Alphageometry Syntax

1. Points and Segments

Points are denoted by single lowercase letters, e.g., a, b, c. Segments are defined using the segment keyword, e.g., ab = segmentab.

2. Lines and Circles

Lines are defined using the on_line keyword, e.g., $p = on_linepab$. Circles are defined using the on_circle keyword, e.g., o = circleoabc.

3. Parallel and Perpendicular Lines

Parallel lines are represented using the para or on_pline keywords, e.g., $g = on_plinegabc$. Perpendicular lines are represented using the perp keyword, e.g., $k = on_linekja, on_circlekos?perpktolt$.

4. Midpoints and Reflections

Midpoints are defined using the midpoint keyword, e.g., o = midpointobc. Reflections are represented using the reflect keyword, e.g., pa = reflect papbc.

5. Angles

Equal angles are represented using the eqangle keyword, e.g., a = eqanglebte. Angle bisectors are represented using the angle_bisector keyword, e.g., $o = angle_bisectoradp$.

6. Equality and Congruence

Equality between angles is represented using the eqangle3 keyword, e.g., $p1 = on_linepb1$, eqangle3pcabc. Congruence between segments is represented using the cong keyword, e.g., epeq.

7. Parallelism and Concurrence

Parallelism is represented using the **para** keyword, e.g., $g = on_plinegabc$. Concurrence is represented using the cc_tangent keyword, e.g., $qtps = cc_tangentqtpsi1f1i2f2$.

8. Geometry Elements

Circumcenter, Orthocenter, Incenter, Excenter, etc., are denoted by single uppercase letters, e.g., O, H, I.

9. Special Points and Elements

Special points, like feet of altitudes, midpoints, etc., are named using descriptive terms, e.g., T_A , M_A .

10. Constructions

Reflections, angle bisectors, etc., are often used in constructions.