
Chapter X – Source Code Management, Git and Gogs.

 Page 1 / 118

Chapter x

SourCe Code ManageMent, git and gogS

Chapter X – Source Code Management, Git and Gogs.

 Page 2 / 118

Table of content
Introduction ... 7

The Server to Client model .. 7

Branching ... 10

The merge processes. .. 14

Different scenarios. ... 18

Repositories. .. 19

Our new feature and misconception scenario. ... 20

A SCM Tool, summary .. 23

Git in a nutshell ... 26

GOGS ... 28

Gogs installation .. 28

Introduction ... 28

Entities & relationships. ... 34

Continuing the tour. ... 34

 ... 34

Creating a Gogs repository. ... 39

Let’s create our first Gogs repository... 42

Starting the game .. 45

Introduction ... 45

Creating a first repository .. 54

Connecting to an existing repository ... 55

The fork process. ... 56

MS Visual Studio Client .. 58

Appendices .. 59

Gogs Installation. ... 59

Gogs log, and error log files ... 60

Connect the uninitialized Gogs repository to a new local one. ... 61

Connect the Gogs repository to an existing local one. .. 81

The fork process. ... 90

The MS Visual Studio client. .. 107

The git communication protocol ... 118

Chapter X – Source Code Management, Git and Gogs.

 Page 3 / 118

Figure 1: The Server Client SCM based system. .. 8

Figure 2: Consistency of the source code package. ... 9

Figure 3: Branching the tree. ... 10

Figure 4: an SCM client version 1. ... 12

Figure 5: The SCM client is an IDE extension. .. 13

Figure 6: Integrating master branch into the feature branch (reconciliation). 15

Figure 7: Involving the feature branch team in the misconception. ... 17

Figure 8: An SCM repository symbol. .. 19

Figure 9: Feature and misconception branch scenario A. ... 21

Figure 10: The final master branch. ... 24

Figure 11: Git collaborating repositories. .. 26

Figure 12: Launch the Gogs web page. .. 28

Figure 13: Gogs sign in. .. 29

Figure 14: Gogs main functions. .. 29

Figure 15: the Dashboard. ... 30

Figure 16: Gogs issues ... 30

Figure 17: Discussion on an issue. ... 31

Figure 18 Pull Requests. .. 31

Figure 19: Exploring Gogs. ... 32

Figure 20: Users, Teams, Organizations & Repositories. ... 33

Figure 21: Accessing the admin panel. .. 34

Figure 22: The admin panel. .. 35

Figure 23: User Manage Panel ... 35

Figure 24: Main dashboard panel. ... 36

Figure 25: Organization sub-panel. .. 37

Figure 26: Organization Panel. ... 37

Figure 27: Invite someone to an organization. .. 38

Figure 28: Organization Owners. ... 38

Figure 29: Different collaborating repositories.. 40

Figure 30: Create a first repository. ... 42

Figure 31: MyFirstRepository. .. 43

Figure 32: First uninitialized repository. .. 44

Figure 33: Git Bash on NewFeature branch. .. 47

Figure 34: Git push --all pushes all branches. .. 47

Figure 35: Difference between git fetch and git pull. .. 48

Figure 36: Content of MyFile01.txt in NewFeature branch. .. 49

Figure 37: Content of MyFile01.txt in the master branch. .. 50

Figure 38: A merge of NewFeature in the master branch. .. 50

Figure 39: Editing MyFile01.txt in merge state. ... 51

Figure 40: The two versions reconciliated. .. 51

Figure 41: NewFeature reconciliated with master. .. 52

Figure 42: Back to final state. .. 52

Figure 43: Git commands moves summary. .. 53

Figure 44: Pull Request from a collaboration. ... 56

https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361993
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361994
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361996
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361997
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361998
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362000
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362007
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362013
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362019

Chapter X – Source Code Management, Git and Gogs.

 Page 4 / 118

Figure 45: MS Visual Studio Command Prompt. ... 58

Figure 46: Open A git Client. .. 61

Figure 47: Git Bash Command prompt. ... 62

Figure 48: Git init command. ... 62

Figure 49: README file creation. ... 63

Figure 50: Create a first project file. .. 63

Figure 51: Adding files to the project. ... 64

Figure 52: Feeding the repository with (a new version of) files. ... 64

Figure 53: Git file transfer. ... 65

Figure 54: Gogs Repository main screen. .. 66

Figure 55: Tags related information. .. 67

Figure 56: Changing a file. ... 68

Figure 57: commit and push the change. .. 68

Figure 58: pushed change. .. 68

Figure 59: file changed in Gogs. .. 69

Figure 60: File History. ... 69

Figure 61: Launching Git GUI ... 69

Figure 62: Git GUI. ... 70

Figure 63: Third file version ... 70

Figure 64: Changing a file via Git GUI. ... 71

Figure 65: Git GUI - push the change... 72

Figure 66: Push Popup. .. 72

Figure 67: Create a branch from Git GUI. .. 73

Figure 68: Change a file in the new branch. .. 73

Figure 69: Push the branch. ... 74

Figure 70: You see now two branches. .. 75

Figure 71: The NewFeature branch in Gogs. ... 75

Figure 72: Changed file in the new branch. ... 76

Figure 73: The compare button. .. 76

Figure 74: Compare branches, create Pull Request. .. 76

Figure 75: Pull request creation. ... 77

Figure 76: Pull request created.. 77

Figure 77: Pull request pending. .. 78

Figure 78: back to the pull request. ... 78

Figure 79: branched file in the master. .. 79

Figure 80: check out back to the master. .. 79

Figure 81: update the local master branch.. 80

Figure 82: local merge. .. 80

Figure 83: Git Fetch all. .. 81

Figure 84: Launch Git Gui in a new folder. ... 82

Figure 85: Change a file in a new copy. ... 83

Figure 86: Staging a change. .. 83

Figure 87: Commit the staged change. .. 84

Figure 88: Push the change. .. 84

Figure 89: Change in the origin. .. 85

Figure 90: No change in the NewFeatureBranch. .. 85

Figure 91: Compare. .. 86

Chapter X – Source Code Management, Git and Gogs.

 Page 5 / 118

Figure 92: Switch to a branch. ... 86

Figure 93: Merge the master into the current branch. ... 87

Figure 94: NewFeature has been updated. ... 87

Figure 95: Update a file in the current branch. ... 87

Figure 96: Push the branch to the remote. ... 88

Figure 97: File updated in Gogs. .. 88

Figure 98: Delete the remote branch. ... 89

Figure 99: One remaining branch after push and delete. ... 89

Figure 100: Collaborators organization. .. 90

Figure 101: Connect to the collaborators organization. .. 90

Figure 102: Team associated to the organization. ... 91

Figure 103: Collaborators team. .. 91

Figure 104: Add members to the collaborators team. .. 92

Figure 105: The collaborators team... 92

Figure 106: The main repository. ... 93

Figure 107: Repository population. ... 94

Figure 108: Drag & drop to the main repository. .. 95

Figure 109: Commit the file addition. ... 96

Figure 110: The repository populated. .. 97

Figure 111: Fork the main repository. ... 98

Figure 112: Main and collaborative repositories. .. 99

Figure 113: The collaborative repository. .. 99

Figure 114: cloning the collaborative repository. .. 100

Figure 115: Create a NewFeature branch. ... 100

Figure 116: Modify MyFile01.txt on the NewFeature branch. .. 101

Figure 117: Push the NewFeature branch to the origin. ... 102

Figure 118: Push popup. .. 102

Figure 119: Push popup, suite. .. 103

Figure 120: The NewFeature branch pushed to the collaborative repository. 103

Figure 121: Comparison between the two branches. ... 104

Figure 122: Pull request creation. ... 105

Figure 123: Benoit is assigned to the pull request review. .. 105

Figure 124: Merge pull request. .. 106

Figure 125: Merged change. .. 106

Figure 126: ASimpleApp repository. .. 107

Figure 127: Create a C# desktop application. .. 108

Figure 128: ASimpleApp C# application. ... 108

Figure 129: ASimpleApp Git repository. .. 108

Figure 130: ASimpleApp local Git Repository. ... 109

Figure 131: Git MS VS Settings. ... 110

Figure 132: Project Git Settings. .. 110

Figure 133: The pushed Gogs repository. .. 111

Figure 134: Say Hello button. .. 112

Figure 135: MS VS indicators. .. 112

Figure 136: Changes committing. .. 113

Figure 137: MS VS indicators. .. 113

Figure 138: Push the differences. .. 113

https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362117
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362125
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362126
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362127
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362128
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362130

Chapter X – Source Code Management, Git and Gogs.

 Page 6 / 118

Figure 139: Gogs content. ... 114

Figure 140: Create a branch from MS VS. .. 114

Figure 141: MS VS NewFeature branch. .. 115

Figure 142: Change the message. .. 115

Figure 143: Commit the changes. .. 116

Figure 144: MS VS indicators. .. 116

Figure 145: Changes in the NewFeature branch. .. 117

https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362134
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362135
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362137

Chapter X – Source Code Management, Git and Gogs.

 Page 7 / 118

Introduction

For those readers who already know what Source Code Management (SCM) and Git is, you can skip

this chapter, although it might be convenient to read it through very quickly, if you know only Git or

services like GitHub, Azure DevOps or JIRA for example.

This first chapter is nevertheless highly recommended to be read, since it introduces in its own terms

and concepts the other ones, particularly the one concerning Gogs.

When you want to track the history of a source code package, knowing who changed what piece of

code, for what reason and when, which is necessary when you work as a programmer belonging to a

team, you need some tool to manage this, in other words a Source Code Management tool.

Historically, the first packages available for doing such a task were (and sometimes still are) tools like

Microsoft Visual Source Safe, Subversion (SVN), Concurrent Versions System (CVS) and others.

The Server to Client model

Most of them are based on Server to Client base paradigm, that is a server computer actually holds

the source code of your package(s), and the programmer who wants to change a piece of code in a

particular source code file needs to “check out” this file from the server, modify it on its own

computer, test it and return it back to the server (check in):

Chapter X – Source Code Management, Git and Gogs.

 Page 8 / 118

During the check in/ check out process, the file is “locked” by the SCM tool, and no other

programmer can check in or out the file(s).

Once checked in (released), other programmers can, at their turn, check out the file and modify it,

test it, etc.

Of course, multiple files can be checked out at a time.

During this check out/ check in process, the programmer usually gives information to the SCM

system, such as, for example, the reasons for changes (e.g. a bug fix or the addition of a new feature).

Checking out a file prevents other users (programmers) to change the file.

Checking in the file introduces it back to the SCM data base and allows other users to access it again.

The SCM then stores all this information in its database, as well as the part of source code that has

been modified (we’ll call delta the part of the code that has been changed later in this chapter).

Those check outs/ check in constitute a good way for the SCM to build an history of the whole file

package, which the SCM usually shows as “tags” that a programmer can consult, as well as the source

code file before and after and before the checkout/ check in.

The programmer is then able to rebuild the image of the package at any point in time.

When a point in time represents a certain release (version) of the package, the SCM often allows to

“label” the version at this point in time, allowing then to retrieve the package at a time (version) by

SCM Data

base

Server

Programmer

PC

Source
file

CHECK OUT

CHECK IN

Figure 1: The Server Client SCM based system.

Chapter X – Source Code Management, Git and Gogs.

 Page 9 / 118

just using the label (the SCM tool is able to provide the complete image of the package at a certain

label).

But what happens when different programmers modify different files that are part of the same

“functionality”, and this for different reasons (one for fixing a bug, the other for introducing a new

feature, as an example)?

Is the source code package still consistent after multiple check outs/ check in from many different

programmers?

Pr

S

o
SC

M

Ser

Pr

S

o

C

C

?

Figure 2: Consistency of the source code package.

Chapter X – Source Code Management, Git and Gogs.

 Page 10 / 118

Branching

When the purpose of making a team of programmers is to work on a new feature of the package, it

would be nice then to create a “branch” of the current package, which is a copy of the current one:

Figure 3: Branching the tree.

The source package the whole programmer team is working on is the master.

While the team (or a sub-team) is working on the new feature branch (thanks, for example, to the

ability to label a branch, for getting regularly the fresh new version of the feature branch, for the sake

of keeping the whole source package code consistent), the (rest of) the team can go on working with

the package by fixing bugs for example.1

1 On the other hand-side, a branch can be dedicated to fixing bugs, when it seems urgent to focus more for the
team (and its boss!) on the number of unfixed bugs rather than developing new features.

Tag 1

Tag J

Label Tag 1-1

Tag K

Tag L

Etc..

Etc.

Master Branch

Feature Branch

Chapter X – Source Code Management, Git and Gogs.

 Page 11 / 118

Ok, ok.

But there will be a moment when it will be time to deliver this new feature.

We will have to merge the feature branch with the master to deliver a new version.

Several situations may then occur:

• Bugs fixes have no effects on the package functionalities (inconsistencies), no side effect,

• Feature changes have no effects on the master package functionalities,

• Both (such a wonderful world!),

• Bugs fixes and feature changes have touched a set a same source files, but not really affecting

functionalities (different part of the code have been changed, for example),

• There are conflicts (same part of code have been changed or changes made on both branches

have side effects on the package functionalities).

You will have to “reconciliate” changes made for different reasons.

In any case (and thinking over, regularly in time at each checkout/check-in) there will be a need for a

review before the merge can occur (done together with the team or a sub team).2

On the SCM server, the whole package code consists of the source code and many other information

such as the package history, labels, etc.

The SCM server is helpful in describing any change made on the package, but locally, on the

developer computer the source code package consists only of the raw source code files, together

with the needed development environment (IDE such as Visual Studio, CodeLite, NetBeans, Eclipse

and many, many others).

Why not thinking about having a kind of client side SCM on the programmer computer itself?

2 As we will see further on in this chapter this will be done thanks to a pull request.

Chapter X – Source Code Management, Git and Gogs. Page 12 / 118

SCM

Client

Programmer PC

Source

file
SCM Data

base

Server

Programmer PC

Source

file

SCM

Client

Figure 4: an SCM client version 1.

IDE

Chapter X – Source Code Management, Git and Gogs. Page 13 / 118

Or even better (The SCM client side is part - an add-on- of the IDE itself):

SCM

Client

Programmer PC

Source

file
SCM Data

base

Server

Programmer PC

Source

file

SCM

Client

IDE

Figure 5: The SCM client is an IDE extension.

Chapter X – Source Code Management, Git and Gogs.

 Page 14 / 118

The merge processes.

Once the time has come to merge the two branches3, you’ll will have, basically, to review the

differences between each and single source file that are different from one branch (master) and the

feature branch. But not only. You’ll have also to examine possible side effects on both sides4.

The merge process is not only and necessary a single step process.

Do not forget that the main branch and the other branches may evolve in parallel.

Thus, a good practice, when one or multiple programmers are working on a new feature, is, for the

programmers, to regularly integrate the current package source (i.e. the main or master branch) in

the version he is working on locally on the new feature branch on its computer5.

3 And, again, at each check in, eventually.
4 You’ll have to examine it from a reviewal and conceptual point of view, but also through the continuous
software development life cycle, and in example through regression testing.
5 Even if multiple files are checked out by other programmers, it does not prevent any programmer to take a
copy of the checked file directly from the current “owner” of the file). Alternatively, the file owner can regularly
check in and out again files he is modifying, in order to make them available to the rest of the team(s).

Chapter X – Source Code Management, Git and Gogs.

 Page 15 / 118

This can be a multiple step phase, and you can decide to only integrate a part of the new feature,

combined with a part of bug fixes, since during the build of the feature branch it is suggested to

regularly integrate some bug fixes into the feature branch, as illustrated below:

Tag 1

Tag J

Label Tag 1-1

Tag K

Tag Z

Etc..

Etc.

Master Branch

Feature Branch

Tag L

Tag M

Tag W

Tag X

Figure 6: Integrating master branch into the feature branch (reconciliation).

Chapter X – Source Code Management, Git and Gogs.

 Page 16 / 118

Now, suppose that that bug fix (Tag L in master branch, Tag W in feature branch) put in evidence that

there is a misconception (design mistake) in the package, and then, consequently, the same thing in

the feature branch.

Much harder, suppose that you, and your team discover that you need additional team expertise

discussion about how to solve this misconception.

You could create another branch from Tag L on the master branch. Let’s call it “Misconception branch”.

That is one solution.

You could also think to yourself: “well, since we have a (sub)team dedicated to a new feature, why not

asking them also to think about this misconception – involving eventually another team6.

But, since it is important to go on with the new feature development, you go on also7 with the feature

branch.

And now you can also imagine another scenario, showed on the next page.

6 That is an example where you’ll see the quite important impact of Git, that is the collaboration with other
teams, inside, or outside of your team or company.
7 And together.

Chapter X – Source Code Management, Git and Gogs. Page 17 / 118

Figure 7: Involving the feature branch team in the misconception.

Tag 1

Tag J

Label Tag 1-1

Tag K

Tag Z

Etc.

Etc.

Master Branch

Feature Branch

Tag L

Tag M

Tag W

Tag X

Tag WL – Label LWL

Tag 1-2

Misconception

Branch

Chapter X – Source Code Management, Git and Gogs.

 Page 18 / 118

Different scenarios.
Managing source code is not just a question of using an SCM a or b, if you foresee to work with or

together with different teams, sub teams, locally or remotely, belonging to the same or different

organizations.

Additionally, you might want to rely only on cloud based or self-hosted systems such as GitHub, Azure

DevOps, or JIRA.

On the other hand side, it may be interesting to have locally in your own organization and even on

your single computer an SCM or SCM server installed.

In summary the complete source code package development might be based on the use of multiple

SCM tools. And multiple teams. And organizations. Concretely, it means:

• You might need multiple collaborative teams and, consequently:

• Multiple collaborative SCM tools

Those teams might use different SCM tools, thus using different merge reviews processes.

The SCM databases might be local or remote, which involves considering the communication

protocol(s) the SCM tools are using.

The way you manage change requests (such as introducing a new feature for example), the bugs

fixings, might be different.

You might also want to have your own SCM tool, partly or completely developed by your team (after

all we are programmers, aren’t we?).

In the context of this book, we’ll use Gogs.8

8 Gogs is written in GoLang. If you are familiar or even if you are regularly using this language, it is extremely
interesting to use Gogs, since you can then adapt and enhance your SCM tool to your needs.

Chapter X – Source Code Management, Git and Gogs.

 Page 19 / 118

Repositories.

From now on, instead of using the terms SCM data base, we will use the term SCM repository instead.

This symbol will be used for representing a repository.

1. The SCM repository monitoring engine,

2. The SCM repository hosting structure file(s),

3. The different (source code) raw files, including

or not specific files used by the development IDE.

The SCM repository monitoring engine is the one responsible for:

• Receiving the checked in files and “pouring” them into the repository hosting structure,

together with the tag or label and associated comments, author, and timestamp,

• Communicating with other SCM repositories or tools, which means

o Serializing9 the files (and associated information) to be sent to collaborating10

repositories,

o Deserializing the files received from collaborating repositories,

o Responding back to requests sent by collaborating repositories.

The SCM repository hosting structure must be designed in a way that the SCM repository monitoring

engine can access it, transfer it and use it quickly and efficiently.

The different raw files may be human readable or not (binary format). Some are human readable

(typically error files), some are not (information related to tags, labels, and deltas (differences)

between source code files versions, typically compressed files11).

If the different files composing the last repository source code file version (and the configuration files

related to the development IDE) are available in a human readable way, the repository is said to be a

non-bared repository (you can use those files directly and “inject” them into your IDE folders).

If this is not the case, the repository is called a bared repository (the raw source code files can be

obtained only using the SCM repository engine).

9 By « serializing » we mean transforming a files structure (typically a tree) into a suite (a linear queue) that can
be transferred via a typical bunch of bytes through a protocol communication pathway.
10 We’ll expand on this word later in this chapter.
11 As a matter of fact, if this information must be transferred through a communication protocol, it must be
compact.

1

2

3

Figure 8: An SCM repository symbol.

Chapter X – Source Code Management, Git and Gogs.

 Page 20 / 118

One may think that the raw source code files are usually only code files in a programming language.

This is not true.

Those files can be Jason or XML files, for example.

Those files can also be pictures or drawings.

Those files can be MS Word files, which are considered by most SCM tools as binary files, since it is

only MS Word that can handle them.

And finally, those files can be binary files such as executable files. And sometimes very, very big and

large files.

The SCM tool should be able to handle all this.

Our new feature and misconception scenario.

The scenario physical infrastructure is described in the next page.

Chapter X – Source Code Management, Git and Gogs. Page 21 / 118

Figure 9: Feature and misconception branch scenario A.

Final distribution

repository
Collaborating repository

New Feature team

repository

Misconception team

repository

Merge

Reviews

Pull requests

(push)

Chapter X – Source Code Management, Git and Gogs.

 Page 22 / 118

This picture is three-folded:

• On the left side you see the repository that is used for distributing the package to the

customers. Around that you should imagine that there is a complete environment mainly

composed of:

o A complete IDE, where reside the source code files and a build way for testing,

debugging, and releasing the final executables and dll files (as well as needed config

files). This way can be manual or automated (through the way of using nmake files

for example).

o A helpdesk teams. Ideally tickets should be handled by using some issues

management provided by the SCM tool.

o A training team dedicated to providing training sessions (and maybe tutorials or user

guides) to the customers,

o Etc.

• On the middle you see a collaborating repository. It is dedicated to collaborators which are

the team(s) working on the new feature development, the team dedicated to solve the

misconception area, and possibly any other needed expertise teams (internal or external).

This repository will be made of a master branch and any needed additional branch such as

basically the new feature branch and the misconception branch. Traditionally this repository

is a fork of the final distribution repository (simply said: a copy).

• On the right side are the different teams repositories. Those team make changes to their

repositories, test them and when they think those changes are correct check (push) them

into the collaborating repository (what we’ll call later in this chapter, they push them to the

collaborating repository). You see on the drawing, instead of a push, Pull requests. That is, in

this scenario, what will happen. A push to collaborating repository will be at some point

interpreted as a request for pulling the changed code from the collaborating repository to the

final distribution. This request will be the starting point for a merge review. So, in this

scenario, a push from the new feature or misconception team to the collaborating repository

will be transitioned as a pull request from the collaborating repository12 to the final

distribution repository.

12 Which is the repository where changes made by the two developers’ teams are “consolidated”. A kind of
intermediate between the teams’ repositories and the final distribution one.

Chapter X – Source Code Management, Git and Gogs.

 Page 23 / 118

A SCM Tool, summary

A Source Code Management tool is a tool for managing source code, together with change history,

comments and, most of the time the communication with other SCM tools (servers or clients).

This a usually done using different changes, branches, merge processes.

As you will see also later in this chapter, those tools also include the (base) management for bug

tickets, the introduction of new features and possibly many other things.

SCM tools have their own way for storing the source code (repositories) and use different

communication protocols with external parties.

In the context of this book the repository management, the way for managing branches and the

communication with external parties is Git, the base standard on which Gogs is based, but also

supported by other SCM tools like GitHub, Azure DevOps and JIRA, amongst many others.

Git is a protocol that can be used by tools (SCM servers and clients), but which can be used also

through using command lines (we’ll see it later).

The next page shows what could be the result of merging the changes showed in Figure 7, assuming

that there are no conflicts between changed source code files.

Chapter X – Source Code Management, Git and Gogs. Page 24 / 118

Figure 10: The final master branch.

Tag 1

Tag J

Tag 1-1

Tag K

Tag L

Tag W

Tag M

Tag X

Tag 1-2

Tag Z

Label

Label LWL

Retrievable package versions.

Chapter X – Source Code Management, Git and Gogs.

 Page 25 / 118

If bugs are discovered later on, and that the Label LWL version has been installed at one particular

customer premises, and that you want to install the bug fixes only at that customer premises, you can

always create a branch from Label LWL and manage it separately (this could be the case if you want

to avoid a large deployment from the current version you are at, for example), a branch that you

don’t necessarily want to merge.

Vice versa, if you want to develop a very specific feature for that customer, you can proceed the same

way.

Chapter X – Source Code Management, Git and Gogs.

 Page 26 / 118

Git in a nutshell
What is a Git collaboration situation?

Well, to describe it, imagine you have a computer, let’s call it the main repository, where resides the

repository of an application package, and around the world, several different actors want to

collaborate and “enrich” this main repository using their own repository, as illustrated below:

Figure 11: Git collaborating repositories.

Git provides a way for creating and managing those repositories, as well as managing the

communication between them thanks to commands described in the description of the git main

commands in chapter the git main commands.

Usually, rather than using just git, the real actors are applications around (using) git.

As an example, the main repository can be GitHub, or JIRA, or Azure DevOps, and, in our case, Gogs.

Those applications provide additional services such as ticket management, documentation and user

guides, etc.

Collaborating repositories may be of several natures. The one we will use in this chapter is MS Visual

Studio (see MS Visual Studio as a git client).

Many Gits client software offer just subsets of what is possible thanks to it. That is why many Git

clients allow for launching command prompts thank to which you can invoke Git commands (Git Bash

is one example).

Strictly speaking, a Git repository is a folder containing context information (such as the branch you’re

currently working on for example). If you want to handle this repository, you simply have to launch an

adequate tool from this folder (Git Bash or Git Gui for example).

Main repository

Chapter X – Source Code Management, Git and Gogs.

 Page 27 / 118

Some processes can be performed from the client side or from the server side (such as creating and

merging branches).

As an example, the merge process can be organized from the client side (see the git instructions - the

merge command as an example) or on the server side, like it is on Azure DevOps.13

Gogs is lacking from functionalities because most of the time you can connect it to clients or

collaborating applications that do the job.

Another example of missing git functionalities is creating so called pull requests (see above).

Gogs does not completely offer this function from the server side (in some circumstances the merge

process is not available). MS Visual Studio offers this functionality, only if you connect to a GitHub or

an Azure DevOps repository. This is because MS Visual Studio has an additional communication layer

on top of the base git one that allows the sending of pull requests directly to the server.

13 Gogs does not allow for directly creating and deleting branches for example. This is why knowing about git
commands is very useful. This is true also for MS Visual Studio as a client. It allows for creating branches but not
for merging or deleting them – except if you use a command prompt (See The MS Visual Studio client.). Most
Git presentations use GitHub or Jira on which the branch and merge operations are made on the server (GitHub
or Jira) side.

Chapter X – Source Code Management, Git and Gogs.

 Page 28 / 118

GOGS

Gogs installation

This is described in the Gogs Installation. chapter. Since my main purpose was to use Gogs to manage

my own source and connect it to the outside world, I must admit I did it in a quite quick and dirty

way. This appendix will anyway give a guidance to do it in a very much proper way, especially if you

want to use it in your internal network. Go also to Gogs github for more information.

Introduction

Gogs is a very interesting collaborating SCM to be used, especially because it is free and runs on

Windows, once initialized, and once the web server has been launched (see the installation

appendix), launch it through your browser14:

Figure 12: Launch the Gogs web page.

14 Since we used it unsecured, you will probably have to set the adequate rights in your web browser
configuration. To reach the web server page, use www.localhost:3000 as URL.

https://github.com/gogs/gogs
http://www.localhost:3000/

Chapter X – Source Code Management, Git and Gogs.

 Page 29 / 118

By default, first registered user (Benoit in my case) is an administrator:

Figure 13: Gogs sign in.

What follows is a brief overview of what you can see in Gogs. Practical scenarios will be applied in the

Creating a first repository, Connecting to an existing repository, and MS Visual Studio Client chapters.

Gogs is a kind of “small” GitHub.

Figure 14: Gogs main functions.

Chapter X – Source Code Management, Git and Gogs.

 Page 30 / 118

The Dashboard. It contains actions assigned to you,

and actions that you performed.

Figure 16: Gogs issues

The Issues tab: an issue is typically a bug, but also a request for a new feature, or even a question. It

usually has an assignee and involve one or more participants. It allows for a discussion thread to

happen:

Figure 15: the Dashboard.

Chapter X – Source Code Management, Git and Gogs.

 Page 31 / 118

Figure 17: Discussion on an issue.

In this discussion you can see that Benoit issued a problem on function A of a package repository

called TestOrganizationRepo, managed by TestOrganization, and that Benoit confirmed the function

not performing correctly. Benoit02 (obviously also belonging to TestOrganization) responds that he

will investigate.15

The Pull Requests tab:

Figure 18 Pull Requests.

Pull Requests are a little bit a

complex function. Gogs has a

specific to treat them, as

opposed to GitHub or Azure

DevOps. We’ll describe that

later.

15 We’ll see from next pages how repositories, organizations and teams can be created and managed in Gogs.

Chapter X – Source Code Management, Git and Gogs.

 Page 32 / 118

Figure 19: Exploring Gogs.

As a first step we can already draft (though the complete model goes further than that) the main

different “objects” or “entities” managed by Gogs:

Chapter X – Source Code Management, Git and Gogs. Page 33 / 118

Figure 20: Users, Teams, Organizations & Repositories.

USER

Organization

Repository

Team

Chapter X – Source Code Management, Git and Gogs.

 Page 34 / 118

Entities & relationships.

1. A user may have different repositories (yellow arrow). When a repository is linked to a user

by this only relationship, it is mainly because the repository is really private to the user,

working alone with this one. Another situation is that the repository is only managed by the

user, but other collaborating repositories (or organizations, or teams) are linked to it. The

transfer of code from the collaborating repositories to the main one is under the only

responsibility of this user. The user is administrator.

2. A team is responsible for one or multiple repositories (yellow/ blue arrow). In this team there

is at least one administrator. The other users have only read access (possibility to get the

source code), write access (possibility to push the code to the repository). This is a simple

collaboration model (see the client/ server model described in the subchapters above).

3. A main repository is attached to an organization (purple arrow), with one or very few people.

Teams a are attached to the organization, those teams are made of one or several

collaborating repositories (yellow/red arrow). The teams are responsible for proposing

changes through their collaborating repositories. The one or few people belonging to the

main organization is (are) responsible for pushing changes to the main repository.

Continuing the tour.

When you are administrator, you can have access to an overall

options panel:

Figure 21: Accessing the admin panel.

Chapter X – Source Code Management, Git and Gogs.

 Page 35 / 118

General options panel:

Figure 22: The admin panel.

The Admin panel is really a quick way to access to:

• A quick overall information panel with general information, statistics on the number of

created accounts, repositories, organizations, etc.,

• Your dashboard,

• The user manage panel:

Figure 23: User Manage Panel

Chapter X – Source Code Management, Git and Gogs.

 Page 36 / 118

In this panel you can edit, create user accounts (useful if you want to have more than one

administrator16).

• Organizations17, Repositories, etc. This is something we’ll discuss later in more details.

Let’s come back to the general Dashboard main panel:

Figure 24: Main dashboard panel.

In the red/ dashed circled area, you can see all activities related to you (in this case you created two

repositories).

In the blue/ dashed circled area you can see:

• Repositories that you created. The first one is a repository you created on your own name.

The second one is a repository that you created on the TestOrganization organization (we’ll

see soon how to do this)

• Organizations:

16 Notice that you must have at least one administrator account. Note also that this is a general panel that does
not describe the rights that a user has on a particular repository (read, write, etc.). This is something we’ll talk
about later.
17 That is actually the only place where you (as an administrator of course) can create an organization.

Chapter X – Source Code Management, Git and Gogs.

 Page 37 / 118

o

Figure 25: Organization sub-panel.

I you click on TestOrganization, you’ll see the following interesting panel:

Figure 26: Organization Panel.

In this panel you see the following:

• You can create repositories attached to an organization,

• You can invite someone to the organization18

• You can create teams belonging to the organization.

18 Be careful that inviting someone to an organization usually gives him limited possibilities to interact with the
repositories belonging to the organization. It is basically eventually to create issues (without possibilities to
assign someone to the issue).

Chapter X – Source Code Management, Git and Gogs.

 Page 38 / 118

You can see that one team is associated with TestOrganization (Owners). This team is created

implicitly when you create the organization.

You can invite someone to the organization (in this case I invited Benoit02):

See the second avatar, corresponding to

Benoit02.

But if click on the Owners team:

Figure 28: Organization Owners.

You see three things:

• Benoit02 is not part of the team,

• You have full access to all organization repositories and,

• you have administrator rights to the organization (meaning you can add someone, invite

someone, delete repositories, etc.).

Consequently, rather than to add additional members directly to the Owners, create additional

teams.

Figure 27: Invite someone to an organization.

Chapter X – Source Code Management, Git and Gogs.

 Page 39 / 118

Creating a Gogs repository.

Well, it seems now that we should introduce what should19 be the easiest point to understand in

Gogs (and Git in general).

We already saw what a branch is, as well as (at least partly) is the merging process.

The reality is that it is pretty rare that you have to deal with a single and alone repository at a time.

Usually, you are actually working on a branch (remember, be it a new feature, a misconception, etc.)

of a tree.

And the master branch of the tree is, of course, the master branch of your (local) repository.

The real (future) master branch of the package you are working on is in fact a combination of many

branches from many (other) collaborating repositories. This, in fact, was already described with the

new feature and misconception branches described before, considering that there is probably one

master branch, one new feature branch and one misconception branch stored centrally on a server …

but actually many (altered) copies of them in many different local repositories.

Anyway, at any moment in time, there must be only one repository that is considered to be the one

from which official versions of your package are delivered. The situation is then something like:

19 You will see it is indeed not the case!

Chapter X – Source Code Management, Git and Gogs.

 Page 40 / 118

Figure 29: Different collaborating repositories.

You then have:

1. A Master-Origin repository, the repository used for generating the official version,

2. A Master-Feature1-1, the part of the new feature developed by a developer or a (team) group

of (yellow arrow)

3. A Master-Misconception1, the part of the misconception developed by a developer or a

(team) group of (red arrow)

4. A Master-Feature1-2, the part of the new feature developed by another developer or a

(team) group of (green arrow)

All of those repositories have the same origin. Physically it is either a web (URL) or an SSH address.

All the different colored collaborating repositories are copies of the Master-Origin repository. They

are “positioned” on their respective branch (feature or misconception).

N.B.

Actually, a Git repository is a folder in which there is a “.git” sub-folder.

This subfolder contains, amongst others:

MASTER-ORIGIN

MASTER-FEATURE 1-1

MASTER-

MISCONCEPTION 1

MASTER-FEATURE 1-2

Chapter X – Source Code Management, Git and Gogs.

 Page 41 / 118

• The information telling on which branch you are located,

• The whole repository history (in the form of binary files such as tags and deltas between the

different file versions),

• Log files,

• Etc.

If the folder is an MS Visual Studio one, it contains also a “.vs” sub-folder.

If the folder contains a non-bare repository, a version of the actual package (source code) file are also

present. Those files are the ones that belongs to the branch you’re currently on20.

This way, tools like Git Bash or Git Gui, when launched from the folder, know about what branch is the

current one21.

The Master-Origin has also two branches for the new feature and the misconception. When new code

files have to be transferred to the Master-Origin, it has to be transferred on the correct branch

(origin-feature or origin-misconception).

20 If you invoke the switch command, or if you go to another branch in the MS Visual Studio, then these files will
be replaced by the one belonging to the branch you are switching to.
21 Gogs repositories are folders named “RepositoryName.git”. Those are bare repositories and you cannot
handle them by launching tools like Git Gui or Git Bash from them.

Chapter X – Source Code Management, Git and Gogs.

 Page 42 / 118

As you can understand now, the Master-Origin repository is not a repository that can be used directly

for generating the official versions of the package. After new feature and misconception teams will

have finished their job, the misconception and new feature branch will have to be merged to a main

branch. Meanwhile, the Master-Origin repository is a bare repository22.

As such, it is easily understandable that any Gogs repository is a bare repository. It is always used to

consolidate the development of more than one developer.

Thus, in most cases, a Gogs repository will need to be the origin of a non-bare external repository.

Let’s create our first Gogs repository.

Figure 30: Create a first repository.

From the dashboard, let’s create a

new repository.

22 It could be like that further on with the different collaborating repositories. If multiple developers are working
on the same collaborating repository, then, again, and at its turn, this collaborating repository is a bare
repository.

Chapter X – Source Code Management, Git and Gogs.

 Page 43 / 118

Figure 31: MyFirstRepository.

Put any description that you want. Let’s focus on three important things:

1. The gitignore option (red circled), usually describe the type of files you don’t consider to be

part of the source code, usually files that are part of the development IDE you are using.

Since we create only bare repositories in Gogs, and that we will use (later on) MS Visual

Studio, we choose Visual Studio.

2. The type of license (if you publish your package code) (green circled). See Git SCM

documentation about this (Git SCM).

3. For the moment, don’t initialize the repository (blue circled).

You’ll then obtain the following screen:

https://git-scm.com/

Chapter X – Source Code Management, Git and Gogs.

 Page 44 / 118

Figure 32: First uninitialized repository.

Note the HTTP address that is mentioned. This is the repository URL. You can copy it to the clipboard

thanks to the button at the right of the URL23.

As already mentioned, we will need another, local, repository to feed the Gogs repository we just

created.

The first set of instructions that are listed below are the one that you should use in order to create

this local repository24.

The second set of instructions describes the instructions to be executed if you connect the Gogs

repository from an existing local repository.

Those two operations are described in the chapters below.

23 Note that you can also obtain the SSH address. Since we’ll mainly access the repositories through HTTP, we
won’t use this option in this chapter.
24 It is assumed, of course, that you installed a Git SCM server on your computer. Additionally, it is assumed that
you installed Git bash and Git Gui tools.

Chapter X – Source Code Management, Git and Gogs.

 Page 45 / 118

Starting the game

Introduction

In the following chapters you will learn:

• How to create a new repository initially, feeding the Gogs repository from the client side,

• How to connect to an existing repository, creating branches, merge the branches and delete

the branches,

• The fork process,

• Working with MS Visual Studio on the client side.

On the client side you can work with different client applications, as already mentioned above in this

chapter.

Those are, for the main ones used in this chapter:

• Git Bash, which allows for creating a local Git repository through the use of Git commands

(the main ones are described below), populate it and push it to a remote repository,

• Git Gui, which allows for creating a Git repository from a visual interface, as well as

populating it and pushing it to a remote repository. In some cases, Git Gui is not always

practical or does not allow for performing all possible Git operations, this is why, sometimes,

it is useful to use it together with Git Bash,

• MS Visual Studio, which allows for almost all needed operations, at the exception of deleting

and merging branches, for which the use of Git Bash is still needed.

There are many, many others.

Some client-side applications lack often from some operations (particularly on the server side)

because those operations usually happen on the server side. Gogs does not provide all possible Git

operations (such as merge or branch delete and creation, for example), the reason why we will use

Git Bash or the MS Visual Studio client to perform those operations.

For the reasons mentioned above, the client-side applications often provide the possibility for

launching Git command prompts or shell programs.

Before going to the next chapters, let’s talk about the way Git operates on a local repository through

the description of the main Git possible commands (operations).

Git init.

Launched in a folder folderA, the command git init creates a repository within folderA, basically a

subfolder “.git”25 which contains much information on the repository. We’ll see this in the next

command descriptions.

25 Gogs stores its repositories in a folder named “RepositoryName.git”. This is why it is impossible to launch a
client-side application on those folders. This is mandatory to prevent such operations on the client side to
happen, because Gogs store information about those repositories in its own database. This would make the
whole system inconsistent.

Chapter X – Source Code Management, Git and Gogs.

 Page 46 / 118

The folderA files plus the “.git” sub-folder is typically a non-bare repository.

Git add filename.

When you start to populate a non-bare repository, you typically add files to the folderA folder. Then

you start editing the file. To notice it to Git, you use the command git add filenameA. It puts

filenameA in a so-called staging area, telling Git that you are working on this file (adding or modifying

it26).

Git commit.

Git commit -m “Commit message” tells Git that you confirmed the modifications that you made on

the last add files (you are committing the staged files).

Practically it transfers a compressed version of the added files, together with the commit message to

the “.git” folder27. This is a tag or a commit point28.

Git remote add.

Git remote add origin URLName or Git remote add origin SSHName tells Git that the repository is

issued from or is linked to a remote URLName or SSHName repository (typically a GitHub, Jira … or a

Gogs repository).

From this moment on, URLName or SSHName is also known as being the origin29 of the repository,

while master30 is the name of the main current repository branch.

Git push.

The git push -u origin master command pushes (sends) the current repository master branch to the

origin master branch. The -u option tells, amongst other things, to send bare minimum (compressed)

information during the transfer31.

The example below shows the Git Bash command prompt launched in the

c:\TestGit\MyFirstRepositoryCopy folder (see first repository creation below), where you can see that

the client repository is on the NewFeature branch32

26 Actually, for noticing Git that you are modifying an already existing file, you use again the same command git
add.
27 In fact, just a delta (differences) with the previous files is added to the Git folder.
28 Which will allow for transferring compressed information when transferring files from one repository to the
other.
29 To be used explicitly in other git commands.
30 The git init allows for many parameters. One of them is the name you want to give to the master branch,
“master” being the default value.
31 When you push a local branch to a remote branch, there might be conflicts – for example the two branches
don’t have the same history- other additional information that you might add to the -u will determine how to
treat those conflicts.
32 See the switch command below to see how to go from one branch to the other.

Chapter X – Source Code Management, Git and Gogs.

 Page 47 / 118

Figure 33: Git Bash on NewFeature branch.

The previous git push command only pushes the current branch to the origin. A git push –all will push

all branches to the origin (if a branch from the current repository does not exists in the origin, then it

will be created):

Figure 34: Git push --all pushes all branches.

Git push -u origin NewFeature would only push the current NewFeature branch to the origin.

Git fetch

The git fetch –all gets all origin branches33 to the current repository.

Remark:

In this chapter, I will use fetches only on already initialized local repositories. Instead, when you want

to create a local repository from an existing remote one, I suggest using the git clone command

instead to initialize the local repository.

The git fetch origin NewFeature would get the remote NewFeature branch.

Most of the time what you want to do is a git pull (see next command).

33 If there are multiple origins, if you used multiple git remote add for example, it will fetch all the remotes. It
could be convenient if you have different remote repositories with different branch names.

Chapter X – Source Code Management, Git and Gogs.

 Page 48 / 118

Git pull.

The git pull --all gets all branches from the remote repository.

The difference between git pull and git fetch is showed in the next figure:

Figure 35: Difference between git fetch and git pull.

See34

git fetch is used to retrieve the latest commits from a remote repository, but it does not create a new

copy of the entire repository on your local machine. Instead, it updates your local copy of the

repository's "remote-tracking branches" (branches that track the state of the remote branches),

without modifying your local branches. This means that you can review the changes before merging

them into your local branches.

Git switch

The git switch BranchName switches the Working Directory from the Local Repository branch to

another one. When fetching files from the remote to the local repository, Git stores the information in

the Local Repository (as showed in the previous figure). When switching from a branch to the other,

Git transfers to the Working Directory (i.e. the files you’re directly working with) the files belonging to

the BranchName branch. You can see it when using Git Bash with a git switch command, it replaces the

files in your Working Directory (i.e. the directory (folder) you invoked the git init or git clone

command).

34 Here you see the difference between a bare repository and a complete one. The bare repository would
consist only of the Local Repository showed in the figure.

Chapter X – Source Code Management, Git and Gogs.

 Page 49 / 118

Git merge

The git merge BranchName command merge BranchName into the current branch.

As an example, MyFile01.txt has the following content in the NewFeature branch:

Figure 36: Content of MyFile01.txt in NewFeature branch.

And the following one in the master branch:

Chapter X – Source Code Management, Git and Gogs.

 Page 50 / 118

Figure 37: Content of MyFile01.txt in the master branch.

Once positioned on the NewFeature branch, the execution of a merge command would give:

Figure 38: A merge of NewFeature in the master branch.

MyFile01.txt in the master branch and in the NewFeature branch have different histories.

Chapter X – Source Code Management, Git and Gogs.

 Page 51 / 118

If you want to go on with your working in the NewFeature branch, you have first to reconciliate the

NewFeature branch with the master branch history. To do so, you:

• First consolidate the two versions in the NewFeature branch by adding MyFile01.txt into the

staging area and editing it would give:

Figure 39: Editing MyFile01.txt in merge state.

And the two files reconciliated:

Figure 40: The two versions reconciliated.

Chapter X – Source Code Management, Git and Gogs.

 Page 52 / 118

• The complete session is:

Figure 41: NewFeature reconciliated with master.

• And after pushing that all to the remote, you can then push to the remote and switch back to

the master, for example:

Figure 42: Back to final state.

Chapter X – Source Code Management, Git and Gogs.

 Page 53 / 118

The final picture

You can see now, considering the different git commands and their associated moves:

Figure 43: Git commands moves summary.

Chapter X – Source Code Management, Git and Gogs.

 Page 54 / 118

Creating a first repository

In Creating a Gogs repository. we created a MyFirstRepository repository without initializing it.

We could populate the repository by directly importing files into it. Instead, we will create an external

local repository and populate the former thanks to it.

The appendix Connect the uninitialized Gogs repository to a new local one. describes:

• How to initialize a local repository,

• The addition and modifications of files,

• The pushing process,

• The creation and pushing process for a new MyFeature branch,

• The creation of a pull request.

Chapter X – Source Code Management, Git and Gogs.

 Page 55 / 118

Connecting to an existing repository

The appendix Connect the Gogs repository to an existing local one. describes:

• The launch of Git GUI and its use,

• The connection to the Gogs MyFirstRepository,

• The pull command,

• The deletion of a branch.

Chapter X – Source Code Management, Git and Gogs.

 Page 56 / 118

The fork process.

Figure 44: Pull Request from a collaboration.

The situation can be summarized as below:

• A NewFeature branch is pushed to a collaborative repository (in green),

• A comparison between the main branch (in orange) and the NewFeature branch (in green)

allows for creating a pull request and assign it to somebody (in light blue),

• This pull request is reviewed, and a discussion thread can be issued, or the merge be done

immediately,

• Leading to a main branch merged on the Main Repository (the comparison creates a pull

request not on the collaborative repository but on the main one).

The whole and complete process is described in the appendix The fork process..

Note that you can immediately create pull requests on the main repository.

In this case you can directly clone it (rather than cloning the collaborative one) and create a new

branch. But in this case, you will keep two branches on the main repository, and you’ll have to delete

Collaborative

Repository

Main

Repository

Pull Request

Chapter X – Source Code Management, Git and Gogs.

 Page 57 / 118

this branch manually from the external repository and remove the second branch, as already

described previously in this chapter.

Chapter X – Source Code Management, Git and Gogs.

 Page 58 / 118

MS Visual Studio Client

In this paragraph, we will:

• Create a new repository named ASimpleApp (without initializing it),

• From the MS Visual Studio Client, create a new C# desktop application,

• Create a local Git Repository and connect it to ASimpleApp repository,

• Make some changes and push them,

• Create a branch and push it.

The whole process is described in the appendix The MS Visual Studio client..

As many other Git clients, MS Visual Studio allows for launching a command prompt session (Tools-

>Command Line->Developer Command Prompt). Switch to the master branch and launch the

command prompt:

Figure 45: MS Visual Studio Command Prompt.

The NewFeature branch is now merged and deleted.

Chapter X – Source Code Management, Git and Gogs.

 Page 59 / 118

Appendices

Gogs Installation.

I did not create any particular Windows account (apart from mine, local, which is simply “benoi”).

What I did is:

• Copy the whole code from Gogs code into c:\Program Files\gogs,

• Went to executables to install the executables,

• Installed SQLite3, together with a client part of it,

• Configured the installation (see what follows).

I then created a shortcut ("C:\Program Files\gogs\gogs.exe" web) to be ran into "C:\Program

Files\gogs”.35

Then you have to create a “c:\Program Files\gogs\custom\conf” folder, where you copy the file

“app.ini” that you can find in “c:\Program Files\gogs\conf”.

Adapt this file the following way:

• Change the RUN_USER to be your user:
o RUN_USER = benoi

• If you want the web server to a “verbose” mode 36
o RUN_MODE = dev

• Configure your URL, normally:

o EXTERNAL_URL = http://localhost:3000/37

• Adapt the [database] part:

o TYPE = sqlite3

o HOST = 127.0.0.1:5432

o NAME = gogs

o USER = benoit.borremans@gmail.com

o PASSWORD = your account pa

o PATH = C:\QLiteDBs\gogs.db38

• The Gogs repositories:

o [repository]

o ROOT = c:/gogs-repositories

• Since I installed Windows in French, to force the Gogs interface to

be in English:

o [i18n]

o LANGS = en-US

o NAMES = English

35 That is the shortcut I launch as administrator to launch the web server. You can also install it as a running
service, a choice I didn’t make.
36 Do it only when you want to debug.
37 Notice I put it on http mode, not https. Again, a not quick and dirty way should be to let it on scripted mode.
38 The database file where the Gogs database will be created.

https://github.com/gogs/gogs
https://gogs.io/docs/installation/install_from_packages

Chapter X – Source Code Management, Git and Gogs.

 Page 60 / 118

There are many other options you can change. Those described here are sufficient.

Then I put all possible accesses to the user benoi on “c:\Program Files\gogs”, “c:/gogs-

repositories” and “c:\QLiteDBs” (read, write, …). I know … God bless me.

Finally, to initialize the system (mainly the database), run “./gogs web” in the “c:\Program Files\gogs”

folder (use this exact spelling, included “./”).

Gogs log, and error log files

The folder “c:\Program Files\gogs\log” contains especially interesting log files to look at if you have

problems.

Set the option RUN_MODE = dev.

Chapter X – Source Code Management, Git and Gogs.

 Page 61 / 118

Connect the uninitialized Gogs repository to a new local one.

Git SCM has been created in the UNIX world. That is why it is common to use Git commands in a Unix

environment.

In Windows, you can mainly use two different tools which are emulating a Unix (or Linux)

environment.

First of all, when you launch a command prompt box (be it under Unix or Windows), you must launch

the tool you are using with the correct environment variables defined. That is why, when you launch a

command prompt box, you have to launch it from the correct folder (directory). In Windows, this

cannot be easily obtained if you launch the cmd.exe from the Windows start command and goes to

the adequate folder.

That is why, using any file explorer (the Windows File Explorer included), the correct extensions must

be installed in your file explorer. This can be easily verified by right-clicking into your file explorer, you

can see that you can launch the desired Git tool.

As an example, for the Windows File Explorer:

Figure 46: Open A git Client.

See the two red-circled options.

This is usually introduced in the Windows File

Explorer when you download Git SCM from Git

downloads.

Git Bash is a command prompt that emulates a

Unix command prompt and allows for running

Unix shell scripts39.

Git GUI is a more evolved console for running

Git operations.

39 Remember, Git was developed in the Unix world.

https://git-scm.com/downloads
https://git-scm.com/downloads

Chapter X – Source Code Management, Git and Gogs.

 Page 62 / 118

Let’s create a “c:\TestGit\MyFirstRepository” folder and start Git Bash from there:

Figure 47: Git Bash Command prompt.

You see that the suggested set of instructions for creating a Git repository is:

touch README.md
git init
git add README.md
git commit -m "first commit"
git remote add origin http://localhost:3000/Benoit/MyFirstRepository.git
git push -u origin master

Let’s forget about the first touch one, and let’s start directly with the git init:

Figure 48: Git init command.

Chapter X – Source Code Management, Git and Gogs.

 Page 63 / 118

Initialized empty Git repository in C:/TestGit/MyFirstRepository/.git/

benoi@PCBenoit MINGW64 /c/TestGit/MyFirstRepository (master)

You see that it tells you it created a git repository (which practically means that it added a “.git”

subfolder. The second colored sentence is also interesting, since it tells you that it created a master

branch on which it is “branched”.

Then let’s create and add a file named “README.md”:

Figure 49: README file creation.40

The second Git instruction is to add this file (git add README.md) into the staging area (since it is not

here the purpose to provide a full Git commands guide, I suggest that you go briefly to Git SCM doc,

only main interesting git commands will be developed in this chapter).

Let’s also create a second file “MyFile01.txt” into the folder:

Figure 50: Create a first project file.

40 I am personally using Windows Norton Commander (available for a very little price), which, on top of being a
bi-folded file explorer, offers also a useful file comparison tool.

https://git-scm.com/doc

Chapter X – Source Code Management, Git and Gogs.

 Page 64 / 118

Let’s then add those two files in the staging area:

Figure 51: Adding files to the project.

The next command (git commit -m “first commit) tells the repository to commit the staged files into

the repository:

Figure 52: Feeding the repository with (a new version of) files.

The next command:

git remote add origin http://localhost:3000/Benoit/MyFirstRepository.git

tells that the current repository is linked to a remote one (our new MyFirstRepository Gogs one, the

origin).

The next one tells to push the current master branch to the origin.

README.md

MyFile01.txt

Chapter X – Source Code Management, Git and Gogs.

 Page 65 / 118

The two commands (commit and push) tell really interesting things:

Figure 53: Git file transfer.

The git commit command tells you that you introduced a change in your package that you call “first

commit”, that consists in two new or changed files and wears a tag “590a681” in your repository.

The git push command line tells you that it will transfer 4 objects (two of them probably be the two

files, and one of them the information about the commit tag) and that it will be transmitted a

“compressed” files41.

Coming now back to the web screen on the repository (click on it to refresh it), things start now to be

interesting … the game’s commencing:

41 For more details on it, see the appendix on the git protocols and repository structure.

Chapter X – Source Code Management, Git and Gogs. Page 66 / 118

Figure 54: Gogs Repository main screen.

Chapter X – Source Code Management, Git and Gogs.

 Page 67 / 118

You can see there 5 main parts:

1. The full name repository, together with one unwatch

(meaning that it is the first time you see this screen after a

main action happened – the push), a starring quotation that

you could for example interpret as a degree of importancy)

and finally the number of forks (we’ll see that point later) -

Yellow.

2. The number of commits, branches, and releases – Brown.

3. The “compare” green symbol, that we’ll talk about later. The

branch on which the repository is positioned (or checked

out42), and then a last symbol on the right side which allows

to make a zip package containing the repository files. It is

also possible to create or import new files directly into the

repository – Red.

4. The repository files content. Note the tag associated to them

(see the content below) – Purple.

If you click on tags, you see the related information:

Figure 55: Tags related information.

Notice also that now you have possibilities to create Issues and Pull Requests (the last one, again,

we’ll see it later).

Ok. Let’s continue de game by changing files in our local repository.

42 Check in and check out operations in Git does not represent the same thing compared to other SCM tools. In
git, a repository is said to be checked out on a branch (while in other SCM, we talk about checking in or
checking out files).

Chapter X – Source Code Management, Git and Gogs.

 Page 68 / 118

Figure 56: Changing a file.

We have now first to stage this new version of the file, then to commit it:

Figure 57: commit and push the change.

If you refresh your browser, you will see:

Figure 58: pushed change.

Notice the second commit tag (62c1bd624d).

If you click on MyFile01.txt:

Chapter X – Source Code Management, Git and Gogs.

 Page 69 / 118

Figure 59: file changed in Gogs.

And if you click on History:

Figure 60: File History.

This shows you a bit of things you can do by directly using git commands from a command prompt.

Gits commands and their multiple arguments represent a pretty huge set of possible operations.

This is why in most of the cases, you use a dedicated Git Client GUI43.

We’ll now go on introducing Git GUI, which allows you to perform git commands without having to

know the Git commands (and format!) that you should use to perform the corresponding operations.

Let’s now forget about Git Bash and let’s switch to Git GUI:

Figure 61: Launching Git GUI

43 Those can be Git GUI, that we will still use a bit here, GitKraken, MS Visual Studio or MS Visual Studio code,
etc. Those clients offer any, most of the time, a way for launching a command prompt box, since they don’t
necessarily offer visually a way for performing all possible operations that the whole Git SCM offer.

Chapter X – Source Code Management, Git and Gogs.

 Page 70 / 118

Figure 62: Git GUI.

Let’s again modify our file:

Figure 63: Third file version

Chapter X – Source Code Management, Git and Gogs.

 Page 71 / 118

You’ll have to hit on the rescan button to allows Git GUI to detect you changed the file:

Figure 64: Changing a file via Git GUI.

Now Stage the change, add a commit message, and hit the Commit button.

Then, hit the Push button:

Chapter X – Source Code Management, Git and Gogs.

 Page 72 / 118

Figure 65: Git GUI - push the change.

Hit the Push button again.

You’ll obtain the following popup:

Figure 66: Push Popup.

Chapter X – Source Code Management, Git and Gogs.

 Page 73 / 118

Close it.

If you go to the Gogs GUI, you’ll see the corresponding changes.

From the Git GUI, let’s create a new “NewFeature” branch (Branch->Create):

Figure 67: Create a branch from Git GUI.

You can see that it is already checked out to this new branch.

Let’s change again our file:

Figure 68: Change a file in the new branch.

Let hit rescan to refresh the Git GUI and let’s stage and commit the change.

Chapter X – Source Code Management, Git and Gogs.

 Page 74 / 118

Let’s push the change:

Figure 69: Push the branch.

Go to the Gogs GUI and refresh the repository:

Chapter X – Source Code Management, Git and Gogs.

 Page 75 / 118

Figure 70: You see now two branches.

Change the branch to NewFeature:

Figure 71: The NewFeature branch in Gogs.

Chapter X – Source Code Management, Git and Gogs.

 Page 76 / 118

Figure 72: Changed file in the new branch.

Back to the main repository files, hit the green button:

Figure 73: The compare button.

By choosing the Compare field to NewFeature, you can now see this:

Figure 74: Compare branches, create Pull Request.

Chapter X – Source Code Management, Git and Gogs.

 Page 77 / 118

Fill and create the pull request:

Figure 75: Pull request creation.

With this configuration you can only assign Benoit (yourself) to the pull request, since the repository

has been created owned by Benoit, through no organization nor team.

Figure 76: Pull request created.

You could go on discussing on this pull request.

Go back to the main repository screen:

Chapter X – Source Code Management, Git and Gogs.

 Page 78 / 118

Figure 77: Pull request pending.

Go to this request and open it:

Figure 78: back to the pull request.

Merge it (hit the green “Merge Pull Request” button.

Back to the main repository branch, hit the MyFile01.txt file:

Chapter X – Source Code Management, Git and Gogs.

 Page 79 / 118

Figure 79: branched file in the master.

You see changed file has been pushed to the master branch.

Go back to the Git GUI, and check out to the master branch (Branch->Checkout):

Figure 80: check out back to the master.

Chapter X – Source Code Management, Git and Gogs.

 Page 80 / 118

Figure 81: update the local master branch.

To refresh the master local branch, go to Remote-

>Fetch from origin.

If you view your local file, you see no change.

Figure 82: local merge.

But if you go to Merge-> Local Merge, then the file is correctly

updated.

Chapter X – Source Code Management, Git and Gogs.

 Page 81 / 118

Connect the Gogs repository to an existing local one.

Create now a “c:\TestGit\MyFirstRepositoryCopy” folder.

From there, launch Git Bash.

Execute a git Init command.

Execute the first git remote command, but instead of a git push, execute a git fetch --all44:

Figure 83: Git Fetch all.

Launch Git Gui in this new folder.

44 Which actually gets all branches from the origin.

Chapter X – Source Code Management, Git and Gogs.

 Page 82 / 118

Figure 84: Launch Git Gui in a new folder.

Edit the MyFile01.txt:

And hit rescan to refresh Git Gui:

Chapter X – Source Code Management, Git and Gogs.

 Page 83 / 118

Figure 85: Change a file in a new copy.

Stage the change:

Figure 86: Staging a change.

Chapter X – Source Code Management, Git and Gogs.

 Page 84 / 118

Commit it:

Figure 87: Commit the staged change.

Push it:

Figure 88: Push the change.

Acknowledge all popups.

Now you can see the change in the origin:

Chapter X – Source Code Management, Git and Gogs.

 Page 85 / 118

Figure 89: Change in the origin.

It pushed it to the origin’s master branch. The NewFeature branch version stayed the same:

Figure 90: No change in the NewFeatureBranch.

Chapter X – Source Code Management, Git and Gogs.

 Page 86 / 118

Hit the compare button:

Figure 91: Compare.

Gogs detects no change.

Change the file again (fifth version), but before pushing from Git Gui, set the current branch to the

NewFeature branch in Gogs.

Again, it pushes to the master branch.

This is all because when you launch Git Gui (or Git bash, or any other) in the current folder, it uses not

only Windows environment variables but also the index of Git, which is together a branch and some

location in the branch.

And currently the index is on master.

This can be done through Git Gui by using Branch->Checkout, which, behind the scenes uses the Git

checkout command. Rather than doing this, will use the Git switch45 command through Git bash:

Figure 92: Switch to a branch.

Since we are further on in master compared to NewFeature, we merge master into the NewFeature

branch:

45 Git switch has been introduced in 2019, because Git checkout, on top of changing the index can also fetch
files form the starting branch, which might be confusing. Git switch does not alter nor add any file in the branch
we want to connect to.

Chapter X – Source Code Management, Git and Gogs.

 Page 87 / 118

Figure 93: Merge the master into the current branch.

We see now that MyFile01.txt has been updated:

Figure 94: NewFeature has been updated.

Let’s update MyFile01.txt to the sixth version (change the file content), stage and commit it:

Figure 95: Update a file in the current branch.

Chapter X – Source Code Management, Git and Gogs.

 Page 88 / 118

Figure 96: Push the branch to the remote.

You can see that the file has been updated to the correct branch:

Figure 97: File updated in Gogs.

Chapter X – Source Code Management, Git and Gogs.

 Page 89 / 118

If we decide the new feature development to be finished, and the origin is up to date, we can delete

the NewFeature branch to be obsolete, we can delete the remote branch46:

Figure 98: Delete the remote branch.

Which results in Gogs in having just one master remaining branch:

Figure 99: One remaining branch after push and delete.

46 Since there is no way to do it directly in Gogs, this is the only way to proceed.

Chapter X – Source Code Management, Git and Gogs.

 Page 90 / 118

The fork process.

First let’s create the organization dedicated to the collaborators:

Figure 100: Collaborators organization.

Then let’s connect to it:

Figure 101: Connect to the collaborators organization.

Let’s create a team associated to the organization (you could as well directly invite people):

Chapter X – Source Code Management, Git and Gogs.

 Page 91 / 118

Figure 102: Team associated to the organization.

Give write access to repositories that we will create in this team:

Figure 103: Collaborators team.

Chapter X – Source Code Management, Git and Gogs.

 Page 92 / 118

Add members to it:

Figure 104: Add members to the collaborators team.

The full collaborators team:

Figure 105: The collaborators team.

Now let’s create the main repository:

Chapter X – Source Code Management, Git and Gogs.

 Page 93 / 118

Figure 106: The main repository.

Chapter X – Source Code Management, Git and Gogs.

 Page 94 / 118

Let’s populate the repository (through direct file import)47:

Figure 107: Repository population.

Let’s drag and drop files (in our case MyFile01.txt) to the repository:

47 You could as well populate it by connecting it to an external repository, as showed above in this chapter.

Chapter X – Source Code Management, Git and Gogs.

 Page 95 / 118

Figure 108: Drag & drop to the main repository.

And, after the drop, add a message and commit the addition:

Chapter X – Source Code Management, Git and Gogs.

 Page 96 / 118

Figure 109: Commit the file addition.

The repository populated:

Chapter X – Source Code Management, Git and Gogs.

 Page 97 / 118

Figure 110: The repository populated.

Now from the fork button, fork the main repository:

Chapter X – Source Code Management, Git and Gogs.

 Page 98 / 118

Figure 111: Fork the main repository.

Use the MyCollaborators organization as being the owner of the fork repository. Notice the two

repositories:

Chapter X – Source Code Management, Git and Gogs.

 Page 99 / 118

Figure 112: Main and collaborative repositories.

The collaborative repository:

Figure 113: The collaborative repository.

Chapter X – Source Code Management, Git and Gogs.

 Page 100 / 118

Let’s clone this repository:

Figure 114: cloning the collaborative repository.

Let’s create a NewFeature branch to it:

Figure 115: Create a NewFeature branch.

Chapter X – Source Code Management, Git and Gogs.

 Page 101 / 118

Let’s modify MyFile01.txt 48:

Figure 116: Modify MyFile01.txt on the NewFeature branch.

Stage the file, commit it.

Push it now to the origin:

48 Remember : hit the Rescan button to see it.

Chapter X – Source Code Management, Git and Gogs.

 Page 102 / 118

Figure 117: Push the NewFeature branch to the origin.

Figure 118: Push popup.

Chapter X – Source Code Management, Git and Gogs.

 Page 103 / 118

Figure 119: Push popup, suite.

The NewFeature branch pushed to the collaborative repository:

Figure 120: The NewFeature branch pushed to the collaborative repository.

Chapter X – Source Code Management, Git and Gogs.

 Page 104 / 118

Hit now the green compare button:

Figure 121: Comparison between the two branches.

Choose the NewFeature branch to make the comparison, and notice three things (see the next

picture):

• The choice of the branch to compare to (red circled),

• The fact that you can add descriptions and attach files (green circled),

• The popup is now on the main repository (purple circled):

Chapter X – Source Code Management, Git and Gogs.

 Page 105 / 118

Figure 122: Pull request creation.

Assign someone to the review:

Figure 123: Benoit is assigned to the pull request review.

You can start a discussion or merge the pull request (red circled):

Chapter X – Source Code Management, Git and Gogs.

 Page 106 / 118

Figure 124: Merge pull request.

Figure 125: Merged change.

Chapter X – Source Code Management, Git and Gogs.

 Page 107 / 118

The MS Visual Studio client.

Create a ASimpleApp repository:

Figure 126: ASimpleApp repository.

Now launch MS Visual Studio and create a C# desktop application:

Chapter X – Source Code Management, Git and Gogs.

 Page 108 / 118

Figure 127: Create a C# desktop application.

Figure 128: ASimpleApp C# application.

Create a local Git repository:

Figure 129: ASimpleApp Git repository.

Chapter X – Source Code Management, Git and Gogs.

 Page 109 / 118

Figure 130: ASimpleApp local Git Repository.

Choose:

• Existing Remote

• The correct Remote URL (cut & paste from Gogs)

• Create and Push it.

N.B.

All Git operations are performed under an account. When the remote (origin) repository is hosted by

GitHub or Azure DevOps is involved, the account is a GitHub or Azure DevOps one. In our case, since

we use local Windows accounts, the accounts come in fact from the one defined in Gogs. We defined

two accounts in Gogs, Benoit and Benoit02.

This can be configured in MS Visual Studio in the following way:

• In Git->Settings:

Chapter X – Source Code Management, Git and Gogs.

 Page 110 / 118

Figure 131: Git MS VS Settings.

Perform a Clear image cache.

• When you launch MS Visual Studio for the first time and perform an operation like a clone

one, the account used will be the one that will be in the cache, that is the one used during

the last git operation in MS Visual Studio.

• The settings defined for the project:

Figure 132: Project Git Settings.

Chapter X – Source Code Management, Git and Gogs.

 Page 111 / 118

Once pushed from MS Visual Studio, the Gogs repository will look like:

Once pushed, you can see three indicators in MS Visual Studio:

• In purple, the current branch,

• In green, the currently uncommitted changes,

• In red, the differences between the current repository and the remote (origin) one.

Let’s now add a button whose purpose is to say “Hello!”:

Figure 133: The pushed Gogs repository.

Chapter X – Source Code Management, Git and Gogs.

 Page 112 / 118

If you look at the indicators:

You see that there are three uncommitted changes (The Initialize form, the button addition, and the

message).

Figure 134: Say Hello button.

Figure 135: MS VS indicators.

Chapter X – Source Code Management, Git and Gogs.

 Page 113 / 118

You can now commit the changes:

Looking again to the indicators:

Figure 137: MS VS indicators.

You see that there is a difference between the local and the remote repositories.

You can push it.

Figure 136: Changes committing.

Figure 138: Push the differences.

Chapter X – Source Code Management, Git and Gogs.

 Page 114 / 118

And see the Gogs repository content:

Figure 139: Gogs content.

Figure 140: Create a branch from MS VS.

Let’s create a new branch.

Chapter X – Source Code Management, Git and Gogs.

 Page 115 / 118

And let’s call it NewFeature:

Figure 141: MS VS NewFeature branch.

And change the message.

Again, looking to the indicators you see:

Figure 142: Change the message.

Chapter X – Source Code Management, Git and Gogs.

 Page 116 / 118

• That you are on the NewFeature branch,

• There is one uncommitted change.

Let’s commit the changes.

And having a look to the indicators:

Figure 144: MS VS indicators.

Figure 143: Commit the changes.

Chapter X – Source Code Management, Git and Gogs.

 Page 117 / 118

You see the change on the

NewFeature branch.

Figure 145: Changes in the NewFeature branch.

Chapter X – Source Code Management, Git and Gogs.

 Page 118 / 118

The git communication protocol

As we described it all in this document, the git transfer protocol is mainly designed to transfer files

and their history from a collaborating repository to a main or another collaborating repository.

It is essential that this transfer is efficient, this is why, actually, the whole package files are not

transferred, but rather only deltas between the files, together with information associated with the

tags (the commits) and labels.

In order to make this transfer is consistent, when a branch is transferred from one repository to

another, they must share the same history, the reason why, when a conflict occurs, the transmitted

branch must be reconciliated with the target one on the remote.

Attention must be paid on large (binary) files, the reason why, for example, Gogs has a special

treatment for those transfers.

On top of that, some communications between some hubs (hosts) and customers (clients) use

additional protocol. This is the case between GitHub and MS Visual Studio when a push happens, in

which case a pull request is automatically created – a point that is not addressed in this document.

