Skip to content
Permalink
d902791b50
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
1756 lines (1548 sloc) 42 KB
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"fmt"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
)
// parseFiles concurrently parses files into *syntax.File structures.
// Each declaration in every *syntax.File is converted to a syntax tree
// and its root represented by *Node is appended to xtop.
// Returns the total count of parsed lines.
func parseFiles(filenames []string) uint {
noders := make([]*noder, 0, len(filenames))
// Limit the number of simultaneously open files.
sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10)
for _, filename := range filenames {
p := &noder{
basemap: make(map[*syntax.PosBase]*src.PosBase),
err: make(chan syntax.Error),
}
noders = append(noders, p)
go func(filename string) {
sem <- struct{}{}
defer func() { <-sem }()
defer close(p.err)
base := syntax.NewFileBase(filename)
f, err := os.Open(filename)
if err != nil {
p.error(syntax.Error{Msg: err.Error()})
return
}
defer f.Close()
p.file, _ = syntax.Parse(base, f, p.error, p.pragma, syntax.CheckBranches) // errors are tracked via p.error
}(filename)
}
var lines uint
for _, p := range noders {
for e := range p.err {
p.yyerrorpos(e.Pos, "%s", e.Msg)
}
p.node()
lines += p.file.Lines
p.file = nil // release memory
if nsyntaxerrors != 0 {
errorexit()
}
// Always run testdclstack here, even when debug_dclstack is not set, as a sanity measure.
testdclstack()
}
localpkg.Height = myheight
return lines
}
// makeSrcPosBase translates from a *syntax.PosBase to a *src.PosBase.
func (p *noder) makeSrcPosBase(b0 *syntax.PosBase) *src.PosBase {
// fast path: most likely PosBase hasn't changed
if p.basecache.last == b0 {
return p.basecache.base
}
b1, ok := p.basemap[b0]
if !ok {
fn := b0.Filename()
if b0.IsFileBase() {
b1 = src.NewFileBase(fn, absFilename(fn))
} else {
// line directive base
p0 := b0.Pos()
p0b := p0.Base()
if p0b == b0 {
panic("infinite recursion in makeSrcPosBase")
}
p1 := src.MakePos(p.makeSrcPosBase(p0b), p0.Line(), p0.Col())
b1 = src.NewLinePragmaBase(p1, fn, fileh(fn), b0.Line(), b0.Col())
}
p.basemap[b0] = b1
}
// update cache
p.basecache.last = b0
p.basecache.base = b1
return b1
}
func (p *noder) makeXPos(pos syntax.Pos) (_ src.XPos) {
return Ctxt.PosTable.XPos(src.MakePos(p.makeSrcPosBase(pos.Base()), pos.Line(), pos.Col()))
}
func (p *noder) yyerrorpos(pos syntax.Pos, format string, args ...interface{}) {
yyerrorl(p.makeXPos(pos), format, args...)
}
var pathPrefix string
// TODO(gri) Can we eliminate fileh in favor of absFilename?
func fileh(name string) string {
return objabi.AbsFile("", name, pathPrefix)
}
func absFilename(name string) string {
return objabi.AbsFile(Ctxt.Pathname, name, pathPrefix)
}
// noder transforms package syntax's AST into a Node tree.
type noder struct {
basemap map[*syntax.PosBase]*src.PosBase
basecache struct {
last *syntax.PosBase
base *src.PosBase
}
file *syntax.File
linknames []linkname
pragcgobuf [][]string
err chan syntax.Error
scope ScopeID
importedUnsafe bool
importedEmbed bool
// scopeVars is a stack tracking the number of variables declared in the
// current function at the moment each open scope was opened.
scopeVars []int
lastCloseScopePos syntax.Pos
}
func (p *noder) funcBody(fn *Node, block *syntax.BlockStmt) {
oldScope := p.scope
p.scope = 0
funchdr(fn)
if block != nil {
body := p.stmts(block.List)
if body == nil {
body = []*Node{nod(OEMPTY, nil, nil)}
}
fn.Nbody.Set(body)
lineno = p.makeXPos(block.Rbrace)
fn.Func.Endlineno = lineno
}
funcbody()
p.scope = oldScope
}
func (p *noder) openScope(pos syntax.Pos) {
types.Markdcl()
if trackScopes {
Curfn.Func.Parents = append(Curfn.Func.Parents, p.scope)
p.scopeVars = append(p.scopeVars, len(Curfn.Func.Dcl))
p.scope = ScopeID(len(Curfn.Func.Parents))
p.markScope(pos)
}
}
func (p *noder) closeScope(pos syntax.Pos) {
p.lastCloseScopePos = pos
types.Popdcl()
if trackScopes {
scopeVars := p.scopeVars[len(p.scopeVars)-1]
p.scopeVars = p.scopeVars[:len(p.scopeVars)-1]
if scopeVars == len(Curfn.Func.Dcl) {
// no variables were declared in this scope, so we can retract it.
if int(p.scope) != len(Curfn.Func.Parents) {
Fatalf("scope tracking inconsistency, no variables declared but scopes were not retracted")
}
p.scope = Curfn.Func.Parents[p.scope-1]
Curfn.Func.Parents = Curfn.Func.Parents[:len(Curfn.Func.Parents)-1]
nmarks := len(Curfn.Func.Marks)
Curfn.Func.Marks[nmarks-1].Scope = p.scope
prevScope := ScopeID(0)
if nmarks >= 2 {
prevScope = Curfn.Func.Marks[nmarks-2].Scope
}
if Curfn.Func.Marks[nmarks-1].Scope == prevScope {
Curfn.Func.Marks = Curfn.Func.Marks[:nmarks-1]
}
return
}
p.scope = Curfn.Func.Parents[p.scope-1]
p.markScope(pos)
}
}
func (p *noder) markScope(pos syntax.Pos) {
xpos := p.makeXPos(pos)
if i := len(Curfn.Func.Marks); i > 0 && Curfn.Func.Marks[i-1].Pos == xpos {
Curfn.Func.Marks[i-1].Scope = p.scope
} else {
Curfn.Func.Marks = append(Curfn.Func.Marks, Mark{xpos, p.scope})
}
}
// closeAnotherScope is like closeScope, but it reuses the same mark
// position as the last closeScope call. This is useful for "for" and
// "if" statements, as their implicit blocks always end at the same
// position as an explicit block.
func (p *noder) closeAnotherScope() {
p.closeScope(p.lastCloseScopePos)
}
// linkname records a //go:linkname directive.
type linkname struct {
pos syntax.Pos
local string
remote string
}
func (p *noder) node() {
types.Block = 1
p.importedUnsafe = false
p.importedEmbed = false
p.setlineno(p.file.PkgName)
mkpackage(p.file.PkgName.Value)
if pragma, ok := p.file.Pragma.(*Pragma); ok {
pragma.Flag &^= GoBuildPragma
p.checkUnused(pragma)
}
xtop = append(xtop, p.decls(p.file.DeclList)...)
for _, n := range p.linknames {
if !p.importedUnsafe {
p.yyerrorpos(n.pos, "//go:linkname only allowed in Go files that import \"unsafe\"")
continue
}
s := lookup(n.local)
if n.remote != "" {
s.Linkname = n.remote
} else {
// Use the default object symbol name if the
// user didn't provide one.
if myimportpath == "" {
p.yyerrorpos(n.pos, "//go:linkname requires linkname argument or -p compiler flag")
} else {
s.Linkname = objabi.PathToPrefix(myimportpath) + "." + n.local
}
}
}
// The linker expects an ABI0 wrapper for all cgo-exported
// functions.
for _, prag := range p.pragcgobuf {
switch prag[0] {
case "cgo_export_static", "cgo_export_dynamic":
if symabiRefs == nil {
symabiRefs = make(map[string]obj.ABI)
}
symabiRefs[prag[1]] = obj.ABI0
}
}
pragcgobuf = append(pragcgobuf, p.pragcgobuf...)
lineno = src.NoXPos
clearImports()
}
func (p *noder) decls(decls []syntax.Decl) (l []*Node) {
var cs constState
for _, decl := range decls {
p.setlineno(decl)
switch decl := decl.(type) {
case *syntax.ImportDecl:
p.importDecl(decl)
case *syntax.VarDecl:
l = append(l, p.varDecl(decl)...)
case *syntax.ConstDecl:
l = append(l, p.constDecl(decl, &cs)...)
case *syntax.TypeDecl:
l = append(l, p.typeDecl(decl))
case *syntax.FuncDecl:
l = append(l, p.funcDecl(decl))
default:
panic("unhandled Decl")
}
}
return
}
func (p *noder) importDecl(imp *syntax.ImportDecl) {
if imp.Path.Bad {
return // avoid follow-on errors if there was a syntax error
}
if pragma, ok := imp.Pragma.(*Pragma); ok {
p.checkUnused(pragma)
}
val := p.basicLit(imp.Path)
ipkg := importfile(&val)
if ipkg == nil {
if nerrors == 0 {
Fatalf("phase error in import")
}
return
}
if ipkg == unsafepkg {
p.importedUnsafe = true
}
if ipkg.Path == "embed" {
p.importedEmbed = true
}
ipkg.Direct = true
var my *types.Sym
if imp.LocalPkgName != nil {
my = p.name(imp.LocalPkgName)
} else {
my = lookup(ipkg.Name)
}
pack := p.nod(imp, OPACK, nil, nil)
pack.Sym = my
pack.Name.Pkg = ipkg
switch my.Name {
case ".":
importdot(ipkg, pack)
return
case "init":
yyerrorl(pack.Pos, "cannot import package as init - init must be a func")
return
case "_":
return
}
if my.Def != nil {
redeclare(pack.Pos, my, "as imported package name")
}
my.Def = asTypesNode(pack)
my.Lastlineno = pack.Pos
my.Block = 1 // at top level
}
func (p *noder) varDecl(decl *syntax.VarDecl) []*Node {
names := p.declNames(decl.NameList)
typ := p.typeExprOrNil(decl.Type)
var exprs []*Node
if decl.Values != nil {
exprs = p.exprList(decl.Values)
}
if pragma, ok := decl.Pragma.(*Pragma); ok {
if len(pragma.Embeds) > 0 {
if !p.importedEmbed {
// This check can't be done when building the list pragma.Embeds
// because that list is created before the noder starts walking over the file,
// so at that point it hasn't seen the imports.
// We're left to check now, just before applying the //go:embed lines.
for _, e := range pragma.Embeds {
p.yyerrorpos(e.Pos, "//go:embed only allowed in Go files that import \"embed\"")
}
} else {
exprs = varEmbed(p, names, typ, exprs, pragma.Embeds)
}
pragma.Embeds = nil
}
p.checkUnused(pragma)
}
p.setlineno(decl)
return variter(names, typ, exprs)
}
// constState tracks state between constant specifiers within a
// declaration group. This state is kept separate from noder so nested
// constant declarations are handled correctly (e.g., issue 15550).
type constState struct {
group *syntax.Group
typ *Node
values []*Node
iota int64
}
func (p *noder) constDecl(decl *syntax.ConstDecl, cs *constState) []*Node {
if decl.Group == nil || decl.Group != cs.group {
*cs = constState{
group: decl.Group,
}
}
if pragma, ok := decl.Pragma.(*Pragma); ok {
p.checkUnused(pragma)
}
names := p.declNames(decl.NameList)
typ := p.typeExprOrNil(decl.Type)
var values []*Node
if decl.Values != nil {
values = p.exprList(decl.Values)
cs.typ, cs.values = typ, values
} else {
if typ != nil {
yyerror("const declaration cannot have type without expression")
}
typ, values = cs.typ, cs.values
}
nn := make([]*Node, 0, len(names))
for i, n := range names {
if i >= len(values) {
yyerror("missing value in const declaration")
break
}
v := values[i]
if decl.Values == nil {
v = treecopy(v, n.Pos)
}
n.Op = OLITERAL
declare(n, dclcontext)
n.Name.Param.Ntype = typ
n.Name.Defn = v
n.SetIota(cs.iota)
nn = append(nn, p.nod(decl, ODCLCONST, n, nil))
}
if len(values) > len(names) {
yyerror("extra expression in const declaration")
}
cs.iota++
return nn
}
func (p *noder) typeDecl(decl *syntax.TypeDecl) *Node {
n := p.declName(decl.Name)
n.Op = OTYPE
declare(n, dclcontext)
// decl.Type may be nil but in that case we got a syntax error during parsing
typ := p.typeExprOrNil(decl.Type)
param := n.Name.Param
param.Ntype = typ
param.SetAlias(decl.Alias)
if pragma, ok := decl.Pragma.(*Pragma); ok {
if !decl.Alias {
param.SetPragma(pragma.Flag & TypePragmas)
pragma.Flag &^= TypePragmas
}
p.checkUnused(pragma)
}
nod := p.nod(decl, ODCLTYPE, n, nil)
if param.Alias() && !langSupported(1, 9, localpkg) {
yyerrorl(nod.Pos, "type aliases only supported as of -lang=go1.9")
}
return nod
}
func (p *noder) declNames(names []*syntax.Name) []*Node {
nodes := make([]*Node, 0, len(names))
for _, name := range names {
nodes = append(nodes, p.declName(name))
}
return nodes
}
func (p *noder) declName(name *syntax.Name) *Node {
n := dclname(p.name(name))
n.Pos = p.pos(name)
return n
}
func (p *noder) funcDecl(fun *syntax.FuncDecl) *Node {
name := p.name(fun.Name)
t := p.signature(fun.Recv, fun.Type)
f := p.nod(fun, ODCLFUNC, nil, nil)
if fun.Recv == nil {
if name.Name == "init" {
name = renameinit()
if t.List.Len() > 0 || t.Rlist.Len() > 0 {
yyerrorl(f.Pos, "func init must have no arguments and no return values")
}
}
if localpkg.Name == "main" && name.Name == "main" {
if t.List.Len() > 0 || t.Rlist.Len() > 0 {
yyerrorl(f.Pos, "func main must have no arguments and no return values")
}
}
} else {
f.Func.Shortname = name
name = nblank.Sym // filled in by typecheckfunc
}
f.Func.Nname = newfuncnamel(p.pos(fun.Name), name)
f.Func.Nname.Name.Defn = f
f.Func.Nname.Name.Param.Ntype = t
if pragma, ok := fun.Pragma.(*Pragma); ok {
f.Func.Pragma = pragma.Flag & FuncPragmas
if pragma.Flag&Systemstack != 0 && pragma.Flag&Nosplit != 0 {
yyerrorl(f.Pos, "go:nosplit and go:systemstack cannot be combined")
}
pragma.Flag &^= FuncPragmas
p.checkUnused(pragma)
}
if fun.Recv == nil {
declare(f.Func.Nname, PFUNC)
}
p.funcBody(f, fun.Body)
if fun.Body != nil {
if f.Func.Pragma&Noescape != 0 {
yyerrorl(f.Pos, "can only use //go:noescape with external func implementations")
}
} else {
if pure_go || strings.HasPrefix(f.funcname(), "init.") {
// Linknamed functions are allowed to have no body. Hopefully
// the linkname target has a body. See issue 23311.
isLinknamed := false
for _, n := range p.linknames {
if f.funcname() == n.local {
isLinknamed = true
break
}
}
if !isLinknamed {
yyerrorl(f.Pos, "missing function body")
}
}
}
return f
}
func (p *noder) signature(recv *syntax.Field, typ *syntax.FuncType) *Node {
n := p.nod(typ, OTFUNC, nil, nil)
if recv != nil {
n.Left = p.param(recv, false, false)
}
n.List.Set(p.params(typ.ParamList, true))
n.Rlist.Set(p.params(typ.ResultList, false))
return n
}
func (p *noder) params(params []*syntax.Field, dddOk bool) []*Node {
nodes := make([]*Node, 0, len(params))
for i, param := range params {
p.setlineno(param)
nodes = append(nodes, p.param(param, dddOk, i+1 == len(params)))
}
return nodes
}
func (p *noder) param(param *syntax.Field, dddOk, final bool) *Node {
var name *types.Sym
if param.Name != nil {
name = p.name(param.Name)
}
typ := p.typeExpr(param.Type)
n := p.nodSym(param, ODCLFIELD, typ, name)
// rewrite ...T parameter
if typ.Op == ODDD {
if !dddOk {
// We mark these as syntax errors to get automatic elimination
// of multiple such errors per line (see yyerrorl in subr.go).
yyerror("syntax error: cannot use ... in receiver or result parameter list")
} else if !final {
if param.Name == nil {
yyerror("syntax error: cannot use ... with non-final parameter")
} else {
p.yyerrorpos(param.Name.Pos(), "syntax error: cannot use ... with non-final parameter %s", param.Name.Value)
}
}
typ.Op = OTARRAY
typ.Right = typ.Left
typ.Left = nil
n.SetIsDDD(true)
if n.Left != nil {
n.Left.SetIsDDD(true)
}
}
return n
}
func (p *noder) exprList(expr syntax.Expr) []*Node {
if list, ok := expr.(*syntax.ListExpr); ok {
return p.exprs(list.ElemList)
}
return []*Node{p.expr(expr)}
}
func (p *noder) exprs(exprs []syntax.Expr) []*Node {
nodes := make([]*Node, 0, len(exprs))
for _, expr := range exprs {
nodes = append(nodes, p.expr(expr))
}
return nodes
}
func (p *noder) expr(expr syntax.Expr) *Node {
p.setlineno(expr)
switch expr := expr.(type) {
case nil, *syntax.BadExpr:
return nil
case *syntax.Name:
return p.mkname(expr)
case *syntax.BasicLit:
n := nodlit(p.basicLit(expr))
n.SetDiag(expr.Bad) // avoid follow-on errors if there was a syntax error
return n
case *syntax.CompositeLit:
n := p.nod(expr, OCOMPLIT, nil, nil)
if expr.Type != nil {
n.Right = p.expr(expr.Type)
}
l := p.exprs(expr.ElemList)
for i, e := range l {
l[i] = p.wrapname(expr.ElemList[i], e)
}
n.List.Set(l)
lineno = p.makeXPos(expr.Rbrace)
return n
case *syntax.KeyValueExpr:
// use position of expr.Key rather than of expr (which has position of ':')
return p.nod(expr.Key, OKEY, p.expr(expr.Key), p.wrapname(expr.Value, p.expr(expr.Value)))
case *syntax.FuncLit:
return p.funcLit(expr)
case *syntax.ParenExpr:
return p.nod(expr, OPAREN, p.expr(expr.X), nil)
case *syntax.SelectorExpr:
// parser.new_dotname
obj := p.expr(expr.X)
if obj.Op == OPACK {
obj.Name.SetUsed(true)
return importName(obj.Name.Pkg.Lookup(expr.Sel.Value))
}
n := nodSym(OXDOT, obj, p.name(expr.Sel))
n.Pos = p.pos(expr) // lineno may have been changed by p.expr(expr.X)
return n
case *syntax.IndexExpr:
return p.nod(expr, OINDEX, p.expr(expr.X), p.expr(expr.Index))
case *syntax.SliceExpr:
op := OSLICE
if expr.Full {
op = OSLICE3
}
n := p.nod(expr, op, p.expr(expr.X), nil)
var index [3]*Node
for i, x := range &expr.Index {
if x != nil {
index[i] = p.expr(x)
}
}
n.SetSliceBounds(index[0], index[1], index[2])
return n
case *syntax.AssertExpr:
return p.nod(expr, ODOTTYPE, p.expr(expr.X), p.typeExpr(expr.Type))
case *syntax.Operation:
if expr.Op == syntax.Add && expr.Y != nil {
return p.sum(expr)
}
x := p.expr(expr.X)
if expr.Y == nil {
return p.nod(expr, p.unOp(expr.Op), x, nil)
}
return p.nod(expr, p.binOp(expr.Op), x, p.expr(expr.Y))
case *syntax.CallExpr:
n := p.nod(expr, OCALL, p.expr(expr.Fun), nil)
n.List.Set(p.exprs(expr.ArgList))
n.SetIsDDD(expr.HasDots)
return n
case *syntax.ArrayType:
var len *Node
if expr.Len != nil {
len = p.expr(expr.Len)
} else {
len = p.nod(expr, ODDD, nil, nil)
}
return p.nod(expr, OTARRAY, len, p.typeExpr(expr.Elem))
case *syntax.SliceType:
return p.nod(expr, OTARRAY, nil, p.typeExpr(expr.Elem))
case *syntax.DotsType:
return p.nod(expr, ODDD, p.typeExpr(expr.Elem), nil)
case *syntax.StructType:
return p.structType(expr)
case *syntax.InterfaceType:
return p.interfaceType(expr)
case *syntax.FuncType:
return p.signature(nil, expr)
case *syntax.MapType:
return p.nod(expr, OTMAP, p.typeExpr(expr.Key), p.typeExpr(expr.Value))
case *syntax.ChanType:
n := p.nod(expr, OTCHAN, p.typeExpr(expr.Elem), nil)
n.SetTChanDir(p.chanDir(expr.Dir))
return n
case *syntax.TypeSwitchGuard:
n := p.nod(expr, OTYPESW, nil, p.expr(expr.X))
if expr.Lhs != nil {
n.Left = p.declName(expr.Lhs)
if n.Left.isBlank() {
yyerror("invalid variable name %v in type switch", n.Left)
}
}
return n
}
panic("unhandled Expr")
}
// sum efficiently handles very large summation expressions (such as
// in issue #16394). In particular, it avoids left recursion and
// collapses string literals.
func (p *noder) sum(x syntax.Expr) *Node {
// While we need to handle long sums with asymptotic
// efficiency, the vast majority of sums are very small: ~95%
// have only 2 or 3 operands, and ~99% of string literals are
// never concatenated.
adds := make([]*syntax.Operation, 0, 2)
for {
add, ok := x.(*syntax.Operation)
if !ok || add.Op != syntax.Add || add.Y == nil {
break
}
adds = append(adds, add)
x = add.X
}
// nstr is the current rightmost string literal in the
// summation (if any), and chunks holds its accumulated
// substrings.
//
// Consider the expression x + "a" + "b" + "c" + y. When we
// reach the string literal "a", we assign nstr to point to
// its corresponding Node and initialize chunks to {"a"}.
// Visiting the subsequent string literals "b" and "c", we
// simply append their values to chunks. Finally, when we
// reach the non-constant operand y, we'll join chunks to form
// "abc" and reassign the "a" string literal's value.
//
// N.B., we need to be careful about named string constants
// (indicated by Sym != nil) because 1) we can't modify their
// value, as doing so would affect other uses of the string
// constant, and 2) they may have types, which we need to
// handle correctly. For now, we avoid these problems by
// treating named string constants the same as non-constant
// operands.
var nstr *Node
chunks := make([]string, 0, 1)
n := p.expr(x)
if Isconst(n, CTSTR) && n.Sym == nil {
nstr = n
chunks = append(chunks, nstr.StringVal())
}
for i := len(adds) - 1; i >= 0; i-- {
add := adds[i]
r := p.expr(add.Y)
if Isconst(r, CTSTR) && r.Sym == nil {
if nstr != nil {
// Collapse r into nstr instead of adding to n.
chunks = append(chunks, r.StringVal())
continue
}
nstr = r
chunks = append(chunks, nstr.StringVal())
} else {
if len(chunks) > 1 {
nstr.SetVal(Val{U: strings.Join(chunks, "")})
}
nstr = nil
chunks = chunks[:0]
}
n = p.nod(add, OADD, n, r)
}
if len(chunks) > 1 {
nstr.SetVal(Val{U: strings.Join(chunks, "")})
}
return n
}
func (p *noder) typeExpr(typ syntax.Expr) *Node {
// TODO(mdempsky): Be stricter? typecheck should handle errors anyway.
return p.expr(typ)
}
func (p *noder) typeExprOrNil(typ syntax.Expr) *Node {
if typ != nil {
return p.expr(typ)
}
return nil
}
func (p *noder) chanDir(dir syntax.ChanDir) types.ChanDir {
switch dir {
case 0:
return types.Cboth
case syntax.SendOnly:
return types.Csend
case syntax.RecvOnly:
return types.Crecv
}
panic("unhandled ChanDir")
}
func (p *noder) structType(expr *syntax.StructType) *Node {
l := make([]*Node, 0, len(expr.FieldList))
for i, field := range expr.FieldList {
p.setlineno(field)
var n *Node
if field.Name == nil {
n = p.embedded(field.Type)
} else {
n = p.nodSym(field, ODCLFIELD, p.typeExpr(field.Type), p.name(field.Name))
}
if i < len(expr.TagList) && expr.TagList[i] != nil {
n.SetVal(p.basicLit(expr.TagList[i]))
}
l = append(l, n)
}
p.setlineno(expr)
n := p.nod(expr, OTSTRUCT, nil, nil)
n.List.Set(l)
return n
}
func (p *noder) interfaceType(expr *syntax.InterfaceType) *Node {
l := make([]*Node, 0, len(expr.MethodList))
for _, method := range expr.MethodList {
p.setlineno(method)
var n *Node
if method.Name == nil {
n = p.nodSym(method, ODCLFIELD, importName(p.packname(method.Type)), nil)
} else {
mname := p.name(method.Name)
sig := p.typeExpr(method.Type)
sig.Left = fakeRecv()
n = p.nodSym(method, ODCLFIELD, sig, mname)
ifacedcl(n)
}
l = append(l, n)
}
n := p.nod(expr, OTINTER, nil, nil)
n.List.Set(l)
return n
}
func (p *noder) packname(expr syntax.Expr) *types.Sym {
switch expr := expr.(type) {
case *syntax.Name:
name := p.name(expr)
if n := oldname(name); n.Name != nil && n.Name.Pack != nil {
n.Name.Pack.Name.SetUsed(true)
}
return name
case *syntax.SelectorExpr:
name := p.name(expr.X.(*syntax.Name))
def := asNode(name.Def)
if def == nil {
yyerror("undefined: %v", name)
return name
}
var pkg *types.Pkg
if def.Op != OPACK {
yyerror("%v is not a package", name)
pkg = localpkg
} else {
def.Name.SetUsed(true)
pkg = def.Name.Pkg
}
return pkg.Lookup(expr.Sel.Value)
}
panic(fmt.Sprintf("unexpected packname: %#v", expr))
}
func (p *noder) embedded(typ syntax.Expr) *Node {
op, isStar := typ.(*syntax.Operation)
if isStar {
if op.Op != syntax.Mul || op.Y != nil {
panic("unexpected Operation")
}
typ = op.X
}
sym := p.packname(typ)
n := p.nodSym(typ, ODCLFIELD, importName(sym), lookup(sym.Name))
n.SetEmbedded(true)
if isStar {
n.Left = p.nod(op, ODEREF, n.Left, nil)
}
return n
}
func (p *noder) stmts(stmts []syntax.Stmt) []*Node {
return p.stmtsFall(stmts, false)
}
func (p *noder) stmtsFall(stmts []syntax.Stmt, fallOK bool) []*Node {
var nodes []*Node
for i, stmt := range stmts {
s := p.stmtFall(stmt, fallOK && i+1 == len(stmts))
if s == nil {
} else if s.Op == OBLOCK && s.Ninit.Len() == 0 {
nodes = append(nodes, s.List.Slice()...)
} else {
nodes = append(nodes, s)
}
}
return nodes
}
func (p *noder) stmt(stmt syntax.Stmt) *Node {
return p.stmtFall(stmt, false)
}
func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) *Node {
p.setlineno(stmt)
switch stmt := stmt.(type) {
case *syntax.EmptyStmt:
return nil
case *syntax.LabeledStmt:
return p.labeledStmt(stmt, fallOK)
case *syntax.BlockStmt:
l := p.blockStmt(stmt)
if len(l) == 0 {
// TODO(mdempsky): Line number?
return nod(OEMPTY, nil, nil)
}
return liststmt(l)
case *syntax.ExprStmt:
return p.wrapname(stmt, p.expr(stmt.X))
case *syntax.SendStmt:
return p.nod(stmt, OSEND, p.expr(stmt.Chan), p.expr(stmt.Value))
case *syntax.DeclStmt:
return liststmt(p.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Op != 0 && stmt.Op != syntax.Def {
n := p.nod(stmt, OASOP, p.expr(stmt.Lhs), p.expr(stmt.Rhs))
n.SetImplicit(stmt.Rhs == syntax.ImplicitOne)
n.SetSubOp(p.binOp(stmt.Op))
return n
}
n := p.nod(stmt, OAS, nil, nil) // assume common case
rhs := p.exprList(stmt.Rhs)
lhs := p.assignList(stmt.Lhs, n, stmt.Op == syntax.Def)
if len(lhs) == 1 && len(rhs) == 1 {
// common case
n.Left = lhs[0]
n.Right = rhs[0]
} else {
n.Op = OAS2
n.List.Set(lhs)
n.Rlist.Set(rhs)
}
return n
case *syntax.BranchStmt:
var op Op
switch stmt.Tok {
case syntax.Break:
op = OBREAK
case syntax.Continue:
op = OCONTINUE
case syntax.Fallthrough:
if !fallOK {
yyerror("fallthrough statement out of place")
}
op = OFALL
case syntax.Goto:
op = OGOTO
default:
panic("unhandled BranchStmt")
}
n := p.nod(stmt, op, nil, nil)
if stmt.Label != nil {
n.Sym = p.name(stmt.Label)
}
return n
case *syntax.CallStmt:
var op Op
switch stmt.Tok {
case syntax.Defer:
op = ODEFER
case syntax.Go:
op = OGO
default:
panic("unhandled CallStmt")
}
return p.nod(stmt, op, p.expr(stmt.Call), nil)
case *syntax.ReturnStmt:
var results []*Node
if stmt.Results != nil {
results = p.exprList(stmt.Results)
}
n := p.nod(stmt, ORETURN, nil, nil)
n.List.Set(results)
if n.List.Len() == 0 && Curfn != nil {
for _, ln := range Curfn.Func.Dcl {
if ln.Class() == PPARAM {
continue
}
if ln.Class() != PPARAMOUT {
break
}
if asNode(ln.Sym.Def) != ln {
yyerror("%s is shadowed during return", ln.Sym.Name)
}
}
}
return n
case *syntax.IfStmt:
return p.ifStmt(stmt)
case *syntax.ForStmt:
return p.forStmt(stmt)
case *syntax.SwitchStmt:
return p.switchStmt(stmt)
case *syntax.SelectStmt:
return p.selectStmt(stmt)
}
panic("unhandled Stmt")
}
func (p *noder) assignList(expr syntax.Expr, defn *Node, colas bool) []*Node {
if !colas {
return p.exprList(expr)
}
defn.SetColas(true)
var exprs []syntax.Expr
if list, ok := expr.(*syntax.ListExpr); ok {
exprs = list.ElemList
} else {
exprs = []syntax.Expr{expr}
}
res := make([]*Node, len(exprs))
seen := make(map[*types.Sym]bool, len(exprs))
newOrErr := false
for i, expr := range exprs {
p.setlineno(expr)
res[i] = nblank
name, ok := expr.(*syntax.Name)
if !ok {
p.yyerrorpos(expr.Pos(), "non-name %v on left side of :=", p.expr(expr))
newOrErr = true
continue
}
sym := p.name(name)
if sym.IsBlank() {
continue
}
if seen[sym] {
p.yyerrorpos(expr.Pos(), "%v repeated on left side of :=", sym)
newOrErr = true
continue
}
seen[sym] = true
if sym.Block == types.Block {
res[i] = oldname(sym)
continue
}
newOrErr = true
n := newname(sym)
declare(n, dclcontext)
n.Name.Defn = defn
defn.Ninit.Append(nod(ODCL, n, nil))
res[i] = n
}
if !newOrErr {
yyerrorl(defn.Pos, "no new variables on left side of :=")
}
return res
}
func (p *noder) blockStmt(stmt *syntax.BlockStmt) []*Node {
p.openScope(stmt.Pos())
nodes := p.stmts(stmt.List)
p.closeScope(stmt.Rbrace)
return nodes
}
func (p *noder) ifStmt(stmt *syntax.IfStmt) *Node {
p.openScope(stmt.Pos())
n := p.nod(stmt, OIF, nil, nil)
if stmt.Init != nil {
n.Ninit.Set1(p.stmt(stmt.Init))
}
if stmt.Cond != nil {
n.Left = p.expr(stmt.Cond)
}
n.Nbody.Set(p.blockStmt(stmt.Then))
if stmt.Else != nil {
e := p.stmt(stmt.Else)
if e.Op == OBLOCK && e.Ninit.Len() == 0 {
n.Rlist.Set(e.List.Slice())
} else {
n.Rlist.Set1(e)
}
}
p.closeAnotherScope()
return n
}
func (p *noder) forStmt(stmt *syntax.ForStmt) *Node {
p.openScope(stmt.Pos())
var n *Node
if r, ok := stmt.Init.(*syntax.RangeClause); ok {
if stmt.Cond != nil || stmt.Post != nil {
panic("unexpected RangeClause")
}
n = p.nod(r, ORANGE, nil, p.expr(r.X))
if r.Lhs != nil {
n.List.Set(p.assignList(r.Lhs, n, r.Def))
}
} else {
n = p.nod(stmt, OFOR, nil, nil)
if stmt.Init != nil {
n.Ninit.Set1(p.stmt(stmt.Init))
}
if stmt.Cond != nil {
n.Left = p.expr(stmt.Cond)
}
if stmt.Post != nil {
n.Right = p.stmt(stmt.Post)
}
}
n.Nbody.Set(p.blockStmt(stmt.Body))
p.closeAnotherScope()
return n
}
func (p *noder) switchStmt(stmt *syntax.SwitchStmt) *Node {
p.openScope(stmt.Pos())
n := p.nod(stmt, OSWITCH, nil, nil)
if stmt.Init != nil {
n.Ninit.Set1(p.stmt(stmt.Init))
}
if stmt.Tag != nil {
n.Left = p.expr(stmt.Tag)
}
tswitch := n.Left
if tswitch != nil && tswitch.Op != OTYPESW {
tswitch = nil
}
n.List.Set(p.caseClauses(stmt.Body, tswitch, stmt.Rbrace))
p.closeScope(stmt.Rbrace)
return n
}
func (p *noder) caseClauses(clauses []*syntax.CaseClause, tswitch *Node, rbrace syntax.Pos) []*Node {
nodes := make([]*Node, 0, len(clauses))
for i, clause := range clauses {
p.setlineno(clause)
if i > 0 {
p.closeScope(clause.Pos())
}
p.openScope(clause.Pos())
n := p.nod(clause, OCASE, nil, nil)
if clause.Cases != nil {
n.List.Set(p.exprList(clause.Cases))
}
if tswitch != nil && tswitch.Left != nil {
nn := newname(tswitch.Left.Sym)
declare(nn, dclcontext)
n.Rlist.Set1(nn)
// keep track of the instances for reporting unused
nn.Name.Defn = tswitch
}
// Trim trailing empty statements. We omit them from
// the Node AST anyway, and it's easier to identify
// out-of-place fallthrough statements without them.
body := clause.Body
for len(body) > 0 {
if _, ok := body[len(body)-1].(*syntax.EmptyStmt); !ok {
break
}
body = body[:len(body)-1]
}
n.Nbody.Set(p.stmtsFall(body, true))
if l := n.Nbody.Len(); l > 0 && n.Nbody.Index(l-1).Op == OFALL {
if tswitch != nil {
yyerror("cannot fallthrough in type switch")
}
if i+1 == len(clauses) {
yyerror("cannot fallthrough final case in switch")
}
}
nodes = append(nodes, n)
}
if len(clauses) > 0 {
p.closeScope(rbrace)
}
return nodes
}
func (p *noder) selectStmt(stmt *syntax.SelectStmt) *Node {
n := p.nod(stmt, OSELECT, nil, nil)
n.List.Set(p.commClauses(stmt.Body, stmt.Rbrace))
return n
}
func (p *noder) commClauses(clauses []*syntax.CommClause, rbrace syntax.Pos) []*Node {
nodes := make([]*Node, 0, len(clauses))
for i, clause := range clauses {
p.setlineno(clause)
if i > 0 {
p.closeScope(clause.Pos())
}
p.openScope(clause.Pos())
n := p.nod(clause, OCASE, nil, nil)
if clause.Comm != nil {
n.List.Set1(p.stmt(clause.Comm))
}
n.Nbody.Set(p.stmts(clause.Body))
nodes = append(nodes, n)
}
if len(clauses) > 0 {
p.closeScope(rbrace)
}
return nodes
}
func (p *noder) labeledStmt(label *syntax.LabeledStmt, fallOK bool) *Node {
lhs := p.nodSym(label, OLABEL, nil, p.name(label.Label))
var ls *Node
if label.Stmt != nil { // TODO(mdempsky): Should always be present.
ls = p.stmtFall(label.Stmt, fallOK)
}
lhs.Name.Defn = ls
l := []*Node{lhs}
if ls != nil {
if ls.Op == OBLOCK && ls.Ninit.Len() == 0 {
l = append(l, ls.List.Slice()...)
} else {
l = append(l, ls)
}
}
return liststmt(l)
}
var unOps = [...]Op{
syntax.Recv: ORECV,
syntax.Mul: ODEREF,
syntax.And: OADDR,
syntax.Not: ONOT,
syntax.Xor: OBITNOT,
syntax.Add: OPLUS,
syntax.Sub: ONEG,
}
func (p *noder) unOp(op syntax.Operator) Op {
if uint64(op) >= uint64(len(unOps)) || unOps[op] == 0 {
panic("invalid Operator")
}
return unOps[op]
}
var binOps = [...]Op{
syntax.OrOr: OOROR,
syntax.AndAnd: OANDAND,
syntax.Eql: OEQ,
syntax.Neq: ONE,
syntax.Lss: OLT,
syntax.Leq: OLE,
syntax.Gtr: OGT,
syntax.Geq: OGE,
syntax.Add: OADD,
syntax.Sub: OSUB,
syntax.Or: OOR,
syntax.Xor: OXOR,
syntax.Mul: OMUL,
syntax.Div: ODIV,
syntax.Rem: OMOD,
syntax.And: OAND,
syntax.AndNot: OANDNOT,
syntax.Shl: OLSH,
syntax.Shr: ORSH,
}
func (p *noder) binOp(op syntax.Operator) Op {
if uint64(op) >= uint64(len(binOps)) || binOps[op] == 0 {
panic("invalid Operator")
}
return binOps[op]
}
// checkLangCompat reports an error if the representation of a numeric
// literal is not compatible with the current language version.
func checkLangCompat(lit *syntax.BasicLit) {
s := lit.Value
if len(s) <= 2 || langSupported(1, 13, localpkg) {
return
}
// len(s) > 2
if strings.Contains(s, "_") {
yyerrorv("go1.13", "underscores in numeric literals")
return
}
if s[0] != '0' {
return
}
base := s[1]
if base == 'b' || base == 'B' {
yyerrorv("go1.13", "binary literals")
return
}
if base == 'o' || base == 'O' {
yyerrorv("go1.13", "0o/0O-style octal literals")
return
}
if lit.Kind != syntax.IntLit && (base == 'x' || base == 'X') {
yyerrorv("go1.13", "hexadecimal floating-point literals")
}
}
func (p *noder) basicLit(lit *syntax.BasicLit) Val {
// We don't use the errors of the conversion routines to determine
// if a literal string is valid because the conversion routines may
// accept a wider syntax than the language permits. Rely on lit.Bad
// instead.
switch s := lit.Value; lit.Kind {
case syntax.IntLit:
checkLangCompat(lit)
x := new(Mpint)
if !lit.Bad {
x.SetString(s)
}
return Val{U: x}
case syntax.FloatLit:
checkLangCompat(lit)
x := newMpflt()
if !lit.Bad {
x.SetString(s)
}
return Val{U: x}
case syntax.ImagLit:
checkLangCompat(lit)
x := newMpcmplx()
if !lit.Bad {
x.Imag.SetString(strings.TrimSuffix(s, "i"))
}
return Val{U: x}
case syntax.RuneLit:
x := new(Mpint)
x.Rune = true
if !lit.Bad {
u, _ := strconv.Unquote(s)
var r rune
if len(u) == 1 {
r = rune(u[0])
} else {
r, _ = utf8.DecodeRuneInString(u)
}
x.SetInt64(int64(r))
}
return Val{U: x}
case syntax.StringLit:
var x string
if !lit.Bad {
if len(s) > 0 && s[0] == '`' {
// strip carriage returns from raw string
s = strings.Replace(s, "\r", "", -1)
}
x, _ = strconv.Unquote(s)
}
return Val{U: x}
default:
panic("unhandled BasicLit kind")
}
}
func (p *noder) name(name *syntax.Name) *types.Sym {
return lookup(name.Value)
}
func (p *noder) mkname(name *syntax.Name) *Node {
// TODO(mdempsky): Set line number?
return mkname(p.name(name))
}
func (p *noder) wrapname(n syntax.Node, x *Node) *Node {
// These nodes do not carry line numbers.
// Introduce a wrapper node to give them the correct line.
switch x.Op {
case OTYPE, OLITERAL:
if x.Sym == nil {
break
}
fallthrough
case ONAME, ONONAME, OPACK:
x = p.nod(n, OPAREN, x, nil)
x.SetImplicit(true)
}
return x
}
func (p *noder) nod(orig syntax.Node, op Op, left, right *Node) *Node {
return nodl(p.pos(orig), op, left, right)
}
func (p *noder) nodSym(orig syntax.Node, op Op, left *Node, sym *types.Sym) *Node {
n := nodSym(op, left, sym)
n.Pos = p.pos(orig)
return n
}
func (p *noder) pos(n syntax.Node) src.XPos {
// TODO(gri): orig.Pos() should always be known - fix package syntax
xpos := lineno
if pos := n.Pos(); pos.IsKnown() {
xpos = p.makeXPos(pos)
}
return xpos
}
func (p *noder) setlineno(n syntax.Node) {
if n != nil {
lineno = p.pos(n)
}
}
// error is called concurrently if files are parsed concurrently.
func (p *noder) error(err error) {
p.err <- err.(syntax.Error)
}
// pragmas that are allowed in the std lib, but don't have
// a syntax.Pragma value (see lex.go) associated with them.
var allowedStdPragmas = map[string]bool{
"go:cgo_export_static": true,
"go:cgo_export_dynamic": true,
"go:cgo_import_static": true,
"go:cgo_import_dynamic": true,
"go:cgo_ldflag": true,
"go:cgo_dynamic_linker": true,
"go:embed": true,
"go:generate": true,
}
// *Pragma is the value stored in a syntax.Pragma during parsing.
type Pragma struct {
Flag PragmaFlag // collected bits
Pos []PragmaPos // position of each individual flag
Embeds []PragmaEmbed
}
type PragmaPos struct {
Flag PragmaFlag
Pos syntax.Pos
}
type PragmaEmbed struct {
Pos syntax.Pos
Patterns []string
}
func (p *noder) checkUnused(pragma *Pragma) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
p.yyerrorpos(pos.Pos, "misplaced compiler directive")
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
p.yyerrorpos(e.Pos, "misplaced go:embed directive")
}
}
}
func (p *noder) checkUnusedDuringParse(pragma *Pragma) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
p.error(syntax.Error{Pos: pos.Pos, Msg: "misplaced compiler directive"})
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
p.error(syntax.Error{Pos: e.Pos, Msg: "misplaced go:embed directive"})
}
}
}
// pragma is called concurrently if files are parsed concurrently.
func (p *noder) pragma(pos syntax.Pos, blankLine bool, text string, old syntax.Pragma) syntax.Pragma {
pragma, _ := old.(*Pragma)
if pragma == nil {
pragma = new(Pragma)
}
if text == "" {
// unused pragma; only called with old != nil.
p.checkUnusedDuringParse(pragma)
return nil
}
if strings.HasPrefix(text, "line ") {
// line directives are handled by syntax package
panic("unreachable")
}
if !blankLine {
// directive must be on line by itself
p.error(syntax.Error{Pos: pos, Msg: "misplaced compiler directive"})
return pragma
}
switch {
case strings.HasPrefix(text, "go:linkname "):
f := strings.Fields(text)
if !(2 <= len(f) && len(f) <= 3) {
p.error(syntax.Error{Pos: pos, Msg: "usage: //go:linkname localname [linkname]"})
break
}
// The second argument is optional. If omitted, we use
// the default object symbol name for this and
// linkname only serves to mark this symbol as
// something that may be referenced via the object
// symbol name from another package.
var target string
if len(f) == 3 {
target = f[2]
}
p.linknames = append(p.linknames, linkname{pos, f[1], target})
case text == "go:embed", strings.HasPrefix(text, "go:embed "):
args, err := parseGoEmbed(text[len("go:embed"):])
if err != nil {
p.error(syntax.Error{Pos: pos, Msg: err.Error()})
}
if len(args) == 0 {
p.error(syntax.Error{Pos: pos, Msg: "usage: //go:embed pattern..."})
break
}
pragma.Embeds = append(pragma.Embeds, PragmaEmbed{pos, args})
case strings.HasPrefix(text, "go:cgo_import_dynamic "):
// This is permitted for general use because Solaris
// code relies on it in golang.org/x/sys/unix and others.
fields := pragmaFields(text)
if len(fields) >= 4 {
lib := strings.Trim(fields[3], `"`)
if lib != "" && !safeArg(lib) && !isCgoGeneratedFile(pos) {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("invalid library name %q in cgo_import_dynamic directive", lib)})
}
p.pragcgo(pos, text)
pragma.Flag |= pragmaFlag("go:cgo_import_dynamic")
break
}
fallthrough
case strings.HasPrefix(text, "go:cgo_"):
// For security, we disallow //go:cgo_* directives other
// than cgo_import_dynamic outside cgo-generated files.
// Exception: they are allowed in the standard library, for runtime and syscall.
if !isCgoGeneratedFile(pos) && !compiling_std {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in cgo-generated code", text)})
}
p.pragcgo(pos, text)
fallthrough // because of //go:cgo_unsafe_args
default:
verb := text
if i := strings.Index(text, " "); i >= 0 {
verb = verb[:i]
}
flag := pragmaFlag(verb)
const runtimePragmas = Systemstack | Nowritebarrier | Nowritebarrierrec | Yeswritebarrierrec
if !compiling_runtime && flag&runtimePragmas != 0 {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in runtime", verb)})
}
if flag == 0 && !allowedStdPragmas[verb] && compiling_std {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s is not allowed in the standard library", verb)})
}
pragma.Flag |= flag
pragma.Pos = append(pragma.Pos, PragmaPos{flag, pos})
}
return pragma
}
// isCgoGeneratedFile reports whether pos is in a file
// generated by cgo, which is to say a file with name
// beginning with "_cgo_". Such files are allowed to
// contain cgo directives, and for security reasons
// (primarily misuse of linker flags), other files are not.
// See golang.org/issue/23672.
func isCgoGeneratedFile(pos syntax.Pos) bool {
return strings.HasPrefix(filepath.Base(filepath.Clean(fileh(pos.Base().Filename()))), "_cgo_")
}
// safeArg reports whether arg is a "safe" command-line argument,
// meaning that when it appears in a command-line, it probably
// doesn't have some special meaning other than its own name.
// This is copied from SafeArg in cmd/go/internal/load/pkg.go.
func safeArg(name string) bool {
if name == "" {
return false
}
c := name[0]
return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || c == '.' || c == '_' || c == '/' || c >= utf8.RuneSelf
}
func mkname(sym *types.Sym) *Node {
n := oldname(sym)
if n.Name != nil && n.Name.Pack != nil {
n.Name.Pack.Name.SetUsed(true)
}
return n
}
// parseGoEmbed parses the text following "//go:embed" to extract the glob patterns.
// It accepts unquoted space-separated patterns as well as double-quoted and back-quoted Go strings.
// go/build/read.go also processes these strings and contains similar logic.
func parseGoEmbed(args string) ([]string, error) {
var list []string
for args = strings.TrimSpace(args); args != ""; args = strings.TrimSpace(args) {
var path string
Switch:
switch args[0] {
default:
i := len(args)
for j, c := range args {
if unicode.IsSpace(c) {
i = j
break
}
}
path = args[:i]
args = args[i:]
case '`':
i := strings.Index(args[1:], "`")
if i < 0 {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
path = args[1 : 1+i]
args = args[1+i+1:]
case '"':
i := 1
for ; i < len(args); i++ {
if args[i] == '\\' {
i++
continue
}
if args[i] == '"' {
q, err := strconv.Unquote(args[:i+1])
if err != nil {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args[:i+1])
}
path = q
args = args[i+1:]
break Switch
}
}
if i >= len(args) {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
}
if args != "" {
r, _ := utf8.DecodeRuneInString(args)
if !unicode.IsSpace(r) {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
}
list = append(list, path)
}
return list, nil
}