Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements commonly used type predicates.
package types
// The isX predicates below report whether t is an X.
// If t is a type parameter the result is false; i.e.,
// these predicates don't look inside a type parameter.
func isBoolean(t Type) bool { return isBasic(t, IsBoolean) }
func isInteger(t Type) bool { return isBasic(t, IsInteger) }
func isUnsigned(t Type) bool { return isBasic(t, IsUnsigned) }
func isFloat(t Type) bool { return isBasic(t, IsFloat) }
func isComplex(t Type) bool { return isBasic(t, IsComplex) }
func isNumeric(t Type) bool { return isBasic(t, IsNumeric) }
func isString(t Type) bool { return isBasic(t, IsString) }
func isIntegerOrFloat(t Type) bool { return isBasic(t, IsInteger|IsFloat) }
func isConstType(t Type) bool { return isBasic(t, IsConstType) }
// isBasic reports whether under(t) is a basic type with the specified info.
// If t is a type parameter the result is false; i.e.,
// isBasic does not look inside a type parameter.
func isBasic(t Type, info BasicInfo) bool {
u, _ := under(t).(*Basic)
return u != nil && u.info&info != 0
}
// The allX predicates below report whether t is an X.
// If t is a type parameter the result is true if isX is true
// for all specified types of the type parameter's type set.
// allX is an optimized version of isX(coreType(t)) (which
// is the same as underIs(t, isX)).
func allBoolean(t Type) bool { return allBasic(t, IsBoolean) }
func allInteger(t Type) bool { return allBasic(t, IsInteger) }
func allUnsigned(t Type) bool { return allBasic(t, IsUnsigned) }
func allNumeric(t Type) bool { return allBasic(t, IsNumeric) }
func allString(t Type) bool { return allBasic(t, IsString) }
func allOrdered(t Type) bool { return allBasic(t, IsOrdered) }
func allNumericOrString(t Type) bool { return allBasic(t, IsNumeric|IsString) }
// allBasic reports whether under(t) is a basic type with the specified info.
// If t is a type parameter, the result is true if isBasic(t, info) is true
// for all specific types of the type parameter's type set.
// allBasic(t, info) is an optimized version of isBasic(coreType(t), info).
func allBasic(t Type, info BasicInfo) bool {
if tpar, _ := t.(*TypeParam); tpar != nil {
return tpar.is(func(t *term) bool { return t != nil && isBasic(t.typ, info) })
}
return isBasic(t, info)
}
// hasName reports whether t has a name. This includes
// predeclared types, defined types, and type parameters.
// hasName may be called with types that are not fully set up.
func hasName(t Type) bool {
switch t.(type) {
case *Basic, *Named, *TypeParam:
return true
}
return false
}
// isTypeLit reports whether t is a type literal.
// This includes all non-defined types, but also basic types.
// isTypeLit may be called with types that are not fully set up.
func isTypeLit(t Type) bool {
switch t.(type) {
case *Named, *TypeParam:
return false
}
return true
}
// isTyped reports whether t is typed; i.e., not an untyped
// constant or boolean. isTyped may be called with types that
// are not fully set up.
func isTyped(t Type) bool {
// isTyped is called with types that are not fully
// set up. Must not call under()!
b, _ := t.(*Basic)
return b == nil || b.info&IsUntyped == 0
}
// isUntyped(t) is the same as !isTyped(t).
func isUntyped(t Type) bool {
return !isTyped(t)
}
// IsInterface reports whether t is an interface type.
func IsInterface(t Type) bool {
_, ok := under(t).(*Interface)
return ok
}
// isNonTypeParamInterface reports whether t is an interface type but not a type parameter.
func isNonTypeParamInterface(t Type) bool {
return !isTypeParam(t) && IsInterface(t)
}
// isTypeParam reports whether t is a type parameter.
func isTypeParam(t Type) bool {
_, ok := t.(*TypeParam)
return ok
}
// hasEmptyTypeset reports whether t is a type parameter with an empty type set.
// The function does not force the computation of the type set and so is safe to
// use anywhere, but it may report a false negative if the type set has not been
// computed yet.
func hasEmptyTypeset(t Type) bool {
if tpar, _ := t.(*TypeParam); tpar != nil && tpar.bound != nil {
iface, _ := safeUnderlying(tpar.bound).(*Interface)
return iface != nil && iface.tset != nil && iface.tset.IsEmpty()
}
return false
}
// isGeneric reports whether a type is a generic, uninstantiated type
// (generic signatures are not included).
// TODO(gri) should we include signatures or assert that they are not present?
func isGeneric(t Type) bool {
// A parameterized type is only generic if it doesn't have an instantiation already.
named, _ := t.(*Named)
return named != nil && named.obj != nil && named.inst == nil && named.TypeParams().Len() > 0
}
// Comparable reports whether values of type T are comparable.
func Comparable(T Type) bool {
return comparable(T, true, nil, nil)
}
// If dynamic is set, non-type parameter interfaces are always comparable.
// If reportf != nil, it may be used to report why T is not comparable.
func comparable(T Type, dynamic bool, seen map[Type]bool, reportf func(string, ...interface{})) bool {
if seen[T] {
return true
}
if seen == nil {
seen = make(map[Type]bool)
}
seen[T] = true
switch t := under(T).(type) {
case *Basic:
// assume invalid types to be comparable
// to avoid follow-up errors
return t.kind != UntypedNil
case *Pointer, *Chan:
return true
case *Struct:
for _, f := range t.fields {
if !comparable(f.typ, dynamic, seen, nil) {
if reportf != nil {
reportf("struct containing %s cannot be compared", f.typ)
}
return false
}
}
return true
case *Array:
if !comparable(t.elem, dynamic, seen, nil) {
if reportf != nil {
reportf("%s cannot be compared", t)
}
return false
}
return true
case *Interface:
if dynamic && !isTypeParam(T) || t.typeSet().IsComparable(seen) {
return true
}
if reportf != nil {
if t.typeSet().IsEmpty() {
reportf("empty type set")
} else {
reportf("incomparable types in type set")
}
}
// fallthrough
}
return false
}
// hasNil reports whether type t includes the nil value.
func hasNil(t Type) bool {
switch u := under(t).(type) {
case *Basic:
return u.kind == UnsafePointer
case *Slice, *Pointer, *Signature, *Map, *Chan:
return true
case *Interface:
return !isTypeParam(t) || u.typeSet().underIs(func(u Type) bool {
return u != nil && hasNil(u)
})
}
return false
}
// An ifacePair is a node in a stack of interface type pairs compared for identity.
type ifacePair struct {
x, y *Interface
prev *ifacePair
}
func (p *ifacePair) identical(q *ifacePair) bool {
return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x
}
// A comparer is used to compare types.
type comparer struct {
ignoreTags bool // if set, identical ignores struct tags
ignoreInvalids bool // if set, identical treats an invalid type as identical to any type
}
// For changes to this code the corresponding changes should be made to unifier.nify.
func (c *comparer) identical(x, y Type, p *ifacePair) bool {
if x == y {
return true
}
if c.ignoreInvalids && (x == Typ[Invalid] || y == Typ[Invalid]) {
return true
}
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.len < 0 || y.len < 0 || x.len == y.len) && c.identical(x.elem, y.elem, p)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return c.identical(x.elem, y.elem, p)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.embedded != g.embedded ||
!c.ignoreTags && x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!c.identical(f.typ, g.typ, p) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return c.identical(x.base, y.base, p)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i, v := range x.vars {
w := y.vars[i]
if !c.identical(v.typ, w.typ, p) {
return false
}
}
}
return true
}
}
case *Signature:
y, _ := y.(*Signature)
if y == nil {
return false
}
// Two function types are identical if they have the same number of
// parameters and result values, corresponding parameter and result types
// are identical, and either both functions are variadic or neither is.
// Parameter and result names are not required to match, and type
// parameters are considered identical modulo renaming.
if x.TypeParams().Len() != y.TypeParams().Len() {
return false
}
// In the case of generic signatures, we will substitute in yparams and
// yresults.
yparams := y.params
yresults := y.results
if x.TypeParams().Len() > 0 {
// We must ignore type parameter names when comparing x and y. The
// easiest way to do this is to substitute x's type parameters for y's.
xtparams := x.TypeParams().list()
ytparams := y.TypeParams().list()
var targs []Type
for i := range xtparams {
targs = append(targs, x.TypeParams().At(i))
}
smap := makeSubstMap(ytparams, targs)
var check *Checker // ok to call subst on a nil *Checker
ctxt := NewContext() // need a non-nil Context for the substitution below
// Constraints must be pair-wise identical, after substitution.
for i, xtparam := range xtparams {
ybound := check.subst(nopos, ytparams[i].bound, smap, nil, ctxt)
if !c.identical(xtparam.bound, ybound, p) {
return false
}
}
yparams = check.subst(nopos, y.params, smap, nil, ctxt).(*Tuple)
yresults = check.subst(nopos, y.results, smap, nil, ctxt).(*Tuple)
}
return x.variadic == y.variadic &&
c.identical(x.params, yparams, p) &&
c.identical(x.results, yresults, p)
case *Union:
if y, _ := y.(*Union); y != nil {
// TODO(rfindley): can this be reached during type checking? If so,
// consider passing a type set map.
unionSets := make(map[*Union]*_TypeSet)
xset := computeUnionTypeSet(nil, unionSets, nopos, x)
yset := computeUnionTypeSet(nil, unionSets, nopos, y)
return xset.terms.equal(yset.terms)
}
case *Interface:
// Two interface types are identical if they describe the same type sets.
// With the existing implementation restriction, this simplifies to:
//
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types, and if any type restrictions
// are the same. Lower-case method names from different packages are always
// different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
xset := x.typeSet()
yset := y.typeSet()
if xset.comparable != yset.comparable {
return false
}
if !xset.terms.equal(yset.terms) {
return false
}
a := xset.methods
b := yset.methods
if len(a) == len(b) {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
q := &ifacePair{x, y, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
if debug {
assertSortedMethods(a)
assertSortedMethods(b)
}
for i, f := range a {
g := b[i]
if f.Id() != g.Id() || !c.identical(f.typ, g.typ, q) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return c.identical(x.key, y.key, p) && c.identical(x.elem, y.elem, p)
}
case *Chan:
// Two channel types are identical if they have identical value types
// and the same direction.
if y, ok := y.(*Chan); ok {
return x.dir == y.dir && c.identical(x.elem, y.elem, p)
}
case *Named:
// Two named types are identical if their type names originate
// in the same type declaration; if they are instantiated they
// must have identical type argument lists.
if y, ok := y.(*Named); ok {
// check type arguments before origins to match unifier
// (for correct source code we need to do all checks so
// order doesn't matter)
xargs := x.TypeArgs().list()
yargs := y.TypeArgs().list()
if len(xargs) != len(yargs) {
return false
}
for i, xarg := range xargs {
if !Identical(xarg, yargs[i]) {
return false
}
}
return indenticalOrigin(x, y)
}
case *TypeParam:
// nothing to do (x and y being equal is caught in the very beginning of this function)
case nil:
// avoid a crash in case of nil type
default:
unreachable()
}
return false
}
// identicalOrigin reports whether x and y originated in the same declaration.
func indenticalOrigin(x, y *Named) bool {
// TODO(gri) is this correct?
return x.Origin().obj == y.Origin().obj
}
// identicalInstance reports if two type instantiations are identical.
// Instantiations are identical if their origin and type arguments are
// identical.
func identicalInstance(xorig Type, xargs []Type, yorig Type, yargs []Type) bool {
if len(xargs) != len(yargs) {
return false
}
for i, xa := range xargs {
if !Identical(xa, yargs[i]) {
return false
}
}
return Identical(xorig, yorig)
}
// Default returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. The default type
// for untyped nil is untyped nil.
func Default(t Type) Type {
if t, ok := t.(*Basic); ok {
switch t.kind {
case UntypedBool:
return Typ[Bool]
case UntypedInt:
return Typ[Int]
case UntypedRune:
return universeRune // use 'rune' name
case UntypedFloat:
return Typ[Float64]
case UntypedComplex:
return Typ[Complex128]
case UntypedString:
return Typ[String]
}
}
return t
}
// maxType returns the "largest" type that encompasses both x and y.
// If x and y are different untyped numeric types, the result is the type of x or y
// that appears later in this list: integer, rune, floating-point, complex.
// Otherwise, if x != y, the result is nil.
func maxType(x, y Type) Type {
// We only care about untyped types (for now), so == is good enough.
// TODO(gri) investigate generalizing this function to simplify code elsewhere
if x == y {
return x
}
if isUntyped(x) && isUntyped(y) && isNumeric(x) && isNumeric(y) {
// untyped types are basic types
if x.(*Basic).kind > y.(*Basic).kind {
return x
}
return y
}
return nil
}