Skip to content
Permalink
da54dfb6a1
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
798 lines (717 sloc) 22.7 KB
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/dwarf"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"cmd/internal/sys"
"internal/race"
"math/rand"
"sort"
"sync"
"time"
)
// "Portable" code generation.
var (
nBackendWorkers int // number of concurrent backend workers, set by a compiler flag
compilequeue []*Node // functions waiting to be compiled
)
func emitptrargsmap(fn *Node) {
if fn.funcname() == "_" || fn.Func.Nname.Sym.Linkname != "" {
return
}
lsym := Ctxt.Lookup(fn.Func.lsym.Name + ".args_stackmap")
nptr := int(fn.Type.ArgWidth() / int64(Widthptr))
bv := bvalloc(int32(nptr) * 2)
nbitmap := 1
if fn.Type.NumResults() > 0 {
nbitmap = 2
}
off := duint32(lsym, 0, uint32(nbitmap))
off = duint32(lsym, off, uint32(bv.n))
if fn.IsMethod() {
onebitwalktype1(fn.Type.Recvs(), 0, bv)
}
if fn.Type.NumParams() > 0 {
onebitwalktype1(fn.Type.Params(), 0, bv)
}
off = dbvec(lsym, off, bv)
if fn.Type.NumResults() > 0 {
onebitwalktype1(fn.Type.Results(), 0, bv)
off = dbvec(lsym, off, bv)
}
ggloblsym(lsym, int32(off), obj.RODATA|obj.LOCAL)
}
// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *Node) bool {
if (a.Class() == PAUTO) != (b.Class() == PAUTO) {
return b.Class() == PAUTO
}
if a.Class() != PAUTO {
return a.Xoffset < b.Xoffset
}
if a.Name.Used() != b.Name.Used() {
return a.Name.Used()
}
ap := a.Type.HasPointers()
bp := b.Type.HasPointers()
if ap != bp {
return ap
}
ap = a.Name.Needzero()
bp = b.Name.Needzero()
if ap != bp {
return ap
}
if a.Type.Width != b.Type.Width {
return a.Type.Width > b.Type.Width
}
return a.Sym.Name < b.Sym.Name
}
// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*Node
func (s byStackVar) Len() int { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *ssafn) AllocFrame(f *ssa.Func) {
s.stksize = 0
s.stkptrsize = 0
fn := s.curfn.Func
// Mark the PAUTO's unused.
for _, ln := range fn.Dcl {
if ln.Class() == PAUTO {
ln.Name.SetUsed(false)
}
}
for _, l := range f.RegAlloc {
if ls, ok := l.(ssa.LocalSlot); ok {
ls.N.(*Node).Name.SetUsed(true)
}
}
scratchUsed := false
for _, b := range f.Blocks {
for _, v := range b.Values {
if n, ok := v.Aux.(*Node); ok {
switch n.Class() {
case PPARAM, PPARAMOUT:
// Don't modify nodfp; it is a global.
if n != nodfp {
n.Name.SetUsed(true)
}
case PAUTO:
n.Name.SetUsed(true)
}
}
if !scratchUsed {
scratchUsed = v.Op.UsesScratch()
}
}
}
if f.Config.NeedsFpScratch && scratchUsed {
s.scratchFpMem = tempAt(src.NoXPos, s.curfn, types.Types[TUINT64])
}
sort.Sort(byStackVar(fn.Dcl))
// Reassign stack offsets of the locals that are used.
lastHasPtr := false
for i, n := range fn.Dcl {
if n.Op != ONAME || n.Class() != PAUTO {
continue
}
if !n.Name.Used() {
fn.Dcl = fn.Dcl[:i]
break
}
dowidth(n.Type)
w := n.Type.Width
if w >= thearch.MAXWIDTH || w < 0 {
Fatalf("bad width")
}
if w == 0 && lastHasPtr {
// Pad between a pointer-containing object and a zero-sized object.
// This prevents a pointer to the zero-sized object from being interpreted
// as a pointer to the pointer-containing object (and causing it
// to be scanned when it shouldn't be). See issue 24993.
w = 1
}
s.stksize += w
s.stksize = Rnd(s.stksize, int64(n.Type.Align))
if n.Type.HasPointers() {
s.stkptrsize = s.stksize
lastHasPtr = true
} else {
lastHasPtr = false
}
if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
s.stksize = Rnd(s.stksize, int64(Widthptr))
}
n.Xoffset = -s.stksize
}
s.stksize = Rnd(s.stksize, int64(Widthreg))
s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg))
}
func funccompile(fn *Node) {
if Curfn != nil {
Fatalf("funccompile %v inside %v", fn.Func.Nname.Sym, Curfn.Func.Nname.Sym)
}
if fn.Type == nil {
if nerrors == 0 {
Fatalf("funccompile missing type")
}
return
}
// assign parameter offsets
dowidth(fn.Type)
if fn.Nbody.Len() == 0 {
// Initialize ABI wrappers if necessary.
fn.Func.initLSym(false)
emitptrargsmap(fn)
return
}
dclcontext = PAUTO
Curfn = fn
compile(fn)
Curfn = nil
dclcontext = PEXTERN
}
func compile(fn *Node) {
saveerrors()
order(fn)
if nerrors != 0 {
return
}
// Set up the function's LSym early to avoid data races with the assemblers.
// Do this before walk, as walk needs the LSym to set attributes/relocations
// (e.g. in markTypeUsedInInterface).
fn.Func.initLSym(true)
walk(fn)
if nerrors != 0 {
return
}
if instrumenting {
instrument(fn)
}
// From this point, there should be no uses of Curfn. Enforce that.
Curfn = nil
if fn.funcname() == "_" {
// We don't need to generate code for this function, just report errors in its body.
// At this point we've generated any errors needed.
// (Beyond here we generate only non-spec errors, like "stack frame too large".)
// See issue 29870.
return
}
// Make sure type syms are declared for all types that might
// be types of stack objects. We need to do this here
// because symbols must be allocated before the parallel
// phase of the compiler.
for _, n := range fn.Func.Dcl {
switch n.Class() {
case PPARAM, PPARAMOUT, PAUTO:
if livenessShouldTrack(n) && n.Name.Addrtaken() {
dtypesym(n.Type)
// Also make sure we allocate a linker symbol
// for the stack object data, for the same reason.
if fn.Func.lsym.Func().StackObjects == nil {
fn.Func.lsym.Func().StackObjects = Ctxt.Lookup(fn.Func.lsym.Name + ".stkobj")
}
}
}
}
if compilenow(fn) {
compileSSA(fn, 0)
} else {
compilequeue = append(compilequeue, fn)
}
}
// compilenow reports whether to compile immediately.
// If functions are not compiled immediately,
// they are enqueued in compilequeue,
// which is drained by compileFunctions.
func compilenow(fn *Node) bool {
// Issue 38068: if this function is a method AND an inline
// candidate AND was not inlined (yet), put it onto the compile
// queue instead of compiling it immediately. This is in case we
// wind up inlining it into a method wrapper that is generated by
// compiling a function later on in the xtop list.
if fn.IsMethod() && isInlinableButNotInlined(fn) {
return false
}
return nBackendWorkers == 1 && Debug_compilelater == 0
}
// isInlinableButNotInlined returns true if 'fn' was marked as an
// inline candidate but then never inlined (presumably because we
// found no call sites).
func isInlinableButNotInlined(fn *Node) bool {
if fn.Func.Nname.Func.Inl == nil {
return false
}
if fn.Sym == nil {
return true
}
return !fn.Sym.Linksym().WasInlined()
}
const maxStackSize = 1 << 30
// compileSSA builds an SSA backend function,
// uses it to generate a plist,
// and flushes that plist to machine code.
// worker indicates which of the backend workers is doing the processing.
func compileSSA(fn *Node, worker int) {
f := buildssa(fn, worker)
// Note: check arg size to fix issue 25507.
if f.Frontend().(*ssafn).stksize >= maxStackSize || fn.Type.ArgWidth() >= maxStackSize {
largeStackFramesMu.Lock()
largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: fn.Type.ArgWidth(), pos: fn.Pos})
largeStackFramesMu.Unlock()
return
}
pp := newProgs(fn, worker)
defer pp.Free()
genssa(f, pp)
// Check frame size again.
// The check above included only the space needed for local variables.
// After genssa, the space needed includes local variables and the callee arg region.
// We must do this check prior to calling pp.Flush.
// If there are any oversized stack frames,
// the assembler may emit inscrutable complaints about invalid instructions.
if pp.Text.To.Offset >= maxStackSize {
largeStackFramesMu.Lock()
locals := f.Frontend().(*ssafn).stksize
largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: fn.Type.ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos})
largeStackFramesMu.Unlock()
return
}
pp.Flush() // assemble, fill in boilerplate, etc.
// fieldtrack must be called after pp.Flush. See issue 20014.
fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack)
}
func init() {
if race.Enabled {
rand.Seed(time.Now().UnixNano())
}
}
// compileFunctions compiles all functions in compilequeue.
// It fans out nBackendWorkers to do the work
// and waits for them to complete.
func compileFunctions() {
if len(compilequeue) != 0 {
sizeCalculationDisabled = true // not safe to calculate sizes concurrently
if race.Enabled {
// Randomize compilation order to try to shake out races.
tmp := make([]*Node, len(compilequeue))
perm := rand.Perm(len(compilequeue))
for i, v := range perm {
tmp[v] = compilequeue[i]
}
copy(compilequeue, tmp)
} else {
// Compile the longest functions first,
// since they're most likely to be the slowest.
// This helps avoid stragglers.
sort.Slice(compilequeue, func(i, j int) bool {
return compilequeue[i].Nbody.Len() > compilequeue[j].Nbody.Len()
})
}
var wg sync.WaitGroup
Ctxt.InParallel = true
c := make(chan *Node, nBackendWorkers)
for i := 0; i < nBackendWorkers; i++ {
wg.Add(1)
go func(worker int) {
for fn := range c {
compileSSA(fn, worker)
}
wg.Done()
}(i)
}
for _, fn := range compilequeue {
c <- fn
}
close(c)
compilequeue = nil
wg.Wait()
Ctxt.InParallel = false
sizeCalculationDisabled = false
}
}
func debuginfo(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) {
fn := curfn.(*Node)
if fn.Func.Nname != nil {
if expect := fn.Func.Nname.Sym.Linksym(); fnsym != expect {
Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
}
}
var apdecls []*Node
// Populate decls for fn.
for _, n := range fn.Func.Dcl {
if n.Op != ONAME { // might be OTYPE or OLITERAL
continue
}
switch n.Class() {
case PAUTO:
if !n.Name.Used() {
// Text == nil -> generating abstract function
if fnsym.Func().Text != nil {
Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
}
continue
}
case PPARAM, PPARAMOUT:
default:
continue
}
apdecls = append(apdecls, n)
fnsym.Func().RecordAutoType(ngotype(n).Linksym())
}
decls, dwarfVars := createDwarfVars(fnsym, fn.Func, apdecls)
// For each type referenced by the functions auto vars but not
// already referenced by a dwarf var, attach a dummy relocation to
// the function symbol to insure that the type included in DWARF
// processing during linking.
typesyms := []*obj.LSym{}
for t, _ := range fnsym.Func().Autot {
typesyms = append(typesyms, t)
}
sort.Sort(obj.BySymName(typesyms))
for _, sym := range typesyms {
r := obj.Addrel(infosym)
r.Sym = sym
r.Type = objabi.R_USETYPE
}
fnsym.Func().Autot = nil
var varScopes []ScopeID
for _, decl := range decls {
pos := declPos(decl)
varScopes = append(varScopes, findScope(fn.Func.Marks, pos))
}
scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes)
var inlcalls dwarf.InlCalls
if genDwarfInline > 0 {
inlcalls = assembleInlines(fnsym, dwarfVars)
}
return scopes, inlcalls
}
func declPos(decl *Node) src.XPos {
if decl.Name.Defn != nil && (decl.Name.Captured() || decl.Name.Byval()) {
// It's not clear which position is correct for captured variables here:
// * decl.Pos is the wrong position for captured variables, in the inner
// function, but it is the right position in the outer function.
// * decl.Name.Defn is nil for captured variables that were arguments
// on the outer function, however the decl.Pos for those seems to be
// correct.
// * decl.Name.Defn is the "wrong" thing for variables declared in the
// header of a type switch, it's their position in the header, rather
// than the position of the case statement. In principle this is the
// right thing, but here we prefer the latter because it makes each
// instance of the header variable local to the lexical block of its
// case statement.
// This code is probably wrong for type switch variables that are also
// captured.
return decl.Name.Defn.Pos
}
return decl.Pos
}
// createSimpleVars creates a DWARF entry for every variable declared in the
// function, claiming that they are permanently on the stack.
func createSimpleVars(fnsym *obj.LSym, apDecls []*Node) ([]*Node, []*dwarf.Var, map[*Node]bool) {
var vars []*dwarf.Var
var decls []*Node
selected := make(map[*Node]bool)
for _, n := range apDecls {
if n.IsAutoTmp() {
continue
}
decls = append(decls, n)
vars = append(vars, createSimpleVar(fnsym, n))
selected[n] = true
}
return decls, vars, selected
}
func createSimpleVar(fnsym *obj.LSym, n *Node) *dwarf.Var {
var abbrev int
offs := n.Xoffset
switch n.Class() {
case PAUTO:
abbrev = dwarf.DW_ABRV_AUTO
if Ctxt.FixedFrameSize() == 0 {
offs -= int64(Widthptr)
}
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
// There is a word space for FP on ARM64 even if the frame pointer is disabled
offs -= int64(Widthptr)
}
case PPARAM, PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM
offs += Ctxt.FixedFrameSize()
default:
Fatalf("createSimpleVar unexpected class %v for node %v", n.Class(), n)
}
typename := dwarf.InfoPrefix + typesymname(n.Type)
delete(fnsym.Func().Autot, ngotype(n).Linksym())
inlIndex := 0
if genDwarfInline > 1 {
if n.Name.InlFormal() || n.Name.InlLocal() {
inlIndex = posInlIndex(n.Pos) + 1
if n.Name.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM
}
}
}
declpos := Ctxt.InnermostPos(declPos(n))
return &dwarf.Var{
Name: n.Sym.Name,
IsReturnValue: n.Class() == PPARAMOUT,
IsInlFormal: n.Name.InlFormal(),
Abbrev: abbrev,
StackOffset: int32(offs),
Type: Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
}
}
// createComplexVars creates recomposed DWARF vars with location lists,
// suitable for describing optimized code.
func createComplexVars(fnsym *obj.LSym, fn *Func) ([]*Node, []*dwarf.Var, map[*Node]bool) {
debugInfo := fn.DebugInfo
// Produce a DWARF variable entry for each user variable.
var decls []*Node
var vars []*dwarf.Var
ssaVars := make(map[*Node]bool)
for varID, dvar := range debugInfo.Vars {
n := dvar.(*Node)
ssaVars[n] = true
for _, slot := range debugInfo.VarSlots[varID] {
ssaVars[debugInfo.Slots[slot].N.(*Node)] = true
}
if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil {
decls = append(decls, n)
vars = append(vars, dvar)
}
}
return decls, vars, ssaVars
}
// createDwarfVars process fn, returning a list of DWARF variables and the
// Nodes they represent.
func createDwarfVars(fnsym *obj.LSym, fn *Func, apDecls []*Node) ([]*Node, []*dwarf.Var) {
// Collect a raw list of DWARF vars.
var vars []*dwarf.Var
var decls []*Node
var selected map[*Node]bool
if Ctxt.Flag_locationlists && Ctxt.Flag_optimize && fn.DebugInfo != nil {
decls, vars, selected = createComplexVars(fnsym, fn)
} else {
decls, vars, selected = createSimpleVars(fnsym, apDecls)
}
dcl := apDecls
if fnsym.WasInlined() {
dcl = preInliningDcls(fnsym)
}
// If optimization is enabled, the list above will typically be
// missing some of the original pre-optimization variables in the
// function (they may have been promoted to registers, folded into
// constants, dead-coded away, etc). Input arguments not eligible
// for SSA optimization are also missing. Here we add back in entries
// for selected missing vars. Note that the recipe below creates a
// conservative location. The idea here is that we want to
// communicate to the user that "yes, there is a variable named X
// in this function, but no, I don't have enough information to
// reliably report its contents."
// For non-SSA-able arguments, however, the correct information
// is known -- they have a single home on the stack.
for _, n := range dcl {
if _, found := selected[n]; found {
continue
}
c := n.Sym.Name[0]
if c == '.' || n.Type.IsUntyped() {
continue
}
if n.Class() == PPARAM && !canSSAType(n.Type) {
// SSA-able args get location lists, and may move in and
// out of registers, so those are handled elsewhere.
// Autos and named output params seem to get handled
// with VARDEF, which creates location lists.
// Args not of SSA-able type are treated here; they
// are homed on the stack in a single place for the
// entire call.
vars = append(vars, createSimpleVar(fnsym, n))
decls = append(decls, n)
continue
}
typename := dwarf.InfoPrefix + typesymname(n.Type)
decls = append(decls, n)
abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
isReturnValue := (n.Class() == PPARAMOUT)
if n.Class() == PPARAM || n.Class() == PPARAMOUT {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
} else if n.Class() == PAUTOHEAP {
// If dcl in question has been promoted to heap, do a bit
// of extra work to recover original class (auto or param);
// see issue 30908. This insures that we get the proper
// signature in the abstract function DIE, but leaves a
// misleading location for the param (we want pointer-to-heap
// and not stack).
// TODO(thanm): generate a better location expression
stackcopy := n.Name.Param.Stackcopy
if stackcopy != nil && (stackcopy.Class() == PPARAM || stackcopy.Class() == PPARAMOUT) {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
isReturnValue = (stackcopy.Class() == PPARAMOUT)
}
}
inlIndex := 0
if genDwarfInline > 1 {
if n.Name.InlFormal() || n.Name.InlLocal() {
inlIndex = posInlIndex(n.Pos) + 1
if n.Name.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := Ctxt.InnermostPos(n.Pos)
vars = append(vars, &dwarf.Var{
Name: n.Sym.Name,
IsReturnValue: isReturnValue,
Abbrev: abbrev,
StackOffset: int32(n.Xoffset),
Type: Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
})
// Record go type of to insure that it gets emitted by the linker.
fnsym.Func().RecordAutoType(ngotype(n).Linksym())
}
return decls, vars
}
// Given a function that was inlined at some point during the
// compilation, return a sorted list of nodes corresponding to the
// autos/locals in that function prior to inlining. If this is a
// function that is not local to the package being compiled, then the
// names of the variables may have been "versioned" to avoid conflicts
// with local vars; disregard this versioning when sorting.
func preInliningDcls(fnsym *obj.LSym) []*Node {
fn := Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*Node)
var rdcl []*Node
for _, n := range fn.Func.Inl.Dcl {
c := n.Sym.Name[0]
// Avoid reporting "_" parameters, since if there are more than
// one, it can result in a collision later on, as in #23179.
if unversion(n.Sym.Name) == "_" || c == '.' || n.Type.IsUntyped() {
continue
}
rdcl = append(rdcl, n)
}
return rdcl
}
// stackOffset returns the stack location of a LocalSlot relative to the
// stack pointer, suitable for use in a DWARF location entry. This has nothing
// to do with its offset in the user variable.
func stackOffset(slot ssa.LocalSlot) int32 {
n := slot.N.(*Node)
var base int64
switch n.Class() {
case PAUTO:
if Ctxt.FixedFrameSize() == 0 {
base -= int64(Widthptr)
}
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
// There is a word space for FP on ARM64 even if the frame pointer is disabled
base -= int64(Widthptr)
}
case PPARAM, PPARAMOUT:
base += Ctxt.FixedFrameSize()
}
return int32(base + n.Xoffset + slot.Off)
}
// createComplexVar builds a single DWARF variable entry and location list.
func createComplexVar(fnsym *obj.LSym, fn *Func, varID ssa.VarID) *dwarf.Var {
debug := fn.DebugInfo
n := debug.Vars[varID].(*Node)
var abbrev int
switch n.Class() {
case PAUTO:
abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
case PPARAM, PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
default:
return nil
}
gotype := ngotype(n).Linksym()
delete(fnsym.Func().Autot, gotype)
typename := dwarf.InfoPrefix + gotype.Name[len("type."):]
inlIndex := 0
if genDwarfInline > 1 {
if n.Name.InlFormal() || n.Name.InlLocal() {
inlIndex = posInlIndex(n.Pos) + 1
if n.Name.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := Ctxt.InnermostPos(n.Pos)
dvar := &dwarf.Var{
Name: n.Sym.Name,
IsReturnValue: n.Class() == PPARAMOUT,
IsInlFormal: n.Name.InlFormal(),
Abbrev: abbrev,
Type: Ctxt.Lookup(typename),
// The stack offset is used as a sorting key, so for decomposed
// variables just give it the first one. It's not used otherwise.
// This won't work well if the first slot hasn't been assigned a stack
// location, but it's not obvious how to do better.
StackOffset: stackOffset(debug.Slots[debug.VarSlots[varID][0]]),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
}
list := debug.LocationLists[varID]
if len(list) != 0 {
dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
debug.PutLocationList(list, Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
}
}
return dvar
}
// fieldtrack adds R_USEFIELD relocations to fnsym to record any
// struct fields that it used.
func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) {
if fnsym == nil {
return
}
if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 {
return
}
trackSyms := make([]*types.Sym, 0, len(tracked))
for sym := range tracked {
trackSyms = append(trackSyms, sym)
}
sort.Sort(symByName(trackSyms))
for _, sym := range trackSyms {
r := obj.Addrel(fnsym)
r.Sym = sym.Linksym()
r.Type = objabi.R_USEFIELD
}
}
type symByName []*types.Sym
func (a symByName) Len() int { return len(a) }
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }