Centroidal angular momentum matrix

February 22, 2024

1 Derivation of H_A

The angular momentum of a robot (or a group of rigid bodies) about its centre of mass (COM) denoted by h_R is defined as:

$$\boldsymbol{h}_{R} = \sum \boldsymbol{h}_{i} + \sum (\boldsymbol{\rho}_{i} \times (m_{i}\boldsymbol{v}_{i})), \qquad (1)$$

where h_i is the angular momentum of a rigid body about its own COM, ρ_i denotes the location of the body-COM w.r.t. the robot-COM, and v_i is the linear velocity of the body-COM. All the quantities in the above equation are expressed in the global frame of reference.

In the following manipulations, we show that it does not matter if we use the absolute linear velocities of individual body-COMs (v_i) or relative velocities of body-COMs w.r.t. the robot-COM (v_{iG}) for the computation of h_R :

$$\boldsymbol{h}_{R} = \sum \boldsymbol{h}_{i} + \sum (\boldsymbol{\rho}_{i} \times (m_{i}(\boldsymbol{v}_{G} + \boldsymbol{v}_{iG}))), \qquad (2)$$

$$\boldsymbol{h}_{R} = \sum \boldsymbol{h}_{i} + \boldsymbol{v}_{G}(\sum (m_{i}\boldsymbol{\rho}_{i})) + \sum (\boldsymbol{\rho}_{i} \times (m_{i}\boldsymbol{v}_{iG})), \qquad (3)$$

$$\boldsymbol{h}_{R} = \sum \boldsymbol{h}_{i} + \boldsymbol{0} + \sum (\boldsymbol{\rho}_{i} \times (m_{i}\boldsymbol{v}_{iG})).$$
(4)

The central term in Eq. (3) vanishes due to the very definition of the robot-COM. Hence, Eq. (1) and Eq. (4) are equivalent. We will use Eq. (1) for the computations. The first term on the RHS of Eq. (1) can be expanded as:

$$\boldsymbol{h}_i = {}^0_i \boldsymbol{R}(^i \boldsymbol{I}^i \boldsymbol{\omega}_i), \tag{5}$$

$$\boldsymbol{h}_{i} = {}_{i}^{0} \boldsymbol{R} ({}^{i} \boldsymbol{I} {}_{i}^{0} \boldsymbol{R}^{\top} {}^{0} \omega_{i}), \tag{6}$$

$$\boldsymbol{h}_{i} = \begin{pmatrix} 0 & \boldsymbol{R}^{i} \boldsymbol{I} & \boldsymbol{I} \\ \boldsymbol{i} & \boldsymbol{R}^{\top} \end{pmatrix} \boldsymbol{\omega}_{i}, \tag{7}$$

$$\boldsymbol{h}_{i} = \begin{pmatrix} {}^{0}_{i} \boldsymbol{R}^{i} \boldsymbol{I}^{0}_{i} \boldsymbol{R}^{\top} \end{pmatrix} \boldsymbol{J}_{\omega_{i}} \dot{\boldsymbol{q}}, \tag{8}$$

where ${}^{0}_{i}\boldsymbol{R}$ transforms a vector from body frame to global frame. In the context of MuJoCo, ${}^{0}_{i}\boldsymbol{R} = mjData.ximat$. The pre-superscript denotes the frame in which a quantity is expressed, i.e., ${}^{i}\omega_{i}$ is the angular velocity of a body in its own frame, while ${}^{0}\omega_{i}$ denotes the same quantity in the global frame. If the pre-superscript is not mentioned, it is assumed to be 0 (ground frame). The inertia matrix of a body in its own frame is denoted by ${}^{i}\boldsymbol{I}$. In the context of MuJoCo, it is the diagonal body inertia given by mjModel.body_inertia.

The second term on the RHS of Eq. (1) can be rewritten as:

$$\boldsymbol{\rho}_i \times (m_i \boldsymbol{v}_i) = m_i [\boldsymbol{\rho}_i \times] \boldsymbol{J}_{v_i} \dot{\boldsymbol{q}}$$
(9)

The angular velocity Jacobian J_{ω_i} and linear velocity Jacobian J_{v_i} are given in MuJoCo by the mj_jacBodyCom() function. Finally h_R can be written as:

$$\boldsymbol{h}_R = \boldsymbol{H}_A \dot{\boldsymbol{q}},\tag{10}$$

$$\boldsymbol{H}_{A} = \sum \left(\begin{pmatrix} 0 & \boldsymbol{R}^{i} \boldsymbol{I} & \boldsymbol{I}^{0} & \boldsymbol{R}^{\top} \end{pmatrix} \boldsymbol{J}_{\omega_{i}} + m_{i} [\boldsymbol{\rho}_{i} \times] \boldsymbol{J}_{v_{i}} \right)$$
(11)