Permalink
Branch: master
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
465 lines (392 sloc) 11.2 KB
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO(gri) This file should probably become part of package types.
package gc
import "cmd/compile/internal/types"
// builtinpkg is a fake package that declares the universe block.
var builtinpkg *types.Pkg
var itable *types.Type // distinguished *byte
var basicTypes = [...]struct {
name string
etype types.EType
}{
{"int8", TINT8},
{"int16", TINT16},
{"int32", TINT32},
{"int64", TINT64},
{"uint8", TUINT8},
{"uint16", TUINT16},
{"uint32", TUINT32},
{"uint64", TUINT64},
{"float32", TFLOAT32},
{"float64", TFLOAT64},
{"complex64", TCOMPLEX64},
{"complex128", TCOMPLEX128},
{"bool", TBOOL},
{"string", TSTRING},
}
var typedefs = [...]struct {
name string
etype types.EType
sameas32 types.EType
sameas64 types.EType
}{
{"int", TINT, TINT32, TINT64},
{"uint", TUINT, TUINT32, TUINT64},
{"uintptr", TUINTPTR, TUINT32, TUINT64},
}
var builtinFuncs = [...]struct {
name string
op Op
}{
{"append", OAPPEND},
{"cap", OCAP},
{"close", OCLOSE},
{"complex", OCOMPLEX},
{"copy", OCOPY},
{"delete", ODELETE},
{"imag", OIMAG},
{"len", OLEN},
{"make", OMAKE},
{"new", ONEW},
{"panic", OPANIC},
{"print", OPRINT},
{"println", OPRINTN},
{"real", OREAL},
{"recover", ORECOVER},
}
// isBuiltinFuncName reports whether name matches a builtin function
// name.
func isBuiltinFuncName(name string) bool {
for _, fn := range builtinFuncs {
if fn.name == name {
return true
}
}
return false
}
var unsafeFuncs = [...]struct {
name string
op Op
}{
{"Alignof", OALIGNOF},
{"Offsetof", OOFFSETOF},
{"Sizeof", OSIZEOF},
}
// initUniverse initializes the universe block.
func initUniverse() {
lexinit()
typeinit()
lexinit1()
}
// lexinit initializes known symbols and the basic types.
func lexinit() {
for _, s := range basicTypes {
etype := s.etype
if int(etype) >= len(types.Types) {
Fatalf("lexinit: %s bad etype", s.name)
}
s2 := builtinpkg.Lookup(s.name)
t := types.Types[etype]
if t == nil {
t = types.New(etype)
t.Sym = s2
if etype != TANY && etype != TSTRING {
dowidth(t)
}
types.Types[etype] = t
}
s2.Def = asTypesNode(typenod(t))
asNode(s2.Def).Name = new(Name)
}
for _, s := range builtinFuncs {
s2 := builtinpkg.Lookup(s.name)
s2.Def = asTypesNode(newname(s2))
asNode(s2.Def).SetSubOp(s.op)
}
for _, s := range unsafeFuncs {
s2 := unsafepkg.Lookup(s.name)
s2.Def = asTypesNode(newname(s2))
asNode(s2.Def).SetSubOp(s.op)
}
types.Idealstring = types.New(TSTRING)
types.Idealbool = types.New(TBOOL)
types.Types[TANY] = types.New(TANY)
s := builtinpkg.Lookup("true")
s.Def = asTypesNode(nodbool(true))
asNode(s.Def).Sym = lookup("true")
asNode(s.Def).Name = new(Name)
asNode(s.Def).Type = types.Idealbool
s = builtinpkg.Lookup("false")
s.Def = asTypesNode(nodbool(false))
asNode(s.Def).Sym = lookup("false")
asNode(s.Def).Name = new(Name)
asNode(s.Def).Type = types.Idealbool
s = lookup("_")
s.Block = -100
s.Def = asTypesNode(newname(s))
types.Types[TBLANK] = types.New(TBLANK)
asNode(s.Def).Type = types.Types[TBLANK]
nblank = asNode(s.Def)
s = builtinpkg.Lookup("_")
s.Block = -100
s.Def = asTypesNode(newname(s))
types.Types[TBLANK] = types.New(TBLANK)
asNode(s.Def).Type = types.Types[TBLANK]
types.Types[TNIL] = types.New(TNIL)
s = builtinpkg.Lookup("nil")
var v Val
v.U = new(NilVal)
s.Def = asTypesNode(nodlit(v))
asNode(s.Def).Sym = s
asNode(s.Def).Name = new(Name)
s = builtinpkg.Lookup("iota")
s.Def = asTypesNode(nod(OIOTA, nil, nil))
asNode(s.Def).Sym = s
asNode(s.Def).Name = new(Name)
}
func typeinit() {
if Widthptr == 0 {
Fatalf("typeinit before betypeinit")
}
for et := types.EType(0); et < NTYPE; et++ {
simtype[et] = et
}
types.Types[TPTR] = types.New(TPTR)
dowidth(types.Types[TPTR])
t := types.New(TUNSAFEPTR)
types.Types[TUNSAFEPTR] = t
t.Sym = unsafepkg.Lookup("Pointer")
t.Sym.Def = asTypesNode(typenod(t))
asNode(t.Sym.Def).Name = new(Name)
dowidth(types.Types[TUNSAFEPTR])
for et := TINT8; et <= TUINT64; et++ {
isInt[et] = true
}
isInt[TINT] = true
isInt[TUINT] = true
isInt[TUINTPTR] = true
isFloat[TFLOAT32] = true
isFloat[TFLOAT64] = true
isComplex[TCOMPLEX64] = true
isComplex[TCOMPLEX128] = true
// initialize okfor
for et := types.EType(0); et < NTYPE; et++ {
if isInt[et] || et == TIDEAL {
okforeq[et] = true
okforcmp[et] = true
okforarith[et] = true
okforadd[et] = true
okforand[et] = true
okforconst[et] = true
issimple[et] = true
minintval[et] = new(Mpint)
maxintval[et] = new(Mpint)
}
if isFloat[et] {
okforeq[et] = true
okforcmp[et] = true
okforadd[et] = true
okforarith[et] = true
okforconst[et] = true
issimple[et] = true
minfltval[et] = newMpflt()
maxfltval[et] = newMpflt()
}
if isComplex[et] {
okforeq[et] = true
okforadd[et] = true
okforarith[et] = true
okforconst[et] = true
issimple[et] = true
}
}
issimple[TBOOL] = true
okforadd[TSTRING] = true
okforbool[TBOOL] = true
okforcap[TARRAY] = true
okforcap[TCHAN] = true
okforcap[TSLICE] = true
okforconst[TBOOL] = true
okforconst[TSTRING] = true
okforlen[TARRAY] = true
okforlen[TCHAN] = true
okforlen[TMAP] = true
okforlen[TSLICE] = true
okforlen[TSTRING] = true
okforeq[TPTR] = true
okforeq[TUNSAFEPTR] = true
okforeq[TINTER] = true
okforeq[TCHAN] = true
okforeq[TSTRING] = true
okforeq[TBOOL] = true
okforeq[TMAP] = true // nil only; refined in typecheck
okforeq[TFUNC] = true // nil only; refined in typecheck
okforeq[TSLICE] = true // nil only; refined in typecheck
okforeq[TARRAY] = true // only if element type is comparable; refined in typecheck
okforeq[TSTRUCT] = true // only if all struct fields are comparable; refined in typecheck
okforcmp[TSTRING] = true
var i int
for i = 0; i < len(okfor); i++ {
okfor[i] = okfornone[:]
}
// binary
okfor[OADD] = okforadd[:]
okfor[OAND] = okforand[:]
okfor[OANDAND] = okforbool[:]
okfor[OANDNOT] = okforand[:]
okfor[ODIV] = okforarith[:]
okfor[OEQ] = okforeq[:]
okfor[OGE] = okforcmp[:]
okfor[OGT] = okforcmp[:]
okfor[OLE] = okforcmp[:]
okfor[OLT] = okforcmp[:]
okfor[OMOD] = okforand[:]
okfor[OMUL] = okforarith[:]
okfor[ONE] = okforeq[:]
okfor[OOR] = okforand[:]
okfor[OOROR] = okforbool[:]
okfor[OSUB] = okforarith[:]
okfor[OXOR] = okforand[:]
okfor[OLSH] = okforand[:]
okfor[ORSH] = okforand[:]
// unary
okfor[OBITNOT] = okforand[:]
okfor[ONEG] = okforarith[:]
okfor[ONOT] = okforbool[:]
okfor[OPLUS] = okforarith[:]
// special
okfor[OCAP] = okforcap[:]
okfor[OLEN] = okforlen[:]
// comparison
iscmp[OLT] = true
iscmp[OGT] = true
iscmp[OGE] = true
iscmp[OLE] = true
iscmp[OEQ] = true
iscmp[ONE] = true
maxintval[TINT8].SetString("0x7f")
minintval[TINT8].SetString("-0x80")
maxintval[TINT16].SetString("0x7fff")
minintval[TINT16].SetString("-0x8000")
maxintval[TINT32].SetString("0x7fffffff")
minintval[TINT32].SetString("-0x80000000")
maxintval[TINT64].SetString("0x7fffffffffffffff")
minintval[TINT64].SetString("-0x8000000000000000")
maxintval[TUINT8].SetString("0xff")
maxintval[TUINT16].SetString("0xffff")
maxintval[TUINT32].SetString("0xffffffff")
maxintval[TUINT64].SetString("0xffffffffffffffff")
// f is valid float if min < f < max. (min and max are not themselves valid.)
maxfltval[TFLOAT32].SetString("33554431p103") // 2^24-1 p (127-23) + 1/2 ulp
minfltval[TFLOAT32].SetString("-33554431p103")
maxfltval[TFLOAT64].SetString("18014398509481983p970") // 2^53-1 p (1023-52) + 1/2 ulp
minfltval[TFLOAT64].SetString("-18014398509481983p970")
maxfltval[TCOMPLEX64] = maxfltval[TFLOAT32]
minfltval[TCOMPLEX64] = minfltval[TFLOAT32]
maxfltval[TCOMPLEX128] = maxfltval[TFLOAT64]
minfltval[TCOMPLEX128] = minfltval[TFLOAT64]
// for walk to use in error messages
types.Types[TFUNC] = functype(nil, nil, nil)
// types used in front end
// types.Types[TNIL] got set early in lexinit
types.Types[TIDEAL] = types.New(TIDEAL)
types.Types[TINTER] = types.New(TINTER)
// simple aliases
simtype[TMAP] = TPTR
simtype[TCHAN] = TPTR
simtype[TFUNC] = TPTR
simtype[TUNSAFEPTR] = TPTR
array_array = int(Rnd(0, int64(Widthptr)))
array_nel = int(Rnd(int64(array_array)+int64(Widthptr), int64(Widthptr)))
array_cap = int(Rnd(int64(array_nel)+int64(Widthptr), int64(Widthptr)))
sizeof_Array = int(Rnd(int64(array_cap)+int64(Widthptr), int64(Widthptr)))
// string is same as slice wo the cap
sizeof_String = int(Rnd(int64(array_nel)+int64(Widthptr), int64(Widthptr)))
dowidth(types.Types[TSTRING])
dowidth(types.Idealstring)
itable = types.NewPtr(types.Types[TUINT8])
}
func makeErrorInterface() *types.Type {
field := types.NewField()
field.Type = types.Types[TSTRING]
f := functypefield(fakeRecvField(), nil, []*types.Field{field})
field = types.NewField()
field.Sym = lookup("Error")
field.Type = f
t := types.New(TINTER)
t.SetInterface([]*types.Field{field})
return t
}
func lexinit1() {
// error type
s := builtinpkg.Lookup("error")
types.Errortype = makeErrorInterface()
types.Errortype.Sym = s
types.Errortype.Orig = makeErrorInterface()
s.Def = asTypesNode(typenod(types.Errortype))
dowidth(types.Errortype)
// We create separate byte and rune types for better error messages
// rather than just creating type alias *types.Sym's for the uint8 and
// int32 types. Hence, (bytetype|runtype).Sym.isAlias() is false.
// TODO(gri) Should we get rid of this special case (at the cost
// of less informative error messages involving bytes and runes)?
// (Alternatively, we could introduce an OTALIAS node representing
// type aliases, albeit at the cost of having to deal with it everywhere).
// byte alias
s = builtinpkg.Lookup("byte")
types.Bytetype = types.New(TUINT8)
types.Bytetype.Sym = s
s.Def = asTypesNode(typenod(types.Bytetype))
asNode(s.Def).Name = new(Name)
dowidth(types.Bytetype)
// rune alias
s = builtinpkg.Lookup("rune")
types.Runetype = types.New(TINT32)
types.Runetype.Sym = s
s.Def = asTypesNode(typenod(types.Runetype))
asNode(s.Def).Name = new(Name)
dowidth(types.Runetype)
// backend-dependent builtin types (e.g. int).
for _, s := range typedefs {
s1 := builtinpkg.Lookup(s.name)
sameas := s.sameas32
if Widthptr == 8 {
sameas = s.sameas64
}
simtype[s.etype] = sameas
minfltval[s.etype] = minfltval[sameas]
maxfltval[s.etype] = maxfltval[sameas]
minintval[s.etype] = minintval[sameas]
maxintval[s.etype] = maxintval[sameas]
t := types.New(s.etype)
t.Sym = s1
types.Types[s.etype] = t
s1.Def = asTypesNode(typenod(t))
asNode(s1.Def).Name = new(Name)
s1.Origpkg = builtinpkg
dowidth(t)
}
}
// finishUniverse makes the universe block visible within the current package.
func finishUniverse() {
// Operationally, this is similar to a dot import of builtinpkg, except
// that we silently skip symbols that are already declared in the
// package block rather than emitting a redeclared symbol error.
for _, s := range builtinpkg.Syms {
if s.Def == nil {
continue
}
s1 := lookup(s.Name)
if s1.Def != nil {
continue
}
s1.Def = s.Def
s1.Block = s.Block
}
nodfp = newname(lookup(".fp"))
nodfp.Type = types.Types[TINT32]
nodfp.SetClass(PPARAM)
nodfp.Name.SetUsed(true)
}