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Abstract:  Google  DeepMind’s  AlphaZero  has  revolutionized  the  world  of  game            
AI.  Through  pure  self-play,  the  algorithm  can  achieve  superhuman  performance            
in  games  such  as  chess,  shogi,  and  Go.  However,  accomplishing  this  requires  an               
enormous  amount  of  computing  resources,  the  likes  of  which  are  not  available  to               
most  researchers.  Additionally,  the  multitude  of  AlphaZero  hyperparameters  and           
their  effect  on  performance  can  be  difficult  to  predict  without  undergoing             
numerous  time-consuming  training  sessions.  This  paper  recounts  the  process  of            
training  the  AlphaZero  algorithm  in  Google  DeepMind’s  OpenSpiel  framework           
on  various  board  sizes  of  the  game  Clobber  during  Summer  2020.  The  aim  is  to                 
provide  a  starting  point  for  those  looking  to  train  the  AlphaZero  algorithm  by               
addressing  elements  such  as  the  encoding  of  the  board,  neural  network             
architecture,  and  hyperparameter  values.  Inferences  about  these  components  are           
based   on   data   available   in   a   Google   Doc   located   here:   http://bit.ly/3qLwsHk.   

  
1 Introduction   

At  a  high  level,  AlphaZero  consists  of  two  main  components:  a  Monte-Carlo  Tree  Search  (MCTS)                 
and  a  dual-headed  neural  network.  The  neural  network  takes  as  input  an  encoded  version  of  the                  
game  state,  and  outputs  a   value  scalar  and   policy  vector.  The  value  output  of  the  neural  network                   
estimates  the  advantage  of  a  given  game  state  from  the  current  player’s  perspective.  It  is  a                  
continuous  value  in  the  range  -1  (loss)  to  1  (win).  The  policy  output  consists  of  a  vector  of                    
probabilities  for  each  available  action  from  the  given  game  state.  From  a  given  state,  the  algorithm                  
undergoes  a  neural-network-backed  MCTS  to  obtain  experience  in  the  game  through  multiple              
simulations.  During  training,  these  experiences  are  then  compiled  into  a  replay  buffer  to  be  used                 
later  to  learn  from.  Hence,  an  iteration  of  the  AlphaZero  training  loop  essentially  consists  of                 
self-play  and  continuous  evaluation,  followed  by  learning,  in  which  the  neural  network  learns               
from  the  experiences  gathered  during  self-play.  For  more  detail,  a  working  implementation  can  be                
found  in  Google  DeepMind’s  OpenSpiel  framework  [6]  (the  framework  we  used  to  train  our                
AlphaZero  agents).  Finally,  as  a  note,  the   Courier  New  font  will  be  used  to  refer  to  the                   
hyperparameters   of   the   framework’s   AlphaZero   implementation.  
  

Clobber  [1]  was  invented  by  Michael  Albert,  J.P.  Grossman,  and  Richard  Nowakowski  in  2001.  It                 
is  classified  as  a  two-player,  combinatorial  board  game.  That  is,  it  has  no  randomization                
mechanism  during  play,  and  all  players  know  everything  about  the  current  state  of  the  game.  The                  
game  is  played  on  an   m ⨉ n  checkerboard  starting  with  white  pieces  on  white  squares,  and  black                  
pieces  on  black  squares.  The  game  can  also  be  played  with  the  symbols  “x”  and  “o”  in  place  of  the                      
colours.  Players  are  then  each  assigned  a  colour  or  symbol  and  alternate  turns  moving  one  of  their                   
pieces  on  top  of  an  adjacent  opponent  piece.  This  opponent  piece  is  then  removed  from  the  board.                   
The  winner  is  the  last  person  to  play.  Little  is  known  about  what  constitutes  “good”  play  at  the                    
beginning  of  the  game,  especially  on  larger  board  sizes  [13].  As  a  result,  hyperparameters  that                 



  

have  the  ability  to  scale  and  also  impact  performance  were  of  great  interest  in  developing                 
AlphaZero   players   for   larger   and   larger   board   sizes.   
  

Our  training  of  the  AlphaZero  algorithm  started  off  small  with  3⨉3  Clobber  boards,  but  gradually                 
continued  on  to  4⨉4,  5⨉5,  and  5⨉6.  At  each  of  these  board  sizes,  hyperparameter  values  were                  
experimented  with  to  determine  which  hyperparameters  affected  the  evaluation  and  learning  of  the               
AlphaZero  player  the  most.  We  define  a  “small  board”  to  have  an  area  of  16  cells  or  less,  such  as                      
sizes  3⨉3  or  4⨉4;  and  a  “large  board”  as  any  board  with  an  area  larger  than  16  cells  such  as  5⨉5,                       
5⨉6,  or  larger.  The  ultimate  goal  of  this  project  was  to  scale  up  training  to  a  board  size  of  10⨉10.                      
Unfortunately,  due  to  a  lack  of  experimentation  and  testing,  the  10⨉10  results  are  not  discussed  in                  
this  paper.  Additionally,  a  few  8⨉8  board  experiments  were  conducted,  but  are  not  discussed  for                 
the   same   reason.   
  

The  Python  AlphaZero  implementation  in  OpenSpiel  had  the  ability  to  utilize  GPUs,  however,               
testing  indicated  that  the  use  of  GPUs  hindered  the  performance  of  the  algorithm.  Reasons  for  this                  
are  still  unknown.  As  a  result,  our  hardware  requirements  focussed  on  the  number  of  CPU  cores                  
and  total  amount  of  memory.  For  the  small  boards  and  the  5⨉5  boards,  we  used  a  machine  with  8                     
CPU  cores  and  4  GB  of  memory  to  conduct  the  training.  Extra  hardware  obtained  from  Compute                  
Canada  was  used  for  training  on  board  sizes  larger  than  5⨉5.  With  these  machines,  we  had  access                   
to   48   CPU   cores   and   up   to   128   GB   of   memory.   
  

Finally,  similar  projects  have  also  attempted  to  minimize  the  training  time  of  an  AlphaZero  player                 
while  maintaining  its  performance  through  the  experimentation  of  hyperparameter  values.            
However,  this  has  mainly  been  tested  with  games  whose  boards  are  not  scalable,  such  as  Connect                  
4  [11],  or  scalable  games  are  chosen,  but  the  board  size  is  fixed,  such  as  6⨉6  Othello  [12].  Results                     
from  these  studies  indicate  that  there  is  certainly  room  for  hyperparameter  optimization  in  the                
AlphaZero   algorithm.   Despite   this,   there   is   unfortunately   minimal   other   literature   on   the   subject.   
  

2 Performance   Analysis   

The  OpenSpiel  framework  comes  with  a  Python  script  that  allows  a  graphical  analysis  to  be                 
performed  on  an  AlphaZero  training  session.  While  training,  the  algorithm  continually  updates  a               
file  called  “learner.jsonl”  that  contains  data  about  each  step  of  the  current  training  session.  The                 
data  in  this  file  can  then  be  graphed  using  the  aforementioned  Python  script.  Once  run,  this  script                   
creates  a  window  with  12  graphs  describing  the  performance  in  terms  of  both  computing  and  the                  
AlphaZero  player.  To  analyze  the  performance  of  the  AlphaZero  player,  we  focussed  our  attention                
on  two  of  these  12  graphs,  specifically  the  “Training  loss”  graph  (shown  in  Figure  1)  and  the                   
“Evaluation  returns  vs  MCTS+Solver  with  x10^(n/2)  sims”  graph  (shown  in  Figure  2).  Both               
graphs   shown   in   the   figures   come   from   the   same   training   session   on   a   board   size   of   5⨉5.   
  

  



  

  

Loss  Graph.  The  loss  graph  shows  the  total  (sum)  loss,  policy  loss,  value  loss,  and  regularization                  
loss  of  the  neural  network  after  each  training  step.  As  a  result,  as  the  training  steps  increase,  it  is                     
best  to  see  a  decrease  in  loss  (particularly  in  the  total,  policy,  and  value  losses)  as  this  implies  that                     
the  network  is  able  to  more  accurately  predict  the  value  and  policy  of  a  given  game  state.  Figure  1                     
shows   an   example   of   a   loss   graph   that   steadily   decreases.   
  

Evaluation  Graph.  The  evaluation  graph  depicts  how  well  the  AlphaZero  player  plays  against               
an  MCTS  player.  Over  the  course  of  training,  the  AlphaZero  player  continually  plays  an  MCTS                 
player  of  varying  difficulty.  The  difficulty  of  the  MCTS  player  is  determined  by  how  many                 
simulations  it  is  allowed  to  run  from  the  current  game  state  of  the  game.  For  each  move,  the                    
AlphaZero  player  plays  by  performing   max_simulations  simulations  from  the  current  game             
state.  It  is  combated  by  an  MCTS  player  of  a  certain  integer  level,   n ,  whose  simulation  count,   s ,  is                     
determined  by  .  Therefore,  as  the  level  of  the  MCTS  player             
increases,  so  does  its  simulation  count.  When  it  is  the  MCTS  player’s  turn  to  play,  it  conducts   s                    
simulations  from  the  current  state  to  determine  its  move.  At  each  level,  the  AlphaZero  player  is                  
given  the  opportunity  to  play  both  first  and  second  so  that  there  is  no  inherent  player  advantage.  A                    
win  for  the  MCTS  player  is  tabulated  as  a  -1  outcome,  and  a  win  for  the  AlphaZero  player  is                     
tabulated  as  a  +1  outcome.  A  buffer  of  size   evaluation_window  is  kept  for  each  difficulty                 
level.  These  buffers  are  contained  in  a  list,  and  the  outcomes  for  each  game  at  a  certain  level  are                     
put  into  their  respective  buffer.  After  each  training  step,  the  average  value  of  the  buffer  is                  
calculated  for  each  difficulty  level  and  plotted  on  the  evaluation  graph.  As  a  result,  at  the                  
beginning  of  training  when  the  AlphaZero  player  has  not  learned  enough  to  play  well,  it  should  be                   
expected  that  the  evaluation  graph  will  show  negative  average  outcomes  for  all  difficulty  levels.                
However,  as  the  training  progresses,  the  average  outcomes  should  increase,  and  the  trends  for  each                 
difficulty  level  should  also  diverge.  That  is,  as  training  progresses,  lower  difficulty  levels  should                
see  a  higher  average  outcome  than  those  of  higher  difficulty.  This  is  because  it  should  be  easier  for                    
the  AlphaZero  player  to  win  against  an  MCTS  player  undergoing  fewer  simulations.  Notice  that                
this   divergence   and   gradual   increase   is   what   is   approximately   observed   in   Figure   2.   
  

3 Model   Type   

For  all  of  our  experiments,  we  used  the  dual-headed  residual  neural  network  available  in  the                 
OpenSpiel  framework.  The  OpenSpiel  framework  has  three  types  of  dual-headed  neural  network              
architectures  available  for  AlphaZero:  a  residual  network,  a  convolutional  network  (without             
residual  connections),  and  a  multilayer  perceptron  (MLP  or  fully-connected)  network.  Each             

  
Figure   1:   The   loss   graph   of   an   AlphaZero   

training   session.   Total   (sum),   policy,   value,   
and   regularization   loss   are   shown.   

Figure   2:   The   evaluation   graph   of   an   AlphaZero   
training   session.   The   legend   depicts   the   

  colours   of   each   difficulty   level.   



  

network  can  be  configured  with  a  variably  sized  input  and  output,  and  can  also  be  set  with  a                    
specific  number  of  layers  and  filters  (in  the  case  of  the  residual  and  convolutional  networks)  or                  
layers  and  perceptrons  (in  the  case  of  the  MLP  network).  The  residual  neural  network  follows  the                  
same  basic  architecture  as  described  in  AlphaGo  Zero  [10],  and  the  implementation  of  these  three                 
neural  networks  can  be  found  in  the  OpenSpiel  framework.  Notice  that  the  game  of  Cobber                 
inherently  relies  on  the  spatial  information  between  pieces  on  the  board.  This  can  simply  be                 
deduced  from  the  rules  of  the  game:  a  piece  cannot  be  moved  unless  there  is  at  least  one  adjacent                     
opponent  piece.  A  multitude  of  results  in  various  areas  of  research  have  previously  shown  that                 
convolutional  layers  enhance  a  neural  network’s  ability  to  detect  this  spatial  information  in  an                
input  [5,  8,  14].  Therefore,  we  decided  to  not  use  the  MLP  network.  When  choosing  between  the                   
convolutional  and  residual  neural  networks,  we  chose  the  residual  network  due  to  its  ability  to                 
combat   the   Vanishing   Gradient   Problem   [4]   in   deep   neural   networks   [3].   
  

4 Clobber   Implementation   

The  Clobber  implementation  in  the  OpenSpiel  framework  was  built  in  C++.  It  allows  for  a                 
variable  number  of  rows  and  columns,  and  an  option  to  invert  the  colours  on  the  board.  In  the                    
framework,  the  player  representing  the  character  “o”  is  Player  One  and  always  plays  first.  Hence,                 
Player  Two  is  represented  by  “x”.  OpenSpiel  requires  each  game’s  state  class  to  define  an                 
“Observation  Tensor”  function.  This  function  returns  an  encoding  of  the  current  game’s  state  that                
can  then  be  passed  to  a  neural  network  as  input.  The  encoding  of  a  Clobber  game  state  went                    
through   a   revision   over   the   course   of   training   for   the   different   sized   boards.   
  

First  Board  Encoding.  For  the  AlphaZero  players  on  the  3⨉3,  4⨉4,  and  some  5⨉5  boards,  we                  
encoded  the  game  in  a  tensor  of  rank  three.  For  an   m ⨉ n  Clobber  board,  the  tensor  consisted  of                    
three   m ⨉ n  planes.  The  first  plane  consisted  of  1’s  where  all  of  Player  One’s  pieces  were,  and  0’s                    
elsewhere.  The  second  plane  consisted  of  1’s  where  all  of  Player  Two’s  pieces  were,  and  0’s                  
elsewhere.  Finally,  the  third  plane  consisted  of  1’s  where  all  the  empty  board  cells  were,  and  0’s                   
elsewhere.  An  example  encoding  can  be  found  in  Appendix  A.  Notice  however  that  with  this                 
encoding,  it  is  difficult  to  deduce  the  value  of  a  state.  For  example,  consider  a  mid  game  state  of                     
an  arbitrarily  sized  board  with  only  two  pieces  and  these  pieces  are  adjacent.  Given  the  encoding                  
of  this  board,  it  is  impossible  to  predict  the  value  of  this  state  without  knowing  whose  turn  it  is.                     
Therefore,  some  sense  of  whose  turn  it  is  must  be  added  to  the  encoding.  Additionally,  keeping  a                   
similar  perspective  of  the  board  was  also  added.  That  is,  the  network  always  views  its  own  pieces                   
on   the   same   plane   of   the   tensor,   no   matter   if   it   is   playing   as   Player   One   or   Player   Two.   
  

Second  Board  Encoding.  Some  5⨉6  boards  and  all  boards  larger  than  5⨉6  followed  this  new                 
encoding  that  depicts  the  board  from  a  consistent  point  of  view,  and  also  provides  information  on                  
which  player’s  turn  it  is.  For  a  Clobber  board  of  size   m ⨉ n,   this  was  accomplished  once  again                   
through  a  tensor  of  rank  three  consisting  of  three   m ⨉ n  planes.  The  first  plane  consisted  of  1’s                   
where  the  current  player’s  pieces  were,  and  0’s  elsewhere.  The  second  plane  consisted  of  1’s                 
where  the  opponent’s  pieces  were,  and  0’s  elsewhere.  Finally,  the  third  plane  consisted  of  all  1’s  if                   
it  was  Player  One’s  turn  to  play,  otherwise  it  consisted  of  all  0’s.  An  example  of  this  encoding  can                     
be  found  in  Appendix  A.  This  is  similar  to  the  encoding  used  in  AlphaGo  Zero  [10],  which  is  why                     
it  was  chosen.  The  only  difference  is  that  there  are  no  planes  containing  previous  states  of  the                   
board  in  the  Clobber  encoding.  Variations  of  this  type  of  encoding  have  also  proved  useful  in                  
chess   and   shogi   [9].   
  



  

5 Hyperparameters   

A  complete  list  of  available  hyperparameters  for  OpenSpiel’s  Python  AlphaZero  is  available  in               
Appendix  B.  Descriptions  and  values  used  in  our  experiments  are  also  given  for  each.  Note  that                  
not  all  hyperparameters  affected  the  speed  of  training,  the  performance  of  the  AlphaZero  player,  or                 
the  scalability  of  the  performance  of  the  AlphaZero  player.  These  hyperparameters  are  not  in  bold                 
font  in  the  table  and  will  not  be  discussed.  Also,  some  hyperparameters  were  not  tweaked  due  to  a                    
lack  of  time,  these  are  also  not  bolded.  In  total,  eight  hyperparameters  were  experimented  with  and                  
will   be   discussed   in   this   section.   
  

Replay  Buffer  Ratio.  We  define  the  Replay  Buffer  Ratio  as  the  value  of  the  ratio  of  the                   
replay_buffer_size  to  the   replay_buffer_reuse .  The  replay  buffer  size          
hyperparameter  determines  the  number  of  experiences  the  replay  buffer  can  hold.  An  experience               
consists  of  a  state,  action,  and  a  reward  obtained  from  taking  that  action  in  that  state.  A  greater                    
value  for  the  replay  buffer  size  allows  more  of  these  experiences  to  be  held  in  the  agent’s  memory,                    
and  the  agent  can  then  learn  from  a  more  diverse  set  of  experiences.  The  replay  buffer  reuse                   
parameter  specifies  how  long  the  previous  experiences  are  held  in  the  replay  buffer.  That  is,  during                  
each  iteration  of  the  self-play  portion  of  the  AlphaZero  training  loop,  the  agent  will  gather  a                  
certain  number  of  experiences  and  put  these  experiences  into  the  replay  buffer.  The  number  of                 
experiences  gathered  is  exactly  the  value  of  the  Replay  Buffer  Ratio.  Hence,  starting  from  an                 
empty  replay  buffer,  it  takes   replay_buffer_reuse  iterations  of  the  training  loop  to  fill  the                
replay  buffer.  Notice  that  the  larger  the  Replay  Buffer  Ratio,  the  greater  the  number  of  experiences                  
are  added  to  the  replay  buffer  during  self-play  each  training  iteration  (training  step).  Additionally,                
note  that  on  average,  an  experience  will  remain  in  the  replay  buffer  for               
replay_buffer_reuse  training  iterations.  We  found  that  a  large  Replay  Buffer  Ratio             
improves  performance  drastically  as  long  as  the  replay  buffer  reuse  is  small  enough.  Explained                
intuitively,  a  large  Replay  Buffer  Ratio  ensures  a  greater  diversity  of  experiences  are  added  to  the                  
replay  buffer  every  training  iteration,  and  a  small  replay  buffer  reuse  ensures  that  old  experiences,                 
that  are  potentially  incorrect  or  not  useful,  are  not  learned  from  anymore.  However,  it  was  also                  
found  that  the  Replay  Buffer  Ratio  is  heavily  proportional  to  the  amount  of  time  a  training                  
iteration  takes.  We  found  that  effective  replay  buffer  reuse  values  never  exceeded  4,  and  we  scaled                  
the  replay  buffer  size  with  the  board  size  we  were  training  on.  For  smaller  boards  (3⨉3  and  4⨉4)                    
we  used  a  replay  buffer  size  of  2 14  and  a  replay  buffer  reuse  of  4.  For  large  boards,  the  Replay                      
Buffer   Ratio   was   greater   than   or   equal   to   2 14 ;   maintaining   a   replay   buffer   reuse   of   no   more   than   4.   
  

Actors  &  Evaluators.  To  perform  self-play  and  evaluation  during  training,  the  OpenSpiel              
Python  AlphaZero  algorithm  spawns  actor  and  evaluator  Python  processes  respectively.  The             
number  of  actor  and  evaluator  processes  spawned  can  be  controlled  using  the   actors  and                
evaluators  hyperparameters.  As  the  number  of  actors  increase,  the  speed  at  which  self-play               
games  can  be  simulated  also  increases.  This  results  in  less  time  per  training  step.  Similarly,  as  the                   
number  of  evaluators  increases,  more  games  can  be  played  against  the  MCTS  players.  Although                
this  will  not  increase  the  speed  of  training,  it  will  provide  more  accurate  results  on  how  well  the                    
AlphaZero  player  is  performing  throughout  training.  For  our  experiments,  the  sum  of  the  actors                
and  evaluators  was  equal  to  the  number  of  CPU  cores  available.  Additionally,  the  number  of                 
evaluators  never  exceeded  the  number  of  actors.  Often,  the  number  of  evaluators  was  kept  in  the                  
range   one   to   four.   
  

Simulation  Count.  The  number  of  simulations  from  a  state  performed  by  the  AlphaZero  agent                
during  training  is  determined  by  the   max_simulations  hyperparameter.  Intuitively,  the  more             
simulations  performed  by  the  AlphaZero  agent  at  each  state,  the  better  its  policy  approximation                



  

will  be.  However,  an  increase  in  the  number  of  simulations  per  state  requires  more  time.  For                  
smaller  boards  (3⨉3  and  4⨉4),  we  kept  a  value  of  20  for  this  hyperparameter.  However,  for  larger                   
boards   (5⨉5   and   greater),   this   number   was   almost   always   greater   than   or   equal   to   100.   
  

Temperature  Drop.  To  increase  exploration  during  self-play,  the  OpenSpiel  Python  AlphaZero             
algorithm  will  sometimes  choose  a  random  action  following  the  policy  distribution  obtained  from               
undergoing  MCTS  instead  of  the  best  action  obtained  from  undergoing  MCTS.  This  behaviour  is                
controlled  by  the  temperature  drop  hyperparameter.  If  the  total  number  of  moves  played  in  the                 
self-play  game  is  less  than  the  value  of  the  temperature  drop,  then  a  random  action  following  the                   
policy  distribution  is  performed.  Otherwise,  the  best  action  obtained  from  MCTS  is  performed.               
The  temperature  drop  value  is  determined  by  the   temperature_drop  hyperparameter.  For             
boards  larger  than  5⨉6,  we  based  this  value  on  the  average  game  length  of  randomly  simulated                  
Clobber  games  of  the  desired  board  size.  To  approximate  a  value  for  the  temperature  drop  we                  
looked  at  previous  AlphaZero  implementations  and  the  games  they  played.  From  the  temperature               
drop  values  in  the  Connect  4  analysis  [11]  (Connect  4,  an  average  game  length  of  36  moves  [2]                    
using  a  temperature  drop  of  10  for  their  AlphaZero),  DeepMind’s  AlphaGo  Zero  [7]  (Go,  with  an                  
average  game  length  of  150  moves  [2]  using  a  temperature  drop  of  30),  and  the  recommended                  
hyperparameter  value  of  the  temperature  drop  for  Tic-Tac-Toe  in  the  OpenSpiel  framework              
(Tic-Tac-Toe,  an  average  game  length  of  9  moves  [2],  using  a  temperature  drop  of  4),  a  linear                   
relationship  between  the  temperature  drop  and  the  average  game  length  was  devised  through               
simple   linear   regression.   The   relationship   was   calculated   to   be:   

  
Where   T  is  the  temperature  drop  value  and   N  is  the  average  number  length  of  the  game.  If  the                     
interpolated  number  was  not  a  whole  number,  we  would  round  to  the  nearest  whole  number.  For                  
example,  5⨉5  Clobber  has  an  average  game  length  of  15.7  moves,  resulting  in  a  value  of                  
approximately   5.7   for   the   temperature   drop   (which   is   rounded   to   6).   
  

Neural  Network  Depth.  The  number  of  residual  layers  (depth)  in  our  residual  neural  network                
was  determined  as  a  function  of  the  number  of  rows  ( R )  and  columns  ( C )  of  the  board.  For  small                     
board  sizes,  the  range  of  the  depth  ( D )  of  the  neural  network  was  kept  within  two  of  the  maximum                     
between   the   number   of   rows   and   number   of   columns,   that   is:   

  
For  large  board  sizes,  we  attempted  to  approximate  the  network  depth  based  on  AlphaGo  Zero                 
[10].  In  their  experiments,  the  smaller  network  had  a  depth  of  20  for  a  Go  board  size  of  19⨉19.                     
Hence,   the   depth   of   the   neural   network   for   larger   Clobber   boards   was   trivially   set   as:   
  

Although  in  practice,  values  would  range  within  ±1  of  the  maximum.  The  depth  of  the  AlphaZero                  
neural  network  can  be  set  using  the   nn_depth  parameter.  With  an  increase  in  depth,  there  is  an                   
increase  in  the  amount  of  time  it  takes  to  perform  a  training  step.  This  is  because  neural  network                    
inference,   backpropagation,   and   gradient   descent   take   more   time   with   more   network   parameters.   
  

6 Conclusion   

This  paper  discussed  our  process  experimenting  with  AlphaZero,  particularly  the  OpenSpiel             
version  of  the  algorithm.  We  discussed  neural  network  architecture,  providing  reasons  for  the               
choice  of  a  residual  architecture  over  purely  convolutional-based  or  fully-connected  networks.             
Additionally,  we  touched  on  the  use  of  two  ways  to  encode  a  board  as  a  tensor  for  the  neural                     
network.  Ultimately  settling  with  a  representation  that  provided  a  representation  from  a  consistent               
perspective  that  contains  all  the  information  of  the  game  in  the  given  state.  Finally  we  examined                  
some  of  the  hyperparameters  of  the  algorithm,  particularly  those  that  had  the  most  effect  on  the                  



  

time  it  takes  to  train  the  algorithm,  and  those  that  most  affected  the  performance  of  the  trained                   
agent.  It  was  inferred  that  our  self-defined  Replay  Buffer  Ratio  hyperparameter  had  the  greatest                
effect  on  both  these  metrics.  We  hope  that  the  information  contained  in  this  report  and  the                  
accompanying  data  can  aid  future  researchers,  and  provide  a  starting  point  for  training  their  own                 
AlphaZero,   or   AlphaZero-like   algorithm.     
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A Board   Encodings   

The  following  4⨉4  board  shows  a  Clobber  state,  mid-game.  We  assume  that  it  is  Player  One’s                  
(white’s)  turn  to  play.  Shown  are  the  encodings  of  this  state  as  tensors  in  a  Python  list  format                    
according   to   the   first   and   second   types   of   board   encodings.   
  

  
  

  

B Table   of   Hyperparameters   

[14]  Yamashita,   R.,   Nishio,   M.,   Do,   R.K.G.    et   al.    Convolutional   neural   networks:   an   overview   
and   application   in   radiology.    Insights   Imaging    9,   611–629   (2018).   
https://doi.org/10.1007/s13244-018-0639-9   

First   Board   Encoding   
  
         [[[1,   0,   0,   1],   
           [1,   0,   0,   0],   
           [0,   0,   0,   0],   
           [0,   1,   1,   0]],   
  

          [[0,   0,   0,   0],   
           [0,   1,   0,   1],   
           [0,   1,   1,   0],   
           [0,   0,   0,   1]],   
  

          [[0,   1,   1,   0],   
           [0,   0,   1,   0],   
           [1,   0,   0,   1],   
           [1,   0,   0,   0]]]  

Second   Board   Encoding   
  
         [[[1,   0,   0,   1],   
           [1,   0,   0,   0],   
           [0,   0,   0,   0],   
           [0,   1,   1,   0]],   
  

          [[0,   0,   0,   0],   
           [0,   1,   0,   1],   
           [0,   1,   1,   0],   
           [0,   0,   0,   1]],   
  

          [[1,   1,   1,   1],   
           [1,   1,   1,   1],   
           [1,   1,   1,   1],   
           [1,   1,   1,   1]]]  

Hyperparameter   Description   Value   
Learning   Rate   
( learning_rate )   

The   learning   rate   used   for   the   
neural   network.   

0.01   for   small   boards;  
0.001   for   large   boards  

Weight   Decay   
( weight_decay )   

The   weight   decay   of   the   L2   
regularization   loss   used   in   the   
neural   network.   

0.0001  

Training   Batch   Size   
( train_batch_size )   

The   number   of   observations   
learned   on   for   each   weight   

128   for   small   boards;  
128,   256,   or   1024   for   large  



  

update   of   the   neural   network.   boards  
Replay   Buffer   Size   
( replay_buffer_size )   

The   number   of   observations   the   
replay   buffer   can   hold.   

2 14    for   small   boards;  
2 16 ,   2 17 ,   2 18 ,   or   2 19    for   large  

boards  
Replay   Buffer   Reuse   
( replay_buffer_reuse )  

The   number   of   training   iterations   
that   a   given   observation   will   
remain   in   the   replay   buffer   on   
average.   

4   for   small   boards,  
2   or   3   for   large   boards  

Maximum   Training   Steps   
( max_steps )   

The   maximum   number   of   
training   iterations   that   will   occur   
before   the   program   exits.   Zero   
can   be   entered   for   an   indefinite   
number   of   iterations.   

0  

Checkpoint   Frequency   
( checkpoint_freq )   

The   rate   at   which   the   AlphaZero   
neural   network   will   be   saved   
based   on   the   number   of   training   
iterations.   

Varied   depending   on   how   often  
we   wanted   to   save   the   neural  

network   model  

Actors   
( actors )   

The   number   of   processes   
spawned   that   undergo   self-play.   
They   collect   the   experience   
observations   and   put   them   in   the   
replay   buffer.   

Varied   depending   on   the   number  
of   CPUs   available  

Evaluators   
( evaluators )   

The   number   of   processes   
spawned   that   undergo   evaluation.  
They   play   the   AlphaZero   
algorithm   against   MCTS   players,   
recording   the   results   of   the   
games.   

Varied   depending   on   the   number  
of   CPUs   available  

Evaluation   Window   
( evaluation_window )   

The   number   of   evaluations   to   
maintain   in   the   evaluation   buffer   
per   level   of   MCTS   opponent.   
Evaluation   results   are   the   average  
of   the   results   in   these   buffers.   

50   for   small   boards;  
100   for   large   boards  

Evaluation   Levels   
( eval_levels )   

The   number   of   levels   of   
difficulty   of   the   MCTS   players   
that   the   AlphaZero   player   will   
play   against   during   evaluation.   

7  

Exploration   Constant   (c PUCT )   
( uct_c )   

A   value   proportional   to   the   
degree   of   exploration   during   
MCTS.   

1   for   small   boards;  
2   for   large   boards  

Maximum   Simulations   
( max_simulations )   

The   number   of   simulations   done   
by   the   AlphaZero   algorithm   from   
each   state   (on   each   turn).   

25   for   small   boards;  
100,   150,   or   200   for   large  

boards  
Dirichlet   Alpha   
( policy_alpha )   

The   parameter   of   the   Dirichlet   
Distribution   used   to   add   random   
noise   to   the   available   actions   
during   MCTS.   

0.25   for   small   boards;  
1   for   large   boards  

Policy   Epsilon   
( policy_epsilon )   

The   extent   to   which   the   random   
noise   of   an   action   in   MCTS   is   
added   to   the   predicted   prior   of   
the   action.   

1   for   small   boards;  
0.25   for   large   boards  



  

  

Temperature   
( temperature )   

The   neural   network   policy   output   
is   raised   to   the   reciprocal   of   this   
value.   

1  

Temperature   Drop   
( temperature_drop )   

During   training,   moves   are   
randomly   selected   until   the   total   
number   of   moves   played   exceeds   
this   value.   Then,   the   best   action   
computed   is   played.   

4   for   small   boards;  
10   for   5⨉5   and   5x6   boards;  

interpolated   for   any   largerboards  

Neural   Network   Model   
Type   
( nn_model )   

The   type   of   neural   network   
model   used   for   the   algorithm.   
Fully-connected   layer-based,   
convolutional   layer-based,   and   
residual   layer-based   are   
available.   

The   residual   neural   network  
architecture,   a   value   of   “resnet”  

Neural   Network   Width   
( nn_width )   

The   number   of   filters   or   
perceptrons   in   each   intermediate   
layer   of   the   convolutional-based   
or   MLP   neural   network   
respectively.   

128  

Neural   Network   Depth   
( nn_depth )   

The   number   of   intermediate   
layers   in   the   neural   network.   

2   for   small   boards;  
within   ±1   of   the   larger   between  
the   number   of   rows   and   number  

of   columns   for   large   boards  


