Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/internal/src"
)
// findlive returns the reachable blocks and live values in f.
// The caller should call f.Cache.freeBoolSlice(live) when it is done with it.
func findlive(f *Func) (reachable []bool, live []bool) {
reachable = ReachableBlocks(f)
var order []*Value
live, order = liveValues(f, reachable)
f.Cache.freeValueSlice(order)
return
}
// ReachableBlocks returns the reachable blocks in f.
func ReachableBlocks(f *Func) []bool {
reachable := make([]bool, f.NumBlocks())
reachable[f.Entry.ID] = true
p := make([]*Block, 0, 64) // stack-like worklist
p = append(p, f.Entry)
for len(p) > 0 {
// Pop a reachable block
b := p[len(p)-1]
p = p[:len(p)-1]
// Mark successors as reachable
s := b.Succs
if b.Kind == BlockFirst {
s = s[:1]
}
for _, e := range s {
c := e.b
if int(c.ID) >= len(reachable) {
f.Fatalf("block %s >= f.NumBlocks()=%d?", c, len(reachable))
}
if !reachable[c.ID] {
reachable[c.ID] = true
p = append(p, c) // push
}
}
}
return reachable
}
// liveValues returns the live values in f and a list of values that are eligible
// to be statements in reversed data flow order.
// The second result is used to help conserve statement boundaries for debugging.
// reachable is a map from block ID to whether the block is reachable.
// The caller should call f.Cache.freeBoolSlice(live) and f.Cache.freeValueSlice(liveOrderStmts).
// when they are done with the return values.
func liveValues(f *Func, reachable []bool) (live []bool, liveOrderStmts []*Value) {
live = f.Cache.allocBoolSlice(f.NumValues())
liveOrderStmts = f.Cache.allocValueSlice(f.NumValues())[:0]
// After regalloc, consider all values to be live.
// See the comment at the top of regalloc.go and in deadcode for details.
if f.RegAlloc != nil {
for i := range live {
live[i] = true
}
return
}
// Record all the inline indexes we need
var liveInlIdx map[int]bool
pt := f.Config.ctxt.PosTable
for _, b := range f.Blocks {
for _, v := range b.Values {
i := pt.Pos(v.Pos).Base().InliningIndex()
if i < 0 {
continue
}
if liveInlIdx == nil {
liveInlIdx = map[int]bool{}
}
liveInlIdx[i] = true
}
i := pt.Pos(b.Pos).Base().InliningIndex()
if i < 0 {
continue
}
if liveInlIdx == nil {
liveInlIdx = map[int]bool{}
}
liveInlIdx[i] = true
}
// Find all live values
q := f.Cache.allocValueSlice(f.NumValues())[:0]
defer f.Cache.freeValueSlice(q)
// Starting set: all control values of reachable blocks are live.
// Calls are live (because callee can observe the memory state).
for _, b := range f.Blocks {
if !reachable[b.ID] {
continue
}
for _, v := range b.ControlValues() {
if !live[v.ID] {
live[v.ID] = true
q = append(q, v)
if v.Pos.IsStmt() != src.PosNotStmt {
liveOrderStmts = append(liveOrderStmts, v)
}
}
}
for _, v := range b.Values {
if (opcodeTable[v.Op].call || opcodeTable[v.Op].hasSideEffects) && !live[v.ID] {
live[v.ID] = true
q = append(q, v)
if v.Pos.IsStmt() != src.PosNotStmt {
liveOrderStmts = append(liveOrderStmts, v)
}
}
if v.Type.IsVoid() && !live[v.ID] {
// The only Void ops are nil checks and inline marks. We must keep these.
if v.Op == OpInlMark && !liveInlIdx[int(v.AuxInt)] {
// We don't need marks for bodies that
// have been completely optimized away.
// TODO: save marks only for bodies which
// have a faulting instruction or a call?
continue
}
live[v.ID] = true
q = append(q, v)
if v.Pos.IsStmt() != src.PosNotStmt {
liveOrderStmts = append(liveOrderStmts, v)
}
}
}
}
// Compute transitive closure of live values.
for len(q) > 0 {
// pop a reachable value
v := q[len(q)-1]
q[len(q)-1] = nil
q = q[:len(q)-1]
for i, x := range v.Args {
if v.Op == OpPhi && !reachable[v.Block.Preds[i].b.ID] {
continue
}
if !live[x.ID] {
live[x.ID] = true
q = append(q, x) // push
if x.Pos.IsStmt() != src.PosNotStmt {
liveOrderStmts = append(liveOrderStmts, x)
}
}
}
}
return
}
// deadcode removes dead code from f.
func deadcode(f *Func) {
// deadcode after regalloc is forbidden for now. Regalloc
// doesn't quite generate legal SSA which will lead to some
// required moves being eliminated. See the comment at the
// top of regalloc.go for details.
if f.RegAlloc != nil {
f.Fatalf("deadcode after regalloc")
}
// Find reachable blocks.
reachable := ReachableBlocks(f)
// Get rid of edges from dead to live code.
for _, b := range f.Blocks {
if reachable[b.ID] {
continue
}
for i := 0; i < len(b.Succs); {
e := b.Succs[i]
if reachable[e.b.ID] {
b.removeEdge(i)
} else {
i++
}
}
}
// Get rid of dead edges from live code.
for _, b := range f.Blocks {
if !reachable[b.ID] {
continue
}
if b.Kind != BlockFirst {
continue
}
b.removeEdge(1)
b.Kind = BlockPlain
b.Likely = BranchUnknown
}
// Splice out any copies introduced during dead block removal.
copyelim(f)
// Find live values.
live, order := liveValues(f, reachable)
defer func() { f.Cache.freeBoolSlice(live) }()
defer func() { f.Cache.freeValueSlice(order) }()
// Remove dead & duplicate entries from namedValues map.
s := f.newSparseSet(f.NumValues())
defer f.retSparseSet(s)
i := 0
for _, name := range f.Names {
j := 0
s.clear()
values := f.NamedValues[*name]
for _, v := range values {
if live[v.ID] && !s.contains(v.ID) {
values[j] = v
j++
s.add(v.ID)
}
}
if j == 0 {
delete(f.NamedValues, *name)
} else {
f.Names[i] = name
i++
for k := len(values) - 1; k >= j; k-- {
values[k] = nil
}
f.NamedValues[*name] = values[:j]
}
}
clearNames := f.Names[i:]
for j := range clearNames {
clearNames[j] = nil
}
f.Names = f.Names[:i]
pendingLines := f.cachedLineStarts // Holds statement boundaries that need to be moved to a new value/block
pendingLines.clear()
// Unlink values and conserve statement boundaries
for i, b := range f.Blocks {
if !reachable[b.ID] {
// TODO what if control is statement boundary? Too late here.
b.ResetControls()
}
for _, v := range b.Values {
if !live[v.ID] {
v.resetArgs()
if v.Pos.IsStmt() == src.PosIsStmt && reachable[b.ID] {
pendingLines.set(v.Pos, int32(i)) // TODO could be more than one pos for a line
}
}
}
}
// Find new homes for lost lines -- require earliest in data flow with same line that is also in same block
for i := len(order) - 1; i >= 0; i-- {
w := order[i]
if j := pendingLines.get(w.Pos); j > -1 && f.Blocks[j] == w.Block {
w.Pos = w.Pos.WithIsStmt()
pendingLines.remove(w.Pos)
}
}
// Any boundary that failed to match a live value can move to a block end
pendingLines.foreachEntry(func(j int32, l uint, bi int32) {
b := f.Blocks[bi]
if b.Pos.Line() == l && b.Pos.FileIndex() == j {
b.Pos = b.Pos.WithIsStmt()
}
})
// Remove dead values from blocks' value list. Return dead
// values to the allocator.
for _, b := range f.Blocks {
i := 0
for _, v := range b.Values {
if live[v.ID] {
b.Values[i] = v
i++
} else {
f.freeValue(v)
}
}
b.truncateValues(i)
}
// Remove unreachable blocks. Return dead blocks to allocator.
i = 0
for _, b := range f.Blocks {
if reachable[b.ID] {
f.Blocks[i] = b
i++
} else {
if len(b.Values) > 0 {
b.Fatalf("live values in unreachable block %v: %v", b, b.Values)
}
f.freeBlock(b)
}
}
// zero remainder to help GC
tail := f.Blocks[i:]
for j := range tail {
tail[j] = nil
}
f.Blocks = f.Blocks[:i]
}
// removeEdge removes the i'th outgoing edge from b (and
// the corresponding incoming edge from b.Succs[i].b).
func (b *Block) removeEdge(i int) {
e := b.Succs[i]
c := e.b
j := e.i
// Adjust b.Succs
b.removeSucc(i)
// Adjust c.Preds
c.removePred(j)
// Remove phi args from c's phis.
for _, v := range c.Values {
if v.Op != OpPhi {
continue
}
c.removePhiArg(v, j)
// Note: this is trickier than it looks. Replacing
// a Phi with a Copy can in general cause problems because
// Phi and Copy don't have exactly the same semantics.
// Phi arguments always come from a predecessor block,
// whereas copies don't. This matters in loops like:
// 1: x = (Phi y)
// y = (Add x 1)
// goto 1
// If we replace Phi->Copy, we get
// 1: x = (Copy y)
// y = (Add x 1)
// goto 1
// (Phi y) refers to the *previous* value of y, whereas
// (Copy y) refers to the *current* value of y.
// The modified code has a cycle and the scheduler
// will barf on it.
//
// Fortunately, this situation can only happen for dead
// code loops. We know the code we're working with is
// not dead, so we're ok.
// Proof: If we have a potential bad cycle, we have a
// situation like this:
// x = (Phi z)
// y = (op1 x ...)
// z = (op2 y ...)
// Where opX are not Phi ops. But such a situation
// implies a cycle in the dominator graph. In the
// example, x.Block dominates y.Block, y.Block dominates
// z.Block, and z.Block dominates x.Block (treating
// "dominates" as reflexive). Cycles in the dominator
// graph can only happen in an unreachable cycle.
}
}