Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
163 lines (139 sloc) 4.15 KB
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package spatial
import (
"math"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat"
)
// TODO(kortschak): Implement weighted routines.
// GetisOrdGStar returns the Local Getis-Ord G*i statistic for element of the
// weighted data using the provided locality matrix. The returned value is a z-score.
//
// G^*_i = num_i / den_i
//
// num_i = \sum_j (w_{ij} x_j) - \bar X \sum_j w_{ij}
// den_i = S \sqrt(((n \sum_j w_{ij}^2 - (\sum_j w_{ij})^2))/(n - 1))
// \bar X = (\sum_j x_j) / n
// S = \sqrt((\sum_j x_j^2)/n - (\bar X)^2)
//
// GetisOrdGStar will panic if locality is not a square matrix with dimensions the
// same as the length of data or if i is not a valid index into data.
//
// See doi.org/10.1111%2Fj.1538-4632.1995.tb00912.x.
//
// Weighted Getis-Ord G*i is not currently implemented and GetisOrdGStar will
// panic if weights is not nil.
func GetisOrdGStar(i int, data, weights []float64, locality mat.Matrix) float64 {
if weights != nil {
panic("spatial: weighted data not yet implemented")
}
r, c := locality.Dims()
if r != len(data) || c != len(data) {
panic("spatial: data length mismatch")
}
n := float64(len(data))
mean, std := stat.MeanStdDev(data, weights)
var dwd, dww, sw float64
if doer, ok := locality.(mat.RowNonZeroDoer); ok {
doer.DoRowNonZero(i, func(_, j int, w float64) {
sw += w
dwd += w * data[j]
dww += w * w
})
} else {
for j, v := range data {
w := locality.At(i, j)
sw += w
dwd += w * v
dww += w * w
}
}
s := std * math.Sqrt((n-1)/n)
return (dwd - mean*sw) / (s * math.Sqrt((n*dww-sw*sw)/(n-1)))
}
// GlobalMoransI performs Global Moran's I calculation of spatial autocorrelation
// for the given data using the provided locality matrix. GlobalMoransI returns
// Moran's I, Var(I) and the z-score associated with those values.
// GlobalMoransI will panic if locality is not a square matrix with dimensions the
// same as the length of data.
//
// See https://doi.org/10.1111%2Fj.1538-4632.2007.00708.x.
//
// Weighted Global Moran's I is not currently implemented and GlobalMoransI will
// panic if weights is not nil.
func GlobalMoransI(data, weights []float64, locality mat.Matrix) (i, v, z float64) {
if weights != nil {
panic("spatial: weighted data not yet implemented")
}
if r, c := locality.Dims(); r != len(data) || c != len(data) {
panic("spatial: data length mismatch")
}
mean := stat.Mean(data, nil)
doer, isDoer := locality.(mat.RowNonZeroDoer)
// Calculate Moran's I for the data.
var num, den, sum float64
for i, xi := range data {
zi := xi - mean
den += zi * zi
if isDoer {
doer.DoRowNonZero(i, func(_, j int, w float64) {
sum += w
zj := data[j] - mean
num += w * zi * zj
})
} else {
for j, xj := range data {
w := locality.At(i, j)
sum += w
zj := xj - mean
num += w * zi * zj
}
}
}
i = (float64(len(data)) / sum) * (num / den)
// Calculate Moran's E(I) for the data.
e := -1 / float64(len(data)-1)
// Calculate Moran's Var(I) for the data.
// http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm
// http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-global-morans-i-additional-math.htm
var s0, s1, s2 float64
var var2, var4 float64
for i, v := range data {
v -= mean
v *= v
var2 += v
var4 += v * v
var p2 float64
if isDoer {
doer.DoRowNonZero(i, func(i, j int, wij float64) {
wji := locality.At(j, i)
s0 += wij
v := wij + wji
s1 += v * v
p2 += v
})
} else {
for j := range data {
wij := locality.At(i, j)
wji := locality.At(j, i)
s0 += wij
v := wij + wji
s1 += v * v
p2 += v
}
}
s2 += p2 * p2
}
s1 *= 0.5
n := float64(len(data))
a := n * ((n*n-3*n+3)*s1 - n*s2 + 3*s0*s0)
c := (n - 1) * (n - 2) * (n - 3) * s0 * s0
d := var4 / (var2 * var2)
b := d * ((n*n-n)*s1 - 2*n*s2 + 6*s0*s0)
v = (a-b)/c - e*e
// Calculate z-score associated with Moran's I for the data.
z = (i - e) / math.Sqrt(v)
return i, v, z
}
You can’t perform that action at this time.