Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
go/src/cmd/compile/internal/gc/pgen.go
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
798 lines (717 sloc)
22.7 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2011 The Go Authors. All rights reserved. | |
// Use of this source code is governed by a BSD-style | |
// license that can be found in the LICENSE file. | |
package gc | |
import ( | |
"cmd/compile/internal/ssa" | |
"cmd/compile/internal/types" | |
"cmd/internal/dwarf" | |
"cmd/internal/obj" | |
"cmd/internal/objabi" | |
"cmd/internal/src" | |
"cmd/internal/sys" | |
"internal/race" | |
"math/rand" | |
"sort" | |
"sync" | |
"time" | |
) | |
// "Portable" code generation. | |
var ( | |
nBackendWorkers int // number of concurrent backend workers, set by a compiler flag | |
compilequeue []*Node // functions waiting to be compiled | |
) | |
func emitptrargsmap(fn *Node) { | |
if fn.funcname() == "_" || fn.Func.Nname.Sym.Linkname != "" { | |
return | |
} | |
lsym := Ctxt.Lookup(fn.Func.lsym.Name + ".args_stackmap") | |
nptr := int(fn.Type.ArgWidth() / int64(Widthptr)) | |
bv := bvalloc(int32(nptr) * 2) | |
nbitmap := 1 | |
if fn.Type.NumResults() > 0 { | |
nbitmap = 2 | |
} | |
off := duint32(lsym, 0, uint32(nbitmap)) | |
off = duint32(lsym, off, uint32(bv.n)) | |
if fn.IsMethod() { | |
onebitwalktype1(fn.Type.Recvs(), 0, bv) | |
} | |
if fn.Type.NumParams() > 0 { | |
onebitwalktype1(fn.Type.Params(), 0, bv) | |
} | |
off = dbvec(lsym, off, bv) | |
if fn.Type.NumResults() > 0 { | |
onebitwalktype1(fn.Type.Results(), 0, bv) | |
off = dbvec(lsym, off, bv) | |
} | |
ggloblsym(lsym, int32(off), obj.RODATA|obj.LOCAL) | |
} | |
// cmpstackvarlt reports whether the stack variable a sorts before b. | |
// | |
// Sort the list of stack variables. Autos after anything else, | |
// within autos, unused after used, within used, things with | |
// pointers first, zeroed things first, and then decreasing size. | |
// Because autos are laid out in decreasing addresses | |
// on the stack, pointers first, zeroed things first and decreasing size | |
// really means, in memory, things with pointers needing zeroing at | |
// the top of the stack and increasing in size. | |
// Non-autos sort on offset. | |
func cmpstackvarlt(a, b *Node) bool { | |
if (a.Class() == PAUTO) != (b.Class() == PAUTO) { | |
return b.Class() == PAUTO | |
} | |
if a.Class() != PAUTO { | |
return a.Xoffset < b.Xoffset | |
} | |
if a.Name.Used() != b.Name.Used() { | |
return a.Name.Used() | |
} | |
ap := a.Type.HasPointers() | |
bp := b.Type.HasPointers() | |
if ap != bp { | |
return ap | |
} | |
ap = a.Name.Needzero() | |
bp = b.Name.Needzero() | |
if ap != bp { | |
return ap | |
} | |
if a.Type.Width != b.Type.Width { | |
return a.Type.Width > b.Type.Width | |
} | |
return a.Sym.Name < b.Sym.Name | |
} | |
// byStackvar implements sort.Interface for []*Node using cmpstackvarlt. | |
type byStackVar []*Node | |
func (s byStackVar) Len() int { return len(s) } | |
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) } | |
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] } | |
func (s *ssafn) AllocFrame(f *ssa.Func) { | |
s.stksize = 0 | |
s.stkptrsize = 0 | |
fn := s.curfn.Func | |
// Mark the PAUTO's unused. | |
for _, ln := range fn.Dcl { | |
if ln.Class() == PAUTO { | |
ln.Name.SetUsed(false) | |
} | |
} | |
for _, l := range f.RegAlloc { | |
if ls, ok := l.(ssa.LocalSlot); ok { | |
ls.N.(*Node).Name.SetUsed(true) | |
} | |
} | |
scratchUsed := false | |
for _, b := range f.Blocks { | |
for _, v := range b.Values { | |
if n, ok := v.Aux.(*Node); ok { | |
switch n.Class() { | |
case PPARAM, PPARAMOUT: | |
// Don't modify nodfp; it is a global. | |
if n != nodfp { | |
n.Name.SetUsed(true) | |
} | |
case PAUTO: | |
n.Name.SetUsed(true) | |
} | |
} | |
if !scratchUsed { | |
scratchUsed = v.Op.UsesScratch() | |
} | |
} | |
} | |
if f.Config.NeedsFpScratch && scratchUsed { | |
s.scratchFpMem = tempAt(src.NoXPos, s.curfn, types.Types[TUINT64]) | |
} | |
sort.Sort(byStackVar(fn.Dcl)) | |
// Reassign stack offsets of the locals that are used. | |
lastHasPtr := false | |
for i, n := range fn.Dcl { | |
if n.Op != ONAME || n.Class() != PAUTO { | |
continue | |
} | |
if !n.Name.Used() { | |
fn.Dcl = fn.Dcl[:i] | |
break | |
} | |
dowidth(n.Type) | |
w := n.Type.Width | |
if w >= thearch.MAXWIDTH || w < 0 { | |
Fatalf("bad width") | |
} | |
if w == 0 && lastHasPtr { | |
// Pad between a pointer-containing object and a zero-sized object. | |
// This prevents a pointer to the zero-sized object from being interpreted | |
// as a pointer to the pointer-containing object (and causing it | |
// to be scanned when it shouldn't be). See issue 24993. | |
w = 1 | |
} | |
s.stksize += w | |
s.stksize = Rnd(s.stksize, int64(n.Type.Align)) | |
if n.Type.HasPointers() { | |
s.stkptrsize = s.stksize | |
lastHasPtr = true | |
} else { | |
lastHasPtr = false | |
} | |
if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) { | |
s.stksize = Rnd(s.stksize, int64(Widthptr)) | |
} | |
n.Xoffset = -s.stksize | |
} | |
s.stksize = Rnd(s.stksize, int64(Widthreg)) | |
s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg)) | |
} | |
func funccompile(fn *Node) { | |
if Curfn != nil { | |
Fatalf("funccompile %v inside %v", fn.Func.Nname.Sym, Curfn.Func.Nname.Sym) | |
} | |
if fn.Type == nil { | |
if nerrors == 0 { | |
Fatalf("funccompile missing type") | |
} | |
return | |
} | |
// assign parameter offsets | |
dowidth(fn.Type) | |
if fn.Nbody.Len() == 0 { | |
// Initialize ABI wrappers if necessary. | |
fn.Func.initLSym(false) | |
emitptrargsmap(fn) | |
return | |
} | |
dclcontext = PAUTO | |
Curfn = fn | |
compile(fn) | |
Curfn = nil | |
dclcontext = PEXTERN | |
} | |
func compile(fn *Node) { | |
saveerrors() | |
order(fn) | |
if nerrors != 0 { | |
return | |
} | |
// Set up the function's LSym early to avoid data races with the assemblers. | |
// Do this before walk, as walk needs the LSym to set attributes/relocations | |
// (e.g. in markTypeUsedInInterface). | |
fn.Func.initLSym(true) | |
walk(fn) | |
if nerrors != 0 { | |
return | |
} | |
if instrumenting { | |
instrument(fn) | |
} | |
// From this point, there should be no uses of Curfn. Enforce that. | |
Curfn = nil | |
if fn.funcname() == "_" { | |
// We don't need to generate code for this function, just report errors in its body. | |
// At this point we've generated any errors needed. | |
// (Beyond here we generate only non-spec errors, like "stack frame too large".) | |
// See issue 29870. | |
return | |
} | |
// Make sure type syms are declared for all types that might | |
// be types of stack objects. We need to do this here | |
// because symbols must be allocated before the parallel | |
// phase of the compiler. | |
for _, n := range fn.Func.Dcl { | |
switch n.Class() { | |
case PPARAM, PPARAMOUT, PAUTO: | |
if livenessShouldTrack(n) && n.Name.Addrtaken() { | |
dtypesym(n.Type) | |
// Also make sure we allocate a linker symbol | |
// for the stack object data, for the same reason. | |
if fn.Func.lsym.Func().StackObjects == nil { | |
fn.Func.lsym.Func().StackObjects = Ctxt.Lookup(fn.Func.lsym.Name + ".stkobj") | |
} | |
} | |
} | |
} | |
if compilenow(fn) { | |
compileSSA(fn, 0) | |
} else { | |
compilequeue = append(compilequeue, fn) | |
} | |
} | |
// compilenow reports whether to compile immediately. | |
// If functions are not compiled immediately, | |
// they are enqueued in compilequeue, | |
// which is drained by compileFunctions. | |
func compilenow(fn *Node) bool { | |
// Issue 38068: if this function is a method AND an inline | |
// candidate AND was not inlined (yet), put it onto the compile | |
// queue instead of compiling it immediately. This is in case we | |
// wind up inlining it into a method wrapper that is generated by | |
// compiling a function later on in the xtop list. | |
if fn.IsMethod() && isInlinableButNotInlined(fn) { | |
return false | |
} | |
return nBackendWorkers == 1 && Debug_compilelater == 0 | |
} | |
// isInlinableButNotInlined returns true if 'fn' was marked as an | |
// inline candidate but then never inlined (presumably because we | |
// found no call sites). | |
func isInlinableButNotInlined(fn *Node) bool { | |
if fn.Func.Nname.Func.Inl == nil { | |
return false | |
} | |
if fn.Sym == nil { | |
return true | |
} | |
return !fn.Sym.Linksym().WasInlined() | |
} | |
const maxStackSize = 1 << 30 | |
// compileSSA builds an SSA backend function, | |
// uses it to generate a plist, | |
// and flushes that plist to machine code. | |
// worker indicates which of the backend workers is doing the processing. | |
func compileSSA(fn *Node, worker int) { | |
f := buildssa(fn, worker) | |
// Note: check arg size to fix issue 25507. | |
if f.Frontend().(*ssafn).stksize >= maxStackSize || fn.Type.ArgWidth() >= maxStackSize { | |
largeStackFramesMu.Lock() | |
largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: fn.Type.ArgWidth(), pos: fn.Pos}) | |
largeStackFramesMu.Unlock() | |
return | |
} | |
pp := newProgs(fn, worker) | |
defer pp.Free() | |
genssa(f, pp) | |
// Check frame size again. | |
// The check above included only the space needed for local variables. | |
// After genssa, the space needed includes local variables and the callee arg region. | |
// We must do this check prior to calling pp.Flush. | |
// If there are any oversized stack frames, | |
// the assembler may emit inscrutable complaints about invalid instructions. | |
if pp.Text.To.Offset >= maxStackSize { | |
largeStackFramesMu.Lock() | |
locals := f.Frontend().(*ssafn).stksize | |
largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: fn.Type.ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos}) | |
largeStackFramesMu.Unlock() | |
return | |
} | |
pp.Flush() // assemble, fill in boilerplate, etc. | |
// fieldtrack must be called after pp.Flush. See issue 20014. | |
fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack) | |
} | |
func init() { | |
if race.Enabled { | |
rand.Seed(time.Now().UnixNano()) | |
} | |
} | |
// compileFunctions compiles all functions in compilequeue. | |
// It fans out nBackendWorkers to do the work | |
// and waits for them to complete. | |
func compileFunctions() { | |
if len(compilequeue) != 0 { | |
sizeCalculationDisabled = true // not safe to calculate sizes concurrently | |
if race.Enabled { | |
// Randomize compilation order to try to shake out races. | |
tmp := make([]*Node, len(compilequeue)) | |
perm := rand.Perm(len(compilequeue)) | |
for i, v := range perm { | |
tmp[v] = compilequeue[i] | |
} | |
copy(compilequeue, tmp) | |
} else { | |
// Compile the longest functions first, | |
// since they're most likely to be the slowest. | |
// This helps avoid stragglers. | |
sort.Slice(compilequeue, func(i, j int) bool { | |
return compilequeue[i].Nbody.Len() > compilequeue[j].Nbody.Len() | |
}) | |
} | |
var wg sync.WaitGroup | |
Ctxt.InParallel = true | |
c := make(chan *Node, nBackendWorkers) | |
for i := 0; i < nBackendWorkers; i++ { | |
wg.Add(1) | |
go func(worker int) { | |
for fn := range c { | |
compileSSA(fn, worker) | |
} | |
wg.Done() | |
}(i) | |
} | |
for _, fn := range compilequeue { | |
c <- fn | |
} | |
close(c) | |
compilequeue = nil | |
wg.Wait() | |
Ctxt.InParallel = false | |
sizeCalculationDisabled = false | |
} | |
} | |
func debuginfo(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) { | |
fn := curfn.(*Node) | |
if fn.Func.Nname != nil { | |
if expect := fn.Func.Nname.Sym.Linksym(); fnsym != expect { | |
Fatalf("unexpected fnsym: %v != %v", fnsym, expect) | |
} | |
} | |
var apdecls []*Node | |
// Populate decls for fn. | |
for _, n := range fn.Func.Dcl { | |
if n.Op != ONAME { // might be OTYPE or OLITERAL | |
continue | |
} | |
switch n.Class() { | |
case PAUTO: | |
if !n.Name.Used() { | |
// Text == nil -> generating abstract function | |
if fnsym.Func().Text != nil { | |
Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)") | |
} | |
continue | |
} | |
case PPARAM, PPARAMOUT: | |
default: | |
continue | |
} | |
apdecls = append(apdecls, n) | |
fnsym.Func().RecordAutoType(ngotype(n).Linksym()) | |
} | |
decls, dwarfVars := createDwarfVars(fnsym, fn.Func, apdecls) | |
// For each type referenced by the functions auto vars but not | |
// already referenced by a dwarf var, attach a dummy relocation to | |
// the function symbol to insure that the type included in DWARF | |
// processing during linking. | |
typesyms := []*obj.LSym{} | |
for t, _ := range fnsym.Func().Autot { | |
typesyms = append(typesyms, t) | |
} | |
sort.Sort(obj.BySymName(typesyms)) | |
for _, sym := range typesyms { | |
r := obj.Addrel(infosym) | |
r.Sym = sym | |
r.Type = objabi.R_USETYPE | |
} | |
fnsym.Func().Autot = nil | |
var varScopes []ScopeID | |
for _, decl := range decls { | |
pos := declPos(decl) | |
varScopes = append(varScopes, findScope(fn.Func.Marks, pos)) | |
} | |
scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes) | |
var inlcalls dwarf.InlCalls | |
if genDwarfInline > 0 { | |
inlcalls = assembleInlines(fnsym, dwarfVars) | |
} | |
return scopes, inlcalls | |
} | |
func declPos(decl *Node) src.XPos { | |
if decl.Name.Defn != nil && (decl.Name.Captured() || decl.Name.Byval()) { | |
// It's not clear which position is correct for captured variables here: | |
// * decl.Pos is the wrong position for captured variables, in the inner | |
// function, but it is the right position in the outer function. | |
// * decl.Name.Defn is nil for captured variables that were arguments | |
// on the outer function, however the decl.Pos for those seems to be | |
// correct. | |
// * decl.Name.Defn is the "wrong" thing for variables declared in the | |
// header of a type switch, it's their position in the header, rather | |
// than the position of the case statement. In principle this is the | |
// right thing, but here we prefer the latter because it makes each | |
// instance of the header variable local to the lexical block of its | |
// case statement. | |
// This code is probably wrong for type switch variables that are also | |
// captured. | |
return decl.Name.Defn.Pos | |
} | |
return decl.Pos | |
} | |
// createSimpleVars creates a DWARF entry for every variable declared in the | |
// function, claiming that they are permanently on the stack. | |
func createSimpleVars(fnsym *obj.LSym, apDecls []*Node) ([]*Node, []*dwarf.Var, map[*Node]bool) { | |
var vars []*dwarf.Var | |
var decls []*Node | |
selected := make(map[*Node]bool) | |
for _, n := range apDecls { | |
if n.IsAutoTmp() { | |
continue | |
} | |
decls = append(decls, n) | |
vars = append(vars, createSimpleVar(fnsym, n)) | |
selected[n] = true | |
} | |
return decls, vars, selected | |
} | |
func createSimpleVar(fnsym *obj.LSym, n *Node) *dwarf.Var { | |
var abbrev int | |
offs := n.Xoffset | |
switch n.Class() { | |
case PAUTO: | |
abbrev = dwarf.DW_ABRV_AUTO | |
if Ctxt.FixedFrameSize() == 0 { | |
offs -= int64(Widthptr) | |
} | |
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" { | |
// There is a word space for FP on ARM64 even if the frame pointer is disabled | |
offs -= int64(Widthptr) | |
} | |
case PPARAM, PPARAMOUT: | |
abbrev = dwarf.DW_ABRV_PARAM | |
offs += Ctxt.FixedFrameSize() | |
default: | |
Fatalf("createSimpleVar unexpected class %v for node %v", n.Class(), n) | |
} | |
typename := dwarf.InfoPrefix + typesymname(n.Type) | |
delete(fnsym.Func().Autot, ngotype(n).Linksym()) | |
inlIndex := 0 | |
if genDwarfInline > 1 { | |
if n.Name.InlFormal() || n.Name.InlLocal() { | |
inlIndex = posInlIndex(n.Pos) + 1 | |
if n.Name.InlFormal() { | |
abbrev = dwarf.DW_ABRV_PARAM | |
} | |
} | |
} | |
declpos := Ctxt.InnermostPos(declPos(n)) | |
return &dwarf.Var{ | |
Name: n.Sym.Name, | |
IsReturnValue: n.Class() == PPARAMOUT, | |
IsInlFormal: n.Name.InlFormal(), | |
Abbrev: abbrev, | |
StackOffset: int32(offs), | |
Type: Ctxt.Lookup(typename), | |
DeclFile: declpos.RelFilename(), | |
DeclLine: declpos.RelLine(), | |
DeclCol: declpos.Col(), | |
InlIndex: int32(inlIndex), | |
ChildIndex: -1, | |
} | |
} | |
// createComplexVars creates recomposed DWARF vars with location lists, | |
// suitable for describing optimized code. | |
func createComplexVars(fnsym *obj.LSym, fn *Func) ([]*Node, []*dwarf.Var, map[*Node]bool) { | |
debugInfo := fn.DebugInfo | |
// Produce a DWARF variable entry for each user variable. | |
var decls []*Node | |
var vars []*dwarf.Var | |
ssaVars := make(map[*Node]bool) | |
for varID, dvar := range debugInfo.Vars { | |
n := dvar.(*Node) | |
ssaVars[n] = true | |
for _, slot := range debugInfo.VarSlots[varID] { | |
ssaVars[debugInfo.Slots[slot].N.(*Node)] = true | |
} | |
if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil { | |
decls = append(decls, n) | |
vars = append(vars, dvar) | |
} | |
} | |
return decls, vars, ssaVars | |
} | |
// createDwarfVars process fn, returning a list of DWARF variables and the | |
// Nodes they represent. | |
func createDwarfVars(fnsym *obj.LSym, fn *Func, apDecls []*Node) ([]*Node, []*dwarf.Var) { | |
// Collect a raw list of DWARF vars. | |
var vars []*dwarf.Var | |
var decls []*Node | |
var selected map[*Node]bool | |
if Ctxt.Flag_locationlists && Ctxt.Flag_optimize && fn.DebugInfo != nil { | |
decls, vars, selected = createComplexVars(fnsym, fn) | |
} else { | |
decls, vars, selected = createSimpleVars(fnsym, apDecls) | |
} | |
dcl := apDecls | |
if fnsym.WasInlined() { | |
dcl = preInliningDcls(fnsym) | |
} | |
// If optimization is enabled, the list above will typically be | |
// missing some of the original pre-optimization variables in the | |
// function (they may have been promoted to registers, folded into | |
// constants, dead-coded away, etc). Input arguments not eligible | |
// for SSA optimization are also missing. Here we add back in entries | |
// for selected missing vars. Note that the recipe below creates a | |
// conservative location. The idea here is that we want to | |
// communicate to the user that "yes, there is a variable named X | |
// in this function, but no, I don't have enough information to | |
// reliably report its contents." | |
// For non-SSA-able arguments, however, the correct information | |
// is known -- they have a single home on the stack. | |
for _, n := range dcl { | |
if _, found := selected[n]; found { | |
continue | |
} | |
c := n.Sym.Name[0] | |
if c == '.' || n.Type.IsUntyped() { | |
continue | |
} | |
if n.Class() == PPARAM && !canSSAType(n.Type) { | |
// SSA-able args get location lists, and may move in and | |
// out of registers, so those are handled elsewhere. | |
// Autos and named output params seem to get handled | |
// with VARDEF, which creates location lists. | |
// Args not of SSA-able type are treated here; they | |
// are homed on the stack in a single place for the | |
// entire call. | |
vars = append(vars, createSimpleVar(fnsym, n)) | |
decls = append(decls, n) | |
continue | |
} | |
typename := dwarf.InfoPrefix + typesymname(n.Type) | |
decls = append(decls, n) | |
abbrev := dwarf.DW_ABRV_AUTO_LOCLIST | |
isReturnValue := (n.Class() == PPARAMOUT) | |
if n.Class() == PPARAM || n.Class() == PPARAMOUT { | |
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST | |
} else if n.Class() == PAUTOHEAP { | |
// If dcl in question has been promoted to heap, do a bit | |
// of extra work to recover original class (auto or param); | |
// see issue 30908. This insures that we get the proper | |
// signature in the abstract function DIE, but leaves a | |
// misleading location for the param (we want pointer-to-heap | |
// and not stack). | |
// TODO(thanm): generate a better location expression | |
stackcopy := n.Name.Param.Stackcopy | |
if stackcopy != nil && (stackcopy.Class() == PPARAM || stackcopy.Class() == PPARAMOUT) { | |
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST | |
isReturnValue = (stackcopy.Class() == PPARAMOUT) | |
} | |
} | |
inlIndex := 0 | |
if genDwarfInline > 1 { | |
if n.Name.InlFormal() || n.Name.InlLocal() { | |
inlIndex = posInlIndex(n.Pos) + 1 | |
if n.Name.InlFormal() { | |
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST | |
} | |
} | |
} | |
declpos := Ctxt.InnermostPos(n.Pos) | |
vars = append(vars, &dwarf.Var{ | |
Name: n.Sym.Name, | |
IsReturnValue: isReturnValue, | |
Abbrev: abbrev, | |
StackOffset: int32(n.Xoffset), | |
Type: Ctxt.Lookup(typename), | |
DeclFile: declpos.RelFilename(), | |
DeclLine: declpos.RelLine(), | |
DeclCol: declpos.Col(), | |
InlIndex: int32(inlIndex), | |
ChildIndex: -1, | |
}) | |
// Record go type of to insure that it gets emitted by the linker. | |
fnsym.Func().RecordAutoType(ngotype(n).Linksym()) | |
} | |
return decls, vars | |
} | |
// Given a function that was inlined at some point during the | |
// compilation, return a sorted list of nodes corresponding to the | |
// autos/locals in that function prior to inlining. If this is a | |
// function that is not local to the package being compiled, then the | |
// names of the variables may have been "versioned" to avoid conflicts | |
// with local vars; disregard this versioning when sorting. | |
func preInliningDcls(fnsym *obj.LSym) []*Node { | |
fn := Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*Node) | |
var rdcl []*Node | |
for _, n := range fn.Func.Inl.Dcl { | |
c := n.Sym.Name[0] | |
// Avoid reporting "_" parameters, since if there are more than | |
// one, it can result in a collision later on, as in #23179. | |
if unversion(n.Sym.Name) == "_" || c == '.' || n.Type.IsUntyped() { | |
continue | |
} | |
rdcl = append(rdcl, n) | |
} | |
return rdcl | |
} | |
// stackOffset returns the stack location of a LocalSlot relative to the | |
// stack pointer, suitable for use in a DWARF location entry. This has nothing | |
// to do with its offset in the user variable. | |
func stackOffset(slot ssa.LocalSlot) int32 { | |
n := slot.N.(*Node) | |
var base int64 | |
switch n.Class() { | |
case PAUTO: | |
if Ctxt.FixedFrameSize() == 0 { | |
base -= int64(Widthptr) | |
} | |
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" { | |
// There is a word space for FP on ARM64 even if the frame pointer is disabled | |
base -= int64(Widthptr) | |
} | |
case PPARAM, PPARAMOUT: | |
base += Ctxt.FixedFrameSize() | |
} | |
return int32(base + n.Xoffset + slot.Off) | |
} | |
// createComplexVar builds a single DWARF variable entry and location list. | |
func createComplexVar(fnsym *obj.LSym, fn *Func, varID ssa.VarID) *dwarf.Var { | |
debug := fn.DebugInfo | |
n := debug.Vars[varID].(*Node) | |
var abbrev int | |
switch n.Class() { | |
case PAUTO: | |
abbrev = dwarf.DW_ABRV_AUTO_LOCLIST | |
case PPARAM, PPARAMOUT: | |
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST | |
default: | |
return nil | |
} | |
gotype := ngotype(n).Linksym() | |
delete(fnsym.Func().Autot, gotype) | |
typename := dwarf.InfoPrefix + gotype.Name[len("type."):] | |
inlIndex := 0 | |
if genDwarfInline > 1 { | |
if n.Name.InlFormal() || n.Name.InlLocal() { | |
inlIndex = posInlIndex(n.Pos) + 1 | |
if n.Name.InlFormal() { | |
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST | |
} | |
} | |
} | |
declpos := Ctxt.InnermostPos(n.Pos) | |
dvar := &dwarf.Var{ | |
Name: n.Sym.Name, | |
IsReturnValue: n.Class() == PPARAMOUT, | |
IsInlFormal: n.Name.InlFormal(), | |
Abbrev: abbrev, | |
Type: Ctxt.Lookup(typename), | |
// The stack offset is used as a sorting key, so for decomposed | |
// variables just give it the first one. It's not used otherwise. | |
// This won't work well if the first slot hasn't been assigned a stack | |
// location, but it's not obvious how to do better. | |
StackOffset: stackOffset(debug.Slots[debug.VarSlots[varID][0]]), | |
DeclFile: declpos.RelFilename(), | |
DeclLine: declpos.RelLine(), | |
DeclCol: declpos.Col(), | |
InlIndex: int32(inlIndex), | |
ChildIndex: -1, | |
} | |
list := debug.LocationLists[varID] | |
if len(list) != 0 { | |
dvar.PutLocationList = func(listSym, startPC dwarf.Sym) { | |
debug.PutLocationList(list, Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym)) | |
} | |
} | |
return dvar | |
} | |
// fieldtrack adds R_USEFIELD relocations to fnsym to record any | |
// struct fields that it used. | |
func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) { | |
if fnsym == nil { | |
return | |
} | |
if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 { | |
return | |
} | |
trackSyms := make([]*types.Sym, 0, len(tracked)) | |
for sym := range tracked { | |
trackSyms = append(trackSyms, sym) | |
} | |
sort.Sort(symByName(trackSyms)) | |
for _, sym := range trackSyms { | |
r := obj.Addrel(fnsym) | |
r.Sym = sym.Linksym() | |
r.Type = objabi.R_USEFIELD | |
} | |
} | |
type symByName []*types.Sym | |
func (a symByName) Len() int { return len(a) } | |
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name } | |
func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |