Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1525 lines (1322 sloc)
35.3 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2017 The Go Authors. All rights reserved. | |
// Use of this source code is governed by a BSD-style | |
// license that can be found in the LICENSE file. | |
package types | |
import ( | |
"cmd/internal/obj" | |
"cmd/internal/src" | |
"fmt" | |
) | |
// Dummy Node so we can refer to *Node without actually | |
// having a gc.Node. Necessary to break import cycles. | |
// TODO(gri) try to eliminate soon | |
type Node struct{ _ int } | |
//go:generate stringer -type EType -trimprefix T | |
// EType describes a kind of type. | |
type EType uint8 | |
const ( | |
Txxx EType = iota | |
TINT8 | |
TUINT8 | |
TINT16 | |
TUINT16 | |
TINT32 | |
TUINT32 | |
TINT64 | |
TUINT64 | |
TINT | |
TUINT | |
TUINTPTR | |
TCOMPLEX64 | |
TCOMPLEX128 | |
TFLOAT32 | |
TFLOAT64 | |
TBOOL | |
TPTR | |
TFUNC | |
TSLICE | |
TARRAY | |
TSTRUCT | |
TCHAN | |
TMAP | |
TINTER | |
TFORW | |
TANY | |
TSTRING | |
TUNSAFEPTR | |
// pseudo-types for literals | |
TIDEAL // untyped numeric constants | |
TNIL | |
TBLANK | |
// pseudo-types for frame layout | |
TFUNCARGS | |
TCHANARGS | |
// SSA backend types | |
TSSA // internal types used by SSA backend (flags, memory, etc.) | |
TTUPLE // a pair of types, used by SSA backend | |
TRESULTS // multiple types; the result of calling a function or method, with a memory at the end. | |
NTYPE | |
) | |
// ChanDir is whether a channel can send, receive, or both. | |
type ChanDir uint8 | |
func (c ChanDir) CanRecv() bool { return c&Crecv != 0 } | |
func (c ChanDir) CanSend() bool { return c&Csend != 0 } | |
const ( | |
// types of channel | |
// must match ../../../../reflect/type.go:/ChanDir | |
Crecv ChanDir = 1 << 0 | |
Csend ChanDir = 1 << 1 | |
Cboth ChanDir = Crecv | Csend | |
) | |
// Types stores pointers to predeclared named types. | |
// | |
// It also stores pointers to several special types: | |
// - Types[TANY] is the placeholder "any" type recognized by substArgTypes. | |
// - Types[TBLANK] represents the blank variable's type. | |
// - Types[TNIL] represents the predeclared "nil" value's type. | |
// - Types[TUNSAFEPTR] is package unsafe's Pointer type. | |
var Types [NTYPE]*Type | |
var ( | |
// Predeclared alias types. Kept separate for better error messages. | |
Bytetype *Type | |
Runetype *Type | |
// Predeclared error interface type. | |
Errortype *Type | |
// Types to represent untyped string and boolean constants. | |
UntypedString *Type | |
UntypedBool *Type | |
// Types to represent untyped numeric constants. | |
UntypedInt = New(TIDEAL) | |
UntypedRune = New(TIDEAL) | |
UntypedFloat = New(TIDEAL) | |
UntypedComplex = New(TIDEAL) | |
) | |
// A Type represents a Go type. | |
type Type struct { | |
// Extra contains extra etype-specific fields. | |
// As an optimization, those etype-specific structs which contain exactly | |
// one pointer-shaped field are stored as values rather than pointers when possible. | |
// | |
// TMAP: *Map | |
// TFORW: *Forward | |
// TFUNC: *Func | |
// TSTRUCT: *Struct | |
// TINTER: *Interface | |
// TFUNCARGS: FuncArgs | |
// TCHANARGS: ChanArgs | |
// TCHAN: *Chan | |
// TPTR: Ptr | |
// TARRAY: *Array | |
// TSLICE: Slice | |
// TSSA: string | |
Extra interface{} | |
// Width is the width of this Type in bytes. | |
Width int64 // valid if Align > 0 | |
methods Fields | |
allMethods Fields | |
Nod *Node // canonical OTYPE node | |
Orig *Type // original type (type literal or predefined type) | |
// Cache of composite types, with this type being the element type. | |
Cache struct { | |
ptr *Type // *T, or nil | |
slice *Type // []T, or nil | |
} | |
Sym *Sym // symbol containing name, for named types | |
Vargen int32 // unique name for OTYPE/ONAME | |
Etype EType // kind of type | |
Align uint8 // the required alignment of this type, in bytes (0 means Width and Align have not yet been computed) | |
flags bitset8 | |
} | |
const ( | |
typeNotInHeap = 1 << iota // type cannot be heap allocated | |
typeBroke // broken type definition | |
typeNoalg // suppress hash and eq algorithm generation | |
typeDeferwidth // width computation has been deferred and type is on deferredTypeStack | |
typeRecur | |
) | |
func (t *Type) NotInHeap() bool { return t.flags&typeNotInHeap != 0 } | |
func (t *Type) Broke() bool { return t.flags&typeBroke != 0 } | |
func (t *Type) Noalg() bool { return t.flags&typeNoalg != 0 } | |
func (t *Type) Deferwidth() bool { return t.flags&typeDeferwidth != 0 } | |
func (t *Type) Recur() bool { return t.flags&typeRecur != 0 } | |
func (t *Type) SetNotInHeap(b bool) { t.flags.set(typeNotInHeap, b) } | |
func (t *Type) SetBroke(b bool) { t.flags.set(typeBroke, b) } | |
func (t *Type) SetNoalg(b bool) { t.flags.set(typeNoalg, b) } | |
func (t *Type) SetDeferwidth(b bool) { t.flags.set(typeDeferwidth, b) } | |
func (t *Type) SetRecur(b bool) { t.flags.set(typeRecur, b) } | |
// Pkg returns the package that t appeared in. | |
// | |
// Pkg is only defined for function, struct, and interface types | |
// (i.e., types with named elements). This information isn't used by | |
// cmd/compile itself, but we need to track it because it's exposed by | |
// the go/types API. | |
func (t *Type) Pkg() *Pkg { | |
switch t.Etype { | |
case TFUNC: | |
return t.Extra.(*Func).pkg | |
case TSTRUCT: | |
return t.Extra.(*Struct).pkg | |
case TINTER: | |
return t.Extra.(*Interface).pkg | |
default: | |
Fatalf("Pkg: unexpected kind: %v", t) | |
return nil | |
} | |
} | |
// SetPkg sets the package that t appeared in. | |
func (t *Type) SetPkg(pkg *Pkg) { | |
switch t.Etype { | |
case TFUNC: | |
t.Extra.(*Func).pkg = pkg | |
case TSTRUCT: | |
t.Extra.(*Struct).pkg = pkg | |
case TINTER: | |
t.Extra.(*Interface).pkg = pkg | |
default: | |
Fatalf("Pkg: unexpected kind: %v", t) | |
} | |
} | |
// Map contains Type fields specific to maps. | |
type Map struct { | |
Key *Type // Key type | |
Elem *Type // Val (elem) type | |
Bucket *Type // internal struct type representing a hash bucket | |
Hmap *Type // internal struct type representing the Hmap (map header object) | |
Hiter *Type // internal struct type representing hash iterator state | |
} | |
// MapType returns t's extra map-specific fields. | |
func (t *Type) MapType() *Map { | |
t.wantEtype(TMAP) | |
return t.Extra.(*Map) | |
} | |
// Forward contains Type fields specific to forward types. | |
type Forward struct { | |
Copyto []*Type // where to copy the eventual value to | |
Embedlineno src.XPos // first use of this type as an embedded type | |
} | |
// ForwardType returns t's extra forward-type-specific fields. | |
func (t *Type) ForwardType() *Forward { | |
t.wantEtype(TFORW) | |
return t.Extra.(*Forward) | |
} | |
// Func contains Type fields specific to func types. | |
type Func struct { | |
Receiver *Type // function receiver | |
Results *Type // function results | |
Params *Type // function params | |
Nname *Node | |
pkg *Pkg | |
// Argwid is the total width of the function receiver, params, and results. | |
// It gets calculated via a temporary TFUNCARGS type. | |
// Note that TFUNC's Width is Widthptr. | |
Argwid int64 | |
Outnamed bool | |
} | |
// FuncType returns t's extra func-specific fields. | |
func (t *Type) FuncType() *Func { | |
t.wantEtype(TFUNC) | |
return t.Extra.(*Func) | |
} | |
// StructType contains Type fields specific to struct types. | |
type Struct struct { | |
fields Fields | |
pkg *Pkg | |
// Maps have three associated internal structs (see struct MapType). | |
// Map links such structs back to their map type. | |
Map *Type | |
Funarg Funarg // type of function arguments for arg struct | |
} | |
// Fnstruct records the kind of function argument | |
type Funarg uint8 | |
const ( | |
FunargNone Funarg = iota | |
FunargRcvr // receiver | |
FunargParams // input parameters | |
FunargResults // output results | |
) | |
// StructType returns t's extra struct-specific fields. | |
func (t *Type) StructType() *Struct { | |
t.wantEtype(TSTRUCT) | |
return t.Extra.(*Struct) | |
} | |
// Interface contains Type fields specific to interface types. | |
type Interface struct { | |
Fields Fields | |
pkg *Pkg | |
} | |
// Ptr contains Type fields specific to pointer types. | |
type Ptr struct { | |
Elem *Type // element type | |
} | |
// ChanArgs contains Type fields specific to TCHANARGS types. | |
type ChanArgs struct { | |
T *Type // reference to a chan type whose elements need a width check | |
} | |
// // FuncArgs contains Type fields specific to TFUNCARGS types. | |
type FuncArgs struct { | |
T *Type // reference to a func type whose elements need a width check | |
} | |
// Chan contains Type fields specific to channel types. | |
type Chan struct { | |
Elem *Type // element type | |
Dir ChanDir // channel direction | |
} | |
// ChanType returns t's extra channel-specific fields. | |
func (t *Type) ChanType() *Chan { | |
t.wantEtype(TCHAN) | |
return t.Extra.(*Chan) | |
} | |
type Tuple struct { | |
first *Type | |
second *Type | |
// Any tuple with a memory type must put that memory type second. | |
} | |
// Results are the output from calls that will be late-expanded. | |
type Results struct { | |
Types []*Type // Last element is memory output from call. | |
} | |
// Array contains Type fields specific to array types. | |
type Array struct { | |
Elem *Type // element type | |
Bound int64 // number of elements; <0 if unknown yet | |
} | |
// Slice contains Type fields specific to slice types. | |
type Slice struct { | |
Elem *Type // element type | |
} | |
// A Field represents a field in a struct or a method in an interface or | |
// associated with a named type. | |
type Field struct { | |
flags bitset8 | |
Embedded uint8 // embedded field | |
Pos src.XPos | |
Sym *Sym | |
Type *Type // field type | |
Note string // literal string annotation | |
// For fields that represent function parameters, Nname points | |
// to the associated ONAME Node. | |
Nname *Node | |
// Offset in bytes of this field or method within its enclosing struct | |
// or interface Type. | |
Offset int64 | |
} | |
const ( | |
fieldIsDDD = 1 << iota // field is ... argument | |
fieldBroke // broken field definition | |
fieldNointerface | |
) | |
func (f *Field) IsDDD() bool { return f.flags&fieldIsDDD != 0 } | |
func (f *Field) Broke() bool { return f.flags&fieldBroke != 0 } | |
func (f *Field) Nointerface() bool { return f.flags&fieldNointerface != 0 } | |
func (f *Field) SetIsDDD(b bool) { f.flags.set(fieldIsDDD, b) } | |
func (f *Field) SetBroke(b bool) { f.flags.set(fieldBroke, b) } | |
func (f *Field) SetNointerface(b bool) { f.flags.set(fieldNointerface, b) } | |
// End returns the offset of the first byte immediately after this field. | |
func (f *Field) End() int64 { | |
return f.Offset + f.Type.Width | |
} | |
// IsMethod reports whether f represents a method rather than a struct field. | |
func (f *Field) IsMethod() bool { | |
return f.Type.Etype == TFUNC && f.Type.Recv() != nil | |
} | |
// Fields is a pointer to a slice of *Field. | |
// This saves space in Types that do not have fields or methods | |
// compared to a simple slice of *Field. | |
type Fields struct { | |
s *[]*Field | |
} | |
// Len returns the number of entries in f. | |
func (f *Fields) Len() int { | |
if f.s == nil { | |
return 0 | |
} | |
return len(*f.s) | |
} | |
// Slice returns the entries in f as a slice. | |
// Changes to the slice entries will be reflected in f. | |
func (f *Fields) Slice() []*Field { | |
if f.s == nil { | |
return nil | |
} | |
return *f.s | |
} | |
// Index returns the i'th element of Fields. | |
// It panics if f does not have at least i+1 elements. | |
func (f *Fields) Index(i int) *Field { | |
return (*f.s)[i] | |
} | |
// Set sets f to a slice. | |
// This takes ownership of the slice. | |
func (f *Fields) Set(s []*Field) { | |
if len(s) == 0 { | |
f.s = nil | |
} else { | |
// Copy s and take address of t rather than s to avoid | |
// allocation in the case where len(s) == 0. | |
t := s | |
f.s = &t | |
} | |
} | |
// Append appends entries to f. | |
func (f *Fields) Append(s ...*Field) { | |
if f.s == nil { | |
f.s = new([]*Field) | |
} | |
*f.s = append(*f.s, s...) | |
} | |
// New returns a new Type of the specified kind. | |
func New(et EType) *Type { | |
t := &Type{ | |
Etype: et, | |
Width: BADWIDTH, | |
} | |
t.Orig = t | |
// TODO(josharian): lazily initialize some of these? | |
switch t.Etype { | |
case TMAP: | |
t.Extra = new(Map) | |
case TFORW: | |
t.Extra = new(Forward) | |
case TFUNC: | |
t.Extra = new(Func) | |
case TSTRUCT: | |
t.Extra = new(Struct) | |
case TINTER: | |
t.Extra = new(Interface) | |
case TPTR: | |
t.Extra = Ptr{} | |
case TCHANARGS: | |
t.Extra = ChanArgs{} | |
case TFUNCARGS: | |
t.Extra = FuncArgs{} | |
case TCHAN: | |
t.Extra = new(Chan) | |
case TTUPLE: | |
t.Extra = new(Tuple) | |
case TRESULTS: | |
t.Extra = new(Results) | |
} | |
return t | |
} | |
// NewArray returns a new fixed-length array Type. | |
func NewArray(elem *Type, bound int64) *Type { | |
if bound < 0 { | |
Fatalf("NewArray: invalid bound %v", bound) | |
} | |
t := New(TARRAY) | |
t.Extra = &Array{Elem: elem, Bound: bound} | |
t.SetNotInHeap(elem.NotInHeap()) | |
return t | |
} | |
// NewSlice returns the slice Type with element type elem. | |
func NewSlice(elem *Type) *Type { | |
if t := elem.Cache.slice; t != nil { | |
if t.Elem() != elem { | |
Fatalf("elem mismatch") | |
} | |
return t | |
} | |
t := New(TSLICE) | |
t.Extra = Slice{Elem: elem} | |
elem.Cache.slice = t | |
return t | |
} | |
// NewChan returns a new chan Type with direction dir. | |
func NewChan(elem *Type, dir ChanDir) *Type { | |
t := New(TCHAN) | |
ct := t.ChanType() | |
ct.Elem = elem | |
ct.Dir = dir | |
return t | |
} | |
func NewTuple(t1, t2 *Type) *Type { | |
t := New(TTUPLE) | |
t.Extra.(*Tuple).first = t1 | |
t.Extra.(*Tuple).second = t2 | |
return t | |
} | |
func NewResults(types []*Type) *Type { | |
t := New(TRESULTS) | |
t.Extra.(*Results).Types = types | |
return t | |
} | |
func newSSA(name string) *Type { | |
t := New(TSSA) | |
t.Extra = name | |
return t | |
} | |
// NewMap returns a new map Type with key type k and element (aka value) type v. | |
func NewMap(k, v *Type) *Type { | |
t := New(TMAP) | |
mt := t.MapType() | |
mt.Key = k | |
mt.Elem = v | |
return t | |
} | |
// NewPtrCacheEnabled controls whether *T Types are cached in T. | |
// Caching is disabled just before starting the backend. | |
// This allows the backend to run concurrently. | |
var NewPtrCacheEnabled = true | |
// NewPtr returns the pointer type pointing to t. | |
func NewPtr(elem *Type) *Type { | |
if elem == nil { | |
Fatalf("NewPtr: pointer to elem Type is nil") | |
} | |
if t := elem.Cache.ptr; t != nil { | |
if t.Elem() != elem { | |
Fatalf("NewPtr: elem mismatch") | |
} | |
return t | |
} | |
t := New(TPTR) | |
t.Extra = Ptr{Elem: elem} | |
t.Width = int64(Widthptr) | |
t.Align = uint8(Widthptr) | |
if NewPtrCacheEnabled { | |
elem.Cache.ptr = t | |
} | |
return t | |
} | |
// NewChanArgs returns a new TCHANARGS type for channel type c. | |
func NewChanArgs(c *Type) *Type { | |
t := New(TCHANARGS) | |
t.Extra = ChanArgs{T: c} | |
return t | |
} | |
// NewFuncArgs returns a new TFUNCARGS type for func type f. | |
func NewFuncArgs(f *Type) *Type { | |
t := New(TFUNCARGS) | |
t.Extra = FuncArgs{T: f} | |
return t | |
} | |
func NewField() *Field { | |
return &Field{ | |
Offset: BADWIDTH, | |
} | |
} | |
// SubstAny walks t, replacing instances of "any" with successive | |
// elements removed from types. It returns the substituted type. | |
func SubstAny(t *Type, types *[]*Type) *Type { | |
if t == nil { | |
return nil | |
} | |
switch t.Etype { | |
default: | |
// Leave the type unchanged. | |
case TANY: | |
if len(*types) == 0 { | |
Fatalf("substArgTypes: not enough argument types") | |
} | |
t = (*types)[0] | |
*types = (*types)[1:] | |
case TPTR: | |
elem := SubstAny(t.Elem(), types) | |
if elem != t.Elem() { | |
t = t.copy() | |
t.Extra = Ptr{Elem: elem} | |
} | |
case TARRAY: | |
elem := SubstAny(t.Elem(), types) | |
if elem != t.Elem() { | |
t = t.copy() | |
t.Extra.(*Array).Elem = elem | |
} | |
case TSLICE: | |
elem := SubstAny(t.Elem(), types) | |
if elem != t.Elem() { | |
t = t.copy() | |
t.Extra = Slice{Elem: elem} | |
} | |
case TCHAN: | |
elem := SubstAny(t.Elem(), types) | |
if elem != t.Elem() { | |
t = t.copy() | |
t.Extra.(*Chan).Elem = elem | |
} | |
case TMAP: | |
key := SubstAny(t.Key(), types) | |
elem := SubstAny(t.Elem(), types) | |
if key != t.Key() || elem != t.Elem() { | |
t = t.copy() | |
t.Extra.(*Map).Key = key | |
t.Extra.(*Map).Elem = elem | |
} | |
case TFUNC: | |
recvs := SubstAny(t.Recvs(), types) | |
params := SubstAny(t.Params(), types) | |
results := SubstAny(t.Results(), types) | |
if recvs != t.Recvs() || params != t.Params() || results != t.Results() { | |
t = t.copy() | |
t.FuncType().Receiver = recvs | |
t.FuncType().Results = results | |
t.FuncType().Params = params | |
} | |
case TSTRUCT: | |
// Make a copy of all fields, including ones whose type does not change. | |
// This prevents aliasing across functions, which can lead to later | |
// fields getting their Offset incorrectly overwritten. | |
fields := t.FieldSlice() | |
nfs := make([]*Field, len(fields)) | |
for i, f := range fields { | |
nft := SubstAny(f.Type, types) | |
nfs[i] = f.Copy() | |
nfs[i].Type = nft | |
} | |
t = t.copy() | |
t.SetFields(nfs) | |
} | |
return t | |
} | |
// copy returns a shallow copy of the Type. | |
func (t *Type) copy() *Type { | |
if t == nil { | |
return nil | |
} | |
nt := *t | |
// copy any *T Extra fields, to avoid aliasing | |
switch t.Etype { | |
case TMAP: | |
x := *t.Extra.(*Map) | |
nt.Extra = &x | |
case TFORW: | |
x := *t.Extra.(*Forward) | |
nt.Extra = &x | |
case TFUNC: | |
x := *t.Extra.(*Func) | |
nt.Extra = &x | |
case TSTRUCT: | |
x := *t.Extra.(*Struct) | |
nt.Extra = &x | |
case TINTER: | |
x := *t.Extra.(*Interface) | |
nt.Extra = &x | |
case TCHAN: | |
x := *t.Extra.(*Chan) | |
nt.Extra = &x | |
case TARRAY: | |
x := *t.Extra.(*Array) | |
nt.Extra = &x | |
case TTUPLE, TSSA, TRESULTS: | |
Fatalf("ssa types cannot be copied") | |
} | |
// TODO(mdempsky): Find out why this is necessary and explain. | |
if t.Orig == t { | |
nt.Orig = &nt | |
} | |
return &nt | |
} | |
func (f *Field) Copy() *Field { | |
nf := *f | |
return &nf | |
} | |
func (t *Type) wantEtype(et EType) { | |
if t.Etype != et { | |
Fatalf("want %v, but have %v", et, t) | |
} | |
} | |
func (t *Type) Recvs() *Type { return t.FuncType().Receiver } | |
func (t *Type) Params() *Type { return t.FuncType().Params } | |
func (t *Type) Results() *Type { return t.FuncType().Results } | |
func (t *Type) NumRecvs() int { return t.FuncType().Receiver.NumFields() } | |
func (t *Type) NumParams() int { return t.FuncType().Params.NumFields() } | |
func (t *Type) NumResults() int { return t.FuncType().Results.NumFields() } | |
// IsVariadic reports whether function type t is variadic. | |
func (t *Type) IsVariadic() bool { | |
n := t.NumParams() | |
return n > 0 && t.Params().Field(n-1).IsDDD() | |
} | |
// Recv returns the receiver of function type t, if any. | |
func (t *Type) Recv() *Field { | |
s := t.Recvs() | |
if s.NumFields() == 0 { | |
return nil | |
} | |
return s.Field(0) | |
} | |
// RecvsParamsResults stores the accessor functions for a function Type's | |
// receiver, parameters, and result parameters, in that order. | |
// It can be used to iterate over all of a function's parameter lists. | |
var RecvsParamsResults = [3]func(*Type) *Type{ | |
(*Type).Recvs, (*Type).Params, (*Type).Results, | |
} | |
// RecvsParams is like RecvsParamsResults, but omits result parameters. | |
var RecvsParams = [2]func(*Type) *Type{ | |
(*Type).Recvs, (*Type).Params, | |
} | |
// ParamsResults is like RecvsParamsResults, but omits receiver parameters. | |
var ParamsResults = [2]func(*Type) *Type{ | |
(*Type).Params, (*Type).Results, | |
} | |
// Key returns the key type of map type t. | |
func (t *Type) Key() *Type { | |
t.wantEtype(TMAP) | |
return t.Extra.(*Map).Key | |
} | |
// Elem returns the type of elements of t. | |
// Usable with pointers, channels, arrays, slices, and maps. | |
func (t *Type) Elem() *Type { | |
switch t.Etype { | |
case TPTR: | |
return t.Extra.(Ptr).Elem | |
case TARRAY: | |
return t.Extra.(*Array).Elem | |
case TSLICE: | |
return t.Extra.(Slice).Elem | |
case TCHAN: | |
return t.Extra.(*Chan).Elem | |
case TMAP: | |
return t.Extra.(*Map).Elem | |
} | |
Fatalf("Type.Elem %s", t.Etype) | |
return nil | |
} | |
// ChanArgs returns the channel type for TCHANARGS type t. | |
func (t *Type) ChanArgs() *Type { | |
t.wantEtype(TCHANARGS) | |
return t.Extra.(ChanArgs).T | |
} | |
// FuncArgs returns the func type for TFUNCARGS type t. | |
func (t *Type) FuncArgs() *Type { | |
t.wantEtype(TFUNCARGS) | |
return t.Extra.(FuncArgs).T | |
} | |
// Nname returns the associated function's nname. | |
func (t *Type) Nname() *Node { | |
switch t.Etype { | |
case TFUNC: | |
return t.Extra.(*Func).Nname | |
} | |
Fatalf("Type.Nname %v %v", t.Etype, t) | |
return nil | |
} | |
// Nname sets the associated function's nname. | |
func (t *Type) SetNname(n *Node) { | |
switch t.Etype { | |
case TFUNC: | |
t.Extra.(*Func).Nname = n | |
default: | |
Fatalf("Type.SetNname %v %v", t.Etype, t) | |
} | |
} | |
// IsFuncArgStruct reports whether t is a struct representing function parameters. | |
func (t *Type) IsFuncArgStruct() bool { | |
return t.Etype == TSTRUCT && t.Extra.(*Struct).Funarg != FunargNone | |
} | |
func (t *Type) Methods() *Fields { | |
// TODO(mdempsky): Validate t? | |
return &t.methods | |
} | |
func (t *Type) AllMethods() *Fields { | |
// TODO(mdempsky): Validate t? | |
return &t.allMethods | |
} | |
func (t *Type) Fields() *Fields { | |
switch t.Etype { | |
case TSTRUCT: | |
return &t.Extra.(*Struct).fields | |
case TINTER: | |
Dowidth(t) | |
return &t.Extra.(*Interface).Fields | |
} | |
Fatalf("Fields: type %v does not have fields", t) | |
return nil | |
} | |
// Field returns the i'th field/method of struct/interface type t. | |
func (t *Type) Field(i int) *Field { | |
return t.Fields().Slice()[i] | |
} | |
// FieldSlice returns a slice of containing all fields/methods of | |
// struct/interface type t. | |
func (t *Type) FieldSlice() []*Field { | |
return t.Fields().Slice() | |
} | |
// SetFields sets struct/interface type t's fields/methods to fields. | |
func (t *Type) SetFields(fields []*Field) { | |
// If we've calculated the width of t before, | |
// then some other type such as a function signature | |
// might now have the wrong type. | |
// Rather than try to track and invalidate those, | |
// enforce that SetFields cannot be called once | |
// t's width has been calculated. | |
if t.WidthCalculated() { | |
Fatalf("SetFields of %v: width previously calculated", t) | |
} | |
t.wantEtype(TSTRUCT) | |
for _, f := range fields { | |
// If type T contains a field F with a go:notinheap | |
// type, then T must also be go:notinheap. Otherwise, | |
// you could heap allocate T and then get a pointer F, | |
// which would be a heap pointer to a go:notinheap | |
// type. | |
if f.Type != nil && f.Type.NotInHeap() { | |
t.SetNotInHeap(true) | |
break | |
} | |
} | |
t.Fields().Set(fields) | |
} | |
func (t *Type) SetInterface(methods []*Field) { | |
t.wantEtype(TINTER) | |
t.Methods().Set(methods) | |
} | |
func (t *Type) WidthCalculated() bool { | |
return t.Align > 0 | |
} | |
// ArgWidth returns the total aligned argument size for a function. | |
// It includes the receiver, parameters, and results. | |
func (t *Type) ArgWidth() int64 { | |
t.wantEtype(TFUNC) | |
return t.Extra.(*Func).Argwid | |
} | |
func (t *Type) Size() int64 { | |
if t.Etype == TSSA { | |
if t == TypeInt128 { | |
return 16 | |
} | |
return 0 | |
} | |
Dowidth(t) | |
return t.Width | |
} | |
func (t *Type) Alignment() int64 { | |
Dowidth(t) | |
return int64(t.Align) | |
} | |
func (t *Type) SimpleString() string { | |
return t.Etype.String() | |
} | |
// Cmp is a comparison between values a and b. | |
// -1 if a < b | |
// 0 if a == b | |
// 1 if a > b | |
type Cmp int8 | |
const ( | |
CMPlt = Cmp(-1) | |
CMPeq = Cmp(0) | |
CMPgt = Cmp(1) | |
) | |
// Compare compares types for purposes of the SSA back | |
// end, returning a Cmp (one of CMPlt, CMPeq, CMPgt). | |
// The answers are correct for an optimizer | |
// or code generator, but not necessarily typechecking. | |
// The order chosen is arbitrary, only consistency and division | |
// into equivalence classes (Types that compare CMPeq) matters. | |
func (t *Type) Compare(x *Type) Cmp { | |
if x == t { | |
return CMPeq | |
} | |
return t.cmp(x) | |
} | |
func cmpForNe(x bool) Cmp { | |
if x { | |
return CMPlt | |
} | |
return CMPgt | |
} | |
func (r *Sym) cmpsym(s *Sym) Cmp { | |
if r == s { | |
return CMPeq | |
} | |
if r == nil { | |
return CMPlt | |
} | |
if s == nil { | |
return CMPgt | |
} | |
// Fast sort, not pretty sort | |
if len(r.Name) != len(s.Name) { | |
return cmpForNe(len(r.Name) < len(s.Name)) | |
} | |
if r.Pkg != s.Pkg { | |
if len(r.Pkg.Prefix) != len(s.Pkg.Prefix) { | |
return cmpForNe(len(r.Pkg.Prefix) < len(s.Pkg.Prefix)) | |
} | |
if r.Pkg.Prefix != s.Pkg.Prefix { | |
return cmpForNe(r.Pkg.Prefix < s.Pkg.Prefix) | |
} | |
} | |
if r.Name != s.Name { | |
return cmpForNe(r.Name < s.Name) | |
} | |
return CMPeq | |
} | |
// cmp compares two *Types t and x, returning CMPlt, | |
// CMPeq, CMPgt as t<x, t==x, t>x, for an arbitrary | |
// and optimizer-centric notion of comparison. | |
// TODO(josharian): make this safe for recursive interface types | |
// and use in signatlist sorting. See issue 19869. | |
func (t *Type) cmp(x *Type) Cmp { | |
// This follows the structure of function identical in identity.go | |
// with two exceptions. | |
// 1. Symbols are compared more carefully because a <,=,> result is desired. | |
// 2. Maps are treated specially to avoid endless recursion -- maps | |
// contain an internal data type not expressible in Go source code. | |
if t == x { | |
return CMPeq | |
} | |
if t == nil { | |
return CMPlt | |
} | |
if x == nil { | |
return CMPgt | |
} | |
if t.Etype != x.Etype { | |
return cmpForNe(t.Etype < x.Etype) | |
} | |
if t.Sym != nil || x.Sym != nil { | |
// Special case: we keep byte and uint8 separate | |
// for error messages. Treat them as equal. | |
switch t.Etype { | |
case TUINT8: | |
if (t == Types[TUINT8] || t == Bytetype) && (x == Types[TUINT8] || x == Bytetype) { | |
return CMPeq | |
} | |
case TINT32: | |
if (t == Types[Runetype.Etype] || t == Runetype) && (x == Types[Runetype.Etype] || x == Runetype) { | |
return CMPeq | |
} | |
} | |
} | |
if c := t.Sym.cmpsym(x.Sym); c != CMPeq { | |
return c | |
} | |
if x.Sym != nil { | |
// Syms non-nil, if vargens match then equal. | |
if t.Vargen != x.Vargen { | |
return cmpForNe(t.Vargen < x.Vargen) | |
} | |
return CMPeq | |
} | |
// both syms nil, look at structure below. | |
switch t.Etype { | |
case TBOOL, TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, TUNSAFEPTR, TUINTPTR, | |
TINT8, TINT16, TINT32, TINT64, TINT, TUINT8, TUINT16, TUINT32, TUINT64, TUINT: | |
return CMPeq | |
case TSSA: | |
tname := t.Extra.(string) | |
xname := x.Extra.(string) | |
// desire fast sorting, not pretty sorting. | |
if len(tname) == len(xname) { | |
if tname == xname { | |
return CMPeq | |
} | |
if tname < xname { | |
return CMPlt | |
} | |
return CMPgt | |
} | |
if len(tname) > len(xname) { | |
return CMPgt | |
} | |
return CMPlt | |
case TTUPLE: | |
xtup := x.Extra.(*Tuple) | |
ttup := t.Extra.(*Tuple) | |
if c := ttup.first.Compare(xtup.first); c != CMPeq { | |
return c | |
} | |
return ttup.second.Compare(xtup.second) | |
case TRESULTS: | |
xResults := x.Extra.(*Results) | |
tResults := t.Extra.(*Results) | |
xl, tl := len(xResults.Types), len(tResults.Types) | |
if tl != xl { | |
if tl < xl { | |
return CMPlt | |
} | |
return CMPgt | |
} | |
for i := 0; i < tl; i++ { | |
if c := tResults.Types[i].Compare(xResults.Types[i]); c != CMPeq { | |
return c | |
} | |
} | |
return CMPeq | |
case TMAP: | |
if c := t.Key().cmp(x.Key()); c != CMPeq { | |
return c | |
} | |
return t.Elem().cmp(x.Elem()) | |
case TPTR, TSLICE: | |
// No special cases for these, they are handled | |
// by the general code after the switch. | |
case TSTRUCT: | |
if t.StructType().Map == nil { | |
if x.StructType().Map != nil { | |
return CMPlt // nil < non-nil | |
} | |
// to the fallthrough | |
} else if x.StructType().Map == nil { | |
return CMPgt // nil > non-nil | |
} else if t.StructType().Map.MapType().Bucket == t { | |
// Both have non-nil Map | |
// Special case for Maps which include a recursive type where the recursion is not broken with a named type | |
if x.StructType().Map.MapType().Bucket != x { | |
return CMPlt // bucket maps are least | |
} | |
return t.StructType().Map.cmp(x.StructType().Map) | |
} else if x.StructType().Map.MapType().Bucket == x { | |
return CMPgt // bucket maps are least | |
} // If t != t.Map.Bucket, fall through to general case | |
tfs := t.FieldSlice() | |
xfs := x.FieldSlice() | |
for i := 0; i < len(tfs) && i < len(xfs); i++ { | |
t1, x1 := tfs[i], xfs[i] | |
if t1.Embedded != x1.Embedded { | |
return cmpForNe(t1.Embedded < x1.Embedded) | |
} | |
if t1.Note != x1.Note { | |
return cmpForNe(t1.Note < x1.Note) | |
} | |
if c := t1.Sym.cmpsym(x1.Sym); c != CMPeq { | |
return c | |
} | |
if c := t1.Type.cmp(x1.Type); c != CMPeq { | |
return c | |
} | |
} | |
if len(tfs) != len(xfs) { | |
return cmpForNe(len(tfs) < len(xfs)) | |
} | |
return CMPeq | |
case TINTER: | |
tfs := t.FieldSlice() | |
xfs := x.FieldSlice() | |
for i := 0; i < len(tfs) && i < len(xfs); i++ { | |
t1, x1 := tfs[i], xfs[i] | |
if c := t1.Sym.cmpsym(x1.Sym); c != CMPeq { | |
return c | |
} | |
if c := t1.Type.cmp(x1.Type); c != CMPeq { | |
return c | |
} | |
} | |
if len(tfs) != len(xfs) { | |
return cmpForNe(len(tfs) < len(xfs)) | |
} | |
return CMPeq | |
case TFUNC: | |
for _, f := range RecvsParamsResults { | |
// Loop over fields in structs, ignoring argument names. | |
tfs := f(t).FieldSlice() | |
xfs := f(x).FieldSlice() | |
for i := 0; i < len(tfs) && i < len(xfs); i++ { | |
ta := tfs[i] | |
tb := xfs[i] | |
if ta.IsDDD() != tb.IsDDD() { | |
return cmpForNe(!ta.IsDDD()) | |
} | |
if c := ta.Type.cmp(tb.Type); c != CMPeq { | |
return c | |
} | |
} | |
if len(tfs) != len(xfs) { | |
return cmpForNe(len(tfs) < len(xfs)) | |
} | |
} | |
return CMPeq | |
case TARRAY: | |
if t.NumElem() != x.NumElem() { | |
return cmpForNe(t.NumElem() < x.NumElem()) | |
} | |
case TCHAN: | |
if t.ChanDir() != x.ChanDir() { | |
return cmpForNe(t.ChanDir() < x.ChanDir()) | |
} | |
default: | |
e := fmt.Sprintf("Do not know how to compare %v with %v", t, x) | |
panic(e) | |
} | |
// Common element type comparison for TARRAY, TCHAN, TPTR, and TSLICE. | |
return t.Elem().cmp(x.Elem()) | |
} | |
// IsKind reports whether t is a Type of the specified kind. | |
func (t *Type) IsKind(et EType) bool { | |
return t != nil && t.Etype == et | |
} | |
func (t *Type) IsBoolean() bool { | |
return t.Etype == TBOOL | |
} | |
var unsignedEType = [...]EType{ | |
TINT8: TUINT8, | |
TUINT8: TUINT8, | |
TINT16: TUINT16, | |
TUINT16: TUINT16, | |
TINT32: TUINT32, | |
TUINT32: TUINT32, | |
TINT64: TUINT64, | |
TUINT64: TUINT64, | |
TINT: TUINT, | |
TUINT: TUINT, | |
TUINTPTR: TUINTPTR, | |
} | |
// ToUnsigned returns the unsigned equivalent of integer type t. | |
func (t *Type) ToUnsigned() *Type { | |
if !t.IsInteger() { | |
Fatalf("unsignedType(%v)", t) | |
} | |
return Types[unsignedEType[t.Etype]] | |
} | |
func (t *Type) IsInteger() bool { | |
switch t.Etype { | |
case TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64, TUINT64, TINT, TUINT, TUINTPTR: | |
return true | |
} | |
return false | |
} | |
func (t *Type) IsSigned() bool { | |
switch t.Etype { | |
case TINT8, TINT16, TINT32, TINT64, TINT: | |
return true | |
} | |
return false | |
} | |
func (t *Type) IsFloat() bool { | |
return t.Etype == TFLOAT32 || t.Etype == TFLOAT64 | |
} | |
func (t *Type) IsComplex() bool { | |
return t.Etype == TCOMPLEX64 || t.Etype == TCOMPLEX128 | |
} | |
// IsPtr reports whether t is a regular Go pointer type. | |
// This does not include unsafe.Pointer. | |
func (t *Type) IsPtr() bool { | |
return t.Etype == TPTR | |
} | |
// IsPtrElem reports whether t is the element of a pointer (to t). | |
func (t *Type) IsPtrElem() bool { | |
return t.Cache.ptr != nil | |
} | |
// IsUnsafePtr reports whether t is an unsafe pointer. | |
func (t *Type) IsUnsafePtr() bool { | |
return t.Etype == TUNSAFEPTR | |
} | |
// IsUintptr reports whether t is an uintptr. | |
func (t *Type) IsUintptr() bool { | |
return t.Etype == TUINTPTR | |
} | |
// IsPtrShaped reports whether t is represented by a single machine pointer. | |
// In addition to regular Go pointer types, this includes map, channel, and | |
// function types and unsafe.Pointer. It does not include array or struct types | |
// that consist of a single pointer shaped type. | |
// TODO(mdempsky): Should it? See golang.org/issue/15028. | |
func (t *Type) IsPtrShaped() bool { | |
return t.Etype == TPTR || t.Etype == TUNSAFEPTR || | |
t.Etype == TMAP || t.Etype == TCHAN || t.Etype == TFUNC | |
} | |
// HasNil reports whether the set of values determined by t includes nil. | |
func (t *Type) HasNil() bool { | |
switch t.Etype { | |
case TCHAN, TFUNC, TINTER, TMAP, TPTR, TSLICE, TUNSAFEPTR: | |
return true | |
} | |
return false | |
} | |
func (t *Type) IsString() bool { | |
return t.Etype == TSTRING | |
} | |
func (t *Type) IsMap() bool { | |
return t.Etype == TMAP | |
} | |
func (t *Type) IsChan() bool { | |
return t.Etype == TCHAN | |
} | |
func (t *Type) IsSlice() bool { | |
return t.Etype == TSLICE | |
} | |
func (t *Type) IsArray() bool { | |
return t.Etype == TARRAY | |
} | |
func (t *Type) IsStruct() bool { | |
return t.Etype == TSTRUCT | |
} | |
func (t *Type) IsInterface() bool { | |
return t.Etype == TINTER | |
} | |
// IsEmptyInterface reports whether t is an empty interface type. | |
func (t *Type) IsEmptyInterface() bool { | |
return t.IsInterface() && t.NumFields() == 0 | |
} | |
func (t *Type) PtrTo() *Type { | |
return NewPtr(t) | |
} | |
func (t *Type) NumFields() int { | |
return t.Fields().Len() | |
} | |
func (t *Type) FieldType(i int) *Type { | |
if t.Etype == TTUPLE { | |
switch i { | |
case 0: | |
return t.Extra.(*Tuple).first | |
case 1: | |
return t.Extra.(*Tuple).second | |
default: | |
panic("bad tuple index") | |
} | |
} | |
if t.Etype == TRESULTS { | |
return t.Extra.(*Results).Types[i] | |
} | |
return t.Field(i).Type | |
} | |
func (t *Type) FieldOff(i int) int64 { | |
return t.Field(i).Offset | |
} | |
func (t *Type) FieldName(i int) string { | |
return t.Field(i).Sym.Name | |
} | |
func (t *Type) NumElem() int64 { | |
t.wantEtype(TARRAY) | |
return t.Extra.(*Array).Bound | |
} | |
type componentsIncludeBlankFields bool | |
const ( | |
IgnoreBlankFields componentsIncludeBlankFields = false | |
CountBlankFields componentsIncludeBlankFields = true | |
) | |
// NumComponents returns the number of primitive elements that compose t. | |
// Struct and array types are flattened for the purpose of counting. | |
// All other types (including string, slice, and interface types) count as one element. | |
// If countBlank is IgnoreBlankFields, then blank struct fields | |
// (and their comprised elements) are excluded from the count. | |
// struct { x, y [3]int } has six components; [10]struct{ x, y string } has twenty. | |
func (t *Type) NumComponents(countBlank componentsIncludeBlankFields) int64 { | |
switch t.Etype { | |
case TSTRUCT: | |
if t.IsFuncArgStruct() { | |
Fatalf("NumComponents func arg struct") | |
} | |
var n int64 | |
for _, f := range t.FieldSlice() { | |
if countBlank == IgnoreBlankFields && f.Sym.IsBlank() { | |
continue | |
} | |
n += f.Type.NumComponents(countBlank) | |
} | |
return n | |
case TARRAY: | |
return t.NumElem() * t.Elem().NumComponents(countBlank) | |
} | |
return 1 | |
} | |
// SoleComponent returns the only primitive component in t, | |
// if there is exactly one. Otherwise, it returns nil. | |
// Components are counted as in NumComponents, including blank fields. | |
func (t *Type) SoleComponent() *Type { | |
switch t.Etype { | |
case TSTRUCT: | |
if t.IsFuncArgStruct() { | |
Fatalf("SoleComponent func arg struct") | |
} | |
if t.NumFields() != 1 { | |
return nil | |
} | |
return t.Field(0).Type.SoleComponent() | |
case TARRAY: | |
if t.NumElem() != 1 { | |
return nil | |
} | |
return t.Elem().SoleComponent() | |
} | |
return t | |
} | |
// ChanDir returns the direction of a channel type t. | |
// The direction will be one of Crecv, Csend, or Cboth. | |
func (t *Type) ChanDir() ChanDir { | |
t.wantEtype(TCHAN) | |
return t.Extra.(*Chan).Dir | |
} | |
func (t *Type) IsMemory() bool { | |
if t == TypeMem || t.Etype == TTUPLE && t.Extra.(*Tuple).second == TypeMem { | |
return true | |
} | |
if t.Etype == TRESULTS { | |
if types := t.Extra.(*Results).Types; len(types) > 0 && types[len(types)-1] == TypeMem { | |
return true | |
} | |
} | |
return false | |
} | |
func (t *Type) IsFlags() bool { return t == TypeFlags } | |
func (t *Type) IsVoid() bool { return t == TypeVoid } | |
func (t *Type) IsTuple() bool { return t.Etype == TTUPLE } | |
func (t *Type) IsResults() bool { return t.Etype == TRESULTS } | |
// IsUntyped reports whether t is an untyped type. | |
func (t *Type) IsUntyped() bool { | |
if t == nil { | |
return false | |
} | |
if t == UntypedString || t == UntypedBool { | |
return true | |
} | |
switch t.Etype { | |
case TNIL, TIDEAL: | |
return true | |
} | |
return false | |
} | |
// HasPointers reports whether t contains a heap pointer. | |
// Note that this function ignores pointers to go:notinheap types. | |
func (t *Type) HasPointers() bool { | |
switch t.Etype { | |
case TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64, | |
TUINT64, TUINTPTR, TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, TBOOL, TSSA: | |
return false | |
case TARRAY: | |
if t.NumElem() == 0 { // empty array has no pointers | |
return false | |
} | |
return t.Elem().HasPointers() | |
case TSTRUCT: | |
for _, t1 := range t.Fields().Slice() { | |
if t1.Type.HasPointers() { | |
return true | |
} | |
} | |
return false | |
case TPTR, TSLICE: | |
return !t.Elem().NotInHeap() | |
case TTUPLE: | |
ttup := t.Extra.(*Tuple) | |
return ttup.first.HasPointers() || ttup.second.HasPointers() | |
case TRESULTS: | |
types := t.Extra.(*Results).Types | |
for _, et := range types { | |
if et.HasPointers() { | |
return true | |
} | |
} | |
return false | |
} | |
return true | |
} | |
func (t *Type) Symbol() *obj.LSym { | |
return TypeLinkSym(t) | |
} | |
// Tie returns 'T' if t is a concrete type, | |
// 'I' if t is an interface type, and 'E' if t is an empty interface type. | |
// It is used to build calls to the conv* and assert* runtime routines. | |
func (t *Type) Tie() byte { | |
if t.IsEmptyInterface() { | |
return 'E' | |
} | |
if t.IsInterface() { | |
return 'I' | |
} | |
return 'T' | |
} | |
var recvType *Type | |
// FakeRecvType returns the singleton type used for interface method receivers. | |
func FakeRecvType() *Type { | |
if recvType == nil { | |
recvType = NewPtr(New(TSTRUCT)) | |
} | |
return recvType | |
} | |
var ( | |
// TSSA types. HasPointers assumes these are pointer-free. | |
TypeInvalid = newSSA("invalid") | |
TypeMem = newSSA("mem") | |
TypeFlags = newSSA("flags") | |
TypeVoid = newSSA("void") | |
TypeInt128 = newSSA("int128") | |
) |