-
Notifications
You must be signed in to change notification settings - Fork 17.6k
/
stack.go
1335 lines (1217 loc) · 40.1 KB
/
stack.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/cpu"
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
/*
Stack layout parameters.
Included both by runtime (compiled via 6c) and linkers (compiled via gcc).
The per-goroutine g->stackguard is set to point StackGuard bytes
above the bottom of the stack. Each function compares its stack
pointer against g->stackguard to check for overflow. To cut one
instruction from the check sequence for functions with tiny frames,
the stack is allowed to protrude StackSmall bytes below the stack
guard. Functions with large frames don't bother with the check and
always call morestack. The sequences are (for amd64, others are
similar):
guard = g->stackguard
frame = function's stack frame size
argsize = size of function arguments (call + return)
stack frame size <= StackSmall:
CMPQ guard, SP
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size > StackSmall but < StackBig
LEAQ (frame-StackSmall)(SP), R0
CMPQ guard, R0
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size >= StackBig:
MOVQ m->morearg, $((argsize << 32) | frame)
CALL morestack(SB)
The bottom StackGuard - StackSmall bytes are important: there has
to be enough room to execute functions that refuse to check for
stack overflow, either because they need to be adjacent to the
actual caller's frame (deferproc) or because they handle the imminent
stack overflow (morestack).
For example, deferproc might call malloc, which does one of the
above checks (without allocating a full frame), which might trigger
a call to morestack. This sequence needs to fit in the bottom
section of the stack. On amd64, morestack's frame is 40 bytes, and
deferproc's frame is 56 bytes. That fits well within the
StackGuard - StackSmall bytes at the bottom.
The linkers explore all possible call traces involving non-splitting
functions to make sure that this limit cannot be violated.
*/
const (
// StackSystem is a number of additional bytes to add
// to each stack below the usual guard area for OS-specific
// purposes like signal handling. Used on Windows, Plan 9,
// and iOS because they do not use a separate stack.
_StackSystem = sys.GoosWindows*512*sys.PtrSize + sys.GoosPlan9*512 + sys.GoosIos*sys.GoarchArm64*1024
// The minimum size of stack used by Go code
_StackMin = 2048
// The minimum stack size to allocate.
// The hackery here rounds FixedStack0 up to a power of 2.
_FixedStack0 = _StackMin + _StackSystem
_FixedStack1 = _FixedStack0 - 1
_FixedStack2 = _FixedStack1 | (_FixedStack1 >> 1)
_FixedStack3 = _FixedStack2 | (_FixedStack2 >> 2)
_FixedStack4 = _FixedStack3 | (_FixedStack3 >> 4)
_FixedStack5 = _FixedStack4 | (_FixedStack4 >> 8)
_FixedStack6 = _FixedStack5 | (_FixedStack5 >> 16)
_FixedStack = _FixedStack6 + 1
// Functions that need frames bigger than this use an extra
// instruction to do the stack split check, to avoid overflow
// in case SP - framesize wraps below zero.
// This value can be no bigger than the size of the unmapped
// space at zero.
_StackBig = 4096
// The stack guard is a pointer this many bytes above the
// bottom of the stack.
_StackGuard = 928*sys.StackGuardMultiplier + _StackSystem
// After a stack split check the SP is allowed to be this
// many bytes below the stack guard. This saves an instruction
// in the checking sequence for tiny frames.
_StackSmall = 128
// The maximum number of bytes that a chain of NOSPLIT
// functions can use.
_StackLimit = _StackGuard - _StackSystem - _StackSmall
)
const (
// stackDebug == 0: no logging
// == 1: logging of per-stack operations
// == 2: logging of per-frame operations
// == 3: logging of per-word updates
// == 4: logging of per-word reads
stackDebug = 0
stackFromSystem = 0 // allocate stacks from system memory instead of the heap
stackFaultOnFree = 0 // old stacks are mapped noaccess to detect use after free
stackPoisonCopy = 0 // fill stack that should not be accessed with garbage, to detect bad dereferences during copy
stackNoCache = 0 // disable per-P small stack caches
// check the BP links during traceback.
debugCheckBP = false
)
const (
uintptrMask = 1<<(8*sys.PtrSize) - 1
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
stackPreempt = uintptrMask & -1314
// Thread is forking.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
stackFork = uintptrMask & -1234
)
// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
// order = log_2(size/FixedStack)
// There is a free list for each order.
var stackpool [_NumStackOrders]struct {
item stackpoolItem
_ [cpu.CacheLinePadSize - unsafe.Sizeof(stackpoolItem{})%cpu.CacheLinePadSize]byte
}
//go:notinheap
type stackpoolItem struct {
mu mutex
span mSpanList
}
// Global pool of large stack spans.
var stackLarge struct {
lock mutex
free [heapAddrBits - pageShift]mSpanList // free lists by log_2(s.npages)
}
func stackinit() {
if _StackCacheSize&_PageMask != 0 {
throw("cache size must be a multiple of page size")
}
for i := range stackpool {
stackpool[i].item.span.init()
lockInit(&stackpool[i].item.mu, lockRankStackpool)
}
for i := range stackLarge.free {
stackLarge.free[i].init()
lockInit(&stackLarge.lock, lockRankStackLarge)
}
}
// stacklog2 returns ⌊log_2(n)⌋.
func stacklog2(n uintptr) int {
log2 := 0
for n > 1 {
n >>= 1
log2++
}
return log2
}
// Allocates a stack from the free pool. Must be called with
// stackpool[order].item.mu held.
func stackpoolalloc(order uint8) gclinkptr {
list := &stackpool[order].item.span
s := list.first
lockWithRankMayAcquire(&mheap_.lock, lockRankMheap)
if s == nil {
// no free stacks. Allocate another span worth.
s = mheap_.allocManual(_StackCacheSize>>_PageShift, spanAllocStack)
if s == nil {
throw("out of memory")
}
if s.allocCount != 0 {
throw("bad allocCount")
}
if s.manualFreeList.ptr() != nil {
throw("bad manualFreeList")
}
osStackAlloc(s)
s.elemsize = _FixedStack << order
for i := uintptr(0); i < _StackCacheSize; i += s.elemsize {
x := gclinkptr(s.base() + i)
x.ptr().next = s.manualFreeList
s.manualFreeList = x
}
list.insert(s)
}
x := s.manualFreeList
if x.ptr() == nil {
throw("span has no free stacks")
}
s.manualFreeList = x.ptr().next
s.allocCount++
if s.manualFreeList.ptr() == nil {
// all stacks in s are allocated.
list.remove(s)
}
return x
}
// Adds stack x to the free pool. Must be called with stackpool[order].item.mu held.
func stackpoolfree(x gclinkptr, order uint8) {
s := spanOfUnchecked(uintptr(x))
if s.state.get() != mSpanManual {
throw("freeing stack not in a stack span")
}
if s.manualFreeList.ptr() == nil {
// s will now have a free stack
stackpool[order].item.span.insert(s)
}
x.ptr().next = s.manualFreeList
s.manualFreeList = x
s.allocCount--
if gcphase == _GCoff && s.allocCount == 0 {
// Span is completely free. Return it to the heap
// immediately if we're sweeping.
//
// If GC is active, we delay the free until the end of
// GC to avoid the following type of situation:
//
// 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer
// 2) The stack that pointer points to is copied
// 3) The old stack is freed
// 4) The containing span is marked free
// 5) GC attempts to mark the SudoG.elem pointer. The
// marking fails because the pointer looks like a
// pointer into a free span.
//
// By not freeing, we prevent step #4 until GC is done.
stackpool[order].item.span.remove(s)
s.manualFreeList = 0
osStackFree(s)
mheap_.freeManual(s, spanAllocStack)
}
}
// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
//
//go:systemstack
func stackcacherefill(c *mcache, order uint8) {
if stackDebug >= 1 {
print("stackcacherefill order=", order, "\n")
}
// Grab some stacks from the global cache.
// Grab half of the allowed capacity (to prevent thrashing).
var list gclinkptr
var size uintptr
lock(&stackpool[order].item.mu)
for size < _StackCacheSize/2 {
x := stackpoolalloc(order)
x.ptr().next = list
list = x
size += _FixedStack << order
}
unlock(&stackpool[order].item.mu)
c.stackcache[order].list = list
c.stackcache[order].size = size
}
//go:systemstack
func stackcacherelease(c *mcache, order uint8) {
if stackDebug >= 1 {
print("stackcacherelease order=", order, "\n")
}
x := c.stackcache[order].list
size := c.stackcache[order].size
lock(&stackpool[order].item.mu)
for size > _StackCacheSize/2 {
y := x.ptr().next
stackpoolfree(x, order)
x = y
size -= _FixedStack << order
}
unlock(&stackpool[order].item.mu)
c.stackcache[order].list = x
c.stackcache[order].size = size
}
//go:systemstack
func stackcache_clear(c *mcache) {
if stackDebug >= 1 {
print("stackcache clear\n")
}
for order := uint8(0); order < _NumStackOrders; order++ {
lock(&stackpool[order].item.mu)
x := c.stackcache[order].list
for x.ptr() != nil {
y := x.ptr().next
stackpoolfree(x, order)
x = y
}
c.stackcache[order].list = 0
c.stackcache[order].size = 0
unlock(&stackpool[order].item.mu)
}
}
// stackalloc allocates an n byte stack.
//
// stackalloc must run on the system stack because it uses per-P
// resources and must not split the stack.
//
//go:systemstack
func stackalloc(n uint32) stack {
// Stackalloc must be called on scheduler stack, so that we
// never try to grow the stack during the code that stackalloc runs.
// Doing so would cause a deadlock (issue 1547).
thisg := getg()
if thisg != thisg.m.g0 {
throw("stackalloc not on scheduler stack")
}
if n&(n-1) != 0 {
throw("stack size not a power of 2")
}
if stackDebug >= 1 {
print("stackalloc ", n, "\n")
}
if debug.efence != 0 || stackFromSystem != 0 {
n = uint32(alignUp(uintptr(n), physPageSize))
v := sysAlloc(uintptr(n), &memstats.stacks_sys)
if v == nil {
throw("out of memory (stackalloc)")
}
return stack{uintptr(v), uintptr(v) + uintptr(n)}
}
// Small stacks are allocated with a fixed-size free-list allocator.
// If we need a stack of a bigger size, we fall back on allocating
// a dedicated span.
var v unsafe.Pointer
if n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
order := uint8(0)
n2 := n
for n2 > _FixedStack {
order++
n2 >>= 1
}
var x gclinkptr
if stackNoCache != 0 || thisg.m.p == 0 || thisg.m.preemptoff != "" {
// thisg.m.p == 0 can happen in the guts of exitsyscall
// or procresize. Just get a stack from the global pool.
// Also don't touch stackcache during gc
// as it's flushed concurrently.
lock(&stackpool[order].item.mu)
x = stackpoolalloc(order)
unlock(&stackpool[order].item.mu)
} else {
c := thisg.m.p.ptr().mcache
x = c.stackcache[order].list
if x.ptr() == nil {
stackcacherefill(c, order)
x = c.stackcache[order].list
}
c.stackcache[order].list = x.ptr().next
c.stackcache[order].size -= uintptr(n)
}
v = unsafe.Pointer(x)
} else {
var s *mspan
npage := uintptr(n) >> _PageShift
log2npage := stacklog2(npage)
// Try to get a stack from the large stack cache.
lock(&stackLarge.lock)
if !stackLarge.free[log2npage].isEmpty() {
s = stackLarge.free[log2npage].first
stackLarge.free[log2npage].remove(s)
}
unlock(&stackLarge.lock)
lockWithRankMayAcquire(&mheap_.lock, lockRankMheap)
if s == nil {
// Allocate a new stack from the heap.
s = mheap_.allocManual(npage, spanAllocStack)
if s == nil {
throw("out of memory")
}
osStackAlloc(s)
s.elemsize = uintptr(n)
}
v = unsafe.Pointer(s.base())
}
if raceenabled {
racemalloc(v, uintptr(n))
}
if msanenabled {
msanmalloc(v, uintptr(n))
}
if stackDebug >= 1 {
print(" allocated ", v, "\n")
}
return stack{uintptr(v), uintptr(v) + uintptr(n)}
}
// stackfree frees an n byte stack allocation at stk.
//
// stackfree must run on the system stack because it uses per-P
// resources and must not split the stack.
//
//go:systemstack
func stackfree(stk stack) {
gp := getg()
v := unsafe.Pointer(stk.lo)
n := stk.hi - stk.lo
if n&(n-1) != 0 {
throw("stack not a power of 2")
}
if stk.lo+n < stk.hi {
throw("bad stack size")
}
if stackDebug >= 1 {
println("stackfree", v, n)
memclrNoHeapPointers(v, n) // for testing, clobber stack data
}
if debug.efence != 0 || stackFromSystem != 0 {
if debug.efence != 0 || stackFaultOnFree != 0 {
sysFault(v, n)
} else {
sysFree(v, n, &memstats.stacks_sys)
}
return
}
if msanenabled {
msanfree(v, n)
}
if n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
order := uint8(0)
n2 := n
for n2 > _FixedStack {
order++
n2 >>= 1
}
x := gclinkptr(v)
if stackNoCache != 0 || gp.m.p == 0 || gp.m.preemptoff != "" {
lock(&stackpool[order].item.mu)
stackpoolfree(x, order)
unlock(&stackpool[order].item.mu)
} else {
c := gp.m.p.ptr().mcache
if c.stackcache[order].size >= _StackCacheSize {
stackcacherelease(c, order)
}
x.ptr().next = c.stackcache[order].list
c.stackcache[order].list = x
c.stackcache[order].size += n
}
} else {
s := spanOfUnchecked(uintptr(v))
if s.state.get() != mSpanManual {
println(hex(s.base()), v)
throw("bad span state")
}
if gcphase == _GCoff {
// Free the stack immediately if we're
// sweeping.
osStackFree(s)
mheap_.freeManual(s, spanAllocStack)
} else {
// If the GC is running, we can't return a
// stack span to the heap because it could be
// reused as a heap span, and this state
// change would race with GC. Add it to the
// large stack cache instead.
log2npage := stacklog2(s.npages)
lock(&stackLarge.lock)
stackLarge.free[log2npage].insert(s)
unlock(&stackLarge.lock)
}
}
}
var maxstacksize uintptr = 1 << 20 // enough until runtime.main sets it for real
var maxstackceiling = maxstacksize
var ptrnames = []string{
0: "scalar",
1: "ptr",
}
// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | return address |
// +------------------+
// | caller's BP (*) | (*) if framepointer_enabled && varp < sp
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+ <- frame->sp
//
// (arm)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | caller's retaddr |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+
// | return address |
// +------------------+ <- frame->sp
type adjustinfo struct {
old stack
delta uintptr // ptr distance from old to new stack (newbase - oldbase)
cache pcvalueCache
// sghi is the highest sudog.elem on the stack.
sghi uintptr
}
// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.
// If so, it rewrites *vpp to point into the new stack.
func adjustpointer(adjinfo *adjustinfo, vpp unsafe.Pointer) {
pp := (*uintptr)(vpp)
p := *pp
if stackDebug >= 4 {
print(" ", pp, ":", hex(p), "\n")
}
if adjinfo.old.lo <= p && p < adjinfo.old.hi {
*pp = p + adjinfo.delta
if stackDebug >= 3 {
print(" adjust ptr ", pp, ":", hex(p), " -> ", hex(*pp), "\n")
}
}
}
// Information from the compiler about the layout of stack frames.
// Note: this type must agree with reflect.bitVector.
type bitvector struct {
n int32 // # of bits
bytedata *uint8
}
// ptrbit returns the i'th bit in bv.
// ptrbit is less efficient than iterating directly over bitvector bits,
// and should only be used in non-performance-critical code.
// See adjustpointers for an example of a high-efficiency walk of a bitvector.
func (bv *bitvector) ptrbit(i uintptr) uint8 {
b := *(addb(bv.bytedata, i/8))
return (b >> (i % 8)) & 1
}
// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
func adjustpointers(scanp unsafe.Pointer, bv *bitvector, adjinfo *adjustinfo, f funcInfo) {
minp := adjinfo.old.lo
maxp := adjinfo.old.hi
delta := adjinfo.delta
num := uintptr(bv.n)
// If this frame might contain channel receive slots, use CAS
// to adjust pointers. If the slot hasn't been received into
// yet, it may contain stack pointers and a concurrent send
// could race with adjusting those pointers. (The sent value
// itself can never contain stack pointers.)
useCAS := uintptr(scanp) < adjinfo.sghi
for i := uintptr(0); i < num; i += 8 {
if stackDebug >= 4 {
for j := uintptr(0); j < 8; j++ {
print(" ", add(scanp, (i+j)*sys.PtrSize), ":", ptrnames[bv.ptrbit(i+j)], ":", hex(*(*uintptr)(add(scanp, (i+j)*sys.PtrSize))), " # ", i, " ", *addb(bv.bytedata, i/8), "\n")
}
}
b := *(addb(bv.bytedata, i/8))
for b != 0 {
j := uintptr(sys.Ctz8(b))
b &= b - 1
pp := (*uintptr)(add(scanp, (i+j)*sys.PtrSize))
retry:
p := *pp
if f.valid() && 0 < p && p < minLegalPointer && debug.invalidptr != 0 {
// Looks like a junk value in a pointer slot.
// Live analysis wrong?
getg().m.traceback = 2
print("runtime: bad pointer in frame ", funcname(f), " at ", pp, ": ", hex(p), "\n")
throw("invalid pointer found on stack")
}
if minp <= p && p < maxp {
if stackDebug >= 3 {
print("adjust ptr ", hex(p), " ", funcname(f), "\n")
}
if useCAS {
ppu := (*unsafe.Pointer)(unsafe.Pointer(pp))
if !atomic.Casp1(ppu, unsafe.Pointer(p), unsafe.Pointer(p+delta)) {
goto retry
}
} else {
*pp = p + delta
}
}
}
}
}
// Note: the argument/return area is adjusted by the callee.
func adjustframe(frame *stkframe, arg unsafe.Pointer) bool {
adjinfo := (*adjustinfo)(arg)
if frame.continpc == 0 {
// Frame is dead.
return true
}
f := frame.fn
if stackDebug >= 2 {
print(" adjusting ", funcname(f), " frame=[", hex(frame.sp), ",", hex(frame.fp), "] pc=", hex(frame.pc), " continpc=", hex(frame.continpc), "\n")
}
if f.funcID == funcID_systemstack_switch {
// A special routine at the bottom of stack of a goroutine that does a systemstack call.
// We will allow it to be copied even though we don't
// have full GC info for it (because it is written in asm).
return true
}
locals, args, objs := getStackMap(frame, &adjinfo.cache, true)
// Adjust local variables if stack frame has been allocated.
if locals.n > 0 {
size := uintptr(locals.n) * sys.PtrSize
adjustpointers(unsafe.Pointer(frame.varp-size), &locals, adjinfo, f)
}
// Adjust saved base pointer if there is one.
// TODO what about arm64 frame pointer adjustment?
if sys.ArchFamily == sys.AMD64 && frame.argp-frame.varp == 2*sys.RegSize {
if stackDebug >= 3 {
print(" saved bp\n")
}
if debugCheckBP {
// Frame pointers should always point to the next higher frame on
// the Go stack (or be nil, for the top frame on the stack).
bp := *(*uintptr)(unsafe.Pointer(frame.varp))
if bp != 0 && (bp < adjinfo.old.lo || bp >= adjinfo.old.hi) {
println("runtime: found invalid frame pointer")
print("bp=", hex(bp), " min=", hex(adjinfo.old.lo), " max=", hex(adjinfo.old.hi), "\n")
throw("bad frame pointer")
}
}
adjustpointer(adjinfo, unsafe.Pointer(frame.varp))
}
// Adjust arguments.
if args.n > 0 {
if stackDebug >= 3 {
print(" args\n")
}
adjustpointers(unsafe.Pointer(frame.argp), &args, adjinfo, funcInfo{})
}
// Adjust pointers in all stack objects (whether they are live or not).
// See comments in mgcmark.go:scanframeworker.
if frame.varp != 0 {
for _, obj := range objs {
off := obj.off
base := frame.varp // locals base pointer
if off >= 0 {
base = frame.argp // arguments and return values base pointer
}
p := base + uintptr(off)
if p < frame.sp {
// Object hasn't been allocated in the frame yet.
// (Happens when the stack bounds check fails and
// we call into morestack.)
continue
}
t := obj.typ
gcdata := t.gcdata
var s *mspan
if t.kind&kindGCProg != 0 {
// See comments in mgcmark.go:scanstack
s = materializeGCProg(t.ptrdata, gcdata)
gcdata = (*byte)(unsafe.Pointer(s.startAddr))
}
for i := uintptr(0); i < t.ptrdata; i += sys.PtrSize {
if *addb(gcdata, i/(8*sys.PtrSize))>>(i/sys.PtrSize&7)&1 != 0 {
adjustpointer(adjinfo, unsafe.Pointer(p+i))
}
}
if s != nil {
dematerializeGCProg(s)
}
}
}
return true
}
func adjustctxt(gp *g, adjinfo *adjustinfo) {
adjustpointer(adjinfo, unsafe.Pointer(&gp.sched.ctxt))
if !framepointer_enabled {
return
}
if debugCheckBP {
bp := gp.sched.bp
if bp != 0 && (bp < adjinfo.old.lo || bp >= adjinfo.old.hi) {
println("runtime: found invalid top frame pointer")
print("bp=", hex(bp), " min=", hex(adjinfo.old.lo), " max=", hex(adjinfo.old.hi), "\n")
throw("bad top frame pointer")
}
}
adjustpointer(adjinfo, unsafe.Pointer(&gp.sched.bp))
}
func adjustdefers(gp *g, adjinfo *adjustinfo) {
// Adjust pointers in the Defer structs.
// We need to do this first because we need to adjust the
// defer.link fields so we always work on the new stack.
adjustpointer(adjinfo, unsafe.Pointer(&gp._defer))
for d := gp._defer; d != nil; d = d.link {
adjustpointer(adjinfo, unsafe.Pointer(&d.fn))
adjustpointer(adjinfo, unsafe.Pointer(&d.sp))
adjustpointer(adjinfo, unsafe.Pointer(&d._panic))
adjustpointer(adjinfo, unsafe.Pointer(&d.link))
adjustpointer(adjinfo, unsafe.Pointer(&d.varp))
adjustpointer(adjinfo, unsafe.Pointer(&d.fd))
}
// Adjust defer argument blocks the same way we adjust active stack frames.
// Note: this code is after the loop above, so that if a defer record is
// stack allocated, we work on the copy in the new stack.
tracebackdefers(gp, adjustframe, noescape(unsafe.Pointer(adjinfo)))
}
func adjustpanics(gp *g, adjinfo *adjustinfo) {
// Panics are on stack and already adjusted.
// Update pointer to head of list in G.
adjustpointer(adjinfo, unsafe.Pointer(&gp._panic))
}
func adjustsudogs(gp *g, adjinfo *adjustinfo) {
// the data elements pointed to by a SudoG structure
// might be in the stack.
for s := gp.waiting; s != nil; s = s.waitlink {
adjustpointer(adjinfo, unsafe.Pointer(&s.elem))
}
}
func fillstack(stk stack, b byte) {
for p := stk.lo; p < stk.hi; p++ {
*(*byte)(unsafe.Pointer(p)) = b
}
}
func findsghi(gp *g, stk stack) uintptr {
var sghi uintptr
for sg := gp.waiting; sg != nil; sg = sg.waitlink {
p := uintptr(sg.elem) + uintptr(sg.c.elemsize)
if stk.lo <= p && p < stk.hi && p > sghi {
sghi = p
}
}
return sghi
}
// syncadjustsudogs adjusts gp's sudogs and copies the part of gp's
// stack they refer to while synchronizing with concurrent channel
// operations. It returns the number of bytes of stack copied.
func syncadjustsudogs(gp *g, used uintptr, adjinfo *adjustinfo) uintptr {
if gp.waiting == nil {
return 0
}
// Lock channels to prevent concurrent send/receive.
var lastc *hchan
for sg := gp.waiting; sg != nil; sg = sg.waitlink {
if sg.c != lastc {
// There is a ranking cycle here between gscan bit and
// hchan locks. Normally, we only allow acquiring hchan
// locks and then getting a gscan bit. In this case, we
// already have the gscan bit. We allow acquiring hchan
// locks here as a special case, since a deadlock can't
// happen because the G involved must already be
// suspended. So, we get a special hchan lock rank here
// that is lower than gscan, but doesn't allow acquiring
// any other locks other than hchan.
lockWithRank(&sg.c.lock, lockRankHchanLeaf)
}
lastc = sg.c
}
// Adjust sudogs.
adjustsudogs(gp, adjinfo)
// Copy the part of the stack the sudogs point in to
// while holding the lock to prevent races on
// send/receive slots.
var sgsize uintptr
if adjinfo.sghi != 0 {
oldBot := adjinfo.old.hi - used
newBot := oldBot + adjinfo.delta
sgsize = adjinfo.sghi - oldBot
memmove(unsafe.Pointer(newBot), unsafe.Pointer(oldBot), sgsize)
}
// Unlock channels.
lastc = nil
for sg := gp.waiting; sg != nil; sg = sg.waitlink {
if sg.c != lastc {
unlock(&sg.c.lock)
}
lastc = sg.c
}
return sgsize
}
// Copies gp's stack to a new stack of a different size.
// Caller must have changed gp status to Gcopystack.
func copystack(gp *g, newsize uintptr) {
if gp.syscallsp != 0 {
throw("stack growth not allowed in system call")
}
old := gp.stack
if old.lo == 0 {
throw("nil stackbase")
}
used := old.hi - gp.sched.sp
// allocate new stack
new := stackalloc(uint32(newsize))
if stackPoisonCopy != 0 {
fillstack(new, 0xfd)
}
if stackDebug >= 1 {
print("copystack gp=", gp, " [", hex(old.lo), " ", hex(old.hi-used), " ", hex(old.hi), "]", " -> [", hex(new.lo), " ", hex(new.hi-used), " ", hex(new.hi), "]/", newsize, "\n")
}
// Compute adjustment.
var adjinfo adjustinfo
adjinfo.old = old
adjinfo.delta = new.hi - old.hi
// Adjust sudogs, synchronizing with channel ops if necessary.
ncopy := used
if !gp.activeStackChans {
if newsize < old.hi-old.lo && atomic.Load8(&gp.parkingOnChan) != 0 {
// It's not safe for someone to shrink this stack while we're actively
// parking on a channel, but it is safe to grow since we do that
// ourselves and explicitly don't want to synchronize with channels
// since we could self-deadlock.
throw("racy sudog adjustment due to parking on channel")
}
adjustsudogs(gp, &adjinfo)
} else {
// sudogs may be pointing in to the stack and gp has
// released channel locks, so other goroutines could
// be writing to gp's stack. Find the highest such
// pointer so we can handle everything there and below
// carefully. (This shouldn't be far from the bottom
// of the stack, so there's little cost in handling
// everything below it carefully.)
adjinfo.sghi = findsghi(gp, old)
// Synchronize with channel ops and copy the part of
// the stack they may interact with.
ncopy -= syncadjustsudogs(gp, used, &adjinfo)
}
// Copy the stack (or the rest of it) to the new location
memmove(unsafe.Pointer(new.hi-ncopy), unsafe.Pointer(old.hi-ncopy), ncopy)
// Adjust remaining structures that have pointers into stacks.
// We have to do most of these before we traceback the new
// stack because gentraceback uses them.
adjustctxt(gp, &adjinfo)
adjustdefers(gp, &adjinfo)
adjustpanics(gp, &adjinfo)
if adjinfo.sghi != 0 {
adjinfo.sghi += adjinfo.delta
}
// Swap out old stack for new one
gp.stack = new
gp.stackguard0 = new.lo + _StackGuard // NOTE: might clobber a preempt request
gp.sched.sp = new.hi - used
gp.stktopsp += adjinfo.delta
// Adjust pointers in the new stack.
gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, adjustframe, noescape(unsafe.Pointer(&adjinfo)), 0)
// free old stack
if stackPoisonCopy != 0 {
fillstack(old, 0xfc)
}
stackfree(old)
}
// round x up to a power of 2.
func round2(x int32) int32 {
s := uint(0)
for 1<<s < x {
s++
}
return 1 << s
}
// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry.
// If the scheduler is trying to stop this g, then it will set preemptStop.
//
// This must be nowritebarrierrec because it can be called as part of
// stack growth from other nowritebarrierrec functions, but the
// compiler doesn't check this.
//
//go:nowritebarrierrec
func newstack() {
thisg := getg()
// TODO: double check all gp. shouldn't be getg().
if thisg.m.morebuf.g.ptr().stackguard0 == stackFork {
throw("stack growth after fork")
}
if thisg.m.morebuf.g.ptr() != thisg.m.curg {
print("runtime: newstack called from g=", hex(thisg.m.morebuf.g), "\n"+"\tm=", thisg.m, " m->curg=", thisg.m.curg, " m->g0=", thisg.m.g0, " m->gsignal=", thisg.m.gsignal, "\n")
morebuf := thisg.m.morebuf
traceback(morebuf.pc, morebuf.sp, morebuf.lr, morebuf.g.ptr())
throw("runtime: wrong goroutine in newstack")
}
gp := thisg.m.curg
if thisg.m.curg.throwsplit {
// Update syscallsp, syscallpc in case traceback uses them.
morebuf := thisg.m.morebuf
gp.syscallsp = morebuf.sp
gp.syscallpc = morebuf.pc
pcname, pcoff := "(unknown)", uintptr(0)
f := findfunc(gp.sched.pc)
if f.valid() {
pcname = funcname(f)
pcoff = gp.sched.pc - f.entry
}
print("runtime: newstack at ", pcname, "+", hex(pcoff),
" sp=", hex(gp.sched.sp), " stack=[", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n",
"\tmorebuf={pc:", hex(morebuf.pc), " sp:", hex(morebuf.sp), " lr:", hex(morebuf.lr), "}\n",
"\tsched={pc:", hex(gp.sched.pc), " sp:", hex(gp.sched.sp), " lr:", hex(gp.sched.lr), " ctxt:", gp.sched.ctxt, "}\n")
thisg.m.traceback = 2 // Include runtime frames
traceback(morebuf.pc, morebuf.sp, morebuf.lr, gp)
throw("runtime: stack split at bad time")
}
morebuf := thisg.m.morebuf
thisg.m.morebuf.pc = 0
thisg.m.morebuf.lr = 0
thisg.m.morebuf.sp = 0
thisg.m.morebuf.g = 0
// NOTE: stackguard0 may change underfoot, if another thread
// is about to try to preempt gp. Read it just once and use that same
// value now and below.
preempt := atomic.Loaduintptr(&gp.stackguard0) == stackPreempt
// Be conservative about where we preempt.
// We are interested in preempting user Go code, not runtime code.
// If we're holding locks, mallocing, or preemption is disabled, don't
// preempt.
// This check is very early in newstack so that even the status change
// from Grunning to Gwaiting and back doesn't happen in this case.
// That status change by itself can be viewed as a small preemption,
// because the GC might change Gwaiting to Gscanwaiting, and then
// this goroutine has to wait for the GC to finish before continuing.
// If the GC is in some way dependent on this goroutine (for example,
// it needs a lock held by the goroutine), that small preemption turns
// into a real deadlock.
if preempt {
if !canPreemptM(thisg.m) {
// Let the goroutine keep running for now.
// gp->preempt is set, so it will be preempted next time.