.

Firewall software such as Portmaster may also cause the debug port to be blocked. This causes the project
to take a long time to start, while being unable to use debugging features in the editor (such as viewing
print() output). You can work this around by changing the debug port used by the project in the Editor
Settings (Network > Debug > Remote Port). The default is 6007; try another value that is greater than
1024, such as 7007.

2.12.4 The Godot editor appears frozen after clicking the system console

When running Godot on Windows with the system console enabled, you can accidentally enable selection
mode by clicking inside the command window. This Windows-speci�c behavior pauses the application to let
you select text inside the system console. Godot cannot override this system-speci�c behavior.

To solve this, select the system console window and press Enter to leave selection mode.

2.12.5 The Godot editor's macOS dock icon gets duplicated every time it is manually moved

If you open the Godot editor and manually change the position of the dock icon, then restart the editor, you
will get a duplicate dock icon all the way to the right of the dock.

This is due to a design limitation of the macOS dock. The only known way to resolve this would be to merge
the project manager and editor into a single process, which means the project manager would no longer
spawn a separate process when starting the editor. While using a single process instance would bring several
bene�ts, it isn't planned to be done in the near future due to the complexity of the task.

To avoid this issue, keep the Godot editor's dock icon at its default location as created by macOS.

2.12.6 Some text such as "NO DC" appears in the top-left corner of the Project Manager
and editor window

This is caused by the NVIDIA graphics driver injecting an overlay to display information.

To disable this overlay on Windows, restore your graphics driver settings to the default values in the NVIDIA
Control Panel.

To disable this overlay on Linux, open nvidia-settings, go to X Screen 0 > OpenGL Settings then uncheck
Enable Graphics API Visual Indicator.

2.12. Troubleshooting 307

https://github.com/godotengine/godot/issues/20566

Godot Engine Documentation, Release latest

2.12.7 The editor or project appears overly sharp or blurry

Fig. 2: Correct appearance (left), oversharpened appearance due to graphics driver sharpening (right)

If the editor or project appears overly sharp, this is likely due to image sharpening being forced on all
Vulkan or OpenGL applications by your graphics driver. You can disable this behavior in the graphics
driver's control panel:

� NVIDIA (Windows): Open the start menu and choose NVIDIA Control Panel. Open the Manage 3D
settings tab on the left. In the list in the middle, scroll to Image Sharpening and set it to Sharpening
O�.

� AMD (Windows): Open the start menu and choose AMD Software. Click the settings "cog" icon in
the top-right corner. Go to the Graphics tab then disable Radeon Image Sharpening.

If the editor or project appears overly blurry, this is likely due to FXAA (Fast Approximate AntiAliasing)
being forced on all Vulkan or OpenGL applications by your graphics driver.

� NVIDIA (Windows): Open the start menu and choose NVIDIA Control Panel. Open the Manage 3D
settings tab on the left. In the list in the middle, scroll to Fast Approximate Antialiasing and set it to
Application Controlled.

� NVIDIA (Linux): Open the applications menu and choose NVIDIA X Server Settings. Select to
Antialiasing Settings on the left, then uncheck Enable FXAA.

� AMD (Windows): Open the start menu and choose AMD Software. Click the settings "cog" icon in
the top-right corner. Go to the Graphics tab, scroll to the bottom and click Advanced to unfold its
settings. Disable Morphological Anti-Aliasing.

Third-party vendor-independent utilities such as vkBasalt may also force sharpening or FXAA on all Vulkan
applications. You may want to check their con�guration as well.

After changing options in the graphics driver or third-party utilities, restart Godot to make the changes
e�ective.

If you still wish to force sharpening or FXAA on other applications, it's recommended to do so on a per-
application basis using the application pro�les system provided by graphics drivers' control panels.

2.12.8 The editor or project appears to have washed out colors

On Windows, this is usually caused by incorrect OS or monitor settings, as Godot currently does not support
HDR (High Dynamic Range) output (even though it may internally render in HDR).

As most displays are not designed to display SDR content in HDR mode, it is recommended to disable HDR
in the Windows settings when not running applications that use HDR output. On Windows 11, this can be
done by pressing Windows + Alt + B (this shortcut is part of the Xbox Game Bar app). To toggle HDR
automatically based on applications currently running, you can use AutoActions.

If you insist on leaving HDR enabled, it is possible to somewhat improve the result by ensuring the display is
con�gured to use HGIG (HDR Gaming Interest Group) tonemapping (as opposed to DTM (Dynamic Tone

308 Chapter 2. O�ine documentation

https://tftcentral.co.uk/articles/heres-why-you-should-only-enable-hdr-mode-on-your-pc-when-you-are-viewing-hdr-content
https://github.com/Codectory/AutoActions

Godot Engine Documentation, Release latest

Mapping)), then using the Windows HDR calibration app. It is also strongly recommended to use Windows
11 instead of Windows 10 when using HDR. The end result will still likely be inferior to disabling HDR on
the display, though.

Support for HDR output is planned in a future release.

2.12.9 The editor/project freezes or displays glitched visuals after resuming the PC from
suspend

This is a known issue on Linux with NVIDIA graphics when using the proprietary driver. There is no
de�nitive �x yet, as suspend on Linux + NVIDIA is often buggy when OpenGL or Vulkan is involved.
The Compatibility rendering method (which uses OpenGL) is generally less prone to suspend-related issues
compared to the Forward+ and Forward Mobile rendering methods (which use Vulkan).

The NVIDIA driver o�ers an experimental option to preserve video memory after suspend which may resolve
this issue. This option has been reported to work better with more recent NVIDIA driver versions.

To avoid losing work, save scenes in the editor before putting the PC to sleep.

2.12.10 The project works when run from the editor, but fails to load some �les when running
from an exported copy

This is usually caused by forgetting to specify a �lter for non-resource �les in the Export dialog. By default,
Godot will only include actual resources into the PCK �le. Some �les commonly used, such as JSON �les,
are not considered resources. For example, if you load test.json in the exported project, you need to specify
*.json in the non-resource export �lter. See Resource options for more information.

Also, note that �les and folders whose names begin with a period will never be included in the exported
project. This is done to prevent version control folders like .git from being included in the exported PCK
�le.

On Windows, this can also be due to case sensitivity issues. If you reference a resource in your script with
a di�erent case than on the �lesystem, loading will fail once you export the project. This is because the
virtual PCK �lesystem is case-sensitive, while Windows's �lesystem is case-insensitive by default.

2.13 Editor introduction

In this section, we cover the Godot editor in general, from its interface to using it with the command line.

2.13.1 Editor's interface

The following pages explain how to use the various windows, workspaces, and docks that make up the Godot
editor. We cover some speci�c editors' interface in other sections where appropriate. For example, the
animation editor.

Using the Project Manager

When you launch Godot, the �rst window you see is the Project Manager. It lets you create, remove, import,
or play game projects.

2.13. Editor introduction 309

https://support.microsoft.com/en-us/windows/calibrate-your-hdr-display-using-the-windows-hdr-calibration-app-f30f4809-3369-43e4-9b02-9eabebd23f19
https://wiki.archlinux.org/title/NVIDIA/Tips_and_tricks#Preserve_video_memory_after_suspend

Godot Engine Documentation, Release latest

In the window's top-right corner, a drop-down menu allows you to change the editor's language.

310 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Creating and importing projects

To create a new project:

1. Click the New button on the top-left of the window.

2. Give the project a name, choose an empty folder on your computer to save the �les, and select a
rendering backend.

3. Click the Create & Edit button to create the project folder and open it in the editor.

Using the �le browser

Click the Browse button to open Godot's �le browser and pick a location or type the folder's path in the
Project Path �eld.

2.13. Editor introduction 311

Godot Engine Documentation, Release latest

When you see the green tick on the right, it means the engine detects an empty folder. You can also click
the Create Folder button to create an empty folder based on your project's name.

Opening and importing projects

The next time you open the Project Manager, you'll see your new project in the list. Double click on it to
open it in the editor.

You can similarly import existing projects using the Import button. Locate the folder that contains the

312 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

project or the project.godot �le to import and edit it.

When the folder path is correct, you'll see a green checkmark.

Downloading demos and templates

From the Asset Library Projects tab you can download open source project templates and demos from the
Asset Library to help you get started faster.

To download a demo or template:

1. Click on its title.

2. On the page that opens, click the download button.

3. Once it �nished downloading, click install and choose where you want to save the project.

2.13. Editor introduction 313

Godot Engine Documentation, Release latest

The Inspector

This page explains how the Inspector dock works in-depth. You will learn how to edit properties, fold and
unfold areas, use the search bar, and more.

Warning: This page is a work-in-progress.

Overview of the interface

Let's start by looking at the dock's main parts.

314 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

At the top are the �le and navigation buttons.

Below it, you can �nd the selected node's name, its type, and the tools menu on the right side.

If you click the tool menu icon, a drop-down menu o�ers some view and edit options.

2.13. Editor introduction 315

Godot Engine Documentation, Release latest

Then comes the search bar. Type anything in it to �lter displayed properties. Delete the text to clear the
search.

Project Settings

This page explains how to use the Project Settings window. If you would like to access and modify project
settings via code, see ProjectSettings.

Godot stores the project settings in a project.godot �le, a plain text �le in INI format. There are dozens of
settings you can change to control a project's execution. To simplify this process, Godot provides a project
settings dialog, which acts as a front-end to editing a project.godot �le.

To access that dialog, select Project -> Project Settings.

Once the window opens, let's select a main scene. Locate the Application/Run/Main Scene property and
click on it to select 'hello.tscn'.

The project settings dialog provides a lot of options that can be saved to a project.godot �le and shows their
default values. If you change a value, a tick appears to the left of its name. This means that the property
will be saved in the project.godot �le and remembered.

316 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Default editor shortcuts

Many of Godot Editor functions can be executed with keyboard shortcuts. This page lists functions which
have associated shortcuts by default, but many others are available for customization in editor settings as
well. To change keys associated with these and other actions navigate to Editor -> Editor Settings ->
Shortcuts.

While some actions are universal, a lot of shortcuts are speci�c to individual tools. For this reason it is
possible for some key combinations to be assigned to more than one function. The correct action will be
performed depending on the context.

Note: While Windows and Linux builds of the editor share most of the default settings, some shortcuts
may di�er for macOS version. This is done for better integration of the editor into macOS ecosystem. Users
�uent with standard shortcuts on that OS should �nd Godot Editor's default key mapping intuitive.

General Editor Actions

Action name Windows, Linux macOS Editor setting
Open 2D Editor Ctrl + F1 Alt + 1 editor/editor_2d
Open 3D Editor Ctrl + F2 Alt + 2 editor/editor_3d
Open Script Editor Ctrl + F3 Alt + 3 editor/editor_script
Search Help F1 Alt + Space editor/editor_help
Distraction Free
Mode

Ctrl + Shift + F11 Cmd + Ctrl + D editor/
distraction_free_mode

Next tab Ctrl + Tab Cmd + Tab editor/next_tab
Previous tab Ctrl + Shift + Tab Cmd + Shift + Tab editor/prev_tab
Filter Files Ctrl + Alt + P Cmd + Alt + P editor/�lter_�les
Open Scene Ctrl + O Cmd + O editor/open_scene
Close Scene Ctrl + Shift + W Cmd + Shift + W editor/close_scene
Reopen Closed Scene Ctrl + Shift + T Cmd + Shift + T editor/reopen_closed_scene
Save Scene Ctrl + S Cmd + S editor/save_scene
Save Scene As Ctrl + Shift + S Cmd + Shift + S editor/save_scene_as
Save All Scenes Ctrl + Shift + Alt +

S
Cmd + Shift + Alt +
S

editor/save_all_scenes

Quick Open Shift + Alt + O Shift + Alt + O editor/quick_open
Quick Open Scene Ctrl + Shift + O Cmd + Shift + O editor/quick_open_scene
Quick Open Script Ctrl + Alt + O Cmd + Alt + O editor/quick_open_script
Undo Ctrl + Z Cmd + Z editor/undo
Redo Ctrl + Shift + Z Cmd + Shift + Z editor/redo
Quit Ctrl + Q Cmd + Q editor/�le_quit
Quit to Project List Ctrl + Shift + Q Shift + Alt + Q editor/quit_to_project_list
Take Screenshot Ctrl + F12 Cmd + F12 editor/take_screenshot
Toggle Fullscreen Shift + F11 Cmd + Ctrl + F editor/fullscreen_mode
Play F5 Cmd + B editor/play
Pause Scene F7 Cmd + Ctrl + Y editor/pause_scene
Stop F8 Cmd + . editor/stop
Play Scene F6 Cmd + R editor/play_scene
Play Custom Scene Ctrl + Shift + F5 Cmd + Shift + R editor/play_custom_scene
Expand Bottom
Panel

Shift + F12 Shift + F12 editor/
bottom_panel_expand

2.13. Editor introduction 317

Godot Engine Documentation, Release latest

2D / Canvas Item Editor

Action name Windows,
Linux

macOS Editor setting

Zoom In Ctrl + = Cmd + = canvas_item_editor/zoom_plus
Zoom Out Ctrl + - Cmd + - canvas_item_editor/zoom_minus
Zoom Reset Ctrl + 0 Cmd + 0 canvas_item_editor/zoom_reset
Pan View Space Space canvas_item_editor/pan_view
Select Mode Q Q canvas_item_editor/select_mode
Move Mode W W canvas_item_editor/move_mode
Rotate Mode E E canvas_item_editor/rotate_mode
Scale Mode S S canvas_item_editor/scale_mode
Ruler Mode R R canvas_item_editor/ruler_mode
Use Smart Snap Shift + S Shift + S canvas_item_editor/use_smart_snap
Use Grid Snap Shift + G Shift + G canvas_item_editor/use_grid_snap
Multiply grid step by 2 Num * Num * canvas_item_editor/multiply_grid_step
Divide grid step by 2 Num / Num / canvas_item_editor/divide_grid_step
Always Show Grid G G canvas_item_editor/show_grid
Show Helpers H H canvas_item_editor/show_helpers
Show Guides Y Y canvas_item_editor/show_guides
Center Selection F F canvas_item_editor/center_selection
Frame Selection Shift + F Shift + F canvas_item_editor/frame_selection
Preview Canvas Scale Ctrl + Shift

+ P
Cmd + Shift
+ P

canvas_item_editor/
preview_canvas_scale

Insert Key Ins Ins canvas_item_editor/anim_insert_key
Insert Key (Existing
Tracks)

Ctrl + Ins Cmd + Ins canvas_item_editor/
anim_insert_key_existing_tracks

Make Custom Bones from
Nodes

Ctrl + Shift
+ B

Cmd + Shift
+ B

canvas_item_editor/
skeleton_make_bones

Clear Pose Shift + K Shift + K canvas_item_editor/anim_clear_pose

3D / Spatial Editor

Action name Windows, Linux macOS Editor setting
Toggle Freelook Shift + F Shift + F spatial_editor/freelook_toggle
Freelook Left A A spatial_editor/freelook_left
Freelook Right D D spatial_editor/freelook_right
Freelook Forward W W spatial_editor/freelook_forward
Freelook Backwards S S spatial_editor/freelook_backwards
Freelook Up E E spatial_editor/freelook_up
Freelook Down Q Q spatial_editor/freelook_down
Freelook Speed Modi�er Shift Shift spatial_editor/freelook_speed_modi�er
Freelook Slow Modi�er Alt Alt spatial_editor/freelook_slow_modi�er
Select Mode Q Q spatial_editor/tool_select
Move Mode W W spatial_editor/tool_move
Rotate Mode E E spatial_editor/tool_rotate
Scale Mode R R spatial_editor/tool_scale
Use Local Space T T spatial_editor/local_coords
Use Snap Y Y spatial_editor/snap
Snap Object to Floor PgDown PgDown spatial_editor/snap_to_�oor

continues on next page

318 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Table 1 � continued from previous page
Action name Windows, Linux macOS Editor setting

Top View Num 7 Num 7 spatial_editor/top_view
Bottom View Alt + Num 7 Alt + Num 7 spatial_editor/bottom_view
Front View Num 1 Num 1 spatial_editor/front_view
Rear View Alt + Num 1 Alt + Num 1 spatial_editor/rear_view
Right View Num 3 Num 3 spatial_editor/right_view
Left View Alt + Num 3 Alt + Num 3 spatial_editor/left_view
Switch Perspective/Orthogonal View Num 5 Num 5 spatial_editor/switch_perspective_orthogonal
Insert Animation Key K K spatial_editor/insert_anim_key
Focus Origin O O spatial_editor/focus_origin
Focus Selection F F spatial_editor/focus_selection
Align Transform with View Ctrl + Alt + M Cmd + Alt + M spatial_editor/align_transform_with_view
Align Rotation with View Ctrl + Alt + F Cmd + Alt + F spatial_editor/align_rotation_with_view
1 Viewport Ctrl + 1 Cmd + 1 spatial_editor/1_viewport
2 Viewports Ctrl + 2 Cmd + 2 spatial_editor/2_viewports
2 Viewports (Alt) Ctrl + Alt + 2 Cmd + Alt + 2 spatial_editor/2_viewports_alt
3 Viewports Ctrl + 3 Cmd + 3 spatial_editor/3_viewports
3 Viewports (Alt) Ctrl + Alt + 3 Cmd + Alt + 3 spatial_editor/3_viewports_alt
4 Viewports Ctrl + 4 Cmd + 4 spatial_editor/4_viewports

Text Editor

Action name Windows, Linux macOS Editor setting
Cut Ctrl + X Cmd + X script_text_editor/cut
Copy Ctrl + C Cmd + C script_text_editor/copy
Paste Ctrl + V Cmd + V script_text_editor/paste
Select All Ctrl + A Cmd + A script_text_editor/select_all
Find Ctrl + F Cmd + F script_text_editor/�nd
Find Next F3 Cmd + G script_text_editor/�nd_next
Find Previous Shift + F3 Cmd + Shift + G script_text_editor/�nd_previous
Find in Files Ctrl + Shift + F Cmd + Shift + F script_text_editor/�nd_in_�les
Replace Ctrl + R Alt + Cmd + F script_text_editor/replace
Replace in Files Ctrl + Shift + R Cmd + Shift + R script_text_editor/replace_in_�les
Undo Ctrl + Z Cmd + Z script_text_editor/undo
Redo Ctrl + Y Cmd + Y script_text_editor/redo
Move Up Alt + Up Arrow Alt + Up Arrow script_text_editor/move_up
Move Down Alt + Down Arrow Alt + Down Arrow script_text_editor/move_down
Delete Line Ctrl + Shift + K Cmd + Shift + K script_text_editor/delete_line
Toggle Comment Ctrl + K Cmd + K script_text_editor/toggle_comment
Fold/Unfold Line Alt + F Ctrl + Cmd + F script_text_editor/toggle_fold_line
Duplicate Selection Ctrl + Shift + D Cmd + Shift + C script_text_editor/duplicate_selection
Complete Symbol Ctrl + Space Ctrl + Space script_text_editor/complete_symbol
Evaluate Selection Ctrl + Shift + E Cmd + Shift + E script_text_editor/evaluate_selection
Trim Trailing Whitespace Ctrl + Alt + T Cmd + Alt + T script_text_editor/trim_trailing_whitespace
Uppercase Shift + F4 Shift + F4 script_text_editor/convert_to_uppercase
Lowercase Shift + F5 Shift + F5 script_text_editor/convert_to_lowercase
Capitalize Shift + F6 Shift + F6 script_text_editor/capitalize
Convert Indent to Spaces Ctrl + Shift + Y Cmd + Shift + Y script_text_editor/convert_indent_to_spaces
Convert Indent to Tabs Ctrl + Shift + I Cmd + Shift + I script_text_editor/convert_indent_to_tabs

continues on next page

2.13. Editor introduction 319

Godot Engine Documentation, Release latest

Table 2 � continued from previous page
Action name Windows, Linux macOS Editor setting

Auto Indent Ctrl + I Cmd + I script_text_editor/auto_indent
Toggle Bookmark Ctrl + Alt + B Cmd + Alt + B script_text_editor/toggle_bookmark
Go to Next Bookmark Ctrl + B Cmd + B script_text_editor/goto_next_bookmark
Go to Previous Bookmark Ctrl + Shift + B Cmd + Shift + B script_text_editor/goto_previous_bookmark
Go to Function Ctrl + Alt + F Ctrl + Cmd + J script_text_editor/goto_function
Go to Line Ctrl + L Cmd + L script_text_editor/goto_line
Toggle Breakpoint F9 Cmd + Shift + B script_text_editor/toggle_breakpoint
Remove All Breakpoints Ctrl + Shift + F9 Cmd + Shift + F9 script_text_editor/remove_all_breakpoints
Go to Next Breakpoint Ctrl + . Cmd + . script_text_editor/goto_next_breakpoint
Go to Previous Breakpoint Ctrl + , Cmd + , script_text_editor/goto_previous_breakpoint
Contextual Help Alt + F1 Alt + Shift + Space script_text_editor/contextual_help

Script Editor

Action name Windows, Linux macOS Editor setting
Find Ctrl + F Cmd + F script_editor/�nd
Find Next F3 F3 script_editor/�nd_next
Find Previous Shift + F3 Shift + F3 script_editor/�nd_previous
Find in Files Ctrl + Shift + F Cmd + Shift + F script_editor/�nd_in_�les
Move Up Shift + Alt + Up Ar-

row
Shift + Alt + Up Ar-
row

script_editor/
window_move_up

Move Down Shift + Alt + Down Ar-
row

Shift + Alt + Down Ar-
row

script_editor/
window_move_down

Next Script Ctrl + Shift + . Cmd + Shift + . script_editor/next_script
Previous Script Ctrl + Shift + , Cmd + Shift + , script_editor/prev_script
Reopen Closed
Script

Ctrl + Shift + T Cmd + Shift + T script_editor/
reopen_closed_script

Save Ctrl + Alt + S Cmd + Alt + S script_editor/save
Save All Ctrl + Shift + Alt + S Cmd + Shift + Alt + S script_editor/save_all
Soft Reload Script Ctrl + Shift + R Cmd + Shift + R script_editor/

reload_script_soft
History Previous Alt + Left Arrow Alt + Left Arrow script_editor/

history_previous
History Next Alt + Right Arrow Alt + Right Arrow script_editor/history_next
Close Ctrl + W Cmd + W script_editor/close_�le
Run Ctrl + Shift + X Cmd + Shift + X script_editor/run_�le
Toggle Scripts
Panel

Ctrl + \ Cmd + \ script_editor/
toggle_scripts_panel

Zoom In Ctrl + = Cmd + = script_editor/zoom_in
Zoom Out Ctrl + - Cmd + - script_editor/zoom_out
Reset Zoom Ctrl + 0 Cmd + 0 script_editor/reset_zoom

320 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Editor Output

Action name Windows, Linux macOS Editor setting
Copy Selection Ctrl + C Cmd + C editor/copy_output
Clear Output Ctrl + Shift + K Cmd + Shift + K editor/clear_output

Debugger

Action name Windows, Linux macOS Editor setting
Step Into F11 F11 debugger/step_into
Step Over F10 F10 debugger/step_over
Continue F12 F12 debugger/continue

File Dialog

Action name Windows, Linux macOS Editor setting
Go Back Alt + Left Arrow Alt + Left Arrow �le_dialog/go_back
Go Forward Alt + Right Arrow Alt + Right Arrow �le_dialog/go_forward
Go Up Alt + Up Arrow Alt + Up Arrow �le_dialog/go_up
Refresh F5 F5 �le_dialog/refresh
Toggle Hidden Files Ctrl + H Cmd + H �le_dialog/toggle_hidden_�les
Toggle Favorite Alt + F Alt + F �le_dialog/toggle_favorite
Toggle Mode Alt + V Alt + V �le_dialog/toggle_mode
Create Folder Ctrl + N Cmd + N �le_dialog/create_folder
Delete Del Cmd + BkSp �le_dialog/delete
Focus Path Ctrl + D Cmd + D �le_dialog/focus_path
Move Favorite Up Ctrl + Up Arrow Cmd + Up Arrow �le_dialog/move_favorite_up
Move Favorite Down Ctrl + Down Arrow Cmd + Down Arrow �le_dialog/move_favorite_down

FileSystem Dock

Action name Windows, Linux macOS Editor setting
Copy Path Ctrl + C Cmd + C �lesystem_dock/copy_path
Duplicate Ctrl + D Cmd + D �lesystem_dock/duplicate
Delete Del Cmd + BkSp �lesystem_dock/delete

Scene Tree Dock

Action name Windows, Linux macOS Editor setting
Add Child Node Ctrl + A Cmd + A scene_tree/add_child_node
Batch Rename Ctrl + F2 Cmd + F2 scene_tree/batch_rename
Copy Node Path Ctrl + Shift + C Cmd + Shift + C scene_tree/copy_node_path
Delete Del Cmd + BkSp scene_tree/delete
Force Delete Shift + Del Shift + Del scene_tree/delete_no_con�rm
Duplicate Ctrl + D Cmd + D scene_tree/duplicate
Move Up Ctrl + Up Arrow Cmd + Up Arrow scene_tree/move_up
Move Down Ctrl + Down Arrow Cmd + Down Arrow scene_tree/move_down

2.13. Editor introduction 321

Godot Engine Documentation, Release latest

Animation Track Editor

Action name Windows, Linux macOS Editor setting
Duplicate Selec-
tion

Ctrl + D Cmd + D animation_editor/duplicate_selection

Duplicate Trans-
posed

Ctrl + Shift + D Cmd + Shift + D animation_editor/
duplicate_selection_transposed

Delete Selection Del Cmd + BkSp animation_editor/delete_selection
Go to Next Step Ctrl + Right Ar-

row
Cmd + Right Ar-
row

animation_editor/goto_next_step

Go to Previous
Step

Ctrl + Left Ar-
row

Cmd + Left Ar-
row

animation_editor/goto_prev_step

Tile Map Editor

Action name Windows, Linux macOS Editor setting
Find Tile Ctrl + F Cmd + F tile_map_editor/�nd_tile
Pick Tile I I tile_map_editor/pick_tile
Paint Tile P P tile_map_editor/paint_tile
Bucket Fill G G tile_map_editor/bucket_�ll
Transpose T T tile_map_editor/transpose
Flip Horizontally X X tile_map_editor/�ip_horizontal
Flip Vertically Z Z tile_map_editor/�ip_vertical
Rotate Left A A tile_map_editor/rotate_left
Rotate Right S S tile_map_editor/rotate_right
Clear Transform W W tile_map_editor/clear_transform
Select M M tile_map_editor/select
Cut Selection Ctrl + X Cmd + X tile_map_editor/cut_selection
Copy Selection Ctrl + C Cmd + C tile_map_editor/copy_selection
Erase Selection Del Cmd + BkSp tile_map_editor/erase_selection

Tileset Editor

Action name Windows, Linux macOS Editor setting
Next Coordinate PgDown PgDown tileset_editor/next_shape
Previous Coordinate PgUp PgUp tileset_editor/previous_shape
Region Mode 1 1 tileset_editor/editmode_region
Collision Mode 2 2 tileset_editor/editmode_collision
Occlusion Mode 3 3 tileset_editor/editmode_occlusion
Navigation Mode 4 4 tileset_editor/editmode_navigation
Bitmask Mode 5 5 tileset_editor/editmode_bitmask
Priority Mode 6 6 tileset_editor/editmode_priority
Icon Mode 7 7 tileset_editor/editmode_icon
Z Index Mode 8 8 tileset_editor/editmode_z_index

322 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Customizing the interface

Godot's interface lives in a single window by default. Since Godot 4.0, you can split several elements to
separate windows to better make use of multi-monitor setups.

Moving and resizing docks

Click and drag on the edge of any dock or panel to resize it horizontally or vertically:

Fig. 3: Resizing a dock in the editor

Click the "3 vertical dots" icon at the top of any dock to change its location, or split it to a separate window
by choosing Make Floating in the submenu that appears:

Fig. 4: Moving a dock in the editor

To move a �oating dock back to the editor window, close the dock window using the Ö button in the top-right
corner of the window (or in the top-left corner on macOS). Alternatively, you can press Alt + F4 while the
split window is focused.

Splitting the script or shader editor to its own window

Note: This feature is only available on platforms that support spawning multiple windows: Windows,
macOS and Linux.

This feature is also not available if Single Window Mode is enabled in the Editor Settings.

Since Godot 4.1, you can split the script or shader editor to its own window.

To split the script editor to its own window, click the corresponding button in the top-right corner of the
script editor:

Fig. 5: Splitting the script editor to its own window

2.13. Editor introduction 323

Godot Engine Documentation, Release latest

To split the shader editor to its own window, click the corresponding button in the top-right corner of the
script editor:

Fig. 6: Splitting the shader editor to its own window

To go back to the previous state (with the script/shader editor embedded in the editor window), close the
split window using the Ö button in the top-right corner of the window (or in the top-left corner on macOS).
Alternatively, you can press Alt + F4 while the split window is focused.

Customizing editor layouts

You may want to save and load a dock con�guration depending on the kind of task you're working on. For
instance, when working on animating a character, it may be more convenient to have docks laid out in a
di�erent fashion compared to when you're designing a level.

For this purpose, Godot provides a way to save and restore editor layouts. Before saving a layout, make
changes to the docks you'd like to save. The following changes are persisted to the saved layout:

� Moving a dock.

� Resizing a dock.

� Making a dock �oating.

� Changing a �oating dock's position or size.

� FileSystem dock properties: split mode, display mode, sorting order, �le list display mode, selected
paths and unfolded paths.

Note: Splitting the script or shader editor to its own window is not persisted as part of a layout.

After making changes, open the Editor menu at the top of the editor then choose Editor Layouts > Save.
Enter a name for the layout, then click Save. If you've already saved an editor layout, you can choose to
override an existing layout using the list.

After making changes, open the Editor menu at the top of the editor then choose Editor Layouts. In the
dropdown list, you will see a list of saved editor layouts, plus Default which is a hardcoded editor layout
that can't be removed. The default layout matches a fresh Godot installation with no changes made to the
docks' position and size, and no �oating docks.

You can remove a layout using the Delete option in the Editor Layouts dropdown.

Tip: If you name the saved layout Default (case-sensitive), the default editor layout will be overwritten.
Note that the Default does not appear in the list of layouts to overwrite until you overwrite it once, but you
can still write its name manually.

You can go back to the standard default layout by removing the Default layout after overriding it. (This
option does not appear if you haven't overridden the default layout yet.)

Editor layouts are saved to a �le named editor_layouts.cfg in the con�guration path of the Editor data
paths.

324 Chapter 2. O�ine documentation

Godot Engine Documentation, Release latest

Customizing editor settings

In the Editor menu at the top of the editor, you can �nd an Editor Settings option. This opens a window
similar to the Project Settings, but with settings used by the editor. These settings are shared across all
projects and are not saved in the project �les.

Fig. 7: The Editor Settings window

Some commonly changed settings are:

� Interface > Editor > Editor Language: Controls the language the editor displays in. To make English
tutorials easier to follow, you may want to change this to English so that menu names are identical to
names referred to by tutorials. The language can also be changed in the top-right corner of the project
manager.

� Interface > Editor > Display Scale: Controls how large UI elements display on screen. The default Auto
setting �nds a suitable value based on your display's DPI and resolution. Due to engine limitations, it
only takes the display-provided scaling factor on macOS, not on Windows or Linux.

� Interface > Editor > Single Window Mode: If enabled, this forces the editor to use a single window.
This disables certain features such as splitting the script/shaders editor to their own window. Single-
window mode can be more stable, especially on Linux when using Wayland.

� Interface > Theme > Preset: The editor theme preset to use. The Light theme preset may be easier
to read if you're outdoors or in a room with sunlight. The Black (OLED) preset can reduce power

2.13. Editor introduction 325

Godot Engine Documentation, Release latest

consumption on OLED displays, which are increasingly common in laptops and phones/tablets.

� FileSystem > Directories > Autoscan Project Path: This can be set to a folder path that will be
automatically scanned for projects in the project manager every time it starts.

� FileSystem > Directories > Default Project Path: Controls the default location where new projects
are created in the project manager.

� Editors > 3D > Emulate Numpad: This allows using the top row 0-9 keys in the 3D editor as their
equivalent numpad keys. It's recommended to enable this option if you don't have a number pad on
your keyboard.

� Editors > 3D > Emulate 3 Button Mouse: This allows using the pan, zoom and orbit modi�ers in the
3D editor even when not holding down any mouse button. It's recommended to enable this option if
you're using a trackpad.

See the EditorSettings class reference for a complete description of most editor settings. You can also hover
an editor setting's name with the mouse in the Editor Settings to show its description.

2.13.2 Android editor

Godot o�ers a native port of the editor running entirely on Android devices. The Android port can be
downloaded from the Android Downloads page. While we strive for feature parity with the Desktop version
of the editor, the Android port has a certain amount of caveats you should be aware of.

Using the Android editor

In 2023, we added a Android port of the editor that can be used to work on new or existing projects on
Android devices.

Note: The Android editor is in beta testing stage, while we continue to re�ne the experience, and bring it
up to parity with the Desktop version of the editor. See Required Permissions below.

Android devices support

The Android editor requires devices running Android 5 Lollipop or higher, with at least OpenGL 3 support.
This includes (not exhaustive):

� Android tablets, foldables and large phones

� Android-powered netbooks

� Chromebooks supporting Android apps

Required Permissions

The Android editor requires the All �les access permission. The permission allows the editor to create /
import / read project �les from any �le locations on the device. Without the permission, the editor is still
functional, but has limited access to the device's �les and directories.

326 Chapter 2. O�ine documentation

https://godotengine.org/download/android/
https://godotengine.org/article/android_godot_editor_play_store_beta_release/
https://godotengine.org/download/android/
https://developer.android.com/training/data-storage/manage-all-files#all-files-access

Godot Engine Documentation, Release latest

Limitations & known issues

Here are the known limitations and issues of the Android editor:

� No C#/Mono support

� No support for external script editors

� While available, the Vulkan Forward+ renderer is not recommended due to severe performance issues

� No support for building and exporting an Android APK binary. As a workaround, you can generate
and export a Godot PCK or ZIP �le

� No support for building and exporting binaries for other platforms

� Performance and stability issues when using the Vulkan Mobile renderer for a project

� UX not optimized for Android phones form-factor

� Android Go devices lacks the All �les access permission required for device read/write access. As a
workaround, when using a Android Go device, it's recommended to create new projects only in the
Android Documents or Downloads directories.

� The editor doesn't properly resume when Don't keep activities is enabled in the Developer Options

See also:

See the list of open issues on GitHub related to the Android editor for a list of known bugs.

2.13.3 Web editor

Godot o�ers an HTML5 version of the editor running entirely in your browser. No download is required to
use it, but it has a certain amount of caveats you should be aware of.

Using the Web editor

Since Godot 3.3, there is a Web editor you can use to work on new or existing projects.

Note: The web editor is in a preliminary stage. While its feature set may be su�cient for educational
purposes, it is currently not recommended for production work. See Limitations below.

Browser support

The Web editor requires support for WebAssembly's SharedArrayBu�er. This is in turn required to support
threading in the browser. The following desktop browsers support WebAssembly threading and can therefore
run the web editor:

� Chrome 68 or later

� Firefox 79 or later

� Edge 79 or later

Opera and Safari are not supported yet. Safari may work in the future once proper threading support is
added.

Mobile browsers are currently not supported.

The web editor only supports the Compatibility rendering method, as there is no stable way to run Vulkan
applications on the web yet.

2.13. Editor introduction 327

https://docs.godotengine.org/en/stable/tutorials/export/exporting_projects.html#pck-versus-zip-pack-file-formats
https://developer.android.com/guide/topics/androidgo
https://github.com/godotengine/godot/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform%3Aandroid+label%3Atopic%3Aeditor
https://editor.godotengine.org/

Godot Engine Documentation, Release latest

Note: If you use Linux, due to poor Firefox WebGL performance, it's recommended to use a Chromium-
based browser instead of Firefox.

Limitations

Due to limitations on the Godot or Web platform side, the following features are currently missing:

� No C#/Mono support.

� No GDExtension support.

� No debugging support. This means GDScript debugging/pro�ling, live scene editing, the Remote Scene
tree dock and other features that rely on the debugger protocol will not work.

� No project exporting. As a workaround, you can download the project source using Project > Tools
> Download Project Source and export it using a native version of the Godot editor.

� The editor won't warn you when closing the tab with unsaved changes.

� No lightmap baking support. You can still use existing lightmaps if they were baked with a native
version of the Godot editor (e.g. by importing an existing project).

The following features are unlikely to be supported due to inherent limitations of the Web platform:

� No support for external script editors.

� No support for Android one-click deploy.

See also:

See the list of open issues on GitHub related to the web editor for a list of known bugs.

Importing a project

To import an existing project, the current process is as follows:

� Specify a ZIP �le to preload on the HTML5 �lesystem using the Preload project ZIP input.

� Run the editor by clicking Start Godot editor. The Godot Project Manager should appear after 10-20
seconds. On slower machines or connections, loading may take up to a minute.

� In the dialog that appears at the middle of the window, specify a name for the folder to create then
click the Create Folder button (it doesn't have to match the ZIP archive's name).

� Click Install & Edit and the project will open in the editor.

Attention: It's important to place the project folder somewhere in /home/web_user/. If your project
folder is placed outside /home/web_user/, you will lose your project when closing the editor!

When you follow the steps described above, the project folder will always be located in /home/web_user/
projects, keeping it safe.

328 Chapter 2. O�ine documentation

https://bugzilla.mozilla.org/show_bug.cgi?id=1010527
https://godotengine.org/download
https://github.com/godotengine/godot/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform%3Ahtml5+label%3Atopic%3Aeditor

Godot Engine Documentation, Release latest

Editing and running a project

Unlike the native version of Godot, the web editor is constrained to a single window. Therefore, it cannot
open a new window when running the project. Instead, when you run the project by clicking the Run button
or pressing F5, it will appear to "replace" the editor window.

The web editor o�ers an alternative way to deal with the editor and game windows (which are now "tabs").
You can switch between the Editor and Game tabs using the buttons on the top. You can also close the
running game or editor by clicking the Ö button next to those tabs.

Where are my project �les?

Due to browser security limitations, the editor will save the project �les to the browser's IndexedDB storage.
This storage isn't accessible as a regular folder on your machine, but is abstracted away in a database.

You can download the project �les as a ZIP archive by using Project > Tools > Download Project Source.
This can be used to export the project using a native Godot editor, since exporting from the web editor isn't
supported yet.

In the future, it may be possible to use the HTML5 FileSystem API to store the project �les on the user's
�lesystem as the native editor would do. However, this isn't implemented yet.

2.13.4 Advanced features

The articles below focus on advanced features useful for experienced developers, such as calling Godot from
the command line and using an external text editor like Visual Studio Code or Emacs.

Command line tutorial

Some developers like using the command line extensively. Godot is designed to be friendly to them, so here
are the steps for working entirely from the command line. Given the engine relies on almost no external
libraries, initialization times are pretty fast, making it suitable for this work�ow.

Note: On Windows and Linux, you can run a Godot binary in a terminal by specifying its relative or
absolute path.

On macOS, the process is di�erent due to Godot being contained within an .app bundle (which is a folder,
not a �le). To run a Godot binary from a terminal on macOS, you have to cd to the folder where the Godot
application bundle is located, then run Godot.app/Contents/MacOS/Godot followed by any command line
arguments. If you've renamed the application bundle from Godot to another name, make sure to edit this
command line accordingly.

Command line reference

Legend

� Available in editor builds, debug export templates and release export templates.

� Available in editor builds and debug export templates only.

� Only available in editor builds.

Note that unknown command line arguments have no e�ect whatsoever. The engine will not warn you when
using a command line argument that doesn't exist with a given build type.

General options

2.13. Editor introduction 329

https://godotengine.org/download
https://developer.mozilla.org/en-US/docs/Web/API/FileSystem

	Get involved
	Offline documentation
	Introduction
	Before you start
	About Godot Engine
	Organization of the documentation
	About this documentation

	List of features
	Platforms
	Editor
	Rendering
	2D graphics
	2D tools
	2D physics
	3D graphics
	3D tools
	3D physics
	Shaders
	Scripting
	Audio
	Import
	Input
	Navigation
	Networking
	Internationalization
	Windowing and OS integration
	Mobile
	XR support (AR and VR)
	GUI system
	Animation
	File formats
	Miscellaneous

	Frequently asked questions
	What can I do with Godot? How much does it cost? What are the license terms?
	Which platforms are supported by Godot?
	Which programming languages are supported in Godot?
	What is GDScript and why should I use it?
	What were the motivations behind creating GDScript?
	What 3D model formats does Godot support?
	Will [insert closed SDK such as FMOD, GameWorks, etc.] be supported in Godot?
	How can I extend Godot?
	How do I install the Godot editor on my system (for desktop integration)?
	Windows
	macOS
	Linux

	Is the Godot editor a portable application?
	Why does Godot use Vulkan or OpenGL instead of Direct3D?
	Why does Godot aim to keep its core feature set small?
	How should assets be created to handle multiple resolutions and aspect ratios?
	When is the next release of Godot out?
	Which Godot version should I use for a new project?
	Should I upgrade my project to use new Godot versions?
	I would like to contribute! How can I get started?
	I have a great idea for Godot. How can I share it?
	Is it possible to use Godot to create non-game applications?
	Is it possible to use Godot as a library?
	What user interface toolkit does Godot use?
	Why does Godot use the SCons build system?
	Why does Godot not use STL (Standard Template Library)?
	Why does Godot not use exceptions?
	Does Godot use an ECS (Entity Component System)?
	Why does Godot not force users to implement DOD (Data-Oriented Design)?
	How can I support Godot development or contribute?
	Who is working on Godot? How can I contact you?

	Complying with licenses
	What are licenses?
	Requirements
	Inclusion
	Credits screen
	Licenses screen
	Output log
	Accompanying file
	Printed manual
	Link to the license

	Third-party licenses
	FreeType
	ENet
	mbed TLS

	Godot release policy
	Godot versioning
	Release support timeline
	Which version should I use for a new project?
	Should I upgrade my project to use new engine versions?
	When is the next release out?
	What are the criteria for compatibility across engine versions?

	Documentation changelog
	New pages since version 4.1
	C#
	Development
	Migrating
	I/O
	Platform-specific

	New pages since version 4.0
	Development
	Migrating
	Physics

	New pages since version 3.6
	2D
	3D
	Animation
	Assets pipeline
	Development
	Migrating
	Physics
	Scripting
	Shaders
	Workflow
	XR

	New pages since version 3.5
	New pages since version 3.4
	3D
	Animation
	Editor

	New pages since version 3.3
	C++
	GDScript

	New pages since version 3.2
	3D
	About
	Best practices
	Community
	Development
	Editor
	Export
	Input
	Math
	Platform-specific
	Physics
	Shaders
	Scripting
	User Interface (UI)

	New pages since version 3.1
	Project workflow
	2D
	Audio
	Math
	Inputs
	Internationalization
	Shading
	Networking
	Plugins
	Multi-threading
	Creating content
	Optimization
	Legal

	New pages since version 3.0
	Step by step
	Scripting
	Project workflow
	2D
	3D
	Physics
	Animation
	GUI
	Viewports
	Shading
	Plugins
	Platform-specific
	Multi-threading
	Creating content
	Miscellaneous
	Compiling
	Engine development

	Introduction
	Introduction to Godot
	What is Godot?
	What can the engine do?
	How does it work and look?
	Programming languages
	What do I need to know to use Godot?

	Overview of Godot's key concepts

