Permalink
Switch branches/tags
weekly.2012-03-27 weekly.2012-03-22 weekly.2012-03-13 weekly.2012-03-04 weekly.2012-02-22 weekly.2012-02-14 weekly.2012-02-07 weekly.2012-01-27 weekly.2012-01-20 weekly.2012-01-15 weekly.2011-12-22 weekly.2011-12-14 weekly.2011-12-06 weekly.2011-12-02 weekly.2011-12-01 weekly.2011-11-18 weekly.2011-11-09 weekly.2011-11-08 weekly.2011-11-02 weekly.2011-11-01 weekly.2011-10-26 weekly.2011-10-25 weekly.2011-10-18 weekly.2011-10-06 weekly.2011-09-21 weekly.2011-09-16 weekly.2011-09-07 weekly.2011-09-01 weekly.2011-08-17 weekly.2011-08-10 weekly.2011-07-29 weekly.2011-07-19 weekly.2011-07-07 weekly.2011-06-23 weekly.2011-06-16 weekly.2011-06-09 weekly.2011-06-02 weekly.2011-05-22 weekly.2011-04-27 weekly.2011-04-13 weekly.2011-04-04 weekly.2011-03-28 weekly.2011-03-15 weekly.2011-03-07.1 weekly.2011-03-07 weekly.2011-02-24 weekly.2011-02-15 weekly.2011-02-01.1 weekly.2011-02-01 weekly.2011-01-20 weekly.2011-01-19 weekly.2011-01-12 weekly.2011-01-06 weekly.2010-12-22 weekly.2010-12-15.1 weekly.2010-12-15 weekly.2010-12-08 weekly.2010-12-02 weekly.2010-11-23 weekly.2010-11-10 weekly.2010-11-02 weekly.2010-10-27 weekly.2010-10-20 weekly.2010-10-13.1 weekly.2010-10-13 weekly.2010-09-29 weekly.2010-09-22 weekly.2010-09-15 weekly.2010-09-06 weekly.2010-08-25 weekly.2010-08-11 weekly.2010-08-04 weekly.2010-07-29 weekly.2010-07-14 weekly.2010-07-01 weekly.2010-06-21 weekly.2010-06-09 weekly.2010-05-27 weekly.2010-05-04 weekly.2010-04-27 weekly.2010-04-13 weekly.2010-03-30 weekly.2010-03-22 weekly.2010-03-15 weekly.2010-03-04 weekly.2010-02-23 weekly.2010-02-17 weekly.2010-02-04 weekly.2010-01-27 weekly.2010-01-13 weekly.2010-01-05 weekly.2009-12-22 weekly.2009-12-09 weekly.2009-12-07 weekly.2009-11-17 weekly.2009-11-12 weekly.2009-11-10.1 weekly.2009-11-10 weekly.2009-11-06 weekly
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
566 lines (491 sloc) 30.9 KB
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
// Generic opcodes typically specify a width. The inputs and outputs
// of that op are the given number of bits wide. There is no notion of
// "sign", so Add32 can be used both for signed and unsigned 32-bit
// addition.
// Signed/unsigned is explicit with the extension ops
// (SignExt*/ZeroExt*) and implicit as the arg to some opcodes
// (e.g. the second argument to shifts is unsigned). If not mentioned,
// all args take signed inputs, or don't care whether their inputs
// are signed or unsigned.
var genericOps = []opData{
// 2-input arithmetic
// Types must be consistent with Go typing. Add, for example, must take two values
// of the same type and produces that same type.
{name: "Add8", argLength: 2, commutative: true}, // arg0 + arg1
{name: "Add16", argLength: 2, commutative: true},
{name: "Add32", argLength: 2, commutative: true},
{name: "Add64", argLength: 2, commutative: true},
{name: "AddPtr", argLength: 2}, // For address calculations. arg0 is a pointer and arg1 is an int.
{name: "Add32F", argLength: 2, commutative: true},
{name: "Add64F", argLength: 2, commutative: true},
{name: "Sub8", argLength: 2}, // arg0 - arg1
{name: "Sub16", argLength: 2},
{name: "Sub32", argLength: 2},
{name: "Sub64", argLength: 2},
{name: "SubPtr", argLength: 2},
{name: "Sub32F", argLength: 2},
{name: "Sub64F", argLength: 2},
{name: "Mul8", argLength: 2, commutative: true}, // arg0 * arg1
{name: "Mul16", argLength: 2, commutative: true},
{name: "Mul32", argLength: 2, commutative: true},
{name: "Mul64", argLength: 2, commutative: true},
{name: "Mul32F", argLength: 2, commutative: true},
{name: "Mul64F", argLength: 2, commutative: true},
{name: "Div32F", argLength: 2}, // arg0 / arg1
{name: "Div64F", argLength: 2},
{name: "Hmul32", argLength: 2, commutative: true},
{name: "Hmul32u", argLength: 2, commutative: true},
{name: "Hmul64", argLength: 2, commutative: true},
{name: "Hmul64u", argLength: 2, commutative: true},
{name: "Mul32uhilo", argLength: 2, typ: "(UInt32,UInt32)", commutative: true}, // arg0 * arg1, returns (hi, lo)
{name: "Mul64uhilo", argLength: 2, typ: "(UInt64,UInt64)", commutative: true}, // arg0 * arg1, returns (hi, lo)
// Weird special instructions for use in the strength reduction of divides.
// These ops compute unsigned (arg0 + arg1) / 2, correct to all
// 32/64 bits, even when the intermediate result of the add has 33/65 bits.
// These ops can assume arg0 >= arg1.
// Note: these ops aren't commutative!
{name: "Avg32u", argLength: 2, typ: "UInt32"}, // 32-bit platforms only
{name: "Avg64u", argLength: 2, typ: "UInt64"}, // 64-bit platforms only
{name: "Div8", argLength: 2}, // arg0 / arg1, signed
{name: "Div8u", argLength: 2}, // arg0 / arg1, unsigned
{name: "Div16", argLength: 2},
{name: "Div16u", argLength: 2},
{name: "Div32", argLength: 2},
{name: "Div32u", argLength: 2},
{name: "Div64", argLength: 2},
{name: "Div64u", argLength: 2},
{name: "Div128u", argLength: 3}, // arg0:arg1 / arg2 (128-bit divided by 64-bit), returns (q, r)
{name: "Mod8", argLength: 2}, // arg0 % arg1, signed
{name: "Mod8u", argLength: 2}, // arg0 % arg1, unsigned
{name: "Mod16", argLength: 2},
{name: "Mod16u", argLength: 2},
{name: "Mod32", argLength: 2},
{name: "Mod32u", argLength: 2},
{name: "Mod64", argLength: 2},
{name: "Mod64u", argLength: 2},
{name: "And8", argLength: 2, commutative: true}, // arg0 & arg1
{name: "And16", argLength: 2, commutative: true},
{name: "And32", argLength: 2, commutative: true},
{name: "And64", argLength: 2, commutative: true},
{name: "Or8", argLength: 2, commutative: true}, // arg0 | arg1
{name: "Or16", argLength: 2, commutative: true},
{name: "Or32", argLength: 2, commutative: true},
{name: "Or64", argLength: 2, commutative: true},
{name: "Xor8", argLength: 2, commutative: true}, // arg0 ^ arg1
{name: "Xor16", argLength: 2, commutative: true},
{name: "Xor32", argLength: 2, commutative: true},
{name: "Xor64", argLength: 2, commutative: true},
// For shifts, AxB means the shifted value has A bits and the shift amount has B bits.
// Shift amounts are considered unsigned.
// If arg1 is known to be less than the number of bits in arg0,
// then auxInt may be set to 1.
// This enables better code generation on some platforms.
{name: "Lsh8x8", argLength: 2, aux: "Bool"}, // arg0 << arg1
{name: "Lsh8x16", argLength: 2, aux: "Bool"},
{name: "Lsh8x32", argLength: 2, aux: "Bool"},
{name: "Lsh8x64", argLength: 2, aux: "Bool"},
{name: "Lsh16x8", argLength: 2, aux: "Bool"},
{name: "Lsh16x16", argLength: 2, aux: "Bool"},
{name: "Lsh16x32", argLength: 2, aux: "Bool"},
{name: "Lsh16x64", argLength: 2, aux: "Bool"},
{name: "Lsh32x8", argLength: 2, aux: "Bool"},
{name: "Lsh32x16", argLength: 2, aux: "Bool"},
{name: "Lsh32x32", argLength: 2, aux: "Bool"},
{name: "Lsh32x64", argLength: 2, aux: "Bool"},
{name: "Lsh64x8", argLength: 2, aux: "Bool"},
{name: "Lsh64x16", argLength: 2, aux: "Bool"},
{name: "Lsh64x32", argLength: 2, aux: "Bool"},
{name: "Lsh64x64", argLength: 2, aux: "Bool"},
{name: "Rsh8x8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, signed
{name: "Rsh8x16", argLength: 2, aux: "Bool"},
{name: "Rsh8x32", argLength: 2, aux: "Bool"},
{name: "Rsh8x64", argLength: 2, aux: "Bool"},
{name: "Rsh16x8", argLength: 2, aux: "Bool"},
{name: "Rsh16x16", argLength: 2, aux: "Bool"},
{name: "Rsh16x32", argLength: 2, aux: "Bool"},
{name: "Rsh16x64", argLength: 2, aux: "Bool"},
{name: "Rsh32x8", argLength: 2, aux: "Bool"},
{name: "Rsh32x16", argLength: 2, aux: "Bool"},
{name: "Rsh32x32", argLength: 2, aux: "Bool"},
{name: "Rsh32x64", argLength: 2, aux: "Bool"},
{name: "Rsh64x8", argLength: 2, aux: "Bool"},
{name: "Rsh64x16", argLength: 2, aux: "Bool"},
{name: "Rsh64x32", argLength: 2, aux: "Bool"},
{name: "Rsh64x64", argLength: 2, aux: "Bool"},
{name: "Rsh8Ux8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, unsigned
{name: "Rsh8Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh8Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh8Ux64", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux8", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux64", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux8", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux64", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux8", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux64", argLength: 2, aux: "Bool"},
// 2-input comparisons
{name: "Eq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1
{name: "Eq16", argLength: 2, commutative: true, typ: "Bool"},
{name: "Eq32", argLength: 2, commutative: true, typ: "Bool"},
{name: "Eq64", argLength: 2, commutative: true, typ: "Bool"},
{name: "EqPtr", argLength: 2, commutative: true, typ: "Bool"},
{name: "EqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "EqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "Eq32F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Eq64F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
{name: "Neq16", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq32", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq64", argLength: 2, commutative: true, typ: "Bool"},
{name: "NeqPtr", argLength: 2, commutative: true, typ: "Bool"},
{name: "NeqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "NeqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "Neq32F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq64F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Less8", argLength: 2, typ: "Bool"}, // arg0 < arg1, signed
{name: "Less8U", argLength: 2, typ: "Bool"}, // arg0 < arg1, unsigned
{name: "Less16", argLength: 2, typ: "Bool"},
{name: "Less16U", argLength: 2, typ: "Bool"},
{name: "Less32", argLength: 2, typ: "Bool"},
{name: "Less32U", argLength: 2, typ: "Bool"},
{name: "Less64", argLength: 2, typ: "Bool"},
{name: "Less64U", argLength: 2, typ: "Bool"},
{name: "Less32F", argLength: 2, typ: "Bool"},
{name: "Less64F", argLength: 2, typ: "Bool"},
{name: "Leq8", argLength: 2, typ: "Bool"}, // arg0 <= arg1, signed
{name: "Leq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned
{name: "Leq16", argLength: 2, typ: "Bool"},
{name: "Leq16U", argLength: 2, typ: "Bool"},
{name: "Leq32", argLength: 2, typ: "Bool"},
{name: "Leq32U", argLength: 2, typ: "Bool"},
{name: "Leq64", argLength: 2, typ: "Bool"},
{name: "Leq64U", argLength: 2, typ: "Bool"},
{name: "Leq32F", argLength: 2, typ: "Bool"},
{name: "Leq64F", argLength: 2, typ: "Bool"},
{name: "Greater8", argLength: 2, typ: "Bool"}, // arg0 > arg1, signed
{name: "Greater8U", argLength: 2, typ: "Bool"}, // arg0 > arg1, unsigned
{name: "Greater16", argLength: 2, typ: "Bool"},
{name: "Greater16U", argLength: 2, typ: "Bool"},
{name: "Greater32", argLength: 2, typ: "Bool"},
{name: "Greater32U", argLength: 2, typ: "Bool"},
{name: "Greater64", argLength: 2, typ: "Bool"},
{name: "Greater64U", argLength: 2, typ: "Bool"},
{name: "Greater32F", argLength: 2, typ: "Bool"},
{name: "Greater64F", argLength: 2, typ: "Bool"},
{name: "Geq8", argLength: 2, typ: "Bool"}, // arg0 <= arg1, signed
{name: "Geq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned
{name: "Geq16", argLength: 2, typ: "Bool"},
{name: "Geq16U", argLength: 2, typ: "Bool"},
{name: "Geq32", argLength: 2, typ: "Bool"},
{name: "Geq32U", argLength: 2, typ: "Bool"},
{name: "Geq64", argLength: 2, typ: "Bool"},
{name: "Geq64U", argLength: 2, typ: "Bool"},
{name: "Geq32F", argLength: 2, typ: "Bool"},
{name: "Geq64F", argLength: 2, typ: "Bool"},
// the type of a CondSelect is the same as the type of its first
// two arguments, which should be register-width scalars; the third
// argument should be a boolean
{name: "CondSelect", argLength: 3}, // arg2 ? arg0 : arg1
// boolean ops
{name: "AndB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 && arg1 (not shortcircuited)
{name: "OrB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 || arg1 (not shortcircuited)
{name: "EqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1
{name: "NeqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
{name: "Not", argLength: 1, typ: "Bool"}, // !arg0, boolean
// 1-input ops
{name: "Neg8", argLength: 1}, // -arg0
{name: "Neg16", argLength: 1},
{name: "Neg32", argLength: 1},
{name: "Neg64", argLength: 1},
{name: "Neg32F", argLength: 1},
{name: "Neg64F", argLength: 1},
{name: "Com8", argLength: 1}, // ^arg0
{name: "Com16", argLength: 1},
{name: "Com32", argLength: 1},
{name: "Com64", argLength: 1},
{name: "Ctz8", argLength: 1}, // Count trailing (low order) zeroes (returns 0-8)
{name: "Ctz16", argLength: 1}, // Count trailing (low order) zeroes (returns 0-16)
{name: "Ctz32", argLength: 1}, // Count trailing (low order) zeroes (returns 0-32)
{name: "Ctz64", argLength: 1}, // Count trailing (low order) zeroes (returns 0-64)
{name: "Ctz8NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-7
{name: "Ctz16NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-15
{name: "Ctz32NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-31
{name: "Ctz64NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-63
{name: "BitLen8", argLength: 1}, // Number of bits in arg[0] (returns 0-8)
{name: "BitLen16", argLength: 1}, // Number of bits in arg[0] (returns 0-16)
{name: "BitLen32", argLength: 1}, // Number of bits in arg[0] (returns 0-32)
{name: "BitLen64", argLength: 1}, // Number of bits in arg[0] (returns 0-64)
{name: "Bswap32", argLength: 1}, // Swap bytes
{name: "Bswap64", argLength: 1}, // Swap bytes
{name: "BitRev8", argLength: 1}, // Reverse the bits in arg[0]
{name: "BitRev16", argLength: 1}, // Reverse the bits in arg[0]
{name: "BitRev32", argLength: 1}, // Reverse the bits in arg[0]
{name: "BitRev64", argLength: 1}, // Reverse the bits in arg[0]
{name: "PopCount8", argLength: 1}, // Count bits in arg[0]
{name: "PopCount16", argLength: 1}, // Count bits in arg[0]
{name: "PopCount32", argLength: 1}, // Count bits in arg[0]
{name: "PopCount64", argLength: 1}, // Count bits in arg[0]
{name: "RotateLeft8", argLength: 2}, // Rotate bits in arg[0] left by arg[1]
{name: "RotateLeft16", argLength: 2}, // Rotate bits in arg[0] left by arg[1]
{name: "RotateLeft32", argLength: 2}, // Rotate bits in arg[0] left by arg[1]
{name: "RotateLeft64", argLength: 2}, // Rotate bits in arg[0] left by arg[1]
// Square root, float64 only.
// Special cases:
// +∞ → +∞
// ±0 → ±0 (sign preserved)
// x<0 → NaN
// NaN → NaN
{name: "Sqrt", argLength: 1}, // √arg0
// Round to integer, float64 only.
// Special cases:
// ±∞ → ±∞ (sign preserved)
// ±0 → ±0 (sign preserved)
// NaN → NaN
{name: "Floor", argLength: 1}, // round arg0 toward -∞
{name: "Ceil", argLength: 1}, // round arg0 toward +∞
{name: "Trunc", argLength: 1}, // round arg0 toward 0
{name: "Round", argLength: 1}, // round arg0 to nearest, ties away from 0
{name: "RoundToEven", argLength: 1}, // round arg0 to nearest, ties to even
// Modify the sign bit
{name: "Abs", argLength: 1}, // absolute value arg0
{name: "Copysign", argLength: 2}, // copy sign from arg0 to arg1
// Data movement, max argument length for Phi is indefinite so just pick
// a really large number
{name: "Phi", argLength: -1, zeroWidth: true}, // select an argument based on which predecessor block we came from
{name: "Copy", argLength: 1}, // output = arg0
// Convert converts between pointers and integers.
// We have a special op for this so as to not confuse GC
// (particularly stack maps). It takes a memory arg so it
// gets correctly ordered with respect to GC safepoints.
// It gets compiled to nothing, so its result must in the same
// register as its argument. regalloc knows it can use any
// allocatable integer register for OpConvert.
// arg0=ptr/int arg1=mem, output=int/ptr
{name: "Convert", argLength: 2, zeroWidth: true, resultInArg0: true},
// constants. Constant values are stored in the aux or
// auxint fields.
{name: "ConstBool", aux: "Bool"}, // auxint is 0 for false and 1 for true
{name: "ConstString", aux: "String"}, // value is aux.(string)
{name: "ConstNil", typ: "BytePtr"}, // nil pointer
{name: "Const8", aux: "Int8"}, // auxint is sign-extended 8 bits
{name: "Const16", aux: "Int16"}, // auxint is sign-extended 16 bits
{name: "Const32", aux: "Int32"}, // auxint is sign-extended 32 bits
// Note: ConstX are sign-extended even when the type of the value is unsigned.
// For instance, uint8(0xaa) is stored as auxint=0xffffffffffffffaa.
{name: "Const64", aux: "Int64"}, // value is auxint
{name: "Const32F", aux: "Float32"}, // value is math.Float64frombits(uint64(auxint)) and is exactly prepresentable as float 32
{name: "Const64F", aux: "Float64"}, // value is math.Float64frombits(uint64(auxint))
{name: "ConstInterface"}, // nil interface
{name: "ConstSlice"}, // nil slice
// Constant-like things
{name: "InitMem", zeroWidth: true}, // memory input to the function.
{name: "Arg", aux: "SymOff", symEffect: "Read", zeroWidth: true}, // argument to the function. aux=GCNode of arg, off = offset in that arg.
// The address of a variable. arg0 is the base pointer.
// If the variable is a global, the base pointer will be SB and
// the Aux field will be a *obj.LSym.
// If the variable is a local, the base pointer will be SP and
// the Aux field will be a *gc.Node.
{name: "Addr", argLength: 1, aux: "Sym", symEffect: "Addr"}, // Address of a variable. Arg0=SB. Aux identifies the variable.
{name: "LocalAddr", argLength: 2, aux: "Sym", symEffect: "Addr"}, // Address of a variable. Arg0=SP. Arg1=mem. Aux identifies the variable.
{name: "SP", zeroWidth: true}, // stack pointer
{name: "SB", typ: "Uintptr", zeroWidth: true}, // static base pointer (a.k.a. globals pointer)
{name: "Invalid"}, // unused value
// Memory operations
{name: "Load", argLength: 2}, // Load from arg0. arg1=memory
{name: "Store", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0. arg2=memory, aux=type. Returns memory.
// The source and destination of Move may overlap in some cases. See e.g.
// memmove inlining in generic.rules. When inlineablememmovesize (in ../rewrite.go)
// returns true, we must do all loads before all stores, when lowering Move.
{name: "Move", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type. Returns memory.
{name: "Zero", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
// Memory operations with write barriers.
// Expand to runtime calls. Write barrier will be removed if write on stack.
{name: "StoreWB", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0. arg2=memory, aux=type. Returns memory.
{name: "MoveWB", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type. Returns memory.
{name: "ZeroWB", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
// WB invokes runtime.gcWriteBarrier. This is not a normal
// call: it takes arguments in registers, doesn't clobber
// general-purpose registers (the exact clobber set is
// arch-dependent), and is not a safe-point.
{name: "WB", argLength: 3, typ: "Mem", aux: "Sym", symEffect: "None"}, // arg0=destptr, arg1=srcptr, arg2=mem, aux=runtime.gcWriteBarrier
// Function calls. Arguments to the call have already been written to the stack.
// Return values appear on the stack. The method receiver, if any, is treated
// as a phantom first argument.
{name: "ClosureCall", argLength: 3, aux: "Int64", call: true}, // arg0=code pointer, arg1=context ptr, arg2=memory. auxint=arg size. Returns memory.
{name: "StaticCall", argLength: 1, aux: "SymOff", call: true, symEffect: "None"}, // call function aux.(*obj.LSym), arg0=memory. auxint=arg size. Returns memory.
{name: "InterCall", argLength: 2, aux: "Int64", call: true}, // interface call. arg0=code pointer, arg1=memory, auxint=arg size. Returns memory.
// Conversions: signed extensions, zero (unsigned) extensions, truncations
{name: "SignExt8to16", argLength: 1, typ: "Int16"},
{name: "SignExt8to32", argLength: 1, typ: "Int32"},
{name: "SignExt8to64", argLength: 1, typ: "Int64"},
{name: "SignExt16to32", argLength: 1, typ: "Int32"},
{name: "SignExt16to64", argLength: 1, typ: "Int64"},
{name: "SignExt32to64", argLength: 1, typ: "Int64"},
{name: "ZeroExt8to16", argLength: 1, typ: "UInt16"},
{name: "ZeroExt8to32", argLength: 1, typ: "UInt32"},
{name: "ZeroExt8to64", argLength: 1, typ: "UInt64"},
{name: "ZeroExt16to32", argLength: 1, typ: "UInt32"},
{name: "ZeroExt16to64", argLength: 1, typ: "UInt64"},
{name: "ZeroExt32to64", argLength: 1, typ: "UInt64"},
{name: "Trunc16to8", argLength: 1},
{name: "Trunc32to8", argLength: 1},
{name: "Trunc32to16", argLength: 1},
{name: "Trunc64to8", argLength: 1},
{name: "Trunc64to16", argLength: 1},
{name: "Trunc64to32", argLength: 1},
{name: "Cvt32to32F", argLength: 1},
{name: "Cvt32to64F", argLength: 1},
{name: "Cvt64to32F", argLength: 1},
{name: "Cvt64to64F", argLength: 1},
{name: "Cvt32Fto32", argLength: 1},
{name: "Cvt32Fto64", argLength: 1},
{name: "Cvt64Fto32", argLength: 1},
{name: "Cvt64Fto64", argLength: 1},
{name: "Cvt32Fto64F", argLength: 1},
{name: "Cvt64Fto32F", argLength: 1},
// Force rounding to precision of type.
{name: "Round32F", argLength: 1},
{name: "Round64F", argLength: 1},
// Automatically inserted safety checks
{name: "IsNonNil", argLength: 1, typ: "Bool"}, // arg0 != nil
{name: "IsInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 < arg1. arg1 is guaranteed >= 0.
{name: "IsSliceInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 <= arg1. arg1 is guaranteed >= 0.
{name: "NilCheck", argLength: 2, typ: "Void"}, // arg0=ptr, arg1=mem. Panics if arg0 is nil. Returns void.
// Pseudo-ops
{name: "GetG", argLength: 1, zeroWidth: true}, // runtime.getg() (read g pointer). arg0=mem
{name: "GetClosurePtr"}, // get closure pointer from dedicated register
{name: "GetCallerPC"}, // for getcallerpc intrinsic
{name: "GetCallerSP"}, // for getcallersp intrinsic
// Indexing operations
{name: "PtrIndex", argLength: 2}, // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type
{name: "OffPtr", argLength: 1, aux: "Int64"}, // arg0 + auxint (arg0 and result are pointers)
// Slices
{name: "SliceMake", argLength: 3}, // arg0=ptr, arg1=len, arg2=cap
{name: "SlicePtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
{name: "SliceLen", argLength: 1}, // len(arg0)
{name: "SliceCap", argLength: 1}, // cap(arg0)
// Complex (part/whole)
{name: "ComplexMake", argLength: 2}, // arg0=real, arg1=imag
{name: "ComplexReal", argLength: 1}, // real(arg0)
{name: "ComplexImag", argLength: 1}, // imag(arg0)
// Strings
{name: "StringMake", argLength: 2}, // arg0=ptr, arg1=len
{name: "StringPtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
{name: "StringLen", argLength: 1, typ: "Int"}, // len(arg0)
// Interfaces
{name: "IMake", argLength: 2}, // arg0=itab, arg1=data
{name: "ITab", argLength: 1, typ: "Uintptr"}, // arg0=interface, returns itable field
{name: "IData", argLength: 1}, // arg0=interface, returns data field
// Structs
{name: "StructMake0"}, // Returns struct with 0 fields.
{name: "StructMake1", argLength: 1}, // arg0=field0. Returns struct.
{name: "StructMake2", argLength: 2}, // arg0,arg1=field0,field1. Returns struct.
{name: "StructMake3", argLength: 3}, // arg0..2=field0..2. Returns struct.
{name: "StructMake4", argLength: 4}, // arg0..3=field0..3. Returns struct.
{name: "StructSelect", argLength: 1, aux: "Int64"}, // arg0=struct, auxint=field index. Returns the auxint'th field.
// Arrays
{name: "ArrayMake0"}, // Returns array with 0 elements
{name: "ArrayMake1", argLength: 1}, // Returns array with 1 element
{name: "ArraySelect", argLength: 1, aux: "Int64"}, // arg0=array, auxint=index. Returns a[i].
// Spill&restore ops for the register allocator. These are
// semantically identical to OpCopy; they do not take/return
// stores like regular memory ops do. We can get away without memory
// args because we know there is no aliasing of spill slots on the stack.
{name: "StoreReg", argLength: 1},
{name: "LoadReg", argLength: 1},
// Used during ssa construction. Like Copy, but the arg has not been specified yet.
{name: "FwdRef", aux: "Sym", symEffect: "None"},
// Unknown value. Used for Values whose values don't matter because they are dead code.
{name: "Unknown"},
{name: "VarDef", argLength: 1, aux: "Sym", typ: "Mem", symEffect: "None", zeroWidth: true}, // aux is a *gc.Node of a variable that is about to be initialized. arg0=mem, returns mem
{name: "VarKill", argLength: 1, aux: "Sym", symEffect: "None"}, // aux is a *gc.Node of a variable that is known to be dead. arg0=mem, returns mem
// TODO: what's the difference betweeen VarLive and KeepAlive?
{name: "VarLive", argLength: 1, aux: "Sym", symEffect: "Read", zeroWidth: true}, // aux is a *gc.Node of a variable that must be kept live. arg0=mem, returns mem
{name: "KeepAlive", argLength: 2, typ: "Mem", zeroWidth: true}, // arg[0] is a value that must be kept alive until this mark. arg[1]=mem, returns mem
// Ops for breaking 64-bit operations on 32-bit architectures
{name: "Int64Make", argLength: 2, typ: "UInt64"}, // arg0=hi, arg1=lo
{name: "Int64Hi", argLength: 1, typ: "UInt32"}, // high 32-bit of arg0
{name: "Int64Lo", argLength: 1, typ: "UInt32"}, // low 32-bit of arg0
{name: "Add32carry", argLength: 2, commutative: true, typ: "(UInt32,Flags)"}, // arg0 + arg1, returns (value, carry)
{name: "Add32withcarry", argLength: 3, commutative: true}, // arg0 + arg1 + arg2, arg2=carry (0 or 1)
{name: "Sub32carry", argLength: 2, typ: "(UInt32,Flags)"}, // arg0 - arg1, returns (value, carry)
{name: "Sub32withcarry", argLength: 3}, // arg0 - arg1 - arg2, arg2=carry (0 or 1)
{name: "Signmask", argLength: 1, typ: "Int32"}, // 0 if arg0 >= 0, -1 if arg0 < 0
{name: "Zeromask", argLength: 1, typ: "UInt32"}, // 0 if arg0 == 0, 0xffffffff if arg0 != 0
{name: "Slicemask", argLength: 1}, // 0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0. Type is native int size.
{name: "Cvt32Uto32F", argLength: 1}, // uint32 -> float32, only used on 32-bit arch
{name: "Cvt32Uto64F", argLength: 1}, // uint32 -> float64, only used on 32-bit arch
{name: "Cvt32Fto32U", argLength: 1}, // float32 -> uint32, only used on 32-bit arch
{name: "Cvt64Fto32U", argLength: 1}, // float64 -> uint32, only used on 32-bit arch
{name: "Cvt64Uto32F", argLength: 1}, // uint64 -> float32, only used on archs that has the instruction
{name: "Cvt64Uto64F", argLength: 1}, // uint64 -> float64, only used on archs that has the instruction
{name: "Cvt32Fto64U", argLength: 1}, // float32 -> uint64, only used on archs that has the instruction
{name: "Cvt64Fto64U", argLength: 1}, // float64 -> uint64, only used on archs that has the instruction
// pseudo-ops for breaking Tuple
{name: "Select0", argLength: 1, zeroWidth: true}, // the first component of a tuple
{name: "Select1", argLength: 1, zeroWidth: true}, // the second component of a tuple
// Atomic operations used for semantically inlining runtime/internal/atomic.
// Atomic loads return a new memory so that the loads are properly ordered
// with respect to other loads and stores.
// TODO: use for sync/atomic at some point.
{name: "AtomicLoad32", argLength: 2, typ: "(UInt32,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory.
{name: "AtomicLoad64", argLength: 2, typ: "(UInt64,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory.
{name: "AtomicLoadPtr", argLength: 2, typ: "(BytePtr,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory.
{name: "AtomicStore32", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStore64", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStorePtrNoWB", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicExchange32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicExchange64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicAdd32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
{name: "AtomicAdd64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
{name: "AtomicCompareAndSwap32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true iff store happens and new memory.
{name: "AtomicCompareAndSwap64", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true iff store happens and new memory.
{name: "AtomicAnd8", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns memory.
{name: "AtomicOr8", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns memory.
// Atomic operation variants
// These variants have the same semantics as above atomic operations.
// But they are used for generating more efficient code on certain modern machines, with run-time CPU feature detection.
// Currently, they are used on ARM64 only.
{name: "AtomicAdd32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
{name: "AtomicAdd64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
// Clobber experiment op
{name: "Clobber", argLength: 0, typ: "Void", aux: "SymOff", symEffect: "None"}, // write an invalid pointer value to the given pointer slot of a stack variable
}
// kind control successors implicit exit
// ----------------------------------------------------------
// Exit return mem [] yes
// Ret return mem [] yes
// RetJmp return mem [] yes
// Plain nil [next]
// If a boolean Value [then, else]
// Call mem [next] yes (control opcode should be OpCall or OpStaticCall)
// Check void [next] yes (control opcode should be Op{Lowered}NilCheck)
// First nil [always,never]
var genericBlocks = []blockData{
{name: "Plain"}, // a single successor
{name: "If"}, // 2 successors, if control goto Succs[0] else goto Succs[1]
{name: "Defer"}, // 2 successors, Succs[0]=defer queued, Succs[1]=defer recovered. control is call op (of memory type)
{name: "Ret"}, // no successors, control value is memory result
{name: "RetJmp"}, // no successors, jumps to b.Aux.(*gc.Sym)
{name: "Exit"}, // no successors, control value generates a panic
// transient block state used for dead code removal
{name: "First"}, // 2 successors, always takes the first one (second is dead)
}
func init() {
archs = append(archs, arch{
name: "generic",
ops: genericOps,
blocks: genericBlocks,
generic: true,
})
}