

Training DeepMind’s OpenSpiel AlphaZero Algorithm to Play
Clobber

Christian Jans

University of Alberta
Edmonton, Alberta T6G 2R3
cjjans@ualberta.ca

Abstract: Google DeepMind’s AlphaZero has revolutionized the world of game
AI. Through pure self-play, the algorithm can achieve superhuman performance
in games such as chess, shogi, and Go. However, accomplishing this requires an
enormous amount of computing resources, the likes of which are not available to
most researchers. Additionally, the multitude of AlphaZero hyperparameters and
their effect on performance can be difficult to predict without undergoing
numerous time-consuming training sessions. This paper recounts the process of
training the AlphaZero algorithm in Google DeepMind’s OpenSpiel framework
on various board sizes of the game Clobber during Summer 2020. The aim is to
provide a starting point for those looking to train the AlphaZero algorithm by
addressing elements such as the encoding of the board, neural network
architecture, and hyperparameter values. Inferences about these components are
based on data available in a Google Doc located here: http://bit.ly/3qLwsHk.

1 Introduction

At a high level, AlphaZero consists of two main components: a Monte-Carlo Tree Search (MCTS)
and a dual-headed neural network. The neural network takes as input an encoded version of the
game state, and outputs a value scalar and policy vector. The value output of the neural network
estimates the advantage of a given game state from the current player’s perspective. It is a
continuous value in the range -1 (loss) to 1 (win). The policy output consists of a vector of
probabilities for each available action from the given game state. From a given state, the algorithm
undergoes a neural-network-backed MCTS to obtain experience in the game through multiple
simulations. During training, these experiences are then compiled into a replay buffer to be used
later to learn from. Hence, an iteration of the AlphaZero training loop essentially consists of
self-play and continuous evaluation, followed by learning, in which the neural network learns
from the experiences gathered during self-play. For more detail, a working implementation can be
found in Google DeepMind’s OpenSpiel framework [6] (the framework we used to train our
AlphaZero agents). Finally, as a note, the Courier New font will be used to refer to the
hyperparameters of the framework’s AlphaZero implementation.

Clobber [1] was invented by Michael Albert, J.P. Grossman, and Richard Nowakowski in 2001. It
is classified as a two-player, combinatorial board game. That is, it has no randomization
mechanism during play, and all players know everything about the current state of the game. The
game is played on an m ⨉ n checkerboard starting with white pieces on white squares, and black
pieces on black squares. The game can also be played with the symbols “x” and “o” in place of the
colours. Players are then each assigned a colour or symbol and alternate turns moving one of their
pieces on top of an adjacent opponent piece. This opponent piece is then removed from the board.
The winner is the last person to play. Little is known about what constitutes “good” play at the
beginning of the game, especially on larger board sizes [13]. As a result, hyperparameters that

have the ability to scale and also impact performance were of great interest in developing
AlphaZero players for larger and larger board sizes.

Our training of the AlphaZero algorithm started off small with 3⨉3 Clobber boards, but gradually
continued on to 4⨉4, 5⨉5, and 5⨉6. At each of these board sizes, hyperparameter values were
experimented with to determine which hyperparameters affected the evaluation and learning of the
AlphaZero player the most. We define a “small board” to have an area of 16 cells or less, such as
sizes 3⨉3 or 4⨉4; and a “large board” as any board with an area larger than 16 cells such as 5⨉5,
5⨉6, or larger. The ultimate goal of this project was to scale up training to a board size of 10⨉10.
Unfortunately, due to a lack of experimentation and testing, the 10⨉10 results are not discussed in
this paper. Additionally, a few 8⨉8 board experiments were conducted, but are not discussed for
the same reason.

The Python AlphaZero implementation in OpenSpiel had the ability to utilize GPUs, however,
testing indicated that the use of GPUs hindered the performance of the algorithm. Reasons for this
are still unknown. As a result, our hardware requirements focussed on the number of CPU cores
and total amount of memory. For the small boards and the 5⨉5 boards, we used a machine with 8
CPU cores and 4 GB of memory to conduct the training. Extra hardware obtained from Compute
Canada was used for training on board sizes larger than 5⨉5. With these machines, we had access
to 48 CPU cores and up to 128 GB of memory.

Finally, similar projects have also attempted to minimize the training time of an AlphaZero player
while maintaining its performance through the experimentation of hyperparameter values.
However, this has mainly been tested with games whose boards are not scalable, such as Connect
4 [11], or scalable games are chosen, but the board size is fixed, such as 6⨉6 Othello [12]. Results
from these studies indicate that there is certainly room for hyperparameter optimization in the
AlphaZero algorithm. Despite this, there is unfortunately minimal other literature on the subject.

2 Performance Analysis

The OpenSpiel framework comes with a Python script that allows a graphical analysis to be
performed on an AlphaZero training session. While training, the algorithm continually updates a
file called “learner.jsonl” that contains data about each step of the current training session. The
data in this file can then be graphed using the aforementioned Python script. Once run, this script
creates a window with 12 graphs describing the performance in terms of both computing and the
AlphaZero player. To analyze the performance of the AlphaZero player, we focussed our attention
on two of these 12 graphs, specifically the “Training loss” graph (shown in Figure 1) and the
“Evaluation returns vs MCTS+Solver with x10^(n/2) sims” graph (shown in Figure 2). Both
graphs shown in the figures come from the same training session on a board size of 5⨉5.

Loss Graph. The loss graph shows the total (sum) loss, policy loss, value loss, and regularization
loss of the neural network after each training step. As a result, as the training steps increase, it is
best to see a decrease in loss (particularly in the total, policy, and value losses) as this implies that
the network is able to more accurately predict the value and policy of a given game state. Figure 1
shows an example of a loss graph that steadily decreases.

Evaluation Graph. The evaluation graph depicts how well the AlphaZero player plays against
an MCTS player. Over the course of training, the AlphaZero player continually plays an MCTS
player of varying difficulty. The difficulty of the MCTS player is determined by how many
simulations it is allowed to run from the current game state of the game. For each move, the
AlphaZero player plays by performing max_simulations simulations from the current game
state. It is combated by an MCTS player of a certain integer level, n , whose simulation count, s , is
determined by . Therefore, as the level of the MCTS player
increases, so does its simulation count. When it is the MCTS player’s turn to play, it conducts s
simulations from the current state to determine its move. At each level, the AlphaZero player is
given the opportunity to play both first and second so that there is no inherent player advantage. A
win for the MCTS player is tabulated as a -1 outcome, and a win for the AlphaZero player is
tabulated as a +1 outcome. A buffer of size evaluation_window is kept for each difficulty
level. These buffers are contained in a list, and the outcomes for each game at a certain level are
put into their respective buffer. After each training step, the average value of the buffer is
calculated for each difficulty level and plotted on the evaluation graph. As a result, at the
beginning of training when the AlphaZero player has not learned enough to play well, it should be
expected that the evaluation graph will show negative average outcomes for all difficulty levels.
However, as the training progresses, the average outcomes should increase, and the trends for each
difficulty level should also diverge. That is, as training progresses, lower difficulty levels should
see a higher average outcome than those of higher difficulty. This is because it should be easier for
the AlphaZero player to win against an MCTS player undergoing fewer simulations. Notice that
this divergence and gradual increase is what is approximately observed in Figure 2.

3 Model Type

For all of our experiments, we used the dual-headed residual neural network available in the
OpenSpiel framework. The OpenSpiel framework has three types of dual-headed neural network
architectures available for AlphaZero: a residual network, a convolutional network (without
residual connections), and a multilayer perceptron (MLP or fully-connected) network. Each

Figure 1: The loss graph of an AlphaZero

training session. Total (sum), policy, value,
and regularization loss are shown.

Figure 2: The evaluation graph of an AlphaZero
training session. The legend depicts the

 colours of each difficulty level.

network can be configured with a variably sized input and output, and can also be set with a
specific number of layers and filters (in the case of the residual and convolutional networks) or
layers and perceptrons (in the case of the MLP network). The residual neural network follows the
same basic architecture as described in AlphaGo Zero [10], and the implementation of these three
neural networks can be found in the OpenSpiel framework. Notice that the game of Cobber
inherently relies on the spatial information between pieces on the board. This can simply be
deduced from the rules of the game: a piece cannot be moved unless there is at least one adjacent
opponent piece. A multitude of results in various areas of research have previously shown that
convolutional layers enhance a neural network’s ability to detect this spatial information in an
input [5, 8, 14]. Therefore, we decided to not use the MLP network. When choosing between the
convolutional and residual neural networks, we chose the residual network due to its ability to
combat the Vanishing Gradient Problem [4] in deep neural networks [3].

4 Clobber Implementation

The Clobber implementation in the OpenSpiel framework was built in C++. It allows for a
variable number of rows and columns, and an option to invert the colours on the board. In the
framework, the player representing the character “o” is Player One and always plays first. Hence,
Player Two is represented by “x”. OpenSpiel requires each game’s state class to define an
“Observation Tensor” function. This function returns an encoding of the current game’s state that
can then be passed to a neural network as input. The encoding of a Clobber game state went
through a revision over the course of training for the different sized boards.

First Board Encoding. For the AlphaZero players on the 3⨉3, 4⨉4, and some 5⨉5 boards, we
encoded the game in a tensor of rank three. For an m ⨉ n Clobber board, the tensor consisted of
three m ⨉ n planes. The first plane consisted of 1’s where all of Player One’s pieces were, and 0’s
elsewhere. The second plane consisted of 1’s where all of Player Two’s pieces were, and 0’s
elsewhere. Finally, the third plane consisted of 1’s where all the empty board cells were, and 0’s
elsewhere. An example encoding can be found in Appendix A. Notice however that with this
encoding, it is difficult to deduce the value of a state. For example, consider a mid game state of
an arbitrarily sized board with only two pieces and these pieces are adjacent. Given the encoding
of this board, it is impossible to predict the value of this state without knowing whose turn it is.
Therefore, some sense of whose turn it is must be added to the encoding. Additionally, keeping a
similar perspective of the board was also added. That is, the network always views its own pieces
on the same plane of the tensor, no matter if it is playing as Player One or Player Two.

Second Board Encoding. Some 5⨉6 boards and all boards larger than 5⨉6 followed this new
encoding that depicts the board from a consistent point of view, and also provides information on
which player’s turn it is. For a Clobber board of size m ⨉ n, this was accomplished once again
through a tensor of rank three consisting of three m ⨉ n planes. The first plane consisted of 1’s
where the current player’s pieces were, and 0’s elsewhere. The second plane consisted of 1’s
where the opponent’s pieces were, and 0’s elsewhere. Finally, the third plane consisted of all 1’s if
it was Player One’s turn to play, otherwise it consisted of all 0’s. An example of this encoding can
be found in Appendix A. This is similar to the encoding used in AlphaGo Zero [10], which is why
it was chosen. The only difference is that there are no planes containing previous states of the
board in the Clobber encoding. Variations of this type of encoding have also proved useful in
chess and shogi [9].

5 Hyperparameters

A complete list of available hyperparameters for OpenSpiel’s Python AlphaZero is available in
Appendix B. Descriptions and values used in our experiments are also given for each. Note that
not all hyperparameters affected the speed of training, the performance of the AlphaZero player, or
the scalability of the performance of the AlphaZero player. These hyperparameters are not in bold
font in the table and will not be discussed. Also, some hyperparameters were not tweaked due to a
lack of time, these are also not bolded. In total, eight hyperparameters were experimented with and
will be discussed in this section.

Replay Buffer Ratio. We define the Replay Buffer Ratio as the value of the ratio of the
replay_buffer_size to the replay_buffer_reuse . The replay buffer size
hyperparameter determines the number of experiences the replay buffer can hold. An experience
consists of a state, action, and a reward obtained from taking that action in that state. A greater
value for the replay buffer size allows more of these experiences to be held in the agent’s memory,
and the agent can then learn from a more diverse set of experiences. The replay buffer reuse
parameter specifies how long the previous experiences are held in the replay buffer. That is, during
each iteration of the self-play portion of the AlphaZero training loop, the agent will gather a
certain number of experiences and put these experiences into the replay buffer. The number of
experiences gathered is exactly the value of the Replay Buffer Ratio. Hence, starting from an
empty replay buffer, it takes replay_buffer_reuse iterations of the training loop to fill the
replay buffer. Notice that the larger the Replay Buffer Ratio, the greater the number of experiences
are added to the replay buffer during self-play each training iteration (training step). Additionally,
note that on average, an experience will remain in the replay buffer for
replay_buffer_reuse training iterations. We found that a large Replay Buffer Ratio
improves performance drastically as long as the replay buffer reuse is small enough. Explained
intuitively, a large Replay Buffer Ratio ensures a greater diversity of experiences are added to the
replay buffer every training iteration, and a small replay buffer reuse ensures that old experiences,
that are potentially incorrect or not useful, are not learned from anymore. However, it was also
found that the Replay Buffer Ratio is heavily proportional to the amount of time a training
iteration takes. We found that effective replay buffer reuse values never exceeded 4, and we scaled
the replay buffer size with the board size we were training on. For smaller boards (3⨉3 and 4⨉4)
we used a replay buffer size of 2 14 and a replay buffer reuse of 4. For large boards, the Replay
Buffer Ratio was greater than or equal to 2 14 ; maintaining a replay buffer reuse of no more than 4.

Actors & Evaluators. To perform self-play and evaluation during training, the OpenSpiel
Python AlphaZero algorithm spawns actor and evaluator Python processes respectively. The
number of actor and evaluator processes spawned can be controlled using the actors and
evaluators hyperparameters. As the number of actors increase, the speed at which self-play
games can be simulated also increases. This results in less time per training step. Similarly, as the
number of evaluators increases, more games can be played against the MCTS players. Although
this will not increase the speed of training, it will provide more accurate results on how well the
AlphaZero player is performing throughout training. For our experiments, the sum of the actors
and evaluators was equal to the number of CPU cores available. Additionally, the number of
evaluators never exceeded the number of actors. Often, the number of evaluators was kept in the
range one to four.

Simulation Count. The number of simulations from a state performed by the AlphaZero agent
during training is determined by the max_simulations hyperparameter. Intuitively, the more
simulations performed by the AlphaZero agent at each state, the better its policy approximation

will be. However, an increase in the number of simulations per state requires more time. For
smaller boards (3⨉3 and 4⨉4), we kept a value of 20 for this hyperparameter. However, for larger
boards (5⨉5 and greater), this number was almost always greater than or equal to 100.

Temperature Drop. To increase exploration during self-play, the OpenSpiel Python AlphaZero
algorithm will sometimes choose a random action following the policy distribution obtained from
undergoing MCTS instead of the best action obtained from undergoing MCTS. This behaviour is
controlled by the temperature drop hyperparameter. If the total number of moves played in the
self-play game is less than the value of the temperature drop, then a random action following the
policy distribution is performed. Otherwise, the best action obtained from MCTS is performed.
The temperature drop value is determined by the temperature_drop hyperparameter. For
boards larger than 5⨉6, we based this value on the average game length of randomly simulated
Clobber games of the desired board size. To approximate a value for the temperature drop we
looked at previous AlphaZero implementations and the games they played. From the temperature
drop values in the Connect 4 analysis [11] (Connect 4, an average game length of 36 moves [2]
using a temperature drop of 10 for their AlphaZero), DeepMind’s AlphaGo Zero [7] (Go, with an
average game length of 150 moves [2] using a temperature drop of 30), and the recommended
hyperparameter value of the temperature drop for Tic-Tac-Toe in the OpenSpiel framework
(Tic-Tac-Toe, an average game length of 9 moves [2], using a temperature drop of 4), a linear
relationship between the temperature drop and the average game length was devised through
simple linear regression. The relationship was calculated to be:

Where T is the temperature drop value and N is the average number length of the game. If the
interpolated number was not a whole number, we would round to the nearest whole number. For
example, 5⨉5 Clobber has an average game length of 15.7 moves, resulting in a value of
approximately 5.7 for the temperature drop (which is rounded to 6).

Neural Network Depth. The number of residual layers (depth) in our residual neural network
was determined as a function of the number of rows (R) and columns (C) of the board. For small
board sizes, the range of the depth (D) of the neural network was kept within two of the maximum
between the number of rows and number of columns, that is:

For large board sizes, we attempted to approximate the network depth based on AlphaGo Zero
[10]. In their experiments, the smaller network had a depth of 20 for a Go board size of 19⨉19.
Hence, the depth of the neural network for larger Clobber boards was trivially set as:

Although in practice, values would range within ±1 of the maximum. The depth of the AlphaZero
neural network can be set using the nn_depth parameter. With an increase in depth, there is an
increase in the amount of time it takes to perform a training step. This is because neural network
inference, backpropagation, and gradient descent take more time with more network parameters.

6 Conclusion

This paper discussed our process experimenting with AlphaZero, particularly the OpenSpiel
version of the algorithm. We discussed neural network architecture, providing reasons for the
choice of a residual architecture over purely convolutional-based or fully-connected networks.
Additionally, we touched on the use of two ways to encode a board as a tensor for the neural
network. Ultimately settling with a representation that provided a representation from a consistent
perspective that contains all the information of the game in the given state. Finally we examined
some of the hyperparameters of the algorithm, particularly those that had the most effect on the

time it takes to train the algorithm, and those that most affected the performance of the trained
agent. It was inferred that our self-defined Replay Buffer Ratio hyperparameter had the greatest
effect on both these metrics. We hope that the information contained in this report and the
accompanying data can aid future researchers, and provide a starting point for training their own
AlphaZero, or AlphaZero-like algorithm.

Acknowledgements

This research was enabled in part by support provided by WestGrid and Compute Canada. We also
acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC). Finally, I would also like to thank Dr. Martin Müller and Dr. Ting-Han Wei for their
support and mentorship with this project.

References

[1] Albert, M.; Grossman, J.; Nowakowski, R.; et al. 2005. An introduction to Clobber. Integers
5(2): A1.

[2] Allis, V. 1994. Searching for Solutions in Games and Artificial Intelligence (Ph.D. thesis).
University of Limburg, Maastricht, The Netherlands. ISBN 90-900748-8-0 .

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. (2015). Deep Residual Learning
for Image Recognition.

[4] Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent Neural
Nets and Problem Solutions International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6 , 107-116.

[5] Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing Systems (pp.
1097–1105). Curran Associates, Inc..

[6] Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; et al. 2019 OpenSpiel: A Framework for
Reinforcement Learning in Games. CoRR abs/19008.09453.

[7] Nair, S. (2017, December 29). A Simple Alpha(Go) Zero Tutorial . Stanford.
https://web.stanford.edu/~surag/posts/alphazero.html

[8] Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 484–489 (2016). https://doi.org/10.1038/nature16961

[9] Silver, D.; Hubert, T.; Schrittwieser, J.; et al. 2017. Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm. CoRR abs/1712.01815.

[10] Silver, D.; Schrittwieser, J.; Simonyan, K.; et al. 2017. Mastering the game of Go without
human knowledge. Nature, 550, 7676 (Oct. 2017), 354-359.

[11] Soh, Wee Tee. (2019, April 13). From-scratch Implementation of AlphaZero for Connect4 .
Towards Data Science.
https://towardsdatascience.com/from-scratch-implementation-of-alphazero-for-connect4-f73
d4554002a.

[12] Hui Wang, Michael Emmerich, Mike Preuss, & Aske Plaat. (2019). Hyper-Parameter Sweep
on AlphaZero General.

[13] Willemson, J.; and Winands, M. 2006. MILA Wins Clobber Tournament. ICGA Journal 28:
188-190. doi:10.3233/ICG-2005-28316.

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/90-900748-8-0

A Board Encodings

The following 4⨉4 board shows a Clobber state, mid-game. We assume that it is Player One’s
(white’s) turn to play. Shown are the encodings of this state as tensors in a Python list format
according to the first and second types of board encodings.

B Table of Hyperparameters

[14] Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview
and application in radiology. Insights Imaging 9, 611–629 (2018).
https://doi.org/10.1007/s13244-018-0639-9

First Board Encoding

 [[[1, 0, 0, 1],
 [1, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 1, 1, 0]],

 [[0, 0, 0, 0],
 [0, 1, 0, 1],
 [0, 1, 1, 0],
 [0, 0, 0, 1]],

 [[0, 1, 1, 0],
 [0, 0, 1, 0],
 [1, 0, 0, 1],
 [1, 0, 0, 0]]]

Second Board Encoding

 [[[1, 0, 0, 1],
 [1, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 1, 1, 0]],

 [[0, 0, 0, 0],
 [0, 1, 0, 1],
 [0, 1, 1, 0],
 [0, 0, 0, 1]],

 [[1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1]]]

Hyperparameter Description Value
Learning Rate
(learning_rate)

The learning rate used for the
neural network.

0.01 for small boards;
0.001 for large boards

Weight Decay
(weight_decay)

The weight decay of the L2
regularization loss used in the
neural network.

0.0001

Training Batch Size
(train_batch_size)

The number of observations
learned on for each weight

128 for small boards;
128, 256, or 1024 for large

update of the neural network. boards
Replay Buffer Size
(replay_buffer_size)

The number of observations the
replay buffer can hold.

2 14 for small boards;
2 16 , 2 17 , 2 18 , or 2 19 for large

boards
Replay Buffer Reuse
(replay_buffer_reuse)

The number of training iterations
that a given observation will
remain in the replay buffer on
average.

4 for small boards,
2 or 3 for large boards

Maximum Training Steps
(max_steps)

The maximum number of
training iterations that will occur
before the program exits. Zero
can be entered for an indefinite
number of iterations.

0

Checkpoint Frequency
(checkpoint_freq)

The rate at which the AlphaZero
neural network will be saved
based on the number of training
iterations.

Varied depending on how often
we wanted to save the neural

network model

Actors
(actors)

The number of processes
spawned that undergo self-play.
They collect the experience
observations and put them in the
replay buffer.

Varied depending on the number
of CPUs available

Evaluators
(evaluators)

The number of processes
spawned that undergo evaluation.
They play the AlphaZero
algorithm against MCTS players,
recording the results of the
games.

Varied depending on the number
of CPUs available

Evaluation Window
(evaluation_window)

The number of evaluations to
maintain in the evaluation buffer
per level of MCTS opponent.
Evaluation results are the average
of the results in these buffers.

50 for small boards;
100 for large boards

Evaluation Levels
(eval_levels)

The number of levels of
difficulty of the MCTS players
that the AlphaZero player will
play against during evaluation.

7

Exploration Constant (c PUCT)
(uct_c)

A value proportional to the
degree of exploration during
MCTS.

1 for small boards;
2 for large boards

Maximum Simulations
(max_simulations)

The number of simulations done
by the AlphaZero algorithm from
each state (on each turn).

25 for small boards;
100, 150, or 200 for large

boards
Dirichlet Alpha
(policy_alpha)

The parameter of the Dirichlet
Distribution used to add random
noise to the available actions
during MCTS.

0.25 for small boards;
1 for large boards

Policy Epsilon
(policy_epsilon)

The extent to which the random
noise of an action in MCTS is
added to the predicted prior of
the action.

1 for small boards;
0.25 for large boards

Temperature
(temperature)

The neural network policy output
is raised to the reciprocal of this
value.

1

Temperature Drop
(temperature_drop)

During training, moves are
randomly selected until the total
number of moves played exceeds
this value. Then, the best action
computed is played.

4 for small boards;
10 for 5⨉5 and 5x6 boards;

interpolated for any largerboards

Neural Network Model
Type
(nn_model)

The type of neural network
model used for the algorithm.
Fully-connected layer-based,
convolutional layer-based, and
residual layer-based are
available.

The residual neural network
architecture, a value of “resnet”

Neural Network Width
(nn_width)

The number of filters or
perceptrons in each intermediate
layer of the convolutional-based
or MLP neural network
respectively.

128

Neural Network Depth
(nn_depth)

The number of intermediate
layers in the neural network.

2 for small boards;
within ±1 of the larger between
the number of rows and number

of columns for large boards

