Skip to content
Permalink
41d8e61a6b
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
1109 lines (967 sloc) 40.6 KB
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/cpu"
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// defined constants
const (
// G status
//
// Beyond indicating the general state of a G, the G status
// acts like a lock on the goroutine's stack (and hence its
// ability to execute user code).
//
// If you add to this list, add to the list
// of "okay during garbage collection" status
// in mgcmark.go too.
//
// TODO(austin): The _Gscan bit could be much lighter-weight.
// For example, we could choose not to run _Gscanrunnable
// goroutines found in the run queue, rather than CAS-looping
// until they become _Grunnable. And transitions like
// _Gscanwaiting -> _Gscanrunnable are actually okay because
// they don't affect stack ownership.
// _Gidle means this goroutine was just allocated and has not
// yet been initialized.
_Gidle = iota // 0
// _Grunnable means this goroutine is on a run queue. It is
// not currently executing user code. The stack is not owned.
_Grunnable // 1
// _Grunning means this goroutine may execute user code. The
// stack is owned by this goroutine. It is not on a run queue.
// It is assigned an M and a P (g.m and g.m.p are valid).
_Grunning // 2
// _Gsyscall means this goroutine is executing a system call.
// It is not executing user code. The stack is owned by this
// goroutine. It is not on a run queue. It is assigned an M.
_Gsyscall // 3
// _Gwaiting means this goroutine is blocked in the runtime.
// It is not executing user code. It is not on a run queue,
// but should be recorded somewhere (e.g., a channel wait
// queue) so it can be ready()d when necessary. The stack is
// not owned *except* that a channel operation may read or
// write parts of the stack under the appropriate channel
// lock. Otherwise, it is not safe to access the stack after a
// goroutine enters _Gwaiting (e.g., it may get moved).
_Gwaiting // 4
// _Gmoribund_unused is currently unused, but hardcoded in gdb
// scripts.
_Gmoribund_unused // 5
// _Gdead means this goroutine is currently unused. It may be
// just exited, on a free list, or just being initialized. It
// is not executing user code. It may or may not have a stack
// allocated. The G and its stack (if any) are owned by the M
// that is exiting the G or that obtained the G from the free
// list.
_Gdead // 6
// _Genqueue_unused is currently unused.
_Genqueue_unused // 7
// _Gcopystack means this goroutine's stack is being moved. It
// is not executing user code and is not on a run queue. The
// stack is owned by the goroutine that put it in _Gcopystack.
_Gcopystack // 8
// _Gpreempted means this goroutine stopped itself for a
// suspendG preemption. It is like _Gwaiting, but nothing is
// yet responsible for ready()ing it. Some suspendG must CAS
// the status to _Gwaiting to take responsibility for
// ready()ing this G.
_Gpreempted // 9
// _Gscan combined with one of the above states other than
// _Grunning indicates that GC is scanning the stack. The
// goroutine is not executing user code and the stack is owned
// by the goroutine that set the _Gscan bit.
//
// _Gscanrunning is different: it is used to briefly block
// state transitions while GC signals the G to scan its own
// stack. This is otherwise like _Grunning.
//
// atomicstatus&~Gscan gives the state the goroutine will
// return to when the scan completes.
_Gscan = 0x1000
_Gscanrunnable = _Gscan + _Grunnable // 0x1001
_Gscanrunning = _Gscan + _Grunning // 0x1002
_Gscansyscall = _Gscan + _Gsyscall // 0x1003
_Gscanwaiting = _Gscan + _Gwaiting // 0x1004
_Gscanpreempted = _Gscan + _Gpreempted // 0x1009
)
const (
// P status
// _Pidle means a P is not being used to run user code or the
// scheduler. Typically, it's on the idle P list and available
// to the scheduler, but it may just be transitioning between
// other states.
//
// The P is owned by the idle list or by whatever is
// transitioning its state. Its run queue is empty.
_Pidle = iota
// _Prunning means a P is owned by an M and is being used to
// run user code or the scheduler. Only the M that owns this P
// is allowed to change the P's status from _Prunning. The M
// may transition the P to _Pidle (if it has no more work to
// do), _Psyscall (when entering a syscall), or _Pgcstop (to
// halt for the GC). The M may also hand ownership of the P
// off directly to another M (e.g., to schedule a locked G).
_Prunning
// _Psyscall means a P is not running user code. It has
// affinity to an M in a syscall but is not owned by it and
// may be stolen by another M. This is similar to _Pidle but
// uses lightweight transitions and maintains M affinity.
//
// Leaving _Psyscall must be done with a CAS, either to steal
// or retake the P. Note that there's an ABA hazard: even if
// an M successfully CASes its original P back to _Prunning
// after a syscall, it must understand the P may have been
// used by another M in the interim.
_Psyscall
// _Pgcstop means a P is halted for STW and owned by the M
// that stopped the world. The M that stopped the world
// continues to use its P, even in _Pgcstop. Transitioning
// from _Prunning to _Pgcstop causes an M to release its P and
// park.
//
// The P retains its run queue and startTheWorld will restart
// the scheduler on Ps with non-empty run queues.
_Pgcstop
// _Pdead means a P is no longer used (GOMAXPROCS shrank). We
// reuse Ps if GOMAXPROCS increases. A dead P is mostly
// stripped of its resources, though a few things remain
// (e.g., trace buffers).
_Pdead
)
// Mutual exclusion locks. In the uncontended case,
// as fast as spin locks (just a few user-level instructions),
// but on the contention path they sleep in the kernel.
// A zeroed Mutex is unlocked (no need to initialize each lock).
// Initialization is helpful for static lock ranking, but not required.
type mutex struct {
// Empty struct if lock ranking is disabled, otherwise includes the lock rank
lockRankStruct
// Futex-based impl treats it as uint32 key,
// while sema-based impl as M* waitm.
// Used to be a union, but unions break precise GC.
key uintptr
}
// sleep and wakeup on one-time events.
// before any calls to notesleep or notewakeup,
// must call noteclear to initialize the Note.
// then, exactly one thread can call notesleep
// and exactly one thread can call notewakeup (once).
// once notewakeup has been called, the notesleep
// will return. future notesleep will return immediately.
// subsequent noteclear must be called only after
// previous notesleep has returned, e.g. it's disallowed
// to call noteclear straight after notewakeup.
//
// notetsleep is like notesleep but wakes up after
// a given number of nanoseconds even if the event
// has not yet happened. if a goroutine uses notetsleep to
// wake up early, it must wait to call noteclear until it
// can be sure that no other goroutine is calling
// notewakeup.
//
// notesleep/notetsleep are generally called on g0,
// notetsleepg is similar to notetsleep but is called on user g.
type note struct {
// Futex-based impl treats it as uint32 key,
// while sema-based impl as M* waitm.
// Used to be a union, but unions break precise GC.
key uintptr
}
type funcval struct {
fn uintptr
// variable-size, fn-specific data here
}
type iface struct {
tab *itab
data unsafe.Pointer
}
type eface struct {
_type *_type
data unsafe.Pointer
}
func efaceOf(ep *interface{}) *eface {
return (*eface)(unsafe.Pointer(ep))
}
// The guintptr, muintptr, and puintptr are all used to bypass write barriers.
// It is particularly important to avoid write barriers when the current P has
// been released, because the GC thinks the world is stopped, and an
// unexpected write barrier would not be synchronized with the GC,
// which can lead to a half-executed write barrier that has marked the object
// but not queued it. If the GC skips the object and completes before the
// queuing can occur, it will incorrectly free the object.
//
// We tried using special assignment functions invoked only when not
// holding a running P, but then some updates to a particular memory
// word went through write barriers and some did not. This breaks the
// write barrier shadow checking mode, and it is also scary: better to have
// a word that is completely ignored by the GC than to have one for which
// only a few updates are ignored.
//
// Gs and Ps are always reachable via true pointers in the
// allgs and allp lists or (during allocation before they reach those lists)
// from stack variables.
//
// Ms are always reachable via true pointers either from allm or
// freem. Unlike Gs and Ps we do free Ms, so it's important that
// nothing ever hold an muintptr across a safe point.
// A guintptr holds a goroutine pointer, but typed as a uintptr
// to bypass write barriers. It is used in the Gobuf goroutine state
// and in scheduling lists that are manipulated without a P.
//
// The Gobuf.g goroutine pointer is almost always updated by assembly code.
// In one of the few places it is updated by Go code - func save - it must be
// treated as a uintptr to avoid a write barrier being emitted at a bad time.
// Instead of figuring out how to emit the write barriers missing in the
// assembly manipulation, we change the type of the field to uintptr,
// so that it does not require write barriers at all.
//
// Goroutine structs are published in the allg list and never freed.
// That will keep the goroutine structs from being collected.
// There is never a time that Gobuf.g's contain the only references
// to a goroutine: the publishing of the goroutine in allg comes first.
// Goroutine pointers are also kept in non-GC-visible places like TLS,
// so I can't see them ever moving. If we did want to start moving data
// in the GC, we'd need to allocate the goroutine structs from an
// alternate arena. Using guintptr doesn't make that problem any worse.
type guintptr uintptr
//go:nosplit
func (gp guintptr) ptr() *g { return (*g)(unsafe.Pointer(gp)) }
//go:nosplit
func (gp *guintptr) set(g *g) { *gp = guintptr(unsafe.Pointer(g)) }
//go:nosplit
func (gp *guintptr) cas(old, new guintptr) bool {
return atomic.Casuintptr((*uintptr)(unsafe.Pointer(gp)), uintptr(old), uintptr(new))
}
// setGNoWB performs *gp = new without a write barrier.
// For times when it's impractical to use a guintptr.
//go:nosplit
//go:nowritebarrier
func setGNoWB(gp **g, new *g) {
(*guintptr)(unsafe.Pointer(gp)).set(new)
}
type puintptr uintptr
//go:nosplit
func (pp puintptr) ptr() *p { return (*p)(unsafe.Pointer(pp)) }
//go:nosplit
func (pp *puintptr) set(p *p) { *pp = puintptr(unsafe.Pointer(p)) }
// muintptr is a *m that is not tracked by the garbage collector.
//
// Because we do free Ms, there are some additional constrains on
// muintptrs:
//
// 1. Never hold an muintptr locally across a safe point.
//
// 2. Any muintptr in the heap must be owned by the M itself so it can
// ensure it is not in use when the last true *m is released.
type muintptr uintptr
//go:nosplit
func (mp muintptr) ptr() *m { return (*m)(unsafe.Pointer(mp)) }
//go:nosplit
func (mp *muintptr) set(m *m) { *mp = muintptr(unsafe.Pointer(m)) }
// setMNoWB performs *mp = new without a write barrier.
// For times when it's impractical to use an muintptr.
//go:nosplit
//go:nowritebarrier
func setMNoWB(mp **m, new *m) {
(*muintptr)(unsafe.Pointer(mp)).set(new)
}
type gobuf struct {
// The offsets of sp, pc, and g are known to (hard-coded in) libmach.
//
// ctxt is unusual with respect to GC: it may be a
// heap-allocated funcval, so GC needs to track it, but it
// needs to be set and cleared from assembly, where it's
// difficult to have write barriers. However, ctxt is really a
// saved, live register, and we only ever exchange it between
// the real register and the gobuf. Hence, we treat it as a
// root during stack scanning, which means assembly that saves
// and restores it doesn't need write barriers. It's still
// typed as a pointer so that any other writes from Go get
// write barriers.
sp uintptr
pc uintptr
g guintptr
ctxt unsafe.Pointer
ret sys.Uintreg
lr uintptr
bp uintptr // for framepointer-enabled architectures
}
// sudog represents a g in a wait list, such as for sending/receiving
// on a channel.
//
// sudog is necessary because the g ↔ synchronization object relation
// is many-to-many. A g can be on many wait lists, so there may be
// many sudogs for one g; and many gs may be waiting on the same
// synchronization object, so there may be many sudogs for one object.
//
// sudogs are allocated from a special pool. Use acquireSudog and
// releaseSudog to allocate and free them.
type sudog struct {
// The following fields are protected by the hchan.lock of the
// channel this sudog is blocking on. shrinkstack depends on
// this for sudogs involved in channel ops.
g *g
next *sudog
prev *sudog
elem unsafe.Pointer // data element (may point to stack)
// The following fields are never accessed concurrently.
// For channels, waitlink is only accessed by g.
// For semaphores, all fields (including the ones above)
// are only accessed when holding a semaRoot lock.
acquiretime int64
releasetime int64
ticket uint32
// isSelect indicates g is participating in a select, so
// g.selectDone must be CAS'd to win the wake-up race.
isSelect bool
// success indicates whether communication over channel c
// succeeded. It is true if the goroutine was awoken because a
// value was delivered over channel c, and false if awoken
// because c was closed.
success bool
parent *sudog // semaRoot binary tree
waitlink *sudog // g.waiting list or semaRoot
waittail *sudog // semaRoot
c *hchan // channel
}
type libcall struct {
fn uintptr
n uintptr // number of parameters
args uintptr // parameters
r1 uintptr // return values
r2 uintptr
err uintptr // error number
}
// Stack describes a Go execution stack.
// The bounds of the stack are exactly [lo, hi),
// with no implicit data structures on either side.
type stack struct {
lo uintptr
hi uintptr
}
// heldLockInfo gives info on a held lock and the rank of that lock
type heldLockInfo struct {
lockAddr uintptr
rank lockRank
}
type g struct {
// Stack parameters.
// stack describes the actual stack memory: [stack.lo, stack.hi).
// stackguard0 is the stack pointer compared in the Go stack growth prologue.
// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
// stackguard1 is the stack pointer compared in the C stack growth prologue.
// It is stack.lo+StackGuard on g0 and gsignal stacks.
// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
stack stack // offset known to runtime/cgo
stackguard0 uintptr // offset known to liblink
stackguard1 uintptr // offset known to liblink
_panic *_panic // innermost panic - offset known to liblink
_defer *_defer // innermost defer
m *m // current m; offset known to arm liblink
sched gobuf
syscallsp uintptr // if status==Gsyscall, syscallsp = sched.sp to use during gc
syscallpc uintptr // if status==Gsyscall, syscallpc = sched.pc to use during gc
stktopsp uintptr // expected sp at top of stack, to check in traceback
param unsafe.Pointer // passed parameter on wakeup
atomicstatus uint32
stackLock uint32 // sigprof/scang lock; TODO: fold in to atomicstatus
goid int64
schedlink guintptr
waitsince int64 // approx time when the g become blocked
waitreason waitReason // if status==Gwaiting
preempt bool // preemption signal, duplicates stackguard0 = stackpreempt
preemptStop bool // transition to _Gpreempted on preemption; otherwise, just deschedule
preemptShrink bool // shrink stack at synchronous safe point
// asyncSafePoint is set if g is stopped at an asynchronous
// safe point. This means there are frames on the stack
// without precise pointer information.
asyncSafePoint bool
paniconfault bool // panic (instead of crash) on unexpected fault address
gcscandone bool // g has scanned stack; protected by _Gscan bit in status
throwsplit bool // must not split stack
// activeStackChans indicates that there are unlocked channels
// pointing into this goroutine's stack. If true, stack
// copying needs to acquire channel locks to protect these
// areas of the stack.
activeStackChans bool
// parkingOnChan indicates that the goroutine is about to
// park on a chansend or chanrecv. Used to signal an unsafe point
// for stack shrinking. It's a boolean value, but is updated atomically.
parkingOnChan uint8
raceignore int8 // ignore race detection events
sysblocktraced bool // StartTrace has emitted EvGoInSyscall about this goroutine
sysexitticks int64 // cputicks when syscall has returned (for tracing)
traceseq uint64 // trace event sequencer
tracelastp puintptr // last P emitted an event for this goroutine
lockedm muintptr
sig uint32
writebuf []byte
sigcode0 uintptr
sigcode1 uintptr
sigpc uintptr
gopc uintptr // pc of go statement that created this goroutine
ancestors *[]ancestorInfo // ancestor information goroutine(s) that created this goroutine (only used if debug.tracebackancestors)
startpc uintptr // pc of goroutine function
racectx uintptr
waiting *sudog // sudog structures this g is waiting on (that have a valid elem ptr); in lock order
cgoCtxt []uintptr // cgo traceback context
labels unsafe.Pointer // profiler labels
timer *timer // cached timer for time.Sleep
selectDone uint32 // are we participating in a select and did someone win the race?
// Per-G GC state
// gcAssistBytes is this G's GC assist credit in terms of
// bytes allocated. If this is positive, then the G has credit
// to allocate gcAssistBytes bytes without assisting. If this
// is negative, then the G must correct this by performing
// scan work. We track this in bytes to make it fast to update
// and check for debt in the malloc hot path. The assist ratio
// determines how this corresponds to scan work debt.
gcAssistBytes int64
}
type m struct {
g0 *g // goroutine with scheduling stack
morebuf gobuf // gobuf arg to morestack
divmod uint32 // div/mod denominator for arm - known to liblink
// Fields not known to debuggers.
procid uint64 // for debuggers, but offset not hard-coded
gsignal *g // signal-handling g
goSigStack gsignalStack // Go-allocated signal handling stack
sigmask sigset // storage for saved signal mask
tls [6]uintptr // thread-local storage (for x86 extern register)
mstartfn func()
curg *g // current running goroutine
caughtsig guintptr // goroutine running during fatal signal
p puintptr // attached p for executing go code (nil if not executing go code)
nextp puintptr
oldp puintptr // the p that was attached before executing a syscall
id int64
mallocing int32
throwing int32
preemptoff string // if != "", keep curg running on this m
locks int32
dying int32
profilehz int32
spinning bool // m is out of work and is actively looking for work
blocked bool // m is blocked on a note
newSigstack bool // minit on C thread called sigaltstack
printlock int8
incgo bool // m is executing a cgo call
freeWait uint32 // if == 0, safe to free g0 and delete m (atomic)
fastrand [2]uint32
needextram bool
traceback uint8
ncgocall uint64 // number of cgo calls in total
ncgo int32 // number of cgo calls currently in progress
cgoCallersUse uint32 // if non-zero, cgoCallers in use temporarily
cgoCallers *cgoCallers // cgo traceback if crashing in cgo call
doesPark bool // non-P running threads: sysmon and newmHandoff never use .park
park note
alllink *m // on allm
schedlink muintptr
lockedg guintptr
createstack [32]uintptr // stack that created this thread.
lockedExt uint32 // tracking for external LockOSThread
lockedInt uint32 // tracking for internal lockOSThread
nextwaitm muintptr // next m waiting for lock
waitunlockf func(*g, unsafe.Pointer) bool
waitlock unsafe.Pointer
waittraceev byte
waittraceskip int
startingtrace bool
syscalltick uint32
freelink *m // on sched.freem
// mFixup is used to synchronize OS related m state (credentials etc)
// use mutex to access.
mFixup struct {
lock mutex
fn func(bool) bool
}
// these are here because they are too large to be on the stack
// of low-level NOSPLIT functions.
libcall libcall
libcallpc uintptr // for cpu profiler
libcallsp uintptr
libcallg guintptr
syscall libcall // stores syscall parameters on windows
vdsoSP uintptr // SP for traceback while in VDSO call (0 if not in call)
vdsoPC uintptr // PC for traceback while in VDSO call
// preemptGen counts the number of completed preemption
// signals. This is used to detect when a preemption is
// requested, but fails. Accessed atomically.
preemptGen uint32
// Whether this is a pending preemption signal on this M.
// Accessed atomically.
signalPending uint32
dlogPerM
mOS
// Up to 10 locks held by this m, maintained by the lock ranking code.
locksHeldLen int
locksHeld [10]heldLockInfo
}
type p struct {
id int32
status uint32 // one of pidle/prunning/...
link puintptr
schedtick uint32 // incremented on every scheduler call
syscalltick uint32 // incremented on every system call
sysmontick sysmontick // last tick observed by sysmon
m muintptr // back-link to associated m (nil if idle)
mcache *mcache
pcache pageCache
raceprocctx uintptr
deferpool [5][]*_defer // pool of available defer structs of different sizes (see panic.go)
deferpoolbuf [5][32]*_defer
// Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
goidcache uint64
goidcacheend uint64
// Queue of runnable goroutines. Accessed without lock.
runqhead uint32
runqtail uint32
runq [256]guintptr
// runnext, if non-nil, is a runnable G that was ready'd by
// the current G and should be run next instead of what's in
// runq if there's time remaining in the running G's time
// slice. It will inherit the time left in the current time
// slice. If a set of goroutines is locked in a
// communicate-and-wait pattern, this schedules that set as a
// unit and eliminates the (potentially large) scheduling
// latency that otherwise arises from adding the ready'd
// goroutines to the end of the run queue.
runnext guintptr
// Available G's (status == Gdead)
gFree struct {
gList
n int32
}
sudogcache []*sudog
sudogbuf [128]*sudog
// Cache of mspan objects from the heap.
mspancache struct {
// We need an explicit length here because this field is used
// in allocation codepaths where write barriers are not allowed,
// and eliminating the write barrier/keeping it eliminated from
// slice updates is tricky, moreso than just managing the length
// ourselves.
len int
buf [128]*mspan
}
tracebuf traceBufPtr
// traceSweep indicates the sweep events should be traced.
// This is used to defer the sweep start event until a span
// has actually been swept.
traceSweep bool
// traceSwept and traceReclaimed track the number of bytes
// swept and reclaimed by sweeping in the current sweep loop.
traceSwept, traceReclaimed uintptr
palloc persistentAlloc // per-P to avoid mutex
_ uint32 // Alignment for atomic fields below
// The when field of the first entry on the timer heap.
// This is updated using atomic functions.
// This is 0 if the timer heap is empty.
timer0When uint64
// The earliest known nextwhen field of a timer with
// timerModifiedEarlier status. Because the timer may have been
// modified again, there need not be any timer with this value.
// This is updated using atomic functions.
// This is 0 if the value is unknown.
timerModifiedEarliest uint64
// Per-P GC state
gcAssistTime int64 // Nanoseconds in assistAlloc
gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker (atomic)
// gcMarkWorkerMode is the mode for the next mark worker to run in.
// That is, this is used to communicate with the worker goroutine
// selected for immediate execution by
// gcController.findRunnableGCWorker. When scheduling other goroutines,
// this field must be set to gcMarkWorkerNotWorker.
gcMarkWorkerMode gcMarkWorkerMode
// gcMarkWorkerStartTime is the nanotime() at which the most recent
// mark worker started.
gcMarkWorkerStartTime int64
// gcw is this P's GC work buffer cache. The work buffer is
// filled by write barriers, drained by mutator assists, and
// disposed on certain GC state transitions.
gcw gcWork
// wbBuf is this P's GC write barrier buffer.
//
// TODO: Consider caching this in the running G.
wbBuf wbBuf
runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point
// statsSeq is a counter indicating whether this P is currently
// writing any stats. Its value is even when not, odd when it is.
statsSeq uint32
// Lock for timers. We normally access the timers while running
// on this P, but the scheduler can also do it from a different P.
timersLock mutex
// Actions to take at some time. This is used to implement the
// standard library's time package.
// Must hold timersLock to access.
timers []*timer
// Number of timers in P's heap.
// Modified using atomic instructions.
numTimers uint32
// Number of timerModifiedEarlier timers on P's heap.
// This should only be modified while holding timersLock,
// or while the timer status is in a transient state
// such as timerModifying.
adjustTimers uint32
// Number of timerDeleted timers in P's heap.
// Modified using atomic instructions.
deletedTimers uint32
// Race context used while executing timer functions.
timerRaceCtx uintptr
// preempt is set to indicate that this P should be enter the
// scheduler ASAP (regardless of what G is running on it).
preempt bool
pad cpu.CacheLinePad
}
type schedt struct {
// accessed atomically. keep at top to ensure alignment on 32-bit systems.
goidgen uint64
lastpoll uint64 // time of last network poll, 0 if currently polling
pollUntil uint64 // time to which current poll is sleeping
lock mutex
// When increasing nmidle, nmidlelocked, nmsys, or nmfreed, be
// sure to call checkdead().
midle muintptr // idle m's waiting for work
nmidle int32 // number of idle m's waiting for work
nmidlelocked int32 // number of locked m's waiting for work
mnext int64 // number of m's that have been created and next M ID
maxmcount int32 // maximum number of m's allowed (or die)
nmsys int32 // number of system m's not counted for deadlock
nmfreed int64 // cumulative number of freed m's
ngsys uint32 // number of system goroutines; updated atomically
pidle puintptr // idle p's
npidle uint32
nmspinning uint32 // See "Worker thread parking/unparking" comment in proc.go.
// Global runnable queue.
runq gQueue
runqsize int32
// disable controls selective disabling of the scheduler.
//
// Use schedEnableUser to control this.
//
// disable is protected by sched.lock.
disable struct {
// user disables scheduling of user goroutines.
user bool
runnable gQueue // pending runnable Gs
n int32 // length of runnable
}
// Global cache of dead G's.
gFree struct {
lock mutex
stack gList // Gs with stacks
noStack gList // Gs without stacks
n int32
}
// Central cache of sudog structs.
sudoglock mutex
sudogcache *sudog
// Central pool of available defer structs of different sizes.
deferlock mutex
deferpool [5]*_defer
// freem is the list of m's waiting to be freed when their
// m.exited is set. Linked through m.freelink.
freem *m
gcwaiting uint32 // gc is waiting to run
stopwait int32
stopnote note
sysmonwait uint32
sysmonnote note
// While true, sysmon not ready for mFixup calls.
// Accessed atomically.
sysmonStarting uint32
// safepointFn should be called on each P at the next GC
// safepoint if p.runSafePointFn is set.
safePointFn func(*p)
safePointWait int32
safePointNote note
profilehz int32 // cpu profiling rate
procresizetime int64 // nanotime() of last change to gomaxprocs
totaltime int64 // ∫gomaxprocs dt up to procresizetime
// sysmonlock protects sysmon's actions on the runtime.
//
// Acquire and hold this mutex to block sysmon from interacting
// with the rest of the runtime.
sysmonlock mutex
}
// Values for the flags field of a sigTabT.
const (
_SigNotify = 1 << iota // let signal.Notify have signal, even if from kernel
_SigKill // if signal.Notify doesn't take it, exit quietly
_SigThrow // if signal.Notify doesn't take it, exit loudly
_SigPanic // if the signal is from the kernel, panic
_SigDefault // if the signal isn't explicitly requested, don't monitor it
_SigGoExit // cause all runtime procs to exit (only used on Plan 9).
_SigSetStack // add SA_ONSTACK to libc handler
_SigUnblock // always unblock; see blockableSig
_SigIgn // _SIG_DFL action is to ignore the signal
)
// Layout of in-memory per-function information prepared by linker
// See https://golang.org/s/go12symtab.
// Keep in sync with linker (../cmd/link/internal/ld/pcln.go:/pclntab)
// and with package debug/gosym and with symtab.go in package runtime.
type _func struct {
entry uintptr // start pc
nameoff int32 // function name
args int32 // in/out args size
deferreturn uint32 // offset of start of a deferreturn call instruction from entry, if any.
pcsp uint32
pcfile uint32
pcln uint32
npcdata uint32
cuOffset uint32 // runtime.cutab offset of this function's CU
funcID funcID // set for certain special runtime functions
_ [2]byte // pad
nfuncdata uint8 // must be last
}
// Pseudo-Func that is returned for PCs that occur in inlined code.
// A *Func can be either a *_func or a *funcinl, and they are distinguished
// by the first uintptr.
type funcinl struct {
zero uintptr // set to 0 to distinguish from _func
entry uintptr // entry of the real (the "outermost") frame.
name string
file string
line int
}
// layout of Itab known to compilers
// allocated in non-garbage-collected memory
// Needs to be in sync with
// ../cmd/compile/internal/gc/reflect.go:/^func.dumptabs.
type itab struct {
inter *interfacetype
_type *_type
hash uint32 // copy of _type.hash. Used for type switches.
_ [4]byte
fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter.
}
// Lock-free stack node.
// Also known to export_test.go.
type lfnode struct {
next uint64
pushcnt uintptr
}
type forcegcstate struct {
lock mutex
g *g
idle uint32
}
// extendRandom extends the random numbers in r[:n] to the whole slice r.
// Treats n<0 as n==0.
func extendRandom(r []byte, n int) {
if n < 0 {
n = 0
}
for n < len(r) {
// Extend random bits using hash function & time seed
w := n
if w > 16 {
w = 16
}
h := memhash(unsafe.Pointer(&r[n-w]), uintptr(nanotime()), uintptr(w))
for i := 0; i < sys.PtrSize && n < len(r); i++ {
r[n] = byte(h)
n++
h >>= 8
}
}
}
// A _defer holds an entry on the list of deferred calls.
// If you add a field here, add code to clear it in freedefer and deferProcStack
// This struct must match the code in cmd/compile/internal/gc/reflect.go:deferstruct
// and cmd/compile/internal/gc/ssa.go:(*state).call.
// Some defers will be allocated on the stack and some on the heap.
// All defers are logically part of the stack, so write barriers to
// initialize them are not required. All defers must be manually scanned,
// and for heap defers, marked.
type _defer struct {
siz int32 // includes both arguments and results
started bool
heap bool
// openDefer indicates that this _defer is for a frame with open-coded
// defers. We have only one defer record for the entire frame (which may
// currently have 0, 1, or more defers active).
openDefer bool
sp uintptr // sp at time of defer
pc uintptr // pc at time of defer
fn *funcval // can be nil for open-coded defers
_panic *_panic // panic that is running defer
link *_defer
// If openDefer is true, the fields below record values about the stack
// frame and associated function that has the open-coded defer(s). sp
// above will be the sp for the frame, and pc will be address of the
// deferreturn call in the function.
fd unsafe.Pointer // funcdata for the function associated with the frame
varp uintptr // value of varp for the stack frame
// framepc is the current pc associated with the stack frame. Together,
// with sp above (which is the sp associated with the stack frame),
// framepc/sp can be used as pc/sp pair to continue a stack trace via
// gentraceback().
framepc uintptr
}
// A _panic holds information about an active panic.
//
// A _panic value must only ever live on the stack.
//
// The argp and link fields are stack pointers, but don't need special
// handling during stack growth: because they are pointer-typed and
// _panic values only live on the stack, regular stack pointer
// adjustment takes care of them.
type _panic struct {
argp unsafe.Pointer // pointer to arguments of deferred call run during panic; cannot move - known to liblink
arg interface{} // argument to panic
link *_panic // link to earlier panic
pc uintptr // where to return to in runtime if this panic is bypassed
sp unsafe.Pointer // where to return to in runtime if this panic is bypassed
recovered bool // whether this panic is over
aborted bool // the panic was aborted
goexit bool
}
// stack traces
type stkframe struct {
fn funcInfo // function being run
pc uintptr // program counter within fn
continpc uintptr // program counter where execution can continue, or 0 if not
lr uintptr // program counter at caller aka link register
sp uintptr // stack pointer at pc
fp uintptr // stack pointer at caller aka frame pointer
varp uintptr // top of local variables
argp uintptr // pointer to function arguments
arglen uintptr // number of bytes at argp
argmap *bitvector // force use of this argmap
}
// ancestorInfo records details of where a goroutine was started.
type ancestorInfo struct {
pcs []uintptr // pcs from the stack of this goroutine
goid int64 // goroutine id of this goroutine; original goroutine possibly dead
gopc uintptr // pc of go statement that created this goroutine
}
const (
_TraceRuntimeFrames = 1 << iota // include frames for internal runtime functions.
_TraceTrap // the initial PC, SP are from a trap, not a return PC from a call
_TraceJumpStack // if traceback is on a systemstack, resume trace at g that called into it
)
// The maximum number of frames we print for a traceback
const _TracebackMaxFrames = 100
// A waitReason explains why a goroutine has been stopped.
// See gopark. Do not re-use waitReasons, add new ones.
type waitReason uint8
const (
waitReasonZero waitReason = iota // ""
waitReasonGCAssistMarking // "GC assist marking"
waitReasonIOWait // "IO wait"
waitReasonChanReceiveNilChan // "chan receive (nil chan)"
waitReasonChanSendNilChan // "chan send (nil chan)"
waitReasonDumpingHeap // "dumping heap"
waitReasonGarbageCollection // "garbage collection"
waitReasonGarbageCollectionScan // "garbage collection scan"
waitReasonPanicWait // "panicwait"
waitReasonSelect // "select"
waitReasonSelectNoCases // "select (no cases)"
waitReasonGCAssistWait // "GC assist wait"
waitReasonGCSweepWait // "GC sweep wait"
waitReasonGCScavengeWait // "GC scavenge wait"
waitReasonChanReceive // "chan receive"
waitReasonChanSend // "chan send"
waitReasonFinalizerWait // "finalizer wait"
waitReasonForceGCIdle // "force gc (idle)"
waitReasonSemacquire // "semacquire"
waitReasonSleep // "sleep"
waitReasonSyncCondWait // "sync.Cond.Wait"
waitReasonTimerGoroutineIdle // "timer goroutine (idle)"
waitReasonTraceReaderBlocked // "trace reader (blocked)"
waitReasonWaitForGCCycle // "wait for GC cycle"
waitReasonGCWorkerIdle // "GC worker (idle)"
waitReasonPreempted // "preempted"
waitReasonDebugCall // "debug call"
)
var waitReasonStrings = [...]string{
waitReasonZero: "",
waitReasonGCAssistMarking: "GC assist marking",
waitReasonIOWait: "IO wait",
waitReasonChanReceiveNilChan: "chan receive (nil chan)",
waitReasonChanSendNilChan: "chan send (nil chan)",
waitReasonDumpingHeap: "dumping heap",
waitReasonGarbageCollection: "garbage collection",
waitReasonGarbageCollectionScan: "garbage collection scan",
waitReasonPanicWait: "panicwait",
waitReasonSelect: "select",
waitReasonSelectNoCases: "select (no cases)",
waitReasonGCAssistWait: "GC assist wait",
waitReasonGCSweepWait: "GC sweep wait",
waitReasonGCScavengeWait: "GC scavenge wait",
waitReasonChanReceive: "chan receive",
waitReasonChanSend: "chan send",
waitReasonFinalizerWait: "finalizer wait",
waitReasonForceGCIdle: "force gc (idle)",
waitReasonSemacquire: "semacquire",
waitReasonSleep: "sleep",
waitReasonSyncCondWait: "sync.Cond.Wait",
waitReasonTimerGoroutineIdle: "timer goroutine (idle)",
waitReasonTraceReaderBlocked: "trace reader (blocked)",
waitReasonWaitForGCCycle: "wait for GC cycle",
waitReasonGCWorkerIdle: "GC worker (idle)",
waitReasonPreempted: "preempted",
waitReasonDebugCall: "debug call",
}
func (w waitReason) String() string {
if w < 0 || w >= waitReason(len(waitReasonStrings)) {
return "unknown wait reason"
}
return waitReasonStrings[w]
}
var (
allglen uintptr
allm *m
gomaxprocs int32
ncpu int32
forcegc forcegcstate
sched schedt
newprocs int32
// allpLock protects P-less reads and size changes of allp, idlepMask,
// and timerpMask, and all writes to allp.
allpLock mutex
// len(allp) == gomaxprocs; may change at safe points, otherwise
// immutable.
allp []*p
// Bitmask of Ps in _Pidle list, one bit per P. Reads and writes must
// be atomic. Length may change at safe points.
//
// Each P must update only its own bit. In order to maintain
// consistency, a P going idle must the idle mask simultaneously with
// updates to the idle P list under the sched.lock, otherwise a racing
// pidleget may clear the mask before pidleput sets the mask,
// corrupting the bitmap.
//
// N.B., procresize takes ownership of all Ps in stopTheWorldWithSema.
idlepMask pMask
// Bitmask of Ps that may have a timer, one bit per P. Reads and writes
// must be atomic. Length may change at safe points.
timerpMask pMask
// Pool of GC parked background workers. Entries are type
// *gcBgMarkWorkerNode.
gcBgMarkWorkerPool lfstack
// Total number of gcBgMarkWorker goroutines. Protected by worldsema.
gcBgMarkWorkerCount int32
// Information about what cpu features are available.
// Packages outside the runtime should not use these
// as they are not an external api.
// Set on startup in asm_{386,amd64}.s
processorVersionInfo uint32
isIntel bool
lfenceBeforeRdtsc bool
goarm uint8 // set by cmd/link on arm systems
)
// Set by the linker so the runtime can determine the buildmode.
var (
islibrary bool // -buildmode=c-shared
isarchive bool // -buildmode=c-archive
)
// Must agree with cmd/internal/objabi.Framepointer_enabled.
const framepointer_enabled = GOARCH == "amd64" || GOARCH == "arm64" && (GOOS == "linux" || GOOS == "darwin" || GOOS == "ios")