-
Notifications
You must be signed in to change notification settings - Fork 17.6k
/
typexpr.go
765 lines (683 loc) · 20.7 KB
/
typexpr.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type-checking of identifiers and type expressions.
package types
import (
"go/ast"
"go/constant"
"go/token"
"sort"
"strconv"
)
// ident type-checks identifier e and initializes x with the value or type of e.
// If an error occurred, x.mode is set to invalid.
// For the meaning of def, see Checker.definedType, below.
// If wantType is set, the identifier e is expected to denote a type.
//
func (check *Checker) ident(x *operand, e *ast.Ident, def *Named, wantType bool) {
x.mode = invalid
x.expr = e
// Note that we cannot use check.lookup here because the returned scope
// may be different from obj.Parent(). See also Scope.LookupParent doc.
scope, obj := check.scope.LookupParent(e.Name, check.pos)
if obj == nil {
if e.Name == "_" {
check.errorf(e.Pos(), "cannot use _ as value or type")
} else {
check.errorf(e.Pos(), "undeclared name: %s", e.Name)
}
return
}
check.recordUse(e, obj)
// Type-check the object.
// Only call Checker.objDecl if the object doesn't have a type yet
// (in which case we must actually determine it) or the object is a
// TypeName and we also want a type (in which case we might detect
// a cycle which needs to be reported). Otherwise we can skip the
// call and avoid a possible cycle error in favor of the more
// informative "not a type/value" error that this function's caller
// will issue (see issue #25790).
typ := obj.Type()
if _, gotType := obj.(*TypeName); typ == nil || gotType && wantType {
check.objDecl(obj, def)
typ = obj.Type() // type must have been assigned by Checker.objDecl
}
assert(typ != nil)
// The object may be dot-imported: If so, remove its package from
// the map of unused dot imports for the respective file scope.
// (This code is only needed for dot-imports. Without them,
// we only have to mark variables, see *Var case below).
if pkg := obj.Pkg(); pkg != check.pkg && pkg != nil {
delete(check.unusedDotImports[scope], pkg)
}
switch obj := obj.(type) {
case *PkgName:
check.errorf(e.Pos(), "use of package %s not in selector", obj.name)
return
case *Const:
check.addDeclDep(obj)
if typ == Typ[Invalid] {
return
}
if obj == universeIota {
if check.iota == nil {
check.errorf(e.Pos(), "cannot use iota outside constant declaration")
return
}
x.val = check.iota
} else {
x.val = obj.val
}
assert(x.val != nil)
x.mode = constant_
case *TypeName:
x.mode = typexpr
case *Var:
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if obj.pkg == check.pkg {
obj.used = true
}
check.addDeclDep(obj)
if typ == Typ[Invalid] {
return
}
x.mode = variable
case *Func:
check.addDeclDep(obj)
x.mode = value
case *Builtin:
x.id = obj.id
x.mode = builtin
case *Nil:
x.mode = value
default:
unreachable()
}
x.typ = typ
}
// typ type-checks the type expression e and returns its type, or Typ[Invalid].
func (check *Checker) typ(e ast.Expr) Type {
return check.definedType(e, nil)
}
// definedType is like typ but also accepts a type name def.
// If def != nil, e is the type specification for the defined type def, declared
// in a type declaration, and def.underlying will be set to the type of e before
// any components of e are type-checked.
//
func (check *Checker) definedType(e ast.Expr, def *Named) (T Type) {
if trace {
check.trace(e.Pos(), "%s", e)
check.indent++
defer func() {
check.indent--
check.trace(e.Pos(), "=> %s", T)
}()
}
T = check.typInternal(e, def)
assert(isTyped(T))
check.recordTypeAndValue(e, typexpr, T, nil)
return
}
// indirectType is like typ but it also breaks the (otherwise) infinite size of recursive
// types by introducing an indirection. It should be called for components of types that
// are not laid out in place in memory, such as pointer base types, slice or map element
// types, function parameter types, etc.
func (check *Checker) indirectType(e ast.Expr) Type {
check.push(indir)
defer check.pop()
return check.definedType(e, nil)
}
// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *ast.FieldList, ftyp *ast.FuncType) {
scope := NewScope(check.scope, token.NoPos, token.NoPos, "function")
scope.isFunc = true
check.recordScope(ftyp, scope)
recvList, _ := check.collectParams(scope, recvPar, false)
params, variadic := check.collectParams(scope, ftyp.Params, true)
results, _ := check.collectParams(scope, ftyp.Results, false)
if recvPar != nil {
// recv parameter list present (may be empty)
// spec: "The receiver is specified via an extra parameter section preceding the
// method name. That parameter section must declare a single parameter, the receiver."
var recv *Var
switch len(recvList) {
case 0:
check.error(recvPar.Pos(), "method is missing receiver")
recv = NewParam(0, nil, "", Typ[Invalid]) // ignore recv below
default:
// more than one receiver
check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver")
fallthrough // continue with first receiver
case 1:
recv = recvList[0]
}
// spec: "The receiver type must be of the form T or *T where T is a type name."
// (ignore invalid types - error was reported before)
if t, _ := deref(recv.typ); t != Typ[Invalid] {
var err string
if T, _ := t.(*Named); T != nil {
// spec: "The type denoted by T is called the receiver base type; it must not
// be a pointer or interface type and it must be declared in the same package
// as the method."
if T.obj.pkg != check.pkg {
err = "type not defined in this package"
} else {
// TODO(gri) This is not correct if the underlying type is unknown yet.
switch u := T.underlying.(type) {
case *Basic:
// unsafe.Pointer is treated like a regular pointer
if u.kind == UnsafePointer {
err = "unsafe.Pointer"
}
case *Pointer, *Interface:
err = "pointer or interface type"
}
}
} else {
err = "basic or unnamed type"
}
if err != "" {
check.errorf(recv.pos, "invalid receiver %s (%s)", recv.typ, err)
// ok to continue
}
}
sig.recv = recv
}
sig.scope = scope
sig.params = NewTuple(params...)
sig.results = NewTuple(results...)
sig.variadic = variadic
}
// typInternal drives type checking of types.
// Must only be called by definedType.
//
func (check *Checker) typInternal(e ast.Expr, def *Named) Type {
switch e := e.(type) {
case *ast.BadExpr:
// ignore - error reported before
case *ast.Ident:
var x operand
check.ident(&x, e, def, true)
switch x.mode {
case typexpr:
typ := x.typ
def.setUnderlying(typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
case *ast.SelectorExpr:
var x operand
check.selector(&x, e)
switch x.mode {
case typexpr:
typ := x.typ
def.setUnderlying(typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
case *ast.ParenExpr:
return check.definedType(e.X, def)
case *ast.ArrayType:
if e.Len != nil {
typ := new(Array)
def.setUnderlying(typ)
typ.len = check.arrayLength(e.Len)
typ.elem = check.typ(e.Elt)
return typ
} else {
typ := new(Slice)
def.setUnderlying(typ)
typ.elem = check.indirectType(e.Elt)
return typ
}
case *ast.StructType:
typ := new(Struct)
def.setUnderlying(typ)
check.structType(typ, e)
return typ
case *ast.StarExpr:
typ := new(Pointer)
def.setUnderlying(typ)
typ.base = check.indirectType(e.X)
return typ
case *ast.FuncType:
typ := new(Signature)
def.setUnderlying(typ)
check.funcType(typ, nil, e)
return typ
case *ast.InterfaceType:
typ := new(Interface)
def.setUnderlying(typ)
check.interfaceType(typ, e, def)
return typ
case *ast.MapType:
typ := new(Map)
def.setUnderlying(typ)
typ.key = check.indirectType(e.Key)
typ.elem = check.indirectType(e.Value)
// spec: "The comparison operators == and != must be fully defined
// for operands of the key type; thus the key type must not be a
// function, map, or slice."
//
// Delay this check because it requires fully setup types;
// it is safe to continue in any case (was issue 6667).
check.later(func() {
if !Comparable(typ.key) {
check.errorf(e.Key.Pos(), "invalid map key type %s", typ.key)
}
})
return typ
case *ast.ChanType:
typ := new(Chan)
def.setUnderlying(typ)
dir := SendRecv
switch e.Dir {
case ast.SEND | ast.RECV:
// nothing to do
case ast.SEND:
dir = SendOnly
case ast.RECV:
dir = RecvOnly
default:
check.invalidAST(e.Pos(), "unknown channel direction %d", e.Dir)
// ok to continue
}
typ.dir = dir
typ.elem = check.indirectType(e.Value)
return typ
default:
check.errorf(e.Pos(), "%s is not a type", e)
}
typ := Typ[Invalid]
def.setUnderlying(typ)
return typ
}
// typeOrNil type-checks the type expression (or nil value) e
// and returns the typ of e, or nil.
// If e is neither a type nor nil, typOrNil returns Typ[Invalid].
//
func (check *Checker) typOrNil(e ast.Expr) Type {
var x operand
check.rawExpr(&x, e, nil)
switch x.mode {
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
case typexpr:
return x.typ
case value:
if x.isNil() {
return nil
}
fallthrough
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
return Typ[Invalid]
}
// arrayLength type-checks the array length expression e
// and returns the constant length >= 0, or a value < 0
// to indicate an error (and thus an unknown length).
func (check *Checker) arrayLength(e ast.Expr) int64 {
var x operand
check.expr(&x, e)
if x.mode != constant_ {
if x.mode != invalid {
check.errorf(x.pos(), "array length %s must be constant", &x)
}
return -1
}
if isUntyped(x.typ) || isInteger(x.typ) {
if val := constant.ToInt(x.val); val.Kind() == constant.Int {
if representableConst(val, check, Typ[Int], nil) {
if n, ok := constant.Int64Val(val); ok && n >= 0 {
return n
}
check.errorf(x.pos(), "invalid array length %s", &x)
return -1
}
}
}
check.errorf(x.pos(), "array length %s must be integer", &x)
return -1
}
func (check *Checker) collectParams(scope *Scope, list *ast.FieldList, variadicOk bool) (params []*Var, variadic bool) {
if list == nil {
return
}
var named, anonymous bool
for i, field := range list.List {
ftype := field.Type
if t, _ := ftype.(*ast.Ellipsis); t != nil {
ftype = t.Elt
if variadicOk && i == len(list.List)-1 {
variadic = true
} else {
check.invalidAST(field.Pos(), "... not permitted")
// ignore ... and continue
}
}
typ := check.indirectType(ftype)
// The parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag.
if len(field.Names) > 0 {
// named parameter
for _, name := range field.Names {
if name.Name == "" {
check.invalidAST(name.Pos(), "anonymous parameter")
// ok to continue
}
par := NewParam(name.Pos(), check.pkg, name.Name, typ)
check.declare(scope, name, par, scope.pos)
params = append(params, par)
}
named = true
} else {
// anonymous parameter
par := NewParam(ftype.Pos(), check.pkg, "", typ)
check.recordImplicit(field, par)
params = append(params, par)
anonymous = true
}
}
if named && anonymous {
check.invalidAST(list.Pos(), "list contains both named and anonymous parameters")
// ok to continue
}
// For a variadic function, change the last parameter's type from T to []T.
if variadic && len(params) > 0 {
last := params[len(params)-1]
last.typ = &Slice{elem: last.typ}
}
return
}
func (check *Checker) declareInSet(oset *objset, pos token.Pos, obj Object) bool {
if alt := oset.insert(obj); alt != nil {
check.errorf(pos, "%s redeclared", obj.Name())
check.reportAltDecl(alt)
return false
}
return true
}
func (check *Checker) interfaceType(ityp *Interface, iface *ast.InterfaceType, def *Named) {
// fast-track empty interface
if iface.Methods.List == nil {
ityp.allMethods = markComplete
return
}
// collect embedded interfaces
// Only needed for printing and API. Delay collection
// to end of type-checking (for package-global interfaces)
// when all types are complete. Local interfaces are handled
// after each statement (as each statement processes delayed
// functions).
interfaceContext := check.context // capture for use in closure below
check.later(func() {
if trace {
check.trace(iface.Pos(), "-- delayed checking embedded interfaces of %v", iface)
check.indent++
defer func() {
check.indent--
}()
}
// The context must be restored since for local interfaces
// delayed functions are processed after each statement
// (was issue #24140).
defer func(ctxt context) {
check.context = ctxt
}(check.context)
check.context = interfaceContext
for _, f := range iface.Methods.List {
if len(f.Names) == 0 {
typ := check.indirectType(f.Type)
// typ should be a named type denoting an interface
// (the parser will make sure it's a named type but
// constructed ASTs may be wrong).
if typ == Typ[Invalid] {
continue // error reported before
}
embed, _ := typ.Underlying().(*Interface)
if embed == nil {
check.errorf(f.Type.Pos(), "%s is not an interface", typ)
continue
}
// Correct embedded interfaces must be complete -
// don't just assert, but report error since this
// used to be the underlying cause for issue #18395.
if embed.allMethods == nil {
check.dump("%v: incomplete embedded interface %s", f.Type.Pos(), typ)
unreachable()
}
// collect interface
ityp.embeddeds = append(ityp.embeddeds, typ)
}
}
// sort to match NewInterface/NewInterface2
// TODO(gri) we may be able to switch to source order
sort.Stable(byUniqueTypeName(ityp.embeddeds))
})
// compute method set
var tname *TypeName
var path []*TypeName
if def != nil {
tname = def.obj
path = []*TypeName{tname}
}
info := check.infoFromTypeLit(check.scope, iface, tname, path)
if info == nil || info == &emptyIfaceInfo {
// error or empty interface - exit early
ityp.allMethods = markComplete
return
}
// use named receiver type if available (for better error messages)
var recvTyp Type = ityp
if def != nil {
recvTyp = def
}
// collect methods
var sigfix []*methodInfo
for i, minfo := range info.methods {
fun := minfo.fun
if fun == nil {
name := minfo.src.Names[0]
pos := name.Pos()
// Don't type-check signature yet - use an
// empty signature now and update it later.
// But set up receiver since we know it and
// its position, and because interface method
// signatures don't get a receiver via regular
// type-checking (there isn't a receiver in the
// the method's AST). Setting the correct receiver
// type is also important for ptrRecv() (see methodset.go).
//
// TODO(gri) Consider marking methods signatures
// as incomplete, for better error messages. See
// also the T4 and T5 tests in testdata/cycles2.src.
sig := new(Signature)
sig.recv = NewVar(pos, check.pkg, "", recvTyp)
fun = NewFunc(pos, check.pkg, name.Name, sig)
minfo.fun = fun
check.recordDef(name, fun)
sigfix = append(sigfix, minfo)
}
// fun != nil
if i < info.explicits {
ityp.methods = append(ityp.methods, fun)
}
ityp.allMethods = append(ityp.allMethods, fun)
}
// fix signatures now that we have collected all methods
savedContext := check.context
for _, minfo := range sigfix {
// (possibly embedded) methods must be type-checked within their scope and
// type-checking them must not affect the current context (was issue #23914)
check.context = context{scope: minfo.scope}
typ := check.indirectType(minfo.src.Type)
sig, _ := typ.(*Signature)
if sig == nil {
if typ != Typ[Invalid] {
check.invalidAST(minfo.src.Type.Pos(), "%s is not a method signature", typ)
}
continue // keep method with empty method signature
}
// update signature, but keep recv that was set up before
old := minfo.fun.typ.(*Signature)
sig.recv = old.recv
*old = *sig // update signature (don't replace pointer!)
}
check.context = savedContext
// sort to match NewInterface/NewInterface2
// TODO(gri) we may be able to switch to source order
sort.Sort(byUniqueMethodName(ityp.methods))
if ityp.allMethods == nil {
ityp.allMethods = markComplete
} else {
sort.Sort(byUniqueMethodName(ityp.allMethods))
}
}
// byUniqueTypeName named type lists can be sorted by their unique type names.
type byUniqueTypeName []Type
func (a byUniqueTypeName) Len() int { return len(a) }
func (a byUniqueTypeName) Less(i, j int) bool { return sortName(a[i]) < sortName(a[j]) }
func (a byUniqueTypeName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func sortName(t Type) string {
if named, _ := t.(*Named); named != nil {
return named.obj.Id()
}
return ""
}
// byUniqueMethodName method lists can be sorted by their unique method names.
type byUniqueMethodName []*Func
func (a byUniqueMethodName) Len() int { return len(a) }
func (a byUniqueMethodName) Less(i, j int) bool { return a[i].Id() < a[j].Id() }
func (a byUniqueMethodName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (check *Checker) tag(t *ast.BasicLit) string {
if t != nil {
if t.Kind == token.STRING {
if val, err := strconv.Unquote(t.Value); err == nil {
return val
}
}
check.invalidAST(t.Pos(), "incorrect tag syntax: %q", t.Value)
}
return ""
}
func (check *Checker) structType(styp *Struct, e *ast.StructType) {
list := e.Fields
if list == nil {
return
}
// struct fields and tags
var fields []*Var
var tags []string
// for double-declaration checks
var fset objset
// current field typ and tag
var typ Type
var tag string
add := func(ident *ast.Ident, embedded bool, pos token.Pos) {
if tag != "" && tags == nil {
tags = make([]string, len(fields))
}
if tags != nil {
tags = append(tags, tag)
}
name := ident.Name
fld := NewField(pos, check.pkg, name, typ, embedded)
// spec: "Within a struct, non-blank field names must be unique."
if name == "_" || check.declareInSet(&fset, pos, fld) {
fields = append(fields, fld)
check.recordDef(ident, fld)
}
}
// addInvalid adds an embedded field of invalid type to the struct for
// fields with errors; this keeps the number of struct fields in sync
// with the source as long as the fields are _ or have different names
// (issue #25627).
addInvalid := func(ident *ast.Ident, pos token.Pos) {
typ = Typ[Invalid]
tag = ""
add(ident, true, pos)
}
for _, f := range list.List {
typ = check.typ(f.Type)
tag = check.tag(f.Tag)
if len(f.Names) > 0 {
// named fields
for _, name := range f.Names {
add(name, false, name.Pos())
}
} else {
// embedded field
// spec: "An embedded type must be specified as a type name T or as a pointer
// to a non-interface type name *T, and T itself may not be a pointer type."
pos := f.Type.Pos()
name := embeddedFieldIdent(f.Type)
if name == nil {
check.invalidAST(pos, "embedded field type %s has no name", f.Type)
name = ast.NewIdent("_")
name.NamePos = pos
addInvalid(name, pos)
continue
}
t, isPtr := deref(typ)
// Because we have a name, typ must be of the form T or *T, where T is the name
// of a (named or alias) type, and t (= deref(typ)) must be the type of T.
switch t := t.Underlying().(type) {
case *Basic:
if t == Typ[Invalid] {
// error was reported before
addInvalid(name, pos)
continue
}
// unsafe.Pointer is treated like a regular pointer
if t.kind == UnsafePointer {
check.errorf(pos, "embedded field type cannot be unsafe.Pointer")
addInvalid(name, pos)
continue
}
case *Pointer:
check.errorf(pos, "embedded field type cannot be a pointer")
addInvalid(name, pos)
continue
case *Interface:
if isPtr {
check.errorf(pos, "embedded field type cannot be a pointer to an interface")
addInvalid(name, pos)
continue
}
}
add(name, true, pos)
}
}
styp.fields = fields
styp.tags = tags
}
func embeddedFieldIdent(e ast.Expr) *ast.Ident {
switch e := e.(type) {
case *ast.Ident:
return e
case *ast.StarExpr:
// *T is valid, but **T is not
if _, ok := e.X.(*ast.StarExpr); !ok {
return embeddedFieldIdent(e.X)
}
case *ast.SelectorExpr:
return e.Sel
}
return nil // invalid embedded field
}