Chapter X — Source Code Management, Git and Gogs.

Page1/118

SOURCE CODE MANAGEMENT, GIT AND GOGS

Chapter X — Source Code Management, Git and Gogs.

Page 2 /118

Table of content
T 1A q'e o U o n o] o FARURR T PO T ST PTTOPORORRTOP 7
The Server to ClIeNt MOoo ittt e e s e e ae e e sabeesneeesaree s 7
21T ol Y o T~ ST PRPROt 10
THE MEBIEE PrOCESSES. . .uuvvieeietieeeeetteeeeetteeeeetteeeeeettaeesabaeeeeasstaeeeastaeesaastssesassasesaastasessasseeessasseeessnnes 14
DiffErENt SCENATIOS. ..eiiiiiiitie ettt ettt ettt e st e e sbee e s bt e e sab e e sabeesbeeesabeeeabeeesnseesareeesareenane 18
(20T oTo] (o] g =L J OO TSP PP TP PPPPPPI 19
Our new feature and MiSCONCEPTION SCENATIO.ueieeiureeeeiiieeeeeieeeeeiee e e e erreeeesreeeeeenbeeeeeeabeeeeenarenas 20
F N 011V I o ToT IR U0 11 - R 23
GIE N @ NUESNEID ..t h e st ettt e bt e s bt e sae e st e et e e beennes 26
€10 1€ PP PPPPTPPUPPPPPPPPPRt 28
LCTo Y=o 1y =1 1= u o T o [PPSR 28
INEFOTUCTION ...ttt ettt s e st e bt e b e beesb e e sbeesate et e enbeesbeenbeesanenas 28
ENtities & relationShips.oo it e bt e e et ae e e e bt e e e e e nt e e e e eateeaeeanes 34
(00T 0 n [o101 T T=d 4 a V=TS o 1U | PSR 34
... 34
Creating @ GOEZS MEPOSITONY. «iiiiiiiiiiiiieeee ettt eerbe e e e e e s st e e e e e e e s sssasbeteeeeesssasnssseaaeeesssssnnnnes 39
Let’s create our first GOZS rEPOSITONY......uuiiiiicieeeecciieeeeccitee e e ecttee e e ectte e e e eetteeeeeebteeeessteeeeestseaeesseeaeannes 42
STAMTING ThE MG o e e et e e e e et e e e e e abe e e e e tbaeeeeabaeeeenstaeeeesteaeeanrenas 45
[0 { o Te [V Tt u (o] o ISP PP R O PPOPRRPRP 45
Creating @ firSt FEPOSITONY ...uviii it e et e e e st e e e e sbtaeeesbeeeessanraeeesanes 54
Connecting to an eXiSTING rEPOSITONY ..cuiiiiiiiiiiiieiet et e s s s srre e e e e e s s s saabereeeeessennns 55
THE FOrK PrOCESS. ...ttt e et e e e e et e e e e et e e e e e abeeeeesseeaeeaseeeeennraeaeenranas 56
MS ViSUAl STUAIO CHENT...c.ueiiiieieeieeee ettt st sttt b e bt st eeaeeeneeas 58
F Yo7 o 1=] o Yo [To] Y PSRRI 59
LCTo Y=L [1y -] 1 =) o o APPSR 59
GOES 108, AN EITOF [OZ FIlES...cc. i et e et e e e et e e e e e eabae e e e areeas 60
Connect the uninitialized Gogs repository to a new local one.........ccceveiieicciiiiee e 61
Connect the Gogs repository to an existing 10cal ONe........coeeiiiciiiiiie e 81
TRE FOIK PrOCESS. . .eiiiiiiteee e e e et e e e et e e e e e bt eeeesbteeeesbteeeesnstaeeeaseaeesaseeeeannses 90
The MS Visual STUIO CHENT. ..c..iiiiiieeiiee et e 107

The git commUuNICAtioN ProtOCO| ...ccceeeeiiieeeee e e e e e e e e rraeeeeeas 118

Chapter X — Source Code Management, Git and Gogs.

Page3/118
Figure 1: The Server Client SCM based SYSEEML. ..o.uuiiiiiiiiieiiiiee et e s srae e s s sbae e e s sereeeeas 8
Figure 2: Consistency of the source code Package.ccveiiviiiiicciiii e e 9
Figure 3: BranChing the tre@. ... e e st e e s bee e s e sabee e s enareeas 10
Figure 4: an SCIM CHENt VEISION L.ooiiiiiiiicciiee ettt e st e e aae e e e e ttae e e et ae e e enbaeeeenbaeeeennneeas 12
Figure 5: The SCM client is an IDE @XtENSION.cciciuiiieeiiieeeeiiieeeeciiee e eeree e e sttee e e s sabee e e enabaeeeeeasaeeeennneeas 13
Figure 6: Integrating master branch into the feature branch (reconciliation).........cccceeceeevieeiieencnenns 15
Figure 7: Involving the feature branch team in the misconception.cccoecieeeiiiiee e, 17
Figure 8: An SCM repository SYMDOL.iiiiiiiiiice e bee e s 19
Figure 9: Feature and misconception branch scenario A.c.eeeeviieeiriiiic e 21
Figure 10: The final Master DranCh...........ooo i et e e ab e e e areeas 24
Figure 11: Git collaborating repOSItOrES. ..uiiiviiiiiiiiee et e e e abee e e ebeeas 26
Figure 12: Launch the GOZS WED PAGE.......cooiiiiiiiiiiiee ettt et e e tee e e bee e e e arae e s eareeas 28
FISUIE 131 GOES SN iN.ciiiiiiiiiiiiiiieeeeeeiiiiee e e e ettt et e e e sttt e e e e e s s s s aabaateaeesssasassaaaeeaeessssssseanaeeesssnnas 29
Figure 14: Gogs Main fUNCHONS.viiiiiiiieccciee e e st e e e s b e e e s rbea e e s abeee s enareeas 29
Figure 15: the DashbOard.cooouiiiieiiiiccee e et e et e e et e e e e aree e e e abee e e e nbeee e e nneeas 30
FISUIE 16: GOES ISSUES eeeiieiiiiiiiitieeeeeeiiiitteteeeeessbtrteeeeesesssataataaeessssssssasaaaeesssssasssesaeaeessssssssesaeeeesssnnns 30
FIgUre 17: DiSCUSSION ON QN ISSUE. .uuuuuuuuuuuuuuueueiuuuuuuuuuuuutuueeauaeaeasaeaeaeaeasaeaeaeaereaaaaaeaeasaeaaanaranaeananneananannannn. 31
FIUIE 18 PUIl REQUESTS. ..veiiieeiiiieeeiiieeeeiteeee ittt e e ettt e e et e e e ettt eeeesasbeeesestaeesanstaeesensaeeeennseeesennseneeennsenns 31
= U T K R o q o] (o] T = € o =4SPPSR 32
Figure 20: Users, Teams, Organizations & REPOSITONIES. ..ccuuviiiiiieiiiicciiirieee e e e eeevrere e e e e 33
Figure 21: Accessing the admin Panel.coo i e e e e e s 34
Figure 22: The admin PANEL.ce it e et e e e tee e e st ae e s s nbee e e esabeeeeenareeas 35
Figure 23: User Manage Pane€l..........uei ittt ettt e e ttee e s ttae e e s atae e e e ata e e s e nanaee e e nneeas 35
Figure 24: Main dashboard Pan@l.........eeii i s e e e e e s abee e s e eareeas 36
Figure 25: Organization SUD-PANEL........ccuiiii it e ree e e e earee e e e abe e e e e nbae e e eeareeas 37
Figure 26: Organization PANEl..........ueeiiiiiiieie ettt ettt et et e e e e abae e e eabe e e s e nabaee e e nneeas 37
Figure 27: Invite SOmeone t0 an Organization.uieiiiiiiiriiiiiieeee e e e s esrreree e e e e s s s sarreeeeeesesenes 38
Figure 28: Organization OWNEIS.uuuuuuuuuiieiiiuiuiiititiunuuuueaaaeaeaeaaaeaeaeaeaa——————————————————————————————a—a—————a———————.. 38
Figure 29: Different collaborating repoSitOries.........uuiiiciiiiiiiiieee e 40
Figure 30: Create a first rePOSITONY. ...uiii ittt e s rae e s aee e e s abae e e e eareeas 42
FIBUre 31: MYFIrStREPOSITOIY. ..uuuieiiiiiiii s ae e abaeasasaaasannnannnnnes 43
Figure 32: First uninitialized repoSitOry. ... it e ree e e ebeeas 44
Figure 33: Git Bash on NewFeature branch.........ccc.uoo i e 47
Figure 34: Git push --all pushes all BranChes. ... 47
Figure 35: Difference between git fetch and git pull.ooeeiiiiiiie e, 48
Figure 36: Content of MyFile01.txt in NewFeature branch.cccccooooiiiiiccie e, 49
Figure 37: Content of MyFile01.txt in the master branch.ccoooviiiiiiii e, 50
Figure 38: A merge of NewFeature in the master branch.cccoccvveriiiii e, 50
Figure 39: Editing MyFileO1.txt in Merge State.....ccoiveii i e e e 51
Figure 40: The two versions reconCiliated.oouciiiieiiiiiiicce e e 51
Figure 41: NewFeature reconciliated With Master.........coooiiiiiiii e 52
Figure 42: Back tO fiNal STAte.oooiuiiiieceee et e et et e e e et e e e e e e e e e aba e e e e anaeas 52
Figure 43: Git cOMMaNds MOVES SUMMAIY.uviiiiuireeiiiieeeeiireeeesiereeeesiaseeeesssaeeessssaeeessseeesssssesssssenes 53

Figure 44: Pull Request from a collaboration.cooecuiiiiiciiii e e 56

https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361993
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361994
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361996
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361997
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156361998
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362000
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362007
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362013
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362019

Chapter X

Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74.
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:

— Source Code Management, Git and Gogs.

Page 4 /118
MS Visual Studio Command Prompt.cc.eeeeieiieeiiiiee et 58
(O o 1T oI N =1 A 01 =Y o ¥ SRR 61
Git Bash Command PromMpPt.cccueeeeicciiieeciieie ettt erre e e e sarae e e serae e e ssataeeesenaaeeeean 62
Gt iNIt COMMANG. .eiiiiiiiie e e e st e e s e e e e esabaeeeesbaeeesnnnaeaeean 62
README file CrEAtION.....viiiiie ettt sttt et e sttt st e s re e st e sbae e sbeeebaeesaseesnneaesaneean 63
Create a first ProjECt file. ..uuii i e e e e e e bae e e e e 63
Adding files t0 the PrOJECL.vviii e ee e s e e s 64
Feeding the repository with (a new version of) files.ccccceiiieiii i, 64
LG] L= A T a1 =T SRS 65
GOgS REPOSITOrY MaiN SCrEEN. cociiieeiiieeee ettt te e e e e s et e e e e s e sabbreeeeeeeesssnrnnes 66
Tags related INfOrMatioN........cc.uii i e e 67
Changing @ filE. ..uueei i e e e st e s st e e e sraeeeeenee 68
commit and puSh the ChANGE.ooooiiiii e aae e 68
[TV T aY=Yo Il o F=1 o Ve d U 68
L] EE e a o T g T =T BT o -4 PP 69
11 o 1) o] YRR 69
YU T Vol oY1 o =41 €1 A € U SRR 69
(] C L RPNt 70
B T Le B 21 F=IRY =Y Y T o ISR 70
Changing a file Via Git GULLcocuviiiiiiiee sttt e e sbee e e e e e e sbaeeeeeanes 71
Git GUI - pUSh the Chane......ooo o e e e s aae e 72
VT oY 2o o TN o P UTRR 72
Create @ branch from Git GUILcooiiuiiiiiiies et sbae e e e eanes 73
Change afile inthe NEW BranCh.oo i 73
PUSH the DranCh........co ot s et s s 74
YOU SE€ NOW tWO BranChies.couiiiiiiiiiiiee ettt et 75
The NewFeature branch in GOES.cooociiiii i e 75
Changed file in the NeW BranCh...........ooi i 76
The COmMPAre DULEON. ..o e et e e ebee e e e bae e e e abae e e eeareeas 76
Compare branches, create PUll REQUESL.......cccccuviiiiiiiiie ettt 76
0 | Yo TU =T ol Y- 1w o o RSP UPR 77
U Yo TV =T o ¢ | =T IO SRR 77
PUIl reqQUESE PENAING. ..ciiiiieei it et e s e sbee e e et e e e e sabe e e e e sabaeeeesareeas 78
o T ol G (o I TN 01U] LN =T U LT AU 78
branched file iN the MASter.......iic i e e e saaee s 79
check out back t0 the MASLEN. ..o.uii e 79
update the local master branch.........oeiiiiie e 80
FoYor] I g V=T o= LTSRS 80
Gt FEICN @l .ttt et st e st e s e e e st e e s be e eareesbaeenes 81
Launch Git GUI iN @ NEW FOIAEN........ei it e e 82
Change a file iN @ NEW COPY. ciiiiiiiiiiiiiiie ettt e e st e e e bee e e e sbae e e e ebteeeeebaeeeeennes 83
] = {1 Y= Wl g - =TS SURROE 83
Commit the staged ChaANEE.........uuiiiiieee e e e e e raeeeeeas 84
PUSH the ChanGe. ... et e e e e e ebe e e e e s bae e e e nareeas 84
Change INThe OFIZIN.uiiiiee e e e e e e e st e e e e e e e e e nnrraeeeeas 85
No change in the NeWFeatureBranch.........ccoccueeiiiiiii i 85
(610] 001011 ¢ = T PP PP PP 86

Chapter X — Source Code Management, Git and Gogs.

Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:

Page 5/118

SWItCh t0 @ BranCh. c.c.eeeiii e e aee e 86
Merge the master into the current branch.ccoccveiiiiii i, 87
NewFeature has been updated.coociiiiiiiie e 87
Update a file in the current branch.ooooiiii e 87
Push the branch to the remMOte.ooiiiiiii i 88
1T oo F X =Te BT a T Co =4 88
Delete the remote BranCh. ... e 89
One remaining branch after push and delete.ccoocvviiiiiiiii e 89
Collaborators OrganizatioNn.ciicciieeiiciiie et e e s e e e e s sbae e e senraeeeeas 90
Connect to the collaborators 0rganization.ccceveiveiiiiiieiiece e 90
Team associated to the Organization.ccccveiiieiee e e e 91
60]|] oTe Y= 1] £3R =T o o TN PSSR 91
Add members to the collaborators teaM.ccceivviiiriie e 92
The COllaborators 1AMii it saee e e be e e aa e e s te e sbaeesareean 92
The MaiN FEPOSIEONY. ..ciciiiii ittt e e et ee e e e sbee e e s bee e s ssnbeeeessabeeeeennseeas 93
REPOSITOrY POPUIALION. ..ttt etre e e e et e e e e rre e e s ebaeeaeeanes 94
Drag & drop to the mMain rePOSItOrY. ...iiicuieie i e e esrae e 95
Commit the file additioN.coocciiii i s 96
The repository POPUIALED.cooiiiiiie e e e e e eearee e e e araeas 97
FOrk the mMain rePOSITOIY. .uuii i e e s ee e e e s reeeeeenes 98
Main and collaborative repPOSITOTIES.ccuviiiieiieee ettt e e e arae e e enes 99
The collaborative rEPOSITOIY. ...uii et e e e e e e e earee e e enraeas 99
cloning the collaborative repoSItory.iii e e 100
Create a NeWFeature Branch. ... 100
Modify MyFile01.txt on the NewFeature branch.cccccuvviiiiiiiiciiie e, 101
Push the NewFeature branch to the origin.ccoocveiiiiiiii e 102
VT o o Yo o U1 o F RSP 102
VT o oY) o U o Y U1 YA PRSP 103
The NewFeature branch pushed to the collaborative repository.........ccccceeecveeeeecieeeeennns 103
Comparison between the two branches. ..., 104
PUIl reqUESt Creation.ccuiiie ittt e e s sata e e e e snrae e e ennaeeeeas 105
Benoit is assigned to the pull reqUESE FEVIEW.cc.uveieeciiiieciee e 105
MEIEE PUIL FEQUESE. «.veeiieiieie ettt e e e e e tre e e s ta e e e esabaeeeesnsbeeesnnnneeeeas 106
V1T ==Y lol o T- V- TSP 106
ASIMPIEAPD FEPOSITONY. .eriieiiiiie ettt ecte e e e et e e e e ette e e e eetteeeeebteeeeesteeeeeasseeasannes 107
Create a C# desktop application.ueee e 108
ASIimpleApp CH applicatioNn.eeee e 108
ASIMPIEAPP GIt rEPOSITONY. .uvviieieiieee et e et e e te e e e sbre e e e s bee e e e ssbeeeeeeanes 108
ASImpleApp [0cal Git REPOSILONY. ..vuiiiiiiiieeiciieee ettt e et e e e rree e e e saaa e e e eaees 109
L LV Y A=\ n 1 = £ 110
ProJECt Git SEEEINGS. c oo e e e e e e e e e e s e e e e e e e e e e e e e s e s e s e e enaeaesasasenas 110
The pushed GOES FEPOSITONY. ..ueuiiiiiic et e e e e e e e e errrre e e e e e e e ssnreaaeeeeeeennns 111
Y=V (=1 1T 38 < TV L o Yo PSSR 112
MIS VS INAICALOIS. 1eiitiiiiieiiiie ettt sttt e e st e s bt e sate e sabaeesabeesabaesnaseesabaeenes 112
Changes COMMIEING.uviiiiiei i e e e et e e e e e e e are e e e e e e e e esnnnnnes 113
IMIS VS TINAICALOIS. Leiuiiiiiieiiie ettt ettt ettt e s be e e be e e sabe e sbaeesabeesabaesabeesabaeenes 113
PUSh the differENCeS. ..o..veiiiiieieee et st sbae e 113

https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362117
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362125
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362126
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362127
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362128
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362130

Chapter X —

Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144
Figure 145:

Source Code Management, Git and Gogs.

Page 6 /118
[CloT=£Y olo] 01 1= o | WP PPPPPPTPPPPPTPTNE 114
Create a branch from MS VS, ... e e s 114
MS VS NeWFEature DranCh.coocciiiiieiiee ettt sarae e e s ranaee e 115
Change the MESSAGE. . uuiiiiiiie ettt e e e st e e s s be e e e sabee e e ssnbeeesennreeas 115
CoOMMIt ThE CHANEES. ...eii i e e e be e e e et e e e s e ntae e e eenreeas 116
Y YA e [Tt o SR 116

Changes in the NewFeature branch. ... 117

https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362134
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362135
https://d.docs.live.net/904bbc42fce650e1/Documents/3.%20Book%20Chapters/Chapter%20X%20-Source%20Code%20Management%5eJ%20Git%20and%20Gogs.docx#_Toc156362137

Chapter X — Source Code Management, Git and Gogs.

Page7 /118

Introduction

For those readers who already know what Source Code Management (SCM) and Git is, you can skip
this chapter, although it might be convenient to read it through very quickly, if you know only Git or
services like GitHub, Azure DevOps or JIRA for example.

This first chapter is nevertheless highly recommended to be read, since it introduces in its own terms
and concepts the other ones, particularly the one concerning Gogs.

When you want to track the history of a source code package, knowing who changed what piece of
code, for what reason and when, which is necessary when you work as a programmer belonging to a
team, you need some tool to manage this, in other words a Source Code Management tool.

Historically, the first packages available for doing such a task were (and sometimes still are) tools like
Microsoft Visual Source Safe, Subversion (SVN), Concurrent Versions System (CVS) and others.

The Server to Client model

Most of them are based on Server to Client base paradigm, that is a server computer actually holds
the source code of your package(s), and the programmer who wants to change a piece of code in a
particular source code file needs to “check out” this file from the server, modify it on its own
computer, test it and return it back to the server (check in):

Chapter X — Source Code Management, Git and Gogs.

Page 8 /118
CHECK OUT
Server
Source
file
\/_
CHECK IN Programmer
PC

Figure 1: The Server Client SCM based system.

During the check in/ check out process, the file is “locked” by the SCM tool, and no other
programmer can check in or out the file(s).

Once checked in (released), other programmers can, at their turn, check out the file and modify it,
test it, etc.

Of course, multiple files can be checked out at a time.

During this check out/ check in process, the programmer usually gives information to the SCM
system, such as, for example, the reasons for changes (e.g. a bug fix or the addition of a new feature).

Checking out a file prevents other users (programmers) to change the file.
Checking in the file introduces it back to the SCM data base and allows other users to access it again.

The SCM then stores all this information in its database, as well as the part of source code that has
been modified (we’ll call delta the part of the code that has been changed later in this chapter).

Those check outs/ check in constitute a good way for the SCM to build an history of the whole file
package, which the SCM usually shows as “tags” that a programmer can consult, as well as the source
code file before and after and before the checkout/ check in.

The programmer is then able to rebuild the image of the package at any point in time.

When a point in time represents a certain release (version) of the package, the SCM often allows to
“label” the version at this point in time, allowing then to retrieve the package at a time (version) by

Chapter X — Source Code Management, Git and Gogs.

Page 9/118

just using the label (the SCM tool is able to provide the complete image of the package at a certain
label).

But what happens when different programmers modify different files that are part of the same
“functionality”, and this for different reasons (one for fixing a bug, the other for introducing a new
feature, as an example)?

Is the source code package still consistent after multiple check outs/ check in from many different
programmers?

- ip

—

Figure 2: Consistency of the source code package.

Chapter X — Source Code Management, Git and Gogs.

Page 10/118

Branching

When the purpose of making a team of programmers is to work on a new feature of the package, it
would be nice then to create a “branch” of the current package, which is a copy of the current one:

.—.—> Tag 1

.:p- TagJ

A
P- Label — Tag11

Tag K

Etc.

Feature Branch

Tag L

Etc. Master Branch

Figure 3: Branching the tree.

The source package the whole programmer team is working on is the master.

While the team (or a sub-team) is working on the new feature branch (thanks, for example, to the
ability to label a branch, for getting regularly the fresh new version of the feature branch, for the sake
of keeping the whole source package code consistent), the (rest of) the team can go on working with
the package by fixing bugs for example.!

1 0n the other hand-side, a branch can be dedicated to fixing bugs, when it seems urgent to focus more for the
team (and its boss!) on the number of unfixed bugs rather than developing new features.

Chapter X — Source Code Management, Git and Gogs.

Page 11/118

0Ok, ok.

But there will be a moment when it will be time to deliver this new feature.

We will have to merge the feature branch with the master to deliver a new version.
Several situations may then occur:

e Bugs fixes have no effects on the package functionalities (inconsistencies), no side effect,

e Feature changes have no effects on the master package functionalities,

e Both (such a wonderful world!),

e Bugs fixes and feature changes have touched a set a same source files, but not really affecting
functionalities (different part of the code have been changed, for example),

e There are conflicts (same part of code have been changed or changes made on both branches
have side effects on the package functionalities).

You will have to “reconciliate” changes made for different reasons.

In any case (and thinking over, regularly in time at each checkout/check-in) there will be a need for a
review before the merge can occur (done together with the team or a sub team).?

On the SCM server, the whole package code consists of the source code and many other information
such as the package history, labels, etc.

The SCM server is helpful in describing any change made on the package, but locally, on the
developer computer the source code package consists only of the raw source code files, together
with the needed development environment (IDE such as Visual Studio, Codelite, NetBeans, Eclipse
and many, many others).

Why not thinking about having a kind of client side SCM on the programmer computer itself?

2 As we will see further on in this chapter this will be done thanks to a pull request.

Chapter X — Source Code Management, Git and Gogs.

Server

Page 12 /118

Figure 4: an SCM client version 1.

SCM
Client
Source
file
Programmer PC
SCM)
Client | - .
B R
Source
file
IDE
\)

Programmer PC

Chapter X — Source Code Management, Git and Gogs. Page 13 /118

Or even better (The SCM client side is part - an add-on- of the IDE itself):

SCM
Client

Source
file

_

Programmer PC

Server

\

~~

Source
file

\ IDE /

Programmer PC

Figure 5: The SCM client is an IDE extension.

Chapter X — Source Code Management, Git and Gogs.

Page 14 / 118

The merge processes.

Once the time has come to merge the two branches?, you’ll will have, basically, to review the
differences between each and single source file that are different from one branch (master) and the
feature branch. But not only. You’ll have also to examine possible side effects on both sides?.

The merge process is not only and necessary a single step process.
Do not forget that the main branch and the other branches may evolve in parallel.

Thus, a good practice, when one or multiple programmers are working on a new feature, is, for the
programmers, to regularly integrate the current package source (i.e. the main or master branch) in
the version he is working on locally on the new feature branch on its computer.

3 And, again, at each check in, eventually.

4 You’ll have to examine it from a reviewal and conceptual point of view, but also through the continuous
software development life cycle, and in example through regression testing.

5 Even if multiple files are checked out by other programmers, it does not prevent any programmer to take a
copy of the checked file directly from the current “owner” of the file). Alternatively, the file owner can regularly
check in and out again files he is modifying, in order to make them available to the rest of the team(s).

Chapter X — Source Code Management, Git and Gogs.

Page 15 /118

This can be a multiple step phase, and you can decide to only integrate a part of the new feature,
combined with a part of bug fixes, since during the build of the feature branch it is suggested to
regularly integrate some bug fixes into the feature branch, as illustrated below:

Tag 1

y
e [=
y
- Label —» Tagl-1
Tag K
- Tagl
—» TagW
- TagM
Tag X
- TagZ
Etc.
Etc. Master Branch Feature Branch

Figure 6: Integrating master branch into the feature branch (reconciliation).

Chapter X — Source Code Management, Git and Gogs.
Page 16 /118

Now, suppose that that bug fix (Tag L in master branch, Tag W in feature branch) put in evidence that
there is a misconception (design mistake) in the package, and then, consequently, the same thing in
the feature branch.

Much harder, suppose that you, and your team discover that you need additional team expertise
discussion about how to solve this misconception.

You could create another branch from Tag L on the master branch. Let’s call it “Misconception branch”.
That is one solution.

You could also think to yourself: “well, since we have a (sub)team dedicated to a new feature, why not
asking them also to think about this misconception — involving eventually another team®.

But, since it is important to go on with the new feature development, you go on also’ with the feature
branch.

And now you can also imagine another scenario, showed on the next page.

6 That is an example where you’ll see the quite important impact of Git, that is the collaboration with other
teams, inside, or outside of your team or company.
7 And together.

Chapter X — Source Code Management, Git and Gogs.

Tag 1

TagJ

Label

Tag L

Tag M

Tag Z

Etc.

Master Branch

—» Tagl-1

Tag K

Page 17 / 118

Tag W

Figure 7: Involving the feature branch team in the misconception.

e
6—-—» Tag X
v

Feature Branch

> —> Tag WL — Label LWL
Tag 1-2
Misconception
Branch

Chapter X — Source Code Management, Git and Gogs.

Page 18 /118

Different scenarios.

Managing source code is not just a question of using an SCM a or b, if you foresee to work with or
together with different teams, sub teams, locally or remotely, belonging to the same or different
organizations.

Additionally, you might want to rely only on cloud based or self-hosted systems such as GitHub, Azure
DevOps, or JIRA.

On the other hand side, it may be interesting to have locally in your own organization and even on
your single computer an SCM or SCM server installed.

In summary the complete source code package development might be based on the use of multiple
SCM tools. And multiple teams. And organizations. Concretely, it means:

e You might need multiple collaborative teams and, consequently:
e Multiple collaborative SCM tools

Those teams might use different SCM tools, thus using different merge reviews processes.

The SCM databases might be local or remote, which involves considering the communication
protocol(s) the SCM tools are using.

The way you manage change requests (such as introducing a new feature for example), the bugs
fixings, might be different.

You might also want to have your own SCM tool, partly or completely developed by your team (after
all we are programmers, aren’t we?).

In the context of this book, we’ll use Gogs.®

8 Gogs is written in GoLang. If you are familiar or even if you are regularly using this language, it is extremely
interesting to use Gogs, since you can then adapt and enhance your SCM tool to your needs.

Chapter X — Source Code Management, Git and Gogs.
Page 19/118

Repositories.

From now on, instead of using the terms SCM data base, we will use the term SCM repository instead.

This symbol will be used for representing a repository.

1. The SCM repository monitoring engine,
2. The SCM repository hosting structure file(s),
3. The different (source code) raw files, including

or not specific files used by the development IDE.

Figure 8: An SCM repository symbol.

The SCM repository monitoring engine is the one responsible for:

e Receiving the checked in files and “pouring” them into the repository hosting structure,
together with the tag or label and associated comments, author, and timestamp,
e Communicating with other SCM repositories or tools, which means
o Serializing® the files (and associated information) to be sent to collaborating?®
repositories,
o Deserializing the files received from collaborating repositories,
o Responding back to requests sent by collaborating repositories.

The SCM repository hosting structure must be designed in a way that the SCM repository monitoring
engine can access it, transfer it and use it quickly and efficiently.

The different raw files may be human readable or not (binary format). Some are human readable
(typically error files), some are not (information related to tags, labels, and deltas (differences)
between source code files versions, typically compressed files'?).

If the different files composing the last repository source code file version (and the configuration files
related to the development IDE) are available in a human readable way, the repository is said to be a
non-bared repository (you can use those files directly and “inject” them into your IDE folders).

If this is not the case, the repository is called a bared repository (the raw source code files can be
obtained only using the SCM repository engine).

9 By « serializing » we mean transforming a files structure (typically a tree) into a suite (a linear queue) that can
be transferred via a typical bunch of bytes through a protocol communication pathway.

10 Wwe’ll expand on this word later in this chapter.

11 As a matter of fact, if this information must be transferred through a communication protocol, it must be
compact.

Chapter X — Source Code Management, Git and Gogs.

Page 20/ 118

One may think that the raw source code files are usually only code files in a programming language.
This is not true.

Those files can be Jason or XML files, for example.

Those files can also be pictures or drawings.

Those files can be MS Word files, which are considered by most SCM tools as binary files, since it is
only MS Word that can handle them.

And finally, those files can be binary files such as executable files. And sometimes very, very big and
large files.

The SCM tool should be able to handle all this.

Our new feature and misconception scenario.

The scenario physical infrastructure is described in the next page.

Chapter X — Source Code Management, Git and Gogs. Page 21 /118

Pull requests
Merge (push)
Reviews

New Feature team
repository

Final distribution Collaborating repository Misconception team
repository repository

Figure 9: Feature and misconception branch scenario A.

Chapter X — Source Code Management, Git and Gogs.
Page 22 /118

This picture is three-folded:

o On the left side you see the repository that is used for distributing the package to the
customers. Around that you should imagine that there is a complete environment mainly
composed of:

o A complete IDE, where reside the source code files and a build way for testing,
debugging, and releasing the final executables and dll files (as well as needed config
files). This way can be manual or automated (through the way of using nmake files
for example).

o A helpdesk teams. Ideally tickets should be handled by using some issues
management provided by the SCM tool.

o Atraining team dedicated to providing training sessions (and maybe tutorials or user
guides) to the customers,

o Etc.

e Onthe middle you see a collaborating repository. It is dedicated to collaborators which are
the team(s) working on the new feature development, the team dedicated to solve the
misconception area, and possibly any other needed expertise teams (internal or external).
This repository will be made of a master branch and any needed additional branch such as
basically the new feature branch and the misconception branch. Traditionally this repository
is a fork of the final distribution repository (simply said: a copy).

e On the right side are the different teams repositories. Those team make changes to their
repositories, test them and when they think those changes are correct check (push) them
into the collaborating repository (what we’ll call later in this chapter, they push them to the
collaborating repository). You see on the drawing, instead of a push, Pull requests. That is, in
this scenario, what will happen. A push to collaborating repository will be at some point
interpreted as a request for pulling the changed code from the collaborating repository to the
final distribution. This request will be the starting point for a merge review. So, in this
scenario, a push from the new feature or misconception team to the collaborating repository
will be transitioned as a pull request from the collaborating repository?? to the final
distribution repository.

12 Which is the repository where changes made by the two developers’ teams are “consolidated”. A kind of
intermediate between the teams’ repositories and the final distribution one.

Chapter X — Source Code Management, Git and Gogs.

Page 23 /118

A SCM Tool, summary

A Source Code Management tool is a tool for managing source code, together with change history,
comments and, most of the time the communication with other SCM tools (servers or clients).

This a usually done using different changes, branches, merge processes.

As you will see also later in this chapter, those tools also include the (base) management for bug
tickets, the introduction of new features and possibly many other things.

SCM tools have their own way for storing the source code (repositories) and use different
communication protocols with external parties.

In the context of this book the repository management, the way for managing branches and the
communication with external parties is Git, the base standard on which Gogs is based, but also
supported by other SCM tools like GitHub, Azure DevOps and JIRA, amongst many others.

Git is a protocol that can be used by tools (SCM servers and clients), but which can be used also
through using command lines (we’ll see it later).

The next page shows what could be the result of merging the changes showed in Figure 7, assuming
that there are no conflicts between changed source code files.

Chapter X — Source Code Management, Git and Gogs.

Figure 10: The final master branch.

Page 24 / 118

Label
L p Label LWL
Tag M
. —» TagX

Tag 1-2

TagZ

Retrievable package versions

Chapter X — Source Code Management, Git and Gogs.

Page 25/118

If bugs are discovered later on, and that the Label LWL version has been installed at one particular
customer premises, and that you want to install the bug fixes only at that customer premises, you can
always create a branch from Label LWL and manage it separately (this could be the case if you want
to avoid a large deployment from the current version you are at, for example), a branch that you
don’t necessarily want to merge.

Vice versa, if you want to develop a very specific feature for that customer, you can proceed the same
way.

Chapter X — Source Code Management, Git and Gogs.

Page 26 /118

Git in a nutshell
What is a Git collaboration situation?

Well, to describe it, imagine you have a computer, let’s call it the main repository, where resides the
repository of an application package, and around the world, several different actors want to
collaborate and “enrich” this main repository using their own repository, as illustrated below:

By >
i or

\
L

Figure 11: Git collaborating repositories.

Git provides a way for creating and managing those repositories, as well as managing the
communication between them thanks to commands described in the description of the git main
commands in chapter the git main commands.

Usually, rather than using just git, the real actors are applications around (using) git.
As an example, the main repository can be GitHub, or JIRA, or Azure DevOps, and, in our case, Gogs.

Those applications provide additional services such as ticket management, documentation and user
guides, etc.

Collaborating repositories may be of several natures. The one we will use in this chapter is MS Visual
Studio (see MS Visual Studio as a git client).

Many Gits client software offer just subsets of what is possible thanks to it. That is why many Git
clients allow for launching command prompts thank to which you can invoke Git commands (Git Bash
is one example).

Strictly speaking, a Git repository is a folder containing context information (such as the branch you're
currently working on for example). If you want to handle this repository, you simply have to launch an
adequate tool from this folder (Git Bash or Git Gui for example).

Chapter X — Source Code Management, Git and Gogs.
Page 27 /118

Some processes can be performed from the client side or from the server side (such as creating and
merging branches).

As an example, the merge process can be organized from the client side (see the git instructions - the
merge command as an example) or on the server side, like it is on Azure DevOps.?

Gogs is lacking from functionalities because most of the time you can connect it to clients or
collaborating applications that do the job.

Another example of missing git functionalities is creating so called pull requests (see above).

Gogs does not completely offer this function from the server side (in some circumstances the merge
process is not available). MS Visual Studio offers this functionality, only if you connect to a GitHub or
an Azure DevOps repository. This is because MS Visual Studio has an additional communication layer
on top of the base git one that allows the sending of pull requests directly to the server.

13 Gogs does not allow for directly creating and deleting branches for example. This is why knowing about git
commands is very useful. This is true also for MS Visual Studio as a client. It allows for creating branches but not
for merging or deleting them — except if you use a command prompt (See The MS Visual Studio client.). Most
Git presentations use GitHub or Jira on which the branch and merge operations are made on the server (GitHub
or Jira) side.

Chapter X — Source Code Management, Git and Gogs.

Page 28 /118

GOGS

Gogs installation

This is described in the Gogs Installation. chapter. Since my main purpose was to use Gogs to manage
my own source and connect it to the outside world, | must admit | did it in a quite quick and dirty
way. This appendix will anyway give a guidance to do it in a very much proper way, especially if you
want to use it in your internal network. Go also to Gogs github for more information.

Introduction

Gogs is a very interesting collaborating SCM to be used, especially because it is free and runs on
Windows, once initialized, and once the web server has been launched (see the installation
appendix), launch it through your browser#:

x +

A Non sécurisé 192.168.0.5 g o &

@ Google 2" Particuliers | BNP Pa... * YouTube &' Google Maps ! Inbox (11) - benoit.... m Windows APl index... A My Drive - Google... » (3 Tous les favoris

@ Home Explore Help & Register ¥ SignIn

(S} Gogs

A painless self-hosted Git service

& Easy to install :' Cross-platform
Simply run the binary for your platform. Or ship Gogs Gogs runs anywhere Go can compile for: Windows,
L 1tk 1 3 AL + oot L =l 13 in] W] 4+ 1 +ln 1 1 v

Figure 12: Launch the Gogs web page.

14 Since we used it unsecured, you will probably have to set the adequate rights in your web browser
configuration. To reach the web server page, use www.localhost:3000 as URL.

https://github.com/gogs/gogs
http://www.localhost:3000/

Chapter X — Source Code Management, Git and Gogs.

Page 29 /118

By default, first registered user (Benoit in my case) is an administrator:

Sign In
Username or email ™ Benoit
Password ™ seerreansannd

Remember Me

Forgot password?

Need an account? Sign up now.

L

Figure 13: Gogs sign in.

What follows is a brief overview of what you can see in Gogs. Practical scenarios will be applied in the
Creating a first repository, Connecting to an existing repository, and MS Visual Studio Client chapters.

Gogs is a kind of “small” GitHub.

~ @ Benoit - Dashboard - Gogs X +

= C AN\ Non séeurisé 192.168.0.5

@ Google & Particuliers | BNP Pa... * YouTube % Google Maps f Inbox (11) - beneit....

m Windows APl index...

@ Dashboard lssues Pull Requests Explore

@ Benoit =

+ v @v

Repository COrganization Mirror

My Repositories a +

Collaborative Repositories

2023 Gogs

[a]

Page: 4ms Template: Tms & English | Website

Figure 14: Gogs main functions.

Chapter X — Source Code Management, Git and Gogs.

Page 30/ 118

@ Dashboard Issues

@ Benoit -
The Dashboard. It contains actions assigned to you,
Switch Dashboard Context and actions that you performed.

@ Benoit

+ New Organization

Figure 15: the Dashboard.

Pull Requests Explore + - @ -

Benoit =

l In your repositories 0 l ‘ @ 00pen ‘ & 0 Closed Sort ~
Assigned to you 0
Created by you 0

Figure 16: Gogs issues

The Issues tab: an issue is typically a bug, but also a request for a new feature, or even a question. It
usually has an assignee and involve one or more participants. It allows for a discussion thread to
happen:

Chapter X — Source Code Management, Git and Gogs.

Page 31/118
TestOrganization / TestOrganizationRepo @ Unwatch | 3 | frSar | 0 YFok 0
2 Files ® Issues B i Pull Requests [Wiki 3 Settings
Labels Milestones
There is a problem with function A [Cear |

[ON¢. 8 opened 5 minutes ago by Benoit - 2 comments

Benoit commented 5 minutes ago vy Labels £}
It does not respond No Label
Milestone £

Benoit commented 4 minutes ago Owner # X .
No Milestone

| did test it again. It really does not respond.

Assignee £t
Benoit02 commented 2 minutes ago Collaborator | & X & Benoit02
You are right I'm gonna investigate 2 Participants

Write Preview

@ 8 & 6

Figure 17: Discussion on an issue.

In this discussion you can see that Benoit issued a problem on function A of a package repository
called TestOrganizationRepo, managed by TestOrganization, and that Benoit confirmed the function
not performing correctly. Benoit02 (obviously also belonging to TestOrganization) responds that he
will investigate.®®

The Pull Requests tab:

@ Dashboard lssues Pull Requests Explore

@ Benoit ~

‘ In your repositories

Figure 18 Pull Requests.

Pull Requests are a little bit a
complex function. Gogs has a
specific to treat them, as
opposed to GitHub or Azure
DevOps. We'll describe that
later.

Assigned to you

15 We'll see from next pages how repositories, organizations and teams can be created and managed in Gogs.

Chapter X — Source Code Management, Git and Gogs.

Page 32 /118

@ Dashboard Issues Pull Requests Explore + - @v

Explore
EJ Repositories

& Users

A2 Organizations

Figure 19: Exploring Gogs.

As a first step we can already draft (though the complete model goes further than that) the main
different “objects” or “entities” managed by Gogs:

Chapter X — Source Code Management, Git and Gogs.

o
=yl
lth
=k
Aig(:
£
USER
2
_U ;

Page 33 /118

Figure 20: Users, Teams, Organizations & Repositories.

Chapter X — Source Code Management, Git and Gogs.

Page 34 /118

Entities & relationships.

1. A user may have different repositories (yellow arrow). When a repository is linked to a user
by this only relationship, it is mainly because the repository is really private to the user,
working alone with this one. Another situation is that the repository is only managed by the
user, but other collaborating repositories (or organizations, or teams) are linked to it. The
transfer of code from the collaborating repositories to the main one is under the only
responsibility of this user. The user is administrator.

2. Ateam is responsible for one or multiple repositories (yellow/ blue arrow). In this team there
is at least one administrator. The other users have only read access (possibility to get the
source code), write access (possibility to push the code to the repository). This is a simple
collaboration model (see the client/ server model described in the subchapters above).

3. A main repository is attached to an organization (), with one or very few people.
Teams a are attached to the organization, those teams are made of one or several
collaborating repositories (yeIIow/. arrow). The teams are responsible for proposing
changes through their collaborating repositories. The one or few people belonging to the
main organization is (are) responsible for pushing changes to the main repository.

Continuing the tour.

L
SIGMED IN AS BENOQIT

When you are administrator, you can have access to an overall
& Your Profile options panel:

=i+ Your Settings

@ Help
42

Q% Admin Panel

* Sign Out

qes, 0 stars, 0 actions, 0

Figure 21: Accessing the admin panel.

Chapter X — Source Code Management, Git and Gogs.

General options panel:

Admin Panel
Dashboard
Users
Organizations
Repositories
Authentications
Configuration
System Notices

Monitoring

Figure 22: The admin panel.

The Admin panel is really a quick way to access to:

Page 35/118

e A quick overall information panel with general information, statistics on the number of
created accounts, repositories, organizations, etc.,

e Your dashboard,
e The user manage panel:

User Manage Panel (Total: 2)

1D Name Email

1 Benoit bencit.borremans@gmail.com

13 Benoit02 benoit.borremans1426@gmail...

Figure 23: User Manage Panel

Activated

=4

=

Search

Create New Account

Admin Repos Created Edit

1€
[=]

Oct 03, 2023

[

(]
=)

Dec 25, 2023

[

Chapter X — Source Code Management, Git and Gogs.
Page 36 /118

In this panel you can edit, create user accounts (useful if you want to have more than one
administrator?®).

e Organizations'’, Repositories, etc. This is something we’ll discuss later in more details.

Let’s come back to the general Dashboard main panel:

@ Dashboard Issues Pull Requests Explare + - @V
e e B S
@ Benoit ~ \
I e
: @ Efencitcreated repository TestOrganization/MySimpleConsoleApp lI/ Repository Organization Mirror \
5 seconds ago
l @ Benoit created repository Benoit/SimpleConsoleApp II My Repositories + |
I I minute ago I E] SimpleConsoleA 0%
I p PP |
| |
More I I
I | l Collaborative Repositories I
\ } E TestOrganization / MySimpleConso... 0% I
D | I
\ /

[R U U ——

Figure 24: Main dashboard panel.

In the red/ dashed circled area, you can see all activities related to you (in this case you created two
repositories).

In the blue/ dashed circled area you can see:

e Repositories that you created. The first one is a repository you created on your own name.
The second one is a repository that you created on the TestOrganization organization (we’'ll
see soon how to do this)

e QOrganizations:

16 Notice that you must have at least one administrator account. Note also that this is a general panel that does
not describe the rights that a user has on a particular repository (read, write, etc.). This is something we'll talk
about later.

7 That is actually the only place where you (as an administrator of course) can create an organization.

Chapter X — Source Code Management, Git and Gogs.

Page 37 /118

Repository Organization Mirror
My Organizations [} +
12 TestOrganization 16

o

Figure 25: Organization sub-panel.

I you click on TestOrganization, you’ll see the following interesting panel:

@ Dashboard lssues Pull Requests Explore + - @v

TestOrganization -

New Repository People 12

MySimpleConsoleApp *0F 0

Updated 21 minutes ago

I@

Invite Someone

Teams 1>

Owners
1 members - 1 repositories

Figure 26: Organization Panel.

In this panel you see the following:

e You can create repositories attached to an organization,
e You can invite someone to the organization®®
e You can create teams belonging to the organization.

18 Be careful that inviting someone to an organization usually gives him limited possibilities to interact with the
repositories belonging to the organization. It is basically eventually to create issues (without possibilities to
assign someone to the issue).

Chapter X — Source Code Management, Git and Gogs.
Page 38 /118

You can see that one team is associated with TestOrganization (Owners). This team is created
implicitly when you create the organization.

You can invite someone to the organization (in this case | invited Benoit02):

People 22

See the second avatar, corresponding to
Benoit02.

Figure 27: Invite someone to an organization.

But if click on the Owners team:

Owners Team Members
This team has no description @ Benoit

& 1 members-E 1 repositories

Owners have full access to all repositories and Add Team Member

have admin rights to the organization.

Figure 28: Organization Owners.
You see three things:

e Benoit02 is not part of the team,

e You have full access to all organization repositories and,

e you have administrator rights to the organization (meaning you can add someone, invite
someone, delete repositories, etc.).

Consequently, rather than to add additional members directly to the Owners, create additional
teams.

Chapter X — Source Code Management, Git and Gogs.

Page 39/118

Creating a Gogs repository.

Well, it seems now that we should introduce what should® be the easiest point to understand in
Gogs (and Git in general).

We already saw what a branch is, as well as (at least partly) is the merging process.
The reality is that it is pretty rare that you have to deal with a single and alone repository at a time.

Usually, you are actually working on a branch (remember, be it a new feature, a misconception, etc.)
of a tree.

And the master branch of the tree is, of course, the master branch of your (local) repository.

The real (future) master branch of the package you are working on is in fact a combination of many
branches from many (other) collaborating repositories. This, in fact, was already described with the
new feature and misconception branches described before, considering that there is probably one
master branch, one new feature branch and one misconception branch stored centrally on a server ...
but actually many (altered) copies of them in many different local repositories.

Anyway, at any moment in time, there must be only one repository that is considered to be the one
from which official versions of your package are delivered. The situation is then something like:

19 You will see it is indeed not the case!

Chapter X — Source Code Management, Git and Gogs.

Page 40/ 118

MASTER-FEATURE 1-1

A 4

MASTER-
MISCONCEPTION 1

MASTER-ORIGIN

v

MASTER-FEATURE 1-2

Figure 29: Different collaborating repositories.

You then have:

1. A Master-Origin repository, the repository used for generating the official version,
2. A Master-Featurel-1, the part of the new feature developed by a developer or a (team) group
of (yellow arrow)

3. A Master-Misconceptionl, the part of the misconception developed by a developer or a

(team) group of (-)

4. A Master-Featurel-2, the part of the new feature developed by another developer or a

(team) group of (_)

All of those repositories have the same origin. Physically it is either a web (URL) or an SSH address.

All the different colored collaborating repositories are copies of the Master-Origin repository. They
are “positioned” on their respective branch (feature or misconception).

N.B.

Actually, a Git repository is a folder in which there is a “.git” sub-folder.

This subfolder contains, amongst others:

Chapter X — Source Code Management, Git and Gogs.

Page 41/ 118

The information telling on which branch you are located,

The whole repository history (in the form of binary files such as tags and deltas between the
different file versions),

Log files,

Etc.

If the folder is an MS Visual Studio one, it contains also a “vs” sub-folder.

If the folder contains a non-bare repository, a version of the actual package (source code) file are also
present. Those files are the ones that belongs to the branch you’re currently on®.

This way, tools like Git Bash or Git Gui, when launched from the folder, know about what branch is the
current one?.,

The Master-Origin has also two branches for the new feature and the misconception. When new code
files have to be transferred to the Master-Origin, it has to be transferred on the correct branch
(origin-feature or origin-misconception).

20 If you invoke the switch command, or if you go to another branch in the MS Visual Studio, then these files will
be replaced by the one belonging to the branch you are switching to.

21 Gogs repositories are folders named “RepositoryName.git”. Those are bare repositories and you cannot
handle them by launching tools like Git Gui or Git Bash from them.

Chapter X — Source Code Management, Git and Gogs.
Page 42 /118

As you can understand now, the Master-Origin repository is not a repository that can be used directly
for generating the official versions of the package. After new feature and misconception teams will
have finished their job, the misconception and new feature branch will have to be merged to a main
branch. Meanwhile, the Master-Origin repository is a bare repository*.

As such, it is easily understandable that any Gogs repository is a bare repository. It is always used to
consolidate the development of more than one developer.

Thus, in most cases, a Gogs repository will need to be the origin of a non-bare external repository.

Let’s create our first Gogs repository.

Figure 30: Create a first repository.

F Repository Organization Mirror
From the dashboard, let’s create a
My Repositories n new repository.
. El SimpleConsoleApp 0%

221t could be like that further on with the different collaborating repositories. If multiple developers are working
on the same collaborating repository, then, again, and at its turn, this collaborating repository is a bare
repository.

Chapter X — Source Code Management, Git and Gogs.

Page 43 / 118

New Repository

Owner” @ Benoit -

Repository Name ™ MyFirstRepository

A good repository name is usually composed of short, memorable and

unique key

ords
Visibility This repository is Private
This repository is Unlisted

Description

(W]

(%]
[l
T
¥
]
=
1
I3
A
m

=

Description of repository. Maximum

M

Available characters: 51

-gitignore v 1Studio *

License MIT License

Readme & Default

Initialize this repository with selected files and template

Create Repository

Figure 31: MyFirstRepository.
Put any description that you want. Let’s focus on three important things:

1. The gitignore option (red circled), usually describe the type of files you don’t consider to be
part of the source code, usually files that are part of the development IDE you are using.
Since we create only bare repositories in Gogs, and that we will use (later on) MS Visual
Studio, we choose Visual Studio.

2. The type of license (if you publish your package code) (- circled). See Git SCM
documentation about this (Git SCM).

3. For the moment, don’t initialize the repository (blue circled).

You'll then obtain the following screen:

https://git-scm.com/

Chapter X — Source Code Management, Git and Gogs.

Page 44 / 118
Benoit / MyFirstRepository © Unwateh 1 2 Star 0
= Files @ Issues B3 Wiki ¥ Settings

Quick Guide
Clone this repository Need help cloning? Visit Help!

‘ HTTP SSH http://localhost:3000/Benoit/MyFirstRepository.git £

Create a new repository on the command line

touch README.md

git init

git add README.md

git commit -m "first commit”

git remote add origin http://localhost:3000/Benoit/MyFirstRepository.git
git push -u origin master

Push an existing repository from the command line

git remote add origin http://localhost:3@00/Benoit/MyFirstRepository.git
git push -u origin master

Figure 32: First uninitialized repository.

Note the HTTP address that is mentioned. This is the repository URL. You can copy it to the clipboard
thanks to the button at the right of the URL%.

As already mentioned, we will need another, local, repository to feed the Gogs repository we just
created.

The first set of instructions that are listed below are the one that you should use in order to create
this local repository?.

The second set of instructions describes the instructions to be executed if you connect the Gogs
repository from an existing local repository.

Those two operations are described in the chapters below.

23 Note that you can also obtain the SSH address. Since we’ll mainly access the repositories through HTTP, we
won'’t use this option in this chapter.

241t is assumed, of course, that you installed a Git SCM server on your computer. Additionally, it is assumed that
you installed Git bash and Git Gui tools.

Chapter X — Source Code Management, Git and Gogs.
Page 45/ 118

Starting the game

Introduction

In the following chapters you will learn:

e How to create a new repository initially, feeding the Gogs repository from the client side,

e How to connect to an existing repository, creating branches, merge the branches and delete
the branches,

e The fork process,

e Working with MS Visual Studio on the client side.

On the client side you can work with different client applications, as already mentioned above in this
chapter.

Those are, for the main ones used in this chapter:

e Git Bash, which allows for creating a local Git repository through the use of Git commands
(the main ones are described below), populate it and push it to a remote repository,

e Git Gui, which allows for creating a Git repository from a visual interface, as well as
populating it and pushing it to a remote repository. In some cases, Git Gui is not always
practical or does not allow for performing all possible Git operations, this is why, sometimes,
it is useful to use it together with Git Bash,

e MS Visual Studio, which allows for almost all needed operations, at the exception of deleting
and merging branches, for which the use of Git Bash is still needed.

There are many, many others.

Some client-side applications lack often from some operations (particularly on the server side)
because those operations usually happen on the server side. Gogs does not provide all possible Git
operations (such as merge or branch delete and creation, for example), the reason why we will use
Git Bash or the MS Visual Studio client to perform those operations.

For the reasons mentioned above, the client-side applications often provide the possibility for
launching Git command prompts or shell programs.

Before going to the next chapters, let’s talk about the way Git operates on a local repository through
the description of the main Git possible commands (operations).
Git init.

Launched in a folder folderA, the command git init creates a repository within folderA, basically a
subfolder “.git”?> which contains much information on the repository. We'll see this in the next
command descriptions.

25 Gogs stores its repositories in a folder named “RepositoryName.git”. This is why it is impossible to launch a
client-side application on those folders. This is mandatory to prevent such operations on the client side to
happen, because Gogs store information about those repositories in its own database. This would make the
whole system inconsistent.

Chapter X — Source Code Management, Git and Gogs.
Page 46 / 118

The folderA files plus the “.git” sub-folder is typically a non-bare repository.

Git add filename.

When you start to populate a non-bare repository, you typically add files to the folderA folder. Then
you start editing the file. To notice it to Git, you use the command git add filenameA. It puts
filenameA in a so-called staging area, telling Git that you are working on this file (adding or modifying
it26).

Git commit.

Git commit -m “Commit message” tells Git that you confirmed the modifications that you made on
the last add files (you are committing the staged files).

Practically it transfers a compressed version of the added files, together with the commit message to
the “.git” folder?. This is a tag or a commit point?®.

Git remote add.

Git remote add origin URLName or Git remote add origin SSHName tells Git that the repository is
issued from or is linked to a remote URLName or SSHName repository (typically a GitHub, lJira ... or a
Gogs repository).

From this moment on, URLName or SSHName is also known as being the origin?® of the repository,
while master® is the name of the main current repository branch.

Git push.

The git push -u origin master command pushes (sends) the current repository master branch to the
origin master branch. The -u option tells, amongst other things, to send bare minimum (compressed)
information during the transfer3.

The example below shows the Git Bash command prompt launched in the
c:\TestGit\MyFirstRepositoryCopy folder (see first repository creation below), where you can see that
the client repository is on the NewFeature branch*

26 Actually, for noticing Git that you are modifying an already existing file, you use again the same command git
add.

27 |n fact, just a delta (differences) with the previous files is added to the Git folder.

28 Which will allow for transferring compressed information when transferring files from one repository to the
other.

2% To be used explicitly in other git commands.

30 The git init allows for many parameters. One of them is the name you want to give to the master branch,
“master” being the default value.

31 When you push a local branch to a remote branch, there might be conflicts — for example the two branches
don’t have the same history- other additional information that you might add to the -u will determine how to
treat those conflicts.

32 See the switch command below to see how to go from one branch to the other.

Chapter X — Source Code Management, Git and Gogs.

Page 47 / 118

MINGWBL:/ c/ TestGit/MyFirstRepositoryCopy = O >

Figure 33: Git Bash on NewFeature branch.

The previous git push command only pushes the current branch to the origin. A git push —all will push
all branches to the origin (if a branch from the current repository does not exists in the origin, then it
will be created):

MINGWBL: ¢/ TestGit/ MyFirstRepositoryCopy = O X

done.

Figure 34: Git push --all pushes all branches.

Git push -u origin NewFeature would only push the current NewFeature branch to the origin.
Git fetch

The git fetch —all gets all origin branches® to the current repository.

Remark:

In this chapter, | will use fetches only on already initialized local repositories. Instead, when you want
to create a local repository from an existing remote one, | suggest using the git clone command
instead to initialize the local repository.

The git fetch origin NewFeature would get the remote NewFeature branch.

Most of the time what you want to do is a git pull (see next command).

3 If there are multiple origins, if you used multiple git remote add for example, it will fetch all the remotes. It
could be convenient if you have different remote repositories with different branch names.

Chapter X — Source Code Management, Git and Gogs.

Page 48 / 118

Git pull.

The git pull --all gets all branches from the remote repository.

The difference between git pull and git fetch is showed in the next figure:

Local Remote
Repository Repository

git merge git fetch

A qgit pull operation is equivalent to a git fetch and
merge.

Figure 35: Difference between git fetch and git pull.

See3

git fetch is used to retrieve the latest commits from a remote repository, but it does not create a new
copy of the entire repository on your local machine. Instead, it updates your local copy of the
repository's "remote-tracking branches" (branches that track the state of the remote branches),
without modifying your local branches. This means that you can review the changes before merging

them into your local branches.
Git switch

The git switch BranchName switches the Working Directory from the Local Repository branch to
another one. When fetching files from the remote to the local repository, Git stores the information in
the Local Repository (as showed in the previous figure). When switching from a branch to the other,
Git transfers to the Working Directory (i.e. the files you’re directly working with) the files belonging to
the BranchName branch. You can see it when using Git Bash with a git switch command, it replaces the
files in your Working Directory (i.e. the directory (folder) you invoked the git init or git clone
command).

34 Here you see the difference between a bare repository and a complete one. The bare repository would
consist only of the Local Repository showed in the figure.

Chapter X — Source Code Management, Git and Gogs.

Git merge

The git merge BranchName command merge BranchName into the current branch.

As an example, MyFile01.txt has the following content in the NewFeature branch:

Benoit

E Files

¥ Branch: NewFeature = MyFirstReposito...

MyFirstRepository

@ lIssues () i1 Pull Requests 3

Z) MyFile01.txt 277 B

1 This is my first file.

[

3 This
4 This
This
6 This
This
This
This

(=]

-]

This a second version of my file.

iz my third version of my file.

iz
iz
iz
is
iz

iz

now branched to a new feature. *

my
my
my
my

my

fourth wversion of the file.
fifth wversion
sixth version
eight version

ninefth version

Figure 36: Content of MyFileO1.txt in NewFeature branch.

And the following one in the master branch:

Page 49 /118
Wiki
MyFile01.txt

Chapter X — Source Code Management, Git and Gogs.

Page 50/ 118

Benoit / MyFirstRepository

= Files (M) lssues 11 Pull Requests B2 Wiki
n U Branch: master ~ MyFirstReposito... © MyFile01.txt

Z MyFile01.txt 228 B
This is my first file.
This a second version of my file.
This iz my third version of my file.
This iz now branched to & new feature. #
This is my fourth wversion of the file.
This iz my fifth version

This iz my sewventh version.

Figure 37: Content of MyFile0O1.txt in the master branch.

Once positioned on the NewFeature branch, the execution of a merge command would give:

MINGWEL:/ ¢/ TestGit/MyFirstRepositornyCopy = O X

Figure 38: A merge of NewFeature in the master branch.

MyFile01.txt in the master branch and in the NewFeature branch have different histories.

Chapter X — Source Code Management, Git and Gogs.

Page 51/118

If you want to go on with your working in the NewFeature branch, you have first to reconciliate the
NewFeature branch with the master branch history. To do so, you:

e First consolidate the two versions in the NewFeature branch by adding MyFile01.txt into the
staging area and editing it would give:

L] WinMNc text editor
File Edit View

E] MyFileo tat

[this is my first file.

This a second wversion of my file.

This is
This is
This is
This is
el
This i=
This is=s

This is
R ERRE

11

my third wversion of my file.

now branched to a new feature. =
my fourth wversion of the file.

my fifth wersion

HEAD

my sSixth version

my
my

my

eight wversion
ninefth wversion

seventh wversion.

master

Insert

Figure 39: Editing MyFileO1.txt in merge state.

And the two files reconciliated:

L] WinMe text editor
File Edit View

[E] MuFile0n st

This iz my first file.
This a second wversion of my file.

This i=
This is=s
This is
This is
This is
This is
This is
This is=s

11: 1

my

third version of my file.

now branched to a new feature. x

oy
my
my
my
my
my

fourth wversion of the file.
fifth wversion

sixth version

seventh wversion.

eight wersion

ninefth wversion

Insert

Figure 40: The two versions reconciliated.

Sl

i lx)

Chapter X — Source Code Management, Git and Gogs.
Page 52 /118

e The complete session is:

MINGWBL:/ ¢/ TestGit/MyFirstRepositoryCopy = O X

Auto-mer

CONFLICT

$§ git add MyFile0l.txt

§ git commit -m
[NewFeature

Figure 41: NewFeature reconciliated with master.

e And after pushing that all to the remote, you can then push to the remote and switch back to
the master, for example:

! MINGWE:/c/ TestGit/MyFirstRepositoryCopy = O >

§ git add MyFilell.txt

§ g1t commit -m
[NewFeature 9440 1 z
1 file changed, .ert , C i =) |

Enumerating o

Counting obje

done. i

y leposT
= MewFeature

Figure 42: Back to final state.

Chapter X — Source Code Management, Git and Gogs.

Page 53 /118
The final picture
You can see now, considering the different git commands and their associated moves:
Local Repository Remote Repository

Figure 43: Git commands moves summary.

Chapter X — Source Code Management, Git and Gogs.

Page 54 /118

Creating a first repository

In Creating a Gogs repository. we created a MyFirstRepository repository without initializing it.

We could populate the repository by directly importing files into it. Instead, we will create an external
local repository and populate the former thanks to it.

The appendix Connect the uninitialized Gogs repository to a new local one. describes:

e How toinitialize a local repository,

e The addition and modifications of files,

e The pushing process,

e The creation and pushing process for a new MyFeature branch,
e The creation of a pull request.

Chapter X — Source Code Management, Git and Gogs.

Page 55/ 118

Connecting to an existing repository

The appendix Connect the Gogs repository to an existing local one. describes:

e The launch of Git GUI and its use,

e The connection to the Gogs MyFirstRepository,
e The pull command,

e The deletion of a branch.

Chapter X — Source Code Management, Git and Gogs.

Page 56 /118

The fork process.

— R
|

Collaborative Main

Repository Repository

Figure 44: Pull Request from a collaboration.
The situation can be summarized as below:

e A NewFeature branch is pushed to a collaborative repository (in green),

e A comparison between the main branch (in orange) and the NewFeature branch (in green)
allows for creating a pull request and assign it to somebody (in light blue),

e This pull request is reviewed, and a discussion thread can be issued, or the merge be done
immediately,

e Leading to a main branch merged on the Main Repository (the comparison creates a pull
request not on the collaborative repository but on the main one).

The whole and complete process is described in the appendix The fork process..

Note that you can immediately create pull requests on the main repository.

In this case you can directly clone it (rather than cloning the collaborative one) and create a new
branch. But in this case, you will keep two branches on the main repository, and you’ll have to delete

Chapter X — Source Code Management, Git and Gogs.
Page 57 /118

this branch manually from the external repository and remove the second branch, as already
described previously in this chapter.

Chapter X — Source Code Management, Git and Gogs.
Page 58 /118

MS Visual Studio Client

In this paragraph, we will:

e Create a new repository named ASimpleApp (without initializing it),

e From the MS Visual Studio Client, create a new C# desktop application,
e Create a local Git Repository and connect it to ASimpleApp repository,
e Make some changes and push them,

e Create a branch and push it.

The whole process is described in the appendix The MS Visual Studio client..

As many other Git clients, MS Visual Studio allows for launching a command prompt session (Tools-
>Command Line->Developer Command Prompt). Switch to the master branch and launch the
command prompt:

C\Windows\system32\cmd.e: X + v a

AEEEEEREEKEEREEEELEEEKREREEELEEELEREREEERRERERREEEREERERERERREREERREREEEERRREERREEKRKRRERREKKRKRRRRRERKRERX
*% \Visual Studio 2022 Developer Command Prompt v17.8.3
*x Copyright (c) 2822 Microsoft Corporation

AEEEKEKEEKREREEEREKRERKEEKRERERRERKERERERERRERKRERRRRER KRR RERRRRRERRRRRRRRKRRKRRRRRk)RX

C:\TestGit\ASimpleApp>git branch --delete NewFeature

warning: deleting branch 'NewFeature' that has been merged to
'refs/remotes/origin/NewFeature', but not yet merged to HEAD.

Deleted branch NewFeature (was f2cec81).

C:\TestGit\ASimpleApp>|

Figure 45: MS Visual Studio Command Prompt.

The NewFeature branch is now merged and deleted.

Chapter X — Source Code Management, Git and Gogs.

Page 59 /118

Appendices

Gogs Installation.

| did not create any particular Windows account (apart from mine, local, which is simply “benoi”).
What | did is:

e Copy the whole code from Gogs code into c:\Program Files\gogs,
e \Went to executables to install the executables,

e |Installed SQLite3, together with a client part of it,

e Configured the installation (see what follows).

| then created a shortcut ("C:\Program Files\gogs\gogs.exe" web) to be ran into "C:\Program
»” 35

Files\gogs”.

Then you have to create a “c:\Program Files\gogs\custom\conf” folder, where you copy the file
“app.ini” that you can find in “c:\Program Files\gogs\conf”.

Adapt this file the following way:

e Change the RUN_USER to be your user:

0 RUN _USER = benoi
e If you want the web server to a “verbose” mode 3°
o RUN MODE = dev
e Configure your URL, normally:
0 EXTERNAL URL = http://localhost:3000/37
e Adapt the [database] part:
o TYPE = sglite3
o HOST = 127.0.0.1:5432
o NAME = gogs
o USER = benoit.borremans@gmail.com
o PASSWORD = your account pa
o PATH = C:\QLiteDBs\gogs.db3®

e The Gogs repositories:
o [repository]
o ROOT = c:/gogs-repositories
e Since I installed Windows in French, to force the Gogs interface to
be in English:
o [i18n]
o LANGS = en-US
o NAMES = English

35 That is the shortcut | launch as administrator to launch the web server. You can also install it as a running
service, a choice | didn’t make.

36 Do it only when you want to debug.

37 Notice | put it on http mode, not https. Again, a not quick and dirty way should be to let it on scripted mode.
38 The database file where the Gogs database will be created.

https://github.com/gogs/gogs
https://gogs.io/docs/installation/install_from_packages

Chapter X — Source Code Management, Git and Gogs.
Page 60/ 118

There are many other options you can change. Those described here are sufficient.

”n u

Then | put all possible accesses to the user benoi on “c:\Program Files\gogs”, “c: /gogs-
repositories” and “c:\QLiteDBs” (read, write, ...). | know ... God bless me.

Finally, to initialize the system (mainly the database), run “./gogs web” in the “c:\Program Files\gogs”
folder (use this exact spelling, included “./”).

Gogs log, and error log files

The folder “c:\Program Files\gogs\log” contains especially interesting log files to look at if you have
problems.

Set the option RUN MODE = dev.

Chapter X — Source Code Management, Git and Gogs.

Page 61 /118

Connect the uninitialized Gogs repository to a new local one.

Git SCM has been created in the UNIX world. That is why it is common to use Git commands in a Unix
environment.

In Windows, you can mainly use two different tools which are emulating a Unix (or Linux)
environment.

First of all, when you launch a command prompt box (be it under Unix or Windows), you must launch
the tool you are using with the correct environment variables defined. That is why, when you launch a
command prompt box, you have to launch it from the correct folder (directory). In Windows, this
cannot be easily obtained if you launch the cmd.exe from the Windows start command and goes to
the adequate folder.

That is why, using any file explorer (the Windows File Explorer included), the correct extensions must
be installed in your file explorer. This can be easily verified by right-clicking into your file explorer, you
can see that you can launch the desired Git tool.

As an example, for the Windows File Explorer:

E AMD Radeon Software

E AMD Link For Windaws Figure 46: Open A git Client.

Affichage >

Trier par by

Regrouper par >

Actualiser See the two red-circled options.
B Ouvrir dans le Terminal This is usually introduced in the Windows File
b Ouvrir avec Visual Studio Explorer when you download Git SCM from Git

_o Open with GitkKraken downloads.

Open Git GUI here
Open Git Bash here

Git Bash is a command prompt that emulates a

Unix command prompt and allows for running
Personnalizer ce dossier... Unix shell scripts39.

Git GUl is a more evolved console for running

Accorder 'accés 3 » Git operations.
Mouveau >
Proprietés

39 Remember, Git was developed in the Unix world.

https://git-scm.com/downloads
https://git-scm.com/downloads

Chapter X — Source Code Management, Git and Gogs.
Page 62 /118

Let’s create a “c:\TestGit\MyFirstRepository” folder and start Git Bash from there:

MINGWEL:/c/ TestGit/MyFirstRepasitory = O *

Figure 47: Git Bash Command prompt.

You see that the suggested set of instructions for creating a Git repository is:

touch README.md

git init

git add README.md

git commit -m "first commit”

git remote add origin http://localhost:3000/Benoit/MyFirstRepository.git
git push -u origin master

Let’s forget about the first touch one, and let’s start directly with the git init:

MINGWEL:/c/ TestGit/MyFirstRepository = O e

TestGit/MyFirs
§ git init
ized empty Git repository in C:/Test@it/MyFirstRepository/.git/

c/TestGit /MyFirstRepository

Figure 48: Git init command.

Chapter X — Source Code Management, Git and Gogs.

Page 63 /118

Initialized empty Git repository in C:/TestGit/MyFirstRepository/.git/

benoi@PCBenoit MINGW64 (master)

You see that it tells you it created a git repository (which practically means that it added a “.git”
subfolder. The second colored sentence is also interesting, since it tells you that it created a master
branch on which it is “branched”.

Then let’s create and add a file named “README.md":

L] WinMe text editor — O b4
File Edit View

[Z] README.md e]

This i=s my firstc repnsitnryJ

1: 29 Insert

Figure 49: README file creation.*®

The second Git instruction is to add this file (git add README.md) into the staging area (since it is not
here the purpose to provide a full Git commands guide, | suggest that you go briefly to Git SCM doc,
only main interesting git commands will be developed in this chapter).

Let’s also create a second file “MyFile01.txt” into the folder:

L] WinMc text editor = O >
File Edit View

[E] MyFile0n. st 20

This is my first file.|

1: 23 Insert

Figure 50: Create a first project file.

40 | am personally using Windows Norton Commander (available for a very little price), which, on top of being a
bi-folded file explorer, offers also a useful file comparison tool.

https://git-scm.com/doc

Chapter X — Source Code Management, Git and Gogs.
Page 64 / 118

Let’s then add those two files in the staging area:

MINGWEL:/c/ TestGit/MyFirstRepasitory = O *

§ git add README.md

§ git add MyFileOl.txt

Figure 51: Adding files to the project.

The next command (git commit -m “first commit) tells the repository to commit the staged files into
the repository:

README.md

Figure 52: Feeding the repository with (a new version of) files.

The next command:

git remote add origin http://localhost:3000/Benoit/MyFirstRepository.git

tells that the current repository is linked to a remote one (our new MyFirstRepository Gogs one, the
origin).

The next one tells to push the current master branch to the origin.

Chapter X — Source Code Management, Git and Gogs.
Page 65/ 118

The two commands (commit and push) tell really interesting things:

MINGWE4:/ ¢/ TestGit/MyFirstRepository = O *

first commit

-

Enumerating

Countir

Compres
Writi] 4/4) tes 1B,/ done.
Total 4
To http:
* [new

branch

Figure 53: Git file transfer.

The git commit command tells you that you introduced a change in your package that you call “first
commit”, that consists in two new or changed files and wears a tag “590a681” in your repository.

The git push command line tells you that it will transfer 4 objects (two of them probably be the two
files, and one of them the information about the commit tag) and that it will be transmitted a
“compressed” files*,

Coming now back to the web screen on the repository (click on it to refresh it), things start now to be
interesting ... the game’s commencing:

41 For more details on it, see the appendix on the git protocols and repository structure.

Chapter X — Source Code Management, Git and Gogs. Page 66 / 118
@ Dashboard Issues Pull Requests Explore + - @ -
Benoit MyFirstReposito ry @ Unwatch 1 vy Star | 0 YFork O
~)
=l Files @ Issues [11 Pull Requests 3 E= Wiki ¥ Settings
\ J
No Description
4 1
© 1 Commits ¥ 1 Branches ©>» 0 Releases
\, y
b Branch: master = MyFirstReposito.. (7T ssm | ntpiiocainosto00/peno & | &
Benoit02 soeassivey first commit 4 minutes ago
= MyFile01.txt se@seBl797 first commit 4 minutes ago
E README.md soese8l797 first commit 4 minutes ago

This is my first repository.

Figure 54: Gogs Repository main screen.

Chapter X — Source Code Management, Git and Gogs.

Page 67 /118

You can see there 5 main parts:

1. The full name repository, together with one unwatch
(meaning that it is the first time you see this screen after a
main action happened — the push), a starring quotation that
you could for example interpret as a degree of importancy)
and finally the number of forks (we’ll see that point later) -
Yellow.

2. The number of commits, branches, and releases —.

3. The “compare” green symbol, that we'll talk about later. The
branch on which the repository is positioned (or checked
out*?), and then a last symbol on the right side which allows
to make a zip package containing the repository files. It is
also possible to create or import new files directly into the
repository—-.

4. The repository files content. Note the tag associated to them
(see the content below) — [EIE.

If you click on tags, you see the related information:

first commit Browse Source

@ Beneoit02 <benoit.borremans1426@gmail.com= 1 hour ago commit
13 2 changed files with 2 additions and 0 deletions Split View Show Diff Stats

+1 EEEE -0 MyFileO1.txt [viewFite |

g0 -9,0 +1 @@

+This is my first file.

+1 HE -0 README.md View File

20 -9,0 1 @@

+This is my first repository.

Figure 55: Tags related information.

Notice also that now you have possibilities to create Issues and Pull Requests (the last one, again,
we'll see it later).

Ok. Let’s continue de game by changing files in our local repository.

42 Check in and check out operations in Git does not represent the same thing compared to other SCM tools. In
git, a repository is said to be checked out on a branch (while in other SCM, we talk about checking in or
checking out files).

Chapter X — Source Code Management, Git and Gogs.

L] WinMc text editor

File Edit View
[E] MyFiled bt

This is my firstc file.
This a second wversion of my filEJ

2 34 Insert

Figure 56: Changing a file.

=19

We have now first to stage this new version of the file, then to commit it:

MIMNGWE4: o/ TestGit/MyFirstRepository —

"origin/master’.

sitory

Figure 57: commit and push the change.

If you refresh your browser, you will see:

bds24d My second version

;ﬁﬁ Benoit02 &2«

FileO1.txt 62clbdezad My second version

=]

first commit

Figure 58: pushed change.
Notice the second commit tag (62c1bd624d).

If you click on MyFileO1.txt:

O >

done.

Page 68 /118

Chapter X — Source Code Management, Git and Gogs.

Page 69 /118

E

MyFile01.txt 56 B Permalink History Raw #

This is my firs

This a second version of my file.

Figure 59: file changed in Gogs.

And if you click on History:

Commit History

Author SHA1 Message Date
% Benoit02 g2clbde24d My second version 10 minutes ago
% Benoit02 S99a581797 first commit 3 hours ago

Figure 60: File History.

This shows you a bit of things you can do by directly using git commands from a command prompt.
Gits commands and their multiple arguments represent a pretty huge set of possible operations.
This is why in most of the cases, you use a dedicated Git Client GUI*,

We'll now go on introducing Git GUI, which allows you to perform git commands without having to
know the Git commands (and format!) that you should use to perform the corresponding operations.

Let’s now forget about Git Bash and let’s switch to Git GUI:

Open Git GUI here

Figure 61: Launching Git GUI

43 Those can be Git GUI, that we will still use a bit here, GitKraken, MS Visual Studio or MS Visual Studio code,
etc. Those clients offer any, most of the time, a way for launching a command prompt box, since they don’t
necessarily offer visually a way for performing all possible operations that the whole Git SCM offer.

Chapter X — Source Code Management, Git and Gogs.

Page 70/ 118
[E-, Git Gui (MyFirstRepository) Ci/TestGit/MyFirstRepository

— O x
Repository Edit Branch Commit Merge Remote Tools Help
Current Branch: master
Unstaged Changes
ik Al
v
v 1 [
N r Commit Message: [_| Amend Last Com
Staged Changes (Will Commit) Rescan a
“ Stage Changed
Sign Off
Commit
Push
v v
4

Figure 62: Git GUI.

Let’s again modify our file:

iﬂ' WinMNc text editor

= O it
File Edit View
[E] MyFile0n. st BBo
This is my firstc file. Y
This a second wversion of my file.
This is my third version of my file]
v

337 Insert

Figure 63: Third file version

Chapter X — Source Code Management, Git and Gogs.
Page 71/ 118

You'll have to hit on the rescan button to allows Git GUI to detect you changed the file:

[& Git Gui (MyFirstRepository) C:/TestGit/MyFirstRepository = O x

Repository Edit Branch Commit Merge Remote Tools Help

Current Branch: master
Unstaged Changes Meodified, not staged File: MyFile0l txt

ee -1,2 +1,3 g
This iz my first file.

-This a second version of my file.
% Ho mewline at end of file

% Mo mewline at end of file

Staged Changes (Will Commit)

Commit Message: [) Amend Last Cornmit
__Resan |
Stage Changed
Sign Off
Commit
Push
Ready. r—

Figure 64: Changing a file via Git GUI.
Now Stage the change, add a commit message, and hit the Commit button.

Then, hit the Push button:

Chapter X — Source Code Management, Git and Gogs.

Page 72 /118

& Git Gui (MyFirstRepository): Push = O X
| Fush Branches |

Source Branches

master A

Destination Repositony

© Remote: origin e
() Arbitrary Location:

Transfer Options

[_] Force overwrite existing branch (may discard changes)
[] Use thin pack (for slow netwerk connections)

[l Include tags

Cancel

Figure 65: Git GUI - push the change.
Hit the Push button again.

You'll obtain the following popup:

& Git Gui (MyFirstRepository): push arigin = O >

Pushing 1 branch to origin

PCOST git-receive-pack (533 bytes) &
PCOST git-receive-pack (533 bytes)
Pushing to http://localhost:3000/Benoic/MyFirstRepository.git
To http: /S localhost:3000/Benoic/MyFirstRepository.gitc
62clbde. .62583al master —-> master
updating local tracking ref 'refs/remotes/origin/master!

Close

Figure 66: Push Popup.

Chapter X — Source Code Management, Git and Gogs.

Close it.

If you go to the Gogs GUI, you'll see the corresponding changes.

From the Git GUI, let’s create a new “NewFeature” branch (Branch->Create):

E-, Git Gui (MyFirstRepository) C:/TestGit/MyFirstRepository

Repository Edit Branch Commit Merge Remote Tocols Help
Current Branch: MNewFeature

Unstaged Changes

Staged Changes (Will Commit)

Page 73 /118

Commit Message:
Rescan

Stage Changed
Sign Off
Commit

Push

[Amend Last Commit

Checked out 'MewFeature',

Figure 67: Create a branch from Git GUI.

You can see that it is already checked out to this new branch.

Let’s change again our file:

L] WinMc text editor
File Edit View
[E] MyFile0n. st

This is my firstc file.

This a second version of my file.

This is my third version of my file.
This is now branched to a new featare]

4: 39 Insert

Figure 68: Change a file in the new branch.

Let hit rescan to refresh the Git GUI and let’s stage and commit the change.

Chapter X — Source Code Management, Git and Gogs.
Page 74 / 118

Let’s push the change:

'- & Git Gui (MyFirstRepository): Push = O et
Push Branches |
Source Branches
MewFeature &
master
v

Destination Repository

O Remote: arigin w |
() Arbitrary Location: ‘

Transfer Options

[_] Force overwrite existing branch (may discard changes)
[] Use thin pack (for slow netweork connecticns)

[l Include tags

Cancel

Figure 69: Push the branch.

Go to the Gogs GUI and refresh the repository:

Chapter X — Source Code Management, Git and Gogs.

Benoit / MyFirstRepository
2 Files @ lIssues [1 Pull Requests ()
No Description
{ 3 Commits

¥ Branch: master ~ MyFirstReposito...

Benoit02 s25833129¢ Third version.

(i ﬁ

[iirf

E3 README.md
This is my first repository.
Figure 70: You see now two branches.

Change the branch to NewFeature:

WS W e NN R R e

¥ Branch: NewFeature =

Figure 71: The NewFeature branch in Gogs.

Wiki

¥ 2 Branches

@ Unwatch

1

Page 75/ 118
¥7 Star 0 ¥ Fork 0
I Settings
%> 0 Releases

[NEF TN | TP | SSH hitp://localhost:3000/Bene B &

MyFile01.txt 525833128 Third version.

README.md ss@z681797 first commit

MyF

2 hours ago
2 hours ago

6 hours ago

Chapter X — Source Code Management, Git and Gogs.

Page 76 / 118

V Branch: NewFeature ~ MyFirstReposito...

El MyFile01.txt 132 B

=

This is my first file.

This a second version of my file.

[

L

This is my third version of my file.

4 This iz now branched to & new feature.

Figure 72: Changed file in the new branch.

Back to the main repository files, hit the green button:

¥ Branch: master =

Figure 73: The compare button.

By choosing the Compare field to NewFeature, you can now see this:

Compare Changes
Compare two branches and make a pull request for changes.

(A base: master » .. ~ compare: NewFeature =
@ [| Labels &}
Title
: : No Label
Write Preview
Milestone £t
No Milestone
Assignee £}
No assignee

Create Pull Request

Figure 74: Compare branches, create Pull Request.

Chapter X — Source Code Management, Git and Gogs.

Page 77 / 118
Fill and create the pull request:
@ Labels £}
Changed the new file.
Mo Label
Write Preview
Milestone £
Could you review this new change. No Milestone
Assignee £t

@ Benoit

Figure 75: Pull request creation.

With this configuration you can only assign Benoit (yourself) to the pull request, since the repository
has been created owned by Benoit, through no organization nor team.

Changed the new file. [ear |

[OX""V W Benoit wants to merge 1 commits from Benoit/NewFeature into Benoit/master

& Conversation [} < Commits (B @ Files changed ([EB

@ Benoit commented 3 seconds ago s Labels £t
No Label
Could you review this new change.
Milestone &F
}-0 + This pull request can be merged automatically. No Milestone
e Create a merge commit Assignee £F
Commit Description: @ Benoit

1 Participants

N
Merge Pull Request

Figure 76: Pull request created.
You could go on discussing on this pull request.

Go back to the main repository screen:

Chapter X — Source Code Management, Git and Gogs.

Benoit / MyFirstRepository

=) Files @ lssues) i1 Pull Requests E)

[—

Figure 77: Pull request pending.

Go to this request and open it:

2 Files @ lIssues () i1 Pull Requests EJ

Labels Milestones

‘ ® 1 Open (& 0 Closed

m Changed the new file.

opened 4 minutes ago by Benoit

Figure 78: back to the pull request.
Merge it (hit the green “Merge Pull Request” button.

Back to the main repository branch, hit the MyFile01.txt file:

Wiki

Page 78 / 118

Chapter X — Source Code Management, Git and Gogs.

¥ Branch: master ~ MyFirstReposito... © MyFile01.txt

= MyFile01.txt 132 B

1 This is my first file.
? This a second version of my file.
3 This is my third version of my file.

4 This iz now branched to & new feature.

Figure 79: branched file in the master.
You see changed file has been pushed to the master branch.

Go back to the Git GUI, and check out to the master branch (Branch->Checkout):

'- & Git Gui (MyFirstRepository): Checkout Branch = O >
Checkout Branch

Revision
() Revision Expression:

© Local Branch (O Tracking Branch () Tag Qg
NewFeature

master

Options ‘
B Fetch Tracking Branch
|| Detach From Local Branch

Figure 80: check out back to the master.

Page 79/ 118

Chapter X — Source Code Management, Git and Gogs.

Page 80/ 118

: Remote Tocls Help

a m origin Figure 81: update the local master branch.

3
HITE I To refresh the master local branch, go to Remote-
Remove Remote r . .

>Fetch from origin.
Add... Ctrl-A
Push... Ctrl-P
Delete Branch...

If you view your local file, you see no change.

FLAIILF EFIF AT LIV | ST

Merge FRemote Tools Help

Fi 82: local .
i Local Merge... Ctrl-M lgure se- focamerge

Abort Merge... But if you go to Merge-> Local Merge, then the file is correctly
updated.

Chapter X — Source Code Management, Git and Gogs.

Page 81/118

Connect the Gogs repository to an existing local one.

Create now a “c:\TestGit\MyFirstRepositoryCopy” folder.
From there, launch Git Bash.
Execute a git Init command.

Execute the first git remote command, but instead of a git push, execute a git fetch --all**:

MIMGWEA:/c/TestGit/MyFirstRepositoryCopy = O *

Figure 83: Git Fetch all.

Launch Git Gui in this new folder.

4 Which actually gets all branches from the origin.

Chapter X — Source Code Management, Git and Gogs.

Page 82 /118
| & Git Gui (MyFirstRepositoryCopy) Ci/TestGit/MyFirstRepositoryCopy = O *
| Repository Edit Branch Commit Merge Remote Tools Help
Current Branch: master
Unstaged Changes
ol il
= v
| o k
4 »
Staged Changes (Will Commit) Commit Message: [] Arnend Last Commit
. Rescan &
Stage Changed
Sign Off
Commit
Push
v v
4 2 4 2
| Created commit 737816595 Commit changes from V17

Figure 84: Launch Git Gui in a new folder.

Edit the MyFile01.txt:

iﬂ WinMNc text editor

= O et
File Edit View
E] MyFile0n st BEo
This is my third version of my file.
This is now branched to a new feature. =
This is my fourth wversion of the file.l |
4 == »
339

Insert

And hit rescan to refresh Git Gui:

Chapter X — Source Code Management, Git and Gogs.

Page 83 /118
& Git Gui (MyFirstRepositoryCapy) Cy/TestGit/MyFirstRepositaryCopy = O *
Repositery Edit Branch Commit Merge Remote Tools Help
Current Branch: master
Unstaged Changes Meodified, not staged File: MyFile bt
B MyFiledl.txt g6 -1,4 +1,5 26 a
This is my first file. |
This a second wversion of my file. |
This is my third version of my file. |
-This is now branched to a new feature. |
% Ho newline at end of file |
+This is now branched to a new feature.
+This is my fourth wersion of the file.
» |\ No newline at end of file
4 3
Staged Changes (Will Commit)
a
v
4 >
Commit Message: [] Amend Last Commit
d -
Stage Changed
Sign Off
Commit
Push
L4 v
L] >] >
Ready.)

Figure 85: Change a file in a new copy.

Stage the change:

Commit Merge Remote Tools Help

Amend Last Commit Ctrl-E

Rescan F5

I Stage To Commit Ctrl-T

Stage Changed Files To Commit Ctrl-| rzxj
Unstage From Commit Ctrl-U ld w
Revert Changes Ctrl-J Pal=lal

end
Show Less Context Ctrl-- ek
Show More Context Ctrl-= L th -
Sign Off Ctrl-5 =nd
Commit Ctrl-Return

mit)

Figure 86: Staging a change.

Chapter X — Source Code Management, Git and Gogs.

Page 84 /118
Commit it:
Commit Message:
Rescan Fourth wersion
Stage Changed
' .
P > Sign Off
- ! Commit
Staged Changes (Will Cemmit)
(] MyFile0T.bxt a i
v

Figure 87: Commit the staged change.

Push it:
Hescan
Stage Changed
' .

4 > Sign Off

N Commit
Staged Changes (Will Commit) -
e 1D

v

Figure 88: Push the change.
Acknowledge all popups.

Now you can see the change in the origin:

Chapter X — Source Code Management, Git and Gogs.

Page 85/ 118
Benoit / MyFirstRepository
=) Files @ lssues) i1 Pull Requests () B Wiki

¥ Branch: master ~ MyFirstReposito... .~ MyFile01.txt

E MyFile01.txt 175 B

This is my first file.

=

This a second wversion of my file.

Ll

This is my third version of my file.

This is mow branched to & new feature. *

L% [

This is my fourth version of the file.

Figure 89: Change in the origin.

It pushed it to the origin’s master branch. The NewFeature branch version stayed the same:
Benoit / MyFirstRepository

E| Files @ lIssues () i1 Pull Requests [=2 Wiki

¥ Branch: NewFeature MyFirstReposito... / MyFiled

E MyFile01.txt 122 B

=

This is my first file.

This a second version of my file.

W R

This is my third version of my file.

This is nmow branched to & new feature.

Fa

Figure 90: No change in the NewFeatureBranch.

Chapter X — Source Code Management, Git and Gogs.
Page 86 /118

Hit the compare button:

Benoit / MyFirstRepository

Compare Changes
Compare two branches and make a pull request for changes.

-L:.l Dase: master = compare: MewFeature =
There is nothing to compare because base and head branches are even.

Figure 91: Compare.
Gogs detects no change.

Change the file again (fifth version), but before pushing from Git Gui, set the current branch to the
NewFeature branch in Gogs.

Again, it pushes to the master branch.

This is all because when you launch Git Gui (or Git bash, or any other) in the current folder, it uses not
only Windows environment variables but also the index of Git, which is together a branch and some
location in the branch.

And currently the index is on master.

This can be done through Git Gui by using Branch->Checkout, which, behind the scenes uses the Git
checkout command. Rather than doing this, will use the Git switch® command through Git bash:

MINGWEL:/c/ TestGit/MyFirstRepositoryCopy = O *

Figure 92: Switch to a branch.

Since we are further on in master compared to NewFeature, we merge master into the NewFeature
branch:

4 Git switch has been introduced in 2019, because Git checkout, on top of changing the index can also fetch
files form the starting branch, which might be confusing. Git switch does not alter nor add any file in the branch
we want to connect to.

Chapter X — Source Code Management, Git and Gogs.

MINGWEL:/c/TestGit/MyFirstRepositoryCopy

1ied to a new branch 'NewFeature'
eature’ set up to track "origin/MNewFeature'.

branch 'NewF

-
ad -

[a B]

Figure 93: Merge the master into the current branch.

We see now that MyFile01.txt has been updated:

L] WinNc text editor =
File Edit View
[E] MyFilen bt

this is my first file.

This a second wversion of my file.

This is my third version of my file.

This i=s now branched to a new feature.

Thizs is my fourth wversion of the file.
This is my fifth wersion

11 Read cnly

Figure 94: NewFeature has been updated.

=19

Page 87 /118

>

Let’s update MyFile01.txt to the sixth version (change the file content), stage and commit it:

MINGWBEL:/c/TestGit/MyFirstRepositoryCopy

ure

changed, i £ , 1 deletion(-)

os1tor

Figure 95: Update a file in the current branch.

Chapter X — Source Code Management, Git and Gogs.

MINGWEA:/ c/TestGit/MyFirstRepositoryCopy

done.

ature -
to track 'origin/NewFeature'.

Git/MyFirstRepositoryCopy

Figure 96: Push the branch to the remote.

You can see that the file has been updated to the correct branch:
Benoit / MyFirstRepository

=

=) Files (D) Issues I Pull Requests

n U Branch: NewFeature MyFirstReposito...

=

B

[
[]

MyFileO1.txt 2

This a second version of my file.

This is my third wversion of my file.

This iz now branched to & new feature. #
This is my fourth version of the file.
This is my fifth wversion

This is my sixth wersion

Figure 97: File updated in Gogs.

Page 88 /118

MyFile01.txt

Chapter X — Source Code Management, Git and Gogs.

Page 89 /118

If we decide the new feature development to be finished, and the origin is up to date, we can delete
the NewFeature branch to be obsolete, we can delete the remote branch?:

r S

I MINGWE4:/c/ TestGit/MyFirstRepositoryCopy = O > 1

s1toryCopy

§ git push or c
To http://1 0 i stRepository.git

MyFirstRepositoryCopy

Figure 98: Delete the remote branch.

Which results in Gogs in having just one master remaining branch:

Benoit / MyFirstRepository © Unwatch 1 ¢ Star
= Files @ lIssues I Pull Requests BB Wiki

Mo Description

© 8 Commits <> 0 Rell

n ¥ Branch: master = MyFirstReposito... MNew file Upload file | HTTP| SSH http://localhos

;EE Benoit02 3da37s51adf New version again

s 7378169524 Commit changes from W17
8 MyFile01.oxt New version again

B README.md first commit

EE README.md

Figure 99: One remaining branch after push and delete.

46 Since there is no way to do it directly in Gogs, this is the only way to proceed.

Chapter X — Source Code Management, Git and Gogs.

Page 90/ 118

The fork process.

First let’s create the organization dedicated to the collaborators:

New Organization

Organization Name ™ ‘ MyCollaborators

Great organization names are short and memorable.

Create Organization

Figure 100: Collaborators organization.

Then let’s connect to it:

. MyCollzhorators + 3 Activites (@ Issues 11 Pull Requests View MyCollabor..

Repository Mirror

My Repositories ﬂ

Figure 101: Connect to the collaborators organization.

Let’s create a team associated to the organization (you could as well directly invite people):

Chapter X — Source Code Management, Git and Gogs.

MyCollaborators -

New Repository People

Teams

Owners
1 members - 0 repositories

‘ Create New Team ’

———

Figure 102: Team associated to the organization.

Give write access to repositories that we will create in this team:

- MyCollaborators

Create New Team

Team Name *

MyCollaboratorsTeam
You'll use this name to mention this team in conversations.

Description

What is this team all about?
What permission level should this team have?

Read Access

This team will be able to view and clone its repositories.

® Write Access
This

De able to read its repositories, as well as push to them.

Ed

Admin Access

This team will be able to push/pull to its repositories, as well as add other cc

Create New Team

Figure 103: Collaborators team.

Page 91/118

1>

12

Chapter X — Source Code Management, Git and Gogs.

Add members to it:

. MyCollaborators

MyCollaboratorsTeam Team Members

This team has no description
& 0 members -] 0 repositories

Membership in this team grants Write access:
members can read from and push to the team’s

Figure 104: Add members to the collaborators team.

The full collaborators team:

. MyCollaborators

MyCollaboratorsTeam Team Members

This team has no description

& 2 members - E 0 repositories

Membership in this team grants Write access: ﬁ

members can read from and push to the team’s
repositories.

Figure 105: The collaborators team.

Now let’s create the main repository:

Page 92 /118

‘ Add Team Member ’

Add Team Member

Chapter X — Source Code Management, Git and Gogs.

Page 93 /118

New Repository

Owner ™ @ Benoit -

Repository Name * MyDistributionRep

A good repository name is usually composed of short, men
unique keywards.

Visibility This repository is Private
This repository is Unlisted

Description

Description of repository. Maximum 512 characters length.

Available characters: 512

gitignore gy 2 Studio x

License MIT License

Readme (2) Default

+| Initialize this repository with selected files and template

Create Repository

Figure 106: The main repository.

Chapter X — Source Code Management, Git and Gogs.

Let’s populate the repository (through direct file import)*:

@ Dashboard Issues Pull Requests Explore

Benoit / MyDistributionRep

= Files ® Issues B i1 Pull Requests [EE Wiki

No Description

© 1 Commits I 1 Branches

@ Unwatch

Page 94 /118

1

P Branch: master MyDistributionR... Mew file Upload file I SSH | hi

@Benoit dasoaceadt Initial commit

Bl .gitignore dessaceest Initial commit
B LICENSE dessacepat Initial commit
B2 README.md dasgaceesaf Initial commit

README.md

MyDistributionRep

Figure 107: Repository population.

Let’s drag and drop files (in our case MyFile01.txt) to the repository:

47 You could as well populate it by connecting it to an external repository, as showed above in this chapter.

Chapter X — Source Code Management, Git and Gogs.

Page 95/ 118

Benoit / MyDistributionRep ® Unwatch

E) Files @ Issues) i1 Pull Requests [E3 Wiki

MyDistributionRep @ or cancel

@ Commit Changes

|ﬂ\dd an optional extended description...

(® o Commit directly to the master branch.

1 Create a new branch for this commit and start a pull request.

Commit Changes

Figure 108: Drag & drop to the main repository.

And, after the drop, add a message and commit the addition:

Chapter X — Source Code Management, Git and Gogs.

Page 96 / 118

MyDistributionRep @ or cancel

0.2 KB

MyFile01.txt

Remove file

9 Commit Changes

@ommit directly to the master @

1 Create a new branch for this commit and start a pull request.

Commit Changes

Figure 109: Commit the file addition.

The repository populated:

Chapter X — Source Code Management, Git and Gogs.

Page 97 / 118

Benoit / MyDistributionRep ‘

= Files @ lssues) i1 Pull Requests [EE Wiki
No Description

o 2 Commits ¥ 1 Branches

D Branch: master = | MyDistribution..

@ Benoit 2esabeessb Upload files to

= .gitignore desa4cesdf Initial commit
5 LICENSE deseacepaf Initial commit
B MyFile01.txt Zeasbgeseb Upload files to
2 README.md deseaceeat Initial commit

EZ README.md

Figure 110: The repository populated.

Now from the fork button, fork the main repository:

Chapter X — Source Code Management, Git and Gogs.

Page 98 / 118

New Fork Repository

Owner ™ . MyCollaborators -

Fork From Benoit/MyDistributionRep

Repository Name ™ IMyDistributionRep

Visibility This repository is Private

This repository is Unlisted

You cannot alter the visibility of a forked repository.

Description

Fork Repository

Figure 111: Fork the main repository.

Use the MyCollaborators organization as being the owner of the fork repository. Notice the two
repositories:

Chapter X — Source Code Management, Git and Gogs.

Page 99 /118

? Repository Organization Mirror
My Repositories +
O~
G MyDistributionRep 0 *)
El MyFirstRepository 0 *
El SimpleConsoleApp 0

Collaborative Repositories

MyCollaborators / MyDistribution...

TestOrganiza

Figure 112: Main and collaborative repositories.

The collaborative repository:

¥ MyCollaborators / MyDistributionRep @ Unv

forked from Benoit/MyDistributionRep

E) Files
No Description

{© 2 Commits ¥ 1 Branches

¥ Branch: master ~ MyDistributionR... Newfile Upload file

Benoit 2ezabeessb Upload files to

(i) @

.gitignore desodcensf Initial commit
B LICENSE desedceedf Initial commit
B MyFile01.txt 2=zabeessb Upload files to ™
= README.md dess4cesdf Initial commit

README.md

MyDistributionRep

Figure 113: The collaborative repository.

Chapter X — Source Code Management, Git and Gogs.
Page 100/ 118
Let’s clone this repository:

MINGWEL: o/ TestGit/MyCollaboratives = O X

ributionRep.git

ning into
: Enumerating o

Figure 114: cloning the collaborative repository.
Let’s create a NewFeature branch to it:

: &5 Git Gui (MyDistributionRep): Create Branch = O X

I Create New Branch

Branch Mame
O MName: MewFeature|
() Match Tracking Branch Mame

Starting Revision
() Revision Expression:
© Local Branch () Tracking Branch (C) Tag 9@

Options
| Update Existing Branch: (C) No @ Fast Forward Only (O Reset
| Fetch Tracking Branch
| Checkout After Creation

Cancel Create

Figure 115: Create a NewFeature branch.

Chapter X — Source Code Management, Git and Gogs.
Page 101 /118

Let’s modify MyFile01.txt *&:

r E-, Git Gui (MyDistributionRep) Cy/TestGit/MyCollaboratives/MyDistributionRep = O * 1

Repository Edit Branch Commit Merge Remote Toels Help

| Current Branch: MewFeature
Unstaged Changes Medified, not staged File: WiyFileDl.tct
s |@e -2,6 +2,7 G& This is my first file.
This a second wversion of my file.
This is my third wversion of my file.
This is now bkranched to a new feature. ®
This is my fourth wversion of the file.
This is my fifth version
-This is my seventh version.
% No newline at end of file
+This is my seventh wversion.
+We are now on version 10.
% No newline at end of file

Staged Changes (Will Commit)

a |1 k|
Commit Message: () Amend Last Commit
Rescan Commit the NewFeature. s
Stage Changed
Sign Off
Commit
Push

=
1 3 1 » |
Ready. 1

Figure 116: Modify MyFileO1.txt on the NewFeature branch.
Stage the file, commit it.

Push it now to the origin:

48 Remember : hit the Rescan button to see it.

Chapter X — Source Code Management, Git and Gogs.

Page 102 / 118

r 5 Git Gui (MyDistributionRep) C:/TestGit/MyCollaboratives/MyDistributionRep = O X 1
Repository Edit Branch Commit Merge Remote Tools Help
| Current Branch: NewFeature
Unstaged Changes
& L]
v
4 3
Staged Changes (Will Commit) =
a |t b
Commit Message:) Arnend Last Cornmit
Rescan e
Stage Changed
Sign Off
v v
4 3] b
Created commit beee5cd5: Commit the MewFeature,

Figure 117: Push the NewFeature branch to the origin.

[&5 Git Gui (MyDistributionReg): Push = O >
| Push Branches

Source Branches

MewFeature -

master

Destination Repositony

© Remote: origin ke
() Arbitrary Location:

Transfer Options

[_] Force overwrite existing branch (may discard changes)
] Use thin pack (for slow network connections)

[l Include tags

Cancel

Figure 118: Push popup.

Chapter X — Source Code Management, Git and Gogs.

Page 103 / 118

p— — S ——————— S S

& Git Gui (MyDistributionRep): push origin = O x

Pushing 1 branch to origin

POST git-receive-pack (517 bytes) ik
POST git-receive-pack (517 bytes)
Pushing to http://localhost:3000/MyCollaborators/MyDistributionRep.git
To http://flocalhost:3000/MyCollaborators/MyDistributionRep.git
* [new branchl] HewFeature -> HNewFeature
updating local tracking ref 'refs/remotes/origin/HewFeature'

Close |
Figure 119: Push popup, suite.
The NewFeature branch pushed to the collaborative repository:
@ Dashboard Issues Pull Requests Explare
¥ MyCollaborators / MyDistributionRep @ Unwatch 2

forked from Benoit/MyDistributionRep

=2 Files

No Description

{® 2 Commits ¥ 2 Branches

Y Branch: master ~ MyDistributionR... MNew file Upload file |izlREEES3s]

@ Benoit 2ecaabeeseb Upload files to

B .gitignore dessaceest Initial commit
B LICENSE deso4ceeaf Initial commit
B MyFile01.ixt 2easbeessh Upload files to ™
B READMEmd dessdcesaf Initial commit

README.md

Figure 120: The NewFeature branch pushed to the collaborative repository.

Chapter X — Source Code Management, Git and Gogs.
Page 104 / 118

Hit now the green compare button:

@ Dashboard lssues Pull Requests Explore

¥ MyCollaborators / MyDistributionRep ® Unwatch 2

forked from Benoit/MyDistributionRep
El Files
No Description

0 2 Commits ¥ 2 Branches

@P Branch: master = MyDistributionR... New file Upload file JizLRLEESS!

@ Benoit 2eczabeessb Upload files to

B .gitignore desoaceeaf Initial commit
= LICENSE dessaceeaf Initial commit
B MyFile0.txt Zesabaeseh Upload files to ™
B READMEmd dasoacerat Initial commit

README.md

Figure 121: Comparison between the two branches.

Choose the NewFeature branch to make the comparison, and notice three things (see the next
picture):

e The choice of the branch to compare to (red circled),
e The fact that you can add descriptions and attach files (green circled),
e The popup is now on the main repository (purple circled):

Chapter X — Source Code Management, Git and Gogs.

Page 105/ 118

& Benoit / MyDistributionRep > ® Unwatch 1

Compare Changes
Compare two branches and make a pull request for changes.

[N] base: master = " compare: MewFeature =

& ‘ fritle

Write Preview

Create Pull Request

Figure 122: Pull request creation.

Assign someone to the review:

&) Labels £
Review the new branch
Mo Label
Write Preview
Milestone £+
Mo Milestone

Could you review this change please?

Assignee £t

@ Benoit

Figure 123: Benoit is assigned to the pull request review.

You can start a discussion or merge the pull request (red circled):

Chapter X — Source Code Management, Git and Gogs.

Page 106 / 118

= Conversation [< Commits (B Files changed ([EB)

9 Benoit commented 1 second ago

Could you review this change please?

}-:. + This pull request can be merged automatically.

® Create a merge commit

Commit Description:

I~ Merge Pull Request

Figure 124: Merge pull request.

Benoit / MyDistributionRep °

= Files @ lIssues [i1 Pull Requests [EE Wiki

¥ Branch: master = MyDistributionR... / MyFileD1.txt

E MyFile01.txt 254 B

This iz my first file.

This a second version of my file.

This is my third version of my file.

This iz now branched to & new feature. *
This iz my fourth version of the file.
This iz my fifth wversion

L] L
T . Ty CWEITLTT T

ke are now on version 1B;>

AQG\WLIJIMH

Figure 125: Merged change.

Chapter X — Source Code Management, Git and Gogs.

Page 107 / 118

The MS Visual Studio client.

Create a ASimpleApp repository:
New Repository

Owner ™ @ Benoit -

Repository Name™ ASimpleApp

A good repository name is usually composed of short, memorable and

unique keywords

Visibility This repository is Private
This repository is Unlisted

Description

L

M
o
T
=]
3
]
.
I
5l
1]

=

Description of repository. Maximum

(L*]

Available characters: 51

-gitignore | yic aiStudio x
License MIT License

Readme (3 Default

Initialize this repository with selected files and template

Figure 126: ASimpleApp repository.

Now launch MS Visual Studio and create a C# desktop application:

Chapter X — Source Code Management, Git and Gogs.

Page 108 / 118

| SFTANL T LS IaLES AILT) Fl - | C'EEF a”

c# - All platferms - Desktop |v|

E‘:.‘I* Windows Forms App
A project template for creating a MET Windows Forms (WinForms) App.

C# Windows Desktop

O onaae - - R ———

Figure 127: Create a C# desktop application.

Solution Explorer

B o-s38 ||| #=]
| Search Solution Explorer (Ctrl+5) P|'|
0 Solution 'ASimpleApp’ (1 of 1 project)
4 [c5] ASimpleApp
b &0 Dependencies

P Forml.cs
P C#® Form1.Designer.cs

[Forml.resx

P C#® Program.cs

suOREIRON

Figure 128: ASimpleApp C# application.
Create a local Git repository:

i it | Project Build Debug Format

G

4 : T
== Clone Repository... CPU
| i}q} Create Git Repository...

I Local Repositories...]

— Commit or Stash...

& Settings

Figure 129: ASimpleApp Git repository.

Chapter X — Source Code Management, Git and Gogs.

Page 109 /118

Create a Git repasitery

Push to a new remote 4 Initialize alocal Git repository

©) GitHub Local path (@ CATestGit\ASimpleApp

':,I Azure DevOps

.gitignore template (1) |Defau\t (VisualStudia) -|

License template (1) |N0ne v|

Other

[Add a README.md @

@ Push your code to an existing remote

Remote URL < http://localhost:3000/Benoit/ASimpleApp.git >

;ﬂ Lecal only

Create and Push ancel

Figure 130: ASimpleApp local Git Repository.
Choose:

e Existing Remote
e The correct Remote URL (cut & paste from Gogs)
e Create and Push it.

N.B.

All Git operations are performed under an account. When the remote (origin) repository is hosted by
GitHub or Azure DevOps is involved, the account is a GitHub or Azure DevOps one. In our case, since
we use local Windows accounts, the accounts come in fact from the one defined in Gogs. We defined
two accounts in Gogs, Benoit and Benoit02.

This can be configured in MS Visual Studio in the following way:

o In Git->Settings:

Chapter X — Source Code Management, Git and Gogs.

Page 110/ 118

| Options ? X

Search Options (Ctrl+E) Pl User name: Benoitd?

|| b Environment
|| B Projects and Solutions

|| 4 Source Control Default location: | CAVSTrials\GogsTests' TestFromOrg E‘
Plug-in Selection

Email: benoit.borremans1426@gmail.com

Git Global Settings Prune remote branches during fetch: Unset i
I Git Repository Settings

b Work ltems Rebase local branch when pulling: Unszet v
b 1= Edlt,m Cryptographic netwerk provider: Unset =
[Debugging
I Performance Tools Credential helper: Unset e
I .NET Core Debugging with W5L
b Azure Service Authentication Close open solutions not under Git when opening a repositony: Mo v
b CMake Automatically activate multiple repositories (requires solution Yes .
I Code Converter reload):
I Container Tools [] Enable download of author images from 3rd party source
[Coockiecutter Clear image cache
P

Cross Platform [o#] Cammit rhannes after merme b defanlt

Figure 131: Git MS VS Settings.
Perform a Clear image cache.

e When you launch MS Visual Studio for the first time and perform an operation like a clone
one, the account used will be the one that will be in the cache, that is the one used during
the last git operation in MS Visual Studio.

e The settings defined for the project:

| Options ? X

Search Options (Ctrl+E) J~ Repository: ASimplefpp
Path: C:\TestGit\ASimpleApp

|'| I Environment
|| B Projects and Solutions Repository settings will override the global setting values.
4 Source Control
Plug-in Selection User name: Benoitl2
Git Global Settings

4 Git Repository Settings Email: benoit.borremans1426@ gmail.com

S Prune remote branches during fetch: Unset »
Remotes

I Work [tems Rebase local branch when pulling: Unset "~

b Tedt Edior Enabl it graph for better Git perf Unset

b B Enable commit graph for better Git performance: ns

I- Performance Tools More Info

[.NET Core Debugging with WS5L

I Azure Service Authentication Tools

b CMake Diff Tool: Visual Studic | Local

y Code'{:nnverter Merge Tool: Visual Studic | Local

I Container Tools

Figure 132: Project Git Settings.

Chapter X — Source Code Management, Git and Gogs.
Page 111 /118
Once pushed from MS Visual Studio, the Gogs repository will look like:
Benoit / ASimpleApp ® Unwatch 1

= Files @ lssues [i1 Pull Requests [} B2 Wiki

No Description

{ 2 Commits I 1 Branches

I Branch: master = ASimpleApp New file Upload file JEZIRGRESIs RIS

Benoit02 bsssescicd Add project files.

(i) ﬁ

.gitattributes 2@45c29351 Add .gitattributes, .gitignore, and LICENSE.txt.
B .gitignore 2045c20351 Add .gitattributes, .gitignore, and LICENSE.txt.
B ASimpleApp.csproj bsgs=8c3cd Add project files.
B ASimpleApp.sin bszzescicd Add project files.
B Form1.Designer.cs bsgs=8c3cd Add project files.
B Formil.cs bsasescicd Add project files.
B Form1.resx bsgse8c3cd Add project files.
B LICENSE.txt 2e45c29351 Add .gitattributes, .gitignore, and LICENSE.txt.
B Program.cs bsgse8c3cd Add project files.

Figure 133: The pushed Gogs repository.
Once pushed, you can see three indicators in MS Visual Studio:

e In purple, the current branch,
e Ingreen, the currently uncommitted changes,
e Inred, the differences between the current repository and the remote (origin) one.

Let’s now add a button whose purpose is to say “Hello!”:

Chapter X — Source Code Management, Git and Gogs.

Page 112 /118

1 Flnamespace ASimpleApp

2 i

= W
[
L

[
(A1)

Wi @ =] v oon

10
11
12§
13
14
15
16

i
L

o =

3 references
public partial class Forml : Form

{

e

1 reference
public Forml()

1
i InitializeComponent();
}

1 reference
private void buttonl_Click(object sender, EventArgs e)

i
i MessageBox.Show("Hello!");

}

Figure 134: Say Hello button.

If you look at the indicators:

1§ master = g ASimplefApp =

Figure 135: MS VS indicators.

You see that there are three uncommitted changes (The Initialize form, the button addition, and the

message).

Chapter X — Source Code Management, Git and Gogs.
Page 113 / 118

You can now commit the changes:

o Git Changes - ASimplefpp - 0 x

£ |master |v| P P
Tl 0/0 View all commits

Addition of a push button with a message]

Commit &l + [] Amend

4 Changes (3) + an
4 T Ch\TestGit\ASimpleApp
C#® Forml.cs M
C#® Form.Designer.cs M
|J_‘-'|j Form1.resx M
[Stashes

Figure 136: Changes committing.

Looking again to the indicators:

gﬁ master =

Figure 137: MS VS indicators.

You see that there is a difference between the local and the remote repositories.

|
View All Commits Ctrl+0, Ctrl+Y You can push it.
J, Fetch
e Pull
[T Push |
. > Sync (Pull then Push)

Figure 138: Push the differences.

Chapter X — Source Code Management, Git and Gogs.

And see the Gogs repository content:

Benoit / ASimpleApp

= Files @ Issues [

U Branch: master -

E Form1l.cs 276 B

1 namespace ASimpleApp

i1 Pull Requests [Wiki

ASimpleApp

Forml.cs

2 {

3 public partial class Forml : Form
5 i

5 public Formi({)

6 i

7 InitielizeComponent(};

8 ¥

18 private void buttonil_Click{object sender, Eventérgs e)
11 i

12 MessageBox.Show("Hello!");
13 1

14 T

Figure 139: Gogs content.

Git | Project Build Debug Test A
= L Clone Repository... |
i Local Repositories... L3
I Commit or Stash...

- & Fetch e

L Pull
. T Push LEs
1| 73 Sync (Pull then Push) | F
o

New Branch... Fie
|*§9 ew Branc bl

D View Branch History

5 Manage Branches

ES Open in File Explorer

P P

Open in Command Prompt Efe

=AT

& Manage Remotes...

4] Settings

7 T

I = H

Figure 140: Create a branch from MS VS.

Let’s create a new branch.

Page 114 / 118

Chapter X — Source Code Management, Git and Gogs.
Page 115 /118

And let’s call it NewFeature:

Create a new branch ot
Eranch name: NewFeature]

Baszed on: master -

[w] Checkout branch

Create || Cancel

Figure 141: MS VS NewFeature branch.

Form1l.cs® & X

[AsimpleApp ~|| %z AsimpleApp.Form1
(& 1 Enamespace ASimplefpp
2 1
| 3 references
) 3 = public partial class Forml : Form
4 i
| | 1 reference
5 Bl i public Ferml()
6 | P
7 | InitializeComponent();
-
9 Lo
| 1 reference
16 = ! private void buttonl_Click(object sender, EventArgs e)
11 A |
12%f|1 1 | MessageBox.Show("Hello Man|!");
13 .
w [}
15 |}
16

Figure 142: Change the message.

And change the message.

7+ NewFeature = Again, looking to the indicators you see:

Chapter X — Source Code Management, Git and Gogs.

e That you are on the NewFeature branch,
e There is one uncommitted change.

Git Changes - ASimplefpp * 1 x
@ Commit blecsaaf created locally. X
| MewFeature |v| R P s T

TL0/0 View all commits

Change the message

Commit Al [Amend

4 Changes (1) + wen
4 T CA\TestGit\ASimg Changes (1)
C#® Forml.cs ™ I
I Stashes

Git Changes

Figure 143: Commit the changes.

And having a look to the indicators:

g‘° MewFeature «

Figure 144: MS VS indicators.

Let’s commit the changes.

Page 116 / 118

Chapter X — Source Code Management, Git and Gogs.

Page 117 / 118

Benoit / ASimpleApp
= Files ® Issues 3 1 Pull Requests [B2 Wiki

U Branch: NewFeature + Y ASimpleApp / Form1.cs You see the change on the
NewFeature branch.

El Form1.cs 280 B

1 namespace ASimpleApp

2 {
public partial class Forml : Form
2 {
5 public Forml{)
6 i
7 InitiglizeComponent();
8 H
18 private void buttonl_Click(object sender, Eventargs e)
11 1
13 H
14 1
15}

Figure 145: Changes in the NewFeature branch.

Chapter X — Source Code Management, Git and Gogs.

Page 118 /118

The git communication protocol

As we described it all in this document, the git transfer protocol is mainly designed to transfer files
and their history from a collaborating repository to a main or another collaborating repository.

It is essential that this transfer is efficient, this is why, actually, the whole package files are not
transferred, but rather only deltas between the files, together with information associated with the
tags (the commits) and labels.

In order to make this transfer is consistent, when a branch is transferred from one repository to
another, they must share the same history, the reason why, when a conflict occurs, the transmitted
branch must be reconciliated with the target one on the remote.

Attention must be paid on large (binary) files, the reason why, for example, Gogs has a special
treatment for those transfers.

On top of that, some communications between some hubs (hosts) and customers (clients) use
additional protocol. This is the case between GitHub and MS Visual Studio when a push happens, in
which case a pull request is automatically created — a point that is not addressed in this document.

