-
Notifications
You must be signed in to change notification settings - Fork 17.7k
/
proc.go
5187 lines (4701 loc) · 143 KB
/
proc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/cpu"
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
var buildVersion = sys.TheVersion
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at https://golang.org/s/go11sched.
// Worker thread parking/unparking.
// We need to balance between keeping enough running worker threads to utilize
// available hardware parallelism and parking excessive running worker threads
// to conserve CPU resources and power. This is not simple for two reasons:
// (1) scheduler state is intentionally distributed (in particular, per-P work
// queues), so it is not possible to compute global predicates on fast paths;
// (2) for optimal thread management we would need to know the future (don't park
// a worker thread when a new goroutine will be readied in near future).
//
// Three rejected approaches that would work badly:
// 1. Centralize all scheduler state (would inhibit scalability).
// 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
// is a spare P, unpark a thread and handoff it the thread and the goroutine.
// This would lead to thread state thrashing, as the thread that readied the
// goroutine can be out of work the very next moment, we will need to park it.
// Also, it would destroy locality of computation as we want to preserve
// dependent goroutines on the same thread; and introduce additional latency.
// 3. Unpark an additional thread whenever we ready a goroutine and there is an
// idle P, but don't do handoff. This would lead to excessive thread parking/
// unparking as the additional threads will instantly park without discovering
// any work to do.
//
// The current approach:
// We unpark an additional thread when we ready a goroutine if (1) there is an
// idle P and there are no "spinning" worker threads. A worker thread is considered
// spinning if it is out of local work and did not find work in global run queue/
// netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning.
// Threads unparked this way are also considered spinning; we don't do goroutine
// handoff so such threads are out of work initially. Spinning threads do some
// spinning looking for work in per-P run queues before parking. If a spinning
// thread finds work it takes itself out of the spinning state and proceeds to
// execution. If it does not find work it takes itself out of the spinning state
// and then parks.
// If there is at least one spinning thread (sched.nmspinning>1), we don't unpark
// new threads when readying goroutines. To compensate for that, if the last spinning
// thread finds work and stops spinning, it must unpark a new spinning thread.
// This approach smooths out unjustified spikes of thread unparking,
// but at the same time guarantees eventual maximal CPU parallelism utilization.
//
// The main implementation complication is that we need to be very careful during
// spinning->non-spinning thread transition. This transition can race with submission
// of a new goroutine, and either one part or another needs to unpark another worker
// thread. If they both fail to do that, we can end up with semi-persistent CPU
// underutilization. The general pattern for goroutine readying is: submit a goroutine
// to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning.
// The general pattern for spinning->non-spinning transition is: decrement nmspinning,
// #StoreLoad-style memory barrier, check all per-P work queues for new work.
// Note that all this complexity does not apply to global run queue as we are not
// sloppy about thread unparking when submitting to global queue. Also see comments
// for nmspinning manipulation.
var (
m0 m
g0 g
raceprocctx0 uintptr
)
//go:linkname runtime_init runtime.init
func runtime_init()
//go:linkname main_init main.init
func main_init()
// main_init_done is a signal used by cgocallbackg that initialization
// has been completed. It is made before _cgo_notify_runtime_init_done,
// so all cgo calls can rely on it existing. When main_init is complete,
// it is closed, meaning cgocallbackg can reliably receive from it.
var main_init_done chan bool
//go:linkname main_main main.main
func main_main()
// mainStarted indicates that the main M has started.
var mainStarted bool
// runtimeInitTime is the nanotime() at which the runtime started.
var runtimeInitTime int64
// Value to use for signal mask for newly created M's.
var initSigmask sigset
// The main goroutine.
func main() {
g := getg()
// Racectx of m0->g0 is used only as the parent of the main goroutine.
// It must not be used for anything else.
g.m.g0.racectx = 0
// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
// Using decimal instead of binary GB and MB because
// they look nicer in the stack overflow failure message.
if sys.PtrSize == 8 {
maxstacksize = 1000000000
} else {
maxstacksize = 250000000
}
// Allow newproc to start new Ms.
mainStarted = true
if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
systemstack(func() {
newm(sysmon, nil)
})
}
// Lock the main goroutine onto this, the main OS thread,
// during initialization. Most programs won't care, but a few
// do require certain calls to be made by the main thread.
// Those can arrange for main.main to run in the main thread
// by calling runtime.LockOSThread during initialization
// to preserve the lock.
lockOSThread()
if g.m != &m0 {
throw("runtime.main not on m0")
}
runtime_init() // must be before defer
if nanotime() == 0 {
throw("nanotime returning zero")
}
// Defer unlock so that runtime.Goexit during init does the unlock too.
needUnlock := true
defer func() {
if needUnlock {
unlockOSThread()
}
}()
// Record when the world started.
runtimeInitTime = nanotime()
gcenable()
main_init_done = make(chan bool)
if iscgo {
if _cgo_thread_start == nil {
throw("_cgo_thread_start missing")
}
if GOOS != "windows" {
if _cgo_setenv == nil {
throw("_cgo_setenv missing")
}
if _cgo_unsetenv == nil {
throw("_cgo_unsetenv missing")
}
}
if _cgo_notify_runtime_init_done == nil {
throw("_cgo_notify_runtime_init_done missing")
}
// Start the template thread in case we enter Go from
// a C-created thread and need to create a new thread.
startTemplateThread()
cgocall(_cgo_notify_runtime_init_done, nil)
}
fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
fn()
close(main_init_done)
needUnlock = false
unlockOSThread()
if isarchive || islibrary {
// A program compiled with -buildmode=c-archive or c-shared
// has a main, but it is not executed.
return
}
fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
fn()
if raceenabled {
racefini()
}
// Make racy client program work: if panicking on
// another goroutine at the same time as main returns,
// let the other goroutine finish printing the panic trace.
// Once it does, it will exit. See issues 3934 and 20018.
if atomic.Load(&runningPanicDefers) != 0 {
// Running deferred functions should not take long.
for c := 0; c < 1000; c++ {
if atomic.Load(&runningPanicDefers) == 0 {
break
}
Gosched()
}
}
if atomic.Load(&panicking) != 0 {
gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
}
exit(0)
for {
var x *int32
*x = 0
}
}
// os_beforeExit is called from os.Exit(0).
//go:linkname os_beforeExit os.runtime_beforeExit
func os_beforeExit() {
if raceenabled {
racefini()
}
}
// start forcegc helper goroutine
func init() {
go forcegchelper()
}
func forcegchelper() {
forcegc.g = getg()
for {
lock(&forcegc.lock)
if forcegc.idle != 0 {
throw("forcegc: phase error")
}
atomic.Store(&forcegc.idle, 1)
goparkunlock(&forcegc.lock, waitReasonForceGGIdle, traceEvGoBlock, 1)
// this goroutine is explicitly resumed by sysmon
if debug.gctrace > 0 {
println("GC forced")
}
// Time-triggered, fully concurrent.
gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()})
}
}
//go:nosplit
// Gosched yields the processor, allowing other goroutines to run. It does not
// suspend the current goroutine, so execution resumes automatically.
func Gosched() {
checkTimeouts()
mcall(gosched_m)
}
// goschedguarded yields the processor like gosched, but also checks
// for forbidden states and opts out of the yield in those cases.
//go:nosplit
func goschedguarded() {
mcall(goschedguarded_m)
}
// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
// unlockf must not access this G's stack, as it may be moved between
// the call to gopark and the call to unlockf.
// Reason explains why the goroutine has been parked.
// It is displayed in stack traces and heap dumps.
// Reasons should be unique and descriptive.
// Do not re-use reasons, add new ones.
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
if reason != waitReasonSleep {
checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy
}
mp := acquirem()
gp := mp.curg
status := readgstatus(gp)
if status != _Grunning && status != _Gscanrunning {
throw("gopark: bad g status")
}
mp.waitlock = lock
mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf))
gp.waitreason = reason
mp.waittraceev = traceEv
mp.waittraceskip = traceskip
releasem(mp)
// can't do anything that might move the G between Ms here.
mcall(park_m)
}
// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling goready(gp).
func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) {
gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip)
}
func goready(gp *g, traceskip int) {
systemstack(func() {
ready(gp, traceskip, true)
})
}
//go:nosplit
func acquireSudog() *sudog {
// Delicate dance: the semaphore implementation calls
// acquireSudog, acquireSudog calls new(sudog),
// new calls malloc, malloc can call the garbage collector,
// and the garbage collector calls the semaphore implementation
// in stopTheWorld.
// Break the cycle by doing acquirem/releasem around new(sudog).
// The acquirem/releasem increments m.locks during new(sudog),
// which keeps the garbage collector from being invoked.
mp := acquirem()
pp := mp.p.ptr()
if len(pp.sudogcache) == 0 {
lock(&sched.sudoglock)
// First, try to grab a batch from central cache.
for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
s := sched.sudogcache
sched.sudogcache = s.next
s.next = nil
pp.sudogcache = append(pp.sudogcache, s)
}
unlock(&sched.sudoglock)
// If the central cache is empty, allocate a new one.
if len(pp.sudogcache) == 0 {
pp.sudogcache = append(pp.sudogcache, new(sudog))
}
}
n := len(pp.sudogcache)
s := pp.sudogcache[n-1]
pp.sudogcache[n-1] = nil
pp.sudogcache = pp.sudogcache[:n-1]
if s.elem != nil {
throw("acquireSudog: found s.elem != nil in cache")
}
releasem(mp)
return s
}
//go:nosplit
func releaseSudog(s *sudog) {
if s.elem != nil {
throw("runtime: sudog with non-nil elem")
}
if s.isSelect {
throw("runtime: sudog with non-false isSelect")
}
if s.next != nil {
throw("runtime: sudog with non-nil next")
}
if s.prev != nil {
throw("runtime: sudog with non-nil prev")
}
if s.waitlink != nil {
throw("runtime: sudog with non-nil waitlink")
}
if s.c != nil {
throw("runtime: sudog with non-nil c")
}
gp := getg()
if gp.param != nil {
throw("runtime: releaseSudog with non-nil gp.param")
}
mp := acquirem() // avoid rescheduling to another P
pp := mp.p.ptr()
if len(pp.sudogcache) == cap(pp.sudogcache) {
// Transfer half of local cache to the central cache.
var first, last *sudog
for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
n := len(pp.sudogcache)
p := pp.sudogcache[n-1]
pp.sudogcache[n-1] = nil
pp.sudogcache = pp.sudogcache[:n-1]
if first == nil {
first = p
} else {
last.next = p
}
last = p
}
lock(&sched.sudoglock)
last.next = sched.sudogcache
sched.sudogcache = first
unlock(&sched.sudoglock)
}
pp.sudogcache = append(pp.sudogcache, s)
releasem(mp)
}
// funcPC returns the entry PC of the function f.
// It assumes that f is a func value. Otherwise the behavior is undefined.
// CAREFUL: In programs with plugins, funcPC can return different values
// for the same function (because there are actually multiple copies of
// the same function in the address space). To be safe, don't use the
// results of this function in any == expression. It is only safe to
// use the result as an address at which to start executing code.
//go:nosplit
func funcPC(f interface{}) uintptr {
return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize))
}
// called from assembly
func badmcall(fn func(*g)) {
throw("runtime: mcall called on m->g0 stack")
}
func badmcall2(fn func(*g)) {
throw("runtime: mcall function returned")
}
func badreflectcall() {
panic(plainError("arg size to reflect.call more than 1GB"))
}
var badmorestackg0Msg = "fatal: morestack on g0\n"
//go:nosplit
//go:nowritebarrierrec
func badmorestackg0() {
sp := stringStructOf(&badmorestackg0Msg)
write(2, sp.str, int32(sp.len))
}
var badmorestackgsignalMsg = "fatal: morestack on gsignal\n"
//go:nosplit
//go:nowritebarrierrec
func badmorestackgsignal() {
sp := stringStructOf(&badmorestackgsignalMsg)
write(2, sp.str, int32(sp.len))
}
//go:nosplit
func badctxt() {
throw("ctxt != 0")
}
func lockedOSThread() bool {
gp := getg()
return gp.lockedm != 0 && gp.m.lockedg != 0
}
var (
allgs []*g
allglock mutex
)
func allgadd(gp *g) {
if readgstatus(gp) == _Gidle {
throw("allgadd: bad status Gidle")
}
lock(&allglock)
allgs = append(allgs, gp)
allglen = uintptr(len(allgs))
unlock(&allglock)
}
const (
// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
_GoidCacheBatch = 16
)
// cpuinit extracts the environment variable GODEBUG from the environment on
// Unix-like operating systems and calls internal/cpu.Initialize.
func cpuinit() {
const prefix = "GODEBUG="
var env string
switch GOOS {
case "aix", "darwin", "dragonfly", "freebsd", "netbsd", "openbsd", "solaris", "linux":
cpu.DebugOptions = true
// Similar to goenv_unix but extracts the environment value for
// GODEBUG directly.
// TODO(moehrmann): remove when general goenvs() can be called before cpuinit()
n := int32(0)
for argv_index(argv, argc+1+n) != nil {
n++
}
for i := int32(0); i < n; i++ {
p := argv_index(argv, argc+1+i)
s := *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(p), findnull(p)}))
if hasPrefix(s, prefix) {
env = gostring(p)[len(prefix):]
break
}
}
}
cpu.Initialize(env)
// Support cpu feature variables are used in code generated by the compiler
// to guard execution of instructions that can not be assumed to be always supported.
x86HasPOPCNT = cpu.X86.HasPOPCNT
x86HasSSE41 = cpu.X86.HasSSE41
arm64HasATOMICS = cpu.ARM64.HasATOMICS
}
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime·mstart
//
// The new G calls runtime·main.
func schedinit() {
// raceinit must be the first call to race detector.
// In particular, it must be done before mallocinit below calls racemapshadow.
_g_ := getg()
if raceenabled {
_g_.racectx, raceprocctx0 = raceinit()
}
sched.maxmcount = 10000
tracebackinit()
moduledataverify()
stackinit()
mallocinit()
mcommoninit(_g_.m)
cpuinit() // must run before alginit
alginit() // maps must not be used before this call
modulesinit() // provides activeModules
typelinksinit() // uses maps, activeModules
itabsinit() // uses activeModules
msigsave(_g_.m)
initSigmask = _g_.m.sigmask
goargs()
goenvs()
parsedebugvars()
gcinit()
sched.lastpoll = uint64(nanotime())
procs := ncpu
if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
procs = n
}
if procresize(procs) != nil {
throw("unknown runnable goroutine during bootstrap")
}
// For cgocheck > 1, we turn on the write barrier at all times
// and check all pointer writes. We can't do this until after
// procresize because the write barrier needs a P.
if debug.cgocheck > 1 {
writeBarrier.cgo = true
writeBarrier.enabled = true
for _, p := range allp {
p.wbBuf.reset()
}
}
if buildVersion == "" {
// Condition should never trigger. This code just serves
// to ensure runtime·buildVersion is kept in the resulting binary.
buildVersion = "unknown"
}
}
func dumpgstatus(gp *g) {
_g_ := getg()
print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
}
func checkmcount() {
// sched lock is held
if mcount() > sched.maxmcount {
print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
throw("thread exhaustion")
}
}
func mcommoninit(mp *m) {
_g_ := getg()
// g0 stack won't make sense for user (and is not necessary unwindable).
if _g_ != _g_.m.g0 {
callers(1, mp.createstack[:])
}
lock(&sched.lock)
if sched.mnext+1 < sched.mnext {
throw("runtime: thread ID overflow")
}
mp.id = sched.mnext
sched.mnext++
checkmcount()
mp.fastrand[0] = 1597334677 * uint32(mp.id)
mp.fastrand[1] = uint32(cputicks())
if mp.fastrand[0]|mp.fastrand[1] == 0 {
mp.fastrand[1] = 1
}
mpreinit(mp)
if mp.gsignal != nil {
mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
}
// Add to allm so garbage collector doesn't free g->m
// when it is just in a register or thread-local storage.
mp.alllink = allm
// NumCgoCall() iterates over allm w/o schedlock,
// so we need to publish it safely.
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
unlock(&sched.lock)
// Allocate memory to hold a cgo traceback if the cgo call crashes.
if iscgo || GOOS == "solaris" || GOOS == "windows" {
mp.cgoCallers = new(cgoCallers)
}
}
// Mark gp ready to run.
func ready(gp *g, traceskip int, next bool) {
if trace.enabled {
traceGoUnpark(gp, traceskip)
}
status := readgstatus(gp)
// Mark runnable.
_g_ := getg()
_g_.m.locks++ // disable preemption because it can be holding p in a local var
if status&^_Gscan != _Gwaiting {
dumpgstatus(gp)
throw("bad g->status in ready")
}
// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
casgstatus(gp, _Gwaiting, _Grunnable)
runqput(_g_.m.p.ptr(), gp, next)
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
wakep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in Case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
}
// freezeStopWait is a large value that freezetheworld sets
// sched.stopwait to in order to request that all Gs permanently stop.
const freezeStopWait = 0x7fffffff
// freezing is set to non-zero if the runtime is trying to freeze the
// world.
var freezing uint32
// Similar to stopTheWorld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
func freezetheworld() {
atomic.Store(&freezing, 1)
// stopwait and preemption requests can be lost
// due to races with concurrently executing threads,
// so try several times
for i := 0; i < 5; i++ {
// this should tell the scheduler to not start any new goroutines
sched.stopwait = freezeStopWait
atomic.Store(&sched.gcwaiting, 1)
// this should stop running goroutines
if !preemptall() {
break // no running goroutines
}
usleep(1000)
}
// to be sure
usleep(1000)
preemptall()
usleep(1000)
}
func isscanstatus(status uint32) bool {
if status == _Gscan {
throw("isscanstatus: Bad status Gscan")
}
return status&_Gscan == _Gscan
}
// All reads and writes of g's status go through readgstatus, casgstatus
// castogscanstatus, casfrom_Gscanstatus.
//go:nosplit
func readgstatus(gp *g) uint32 {
return atomic.Load(&gp.atomicstatus)
}
// Ownership of gcscanvalid:
//
// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
// then gp owns gp.gcscanvalid, and other goroutines must not modify it.
//
// Otherwise, a second goroutine can lock the scan state by setting _Gscan
// in the status bit and then modify gcscanvalid, and then unlock the scan state.
//
// Note that the first condition implies an exception to the second:
// if a second goroutine changes gp's status to _Grunning|_Gscan,
// that second goroutine still does not have the right to modify gcscanvalid.
// The Gscanstatuses are acting like locks and this releases them.
// If it proves to be a performance hit we should be able to make these
// simple atomic stores but for now we are going to throw if
// we see an inconsistent state.
func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
success := false
// Check that transition is valid.
switch oldval {
default:
print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
dumpgstatus(gp)
throw("casfrom_Gscanstatus:top gp->status is not in scan state")
case _Gscanrunnable,
_Gscanwaiting,
_Gscanrunning,
_Gscansyscall:
if newval == oldval&^_Gscan {
success = atomic.Cas(&gp.atomicstatus, oldval, newval)
}
}
if !success {
print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
dumpgstatus(gp)
throw("casfrom_Gscanstatus: gp->status is not in scan state")
}
}
// This will return false if the gp is not in the expected status and the cas fails.
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
func castogscanstatus(gp *g, oldval, newval uint32) bool {
switch oldval {
case _Grunnable,
_Grunning,
_Gwaiting,
_Gsyscall:
if newval == oldval|_Gscan {
return atomic.Cas(&gp.atomicstatus, oldval, newval)
}
}
print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
throw("castogscanstatus")
panic("not reached")
}
// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
// and casfrom_Gscanstatus instead.
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
// put it in the Gscan state is finished.
//go:nosplit
func casgstatus(gp *g, oldval, newval uint32) {
if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
systemstack(func() {
print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
throw("casgstatus: bad incoming values")
})
}
if oldval == _Grunning && gp.gcscanvalid {
// If oldvall == _Grunning, then the actual status must be
// _Grunning or _Grunning|_Gscan; either way,
// we own gp.gcscanvalid, so it's safe to read.
// gp.gcscanvalid must not be true when we are running.
systemstack(func() {
print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
throw("casgstatus")
})
}
// See https://golang.org/cl/21503 for justification of the yield delay.
const yieldDelay = 5 * 1000
var nextYield int64
// loop if gp->atomicstatus is in a scan state giving
// GC time to finish and change the state to oldval.
for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
throw("casgstatus: waiting for Gwaiting but is Grunnable")
}
// Help GC if needed.
// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
// gp.preemptscan = false
// systemstack(func() {
// gcphasework(gp)
// })
// }
// But meanwhile just yield.
if i == 0 {
nextYield = nanotime() + yieldDelay
}
if nanotime() < nextYield {
for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
procyield(1)
}
} else {
osyield()
nextYield = nanotime() + yieldDelay/2
}
}
if newval == _Grunning {
gp.gcscanvalid = false
}
}
// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
// Returns old status. Cannot call casgstatus directly, because we are racing with an
// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
// it would loop waiting for the status to go back to Gwaiting, which it never will.
//go:nosplit
func casgcopystack(gp *g) uint32 {
for {
oldstatus := readgstatus(gp) &^ _Gscan
if oldstatus != _Gwaiting && oldstatus != _Grunnable {
throw("copystack: bad status, not Gwaiting or Grunnable")
}
if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
return oldstatus
}
}
}
// scang blocks until gp's stack has been scanned.
// It might be scanned by scang or it might be scanned by the goroutine itself.
// Either way, the stack scan has completed when scang returns.
func scang(gp *g, gcw *gcWork) {
// Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
// Nothing is racing with us now, but gcscandone might be set to true left over
// from an earlier round of stack scanning (we scan twice per GC).
// We use gcscandone to record whether the scan has been done during this round.
gp.gcscandone = false
// See https://golang.org/cl/21503 for justification of the yield delay.
const yieldDelay = 10 * 1000
var nextYield int64
// Endeavor to get gcscandone set to true,
// either by doing the stack scan ourselves or by coercing gp to scan itself.
// gp.gcscandone can transition from false to true when we're not looking
// (if we asked for preemption), so any time we lock the status using
// castogscanstatus we have to double-check that the scan is still not done.
loop:
for i := 0; !gp.gcscandone; i++ {
switch s := readgstatus(gp); s {
default:
dumpgstatus(gp)
throw("stopg: invalid status")
case _Gdead:
// No stack.
gp.gcscandone = true
break loop
case _Gcopystack:
// Stack being switched. Go around again.
case _Grunnable, _Gsyscall, _Gwaiting:
// Claim goroutine by setting scan bit.
// Racing with execution or readying of gp.
// The scan bit keeps them from running
// the goroutine until we're done.
if castogscanstatus(gp, s, s|_Gscan) {
if !gp.gcscandone {
scanstack(gp, gcw)
gp.gcscandone = true
}
restartg(gp)
break loop
}
case _Gscanwaiting:
// newstack is doing a scan for us right now. Wait.
case _Grunning:
// Goroutine running. Try to preempt execution so it can scan itself.
// The preemption handler (in newstack) does the actual scan.
// Optimization: if there is already a pending preemption request
// (from the previous loop iteration), don't bother with the atomics.
if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
break
}
// Ask for preemption and self scan.
if castogscanstatus(gp, _Grunning, _Gscanrunning) {
if !gp.gcscandone {
gp.preemptscan = true
gp.preempt = true
gp.stackguard0 = stackPreempt
}
casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
}
}
if i == 0 {
nextYield = nanotime() + yieldDelay
}
if nanotime() < nextYield {
procyield(10)
} else {
osyield()
nextYield = nanotime() + yieldDelay/2
}
}
gp.preemptscan = false // cancel scan request if no longer needed
}
// The GC requests that this routine be moved from a scanmumble state to a mumble state.
func restartg(gp *g) {
s := readgstatus(gp)
switch s {
default:
dumpgstatus(gp)
throw("restartg: unexpected status")
case _Gdead:
// ok
case _Gscanrunnable,
_Gscanwaiting,
_Gscansyscall:
casfrom_Gscanstatus(gp, s, s&^_Gscan)
}
}
// stopTheWorld stops all P's from executing goroutines, interrupting
// all goroutines at GC safe points and records reason as the reason
// for the stop. On return, only the current goroutine's P is running.
// stopTheWorld must not be called from a system stack and the caller
// must not hold worldsema. The caller must call startTheWorld when
// other P's should resume execution.
//
// stopTheWorld is safe for multiple goroutines to call at the
// same time. Each will execute its own stop, and the stops will
// be serialized.
//
// This is also used by routines that do stack dumps. If the system is
// in panic or being exited, this may not reliably stop all
// goroutines.
func stopTheWorld(reason string) {
semacquire(&worldsema)
getg().m.preemptoff = reason
systemstack(stopTheWorldWithSema)
}
// startTheWorld undoes the effects of stopTheWorld.
func startTheWorld() {
systemstack(func() { startTheWorldWithSema(false) })
// worldsema must be held over startTheWorldWithSema to ensure
// gomaxprocs cannot change while worldsema is held.
semrelease(&worldsema)
getg().m.preemptoff = ""
}
// Holding worldsema grants an M the right to try to stop the world
// and prevents gomaxprocs from changing concurrently.
var worldsema uint32 = 1
// stopTheWorldWithSema is the core implementation of stopTheWorld.
// The caller is responsible for acquiring worldsema and disabling
// preemption first and then should stopTheWorldWithSema on the system
// stack:
//
// semacquire(&worldsema, 0)
// m.preemptoff = "reason"
// systemstack(stopTheWorldWithSema)
//
// When finished, the caller must either call startTheWorld or undo
// these three operations separately:
//
// m.preemptoff = ""
// systemstack(startTheWorldWithSema)
// semrelease(&worldsema)
//
// It is allowed to acquire worldsema once and then execute multiple