-
Notifications
You must be signed in to change notification settings - Fork 17.7k
/
asm_amd64.s
2195 lines (1995 loc) · 48.1 KB
/
asm_amd64.s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// copy arguments forward on an even stack
MOVQ DI, AX // argc
MOVQ SI, BX // argv
SUBQ $(4*8+7), SP // 2args 2auto
ANDQ $~15, SP
MOVQ AX, 16(SP)
MOVQ BX, 24(SP)
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVQ $runtime·g0(SB), DI
LEAQ (-64*1024+104)(SP), BX
MOVQ BX, g_stackguard0(DI)
MOVQ BX, g_stackguard1(DI)
MOVQ BX, (g_stack+stack_lo)(DI)
MOVQ SP, (g_stack+stack_hi)(DI)
// find out information about the processor we're on
MOVQ $0, AX
CPUID
MOVQ AX, SI
CMPQ AX, $0
JE nocpuinfo
// Figure out how to serialize RDTSC.
// On Intel processors LFENCE is enough. AMD requires MFENCE.
// Don't know about the rest, so let's do MFENCE.
CMPL BX, $0x756E6547 // "Genu"
JNE notintel
CMPL DX, $0x49656E69 // "ineI"
JNE notintel
CMPL CX, $0x6C65746E // "ntel"
JNE notintel
MOVB $1, runtime·lfenceBeforeRdtsc(SB)
notintel:
// Load EAX=1 cpuid flags
MOVQ $1, AX
CPUID
MOVL CX, runtime·cpuid_ecx(SB)
MOVL DX, runtime·cpuid_edx(SB)
// Load EAX=7/ECX=0 cpuid flags
CMPQ SI, $7
JLT no7
MOVL $7, AX
MOVL $0, CX
CPUID
MOVL BX, runtime·cpuid_ebx7(SB)
no7:
// Detect AVX and AVX2 as per 14.7.1 Detection of AVX2 chapter of [1]
// [1] 64-ia-32-architectures-software-developer-manual-325462.pdf
// http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
MOVL runtime·cpuid_ecx(SB), CX
ANDL $0x18000000, CX // check for OSXSAVE and AVX bits
CMPL CX, $0x18000000
JNE noavx
MOVL $0, CX
// For XGETBV, OSXSAVE bit is required and sufficient
XGETBV
ANDL $6, AX
CMPL AX, $6 // Check for OS support of YMM registers
JNE noavx
MOVB $1, runtime·support_avx(SB)
TESTL $(1<<5), runtime·cpuid_ebx7(SB) // check for AVX2 bit
JEQ noavx2
MOVB $1, runtime·support_avx2(SB)
JMP nocpuinfo
noavx:
MOVB $0, runtime·support_avx(SB)
noavx2:
MOVB $0, runtime·support_avx2(SB)
nocpuinfo:
// if there is an _cgo_init, call it.
MOVQ _cgo_init(SB), AX
TESTQ AX, AX
JZ needtls
// g0 already in DI
MOVQ DI, CX // Win64 uses CX for first parameter
MOVQ $setg_gcc<>(SB), SI
CALL AX
// update stackguard after _cgo_init
MOVQ $runtime·g0(SB), CX
MOVQ (g_stack+stack_lo)(CX), AX
ADDQ $const__StackGuard, AX
MOVQ AX, g_stackguard0(CX)
MOVQ AX, g_stackguard1(CX)
#ifndef GOOS_windows
JMP ok
#endif
needtls:
#ifdef GOOS_plan9
// skip TLS setup on Plan 9
JMP ok
#endif
#ifdef GOOS_solaris
// skip TLS setup on Solaris
JMP ok
#endif
LEAQ runtime·m0+m_tls(SB), DI
CALL runtime·settls(SB)
// store through it, to make sure it works
get_tls(BX)
MOVQ $0x123, g(BX)
MOVQ runtime·m0+m_tls(SB), AX
CMPQ AX, $0x123
JEQ 2(PC)
MOVL AX, 0 // abort
ok:
// set the per-goroutine and per-mach "registers"
get_tls(BX)
LEAQ runtime·g0(SB), CX
MOVQ CX, g(BX)
LEAQ runtime·m0(SB), AX
// save m->g0 = g0
MOVQ CX, m_g0(AX)
// save m0 to g0->m
MOVQ AX, g_m(CX)
CLD // convention is D is always left cleared
CALL runtime·check(SB)
MOVL 16(SP), AX // copy argc
MOVL AX, 0(SP)
MOVQ 24(SP), AX // copy argv
MOVQ AX, 8(SP)
CALL runtime·args(SB)
CALL runtime·osinit(SB)
CALL runtime·schedinit(SB)
// create a new goroutine to start program
MOVQ $runtime·mainPC(SB), AX // entry
PUSHQ AX
PUSHQ $0 // arg size
CALL runtime·newproc(SB)
POPQ AX
POPQ AX
// start this M
CALL runtime·mstart(SB)
MOVL $0xf1, 0xf1 // crash
RET
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
BYTE $0xcc
RET
TEXT runtime·asminit(SB),NOSPLIT,$0-0
// No per-thread init.
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $0-8
MOVQ buf+0(FP), AX // gobuf
LEAQ buf+0(FP), BX // caller's SP
MOVQ BX, gobuf_sp(AX)
MOVQ 0(SP), BX // caller's PC
MOVQ BX, gobuf_pc(AX)
MOVQ $0, gobuf_ret(AX)
MOVQ $0, gobuf_ctxt(AX)
MOVQ BP, gobuf_bp(AX)
get_tls(CX)
MOVQ g(CX), BX
MOVQ BX, gobuf_g(AX)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $0-8
MOVQ buf+0(FP), BX // gobuf
MOVQ gobuf_g(BX), DX
MOVQ 0(DX), CX // make sure g != nil
get_tls(CX)
MOVQ DX, g(CX)
MOVQ gobuf_sp(BX), SP // restore SP
MOVQ gobuf_ret(BX), AX
MOVQ gobuf_ctxt(BX), DX
MOVQ gobuf_bp(BX), BP
MOVQ $0, gobuf_sp(BX) // clear to help garbage collector
MOVQ $0, gobuf_ret(BX)
MOVQ $0, gobuf_ctxt(BX)
MOVQ $0, gobuf_bp(BX)
MOVQ gobuf_pc(BX), BX
JMP BX
// func mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $0-8
MOVQ fn+0(FP), DI
get_tls(CX)
MOVQ g(CX), AX // save state in g->sched
MOVQ 0(SP), BX // caller's PC
MOVQ BX, (g_sched+gobuf_pc)(AX)
LEAQ fn+0(FP), BX // caller's SP
MOVQ BX, (g_sched+gobuf_sp)(AX)
MOVQ AX, (g_sched+gobuf_g)(AX)
MOVQ BP, (g_sched+gobuf_bp)(AX)
// switch to m->g0 & its stack, call fn
MOVQ g(CX), BX
MOVQ g_m(BX), BX
MOVQ m_g0(BX), SI
CMPQ SI, AX // if g == m->g0 call badmcall
JNE 3(PC)
MOVQ $runtime·badmcall(SB), AX
JMP AX
MOVQ SI, g(CX) // g = m->g0
MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp
PUSHQ AX
MOVQ DI, DX
MOVQ 0(DI), DI
CALL DI
POPQ AX
MOVQ $runtime·badmcall2(SB), AX
JMP AX
RET
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVQ fn+0(FP), DI // DI = fn
get_tls(CX)
MOVQ g(CX), AX // AX = g
MOVQ g_m(AX), BX // BX = m
MOVQ m_gsignal(BX), DX // DX = gsignal
CMPQ AX, DX
JEQ noswitch
MOVQ m_g0(BX), DX // DX = g0
CMPQ AX, DX
JEQ noswitch
MOVQ m_curg(BX), R8
CMPQ AX, R8
JEQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
MOVQ $runtime·badsystemstack(SB), AX
CALL AX
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVQ $runtime·systemstack_switch(SB), SI
MOVQ SI, (g_sched+gobuf_pc)(AX)
MOVQ SP, (g_sched+gobuf_sp)(AX)
MOVQ AX, (g_sched+gobuf_g)(AX)
MOVQ BP, (g_sched+gobuf_bp)(AX)
// switch to g0
MOVQ DX, g(CX)
MOVQ (g_sched+gobuf_sp)(DX), BX
// make it look like mstart called systemstack on g0, to stop traceback
SUBQ $8, BX
MOVQ $runtime·mstart(SB), DX
MOVQ DX, 0(BX)
MOVQ BX, SP
// call target function
MOVQ DI, DX
MOVQ 0(DI), DI
CALL DI
// switch back to g
get_tls(CX)
MOVQ g(CX), AX
MOVQ g_m(AX), BX
MOVQ m_curg(BX), AX
MOVQ AX, g(CX)
MOVQ (g_sched+gobuf_sp)(AX), SP
MOVQ $0, (g_sched+gobuf_sp)(AX)
RET
noswitch:
// already on m stack, just call directly
MOVQ DI, DX
MOVQ 0(DI), DI
CALL DI
RET
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$0-0
// Cannot grow scheduler stack (m->g0).
get_tls(CX)
MOVQ g(CX), BX
MOVQ g_m(BX), BX
MOVQ m_g0(BX), SI
CMPQ g(CX), SI
JNE 2(PC)
INT $3
// Cannot grow signal stack (m->gsignal).
MOVQ m_gsignal(BX), SI
CMPQ g(CX), SI
JNE 2(PC)
INT $3
// Called from f.
// Set m->morebuf to f's caller.
MOVQ 8(SP), AX // f's caller's PC
MOVQ AX, (m_morebuf+gobuf_pc)(BX)
LEAQ 16(SP), AX // f's caller's SP
MOVQ AX, (m_morebuf+gobuf_sp)(BX)
get_tls(CX)
MOVQ g(CX), SI
MOVQ SI, (m_morebuf+gobuf_g)(BX)
// Set g->sched to context in f.
MOVQ 0(SP), AX // f's PC
MOVQ AX, (g_sched+gobuf_pc)(SI)
MOVQ SI, (g_sched+gobuf_g)(SI)
LEAQ 8(SP), AX // f's SP
MOVQ AX, (g_sched+gobuf_sp)(SI)
MOVQ DX, (g_sched+gobuf_ctxt)(SI)
MOVQ BP, (g_sched+gobuf_bp)(SI)
// Call newstack on m->g0's stack.
MOVQ m_g0(BX), BX
MOVQ BX, g(CX)
MOVQ (g_sched+gobuf_sp)(BX), SP
CALL runtime·newstack(SB)
MOVQ $0, 0x1003 // crash if newstack returns
RET
// morestack but not preserving ctxt.
TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
MOVL $0, DX
JMP runtime·morestack(SB)
TEXT runtime·stackBarrier(SB),NOSPLIT,$0
// We came here via a RET to an overwritten return PC.
// AX may be live. Other registers are available.
// Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal.
get_tls(CX)
MOVQ g(CX), CX
MOVQ (g_stkbar+slice_array)(CX), DX
MOVQ g_stkbarPos(CX), BX
IMULQ $stkbar__size, BX // Too big for SIB.
MOVQ stkbar_savedLRPtr(DX)(BX*1), R8
MOVQ stkbar_savedLRVal(DX)(BX*1), BX
// Assert that we're popping the right saved LR.
ADDQ $8, R8
CMPQ R8, SP
JEQ 2(PC)
MOVL $0, 0
// Record that this stack barrier was hit.
ADDQ $1, g_stkbarPos(CX)
// Jump to the original return PC.
JMP BX
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
CMPQ CX, $MAXSIZE; \
JA 3(PC); \
MOVQ $NAME(SB), AX; \
JMP AX
// Note: can't just "JMP NAME(SB)" - bad inlining results.
TEXT reflect·call(SB), NOSPLIT, $0-0
JMP ·reflectcall(SB)
TEXT ·reflectcall(SB), NOSPLIT, $0-32
MOVLQZX argsize+24(FP), CX
// NOTE(rsc): No call16, because CALLFN needs four words
// of argument space to invoke callwritebarrier.
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVQ $runtime·badreflectcall(SB), AX
JMP AX
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-32; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVQ argptr+16(FP), SI; \
MOVLQZX argsize+24(FP), CX; \
MOVQ SP, DI; \
REP;MOVSB; \
/* call function */ \
MOVQ f+8(FP), DX; \
PCDATA $PCDATA_StackMapIndex, $0; \
CALL (DX); \
/* copy return values back */ \
MOVQ argptr+16(FP), DI; \
MOVLQZX argsize+24(FP), CX; \
MOVLQZX retoffset+28(FP), BX; \
MOVQ SP, SI; \
ADDQ BX, DI; \
ADDQ BX, SI; \
SUBQ BX, CX; \
REP;MOVSB; \
/* execute write barrier updates */ \
MOVQ argtype+0(FP), DX; \
MOVQ argptr+16(FP), DI; \
MOVLQZX argsize+24(FP), CX; \
MOVLQZX retoffset+28(FP), BX; \
MOVQ DX, 0(SP); \
MOVQ DI, 8(SP); \
MOVQ CX, 16(SP); \
MOVQ BX, 24(SP); \
CALL runtime·callwritebarrier(SB); \
RET
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)
TEXT runtime·procyield(SB),NOSPLIT,$0-0
MOVL cycles+0(FP), AX
again:
PAUSE
SUBL $1, AX
JNZ again
RET
TEXT ·publicationBarrier(SB),NOSPLIT,$0-0
// Stores are already ordered on x86, so this is just a
// compile barrier.
RET
// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. pop the caller
// 2. sub 5 bytes from the callers return
// 3. jmp to the argument
TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16
MOVQ fv+0(FP), DX // fn
MOVQ argp+8(FP), BX // caller sp
LEAQ -8(BX), SP // caller sp after CALL
MOVQ -8(SP), BP // restore BP as if deferreturn returned (harmless if framepointers not in use)
SUBQ $5, (SP) // return to CALL again
MOVQ 0(DX), BX
JMP BX // but first run the deferred function
// Save state of caller into g->sched. Smashes R8, R9.
TEXT gosave<>(SB),NOSPLIT,$0
get_tls(R8)
MOVQ g(R8), R8
MOVQ 0(SP), R9
MOVQ R9, (g_sched+gobuf_pc)(R8)
LEAQ 8(SP), R9
MOVQ R9, (g_sched+gobuf_sp)(R8)
MOVQ $0, (g_sched+gobuf_ret)(R8)
MOVQ $0, (g_sched+gobuf_ctxt)(R8)
MOVQ BP, (g_sched+gobuf_bp)(R8)
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
MOVQ fn+0(FP), AX
MOVQ arg+8(FP), BX
MOVQ SP, DX
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
get_tls(CX)
MOVQ g(CX), R8
CMPQ R8, $0
JEQ nosave
MOVQ g_m(R8), R8
MOVQ m_g0(R8), SI
MOVQ g(CX), DI
CMPQ SI, DI
JEQ nosave
MOVQ m_gsignal(R8), SI
CMPQ SI, DI
JEQ nosave
// Switch to system stack.
MOVQ m_g0(R8), SI
CALL gosave<>(SB)
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), SP
// Now on a scheduling stack (a pthread-created stack).
// Make sure we have enough room for 4 stack-backed fast-call
// registers as per windows amd64 calling convention.
SUBQ $64, SP
ANDQ $~15, SP // alignment for gcc ABI
MOVQ DI, 48(SP) // save g
MOVQ (g_stack+stack_hi)(DI), DI
SUBQ DX, DI
MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback)
MOVQ BX, DI // DI = first argument in AMD64 ABI
MOVQ BX, CX // CX = first argument in Win64
CALL AX
// Restore registers, g, stack pointer.
get_tls(CX)
MOVQ 48(SP), DI
MOVQ (g_stack+stack_hi)(DI), SI
SUBQ 40(SP), SI
MOVQ DI, g(CX)
MOVQ SI, SP
MOVL AX, ret+16(FP)
RET
nosave:
// Running on a system stack, perhaps even without a g.
// Having no g can happen during thread creation or thread teardown
// (see needm/dropm on Solaris, for example).
// This code is like the above sequence but without saving/restoring g
// and without worrying about the stack moving out from under us
// (because we're on a system stack, not a goroutine stack).
// The above code could be used directly if already on a system stack,
// but then the only path through this code would be a rare case on Solaris.
// Using this code for all "already on system stack" calls exercises it more,
// which should help keep it correct.
SUBQ $64, SP
ANDQ $~15, SP
MOVQ $0, 48(SP) // where above code stores g, in case someone looks during debugging
MOVQ DX, 40(SP) // save original stack pointer
MOVQ BX, DI // DI = first argument in AMD64 ABI
MOVQ BX, CX // CX = first argument in Win64
CALL AX
MOVQ 40(SP), SI // restore original stack pointer
MOVQ SI, SP
MOVL AX, ret+16(FP)
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$32-32
LEAQ fn+0(FP), AX
MOVQ AX, 0(SP)
MOVQ frame+8(FP), AX
MOVQ AX, 8(SP)
MOVQ framesize+16(FP), AX
MOVQ AX, 16(SP)
MOVQ ctxt+24(FP), AX
MOVQ AX, 24(SP)
MOVQ $runtime·cgocallback_gofunc(SB), AX
CALL AX
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32
NO_LOCAL_POINTERS
// If g is nil, Go did not create the current thread.
// Call needm to obtain one m for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call through AX.
get_tls(CX)
#ifdef GOOS_windows
MOVL $0, BX
CMPQ CX, $0
JEQ 2(PC)
#endif
MOVQ g(CX), BX
CMPQ BX, $0
JEQ needm
MOVQ g_m(BX), BX
MOVQ BX, R8 // holds oldm until end of function
JMP havem
needm:
MOVQ $0, 0(SP)
MOVQ $runtime·needm(SB), AX
CALL AX
MOVQ 0(SP), R8
get_tls(CX)
MOVQ g(CX), BX
MOVQ g_m(BX), BX
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVQ m_g0(BX), SI
MOVQ SP, (g_sched+gobuf_sp)(SI)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
MOVQ m_g0(BX), SI
MOVQ (g_sched+gobuf_sp)(SI), AX
MOVQ AX, 0(SP)
MOVQ SP, (g_sched+gobuf_sp)(SI)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, 8(SP) holds the saved R8.
MOVQ m_curg(BX), SI
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
MOVQ (g_sched+gobuf_pc)(SI), BX
MOVQ BX, -8(DI)
// Compute the size of the frame, including return PC and, if
// GOEXPERIMENT=framepointer, the saved based pointer
MOVQ ctxt+24(FP), BX
LEAQ fv+0(FP), AX
SUBQ SP, AX
SUBQ AX, DI
MOVQ DI, SP
MOVQ R8, 8(SP)
MOVQ BX, 0(SP)
CALL runtime·cgocallbackg(SB)
MOVQ 8(SP), R8
// Compute the size of the frame again. FP and SP have
// completely different values here than they did above,
// but only their difference matters.
LEAQ fv+0(FP), AX
SUBQ SP, AX
// Restore g->sched (== m->curg->sched) from saved values.
get_tls(CX)
MOVQ g(CX), SI
MOVQ SP, DI
ADDQ AX, DI
MOVQ -8(DI), BX
MOVQ BX, (g_sched+gobuf_pc)(SI)
MOVQ DI, (g_sched+gobuf_sp)(SI)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVQ g(CX), BX
MOVQ g_m(BX), BX
MOVQ m_g0(BX), SI
MOVQ SI, g(CX)
MOVQ (g_sched+gobuf_sp)(SI), SP
MOVQ 0(SP), AX
MOVQ AX, (g_sched+gobuf_sp)(SI)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
CMPQ R8, $0
JNE 3(PC)
MOVQ $runtime·dropm(SB), AX
CALL AX
// Done!
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVQ gg+0(FP), BX
#ifdef GOOS_windows
CMPQ BX, $0
JNE settls
MOVQ $0, 0x28(GS)
RET
settls:
MOVQ g_m(BX), AX
LEAQ m_tls(AX), AX
MOVQ AX, 0x28(GS)
#endif
get_tls(CX)
MOVQ BX, g(CX)
RET
// void setg_gcc(G*); set g called from gcc.
TEXT setg_gcc<>(SB),NOSPLIT,$0
get_tls(AX)
MOVQ DI, g(AX)
RET
// check that SP is in range [g->stack.lo, g->stack.hi)
TEXT runtime·stackcheck(SB), NOSPLIT, $0-0
get_tls(CX)
MOVQ g(CX), AX
CMPQ (g_stack+stack_hi)(AX), SP
JHI 2(PC)
INT $3
CMPQ SP, (g_stack+stack_lo)(AX)
JHI 2(PC)
INT $3
RET
TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
MOVQ argp+0(FP),AX // addr of first arg
MOVQ -8(AX),AX // get calling pc
CMPQ AX, runtime·stackBarrierPC(SB)
JNE nobar
// Get original return PC.
CALL runtime·nextBarrierPC(SB)
MOVQ 0(SP), AX
nobar:
MOVQ AX, ret+8(FP)
RET
TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16
MOVQ argp+0(FP),AX // addr of first arg
MOVQ pc+8(FP), BX
MOVQ -8(AX), CX
CMPQ CX, runtime·stackBarrierPC(SB)
JEQ setbar
MOVQ BX, -8(AX) // set calling pc
RET
setbar:
// Set the stack barrier return PC.
MOVQ BX, 0(SP)
CALL runtime·setNextBarrierPC(SB)
RET
TEXT runtime·getcallersp(SB),NOSPLIT,$0-16
MOVQ argp+0(FP), AX
MOVQ AX, ret+8(FP)
RET
// func cputicks() int64
TEXT runtime·cputicks(SB),NOSPLIT,$0-0
CMPB runtime·lfenceBeforeRdtsc(SB), $1
JNE mfence
LFENCE
JMP done
mfence:
MFENCE
done:
RDTSC
SHLQ $32, DX
ADDQ DX, AX
MOVQ AX, ret+0(FP)
RET
// memhash_varlen(p unsafe.Pointer, h seed) uintptr
// redirects to memhash(p, h, size) using the size
// stored in the closure.
TEXT runtime·memhash_varlen(SB),NOSPLIT,$32-24
GO_ARGS
NO_LOCAL_POINTERS
MOVQ p+0(FP), AX
MOVQ h+8(FP), BX
MOVQ 8(DX), CX
MOVQ AX, 0(SP)
MOVQ BX, 8(SP)
MOVQ CX, 16(SP)
CALL runtime·memhash(SB)
MOVQ 24(SP), AX
MOVQ AX, ret+16(FP)
RET
// hash function using AES hardware instructions
TEXT runtime·aeshash(SB),NOSPLIT,$0-32
MOVQ p+0(FP), AX // ptr to data
MOVQ s+16(FP), CX // size
LEAQ ret+24(FP), DX
JMP runtime·aeshashbody(SB)
TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24
MOVQ p+0(FP), AX // ptr to string struct
MOVQ 8(AX), CX // length of string
MOVQ (AX), AX // string data
LEAQ ret+16(FP), DX
JMP runtime·aeshashbody(SB)
// AX: data
// CX: length
// DX: address to put return value
TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0
// Fill an SSE register with our seeds.
MOVQ h+8(FP), X0 // 64 bits of per-table hash seed
PINSRW $4, CX, X0 // 16 bits of length
PSHUFHW $0, X0, X0 // repeat length 4 times total
MOVO X0, X1 // save unscrambled seed
PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed
AESENC X0, X0 // scramble seed
CMPQ CX, $16
JB aes0to15
JE aes16
CMPQ CX, $32
JBE aes17to32
CMPQ CX, $64
JBE aes33to64
CMPQ CX, $128
JBE aes65to128
JMP aes129plus
aes0to15:
TESTQ CX, CX
JE aes0
ADDQ $16, AX
TESTW $0xff0, AX
JE endofpage
// 16 bytes loaded at this address won't cross
// a page boundary, so we can load it directly.
MOVOU -16(AX), X1
ADDQ CX, CX
MOVQ $masks<>(SB), AX
PAND (AX)(CX*8), X1
final1:
PXOR X0, X1 // xor data with seed
AESENC X1, X1 // scramble combo 3 times
AESENC X1, X1
AESENC X1, X1
MOVQ X1, (DX)
RET
endofpage:
// address ends in 1111xxxx. Might be up against
// a page boundary, so load ending at last byte.
// Then shift bytes down using pshufb.
MOVOU -32(AX)(CX*1), X1
ADDQ CX, CX
MOVQ $shifts<>(SB), AX
PSHUFB (AX)(CX*8), X1
JMP final1
aes0:
// Return scrambled input seed
AESENC X0, X0
MOVQ X0, (DX)
RET
aes16:
MOVOU (AX), X1
JMP final1
aes17to32:
// make second starting seed
PXOR runtime·aeskeysched+16(SB), X1
AESENC X1, X1
// load data to be hashed
MOVOU (AX), X2
MOVOU -16(AX)(CX*1), X3
// xor with seed
PXOR X0, X2
PXOR X1, X3
// scramble 3 times
AESENC X2, X2
AESENC X3, X3
AESENC X2, X2
AESENC X3, X3
AESENC X2, X2
AESENC X3, X3
// combine results
PXOR X3, X2
MOVQ X2, (DX)
RET
aes33to64:
// make 3 more starting seeds
MOVO X1, X2
MOVO X1, X3
PXOR runtime·aeskeysched+16(SB), X1
PXOR runtime·aeskeysched+32(SB), X2
PXOR runtime·aeskeysched+48(SB), X3
AESENC X1, X1
AESENC X2, X2
AESENC X3, X3
MOVOU (AX), X4
MOVOU 16(AX), X5
MOVOU -32(AX)(CX*1), X6
MOVOU -16(AX)(CX*1), X7
PXOR X0, X4
PXOR X1, X5
PXOR X2, X6
PXOR X3, X7
AESENC X4, X4
AESENC X5, X5
AESENC X6, X6
AESENC X7, X7
AESENC X4, X4
AESENC X5, X5
AESENC X6, X6
AESENC X7, X7