Skip to content
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
Cannot retrieve contributors at this time
859 lines (772 sloc) 28.4 KB
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Action graph creation (planning).
package work
import (
// A Builder holds global state about a build.
// It does not hold per-package state, because we
// build packages in parallel, and the builder is shared.
type Builder struct {
WorkDir string // the temporary work directory (ends in filepath.Separator)
actionCache map[cacheKey]*Action // a cache of already-constructed actions
mkdirCache map[string]bool // a cache of created directories
flagCache map[[2]string]bool // a cache of supported compiler flags
Print func(args ...interface{}) (int, error)
IsCmdList bool // running as part of go list; set p.Stale and additional fields below
NeedError bool // list needs p.Error
NeedExport bool // list needs p.Export
NeedCompiledGoFiles bool // list needs p.CompiledGoFiles
objdirSeq int // counter for NewObjdir
pkgSeq int
output sync.Mutex
scriptDir string // current directory in printed script
exec sync.Mutex
readySema chan bool
ready actionQueue
id sync.Mutex
toolIDCache map[string]string // tool name -> tool ID
buildIDCache map[string]string // file name -> build ID
// NOTE: Much of Action would not need to be exported if not for test.
// Maybe test functionality should move into this package too?
// An Action represents a single action in the action graph.
type Action struct {
Mode string // description of action operation
Package *load.Package // the package this action works on
Deps []*Action // actions that must happen before this one
Func func(*Builder, context.Context, *Action) error // the action itself (nil = no-op)
IgnoreFail bool // whether to run f even if dependencies fail
TestOutput *bytes.Buffer // test output buffer
Args []string // additional args for runProgram
triggers []*Action // inverse of deps
buggyInstall bool // is this a buggy install (see -linkshared)?
TryCache func(*Builder, *Action) bool // callback for cache bypass
// Generated files, directories.
Objdir string // directory for intermediate objects
Target string // goal of the action: the created package or executable
built string // the actual created package or executable
actionID cache.ActionID // cache ID of action input
buildID string // build ID of action output
VetxOnly bool // Mode=="vet": only being called to supply info about dependencies
needVet bool // Mode=="build": need to fill in vet config
needBuild bool // Mode=="build": need to do actual build (can be false if needVet is true)
vetCfg *vetConfig // vet config
output []byte // output redirect buffer (nil means use b.Print)
// Execution state.
pending int // number of deps yet to complete
priority int // relative execution priority
Failed bool // whether the action failed
json *actionJSON // action graph information
nonGoOverlay map[string]string // map from non-.go source files to copied files in objdir. Nil if no overlay is used.
traceSpan *trace.Span
// BuildActionID returns the action ID section of a's build ID.
func (a *Action) BuildActionID() string { return actionID(a.buildID) }
// BuildContentID returns the content ID section of a's build ID.
func (a *Action) BuildContentID() string { return contentID(a.buildID) }
// BuildID returns a's build ID.
func (a *Action) BuildID() string { return a.buildID }
// BuiltTarget returns the actual file that was built. This differs
// from Target when the result was cached.
func (a *Action) BuiltTarget() string { return a.built }
// An actionQueue is a priority queue of actions.
type actionQueue []*Action
// Implement heap.Interface
func (q *actionQueue) Len() int { return len(*q) }
func (q *actionQueue) Swap(i, j int) { (*q)[i], (*q)[j] = (*q)[j], (*q)[i] }
func (q *actionQueue) Less(i, j int) bool { return (*q)[i].priority < (*q)[j].priority }
func (q *actionQueue) Push(x interface{}) { *q = append(*q, x.(*Action)) }
func (q *actionQueue) Pop() interface{} {
n := len(*q) - 1
x := (*q)[n]
*q = (*q)[:n]
return x
func (q *actionQueue) push(a *Action) {
if a.json != nil {
a.json.TimeReady = time.Now()
heap.Push(q, a)
func (q *actionQueue) pop() *Action {
return heap.Pop(q).(*Action)
type actionJSON struct {
ID int
Mode string
Package string
Deps []int `json:",omitempty"`
IgnoreFail bool `json:",omitempty"`
Args []string `json:",omitempty"`
Link bool `json:",omitempty"`
Objdir string `json:",omitempty"`
Target string `json:",omitempty"`
Priority int `json:",omitempty"`
Failed bool `json:",omitempty"`
Built string `json:",omitempty"`
VetxOnly bool `json:",omitempty"`
NeedVet bool `json:",omitempty"`
NeedBuild bool `json:",omitempty"`
ActionID string `json:",omitempty"`
BuildID string `json:",omitempty"`
TimeReady time.Time `json:",omitempty"`
TimeStart time.Time `json:",omitempty"`
TimeDone time.Time `json:",omitempty"`
Cmd []string // `json:",omitempty"`
CmdReal time.Duration `json:",omitempty"`
CmdUser time.Duration `json:",omitempty"`
CmdSys time.Duration `json:",omitempty"`
// cacheKey is the key for the action cache.
type cacheKey struct {
mode string
p *load.Package
func actionGraphJSON(a *Action) string {
var workq []*Action
var inWorkq = make(map[*Action]int)
add := func(a *Action) {
if _, ok := inWorkq[a]; ok {
inWorkq[a] = len(workq)
workq = append(workq, a)
for i := 0; i < len(workq); i++ {
for _, dep := range workq[i].Deps {
var list []*actionJSON
for id, a := range workq {
if a.json == nil {
a.json = &actionJSON{
Mode: a.Mode,
ID: id,
IgnoreFail: a.IgnoreFail,
Args: a.Args,
Objdir: a.Objdir,
Target: a.Target,
Failed: a.Failed,
Priority: a.priority,
Built: a.built,
VetxOnly: a.VetxOnly,
NeedBuild: a.needBuild,
NeedVet: a.needVet,
if a.Package != nil {
// TODO(rsc): Make this a unique key for a.Package somehow.
a.json.Package = a.Package.ImportPath
for _, a1 := range a.Deps {
a.json.Deps = append(a.json.Deps, inWorkq[a1])
list = append(list, a.json)
js, err := json.MarshalIndent(list, "", "\t")
if err != nil {
fmt.Fprintf(os.Stderr, "go: writing debug action graph: %v\n", err)
return ""
return string(js)
// BuildMode specifies the build mode:
// are we just building things or also installing the results?
type BuildMode int
const (
ModeBuild BuildMode = iota
ModeVetOnly = 1 << 8
func (b *Builder) Init() {
b.Print = func(a ...interface{}) (int, error) {
return fmt.Fprint(os.Stderr, a...)
b.actionCache = make(map[cacheKey]*Action)
b.mkdirCache = make(map[string]bool)
b.toolIDCache = make(map[string]string)
b.buildIDCache = make(map[string]string)
if cfg.BuildN {
b.WorkDir = "$WORK"
} else {
tmp, err := os.MkdirTemp(cfg.Getenv("GOTMPDIR"), "go-build")
if err != nil {
base.Fatalf("go: creating work dir: %v", err)
if !filepath.IsAbs(tmp) {
abs, err := filepath.Abs(tmp)
if err != nil {
base.Fatalf("go: creating work dir: %v", err)
tmp = abs
b.WorkDir = tmp
if cfg.BuildX || cfg.BuildWork {
fmt.Fprintf(os.Stderr, "WORK=%s\n", b.WorkDir)
if !cfg.BuildWork {
workdir := b.WorkDir
base.AtExit(func() {
start := time.Now()
for {
err := os.RemoveAll(workdir)
if err == nil {
// On some configurations of Windows, directories containing executable
// files may be locked for a while after the executable exits (perhaps
// due to antivirus scans?). It's probably worth a little extra latency
// on exit to avoid filling up the user's temporary directory with leaked
// files. (See
if runtime.GOOS != "windows" || time.Since(start) >= 500*time.Millisecond {
fmt.Fprintf(os.Stderr, "go: failed to remove work dir: %s\n", err)
time.Sleep(5 * time.Millisecond)
if err := CheckGOOSARCHPair(cfg.Goos, cfg.Goarch); err != nil {
fmt.Fprintf(os.Stderr, "cmd/go: %v\n", err)
for _, tag := range cfg.BuildContext.BuildTags {
if strings.Contains(tag, ",") {
fmt.Fprintf(os.Stderr, "cmd/go: -tags space-separated list contains comma\n")
func CheckGOOSARCHPair(goos, goarch string) error {
if _, ok := cfg.OSArchSupportsCgo[goos+"/"+goarch]; !ok && cfg.BuildContext.Compiler == "gc" {
return fmt.Errorf("unsupported GOOS/GOARCH pair %s/%s", goos, goarch)
return nil
// NewObjdir returns the name of a fresh object directory under b.WorkDir.
// It is up to the caller to call b.Mkdir on the result at an appropriate time.
// The result ends in a slash, so that file names in that directory
// can be constructed with direct string addition.
// NewObjdir must be called only from a single goroutine at a time,
// so it is safe to call during action graph construction, but it must not
// be called during action graph execution.
func (b *Builder) NewObjdir() string {
return filepath.Join(b.WorkDir, fmt.Sprintf("b%03d", b.objdirSeq)) + string(filepath.Separator)
// readpkglist returns the list of packages that were built into the shared library
// at shlibpath. For the native toolchain this list is stored, newline separated, in
// an ELF note with name "Go\x00\x00" and type 1. For GCCGO it is extracted from the
// .go_export section.
func readpkglist(shlibpath string) (pkgs []*load.Package) {
var stk load.ImportStack
if cfg.BuildToolchainName == "gccgo" {
f, _ := elf.Open(shlibpath)
sect := f.Section(".go_export")
data, _ := sect.Data()
scanner := bufio.NewScanner(bytes.NewBuffer(data))
for scanner.Scan() {
t := scanner.Text()
if strings.HasPrefix(t, "pkgpath ") {
t = strings.TrimPrefix(t, "pkgpath ")
t = strings.TrimSuffix(t, ";")
pkgs = append(pkgs, load.LoadImportWithFlags(t, base.Cwd, nil, &stk, nil, 0))
} else {
pkglistbytes, err := buildid.ReadELFNote(shlibpath, "Go\x00\x00", 1)
if err != nil {
base.Fatalf("readELFNote failed: %v", err)
scanner := bufio.NewScanner(bytes.NewBuffer(pkglistbytes))
for scanner.Scan() {
t := scanner.Text()
pkgs = append(pkgs, load.LoadImportWithFlags(t, base.Cwd, nil, &stk, nil, 0))
// cacheAction looks up {mode, p} in the cache and returns the resulting action.
// If the cache has no such action, f() is recorded and returned.
// TODO(rsc): Change the second key from *load.Package to interface{},
// to make the caching in linkShared less awkward?
func (b *Builder) cacheAction(mode string, p *load.Package, f func() *Action) *Action {
a := b.actionCache[cacheKey{mode, p}]
if a == nil {
a = f()
b.actionCache[cacheKey{mode, p}] = a
return a
// AutoAction returns the "right" action for go build or go install of p.
func (b *Builder) AutoAction(mode, depMode BuildMode, p *load.Package) *Action {
if p.Name == "main" {
return b.LinkAction(mode, depMode, p)
return b.CompileAction(mode, depMode, p)
// CompileAction returns the action for compiling and possibly installing
// (according to mode) the given package. The resulting action is only
// for building packages (archives), never for linking executables.
// depMode is the action (build or install) to use when building dependencies.
// To turn package main into an executable, call b.Link instead.
func (b *Builder) CompileAction(mode, depMode BuildMode, p *load.Package) *Action {
vetOnly := mode&ModeVetOnly != 0
mode &^= ModeVetOnly
if mode != ModeBuild && (p.Internal.Local || p.Module != nil) && p.Target == "" {
// Imported via local path or using modules. No permanent target.
mode = ModeBuild
if mode != ModeBuild && p.Name == "main" {
// We never install the .a file for a main package.
mode = ModeBuild
// Construct package build action.
a := b.cacheAction("build", p, func() *Action {
a := &Action{
Mode: "build",
Package: p,
Func: (*Builder).build,
Objdir: b.NewObjdir(),
if p.Error == nil || !p.Error.IsImportCycle {
for _, p1 := range p.Internal.Imports {
a.Deps = append(a.Deps, b.CompileAction(depMode, depMode, p1))
if p.Standard {
switch p.ImportPath {
case "builtin", "unsafe":
// Fake packages - nothing to build.
a.Mode = "built-in package"
a.Func = nil
return a
// gccgo standard library is "fake" too.
if cfg.BuildToolchainName == "gccgo" {
// the target name is needed for cgo.
a.Mode = "gccgo stdlib"
a.Target = p.Target
a.Func = nil
return a
return a
// Find the build action; the cache entry may have been replaced
// by the install action during (*Builder).installAction.
buildAction := a
switch buildAction.Mode {
case "build", "built-in package", "gccgo stdlib":
// ok
case "build-install":
buildAction = a.Deps[0]
panic("lost build action: " + buildAction.Mode)
buildAction.needBuild = buildAction.needBuild || !vetOnly
// Construct install action.
if mode == ModeInstall || mode == ModeBuggyInstall {
a = b.installAction(a, mode)
return a
// VetAction returns the action for running go vet on package p.
// It depends on the action for compiling p.
// If the caller may be causing p to be installed, it is up to the caller
// to make sure that the install depends on (runs after) vet.
func (b *Builder) VetAction(mode, depMode BuildMode, p *load.Package) *Action {
a := b.vetAction(mode, depMode, p)
a.VetxOnly = false
return a
func (b *Builder) vetAction(mode, depMode BuildMode, p *load.Package) *Action {
// Construct vet action.
a := b.cacheAction("vet", p, func() *Action {
a1 := b.CompileAction(mode|ModeVetOnly, depMode, p)
// vet expects to be able to import "fmt".
var stk load.ImportStack
p1 := load.LoadImportWithFlags("fmt", p.Dir, p, &stk, nil, 0)
aFmt := b.CompileAction(ModeBuild, depMode, p1)
var deps []*Action
if a1.buggyInstall {
// (*Builder).vet expects deps[0] to be the package
// and deps[1] to be "fmt". If we see buggyInstall
// here then a1 is an install of a shared library,
// and the real package is a1.Deps[0].
deps = []*Action{a1.Deps[0], aFmt, a1}
} else {
deps = []*Action{a1, aFmt}
for _, p1 := range p.Internal.Imports {
deps = append(deps, b.vetAction(mode, depMode, p1))
a := &Action{
Mode: "vet",
Package: p,
Deps: deps,
Objdir: a1.Objdir,
VetxOnly: true,
IgnoreFail: true, // it's OK if vet of dependencies "fails" (reports problems)
if a1.Func == nil {
// Built-in packages like unsafe.
return a
deps[0].needVet = true
a.Func = (*Builder).vet
return a
return a
// LinkAction returns the action for linking p into an executable
// and possibly installing the result (according to mode).
// depMode is the action (build or install) to use when compiling dependencies.
func (b *Builder) LinkAction(mode, depMode BuildMode, p *load.Package) *Action {
// Construct link action.
a := b.cacheAction("link", p, func() *Action {
a := &Action{
Mode: "link",
Package: p,
a1 := b.CompileAction(ModeBuild, depMode, p)
a.Func = (*Builder).link
a.Deps = []*Action{a1}
a.Objdir = a1.Objdir
// An executable file. (This is the name of a temporary file.)
// Because we run the temporary file in 'go run' and 'go test',
// the name will show up in ps listings. If the caller has specified
// a name, use that instead of a.out. The binary is generated
// in an otherwise empty subdirectory named exe to avoid
// naming conflicts. The only possible conflict is if we were
// to create a top-level package named exe.
name := "a.out"
if p.Internal.ExeName != "" {
name = p.Internal.ExeName
} else if (cfg.Goos == "darwin" || cfg.Goos == "windows") && cfg.BuildBuildmode == "c-shared" && p.Target != "" {
// On OS X, the linker output name gets recorded in the
// shared library's LC_ID_DYLIB load command.
// The code invoking the linker knows to pass only the final
// path element. Arrange that the path element matches what
// we'll install it as; otherwise the library is only loadable as "a.out".
// On Windows, DLL file name is recorded in PE file
// export section, so do like on OS X.
_, name = filepath.Split(p.Target)
a.Target = a.Objdir + filepath.Join("exe", name) + cfg.ExeSuffix
a.built = a.Target
b.addTransitiveLinkDeps(a, a1, "")
// Sequence the build of the main package (a1) strictly after the build
// of all other dependencies that go into the link. It is likely to be after
// them anyway, but just make sure. This is required by the build ID-based
// shortcut in (*Builder).useCache(a1), which will call b.linkActionID(a).
// In order for that linkActionID call to compute the right action ID, all the
// dependencies of a (except a1) must have completed building and have
// recorded their build IDs.
a1.Deps = append(a1.Deps, &Action{Mode: "nop", Deps: a.Deps[1:]})
return a
if mode == ModeInstall || mode == ModeBuggyInstall {
a = b.installAction(a, mode)
return a
// installAction returns the action for installing the result of a1.
func (b *Builder) installAction(a1 *Action, mode BuildMode) *Action {
// Because we overwrite the build action with the install action below,
// a1 may already be an install action fetched from the "build" cache key,
// and the caller just doesn't realize.
if strings.HasSuffix(a1.Mode, "-install") {
if a1.buggyInstall && mode == ModeInstall {
// Congratulations! The buggy install is now a proper install.
a1.buggyInstall = false
return a1
// If there's no actual action to build a1,
// there's nothing to install either.
// This happens if a1 corresponds to reusing an already-built object.
if a1.Func == nil {
return a1
p := a1.Package
return b.cacheAction(a1.Mode+"-install", p, func() *Action {
// The install deletes the temporary build result,
// so we need all other actions, both past and future,
// that attempt to depend on the build to depend instead
// on the install.
// Make a private copy of a1 (the build action),
// no longer accessible to any other rules.
buildAction := new(Action)
*buildAction = *a1
// Overwrite a1 with the install action.
// This takes care of updating past actions that
// point at a1 for the build action; now they will
// point at a1 and get the install action.
// We also leave a1 in the action cache as the result
// for "build", so that actions not yet created that
// try to depend on the build will instead depend
// on the install.
*a1 = Action{
Mode: buildAction.Mode + "-install",
Func: BuildInstallFunc,
Package: p,
Objdir: buildAction.Objdir,
Deps: []*Action{buildAction},
Target: p.Target,
built: p.Target,
buggyInstall: mode == ModeBuggyInstall,
return a1
// addTransitiveLinkDeps adds to the link action a all packages
// that are transitive dependencies of a1.Deps.
// That is, if a is a link of package main, a1 is the compile of package main
// and a1.Deps is the actions for building packages directly imported by
// package main (what the compiler needs). The linker needs all packages
// transitively imported by the whole program; addTransitiveLinkDeps
// makes sure those are present in a.Deps.
// If shlib is non-empty, then a corresponds to the build and installation of shlib,
// so any rebuild of shlib should not be added as a dependency.
func (b *Builder) addTransitiveLinkDeps(a, a1 *Action, shlib string) {
// Expand Deps to include all built packages, for the linker.
// Use breadth-first search to find rebuilt-for-test packages
// before the standard ones.
// TODO(rsc): Eliminate the standard ones from the action graph,
// which will require doing a little bit more rebuilding.
workq := []*Action{a1}
haveDep := map[string]bool{}
if a1.Package != nil {
haveDep[a1.Package.ImportPath] = true
for i := 0; i < len(workq); i++ {
a1 := workq[i]
for _, a2 := range a1.Deps {
// TODO(rsc): Find a better discriminator than the Mode strings, once the dust settles.
if a2.Package == nil || (a2.Mode != "build-install" && a2.Mode != "build") || haveDep[a2.Package.ImportPath] {
haveDep[a2.Package.ImportPath] = true
a.Deps = append(a.Deps, a2)
if a2.Mode == "build-install" {
a2 = a2.Deps[0] // walk children of "build" action
workq = append(workq, a2)
// If this is go build -linkshared, then the link depends on the shared libraries
// in addition to the packages themselves. (The compile steps do not.)
if cfg.BuildLinkshared {
haveShlib := map[string]bool{shlib: true}
for _, a1 := range a.Deps {
p1 := a1.Package
if p1 == nil || p1.Shlib == "" || haveShlib[filepath.Base(p1.Shlib)] {
haveShlib[filepath.Base(p1.Shlib)] = true
// TODO(rsc): The use of ModeInstall here is suspect, but if we only do ModeBuild,
// we'll end up building an overall library or executable that depends at runtime
// on other libraries that are out-of-date, which is clearly not good either.
// We call it ModeBuggyInstall to make clear that this is not right.
a.Deps = append(a.Deps, b.linkSharedAction(ModeBuggyInstall, ModeBuggyInstall, p1.Shlib, nil))
// addInstallHeaderAction adds an install header action to a, if needed.
// The action a should be an install action as generated by either
// b.CompileAction or b.LinkAction with mode=ModeInstall,
// and so a.Deps[0] is the corresponding build action.
func (b *Builder) addInstallHeaderAction(a *Action) {
// Install header for cgo in c-archive and c-shared modes.
p := a.Package
if p.UsesCgo() && (cfg.BuildBuildmode == "c-archive" || cfg.BuildBuildmode == "c-shared") {
hdrTarget := a.Target[:len(a.Target)-len(filepath.Ext(a.Target))] + ".h"
if cfg.BuildContext.Compiler == "gccgo" && cfg.BuildO == "" {
// For the header file, remove the "lib"
// added by go/build, so we generate pkg.h
// rather than libpkg.h.
dir, file := filepath.Split(hdrTarget)
file = strings.TrimPrefix(file, "lib")
hdrTarget = filepath.Join(dir, file)
ah := &Action{
Mode: "install header",
Package: a.Package,
Deps: []*Action{a.Deps[0]},
Func: (*Builder).installHeader,
Objdir: a.Deps[0].Objdir,
Target: hdrTarget,
a.Deps = append(a.Deps, ah)
// buildmodeShared takes the "go build" action a1 into the building of a shared library of a1.Deps.
// That is, the input a1 represents "go build pkgs" and the result represents "go build -buildmode=shared pkgs".
func (b *Builder) buildmodeShared(mode, depMode BuildMode, args []string, pkgs []*load.Package, a1 *Action) *Action {
name, err := libname(args, pkgs)
if err != nil {
base.Fatalf("%v", err)
return b.linkSharedAction(mode, depMode, name, a1)
// linkSharedAction takes a grouping action a1 corresponding to a list of built packages
// and returns an action that links them together into a shared library with the name shlib.
// If a1 is nil, shlib should be an absolute path to an existing shared library,
// and then linkSharedAction reads that library to find out the package list.
func (b *Builder) linkSharedAction(mode, depMode BuildMode, shlib string, a1 *Action) *Action {
fullShlib := shlib
shlib = filepath.Base(shlib)
a := b.cacheAction("build-shlib "+shlib, nil, func() *Action {
if a1 == nil {
// TODO(rsc): Need to find some other place to store config,
// not in pkg directory. See
pkgs := readpkglist(fullShlib)
a1 = &Action{
Mode: "shlib packages",
for _, p := range pkgs {
a1.Deps = append(a1.Deps, b.CompileAction(mode, depMode, p))
// Fake package to hold ldflags.
// As usual shared libraries are a kludgy, abstraction-violating special case:
// we let them use the flags specified for the command-line arguments.
p := &load.Package{}
p.Internal.CmdlinePkg = true
p.Internal.Ldflags = load.BuildLdflags.For(p)
p.Internal.Gccgoflags = load.BuildGccgoflags.For(p)
// Add implicit dependencies to pkgs list.
// Currently buildmode=shared forces external linking mode, and
// external linking mode forces an import of runtime/cgo (and
// math on arm). So if it was not passed on the command line and
// it is not present in another shared library, add it here.
// TODO(rsc): Maybe this should only happen if "runtime" is in the original package set.
// TODO(rsc): This should probably be changed to use load.LinkerDeps(p).
// TODO(rsc): We don't add standard library imports for gccgo
// because they are all always linked in anyhow.
// Maybe load.LinkerDeps should be used and updated.
a := &Action{
Mode: "go build -buildmode=shared",
Package: p,
Objdir: b.NewObjdir(),
Func: (*Builder).linkShared,
Deps: []*Action{a1},
a.Target = filepath.Join(a.Objdir, shlib)
if cfg.BuildToolchainName != "gccgo" {
add := func(a1 *Action, pkg string, force bool) {
for _, a2 := range a1.Deps {
if a2.Package != nil && a2.Package.ImportPath == pkg {
var stk load.ImportStack
p := load.LoadImportWithFlags(pkg, base.Cwd, nil, &stk, nil, 0)
if p.Error != nil {
base.Fatalf("load %s: %v", pkg, p.Error)
// Assume that if pkg (runtime/cgo or math)
// is already accounted for in a different shared library,
// then that shared library also contains runtime,
// so that anything we do will depend on that library,
// so we don't need to include pkg in our shared library.
if force || p.Shlib == "" || filepath.Base(p.Shlib) == pkg {
a1.Deps = append(a1.Deps, b.CompileAction(depMode, depMode, p))
add(a1, "runtime/cgo", false)
if cfg.Goarch == "arm" {
add(a1, "math", false)
// The linker step still needs all the usual linker deps.
// (For example, the linker always opens runtime.a.)
for _, dep := range load.LinkerDeps(nil) {
add(a, dep, true)
b.addTransitiveLinkDeps(a, a1, shlib)
return a
// Install result.
if (mode == ModeInstall || mode == ModeBuggyInstall) && a.Func != nil {
buildAction := a
a = b.cacheAction("install-shlib "+shlib, nil, func() *Action {
// Determine the eventual install target.
// The install target is root/pkg/shlib, where root is the source root
// in which all the packages lie.
// TODO(rsc): Perhaps this cross-root check should apply to the full
// transitive package dependency list, not just the ones named
// on the command line?
pkgDir := a1.Deps[0].Package.Internal.Build.PkgTargetRoot
for _, a2 := range a1.Deps {
if dir := a2.Package.Internal.Build.PkgTargetRoot; dir != pkgDir {
base.Fatalf("installing shared library: cannot use packages %s and %s from different roots %s and %s",
// TODO(rsc): Find out and explain here why gccgo is different.
if cfg.BuildToolchainName == "gccgo" {
pkgDir = filepath.Join(pkgDir, "shlibs")
target := filepath.Join(pkgDir, shlib)
a := &Action{
Mode: "go install -buildmode=shared",
Objdir: buildAction.Objdir,
Func: BuildInstallFunc,
Deps: []*Action{buildAction},
Target: target,
for _, a2 := range buildAction.Deps[0].Deps {
p := a2.Package
if p.Target == "" {
a.Deps = append(a.Deps, &Action{
Mode: "shlibname",
Package: p,
Func: (*Builder).installShlibname,
Target: strings.TrimSuffix(p.Target, ".a") + ".shlibname",
Deps: []*Action{a.Deps[0]},
return a
return a