Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1355 lines (1185 sloc)
36.9 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2011 The Go Authors. All rights reserved. | |
// Use of this source code is governed by a BSD-style | |
// license that can be found in the LICENSE file. | |
// | |
// The inlining facility makes 2 passes: first caninl determines which | |
// functions are suitable for inlining, and for those that are it | |
// saves a copy of the body. Then inlcalls walks each function body to | |
// expand calls to inlinable functions. | |
// | |
// The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1, | |
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and | |
// are not supported. | |
// 0: disabled | |
// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default) | |
// 2: (unassigned) | |
// 3: (unassigned) | |
// 4: allow non-leaf functions | |
// | |
// At some point this may get another default and become switch-offable with -N. | |
// | |
// The -d typcheckinl flag enables early typechecking of all imported bodies, | |
// which is useful to flush out bugs. | |
// | |
// The debug['m'] flag enables diagnostic output. a single -m is useful for verifying | |
// which calls get inlined or not, more is for debugging, and may go away at any point. | |
package gc | |
import ( | |
"cmd/compile/internal/logopt" | |
"cmd/compile/internal/types" | |
"cmd/internal/obj" | |
"cmd/internal/src" | |
"fmt" | |
"strings" | |
) | |
// Inlining budget parameters, gathered in one place | |
const ( | |
inlineMaxBudget = 80 | |
inlineExtraAppendCost = 0 | |
// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead. | |
inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742 | |
inlineExtraPanicCost = 1 // do not penalize inlining panics. | |
inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help. | |
inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big". | |
inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function. | |
) | |
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods | |
// the ->sym can be re-used in the local package, so peel it off the receiver's type. | |
func fnpkg(fn *Node) *types.Pkg { | |
if fn.IsMethod() { | |
// method | |
rcvr := fn.Type.Recv().Type | |
if rcvr.IsPtr() { | |
rcvr = rcvr.Elem() | |
} | |
if rcvr.Sym == nil { | |
Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr) | |
} | |
return rcvr.Sym.Pkg | |
} | |
// non-method | |
return fn.Sym.Pkg | |
} | |
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck | |
// because they're a copy of an already checked body. | |
func typecheckinl(fn *Node) { | |
lno := setlineno(fn) | |
expandInline(fn) | |
// typecheckinl is only for imported functions; | |
// their bodies may refer to unsafe as long as the package | |
// was marked safe during import (which was checked then). | |
// the ->inl of a local function has been typechecked before caninl copied it. | |
pkg := fnpkg(fn) | |
if pkg == localpkg || pkg == nil { | |
return // typecheckinl on local function | |
} | |
if Debug['m'] > 2 || Debug_export != 0 { | |
fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, asNodes(fn.Func.Inl.Body)) | |
} | |
savefn := Curfn | |
Curfn = fn | |
typecheckslice(fn.Func.Inl.Body, ctxStmt) | |
Curfn = savefn | |
// During typechecking, declarations are added to | |
// Curfn.Func.Dcl. Move them to Inl.Dcl for consistency with | |
// how local functions behave. (Append because typecheckinl | |
// may be called multiple times.) | |
fn.Func.Inl.Dcl = append(fn.Func.Inl.Dcl, fn.Func.Dcl...) | |
fn.Func.Dcl = nil | |
lineno = lno | |
} | |
// Caninl determines whether fn is inlineable. | |
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy. | |
// fn and ->nbody will already have been typechecked. | |
func caninl(fn *Node) { | |
if fn.Op != ODCLFUNC { | |
Fatalf("caninl %v", fn) | |
} | |
if fn.Func.Nname == nil { | |
Fatalf("caninl no nname %+v", fn) | |
} | |
var reason string // reason, if any, that the function was not inlined | |
if Debug['m'] > 1 || logopt.Enabled() { | |
defer func() { | |
if reason != "" { | |
if Debug['m'] > 1 { | |
fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason) | |
} | |
if logopt.Enabled() { | |
logopt.LogOpt(fn.Pos, "cannotInlineFunction", "inline", fn.funcname(), reason) | |
} | |
} | |
}() | |
} | |
// If marked "go:noinline", don't inline | |
if fn.Func.Pragma&Noinline != 0 { | |
reason = "marked go:noinline" | |
return | |
} | |
// If marked "go:norace" and -race compilation, don't inline. | |
if flag_race && fn.Func.Pragma&Norace != 0 { | |
reason = "marked go:norace with -race compilation" | |
return | |
} | |
// If marked "go:nocheckptr" and -d checkptr compilation, don't inline. | |
if Debug_checkptr != 0 && fn.Func.Pragma&NoCheckPtr != 0 { | |
reason = "marked go:nocheckptr" | |
return | |
} | |
// If marked "go:cgo_unsafe_args", don't inline, since the | |
// function makes assumptions about its argument frame layout. | |
if fn.Func.Pragma&CgoUnsafeArgs != 0 { | |
reason = "marked go:cgo_unsafe_args" | |
return | |
} | |
// If marked as "go:uintptrescapes", don't inline, since the | |
// escape information is lost during inlining. | |
if fn.Func.Pragma&UintptrEscapes != 0 { | |
reason = "marked as having an escaping uintptr argument" | |
return | |
} | |
// The nowritebarrierrec checker currently works at function | |
// granularity, so inlining yeswritebarrierrec functions can | |
// confuse it (#22342). As a workaround, disallow inlining | |
// them for now. | |
if fn.Func.Pragma&Yeswritebarrierrec != 0 { | |
reason = "marked go:yeswritebarrierrec" | |
return | |
} | |
// If fn has no body (is defined outside of Go), cannot inline it. | |
if fn.Nbody.Len() == 0 { | |
reason = "no function body" | |
return | |
} | |
if fn.Typecheck() == 0 { | |
Fatalf("caninl on non-typechecked function %v", fn) | |
} | |
n := fn.Func.Nname | |
if n.Func.InlinabilityChecked() { | |
return | |
} | |
defer n.Func.SetInlinabilityChecked(true) | |
cc := int32(inlineExtraCallCost) | |
if Debug['l'] == 4 { | |
cc = 1 // this appears to yield better performance than 0. | |
} | |
// At this point in the game the function we're looking at may | |
// have "stale" autos, vars that still appear in the Dcl list, but | |
// which no longer have any uses in the function body (due to | |
// elimination by deadcode). We'd like to exclude these dead vars | |
// when creating the "Inline.Dcl" field below; to accomplish this, | |
// the hairyVisitor below builds up a map of used/referenced | |
// locals, and we use this map to produce a pruned Inline.Dcl | |
// list. See issue 25249 for more context. | |
visitor := hairyVisitor{ | |
budget: inlineMaxBudget, | |
extraCallCost: cc, | |
usedLocals: make(map[*Node]bool), | |
} | |
if visitor.visitList(fn.Nbody) { | |
reason = visitor.reason | |
return | |
} | |
if visitor.budget < 0 { | |
reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-visitor.budget, inlineMaxBudget) | |
return | |
} | |
n.Func.Inl = &Inline{ | |
Cost: inlineMaxBudget - visitor.budget, | |
Dcl: inlcopylist(pruneUnusedAutos(n.Name.Defn.Func.Dcl, &visitor)), | |
Body: inlcopylist(fn.Nbody.Slice()), | |
} | |
// hack, TODO, check for better way to link method nodes back to the thing with the ->inl | |
// this is so export can find the body of a method | |
fn.Type.FuncType().Nname = asTypesNode(n) | |
if Debug['m'] > 1 { | |
fmt.Printf("%v: can inline %#v with cost %d as: %#v { %#v }\n", fn.Line(), n, inlineMaxBudget-visitor.budget, fn.Type, asNodes(n.Func.Inl.Body)) | |
} else if Debug['m'] != 0 { | |
fmt.Printf("%v: can inline %v\n", fn.Line(), n) | |
} | |
if logopt.Enabled() { | |
logopt.LogOpt(fn.Pos, "canInlineFunction", "inline", fn.funcname(), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget)) | |
} | |
} | |
// inlFlood marks n's inline body for export and recursively ensures | |
// all called functions are marked too. | |
func inlFlood(n *Node) { | |
if n == nil { | |
return | |
} | |
if n.Op != ONAME || n.Class() != PFUNC { | |
Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class()) | |
} | |
if n.Func == nil { | |
Fatalf("inlFlood: missing Func on %v", n) | |
} | |
if n.Func.Inl == nil { | |
return | |
} | |
if n.Func.ExportInline() { | |
return | |
} | |
n.Func.SetExportInline(true) | |
typecheckinl(n) | |
inspectList(asNodes(n.Func.Inl.Body), func(n *Node) bool { | |
switch n.Op { | |
case ONAME: | |
// Mark any referenced global variables or | |
// functions for reexport. Skip methods, | |
// because they're reexported alongside their | |
// receiver type. | |
if n.Class() == PEXTERN || n.Class() == PFUNC && !n.isMethodExpression() { | |
exportsym(n) | |
} | |
case OCALLFUNC, OCALLMETH: | |
// Recursively flood any functions called by | |
// this one. | |
inlFlood(asNode(n.Left.Type.Nname())) | |
} | |
return true | |
}) | |
} | |
// hairyVisitor visits a function body to determine its inlining | |
// hairiness and whether or not it can be inlined. | |
type hairyVisitor struct { | |
budget int32 | |
reason string | |
extraCallCost int32 | |
usedLocals map[*Node]bool | |
} | |
// Look for anything we want to punt on. | |
func (v *hairyVisitor) visitList(ll Nodes) bool { | |
for _, n := range ll.Slice() { | |
if v.visit(n) { | |
return true | |
} | |
} | |
return false | |
} | |
func (v *hairyVisitor) visit(n *Node) bool { | |
if n == nil { | |
return false | |
} | |
switch n.Op { | |
// Call is okay if inlinable and we have the budget for the body. | |
case OCALLFUNC: | |
// Functions that call runtime.getcaller{pc,sp} can not be inlined | |
// because getcaller{pc,sp} expect a pointer to the caller's first argument. | |
// | |
// runtime.throw is a "cheap call" like panic in normal code. | |
if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) { | |
fn := n.Left.Sym.Name | |
if fn == "getcallerpc" || fn == "getcallersp" { | |
v.reason = "call to " + fn | |
return true | |
} | |
if fn == "throw" { | |
v.budget -= inlineExtraThrowCost | |
break | |
} | |
} | |
if isIntrinsicCall(n) { | |
// Treat like any other node. | |
break | |
} | |
if fn := n.Left.Func; fn != nil && fn.Inl != nil { | |
v.budget -= fn.Inl.Cost | |
break | |
} | |
if n.Left.isMethodExpression() { | |
if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl != nil { | |
v.budget -= d.Func.Inl.Cost | |
break | |
} | |
} | |
// TODO(mdempsky): Budget for OCLOSURE calls if we | |
// ever allow that. See #15561 and #23093. | |
// Call cost for non-leaf inlining. | |
v.budget -= v.extraCallCost | |
// Call is okay if inlinable and we have the budget for the body. | |
case OCALLMETH: | |
t := n.Left.Type | |
if t == nil { | |
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) | |
} | |
if t.Nname() == nil { | |
Fatalf("no function definition for [%p] %+v\n", t, t) | |
} | |
if isRuntimePkg(n.Left.Sym.Pkg) { | |
fn := n.Left.Sym.Name | |
if fn == "heapBits.nextArena" { | |
// Special case: explicitly allow | |
// mid-stack inlining of | |
// runtime.heapBits.next even though | |
// it calls slow-path | |
// runtime.heapBits.nextArena. | |
break | |
} | |
} | |
if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl != nil { | |
v.budget -= inlfn.Inl.Cost | |
break | |
} | |
// Call cost for non-leaf inlining. | |
v.budget -= v.extraCallCost | |
// Things that are too hairy, irrespective of the budget | |
case OCALL, OCALLINTER: | |
// Call cost for non-leaf inlining. | |
v.budget -= v.extraCallCost | |
case OPANIC: | |
v.budget -= inlineExtraPanicCost | |
case ORECOVER: | |
// recover matches the argument frame pointer to find | |
// the right panic value, so it needs an argument frame. | |
v.reason = "call to recover" | |
return true | |
case OCLOSURE, | |
OCALLPART, | |
ORANGE, | |
OFOR, | |
OFORUNTIL, | |
OSELECT, | |
OTYPESW, | |
OGO, | |
ODEFER, | |
ODCLTYPE, // can't print yet | |
OBREAK, | |
ORETJMP: | |
v.reason = "unhandled op " + n.Op.String() | |
return true | |
case OAPPEND: | |
v.budget -= inlineExtraAppendCost | |
case ODCLCONST, OEMPTY, OFALL, OLABEL: | |
// These nodes don't produce code; omit from inlining budget. | |
return false | |
case OIF: | |
if Isconst(n.Left, CTBOOL) { | |
// This if and the condition cost nothing. | |
return v.visitList(n.Ninit) || v.visitList(n.Nbody) || | |
v.visitList(n.Rlist) | |
} | |
case ONAME: | |
if n.Class() == PAUTO { | |
v.usedLocals[n] = true | |
} | |
} | |
v.budget-- | |
// When debugging, don't stop early, to get full cost of inlining this function | |
if v.budget < 0 && Debug['m'] < 2 && !logopt.Enabled() { | |
return true | |
} | |
return v.visit(n.Left) || v.visit(n.Right) || | |
v.visitList(n.List) || v.visitList(n.Rlist) || | |
v.visitList(n.Ninit) || v.visitList(n.Nbody) | |
} | |
// Inlcopy and inlcopylist recursively copy the body of a function. | |
// Any name-like node of non-local class is marked for re-export by adding it to | |
// the exportlist. | |
func inlcopylist(ll []*Node) []*Node { | |
s := make([]*Node, 0, len(ll)) | |
for _, n := range ll { | |
s = append(s, inlcopy(n)) | |
} | |
return s | |
} | |
func inlcopy(n *Node) *Node { | |
if n == nil { | |
return nil | |
} | |
switch n.Op { | |
case ONAME, OTYPE, OLITERAL: | |
return n | |
} | |
m := n.copy() | |
if m.Func != nil { | |
Fatalf("unexpected Func: %v", m) | |
} | |
m.Left = inlcopy(n.Left) | |
m.Right = inlcopy(n.Right) | |
m.List.Set(inlcopylist(n.List.Slice())) | |
m.Rlist.Set(inlcopylist(n.Rlist.Slice())) | |
m.Ninit.Set(inlcopylist(n.Ninit.Slice())) | |
m.Nbody.Set(inlcopylist(n.Nbody.Slice())) | |
return m | |
} | |
func countNodes(n *Node) int { | |
if n == nil { | |
return 0 | |
} | |
cnt := 1 | |
cnt += countNodes(n.Left) | |
cnt += countNodes(n.Right) | |
for _, n1 := range n.Ninit.Slice() { | |
cnt += countNodes(n1) | |
} | |
for _, n1 := range n.Nbody.Slice() { | |
cnt += countNodes(n1) | |
} | |
for _, n1 := range n.List.Slice() { | |
cnt += countNodes(n1) | |
} | |
for _, n1 := range n.Rlist.Slice() { | |
cnt += countNodes(n1) | |
} | |
return cnt | |
} | |
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any | |
// calls made to inlineable functions. This is the external entry point. | |
func inlcalls(fn *Node) { | |
savefn := Curfn | |
Curfn = fn | |
maxCost := int32(inlineMaxBudget) | |
if countNodes(fn) >= inlineBigFunctionNodes { | |
maxCost = inlineBigFunctionMaxCost | |
} | |
// Map to keep track of functions that have been inlined at a particular | |
// call site, in order to stop inlining when we reach the beginning of a | |
// recursion cycle again. We don't inline immediately recursive functions, | |
// but allow inlining if there is a recursion cycle of many functions. | |
// Most likely, the inlining will stop before we even hit the beginning of | |
// the cycle again, but the map catches the unusual case. | |
inlMap := make(map[*Node]bool) | |
fn = inlnode(fn, maxCost, inlMap) | |
if fn != Curfn { | |
Fatalf("inlnode replaced curfn") | |
} | |
Curfn = savefn | |
} | |
// Turn an OINLCALL into a statement. | |
func inlconv2stmt(n *Node) { | |
n.Op = OBLOCK | |
// n->ninit stays | |
n.List.Set(n.Nbody.Slice()) | |
n.Nbody.Set(nil) | |
n.Rlist.Set(nil) | |
} | |
// Turn an OINLCALL into a single valued expression. | |
// The result of inlconv2expr MUST be assigned back to n, e.g. | |
// n.Left = inlconv2expr(n.Left) | |
func inlconv2expr(n *Node) *Node { | |
r := n.Rlist.First() | |
return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...)) | |
} | |
// Turn the rlist (with the return values) of the OINLCALL in | |
// n into an expression list lumping the ninit and body | |
// containing the inlined statements on the first list element so | |
// order will be preserved Used in return, oas2func and call | |
// statements. | |
func inlconv2list(n *Node) []*Node { | |
if n.Op != OINLCALL || n.Rlist.Len() == 0 { | |
Fatalf("inlconv2list %+v\n", n) | |
} | |
s := n.Rlist.Slice() | |
s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...)) | |
return s | |
} | |
func inlnodelist(l Nodes, maxCost int32, inlMap map[*Node]bool) { | |
s := l.Slice() | |
for i := range s { | |
s[i] = inlnode(s[i], maxCost, inlMap) | |
} | |
} | |
// inlnode recurses over the tree to find inlineable calls, which will | |
// be turned into OINLCALLs by mkinlcall. When the recursion comes | |
// back up will examine left, right, list, rlist, ninit, ntest, nincr, | |
// nbody and nelse and use one of the 4 inlconv/glue functions above | |
// to turn the OINLCALL into an expression, a statement, or patch it | |
// in to this nodes list or rlist as appropriate. | |
// NOTE it makes no sense to pass the glue functions down the | |
// recursion to the level where the OINLCALL gets created because they | |
// have to edit /this/ n, so you'd have to push that one down as well, | |
// but then you may as well do it here. so this is cleaner and | |
// shorter and less complicated. | |
// The result of inlnode MUST be assigned back to n, e.g. | |
// n.Left = inlnode(n.Left) | |
func inlnode(n *Node, maxCost int32, inlMap map[*Node]bool) *Node { | |
if n == nil { | |
return n | |
} | |
switch n.Op { | |
// inhibit inlining of their argument | |
case ODEFER, OGO: | |
switch n.Left.Op { | |
case OCALLFUNC, OCALLMETH: | |
n.Left.SetNoInline(true) | |
} | |
return n | |
// TODO do them here (or earlier), | |
// so escape analysis can avoid more heapmoves. | |
case OCLOSURE: | |
return n | |
case OCALLMETH: | |
// Prevent inlining some reflect.Value methods when using checkptr, | |
// even when package reflect was compiled without it (#35073). | |
if s := n.Left.Sym; Debug_checkptr != 0 && isReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") { | |
return n | |
} | |
} | |
lno := setlineno(n) | |
inlnodelist(n.Ninit, maxCost, inlMap) | |
for _, n1 := range n.Ninit.Slice() { | |
if n1.Op == OINLCALL { | |
inlconv2stmt(n1) | |
} | |
} | |
n.Left = inlnode(n.Left, maxCost, inlMap) | |
if n.Left != nil && n.Left.Op == OINLCALL { | |
n.Left = inlconv2expr(n.Left) | |
} | |
n.Right = inlnode(n.Right, maxCost, inlMap) | |
if n.Right != nil && n.Right.Op == OINLCALL { | |
if n.Op == OFOR || n.Op == OFORUNTIL { | |
inlconv2stmt(n.Right) | |
} else if n.Op == OAS2FUNC { | |
n.Rlist.Set(inlconv2list(n.Right)) | |
n.Right = nil | |
n.Op = OAS2 | |
n.SetTypecheck(0) | |
n = typecheck(n, ctxStmt) | |
} else { | |
n.Right = inlconv2expr(n.Right) | |
} | |
} | |
inlnodelist(n.List, maxCost, inlMap) | |
if n.Op == OBLOCK { | |
for _, n2 := range n.List.Slice() { | |
if n2.Op == OINLCALL { | |
inlconv2stmt(n2) | |
} | |
} | |
} else { | |
s := n.List.Slice() | |
for i1, n1 := range s { | |
if n1 != nil && n1.Op == OINLCALL { | |
s[i1] = inlconv2expr(s[i1]) | |
} | |
} | |
} | |
inlnodelist(n.Rlist, maxCost, inlMap) | |
s := n.Rlist.Slice() | |
for i1, n1 := range s { | |
if n1.Op == OINLCALL { | |
if n.Op == OIF { | |
inlconv2stmt(n1) | |
} else { | |
s[i1] = inlconv2expr(s[i1]) | |
} | |
} | |
} | |
inlnodelist(n.Nbody, maxCost, inlMap) | |
for _, n := range n.Nbody.Slice() { | |
if n.Op == OINLCALL { | |
inlconv2stmt(n) | |
} | |
} | |
// with all the branches out of the way, it is now time to | |
// transmogrify this node itself unless inhibited by the | |
// switch at the top of this function. | |
switch n.Op { | |
case OCALLFUNC, OCALLMETH: | |
if n.NoInline() { | |
return n | |
} | |
} | |
switch n.Op { | |
case OCALLFUNC: | |
if Debug['m'] > 3 { | |
fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left) | |
} | |
if n.Left.Func != nil && n.Left.Func.Inl != nil && !isIntrinsicCall(n) { // normal case | |
n = mkinlcall(n, n.Left, maxCost, inlMap) | |
} else if n.Left.isMethodExpression() && asNode(n.Left.Sym.Def) != nil { | |
n = mkinlcall(n, asNode(n.Left.Sym.Def), maxCost, inlMap) | |
} else if n.Left.Op == OCLOSURE { | |
if f := inlinableClosure(n.Left); f != nil { | |
n = mkinlcall(n, f, maxCost, inlMap) | |
} | |
} else if n.Left.Op == ONAME && n.Left.Name != nil && n.Left.Name.Defn != nil { | |
if d := n.Left.Name.Defn; d.Op == OAS && d.Right.Op == OCLOSURE { | |
if f := inlinableClosure(d.Right); f != nil { | |
// NB: this check is necessary to prevent indirect re-assignment of the variable | |
// having the address taken after the invocation or only used for reads is actually fine | |
// but we have no easy way to distinguish the safe cases | |
if d.Left.Name.Addrtaken() { | |
if Debug['m'] > 1 { | |
fmt.Printf("%v: cannot inline escaping closure variable %v\n", n.Line(), n.Left) | |
} | |
if logopt.Enabled() { | |
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(), | |
fmt.Sprintf("%v cannot be inlined (escaping closure variable)", n.Left)) | |
} | |
break | |
} | |
// ensure the variable is never re-assigned | |
if unsafe, a := reassigned(n.Left); unsafe { | |
if Debug['m'] > 1 { | |
if a != nil { | |
fmt.Printf("%v: cannot inline re-assigned closure variable at %v: %v\n", n.Line(), a.Line(), a) | |
if logopt.Enabled() { | |
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(), | |
fmt.Sprintf("%v cannot be inlined (re-assigned closure variable)", a)) | |
} | |
} else { | |
fmt.Printf("%v: cannot inline global closure variable %v\n", n.Line(), n.Left) | |
if logopt.Enabled() { | |
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(), | |
fmt.Sprintf("%v cannot be inlined (global closure variable)", n.Left)) | |
} | |
} | |
} | |
break | |
} | |
n = mkinlcall(n, f, maxCost, inlMap) | |
} | |
} | |
} | |
case OCALLMETH: | |
if Debug['m'] > 3 { | |
fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right) | |
} | |
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function. | |
if n.Left.Type == nil { | |
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) | |
} | |
if n.Left.Type.Nname() == nil { | |
Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type) | |
} | |
n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), maxCost, inlMap) | |
} | |
lineno = lno | |
return n | |
} | |
// inlinableClosure takes an OCLOSURE node and follows linkage to the matching ONAME with | |
// the inlinable body. Returns nil if the function is not inlinable. | |
func inlinableClosure(n *Node) *Node { | |
c := n.Func.Closure | |
caninl(c) | |
f := c.Func.Nname | |
if f == nil || f.Func.Inl == nil { | |
return nil | |
} | |
return f | |
} | |
// reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean | |
// indicating whether the name has any assignments other than its declaration. | |
// The second return value is the first such assignment encountered in the walk, if any. It is mostly | |
// useful for -m output documenting the reason for inhibited optimizations. | |
// NB: global variables are always considered to be re-assigned. | |
// TODO: handle initial declaration not including an assignment and followed by a single assignment? | |
func reassigned(n *Node) (bool, *Node) { | |
if n.Op != ONAME { | |
Fatalf("reassigned %v", n) | |
} | |
// no way to reliably check for no-reassignment of globals, assume it can be | |
if n.Name.Curfn == nil { | |
return true, nil | |
} | |
f := n.Name.Curfn | |
// There just might be a good reason for this although this can be pretty surprising: | |
// local variables inside a closure have Curfn pointing to the OCLOSURE node instead | |
// of the corresponding ODCLFUNC. | |
// We need to walk the function body to check for reassignments so we follow the | |
// linkage to the ODCLFUNC node as that is where body is held. | |
if f.Op == OCLOSURE { | |
f = f.Func.Closure | |
} | |
v := reassignVisitor{name: n} | |
a := v.visitList(f.Nbody) | |
return a != nil, a | |
} | |
type reassignVisitor struct { | |
name *Node | |
} | |
func (v *reassignVisitor) visit(n *Node) *Node { | |
if n == nil { | |
return nil | |
} | |
switch n.Op { | |
case OAS: | |
if n.Left == v.name && n != v.name.Name.Defn { | |
return n | |
} | |
return nil | |
case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE: | |
for _, p := range n.List.Slice() { | |
if p == v.name && n != v.name.Name.Defn { | |
return n | |
} | |
} | |
return nil | |
} | |
if a := v.visit(n.Left); a != nil { | |
return a | |
} | |
if a := v.visit(n.Right); a != nil { | |
return a | |
} | |
if a := v.visitList(n.List); a != nil { | |
return a | |
} | |
if a := v.visitList(n.Rlist); a != nil { | |
return a | |
} | |
if a := v.visitList(n.Ninit); a != nil { | |
return a | |
} | |
if a := v.visitList(n.Nbody); a != nil { | |
return a | |
} | |
return nil | |
} | |
func (v *reassignVisitor) visitList(l Nodes) *Node { | |
for _, n := range l.Slice() { | |
if a := v.visit(n); a != nil { | |
return a | |
} | |
} | |
return nil | |
} | |
func tinlvar(t *types.Field, inlvars map[*Node]*Node) *Node { | |
if n := asNode(t.Nname); n != nil && !n.isBlank() { | |
inlvar := inlvars[n] | |
if inlvar == nil { | |
Fatalf("missing inlvar for %v\n", n) | |
} | |
return inlvar | |
} | |
return typecheck(nblank, ctxExpr|ctxAssign) | |
} | |
var inlgen int | |
// If n is a call, and fn is a function with an inlinable body, | |
// return an OINLCALL. | |
// On return ninit has the parameter assignments, the nbody is the | |
// inlined function body and list, rlist contain the input, output | |
// parameters. | |
// The result of mkinlcall MUST be assigned back to n, e.g. | |
// n.Left = mkinlcall(n.Left, fn, isddd) | |
func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node { | |
if fn.Func.Inl == nil { | |
if logopt.Enabled() { | |
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(), | |
fmt.Sprintf("%s cannot be inlined", fn.pkgFuncName())) | |
} | |
return n | |
} | |
if fn.Func.Inl.Cost > maxCost { | |
// The inlined function body is too big. Typically we use this check to restrict | |
// inlining into very big functions. See issue 26546 and 17566. | |
if logopt.Enabled() { | |
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(), | |
fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Func.Inl.Cost, fn.pkgFuncName(), maxCost)) | |
} | |
return n | |
} | |
if fn == Curfn || fn.Name.Defn == Curfn { | |
// Can't recursively inline a function into itself. | |
if logopt.Enabled() { | |
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", Curfn.funcname())) | |
} | |
return n | |
} | |
if instrumenting && isRuntimePkg(fn.Sym.Pkg) { | |
// Runtime package must not be instrumented. | |
// Instrument skips runtime package. However, some runtime code can be | |
// inlined into other packages and instrumented there. To avoid this, | |
// we disable inlining of runtime functions when instrumenting. | |
// The example that we observed is inlining of LockOSThread, | |
// which lead to false race reports on m contents. | |
return n | |
} | |
if inlMap[fn] { | |
if Debug['m'] > 1 { | |
fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", n.Line(), fn, Curfn.funcname()) | |
} | |
return n | |
} | |
inlMap[fn] = true | |
defer func() { | |
inlMap[fn] = false | |
}() | |
if Debug_typecheckinl == 0 { | |
typecheckinl(fn) | |
} | |
// We have a function node, and it has an inlineable body. | |
if Debug['m'] > 1 { | |
fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, asNodes(fn.Func.Inl.Body)) | |
} else if Debug['m'] != 0 { | |
fmt.Printf("%v: inlining call to %v\n", n.Line(), fn) | |
} | |
if Debug['m'] > 2 { | |
fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n) | |
} | |
if ssaDump != "" && ssaDump == Curfn.funcname() { | |
ssaDumpInlined = append(ssaDumpInlined, fn) | |
} | |
ninit := n.Ninit | |
// Make temp names to use instead of the originals. | |
inlvars := make(map[*Node]*Node) | |
// record formals/locals for later post-processing | |
var inlfvars []*Node | |
// Handle captured variables when inlining closures. | |
if fn.Name.Defn != nil { | |
if c := fn.Name.Defn.Func.Closure; c != nil { | |
for _, v := range c.Func.Closure.Func.Cvars.Slice() { | |
if v.Op == OXXX { | |
continue | |
} | |
o := v.Name.Param.Outer | |
// make sure the outer param matches the inlining location | |
// NB: if we enabled inlining of functions containing OCLOSURE or refined | |
// the reassigned check via some sort of copy propagation this would most | |
// likely need to be changed to a loop to walk up to the correct Param | |
if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) { | |
Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v) | |
} | |
if v.Name.Byval() { | |
iv := typecheck(inlvar(v), ctxExpr) | |
ninit.Append(nod(ODCL, iv, nil)) | |
ninit.Append(typecheck(nod(OAS, iv, o), ctxStmt)) | |
inlvars[v] = iv | |
} else { | |
addr := newname(lookup("&" + v.Sym.Name)) | |
addr.Type = types.NewPtr(v.Type) | |
ia := typecheck(inlvar(addr), ctxExpr) | |
ninit.Append(nod(ODCL, ia, nil)) | |
ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), ctxStmt)) | |
inlvars[addr] = ia | |
// When capturing by reference, all occurrence of the captured var | |
// must be substituted with dereference of the temporary address | |
inlvars[v] = typecheck(nod(ODEREF, ia, nil), ctxExpr) | |
} | |
} | |
} | |
} | |
for _, ln := range fn.Func.Inl.Dcl { | |
if ln.Op != ONAME { | |
continue | |
} | |
if ln.Class() == PPARAMOUT { // return values handled below. | |
continue | |
} | |
if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap | |
continue | |
} | |
inlvars[ln] = typecheck(inlvar(ln), ctxExpr) | |
if ln.Class() == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class() == PPARAM { | |
ninit.Append(nod(ODCL, inlvars[ln], nil)) | |
} | |
if genDwarfInline > 0 { | |
inlf := inlvars[ln] | |
if ln.Class() == PPARAM { | |
inlf.Name.SetInlFormal(true) | |
} else { | |
inlf.Name.SetInlLocal(true) | |
} | |
inlf.Pos = ln.Pos | |
inlfvars = append(inlfvars, inlf) | |
} | |
} | |
// temporaries for return values. | |
var retvars []*Node | |
for i, t := range fn.Type.Results().Fields().Slice() { | |
var m *Node | |
mpos := t.Pos | |
if n := asNode(t.Nname); n != nil && !n.isBlank() { | |
m = inlvar(n) | |
m = typecheck(m, ctxExpr) | |
inlvars[n] = m | |
} else { | |
// anonymous return values, synthesize names for use in assignment that replaces return | |
m = retvar(t, i) | |
} | |
if genDwarfInline > 0 { | |
// Don't update the src.Pos on a return variable if it | |
// was manufactured by the inliner (e.g. "~R2"); such vars | |
// were not part of the original callee. | |
if !strings.HasPrefix(m.Sym.Name, "~R") { | |
m.Name.SetInlFormal(true) | |
m.Pos = mpos | |
inlfvars = append(inlfvars, m) | |
} | |
} | |
ninit.Append(nod(ODCL, m, nil)) | |
retvars = append(retvars, m) | |
} | |
// Assign arguments to the parameters' temp names. | |
as := nod(OAS2, nil, nil) | |
as.Rlist.Set(n.List.Slice()) | |
// For non-dotted calls to variadic functions, we assign the | |
// variadic parameter's temp name separately. | |
var vas *Node | |
if fn.IsMethod() { | |
rcv := fn.Type.Recv() | |
if n.Left.Op == ODOTMETH { | |
// For x.M(...), assign x directly to the | |
// receiver parameter. | |
if n.Left.Left == nil { | |
Fatalf("method call without receiver: %+v", n) | |
} | |
ras := nod(OAS, tinlvar(rcv, inlvars), n.Left.Left) | |
ras = typecheck(ras, ctxStmt) | |
ninit.Append(ras) | |
} else { | |
// For T.M(...), add the receiver parameter to | |
// as.List, so it's assigned by the normal | |
// arguments. | |
if as.Rlist.Len() == 0 { | |
Fatalf("non-method call to method without first arg: %+v", n) | |
} | |
as.List.Append(tinlvar(rcv, inlvars)) | |
} | |
} | |
for _, param := range fn.Type.Params().Fields().Slice() { | |
// For ordinary parameters or variadic parameters in | |
// dotted calls, just add the variable to the | |
// assignment list, and we're done. | |
if !param.IsDDD() || n.IsDDD() { | |
as.List.Append(tinlvar(param, inlvars)) | |
continue | |
} | |
// Otherwise, we need to collect the remaining values | |
// to pass as a slice. | |
numvals := n.List.Len() | |
x := as.List.Len() | |
for as.List.Len() < numvals { | |
as.List.Append(argvar(param.Type, as.List.Len())) | |
} | |
varargs := as.List.Slice()[x:] | |
vas = nod(OAS, tinlvar(param, inlvars), nil) | |
if len(varargs) == 0 { | |
vas.Right = nodnil() | |
vas.Right.Type = param.Type | |
} else { | |
vas.Right = nod(OCOMPLIT, nil, typenod(param.Type)) | |
vas.Right.List.Set(varargs) | |
} | |
} | |
if as.Rlist.Len() != 0 { | |
as = typecheck(as, ctxStmt) | |
ninit.Append(as) | |
} | |
if vas != nil { | |
vas = typecheck(vas, ctxStmt) | |
ninit.Append(vas) | |
} | |
// Zero the return parameters. | |
for _, n := range retvars { | |
ras := nod(OAS, n, nil) | |
ras = typecheck(ras, ctxStmt) | |
ninit.Append(ras) | |
} | |
retlabel := autolabel(".i") | |
inlgen++ | |
parent := -1 | |
if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil { | |
parent = b.InliningIndex() | |
} | |
newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym()) | |
// Add an inline mark just before the inlined body. | |
// This mark is inline in the code so that it's a reasonable spot | |
// to put a breakpoint. Not sure if that's really necessary or not | |
// (in which case it could go at the end of the function instead). | |
// Note issue 28603. | |
inlMark := nod(OINLMARK, nil, nil) | |
inlMark.Pos = n.Pos.WithIsStmt() | |
inlMark.Xoffset = int64(newIndex) | |
ninit.Append(inlMark) | |
if genDwarfInline > 0 { | |
if !fn.Sym.Linksym().WasInlined() { | |
Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn) | |
fn.Sym.Linksym().Set(obj.AttrWasInlined, true) | |
} | |
} | |
subst := inlsubst{ | |
retlabel: retlabel, | |
retvars: retvars, | |
inlvars: inlvars, | |
bases: make(map[*src.PosBase]*src.PosBase), | |
newInlIndex: newIndex, | |
} | |
body := subst.list(asNodes(fn.Func.Inl.Body)) | |
lab := nodSym(OLABEL, nil, retlabel) | |
body = append(body, lab) | |
typecheckslice(body, ctxStmt) | |
if genDwarfInline > 0 { | |
for _, v := range inlfvars { | |
v.Pos = subst.updatedPos(v.Pos) | |
} | |
} | |
//dumplist("ninit post", ninit); | |
call := nod(OINLCALL, nil, nil) | |
call.Ninit.Set(ninit.Slice()) | |
call.Nbody.Set(body) | |
call.Rlist.Set(retvars) | |
call.Type = n.Type | |
call.SetTypecheck(1) | |
// transitive inlining | |
// might be nice to do this before exporting the body, | |
// but can't emit the body with inlining expanded. | |
// instead we emit the things that the body needs | |
// and each use must redo the inlining. | |
// luckily these are small. | |
inlnodelist(call.Nbody, maxCost, inlMap) | |
for _, n := range call.Nbody.Slice() { | |
if n.Op == OINLCALL { | |
inlconv2stmt(n) | |
} | |
} | |
if Debug['m'] > 2 { | |
fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call) | |
} | |
return call | |
} | |
// Every time we expand a function we generate a new set of tmpnames, | |
// PAUTO's in the calling functions, and link them off of the | |
// PPARAM's, PAUTOS and PPARAMOUTs of the called function. | |
func inlvar(var_ *Node) *Node { | |
if Debug['m'] > 3 { | |
fmt.Printf("inlvar %+v\n", var_) | |
} | |
n := newname(var_.Sym) | |
n.Type = var_.Type | |
n.SetClass(PAUTO) | |
n.Name.SetUsed(true) | |
n.Name.Curfn = Curfn // the calling function, not the called one | |
n.Name.SetAddrtaken(var_.Name.Addrtaken()) | |
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) | |
return n | |
} | |
// Synthesize a variable to store the inlined function's results in. | |
func retvar(t *types.Field, i int) *Node { | |
n := newname(lookupN("~R", i)) | |
n.Type = t.Type | |
n.SetClass(PAUTO) | |
n.Name.SetUsed(true) | |
n.Name.Curfn = Curfn // the calling function, not the called one | |
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) | |
return n | |
} | |
// Synthesize a variable to store the inlined function's arguments | |
// when they come from a multiple return call. | |
func argvar(t *types.Type, i int) *Node { | |
n := newname(lookupN("~arg", i)) | |
n.Type = t.Elem() | |
n.SetClass(PAUTO) | |
n.Name.SetUsed(true) | |
n.Name.Curfn = Curfn // the calling function, not the called one | |
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) | |
return n | |
} | |
// The inlsubst type implements the actual inlining of a single | |
// function call. | |
type inlsubst struct { | |
// Target of the goto substituted in place of a return. | |
retlabel *types.Sym | |
// Temporary result variables. | |
retvars []*Node | |
inlvars map[*Node]*Node | |
// bases maps from original PosBase to PosBase with an extra | |
// inlined call frame. | |
bases map[*src.PosBase]*src.PosBase | |
// newInlIndex is the index of the inlined call frame to | |
// insert for inlined nodes. | |
newInlIndex int | |
} | |
// list inlines a list of nodes. | |
func (subst *inlsubst) list(ll Nodes) []*Node { | |
s := make([]*Node, 0, ll.Len()) | |
for _, n := range ll.Slice() { | |
s = append(s, subst.node(n)) | |
} | |
return s | |
} | |
// node recursively copies a node from the saved pristine body of the | |
// inlined function, substituting references to input/output | |
// parameters with ones to the tmpnames, and substituting returns with | |
// assignments to the output. | |
func (subst *inlsubst) node(n *Node) *Node { | |
if n == nil { | |
return nil | |
} | |
switch n.Op { | |
case ONAME: | |
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode | |
if Debug['m'] > 2 { | |
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar) | |
} | |
return inlvar | |
} | |
if Debug['m'] > 2 { | |
fmt.Printf("not substituting name %+v\n", n) | |
} | |
return n | |
case OLITERAL, OTYPE: | |
// If n is a named constant or type, we can continue | |
// using it in the inline copy. Otherwise, make a copy | |
// so we can update the line number. | |
if n.Sym != nil { | |
return n | |
} | |
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function. | |
// dump("Return before substitution", n); | |
case ORETURN: | |
m := nodSym(OGOTO, nil, subst.retlabel) | |
m.Ninit.Set(subst.list(n.Ninit)) | |
if len(subst.retvars) != 0 && n.List.Len() != 0 { | |
as := nod(OAS2, nil, nil) | |
// Make a shallow copy of retvars. | |
// Otherwise OINLCALL.Rlist will be the same list, | |
// and later walk and typecheck may clobber it. | |
for _, n := range subst.retvars { | |
as.List.Append(n) | |
} | |
as.Rlist.Set(subst.list(n.List)) | |
as = typecheck(as, ctxStmt) | |
m.Ninit.Append(as) | |
} | |
typecheckslice(m.Ninit.Slice(), ctxStmt) | |
m = typecheck(m, ctxStmt) | |
// dump("Return after substitution", m); | |
return m | |
case OGOTO, OLABEL: | |
m := n.copy() | |
m.Pos = subst.updatedPos(m.Pos) | |
m.Ninit.Set(nil) | |
p := fmt.Sprintf("%s·%d", n.Sym.Name, inlgen) | |
m.Sym = lookup(p) | |
return m | |
} | |
m := n.copy() | |
m.Pos = subst.updatedPos(m.Pos) | |
m.Ninit.Set(nil) | |
if n.Op == OCLOSURE { | |
Fatalf("cannot inline function containing closure: %+v", n) | |
} | |
m.Left = subst.node(n.Left) | |
m.Right = subst.node(n.Right) | |
m.List.Set(subst.list(n.List)) | |
m.Rlist.Set(subst.list(n.Rlist)) | |
m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...)) | |
m.Nbody.Set(subst.list(n.Nbody)) | |
return m | |
} | |
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos { | |
pos := Ctxt.PosTable.Pos(xpos) | |
oldbase := pos.Base() // can be nil | |
newbase := subst.bases[oldbase] | |
if newbase == nil { | |
newbase = src.NewInliningBase(oldbase, subst.newInlIndex) | |
subst.bases[oldbase] = newbase | |
} | |
pos.SetBase(newbase) | |
return Ctxt.PosTable.XPos(pos) | |
} | |
func pruneUnusedAutos(ll []*Node, vis *hairyVisitor) []*Node { | |
s := make([]*Node, 0, len(ll)) | |
for _, n := range ll { | |
if n.Class() == PAUTO { | |
if _, found := vis.usedLocals[n]; !found { | |
continue | |
} | |
} | |
s = append(s, n) | |
} | |
return s | |
} |