Permalink
Cannot retrieve contributors at this time
Fetching contributors…
| // Copyright 2011 The Go Authors. All rights reserved. | |
| // Use of this source code is governed by a BSD-style | |
| // license that can be found in the LICENSE file. | |
| package openpgp | |
| import ( | |
| "crypto/rsa" | |
| "io" | |
| "time" | |
| "golang.org/x/crypto/openpgp/armor" | |
| "golang.org/x/crypto/openpgp/errors" | |
| "golang.org/x/crypto/openpgp/packet" | |
| ) | |
| // PublicKeyType is the armor type for a PGP public key. | |
| var PublicKeyType = "PGP PUBLIC KEY BLOCK" | |
| // PrivateKeyType is the armor type for a PGP private key. | |
| var PrivateKeyType = "PGP PRIVATE KEY BLOCK" | |
| // An Entity represents the components of an OpenPGP key: a primary public key | |
| // (which must be a signing key), one or more identities claimed by that key, | |
| // and zero or more subkeys, which may be encryption keys. | |
| type Entity struct { | |
| PrimaryKey *packet.PublicKey | |
| PrivateKey *packet.PrivateKey | |
| Identities map[string]*Identity // indexed by Identity.Name | |
| Revocations []*packet.Signature | |
| Subkeys []Subkey | |
| } | |
| // An Identity represents an identity claimed by an Entity and zero or more | |
| // assertions by other entities about that claim. | |
| type Identity struct { | |
| Name string // by convention, has the form "Full Name (comment) <email@example.com>" | |
| UserId *packet.UserId | |
| SelfSignature *packet.Signature | |
| Signatures []*packet.Signature | |
| } | |
| // A Subkey is an additional public key in an Entity. Subkeys can be used for | |
| // encryption. | |
| type Subkey struct { | |
| PublicKey *packet.PublicKey | |
| PrivateKey *packet.PrivateKey | |
| Sig *packet.Signature | |
| } | |
| // A Key identifies a specific public key in an Entity. This is either the | |
| // Entity's primary key or a subkey. | |
| type Key struct { | |
| Entity *Entity | |
| PublicKey *packet.PublicKey | |
| PrivateKey *packet.PrivateKey | |
| SelfSignature *packet.Signature | |
| } | |
| // A KeyRing provides access to public and private keys. | |
| type KeyRing interface { | |
| // KeysById returns the set of keys that have the given key id. | |
| KeysById(id uint64) []Key | |
| // KeysByIdAndUsage returns the set of keys with the given id | |
| // that also meet the key usage given by requiredUsage. | |
| // The requiredUsage is expressed as the bitwise-OR of | |
| // packet.KeyFlag* values. | |
| KeysByIdUsage(id uint64, requiredUsage byte) []Key | |
| // DecryptionKeys returns all private keys that are valid for | |
| // decryption. | |
| DecryptionKeys() []Key | |
| } | |
| // primaryIdentity returns the Identity marked as primary or the first identity | |
| // if none are so marked. | |
| func (e *Entity) primaryIdentity() *Identity { | |
| var firstIdentity *Identity | |
| for _, ident := range e.Identities { | |
| if firstIdentity == nil { | |
| firstIdentity = ident | |
| } | |
| if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { | |
| return ident | |
| } | |
| } | |
| return firstIdentity | |
| } | |
| // encryptionKey returns the best candidate Key for encrypting a message to the | |
| // given Entity. | |
| func (e *Entity) encryptionKey(now time.Time) (Key, bool) { | |
| candidateSubkey := -1 | |
| // Iterate the keys to find the newest key | |
| var maxTime time.Time | |
| for i, subkey := range e.Subkeys { | |
| if subkey.Sig.FlagsValid && | |
| subkey.Sig.FlagEncryptCommunications && | |
| subkey.PublicKey.PubKeyAlgo.CanEncrypt() && | |
| !subkey.Sig.KeyExpired(now) && | |
| (maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) { | |
| candidateSubkey = i | |
| maxTime = subkey.Sig.CreationTime | |
| } | |
| } | |
| if candidateSubkey != -1 { | |
| subkey := e.Subkeys[candidateSubkey] | |
| return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true | |
| } | |
| // If we don't have any candidate subkeys for encryption and | |
| // the primary key doesn't have any usage metadata then we | |
| // assume that the primary key is ok. Or, if the primary key is | |
| // marked as ok to encrypt to, then we can obviously use it. | |
| i := e.primaryIdentity() | |
| if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications && | |
| e.PrimaryKey.PubKeyAlgo.CanEncrypt() && | |
| !i.SelfSignature.KeyExpired(now) { | |
| return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true | |
| } | |
| // This Entity appears to be signing only. | |
| return Key{}, false | |
| } | |
| // signingKey return the best candidate Key for signing a message with this | |
| // Entity. | |
| func (e *Entity) signingKey(now time.Time) (Key, bool) { | |
| candidateSubkey := -1 | |
| for i, subkey := range e.Subkeys { | |
| if subkey.Sig.FlagsValid && | |
| subkey.Sig.FlagSign && | |
| subkey.PublicKey.PubKeyAlgo.CanSign() && | |
| !subkey.Sig.KeyExpired(now) { | |
| candidateSubkey = i | |
| break | |
| } | |
| } | |
| if candidateSubkey != -1 { | |
| subkey := e.Subkeys[candidateSubkey] | |
| return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true | |
| } | |
| // If we have no candidate subkey then we assume that it's ok to sign | |
| // with the primary key. | |
| i := e.primaryIdentity() | |
| if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign && | |
| !i.SelfSignature.KeyExpired(now) { | |
| return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true | |
| } | |
| return Key{}, false | |
| } | |
| // An EntityList contains one or more Entities. | |
| type EntityList []*Entity | |
| // KeysById returns the set of keys that have the given key id. | |
| func (el EntityList) KeysById(id uint64) (keys []Key) { | |
| for _, e := range el { | |
| if e.PrimaryKey.KeyId == id { | |
| var selfSig *packet.Signature | |
| for _, ident := range e.Identities { | |
| if selfSig == nil { | |
| selfSig = ident.SelfSignature | |
| } else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { | |
| selfSig = ident.SelfSignature | |
| break | |
| } | |
| } | |
| keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig}) | |
| } | |
| for _, subKey := range e.Subkeys { | |
| if subKey.PublicKey.KeyId == id { | |
| keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) | |
| } | |
| } | |
| } | |
| return | |
| } | |
| // KeysByIdAndUsage returns the set of keys with the given id that also meet | |
| // the key usage given by requiredUsage. The requiredUsage is expressed as | |
| // the bitwise-OR of packet.KeyFlag* values. | |
| func (el EntityList) KeysByIdUsage(id uint64, requiredUsage byte) (keys []Key) { | |
| for _, key := range el.KeysById(id) { | |
| if len(key.Entity.Revocations) > 0 { | |
| continue | |
| } | |
| if key.SelfSignature.RevocationReason != nil { | |
| continue | |
| } | |
| if key.SelfSignature.FlagsValid && requiredUsage != 0 { | |
| var usage byte | |
| if key.SelfSignature.FlagCertify { | |
| usage |= packet.KeyFlagCertify | |
| } | |
| if key.SelfSignature.FlagSign { | |
| usage |= packet.KeyFlagSign | |
| } | |
| if key.SelfSignature.FlagEncryptCommunications { | |
| usage |= packet.KeyFlagEncryptCommunications | |
| } | |
| if key.SelfSignature.FlagEncryptStorage { | |
| usage |= packet.KeyFlagEncryptStorage | |
| } | |
| if usage&requiredUsage != requiredUsage { | |
| continue | |
| } | |
| } | |
| keys = append(keys, key) | |
| } | |
| return | |
| } | |
| // DecryptionKeys returns all private keys that are valid for decryption. | |
| func (el EntityList) DecryptionKeys() (keys []Key) { | |
| for _, e := range el { | |
| for _, subKey := range e.Subkeys { | |
| if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) { | |
| keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) | |
| } | |
| } | |
| } | |
| return | |
| } | |
| // ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file. | |
| func ReadArmoredKeyRing(r io.Reader) (EntityList, error) { | |
| block, err := armor.Decode(r) | |
| if err == io.EOF { | |
| return nil, errors.InvalidArgumentError("no armored data found") | |
| } | |
| if err != nil { | |
| return nil, err | |
| } | |
| if block.Type != PublicKeyType && block.Type != PrivateKeyType { | |
| return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type) | |
| } | |
| return ReadKeyRing(block.Body) | |
| } | |
| // ReadKeyRing reads one or more public/private keys. Unsupported keys are | |
| // ignored as long as at least a single valid key is found. | |
| func ReadKeyRing(r io.Reader) (el EntityList, err error) { | |
| packets := packet.NewReader(r) | |
| var lastUnsupportedError error | |
| for { | |
| var e *Entity | |
| e, err = ReadEntity(packets) | |
| if err != nil { | |
| // TODO: warn about skipped unsupported/unreadable keys | |
| if _, ok := err.(errors.UnsupportedError); ok { | |
| lastUnsupportedError = err | |
| err = readToNextPublicKey(packets) | |
| } else if _, ok := err.(errors.StructuralError); ok { | |
| // Skip unreadable, badly-formatted keys | |
| lastUnsupportedError = err | |
| err = readToNextPublicKey(packets) | |
| } | |
| if err == io.EOF { | |
| err = nil | |
| break | |
| } | |
| if err != nil { | |
| el = nil | |
| break | |
| } | |
| } else { | |
| el = append(el, e) | |
| } | |
| } | |
| if len(el) == 0 && err == nil { | |
| err = lastUnsupportedError | |
| } | |
| return | |
| } | |
| // readToNextPublicKey reads packets until the start of the entity and leaves | |
| // the first packet of the new entity in the Reader. | |
| func readToNextPublicKey(packets *packet.Reader) (err error) { | |
| var p packet.Packet | |
| for { | |
| p, err = packets.Next() | |
| if err == io.EOF { | |
| return | |
| } else if err != nil { | |
| if _, ok := err.(errors.UnsupportedError); ok { | |
| err = nil | |
| continue | |
| } | |
| return | |
| } | |
| if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey { | |
| packets.Unread(p) | |
| return | |
| } | |
| } | |
| panic("unreachable") | |
| } | |
| // ReadEntity reads an entity (public key, identities, subkeys etc) from the | |
| // given Reader. | |
| func ReadEntity(packets *packet.Reader) (*Entity, error) { | |
| e := new(Entity) | |
| e.Identities = make(map[string]*Identity) | |
| p, err := packets.Next() | |
| if err != nil { | |
| return nil, err | |
| } | |
| var ok bool | |
| if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok { | |
| if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok { | |
| packets.Unread(p) | |
| return nil, errors.StructuralError("first packet was not a public/private key") | |
| } else { | |
| e.PrimaryKey = &e.PrivateKey.PublicKey | |
| } | |
| } | |
| if !e.PrimaryKey.PubKeyAlgo.CanSign() { | |
| return nil, errors.StructuralError("primary key cannot be used for signatures") | |
| } | |
| var current *Identity | |
| var revocations []*packet.Signature | |
| EachPacket: | |
| for { | |
| p, err := packets.Next() | |
| if err == io.EOF { | |
| break | |
| } else if err != nil { | |
| return nil, err | |
| } | |
| switch pkt := p.(type) { | |
| case *packet.UserId: | |
| current = new(Identity) | |
| current.Name = pkt.Id | |
| current.UserId = pkt | |
| e.Identities[pkt.Id] = current | |
| for { | |
| p, err = packets.Next() | |
| if err == io.EOF { | |
| return nil, io.ErrUnexpectedEOF | |
| } else if err != nil { | |
| return nil, err | |
| } | |
| sig, ok := p.(*packet.Signature) | |
| if !ok { | |
| return nil, errors.StructuralError("user ID packet not followed by self-signature") | |
| } | |
| if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId { | |
| if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil { | |
| return nil, errors.StructuralError("user ID self-signature invalid: " + err.Error()) | |
| } | |
| current.SelfSignature = sig | |
| break | |
| } | |
| current.Signatures = append(current.Signatures, sig) | |
| } | |
| case *packet.Signature: | |
| if pkt.SigType == packet.SigTypeKeyRevocation { | |
| revocations = append(revocations, pkt) | |
| } else if pkt.SigType == packet.SigTypeDirectSignature { | |
| // TODO: RFC4880 5.2.1 permits signatures | |
| // directly on keys (eg. to bind additional | |
| // revocation keys). | |
| } else if current == nil { | |
| return nil, errors.StructuralError("signature packet found before user id packet") | |
| } else { | |
| current.Signatures = append(current.Signatures, pkt) | |
| } | |
| case *packet.PrivateKey: | |
| if pkt.IsSubkey == false { | |
| packets.Unread(p) | |
| break EachPacket | |
| } | |
| err = addSubkey(e, packets, &pkt.PublicKey, pkt) | |
| if err != nil { | |
| return nil, err | |
| } | |
| case *packet.PublicKey: | |
| if pkt.IsSubkey == false { | |
| packets.Unread(p) | |
| break EachPacket | |
| } | |
| err = addSubkey(e, packets, pkt, nil) | |
| if err != nil { | |
| return nil, err | |
| } | |
| default: | |
| // we ignore unknown packets | |
| } | |
| } | |
| if len(e.Identities) == 0 { | |
| return nil, errors.StructuralError("entity without any identities") | |
| } | |
| for _, revocation := range revocations { | |
| err = e.PrimaryKey.VerifyRevocationSignature(revocation) | |
| if err == nil { | |
| e.Revocations = append(e.Revocations, revocation) | |
| } else { | |
| // TODO: RFC 4880 5.2.3.15 defines revocation keys. | |
| return nil, errors.StructuralError("revocation signature signed by alternate key") | |
| } | |
| } | |
| return e, nil | |
| } | |
| func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error { | |
| var subKey Subkey | |
| subKey.PublicKey = pub | |
| subKey.PrivateKey = priv | |
| p, err := packets.Next() | |
| if err == io.EOF { | |
| return io.ErrUnexpectedEOF | |
| } | |
| if err != nil { | |
| return errors.StructuralError("subkey signature invalid: " + err.Error()) | |
| } | |
| var ok bool | |
| subKey.Sig, ok = p.(*packet.Signature) | |
| if !ok { | |
| return errors.StructuralError("subkey packet not followed by signature") | |
| } | |
| if subKey.Sig.SigType != packet.SigTypeSubkeyBinding && subKey.Sig.SigType != packet.SigTypeSubkeyRevocation { | |
| return errors.StructuralError("subkey signature with wrong type") | |
| } | |
| err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, subKey.Sig) | |
| if err != nil { | |
| return errors.StructuralError("subkey signature invalid: " + err.Error()) | |
| } | |
| e.Subkeys = append(e.Subkeys, subKey) | |
| return nil | |
| } | |
| const defaultRSAKeyBits = 2048 | |
| // NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a | |
| // single identity composed of the given full name, comment and email, any of | |
| // which may be empty but must not contain any of "()<>\x00". | |
| // If config is nil, sensible defaults will be used. | |
| func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) { | |
| currentTime := config.Now() | |
| uid := packet.NewUserId(name, comment, email) | |
| if uid == nil { | |
| return nil, errors.InvalidArgumentError("user id field contained invalid characters") | |
| } | |
| signingPriv, err := rsa.GenerateKey(config.Random(), defaultRSAKeyBits) | |
| if err != nil { | |
| return nil, err | |
| } | |
| encryptingPriv, err := rsa.GenerateKey(config.Random(), defaultRSAKeyBits) | |
| if err != nil { | |
| return nil, err | |
| } | |
| e := &Entity{ | |
| PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey), | |
| PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv), | |
| Identities: make(map[string]*Identity), | |
| } | |
| isPrimaryId := true | |
| e.Identities[uid.Id] = &Identity{ | |
| Name: uid.Name, | |
| UserId: uid, | |
| SelfSignature: &packet.Signature{ | |
| CreationTime: currentTime, | |
| SigType: packet.SigTypePositiveCert, | |
| PubKeyAlgo: packet.PubKeyAlgoRSA, | |
| Hash: config.Hash(), | |
| IsPrimaryId: &isPrimaryId, | |
| FlagsValid: true, | |
| FlagSign: true, | |
| FlagCertify: true, | |
| IssuerKeyId: &e.PrimaryKey.KeyId, | |
| }, | |
| } | |
| e.Subkeys = make([]Subkey, 1) | |
| e.Subkeys[0] = Subkey{ | |
| PublicKey: packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey), | |
| PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv), | |
| Sig: &packet.Signature{ | |
| CreationTime: currentTime, | |
| SigType: packet.SigTypeSubkeyBinding, | |
| PubKeyAlgo: packet.PubKeyAlgoRSA, | |
| Hash: config.Hash(), | |
| FlagsValid: true, | |
| FlagEncryptStorage: true, | |
| FlagEncryptCommunications: true, | |
| IssuerKeyId: &e.PrimaryKey.KeyId, | |
| }, | |
| } | |
| e.Subkeys[0].PublicKey.IsSubkey = true | |
| e.Subkeys[0].PrivateKey.IsSubkey = true | |
| return e, nil | |
| } | |
| // SerializePrivate serializes an Entity, including private key material, to | |
| // the given Writer. For now, it must only be used on an Entity returned from | |
| // NewEntity. | |
| // If config is nil, sensible defaults will be used. | |
| func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) { | |
| err = e.PrivateKey.Serialize(w) | |
| if err != nil { | |
| return | |
| } | |
| for _, ident := range e.Identities { | |
| err = ident.UserId.Serialize(w) | |
| if err != nil { | |
| return | |
| } | |
| err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config) | |
| if err != nil { | |
| return | |
| } | |
| err = ident.SelfSignature.Serialize(w) | |
| if err != nil { | |
| return | |
| } | |
| } | |
| for _, subkey := range e.Subkeys { | |
| err = subkey.PrivateKey.Serialize(w) | |
| if err != nil { | |
| return | |
| } | |
| err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config) | |
| if err != nil { | |
| return | |
| } | |
| err = subkey.Sig.Serialize(w) | |
| if err != nil { | |
| return | |
| } | |
| } | |
| return nil | |
| } | |
| // Serialize writes the public part of the given Entity to w. (No private | |
| // key material will be output). | |
| func (e *Entity) Serialize(w io.Writer) error { | |
| err := e.PrimaryKey.Serialize(w) | |
| if err != nil { | |
| return err | |
| } | |
| for _, ident := range e.Identities { | |
| err = ident.UserId.Serialize(w) | |
| if err != nil { | |
| return err | |
| } | |
| err = ident.SelfSignature.Serialize(w) | |
| if err != nil { | |
| return err | |
| } | |
| for _, sig := range ident.Signatures { | |
| err = sig.Serialize(w) | |
| if err != nil { | |
| return err | |
| } | |
| } | |
| } | |
| for _, subkey := range e.Subkeys { | |
| err = subkey.PublicKey.Serialize(w) | |
| if err != nil { | |
| return err | |
| } | |
| err = subkey.Sig.Serialize(w) | |
| if err != nil { | |
| return err | |
| } | |
| } | |
| return nil | |
| } | |
| // SignIdentity adds a signature to e, from signer, attesting that identity is | |
| // associated with e. The provided identity must already be an element of | |
| // e.Identities and the private key of signer must have been decrypted if | |
| // necessary. | |
| // If config is nil, sensible defaults will be used. | |
| func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error { | |
| if signer.PrivateKey == nil { | |
| return errors.InvalidArgumentError("signing Entity must have a private key") | |
| } | |
| if signer.PrivateKey.Encrypted { | |
| return errors.InvalidArgumentError("signing Entity's private key must be decrypted") | |
| } | |
| ident, ok := e.Identities[identity] | |
| if !ok { | |
| return errors.InvalidArgumentError("given identity string not found in Entity") | |
| } | |
| sig := &packet.Signature{ | |
| SigType: packet.SigTypeGenericCert, | |
| PubKeyAlgo: signer.PrivateKey.PubKeyAlgo, | |
| Hash: config.Hash(), | |
| CreationTime: config.Now(), | |
| IssuerKeyId: &signer.PrivateKey.KeyId, | |
| } | |
| if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil { | |
| return err | |
| } | |
| ident.Signatures = append(ident.Signatures, sig) | |
| return nil | |
| } |